National Library of Energy BETA

Sample records for tertiary volcanic rocks

  1. Gravity and magnetic anomalies associated with Tertiary volcanism and a Proterozoic crustal boundary, Hopi Buttes volcanic field, Navajo Nation (Arizona)

    SciTech Connect (OSTI)

    Donovan-Ealy, P.F. . Geology Dept.); Hendricks, J.D. )

    1992-01-01

    The Hopi Buttes volcanic field is located in the Navajo Nation of northeastern Arizona, near the southern margin of the Colorado Plateau. Explosive phreatomagmatic eruptions from late Miocene to mid-Pliocene time produced more than 300 maar-diatremes and deposited limburgite tuffs and tuff breccia and monchiquite dikes, necks and flows within a roughly circular 2,500 km[sup 2] area. The volcanic and volcaniclastic rocks make up the middle member of the Bidahochi Formation, whose lower and upper members are lacustrine and fluvial, respectively. The Bidahochi Formation overlies gently dipping Mesozoic sedimentary rocks exposed in the southwestern portion of the volcanic field. Two significant gravity and magnetic anomalies appear within the Hopi Buttes volcanic field that are unlike the signatures of other Tertiary volcanic fields on the Colorado Plateau. A circular 20 mGal negative gravity anomaly is centered over exposed sedimentary rocks in the southwestern portion of the field. The anomaly may be due to the large volume of low density pyroclastic rocks in the volcanic field and/or extensive brecciation of the underlying strata from the violent maar eruptions. The second significant anomaly is the northeast-trending Holbrook lineament, a 5 km-wide gravity and magnetic lineament that crosses the southeastern part of the volcanic field. The lineament reflects substantial gravity and magnetic decreases of 1.67 mGals/km and 100 gammas/km respectively, to the southeast. Preliminary two-dimensional gravity and magnetic modeling suggests the lineament represents a major Proterozoic crustal boundary and may correlate with one of several Proterozoic faults exposed in the transition zone of central Arizona. Gravity modeling shows a 3--5 km step'' in the Moho near the crustal boundary. The decrease in depth of the Moho to the northwest indicates either movement along the fault or magmatic upwelling beneath the volcanic field.

  2. Rock Sampling At San Francisco Volcanic Field Area (Warpinski...

    Open Energy Info (EERE)

    Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At San Francisco Volcanic...

  3. Rock Sampling At San Juan Volcanic Field Area (Larson & Jr, 1986...

    Open Energy Info (EERE)

    Juan Volcanic Field Area (Larson & Jr, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At San Juan Volcanic Field Area...

  4. Uranium and thorium decay series disequilibria in young volcanic rocks

    SciTech Connect (OSTI)

    Williams, R.W.

    1988-01-01

    Two of the central questions in igneous geochemistry that study of radioactive disequilibria can help to answer are: what are the rates of magma genesis; and what are the timescales of magma separation and transport. In addition to the temporal information that may be extracted from disequilibria data, the {sup 230}Th/{sup 232}Th of a young rock may be used as a tracer of the Th/U ratio of its source region. Measurements were made by isotope dilution alpha-spectrometry of {sup 238}U, {sup 234}U, {sup 230}Th, and {sup 232}Th in 20 subduction related, 3 oceanic intraplate, and 10 continental intraplate volcanics. {sup 210}Pb was measured in all, {sup 226}Ra was measured in about half, and {sup 228}Th was measured in 10 of the most recent samples. Disequilibrium between {sup 228}Th and {sup 232}Th was found only in the Nacarbonatite samples from Oldoinyo Lengai volcano in Tanzania, which is attributable to {sup 228}Ra/{sup 232}Th {approximately} 27 at the time of eruption. These rocks also have {sup 226}Ra/{sup 230}Th > 60. Three Ra-enrichment models are developed which constrain carbonatite magma formation at less than 20 years before eruption. The effects of different partial melting processes on the {sup 238}U decay series are investigated. If mid-ocean ridge basalts are formed by a dynamic melting process, the {sup 230}Th/{sup 232}Th of the basalts provides a minimum estimate of the Th/U ratio of the source region. The {sup 238}U enrichment in arc volcanics is probably the results of metasomatism of the source by fluids derived from the subducting slab, and the {sup 230}Th enrichment observed for other volcanics is probably due to the partial melting process in the absence of U-bearing fluids.

  5. Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Abstract Large, young calderas...

  6. Uranium mineralization in fluorine-enriched volcanic rocks

    SciTech Connect (OSTI)

    Burt, D.M.; Sheridan, M.F.; Bikun, J.; Christiansen, E.; Correa, B.; Murphy, B.; Self, S.

    1980-09-01

    Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements (especially uranium).

  7. Preliminary results of wildcat drilling in Absaroka volcanic rocks, Hot Springs County, Wyoming

    SciTech Connect (OSTI)

    Bailey, M.H.; Sundell, K.A.

    1986-08-01

    Recent drilling of three remote, high-elevation wildcat wells has proven that excellent Paleozoic reservoirs are present at shallow depths beneath Eocene volcaniclastic rocks. The Tensleep and Madison Formations are fluid filled above an elevation of 8000 ft, and all Paleozoic formations exhibit shows of oil and gas. These prolific reservoir rocks have produced billions of barrels of oil from the adjacent Bighorn and Wind river basins, and they pinch out with angular unconformity against the base of the volcanics, providing enormous potential for stratigraphic oil accumulations. Vibroseis and portable seismic data have confirmed and further delineate large anticlines of Paleozoic rocks, which were originally discovered by detailed surface geologic mapping. These structures can be projected along anticlinal trends from the western Owl Creek Mountains to beneath the volcanics as well. The overlying volcanics are generally soft, reworked sediments. However, large, hard boulders and blocks of andesite-dacite, which were previously mapped as intrusives, are present and are the result of catastrophic landslide/debris flow. The volcanics locally contain highly porous and permeable sandstones and abundant bentonite stringers. Oil and gas shows were observed throughout a 2400-ft thick interval of the Eocene Tepee Trail and Aycross Formations. Shows were recorded 9100 ft above sea level in the volcanic rocks. A minimum of 10 million bbl of oil (asphaltum) and an undetermined amount of gases and lighter oils have accumulated within the basal volcanic sequence, based on the evaluation of data from two drill sites. Significant amounts of hydrocarbons have migrated since the volcanics were deposited 50 Ma. Large Laramide anticlines were partially eroded and breached into the Paleozoic formations and resealed by overlying volcanics with subsequent development of a massive tar seal.

  8. Review and reconnaissance of the hydrogeology of Tertiary sedimentary rocks in the vicinity of Frenchman Flat, Nevada Test Site

    SciTech Connect (OSTI)

    Prothro, L.B.; Drellack, S.L. Jr.

    1997-09-01

    Work is currently underway within the Underground Test Area (UGTA) subproject of the US Department of Energy/Nevada Operations Office Environmental Restoration Program to develop corrective action plans in support of the overall corrective action strategy for the Nevada Test Site (NTS) as established in the Federal Facility Agreement and Consent Order (FFACO, 1996). A closure plan is currently being developed for Frenchman Flat, which has been identified in the FFACO as a Corrective Action Unit (CAU). Part of this effort requires that hydrogeologic data be compiled for inclusion in a CAU-specific hydrologic flow and transport model that will be used to predict contaminant boundaries. Hydrogeologic maps and cross sections are currently being prepared for use in the model to define the nature and extent of aquifers and confining units that might influence the flow of contaminated groundwater from underground nuclear tests conducted in Frenchman Flat. During this effort, it has been found that older Tertiary-age sediments might be hydrogeologically important in the Frenchman Flat model area. Although the character and extent of these units are poorly known, there is reason to believe that in some parts of Frenchman Flat they may lie between the regional Lower Carbonate Aquifer (LCA) and the younger Tertiary saturated alluvium and volcanic units in which several underground nuclear tests were conducted. It was not possible to quickly determine their extent, or ascertain whether or not these units might act as confining units or aquifers. The work described in this report was done to gain a better understanding of the hydrogeology of these rocks.

  9. Saturated Zone Plumes in Volcanic Rock: Implications for Yucca Mountain

    SciTech Connect (OSTI)

    S. Kelkar; R. Roback; B. Robinson; G. Srinivasan; C. Jones; P. Reimus

    2006-02-14

    This paper presents a literature survey of the occurrences of radionuclide plumes in saturated, fractured rocks. Three sites, Idaho National laboratory, Hanford, and Oak Ridge are discussed in detail. Results of a modeling study are also presented showing that the length to width ratio of a plume starting within the repository footprint at the Yucca Mountain Project site, decreases from about 20:1 for the base case to about 4:1 for a higher value of transverse dispersivity, indicating enhanced lateral spreading of the plume. Due to the definition of regulatory requirements, this lateral spreading does not directly impact breakthrough curves at the 18 km compliance boundary, however it increases the potential that a plume will encounter reducing conditions, thus significantly retarding the transport of sorbing radionuclides.

  10. Sub-crop geologic map of pre-Tertiary rocks in the Yucca Flat and northern Frenchman Flat areas, Nevada Test Site, southern Nevada

    SciTech Connect (OSTI)

    Cole, J.C.; Harris, A.G.; Wahl, R.R.

    1997-10-02

    This map displays interpreted structural and stratigraphic relations among the Paleozoic and older rocks of the Nevada Test Site region beneath the Miocene volcanic rocks and younger alluvium in the Yucca Flat and northern Frenchman Flat basins. These interpretations are based on a comprehensive examination and review of data for more than 77 drillholes that penetrated part of the pre-Tertiary basement beneath these post-middle Miocene structural basins. Biostratigraphic data from conodont fossils were newly obtained for 31 of these holes, and a thorough review of all prior microfossil paleontologic data is incorporated in the analysis. Subsurface relationships are interpreted in light of a revised regional geologic framework synthesized from detailed geologic mapping in the ranges surrounding Yucca Flat, from comprehensive stratigraphic studies in the region, and from additional detailed field studies on and around the Nevada Test Site. All available data indicate the subsurface geology of Yucca Flat is considerably more complicated than previous interpretations have suggested. The western part of the basin, in particular, is underlain by relics of the eastward-vergent Belted Range thrust system that are folded back toward the west and thrust by local, west-vergent contractional structures of the CP thrust system. Field evidence from the ranges surrounding the north end of Yucca Flat indicate that two significant strike-slip faults track southward beneath the post-middle Miocene basin fill, but their subsurface traces cannot be closely defined from the available evidence. In contrast, the eastern part of the Yucca Flat basin is interpreted to be underlain by a fairly simple north-trending, broad syncline in the pre-Tertiary units. Far fewer data are available for the northern Frenchman Flat basin, but regional analysis indicates the pre-Tertiary structure there should also be relatively simple and not affected by thrusting. This new interpretation has implications for ground water flow through pre-Tertiary rocks beneath the Yucca Flat and northern Frenchman Flat areas, and has consequences for ground water modeling and model validation. Our data indicate that the Mississippian Chainman Shale is not laterally extensive confining unit in the western part of the basin because it is folded back onto itself by the convergent structures of the Belted Range and CP thrust systems. Early and Middle Paleozoic limestone and dolomite are present beneath most of both basins and, regardless of structural complications, are interpreted to form a laterally continuous and extensive carbonate aquifer. Structural culmination that marks the French Peak accommodation zone along the topographic divide between the two basins provides a lateral pathway through highly fractured rock between the volcanic aquifers of Yucca Flat and the regional carbonate aquifer. This pathway may accelerate the migration of ground-water contaminants introduced by underground nuclear testing toward discharge areas beyond the Nevada Test Site boundaries. Predictive three-dimensional models of hydrostratigraphic units and ground-water flow in the pre-Tertiary rocks of subsurface Yucca Flat are likely to be unrealistic due to the extreme structural complexities. The interpretation of hydrologic and geochemical data obtained from monitoring wells will be difficult to extrapolate through the flow system until more is known about the continuity of hydrostratigraphic units. 1 plate

  11. Rocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rocks Rocks Rocks have been used by mankind throughout history. In geology, rock is a naturally occurring composite of one or more minerals or mineraloids. One of our most popular...

  12. Black Rock Point Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  13. Anastomosing grabens, low-angle faults, and Tertiary thrust( ) faults, western Markagunt Plateau, southwestern Utah

    SciTech Connect (OSTI)

    Maldonado, F.; Sable, E.G. )

    1993-04-01

    A structurally complex terrane composed of grabens and horsts, low-angle faults, Tertiary thrust( ) faults, gravity-slide blocks, and debris deposits has been mapped along the western Markagunt Plateau, east of Parowan and Summit, southwestern Utah. This terrane, structurally situated within the transition between the Basin and Range and Colorado Plateau provinces, contains Tertiary volcanic and sedimentary and Cretaceous sedimentary rocks. The structures are mostly Miocene to Oligocene but some are Pleistocene. The oldest structure is the Red Hills low-angle shear zone, interpreted as a shallow structure that decoupled an upper plate composed of a Miocene-Oligocene volcanic ash-flow tuff and volcaniclastic succession from a lower plate of Tertiary sedimentary rocks. The period of deformation on the shear zone is bracketed from field relationships between 22.5 and 20 Ma. The graben-horst system trends northeast and formed after about 20 Ma (and probably much later) based on displacement of dated dikes and a laccolith. The central part of the system contains many grabens that merge toward its southerly end to become a single graben. Within these grabens, (1) older structures are preserved, (2) debris eroded from horst walls forms lobe-shaped deposits, (3) Pleistocene basaltic cinder cones have localized along graben-bounding faults, and (4) rock units are locally folded suggesting some component of lateral translation along graben-bounding faults. Megabreccia deposits and landslide debris are common. Megabreccia deposits are interpreted as gravity-slide blocks of Miocene-Oligocene( ) age resulting from formation of the Red Hills shear zone, although some may be related to volcanism, and still others to later deformation. The debris deposits are landslides of Pleistocene-Pliocene( ) age possibly caused by continued uplift of the Markagunt Plateau.

  14. Spherules from the Cretaceous/Tertiary boundary clay at Gubbio, Italy: the problem of outcrop contamination

    SciTech Connect (OSTI)

    Montanari, A.

    1986-12-01

    Surficial outcrop contamination has occurred in some well-known stratigraphic sections of carbonate rocks in the northern Apennines. A critical case involves several contaminated clay partings, including the Cretaceous/Tertiary boundary clay in the classic Bottaccione section near Gubbio, Italy. These clay layers contain shiny spherules which, in several recent studies, have been said to consist of volcanic glass and have been used to support the hypothesis that the terminal Cretaceous mass extinction was caused by widespread volcanism. Laboratory tests, however, indicate that these shiny spherules are made of HF-insoluble and combustible material and are therefore of recent biological origin. These objects were introduced into the Cretaceous/Tertiary boundary clay and other clay layers from the surrounding soil along with abundant detrital contaminants derived from erosion of the middle Miocene flysch exposed at the head of the Bottaccione Gorge. They are completely different from the altered and flattened microtektitelike spheroids that are found only in the iridium-rich Cretaceous/Tertiary boundary clay and that provide strong evidence for a large impact.

  15. Assessment of thermal evolution stages and oil-gas migration of carbonate source rocks of early tertiary in eastern Sichuan, China, by organic inclusion analysis

    SciTech Connect (OSTI)

    Shi Jixi; Li Benchao; Fu Jiamo

    1989-03-01

    The Jialinjiang Formation of early Tertiary in Sichuan, China, is a series of limestone and dolomite sediments deposited in a platform shoal environment. The diagenetic sequence and organic inclusions trapped in minerals of 95 samples from 20 drillings have been studied. At the late diagenetic stage, pale yellow organic inclusions consisted of liquid hydrocarbons disseminated in pore-infiltrating dolomite, and the homogeneous temperature of contemporaneous saline liquid inclusions possessing a low gas-liquid ratio was 86/degree/C. This indicates the evolution of the organic matter had gone over the oil generating threshold and oil formation had initiated. In the limestone formed at the late diagenetic stage, more brown-yellow organic inclusions were scattered and/or developed along with fissures, comprising 60-70% liquid hydrocarbons and 30-40% gaseous hydrocarbons. Contemporaneous saline liquid inclusions with gas-liquid ratios of 5-10% had homogeneous temperatures of 90/degree/-130/degree/C. These findings show that the organic material had entered a high evolution stage and oil migration had taken place on a large scale.

  16. A Sr-Isotopic Comparison Between Thermal Waters, Rocks, And Hydrotherm...

    Open Energy Info (EERE)

    through the isotopically lighter volcanic rocks of the caldera fill. Authors Fraser Goff, Harold A. Wollenberg, D. C. Brookins and Ronald W. Kistler Published Journal Journal...

  17. Hierarchical probabilistic regionalization of volcanism for Sengan region, Japan.

    SciTech Connect (OSTI)

    Balasingam, Pirahas; Park, Jinyong; McKenna, Sean Andrew; Kulatilake, Pinnaduwa H. S. W.

    2005-03-01

    A 1 km square regular grid system created on the Universal Transverse Mercator zone 54 projected coordinate system is used to work with volcanism related data for Sengan region. The following geologic variables were determined as the most important for identifying volcanism: geothermal gradient, groundwater temperature, heat discharge, groundwater pH value, presence of volcanic rocks and presence of hydrothermal alteration. Data available for each of these important geologic variables were used to perform directional variogram modeling and kriging to estimate geologic variable vectors at each of the 23949 centers of the chosen 1 km cell grid system. Cluster analysis was performed on the 23949 complete variable vectors to classify each center of 1 km cell into one of five different statistically homogeneous groups with respect to potential volcanism spanning from lowest possible volcanism to highest possible volcanism with increasing group number. A discriminant analysis incorporating Bayes theorem was performed to construct maps showing the probability of group membership for each of the volcanism groups. The said maps showed good comparisons with the recorded locations of volcanism within the Sengan region. No volcanic data were found to exist in the group 1 region. The high probability areas within group 1 have the chance of being the no volcanism region. Entropy of classification is calculated to assess the uncertainty of the allocation process of each 1 km cell center location based on the calculated probabilities. The recorded volcanism data are also plotted on the entropy map to examine the uncertainty level of the estimations at the locations where volcanism exists. The volcanic data cell locations that are in the high volcanism regions (groups 4 and 5) showed relatively low mapping estimation uncertainty. On the other hand, the volcanic data cell locations that are in the low volcanism region (group 2) showed relatively high mapping estimation uncertainty. The volcanic data cell locations that are in the medium volcanism region (group 3) showed relatively moderate mapping estimation uncertainty. Areas of high uncertainty provide locations where additional site characterization resources can be spent most effectively. The new data collected can be added to the existing database to perform future regionalized mapping and reduce the uncertainty level of the existing estimations.

  18. Age and location of volcanic centers less than or equal to 3...

    Office of Scientific and Technical Information (OSTI)

    age, are shown. Location of the volcanic vents and rocks were taken from Luedke and Smith (1978). Ages were obtained from the original literature in all cases except for McKee...

  19. Heteromorphism and crystallization paths of katungites, Navajo volcanic field, Arizona, USA

    SciTech Connect (OSTI)

    Laughlin, A.W.; Charles, R.W.; Aldrich, M.J. Jr.

    1986-01-01

    A swarm of thin, isochemical but heteromorphic dikes crops out in the valley of Hasbidito Creek in NE Arizona. The swarm is part of the dominantly potassic, mid-Tertiary Navajo volcanic field of the Colorado Plateau. Whole-rock chemical analyses of five samples from four of the dikes indicate that they are chemically identical to the katungites of Uganda. These dikes show the characteristic seriate-porphyritic texture of lamprophyres. Samples of an olivine-melilitite dike from the same swarm lack this texture and the chemical analysis, while similar to those of the other dikes, shows effects from the incorporation of xenocrystic olivine. Over 20 mineral phases have been identified in the Arizona samples and as many as 18 phases may occur in a single sample. The major phases are phlogopite, olivine, perovskite, opaque oxides, +- melilite and +- clinopyroxene. Based upon the modal mineralogies and textures of ten dike samples, we recognize five general non-equilibrium assemblages. Comparison of these assemblages with recent experimental results shows that they represent various combinations of complete and incomplete reactions. Reaction relations were determined by entering melt and phase compositions into the computer program GENMIX to obtain balanced reactions. By combining petrographic observations with mineral chemical data, balanced reactions from GENMIX, and the recently determined phase diagrams we are able to trace crystallization paths for the katungite magma.

  20. Modeling volcanic ash dispersal

    ScienceCinema (OSTI)

    None

    2011-10-06

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  1. Center for Volcanic and Tectonic Studies, Department of Geoscience annual report, October 1, 1989--September 30, 1990

    SciTech Connect (OSTI)

    Smith, E.I. [Nevada Univ., Las Vegas, NV (United States). Center for Volcanic and Tectonic Studies

    1990-11-01

    This report summarizes our activities during the period October 1, 1989 to September 30, 1990. Our goal was to develop an understanding of late-Miocene and Pliocene volcanism in the Great Basin by studying Pliocene volcanoes in the vicinity of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. Field studies during this period concentrated on the Quaternary volcanoes in Crater Flat, Yucca Mountain, Fortification Hill, at Buckboard Mesa and Sleeping Butte, and in the Reveille Range. Also, a study was initiated on structurally disrupted basaltic rocks in the northern White Hills of Mohave County, Arizona. As well as progress reports of our work in Crater Flat, Fortification Hill and the Reveille Range, this paper also includes a summary of model that relates changing styles of Tertiary extension to changing magmatic compositions, and a summary of work being done in the White Hills, Arizona. In the Appendix, we include copies of published papers not previously incorporated in our monthly reports.

  2. Stratigraphic Nomenclature of Volcanic Rocks in the Jemez Mountains...

    Open Energy Info (EERE)

    the formations are refined by radiometric dating. Authors Roy A. Bailey, Robert Leland Smith and Clarence Samuel Ross Published U.S. Geological Survey, 1969 DOI Not Provided Check...

  3. Rock-brine chemical interactions. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-02-01

    The results of experimental interaction of powdered volcanic rock with aqueous solutions are presented at temperatures from 200 to 400/sup 0/C, 500 to 1000 bars fluid pressure, with reaction durations of approximately 30 days under controlled laboratory conditions. The aim of this research is to develop data on the kinetics and equilibria of rock solution interactions that will provide insight into the complex geochemical processes attending geothermal reservoir development, stimulation, and reinjection. The research was done in the Stanford Hydrothermal Lab using gold cell equipment of the Dickson design. This equipment inverts the solution rock mixture several times a minute to ensure thorough mixing. Solution samples were periodically withdrawn without interruption of the experimental conditions. The data from these experiments suggests a path dependent series of reactions by which geothermal fluids might evolve from meteoric or magmatic sources.

  4. Property:CapRockAge | Open Energy Information

    Open Energy Info (EERE)

    Amedee Geothermal Area + Tertiary + B Beowawe Hot Springs Geothermal Area + Tertiary + Brady Hot Springs Geothermal Area + Tertiary + D Desert Peak Geothermal Area + Tertiary + G...

  5. Subsurface Stratigraphy, Structure, and Alteration in the Senator...

    Open Energy Info (EERE)

    protolith, contains a downward-increasing component (up to at least 15 vol.%) of brick-red, Tertiary tuffaceous volcanic rock and its comminuted equivalent. The alluvium is...

  6. Search for underground openings for in situ test facilities in crystalline rock

    SciTech Connect (OSTI)

    Wollenberg, H.A.; Strisower, B.; Corrigan, D.J.; Graf, A.N.; O'Brien, M.T.; Pratt, H.; Board, M.; Hustrulid, W.

    1980-01-01

    With a few exceptions, crystalline rocks in this study were limited to plutonic rocks and medium to high-grade metamorphic rocks. Nearly 1700 underground mines, possibly occurring in crystalline rock, were initially identified. Application of criteria resulted in the identification of 60 potential sites. Within this number, 26 mines and 4 civil works were identified as having potential in that they fulfilled the criteria. Thirty other mines may have similar potential. Most of the mines identified are near the contact between a pluton and older sedimentary, volcanic and metamorphic rocks. However, some mines and the civil works are well within plutonic or metamorphic rock masses. Civil works, notably underground galleries associated with pumped storage hydroelectric facilities, are generally located in tectonically stable regions, in relatively homogeneous crystalline rock bodies. A program is recommended which would identify one or more sites where a concordance exists between geologic setting, company amenability, accessibility and facilities to conduct in situ tests in crystalline rock.

  7. Laramide thrusting and Tertiary deformation Tierra Caliente, Michoacan and Guerrero States, southwestern Mexico

    SciTech Connect (OSTI)

    Johnson, C.A.; Harrison, C.G.A. ); Lang, H. ); Barros, J.A.; Cabral-Cano, E.

    1990-05-01

    Field investigations and detailed interpretations of Landsat Thematic Mapper images are in progress to improve understanding of regional structure and tectonics of the southernmost extension of the North American cordillera. Two areas have been selected within the Ciudad Altamirano 1:250,000 topographical sheet for geologic mapping and structural interpretation at 1:50,000 scale. The authors results to date require modification of previous ideas concerning the style and timing of deformations, the role and timing of terrane accretion in the overall tectonic history of the region, and the importance of southern Mexico to investigations of the tectonic evolution of the plates in the region. The relative sequence of deformation in the area correlates well with variations in relative motion between North America and plates in the Pacific. Post-Campanian thrusts and generally eastward-verging folds deformed the Mesozoic sequence during the (Laramide equivalent) Hidalgoan orogeny, associated with high-velocity east-west convergence with the Farallon plate that began about 70 Ma. The resulting unconformity was covered by the Tertiary Balsas Formation, a thick sequence of mostly continental clastics. The Tertiary stratigraphy is regionally and sometimes locally variable, but it can be divided into two members. The lower member is relatively volcanic poor and more deformed, and it lies below a regionally significant mid-Tertiary unconformity, which may mark a change to northeast-directed convergence with the Farallon plate sometime prior to 40 Ma. Continued mid-Tertiary deformation in southern Mexico may be related to eastward movement of the Chortis block and the resulting truncation of the Pacific margin of Mexico. The authors also suggest a tentative correlation between the volcaniclastic member of the Lower Cretaceous San Lucas Formation and the protolith of the Roca Verde metamorphics to the east.

  8. Cooperative Tertiary Interaction Network Guides RNA Folding

    SciTech Connect (OSTI)

    Behrouzi, Reza; Roh, Joon Ho; Kilburn, Duncan; Briber, R.M.; Woodson, Sarah A.

    2013-04-08

    Noncoding RNAs form unique 3D structures, which perform many regulatory functions. To understand how RNAs fold uniquely despite a small number of tertiary interaction motifs, we mutated the major tertiary interactions in a group I ribozyme by single-base substitutions. The resulting perturbations to the folding energy landscape were measured using SAXS, ribozyme activity, hydroxyl radical footprinting, and native PAGE. Double- and triple-mutant cycles show that most tertiary interactions have a small effect on the stability of the native state. Instead, the formation of core and peripheral structural motifs is cooperatively linked in near-native folding intermediates, and this cooperativity depends on the native helix orientation. The emergence of a cooperative interaction network at an early stage of folding suppresses nonnative structures and guides the search for the native state. We suggest that cooperativity in noncoding RNAs arose from natural selection of architectures conducive to forming a unique, stable fold.

  9. Comparative analysis of core drilling and rotary drilling in volcanic terrane

    SciTech Connect (OSTI)

    Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr.

    1987-04-01

    Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

  10. DOE - Office of Legacy Management -- Slick Rock

    Office of Legacy Management (LM)

    Slick Rock Slick Rock Sites slick_map Slick Rock Disposal Site Slick Rock Processing Site Last Updated: 12/14

  11. Detached rock evaluation device

    DOE Patents [OSTI]

    Hanson, David R.

    1986-01-01

    A rock detachment evaluation device (10) having an energy transducer unit 1) for sensing vibrations imparted to a subject rock (172) for converting the sensed vibrations into electrical signals, a low band pass filter unit (12) for receiving the electrical signal and transmitting only a low frequency segment thereof, a high band pass filter unit (13) for receiving the electrical signals and for transmitting only a high frequency segment thereof, a comparison unit (14) for receiving the low frequency and high frequency signals and for determining the difference in power between the signals, and a display unit (16) for displaying indicia of the difference, which provides a quantitative measure of rock detachment.

  12. Rock slope stability

    SciTech Connect (OSTI)

    Kliche, C.A.

    1999-07-01

    Whether you're involved in surface mine design, surface mine production, construction, education, or regulation, this is an important new book for your library. It describes the basic rock slope failure modes and methods of analysis--both kinematic and kinetic techniques. Chapters include geotechnical and geomechanical analysis techniques, hydrology, rock slope stabilization techniques, and geotechnical instrumentation and monitoring. Numerous examples, drawings and photos enhance the text.

  13. Preliminary geologic map of the Sleeping Butte volcanic centers

    SciTech Connect (OSTI)

    Crowe, B.M.; Perry, F.V.

    1991-07-01

    The Sleeping Butte volcanic centers comprise two, spatially separate, small-volume (<0.1 km{sup 3}) basaltic centers. The centers were formed by mildly explosive Strombolian eruptions. The Little Black Peak cone consists of a main scoria cone, two small satellitic scoria mounds, and associated lobate lava flows that vented from sites at the base of the scoria cone. The Hidden Cone center consists of a main scoria cone that developed on the north-facing slope of Sleeping Butte. The center formed during two episodes. The first included the formation of the main scoria cone, and venting of aa lava flows from radial dikes at the northeast base of the cone. The second included eruption of scoria-fall deposits from the summit crater. The ages of the Little Black Peak and the Hidden Cone are estimated to be between 200 to 400 ka based on the whole-rock K-Ar age determinations with large analytical undertainty. This age assignment is consistent with qualitative observations of the degree of soil development and geomorphic degradation of volcanic landforms. The younger episode of the Hidden Cone is inferred to be significantly younger and probably of Late Pleistocene or Holocene age. This is based on the absence of cone slope rilling, the absence of cone-slope apron deposits, and erosional unconformity between the two episodes, the poor horizon- development of soils, and the presence of fall deposits on modern alluvial surfaces. Paleomagnetic data show that the centers record similar but not identical directions of remanent magnetization. Paleomagnetic data have not been obtained for the youngest deposits of the Hidden Cone center. Further geochronology, soils, geomorphic, and petrology studies are planned of the Sleeping Butte volcanic centers 20 refs., 3 figs.

  14. Evidence for temperate conditions along the Antarctic peninsula during the Early Tertiary

    SciTech Connect (OSTI)

    Zinsmeister, W.J.

    1985-01-01

    Several investigators based on deep sea glacial marine sediments from the southern oceans and volcanic sequences in West Antarctica have suggested extreme glacial conditions existed around Antarctica during the early Tertiary. Their data suggest ice sheets with ice shelves greater than those today were present on Antarctica by the late Eocene. If these data are correct, conditions during the Eocene along the Peninsula were similar to those that exist today. Late Eocene faunas and floras from Seymour Island indicate that conditions along the Peninsula were temperature. No paleontologic or geologic evidence have been obtained from Seymour Island (64/degree/18'S) to support the existence of glacial conditions along the northern part of the Peninsula during the early Tertiary. The presence of large quantities of fossil wood and plant debris in the upper Eocene sediments on Seymour Island indicates the presence of dense forests on the Peninsula during the Eocene. The discovery of marsupial and land birds remains on Seymour Island also indicate the presence of abundant terrestrial life on the Peninsula. The occurrence of an abundant marine life on Seymour Island supports the existence of temperate conditions along the Peninsula. Similarities of the Eocene faunas and floras with present day biotas from Tasmania, New Zealand and southern South America indicate that conditions along the Antarctic Peninsula during the late Eocene were comparable to present day mid latitudes of the southern hemisphere.

  15. Effects of Volcanism, Crustal Thickness, and Large Scale Faulting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the Development and Evolution of Geothermal Systems: Collaborative Project in Chile Effects of Volcanism, ...

  16. Seismicity And Fluid Geochemistry At Lassen Volcanic National...

    Open Energy Info (EERE)

    National Park Area (Janik & Mclaren, 2010) Static Temperature Survey At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Surface Gas Sampling At Lassen Volcanic...

  17. Field Mapping At San Francisco Volcanic Field Area (Warpinski...

    Open Energy Info (EERE)

    Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At San Francisco Volcanic...

  18. Blind Geothermal System Exploration in Active Volcanic Environments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt & Subtle Volcanic Systems, Hawaii & Maui Blind...

  19. Isotopic Analysis At San Juan Volcanic Field Area (Larson & Jr...

    Open Energy Info (EERE)

    San Juan Volcanic Field Area (Larson & Jr, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At San Juan Volcanic Field...

  20. Temporal relations of volcanism and hydrothermal systems in two areas of the Jemez volcanic field, New Mexico

    SciTech Connect (OSTI)

    WoldeGabriel, G.; Goff, F. )

    1989-11-01

    Two hydrothermal alteration events (8.07 Ma, one sample; 6.51-5.60 Ma, six samples) related to the waning stages of late Miocene volcanism ({ge} 13 to {le} 5.8 Ma) are recognized at the Cochiti district (southeast Jemez Mountains). Most of the K/Ar dates (0.83 {plus minus} 0.11-0.66 {plus minus} 0.21 Ma, four samples) in the hydrothermally altered, caldera-fill rocks of core hole VC-2A at Sulfur Springs, Valles caldera, indicate post-Valles caldera hydrothermal alteration. A sample from acid-altered landslide debris of postcaldera tuffs from the upper 13 m of the core hole was too young to be dated by the K/Ar method and is possibly associated with current hot-spring activity and the youngest pulses of volcanism. Oxygen-isotope data from illite/smectite clays in the Cochiti district are zonally distributed and range from {minus}2.15{per thousand} to {plus}7.97{per thousand} (SMOW), depending upon temperature, extent of rock-fluid interaction, and composition. The samples from VC-2A get lighter with depth ({minus}0.20{per thousand} to {plus}1.62{per thousand}). The K/Ar and oxygen-isotope data provide strong evidence that the epithermal quartz-vein-hosted gold-silver mineralization at Cochiti and the sub-ore grade molybdenite at VC-2A were deposited in the late Miocene (5.99-5.60 Ma) and mid-Quaternary ({approximately}0.66 Ma), respectively, by hydrothermal fluids composed primarily of meteoric water.

  1. Layered rocks beneath the Phanerozoic platform of the US midcontinent

    SciTech Connect (OSTI)

    Hauser, E.C. (Cornell Univ., Ithaca, NY (United States))

    1991-03-01

    A thick sequence of layered rocks lies hidden beneath the Phanerozoic cover of the central US over large regions. A thick sequence of Precambrian layered rocks in imaged on the COCORP transect across southern Illinois and Indiana. The thickness of this layered sequence varies from 1-3 times the thickness of the overlying Phanerozoic section of the Illinois basin. The layered sequence is observed for close to 200 km in an east-west direction. Similar layered reflections are seen on the COCORP data from Hardeman Co., TX, and neighboring southwest Oklahoma. Both of these known occurrences lie within the region of the middle Proterozoic Granite/Rhyolite province of the US midcontinent, an area within which scattered wells to basement commonly encounter 1.3-1.5 Ga undeformed granite and/or compositionally similar rhyolite. Therefore, these layered assemblages may comprise a thick sequence of silicic volcanic and sedimentary rocks (perhaps also injected by mafic sills) between scattered volcanic-intrusive centers, such as exposed in the St. Francois Mountains of southeast Missouri. However, in places such as Illinois and Indiana, the near absence of deep wells leaves the possibility that the upper portion of these layered rocks may locally be of late Proterozoic or earliest Paleozoic age. The reprocessing of available industry data, analyzed in conjunction with the existing COCORP data, includes extended vibroseis correlation. These industry data are invaluable in the author's effort to expand the known distribution of these layered rocks (e.g., into north-central Illinois) and to map their structures.

  2. Hunting space rocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hunting space rocks Hunting space rocks Nina Lanza is studying the solar system by spending six weeks on an ice sheet in Antarctica. The 36-year-old staff scientist at the Los Alamos National Laboratory in New Mexico is on a treasure hunt of sorts. January 15, 2016 Nina Lanza Nina Lanza is part of a team driving across the Trans-Antarctica Mountains on snowmobiles in search of meteorites. (Courtesy of Nina Lanza) "One of the most interesting things from meteorites is every rocky body has a

  3. Engineering rock mass classifications

    SciTech Connect (OSTI)

    Bieniawski, Z.T.

    1989-01-01

    This book is a reference on rock mass classification, consolidating into one handy source information widely scattered through the literature. Includes new, unpublished material and case histories. Presents the fundamental concepts of classification schemes and critically appraises their practical application in industrial projects such as tunneling and mining.

  4. Category:Rock Density | Open Energy Information

    Open Energy Info (EERE)

    Rock Density Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Rock Density page? For detailed information on Rock Density as...

  5. Microwave assisted hard rock cutting

    DOE Patents [OSTI]

    Lindroth, David P.; Morrell, Roger J.; Blair, James R.

    1991-01-01

    An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

  6. Session: Hot Dry Rock

    SciTech Connect (OSTI)

    Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

  7. Assessment of industrial minerals and rocks in the controlled area

    SciTech Connect (OSTI)

    Castor, S.B.; Lock, D.E.

    1996-08-01

    Yucca Mountain in Nye County, Nevada, is a potential site for a permanent repository for high-level nuclear waste in Miocene ash flow tuff. The Yucca Mountain controlled area occupies approximately 98 km{sup 2} that includes the potential repository site. The Yucca Mountain controlled area is located within the southwestern Nevada volcanic field, a large area of Miocene volcanism that includes at least four major calderas or cauldrons. It is sited on a remnant of a Neogene volcanic plateau that was centered around the Timber Mountain caldera complex. The Yucca Mountain region contains many occurrences of valuable or potentially valuable industrial minerals, including deposits with past or current production of construction aggregate, borate minerals, clay, building stone, fluorspar, silicate, and zeolites. The existence of these deposits in the region and the occurrence of certain mineral materials at Yucca Mountain, indicate that the controlled area may have potential for industrial mineral and rock deposits. Consideration of the industrial mineral potential within the Yucca Mountain controlled area is mainly based on petrographic and lithologic studies of samples from drill holes in Yucca Mountain. Clay minerals, zeolites, fluorite, and barite, as minerals that are produced economically in Nevada, have been identified in samples from drill holes in Yucca Mountain.

  8. Aqueous flooding methods for tertiary oil recovery

    DOE Patents [OSTI]

    Peru, Deborah A.

    1989-01-01

    A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

  9. Rock Density | Open Energy Information

    Open Energy Info (EERE)

    Density Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Density Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique...

  10. Rock Sampling | Open Energy Information

    Open Energy Info (EERE)

    resource at depth. These hand samples can be collected using a rock hammer or sledge. Data Access and Acquisition Under a detailed investigation, a systematic sampling procedure...

  11. Alteration Patterns In Volcanic Rocks Within An East-West Traverse...

    Open Energy Info (EERE)

    probably exceeded 100Ckm. There are also (iii) local alteration aureoles around gold-bearing quartz veins. The regional alteration assemblages include minerals that, under...

  12. Workshop on hydrology of crystalline basement rocks

    SciTech Connect (OSTI)

    Davis, S.N.

    1981-08-01

    This workshop covered the following subjects: measurements in relatively shallow boreholes; measurement and interpretation of data from deep boreholes; hydrologic properties of crystalline rocks as interpreted by geophysics and field geology; rock mechanics related to hydrology of crystalline rocks; the possible contributions of modeling to the understanding of the hydrology of crystalline rocks; and geochemical interpretations of the hydrology of crystalline rocks. (MHR)

  13. Shotgun cartridge rock breaker

    DOE Patents [OSTI]

    Ruzzi, Peter L.; Morrell, Roger J.

    1995-01-01

    A rock breaker uses shotgun cartridges or other firearm ammunition as the explosive charge at the bottom of a drilled borehole. The breaker includes a heavy steel rod or bar, a gun with a firing chamber for the ammunition which screws onto the rod, a long firing pin running through a central passage in the rod, and a firing trigger mechanism at the external end of the bar which strikes the firing pin to fire the cartridge within the borehole. A tubular sleeve surround the main body of the rod and includes slits the end to allow it to expand. The rod has a conical taper at the internal end against which the end of the sleeve expands when the sleeve is forced along the rod toward the taper by a nut threaded onto the external end of the rod. As the sleeve end expands, it pushes against the borehole and holds the explosive gasses within, and also prevents the breaker from flying out of the borehole. The trigger mechanism includes a hammer with a slot and a hole for accepting a drawbar or drawpin which, when pulled by a long cord, allows the cartridge to be fired from a remote location.

  14. Rock of Ages | Open Energy Information

    Open Energy Info (EERE)

    of Ages Jump to: navigation, search Name Rock of Ages Facility Rock of Ages Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Rock of Ages Energy...

  15. Rim Rock Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Rim Rock Wind Farm Jump to: navigation, search Name Rim Rock Wind Farm Facility Rim Rock Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  16. Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions...

    Open Energy Info (EERE)

    Supercritical Carbon Dioxide Reservoir Rock Chemical Interactions Jump to: navigation, search Geothermal Lab Call Projects for Supercritical Carbon Dioxide Reservoir Rock...

  17. Hydrothermally Deposited Rock | Open Energy Information

    Open Energy Info (EERE)

    at Paleochori, Milos, Greece. http:www.photovolcanica.comVolcanoInfoMilosMilos.html Hydrothermally deposited rock includes rocks and minerals that have precipitated from...

  18. Briefing package for the Yucca Flat pre-emptive review, including overview, UZ model, SZ volcanics model and summary and conclusions sections

    SciTech Connect (OSTI)

    Kwicklis, Edward Michael [Los Alamos National Laboratory; Keating, Elizabeth H [Los Alamos National Laboratory

    2010-12-02

    Much progress has been made in the last several years in modeling radionuclide transport from tests conducted both in the unsaturated zone and saturated volcanic rocks of Yucca Flat, Nevada. The presentations to the DOE NNSA pre-emptive review panel contained herein document the progress to date, and discuss preliminary conclusions regarding the present and future extents of contamination resulting from past nuclear tests. The presentations also discuss possible strategies for addressing uncertainty in the model results.

  19. RELATIVE PERMEABILITY OF FRACTURED ROCK

    Office of Scientific and Technical Information (OSTI)

    ... This hinders the creation of connected fracture networks even if the rock is subjected to ... Bergosh, J.L., Lord, G.D., 1987: "New Developments in the Analysis of Cores From Naturally ...

  20. The oil and gas potential of southern Bolivia: Contributions from a dual source rock system

    SciTech Connect (OSTI)

    Hartshorn, K.G.

    1996-08-01

    The southern Sub-Andean and Chaco basins of Bolivia produce oil, gas and condensate from reservoirs ranging from Devonian to Tertiary in age. Geochemical evidence points to contributions from two Paleozoic source rocks: the Devonian Los Monos Formation and the Silurian Kirusillas Formation. Rock-Eval pyrolysis, biomarker data, microscopic kerogen analysis, and burial history modeling are used to assess the quality, distribution, and maturity of both source rock systems. The geochemical results are then integrated with the structural model for the area in order to determine the most likely pathways for migration of oil and gas in the thrust belt and its foreland. Geochemical analysis and modeling show that the primary source rock, shales of the Devonian Los Monos Formation, entered the oil window during the initial phase of thrusting in the sub-Andean belt. This provides ideal timing for oil accumulation in younger reservoirs of the thrust belt. The secondary source rock, although richer, consumed most of its oil generating capacity prior to the development of the thrust related structures. Depending on burial depth and location, however, the Silurian source still contributes gas, and some oil, to traps in the region.

  1. Geothermal Literature Review At San Francisco Volcanic Field...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At San Francisco Volcanic Field Area (Morgan, Et Al., 2003) Exploration...

  2. Isotopic Analysis At Lassen Volcanic National Park Area (Janik...

    Open Energy Info (EERE)

    Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness...

  3. Surface Gas Sampling At Lassen Volcanic National Park Area (Janik...

    Open Energy Info (EERE)

    Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Lassen...

  4. Collection and Analysis of Geothermal and Volcanic Water and...

    Open Energy Info (EERE)

    of Geothermal and Volcanic Water and Gas Discharges Authors Werner F. Giggenbach and R.L. Goguel Published Department of Scientific and Industrial Research, Chemistry Division,...

  5. Compound and Elemental Analysis At Lassen Volcanic National Park...

    Open Energy Info (EERE)

    Location Lassen Volcanic National Park Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown References J. Michael...

  6. Applications of the VLF Induction Method For Studying Some Volcanic...

    Open Energy Info (EERE)

    the VLF Induction Method For Studying Some Volcanic Processes of Kilauea Volcano, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  7. Ground Magnetics At San Francisco Volcanic Field Area (Warpinski...

    Open Energy Info (EERE)

    San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At San Francisco...

  8. Ground Gravity Survey At San Francisco Volcanic Field Area (Warpinski...

    Open Energy Info (EERE)

    Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At San Francisco...

  9. Data Acquisition-Manipulation At San Francisco Volcanic Field...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At San Francisco Volcanic Field Area (Warpinski, Et Al., 2004)...

  10. Geothermometry At Lassen Volcanic National Park Area (Thompson...

    Open Energy Info (EERE)

    Thompson, 1985) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lassen Volcanic National Park Area (Thompson, 1985) Exploration...

  11. Blind Geothermal System Exploration in Active Volcanic Environments...

    Open Energy Info (EERE)

    Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical...

  12. Teleseismic-Seismic Monitoring At Lassen Volcanic National Park...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  13. A Morphometric Analysis Of The Submarine Volcanic Ridge South...

    Open Energy Info (EERE)

    Of Pico Island, Azores Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Morphometric Analysis Of The Submarine Volcanic Ridge...

  14. Flow Test At Lassen Volcanic National Park Area (Janik & Mclaren...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity...

  15. Rock physics at Los Alamos Scientific Laboratory

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Rock physics refers to the study of static and dynamic chemical and physical properties of rocks and to phenomenological investigations of rocks reacting to man-made forces such as stress waves and fluid injection. A bibliography of rock physics references written by LASL staff members is given. Listing is by surname of first author. (RWR)

  16. Investigation of the thermal regime and geologic history of the Cascade volcanic arc: First phase of a program for scientific drilling in the Cascade Range

    SciTech Connect (OSTI)

    Priest, G.R.

    1987-01-01

    A phased, multihole drilling program with associated science is proposed as a means of furthering our understanding of the thermal regime and geologic history of the Cascade Range of Washington, Oregon, and northern California. The information obtained from drilling and ancillary geological and geophysical investigations will contribute to our knowledge in the following general areas: (1) the magnitude of the regional background heat flow of parts of the Quaternary volcanic belt dominated by the most abundant volcanic rock types, basalt and basaltic andesite; (2) the nature of the heat source responsible for the regional heat-flow anomaly; (3) the characteristics of the regional hydrothermal and cold-water circulation; the rates of volcanism for comparison with models for the rate and direction of plate convergence of the Cascades; (5) the history of deformation and volcanism in the volcanic arc that can be related to subduction; (6) the present-day stress regime of the volcanic arc and the relation of these stresses to plate interactions and possible large earthquakes; and the current geometry of the subducted oceanic plate below the Cascade Range and the relationship of the plate to the distribution of heat flow, Quaternary volcanism, and Quaternary deformation. Phase I research will be directed toward a detailed investigation of the Santiam Pass segment. In concert with the Santiam Pass research, a detailed study of the nearby Breitenbush Hot Springs area is also recommended as a component of Phase I. The object of the Breitenbush research is to study one of the hottest known Cascade hydrothermal systems, which coincidentally also has a good geological and geophysical data base. A coordinated program of drilling, sampling, subsurface measurements, and surface surveys will be associated with the drilling of several holes.

  17. The overthrusted Zaza Terrane of middle Cretaceous over the North American continental carbonate rocks of upper Jurassic-Lower Cretaceous age - relationships to oil generation

    SciTech Connect (OSTI)

    Echevarria Rodriguez, G.; Castro, J.A.; Amaro, S.V.

    1996-08-01

    The Zaza Terrane is part of the Caribbean plate thrust over the southern edge of the North American basinal and platform carbonate rocks of upper Jurassic-Lower Cretaceous age. Zaza Terrane are volcanic and ophiolitic rocks of Cretaceous age. The ophiolites are mostly serpentines which behave as reservoirs and seals. All Cuban oil fields are either within Zaza Terrane or basinal carbonates underneath, or not far away to the north of the thrust contacts. It appears that the overthrusting of the Zaza Terrane caused the generation of oil in the basinal carbonate source rocks underneath, due to the increase of rock thickness which lowered the oil window to a deeper position and increased the geothermal gradient. Oil generation was after thrusting, during post-orogenic. API gravity of oil is light toward the south and heavy to very heavy to the north. Source rocks to the south are probably of terrigenous origin.

  18. Contact metasomatic and hydrothermal minerals in the SH2 deep well, Sabatini Volcanic District, Latium, Italy

    SciTech Connect (OSTI)

    Cavarretta, G.; Tecce, F.

    1987-01-01

    Metasomatic and hydrothermal minerals were logged throughout the SH2 geothermal well, which reached a depth of 2498 m in the Sabatini volcanic district. Below 460 m of volcanics, where the newly formed minerals were mainly chlorite, calcite and zeolites (mostly phillipsite), drilling entered the Allochthonous Flysch Complex. Evidence of the ''Cicerchina facies'' was found down to 1600 m depth. Starting from 1070 m, down to hole bottom, a contact metasomatic complex was defined by the appearance of garnet. Garnet together with K-fledspar, vesuvianite, wilkeite, cuspidine, harkerite, wollastonite and apatite prevail in the top part of the contact metasomatic complex. Vesuvianite and phlogopite characterize the middle part. Phlogopite, pyroxene, spinel and cancrinite predominate in the bottom part. The 1500 m thick metasomatic complex indicates the presence at depth of the intrusion of a trachytic magma which released hot fluids involved in metasomatic mineral-forming reactions. Minerals such as harkerite, wilkeite, cuspidine, cancrinite, vesuvianite and phlogopite indicate the intrusive melt had a high volatile content which is in agreement with the very high explosivity index of this volcanic district. The system is at present sealed by abundant calcite and anhydrite. It is proposed that most, if not all, of the sulphates formed after reaction of SO/sub 2/ with aqueous calcium species rather than from sulphates being remobilized from evaporitic (Triassic) rocks as previously inferred. The hypothesis of a CO/sub 2/-rich deep-derived fluid ascending through major fracture systems and contrasting cooling in the hottest areas of Latium is presented.

  19. Stratigraphic controls on the source rock distribution, Llanos Orientales Basin, Colombia

    SciTech Connect (OSTI)

    Ramon, J.C.; Fajardo, A.; Rubiano, J.; Reyes, A. )

    1996-01-01

    All available rock and oil geochemistry analyses were tied to a high-resolution stratigraphic framework for more than 50 wells in the Central Llanos Orientates Basin. New Tertiary generation input is proposed. The best source rock intervals are at the base and top of the Gacheta Formation (Upper Cretaceous) and in the middle of the Barco-Cuervos (Paleocene) and Mirador (Eocene) formations. These organic-rich zones contain type II and III kerogen. TOC contents range from about 1% up to 15%. The four source rock intervals occur within marine shales near condensed sections, at the position maximum accommodation/sediment-supply (A/S) ratios. The development of conditions that allow accumulation and preservation of anomalously high fractions of organic matter might be explained by two mechanisms. Increased A/S ratio results in retention of more sediment in the coastal plain, thus reducing the tendency for siliciclastic sediment to dilute the organic matter accumulating on the shelf. Also, deeper water might restrict circulation, enhancing bottom anoxic conditions. In the more transitional and continental sequences, increased A/S ratio is associated with higher phreatic water level. A high ground water table enhances preservation of coaly intervals. The sea-level rise brings marine water into valleys and low-gradient coastal plains. The resulting embayments, marsh and swampy areas are organic-prone, contributing to the source rock potential of strata associated with high conditions and base-level rise-to-fall turnaround positions.

  20. Stratigraphic controls on the source rock distribution, Llanos Orientales Basin, Colombia

    SciTech Connect (OSTI)

    Ramon, J.C.; Fajardo, A.; Rubiano, J.; Reyes, A.

    1996-12-31

    All available rock and oil geochemistry analyses were tied to a high-resolution stratigraphic framework for more than 50 wells in the Central Llanos Orientates Basin. New Tertiary generation input is proposed. The best source rock intervals are at the base and top of the Gacheta Formation (Upper Cretaceous) and in the middle of the Barco-Cuervos (Paleocene) and Mirador (Eocene) formations. These organic-rich zones contain type II and III kerogen. TOC contents range from about 1% up to 15%. The four source rock intervals occur within marine shales near condensed sections, at the position maximum accommodation/sediment-supply (A/S) ratios. The development of conditions that allow accumulation and preservation of anomalously high fractions of organic matter might be explained by two mechanisms. Increased A/S ratio results in retention of more sediment in the coastal plain, thus reducing the tendency for siliciclastic sediment to dilute the organic matter accumulating on the shelf. Also, deeper water might restrict circulation, enhancing bottom anoxic conditions. In the more transitional and continental sequences, increased A/S ratio is associated with higher phreatic water level. A high ground water table enhances preservation of coaly intervals. The sea-level rise brings marine water into valleys and low-gradient coastal plains. The resulting embayments, marsh and swampy areas are organic-prone, contributing to the source rock potential of strata associated with high conditions and base-level rise-to-fall turnaround positions.

  1. ArchRock Corporation | Open Energy Information

    Open Energy Info (EERE)

    Arch Rock is a systems and software company that builds products and technology for wireless sensor networks. References: ArchRock Corporation1 This article is a stub. You can...

  2. Rock Energy Cooperative | Open Energy Information

    Open Energy Info (EERE)

    Wisconsin Phone Number: (608) 752-4550 or (866) 752-4550 Website: www.rock.coop Outage Hotline: (866) 752-4550 Outage Map: www.rock.coopcontentcurrent- References: EIA...

  3. RockPort Capital Partners (California) | Open Energy Information

    Open Energy Info (EERE)

    RockPort Capital Partners (California) Jump to: navigation, search Logo: RockPort Capital Partners (California) Name: RockPort Capital Partners (California) Address: 3000 Sand Hill...

  4. Mars Rover finds changing rocks, surprising scientists

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mars Rover finds changing rocks, surprising scientists Mars Rover finds changing rocks, surprising scientists As NASA's Curiosity rover treks up a three-mile-high mountain on Mars, the rocks are changing. Back on Earth, scientists analyzing the data realized this was something different: It turned out to be the first of the high-silica rocks. December 24, 2015 Mars landscape This color-adjusted composite of images taken by NASA's Curiosity rover in September shows the lower portion of Mount

  5. State Restrictions on Methyl Tertiary Butyl Ether (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    By the end of 2005, 25 states had barred, or passed laws banning, any more than trace levels of methyl tertiary butyl ether (MTBE) in their gasoline supplies, and legislation to ban MTBE was pending in 4 others. Some state laws address only MTBE; others also address ethers such as ethyl tertiary butyl ether (ETBE) and tertiary amyl methyl ether (TAME). Annual Energy Outlook 2006 assumes that all state MTBE bans prohibit the use of all ethers for gasoline blending.

  6. Active System For Monitoring Volcanic Activity- A Case Study...

    Open Energy Info (EERE)

    For Monitoring Volcanic Activity- A Case Study Of The Izu-Oshima Volcano, Central Japan Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  7. A Distinction Technique Between Volcanic And Tectonic Depression...

    Open Energy Info (EERE)

    Modeling Of Gravity Anomaly- A Case Study Of The Hohi Volcanic Zone, Central Kyushu, Japan Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A...

  8. A Miocene Island-Arc Volcanic Seamount- The Takashibiyama Formation...

    Open Energy Info (EERE)

    Island-Arc Volcanic Seamount- The Takashibiyama Formation, Shimane Peninsula, Sw Japan Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Miocene...

  9. Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure...

    Open Energy Info (EERE)

    Mercury Geochemistry As A Guide To Volcanic Vent Structure And Zones Of High Heat Flow In The Valley Of Ten Thousand Smokes, Katmai National Park, Alaska Jump to: navigation,...

  10. Modeling-Computer Simulations At San Juan Volcanic Field Area...

    Open Energy Info (EERE)

    San Juan region, to further investigate both the thermal history of the region and the nature of the influence of the San Juan volcanic field thermal source on the thermal history...

  11. EA-225 Split Rock Energy LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Split Rock Energy LLC EA-225 Split Rock Energy LLC Order authorizing Split Rock Energy LLC to export electric energy to Canada. PDF icon EA-225 Split Rock Energy LLC

  12. CT Scan of Earth Links Mantle Plumes with Volcanic Hotspots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CT Scan of Earth Links Mantle Plumes with Volcanic Hotspots CT Scan of Earth Links Mantle Plumes with Volcanic Hotspots Simulations Run at NERSC Show How Seismic Waves Travel Through Mantle September 2, 2015 Robert Sanders, rlsanders@berkeley.edu, (510) 643-6998 NERSC PI: Barbara Romanowicz Lead Institution: University of California, Berkeley Project Title: Imaging and Calibration of Mantle Structure at Global and Regional Scales Using Full-Waveform Seismic Tomography NERSC Resources Used:

  13. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    SciTech Connect (OSTI)

    Hackett, W.R.; Smith, R.P.

    1994-12-01

    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 {times} 10{sup {minus}5} per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 {times} 10{sup {minus}5} per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis.

  14. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  15. Big Bang Day : Physics Rocks

    ScienceCinema (OSTI)

    None

    2011-04-25

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  16. Winner: Hot Rocks | Department of Energy

    Energy Savers [EERE]

    Winner: Hot Rocks Winner: Hot Rocks December 31, 2008 - 2:07pm Addthis Four kilometers down below the orange earth of Australia's Cooper Basin lies some of the hottest nonvolcanic rock in the world-rock that the geothermal industry had never seriously considered using to make electricity. But next month Geodynamics, an eight-year-old company based in Milton, Queensland, will prove otherwise when it turns on its 1-megawatt pilot plant here. The company has done more to harness this unconventional

  17. Rock Lab Analysis | Open Energy Information

    Open Energy Info (EERE)

    interaction. Can determine detailed information about rock composition and morphology. Density of different lithologic units. Rapid and unambiguous identification of unknown...

  18. Hydrothermally Altered Rock | Open Energy Information

    Open Energy Info (EERE)

    Paleochori cliffs Milos, Greece. http:www.photovolcanica.comVolcanoInfoMilosMilos.html Hydrothermal alteration refers to rocks that have been altered from their original...

  19. Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...

    Open Energy Info (EERE)

    Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  20. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  1. Uinta Arch Project: investigations of uranium potential in Precambrian X and older metasedimentary rocks in the Unita and Wasatch ranges, Utah and Colorado

    SciTech Connect (OSTI)

    Graff, P.J.; Sears, J.W.; Holden, G.S.

    1980-06-01

    This study is part of the United States Department of Energy's National Uranium Resource Evaluation Program to understand the geologic setting, amount, and availability of uranium resources within the boundaries of the United States. The systematic study of Precambrian quartz-pebble conglomerates and areas that may contain such conglomerates is an integral part of DOE's resource evaluation program, because deposits of world-wide importance occur in such terrains in Canada and South Africa, and because terrains similar to those producing uranium from quartz-pebble conglomerates exist elsewhere in the United States. Because of the ready availability of Tertiary sandstone and Colorado Plateau-type uranium deposits, large areas of Precambrian rocks in the US have not been fully assessed for uranium potential. Thus, the Uinta Arch Project was undertaken to assess the favorability of Precambrian metasedimentary rocks in northern Utah for deposits of uranium in Precambrian quartz-pebble conglomerates. Rocks of interest to this study are the thick, clastic sequences within the Uinta Arch that are considered to be of Early Proterozoic age. The Uinta Arch area is known to contain rocks which generally fit the lithologic characteristics that are understood to limit the occurrence of Precambrian fossil placers. However, detailed geology of these rocks and their exact fit to the model described for uraniferous conglomerates was not known. The primary goal of the Uinta Arch Project was to determine how well these Precambrian rocks resemble known deposits and to describe the favorability of placer uranium deposits.

  2. Standing Rock Sioux Tribe- 2012 Project

    Broader source: Energy.gov [DOE]

    The Standing Rock Sioux Tribe (SRST) will perform a feasibility study and associated tasks over the course of two years on sites within the exterior boundaries of the Standing Rock Sioux Reservation to support the future development ranging from 50 to 150 megawatts (MW) of wind power.

  3. Category:Rock Lab Analysis | Open Energy Information

    Open Energy Info (EERE)

    Rock O Over Core Stress P Paleomagnetic Measurements Petrography Analysis R Rock Density Rock Lab Analysis X X-Ray Diffraction (XRD) X-Ray Fluorescence (XRF) Retrieved from...

  4. Analysis of fractures in volcanic cores from Pahute Mesa, Nevada Test Site

    SciTech Connect (OSTI)

    Drellack, S.L. Jr.; Prothro, L.B.; Roberson, K.E.

    1997-09-01

    The Nevada Test Site (NTS), located in Nye County, southern Nevada, was the location of 828 announced underground nuclear tests, conducted between 1951 and 1992. Approximately one-third of these tests were detonated near or below the water table. An unavoidable consequence of these testing activities was introducing radionuclides into the subsurface environment, impacting groundwater. Groundwater flows beneath the NTS almost exclusively through interconnected natural fractures in carbonate and volcanic rocks. Information about these fractures is necessary to determine hydrologic parameters for future Corrective Action Unit (CAU)-specific flow and transport models which will be used to support risk assessment calculations for the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Underground Test Area (UGTA) remedial investigation. Fracture data are critical in reducing the uncertainty of the predictive capabilities of CAU-specific models because of their usefulness in generating hydraulic conductivity values and dispersion characteristics used in transport modeling. Specifically, fracture aperture and density (spacing) are needed to calculate the permeability anisotropy of the formations. Fracture mineralogy information is used qualitatively to evaluate diffusion and radionuclide retardation potential in transport modeling. All these data can best be collected through examination of core samples.

  5. Stress-dependent permeability of fractured rock masses: A numerical...

    Office of Scientific and Technical Information (OSTI)

    permeability of fractured rock masses: A numerical study Citation Details In-Document Search Title: Stress-dependent permeability of fractured rock masses: A numerical study We ...

  6. Coupled hydro-mechanical processes in crytalline rock and inindurateda...

    Office of Scientific and Technical Information (OSTI)

    rock and ininduratedand plastic clays: A comparative discussion Citation Details In-Document Search Title: Coupled hydro-mechanical processes in crytalline rock and ...

  7. Rock Physics of Geologic Carbon Sequestration/Storage Dvorkin...

    Office of Scientific and Technical Information (OSTI)

    Rock Physics of Geologic Carbon SequestrationStorage Dvorkin, Jack; Mavko, Gary 54 ENVIRONMENTAL SCIENCES; 58 GEOSCIENCES This report covers the results of developing the rock...

  8. RockPort Capital Partners (Massachusetts) | Open Energy Information

    Open Energy Info (EERE)

    RockPort Capital Partners (Massachusetts) Name: RockPort Capital Partners (Massachusetts) Address: 160 Federal Street, 18th Floor Place: Boston, Massachusetts Zip: 02110 Region:...

  9. Rock the Watt: An Energy Conservation Campaign at Pacific Northwest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rock the Watt: An Energy Conservation Campaign at Pacific Northwest National Lab Rock the Watt: An Energy Conservation Campaign at Pacific Northwest National Lab Case study ...

  10. Rock Sampling At Yellowstone Region (Hellman & Ramsey, 2004)...

    Open Energy Info (EERE)

    Rock Sampling At Yellowstone Region (Hellman & Ramsey, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Yellowstone Region...

  11. Fundamental Research on Percussion Drilling: Improved rock mechanics

    Office of Scientific and Technical Information (OSTI)

    full-scale laboratory investigations Michael S. Bruno 58 GEOSCIENCES; 02 PETROLEUM; 03 NATURAL GAS; ROCK DRILLING; PRESSURE DEPENDENCE; ROCK MECHANICS; ROTARY DRILLING; WELL...

  12. Rock Physics of Geologic Carbon Sequestration/Storage (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Rock Physics of Geologic Carbon SequestrationStorage Citation Details In-Document Search Title: Rock Physics of Geologic Carbon SequestrationStorage This report ...

  13. Rock Physics of Geologic Carbon Sequestration/Storage (Technical...

    Office of Scientific and Technical Information (OSTI)

    Rock Physics of Geologic Carbon SequestrationStorage Citation Details In-Document Search Title: Rock Physics of Geologic Carbon SequestrationStorage This report covers the ...

  14. Rock Physics of Geologic Carbon Sequestration/Storage (Technical...

    Office of Scientific and Technical Information (OSTI)

    Rock Physics of Geologic Carbon SequestrationStorage Citation Details In-Document Search Title: Rock Physics of Geologic Carbon SequestrationStorage You are accessing a ...

  15. EGS rock reactions with Supercritical CO2 saturated with water...

    Office of Scientific and Technical Information (OSTI)

    Conference: EGS rock reactions with Supercritical CO2 saturated with water and water saturated with Supercritical CO2 Citation Details In-Document Search Title: EGS rock reactions ...

  16. Rock Sampling At Jemez Mountain Area (Eichelberger & Koch, 1979...

    Open Energy Info (EERE)

    Rock Sampling At Jemez Mountain Area (Eichelberger & Koch, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Jemez Mountain...

  17. Rock County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Rock County, Wisconsin CDH Energy EcoEnergy Places in Rock County, Wisconsin Avon, Wisconsin Beloit, Wisconsin Bradford, Wisconsin Brodhead, Wisconsin Center, Wisconsin...

  18. National survey of crystalline rocks and recommendations of regions to be explored for high-level radioactive waste repository sites

    SciTech Connect (OSTI)

    Smedes, H.W.

    1983-04-01

    A reconnaissance of the geological literature on large regions of exposed crystalline rocks in the United States provides the basis for evaluating if any of those regions warrant further exploration toward identifying potential sites for development of a high-level radioactive waste repository. The reconnaissance does not serve as a detailed evaluation of regions or of any smaller subunits within the regions. Site performance criteria were selected and applied insofar as a national data base exists, and guidelines were adopted that relate the data to those criteria. The criteria include consideration of size, vertical movements, faulting, earthquakes, seismically induced ground motion, Quaternary volcanic rocks, mineral deposits, high-temperature convective ground-water systems, hydraulic gradients, and erosion. Brief summaries of each major region of exposed crystalline rock, and national maps of relevant data provided the means for applying the guidelines and for recommending regions for further study. It is concluded that there is a reasonable likelihood that geologically suitable repository sites exist in each of the major regions of crystalline rocks. The recommendation is made that further studies first be conducted of the Lake Superior, Northern Appalachian and Adirondack, and the Southern Appalachian Regions. It is believed that those regions could be explored more effectively and suitable sites probably could be found, characterized, verified, and licensed more readily there than in the other regions.

  19. Standing Rock Sioux Tribe- 2011 Project

    Broader source: Energy.gov [DOE]

    The Standing Rock Sioux Tribe's (SRST) cultural identity demands that tribal development occur in a sustainable manner and in a manner protective of the tribe's natural resources to preserve them for following generations.

  20. Standing Rock Sioux Tribe- 1995 Project

    Broader source: Energy.gov [DOE]

    The primary objective of this study is to provide the Standing Rock Sioux Nation with a strategic overview of the electric energy issues and opportunities they will be facing beginning in the year 2001.

  1. Rock mechanics design in mining and tunneling

    SciTech Connect (OSTI)

    Bieniawski, Z.T.

    1984-01-01

    This book introduces the design process as applied to rock mechanics aspects of underground mining and tunneling. Topics covered include a historical perspective, the design process in engineering, empirical methods of design, observational methods of design, and guided design.

  2. First Rocks from Outside the Solar System

    SciTech Connect (OSTI)

    Westphal, Andrew

    2014-10-17

    Andrew Westphal presents his findings in examining the first rocks from outside the solar system at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  3. West Hackberry tertiary project. Annual report, September 3, 1994--September 2, 1995

    SciTech Connect (OSTI)

    Gillham, T.; Cerveny, B.; Turek, E.

    1996-05-01

    The West Hackberry Tertiary Project is a field test of the idea that air injection can be combined with the Double Displacement Process to produce a low cost tertiary recovery process which is economic at current oil prices. The Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering tertiary oil by gravity drainage. The Double Displacement Process is based upon the concept that in fields such as West Hackberry waterdrive recoveries are typically 50%-60% of the original oil in place while gravity drainage recoveries average 80%-90% of the original oil in place. Therefore, by injecting a gas into a watered out reservoir, a gas cap will form and additional oil can be recovered due to gravity drainage. Although the Double Displacement Process has been shown to be successful in recovering tertiary oil in other fields, this project will be the first to utilize air injection in the Double Displacement Process. The use of air injection in this process combines the benefits of air`s low cost and universal accessibility with the potential for accelerated oil recovery due to the combustion process. If successful, this project will demonstrate that the use of air injection in the Double Displacement Process will result in an economically viable tertiary process in reservoirs where tertiary oil recovery is presently uneconomical.

  4. Late Cenozoic volcanism, geochronology, and structure of the...

    Open Energy Info (EERE)

    rocks that were erupted during two periods, as defined by K-Ar dating: (1) 4.0--2.5 m.y., approx.31 km3 of basalt, rhyodacite, dacite, andesite, and rhyolite, in descending...

  5. Property:HostRockLithology | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area + Basalt Amedee Geothermal Area + granite; granodiorite B Bac-Man Laguna Geothermal Area + Volcanic Bad Blumau Geothermal Area + Dolomite Beowawe Hot...

  6. Property:CapRockLithology | Open Energy Information

    Open Energy Info (EERE)

    + Hydrothermal alteration layer + Bouillante Geothermal Area + Illite-Smectite Clay + Brady Hot Springs Geothermal Area + Hydrothermally altered volcanics + C Cerro Prieto...

  7. Hydrothermal systems in two areas of the Jemez volcanic field: Sulphur Springs and the Cochiti mining district

    SciTech Connect (OSTI)

    WoldeGabriel, G.

    1989-03-01

    K/Ar dates and oxygen isotope data were obtained on 13 clay separates (<2 ..mu..m) of thermally altered mafic and silicic rocks from the Cochiti mining district (SE Jemez Mountains) and Continental Scientific Drilling Project (CSDP) core hole VC-2A (Sulphur Springs, Valles caldera). Illite with K/sub 2/O contents of 6.68%--10.04% is the dominant clay in the silicic rocks, whereas interstratified illite/smectites containing 1.4%--5.74% K/sub 2/O constitute the altered andesites. Two hydrothermal alteration events are recognized at the Cochiti area (8.07 m.y., n = 1, and 6.5--5.6 m.y., n = 6). The older event correlates with the waning stages of Paliza Canyon Formation andesite volcanism (greater than or equal to13 to less than or equal to8.5 m.y.), whereas the younger event correlates with intrusions and gold- and silver-bearing quartz veins associated with the Bearhead Rhyolite (7.54--5.8 m.y.). The majority of K/Ar dates in the hydrothermally altered, caldera-fill rocks of core hole VC-2A (0.83--0.66 m.y., n = 4) indicate that hydrothermal alteration developed contemporaneously with resurgence and ring fracture Valles Rhyolite domes (0.89--0.54 m.y.). One date of 0 +- 0.10 m.y. in acid-altered landslide debris of postcaldera tuffs from the upper 13 m of the core hole probably correlates with Holocene hydrothermal activity possibly associated with the final phases of the Valles Rhyolite (0.13 m.y.).

  8. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wells, S. [Univ. of California, Riverside, CA (United States); Bowker, L.; Finnegan, K. [Univ. of Nevada, Las Vegas, NV (United States); Geissman, J.; McFadden, L.

    1995-02-01

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.

  9. Major marine source rocks and stratigraphic cycles

    SciTech Connect (OSTI)

    Duval, B.C.

    1995-11-01

    The identification of continental encroachment cycles and subcycles by using sequence stratigraphy can assist explorationists in locating source rocks. The continental encroachment cycles are associated with the breakup of the supercontinents and fit a smooth long-term eustatic curve. They are first order, with a duration greater than 50 m.y., and are composed of transgressive and regressive phases inducing major changes in shoreline. The limit between the transgressive and regressive phases corresponds to a major downlap surface, and major marine source rocks are often found in association with this surface, particularly in the northern hemisphere. Potential {open_quotes}secondary{close_quotes} source rock intervals can also be sought by sequence stratigraphy because each continental encroachment cycle is composed of several subcycles, and the same configuration of a regressive forestepping phase overlying a transgressive backstepping phase also creates a downlap surface that may correspond with organic-rich intervals. The stratigraphic distribution of source rocks and related reserves fits reasonably well with continental encroachment cycles and subcycles. For instance, source rocks of Silurian, Upper Jurassic, and Middle-Upper Cretaceous are associated with eustatic highs and bear witness to this relationship. The recognition and mapping of such downlap surfaces is therefore a useful step to help map source rocks. The interpretation of sequence stratigraphy from regional seismic lines, properly calibrated with geochernical data whenever possible, can be of considerable help in the process. Several examples from around the world illustrate the power of the method: off-shore of eastern Venezuela, coastal basin of Angola, western Africa, the North Sea, south Algeria, and the North Caucasian trough.

  10. Rock melting tool with annealer section

    DOE Patents [OSTI]

    Bussod, Gilles Y.; Dick, Aaron J.; Cort, George E.

    1998-01-01

    A rock melting penetrator is provided with an afterbody that rapidly cools a molten geological structure formed around the melting tip of the penetrator to the glass transition temperature for the surrounding molten glass-like material. An annealing afterbody then cools the glass slowly from the glass transition temperature through the annealing temperature range to form a solid self-supporting glass casing. This allows thermally induced strains to relax by viscous deformations as the molten glass cools and prevents fracturing of the resulting glass liner. The quality of the glass lining is improved, along with its ability to provide a rigid impermeable casing in unstable rock formations.

  11. Approach, methods and results of an individual elicitation for the volcanism expert judgment panel

    SciTech Connect (OSTI)

    Crowe, B.M.

    1996-06-01

    Probabilistic volcanic hazard assessment (PVHA) of future magnetic disruption of the Yucca Mountain site was completed as a participating member of the volcanism export judgment panel conducted by Geomatrix Consultants for the Department of Energy. The purpose of this summary is to describe the data assumptions, methods, and results of the elicitation and to contrast this assessment with past volcanism studies conducted for the Yucca Mountain Project.

  12. Tension-compression-tension tertiary twins in coarse-grained polycrystalline pure magnesium at room temperature

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Qin; Jiang, Yanyao; Wang, Jian

    2015-04-07

    Using electron backscatter diffraction, the microstructural features of tension–compression–tension (T–C–T) tertiary twins are studied in coarse-grained pure polycrystalline magnesium subjected to monotonic compression along the extrusion direction in ambient air. T–C–T tertiary twins are developed due to the formation of a compression–tension double twin inside a primary tension twin. All the observed T–C–T twin variants are of TiCjTj type. TiCi+1Ti+1 (or TiCi–1Ti–1) variants are observed more frequently than TiCi+2Ti+2 (or TiCi–2Ti–2) variants. Moreover, the number of tertiary twin lamellae increases with the applied compressive strain.

  13. Transient Non Lin Deformation in Fractured Rock

    Energy Science and Technology Software Center (OSTI)

    1998-10-14

    MATLOC is a nonlinear, transient, two-dimensional (planer and axisymmetric), thermal stress, finite-element code designed to determine the deformation within a fractured rock mass. The mass is modeled as a nonlinear anistropic elastic material which can exhibit stress-dependent bi-linear locking behavior.

  14. Hot-dry-rock geothermal resource 1980

    SciTech Connect (OSTI)

    Heiken, G.; Goff, F.; Cremer, G.

    1982-04-01

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  15. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  16. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W.

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  17. DOE - NNSA/NFO -- News & Views Camp Desert Rock

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Camp Desert Rock Photo - Camp Desert Rock Camp Desert Rock, also known as Desert Atom Camp, Nevada, was home to the U.S. Army's Atomic Maneuver Battalion in the 1950s. More than 2,300 soldiers were trained here in 1955. The 100 semi-permanent buildings and more than 500 tents often were filled to the 6,000 personnel capacity. Desert Rock Airport, with its 7,500 foot runway, was built on the former Camp Desert Rock. At peak operation Camp Desert Rock comprised of 100 semi-permanent buildings,

  18. DOE - Fossil Energy: Squeezing Oil Out of Rock

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-Squeezing Out Oil An Energy Lesson Looking Down an Oil Well Looking Down an Oil Well Squeezing Oil out of Rocks Imagine trying to force oil through a rock. Can't be done, you ...

  19. Project Reports for Standing Rock Sioux Tribe- 2012 Project

    Broader source: Energy.gov [DOE]

    The Standing Rock Sioux Tribe (SRST) will perform a feasibility study and associated tasks over the course of two years on sites within the exterior boundaries of the Standing Rock Sioux...

  20. Summary of Test Results for Daya Bay Rock Samples (Technical...

    Office of Scientific and Technical Information (OSTI)

    Summary of Test Results for Daya Bay Rock Samples Citation Details In-Document Search Title: Summary of Test Results for Daya Bay Rock Samples You are accessing a document from ...

  1. Summary of Test Results for Daya Bay Rock Samples (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Summary of Test Results for Daya Bay Rock Samples Citation Details In-Document Search Title: Summary of Test Results for Daya Bay Rock Samples A series of ...

  2. Hot Dry Rock Geothermal Energy- Important Lessons From Fenton...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Hot Dry Rock Geothermal Energy- Important Lessons From Fenton Hill Abstract The concept of Hot Dry Rock...

  3. Category:Little Rock, AR | Open Energy Information

    Open Energy Info (EERE)

    71 KB SVMediumOffice Little Rock AR Entergy Arkansas Inc.png SVMediumOffice Little ... 68 KB SVMidriseApartment Little Rock AR Entergy Arkansas Inc.png SVMidriseApartment Lit......

  4. EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville...

    Office of Environmental Management (EM)

    1: Areva Eagle Rock Enrichment Facility in Bonneville County, ID EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville County, ID May 20, 2011 delete me old download page ...

  5. DOE - Office of Legacy Management -- WNI Split Rock Site - 043

    Office of Legacy Management (LM)

    Rock Site (043) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials...

  6. Isotopic Analysis- Rock At Coso Geothermal Area (1984) | Open...

    Open Energy Info (EERE)

    Home Exploration Activity: Isotopic Analysis- Rock At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique...

  7. R & D Supercritiacl CO2/ Rock Chemicals Interactions

    Broader source: Energy.gov [DOE]

    R & D Supercritiacl CO2/ Rock Chemicals Interactions presentation at the April 2013 peer review meeting held in Denver, Colorado.

  8. Slick Rock, Colorado, Processing Sites and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    Slick Rock, Colorado, Processing Sites and Disposal Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing sites and disposal site at Slick Rock, Colorado. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Locations of the Slick Rock, Colorado, Processing and Disposal Sites Site Descriptions and History The Slick Rock processing sites consist of two former uranium- and vanadium-ore processing

  9. CRC handbook of physical properties of rocks. Volume III

    SciTech Connect (OSTI)

    Carmichael, R.S.

    1984-01-01

    This book presents topics on: Density of rocks and minerals, includes histograms of density ranges; elastic constants of minerals, elastic moduli, thermal properties; inelastic properties, strength and rheology for rocks and minerals, rock mechanics and friction, and stress-strain relations; radioactivity, decay constants and heat production of isotope systems in geology; seismic attenuation, in rocks, minerals, and the earth, with application to oil exploration and terrestrial studies; and index.

  10. Enhanced diisobutene production in the presence of methyl tertiary butyl ether

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1983-03-01

    In the liquid phase reaction of isobutene in the presence of resin cation exchange resins with itself in a C[sub 4] hydrocarbon stream to form dimers, the formation of higher polymers, oligomers, and co-dimer by-products is suppressed by the presence of 0.0001 to 1 mole per mole of isobutene of methyl tertiary butyl ether. 1 fig.

  11. Enhanced diisobutene production in the presence of methyl tertiary butyl ether

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A. (Bellaire, TX)

    1983-01-01

    In the liquid phase reaction of isobutene in the presence of resin cation exchange resins with itself in a C.sub.4 hydrocarbon stream to form dimers, the formation of higher polymers, oligomers, and co-dimer by-products is suppressed by the presence of 0.0001 to 1 mole per mole of isobutene of methyl tertiary butyl ether.

  12. MODELING UNDERGROUND STRUCTURE VULNERABILITY IN JOINTED ROCK

    SciTech Connect (OSTI)

    R. SWIFT; D. STEEDMAN

    2001-02-01

    The vulnerability of underground structures and openings in deep jointed rock to ground shock attack is of chief concern to military planning and security. Damage and/or loss of stability to a structure in jointed rock, often manifested as brittle failure and accompanied with block movement, can depend significantly on jointed properties, such as spacing, orientation, strength, and block character. We apply a hybrid Discrete Element Method combined with the Smooth Particle Hydrodynamics approach to simulate the MIGHTY NORTH event, a definitive high-explosive test performed on an aluminum lined cylindrical opening in jointed Salem limestone. Representing limestone with discrete elements having elastic-equivalence and explicit brittle tensile behavior and the liner as an elastic-plastic continuum provides good agreement with the experiment and damage obtained with finite-element simulations. Extending the approach to parameter variations shows damage is substantially altered by differences in joint geometry and liner properties.

  13. motion-of-large-riprap-rocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of a Computational Approach to Detect Instability and Incipient Motion of Large Riprap Rocks" Presentation at the Transportation Research Board Annual Meeting Washington DC, January 14, 2014 Paper number 14-3035 Cezary Bojanowski Transportation Research and Analysis Computing Center (TRACC), Energy Systems Division Argonne National Laboratory Steven Lottes Transportation Research and Analysis Computing Center (TRACC), Energy Systems Division Argonne National Laboratory Abstract

  14. Scientific Visit on Crystalline Rock Repository Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visit on Crystalline Rock Repository Development - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  15. Gage for measuring displacements in rock samples

    DOE Patents [OSTI]

    Holcomb, David J.; McNamee, Michael J.

    1986-01-01

    A gage for measuring diametral displacement within a rock sample for use in a rock mechanics laboratory and in the field, comprises a support ring housing a linear variable differential transformer, a mounting screw, and a leaf spring. The mounting screw is adjustable and defines a first point of contact with the rock sample. The leaf spring has opposite ends fixed to the inner periphery of the mounting ring. An intermediate portion of the leaf spring projecting radially inward from the ring is formed with a dimple defining a second point of contact with the sample. The first and second points of contact are diametrically opposed to each other. The LVDT is mounted in the ring with its axis parallel to the line of measurement and its core rod received in the dimple of the leaf spring. Any change in the length of the line between the first and second support points is directly communicated to the LVDT. The leaf spring is rigid to completely support lateral forces so that the LVDT is free of all load for improved precision.

  16. Gage for measuring displacements in rock samples

    DOE Patents [OSTI]

    Holcomb, D.J.; McNamee, M.J.

    1985-07-18

    A gage for measuring diametral displacement within a rock sample for use in a rock mechanics laboratory and in the field, comprises a support ring housing a linear variable differential transformer (LVDT), a mounting screw, and a leaf spring. The mounting screw is adjustable and defines a first point of contact with the rock sample. The leaf spring has opposite ends fixed to the inner periphery of the mounting ring. An intermediate portion of the leaf spring projecting radially inward from the ring is formed with a dimple defining a second point of contact with the sample. The first and second points of contact are diametrically opposed to each other. The LVDT is mounted in the ring with its axis parallel to the line of measurement and its core rod received in the dimple of the leaf spring. Any change in the length of the line between the first and second support points is directly communicated to the LVDT. The leaf spring is rigid to completely support lateral forces so that the LVDT is free of all load for improved precision.

  17. Mafic and ultramafic rocks of the northwestern Brooks Range of Alaska produce nearly symmetric gravity anomalies

    SciTech Connect (OSTI)

    Morin, R.L. )

    1993-04-01

    An arc of mafic and ultramafic rocks is mapped from Asik Mountain to Siniktanneyak Mountain in the northwestern Brooks Range of Alaska. Gravity data, although not very detailed, have been collected over the region and show some very conspicuous circular or oval gravity highs over portions of the mapped mafic-ultramafic bodies. Bodies which have large associated gravity anomalies are Asik Mountain (80 mGal), Avon Hills (20 mGal), Misheguk Mountain (30 mGal), and Siniktanneyak Mountain (20 mGal). Gabbros of the Siniktanneyak Mountain complex, where the gravity coverage is best, have densities of about 3.0 g/cm[sup 3] while the densities of the surrounding sedimentary rocks are about 2.6 g/cm[sup 3]. Volcanic rocks in the area have average densities of about 2.7 g/cm[sup 3]. Three-dimensional modeling indicates that the largest anomaly, on the southwestern part of the complex, could be caused by a polygonal prism of gabbro with vertical sides, about 6 km across and about 4.5 km deep. A smaller lobe of the anomaly on the northeast of the complex could be caused by another oblong polygonal prism about 4 km long and 2 km wide trending northeast and about 1.5 km deep. Modeling this anomaly with densities lower than gabbro would require greater thicknesses to produce the same anomaly. Modeling each anomaly along this arc in 2 1/2-dimensions shows many possible solutions using different body shapes and different density contrasts. There are several other gravity anomalies in this vicinity which could represent unexposed high density rocks. One such anomaly is in the Maiyumerak Mountains northeast of Asik Mountain (30 mGal). Another anomaly is to the northwest of Asik Mountain (20 mGal). There is also an anomaly at Uchugrak (20 mGal) east of Avan Hills. Although many of the anomalies in this region are poorly controlled, an attempt has been made to interpret the data to show possible solutions.

  18. Factors controlling reservoir quality in tertiary sandstones and their significance to geopressured geothermal production. Annual report, May 1, 1979-May 31, 1980

    SciTech Connect (OSTI)

    Loucks, R.G.; Richmann, D.L.; Milliken, K.L.

    1980-07-01

    Differing extents of diagenetic modification is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the Upper and Lower Texas Gulf Coast. Detailed comparison of Frio sandstones from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. Vicksburg sandstones from the McAllen Ranch Field area are less stable, chemically and mechanically, than Frio sandstones from the Chocolate Bayou/Danbury dome area. Vicksburg sandstones are mineralogically immature and contain greater proportions of feldspars and rock fragments than do Frio sandstones. Thr reactive detrital assemblage of Vicksubrg sandstones is highly susceptible to diagenetic modification. Susceptibility is enhanced by higher than normal geothermal gradients in the McAllen Ranch Field area. Thus, consolidation of Vicksburg sandstones began at shallower depth of burial and precipitation of authigenic phases (especially calcite) was more pervasive than in Frio sandstones. Moreover, the late-stage episode of ferroan calcite precipitation that occluded most secondary porosity in Vicksburg sandstones did not occur significantly in Frio sandstones. Therefore, regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production.

  19. Modeling of thermally driven hydrological processes in partially saturated fractured rock

    SciTech Connect (OSTI)

    Tsang, Yvonne; Birkholzer, Jens; Mukhopadhyay, Sumit

    2009-03-15

    This paper is a review of the research that led to an in-depth understanding of flow and transport processes under strong heat stimulation in fractured, porous rock. It first describes the anticipated multiple processes that come into play in a partially saturated, fractured porous volcanic tuff geological formation, when it is subject to a heat source such as that originating from the decay of radionuclides. The rationale is then given for numerical modeling being a key element in the study of multiple processes that are coupled. The paper outlines how the conceptualization and the numerical modeling of the problem evolved, progressing from the simplified to the more realistic. Examples of numerical models are presented so as to illustrate the advancement and maturation of the research over the last two decades. The most recent model applied to in situ field thermal tests is characterized by (1) incorporation of a full set of thermal-hydrological processes into a numerical simulator, (2) realistic representation of the field test geometry, in three dimensions, and (3) use of site-specific characterization data for model inputs. Model predictions were carried out prior to initiation of data collection, and the model results were compared to diverse sets of measurements. The approach of close integration between modeling and field measurements has yielded a better understanding of how coupled thermal hydrological processes produce redistribution of moisture within the rock, which affects local permeability values and subsequently the flow of liquid and gases. The fluid flow in turn will change the temperature field. We end with a note on future research opportunities, specifically those incorporating chemical, mechanical, and microbiological factors into the study of thermal and hydrological processes.

  20. Explosive shaped charge penetration into tuff rock

    SciTech Connect (OSTI)

    Vigil, M.G.

    1988-10-01

    Analysis and data for the use of Explosive Shaped Charges (ESC) to generate holes in tuff rock formation is presented. The ESCs evaluated include Conical Shaped Charges (CSC) and Explosive Formed Projectiles (EFP). The CSCs vary in size from 0.158 to 9.1 inches inside cone diameter. The EFPs were 5.0 inches in diameter. Data for projectile impact angles of 30 and 90 degrees are presented. Analytically predicted depth of penetration data generally compared favorably with experimental data. Predicted depth of penetration versus ESC standoff data and hole profile dimensions in tuff are also presented. 24 refs., 45 figs., 6 tabs.

  1. Hot dry rock venture risks investigation:

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

  2. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California.

    SciTech Connect (OSTI)

    James B. Paces; Zell E. Peterman; Kiyoto Futa; Thomas A. Oliver; and Brian D. Marshall.

    2007-08-07

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values for Paleozoic seawater present at the time of deposition. Many of the samples have 87Sr/86Sr compositions that remain relatively unmodified from expected seawater values. However, rocks underlying the northern Nevada Test Site as well as rocks exposed at Bare Mountain commonly have elevated 87Sr/86Sr values derived from post-depositional addition of radiogenic Sr most likely from fluids circulating through rubidium-rich Paleozoic strata or Precambrian basement rocks.

  3. Field pilot tests for tertiary recovery using butane and propane injection

    SciTech Connect (OSTI)

    Pacheco, E.F.; Garcia, A.I.

    1981-01-01

    This work describes a pilot project for tertiary recovery of liquid hydrocarbons through LPG injection in water-out sections of the Bolivar reservoir in La Pena Field, Santa Cruz, Boliva. The promising results obtained in the initial field miscibility tests, as well as the results from a mathematical model built to stimulate and evaluate the tertiary recovery project, directed subsequent work into a cyclic scheme for enhanced recovery. This scheme is explained and injection production data is presented. Field facilities built to handle both the injected LPG and the produced oil-LPG mixture are described. The oil/LPG ratio and the LPG recovered/injected fraction are the main factors measured in this to make further considerations for a full scale project.

  4. West Hackberry Tertiary Project. Quarterly technical progress report, January 1, 1996--March 31, 1996

    SciTech Connect (OSTI)

    Gillham, T.; Cerveny, B.; Turek, E.

    1996-04-10

    The goal of the West Hackberry Tertiary Project is to demonstrate the technical and economic feasibility of combining air injection with the Double Displacement Process for tertiary oil recovery. The Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering oil through gravity drainage. The novel aspect of this project is the use of air as the injection fluid. The target reservoir for the project is the Camerina C-1,2,3 sand located on the West Flank of West Hackberry Field in Cameron Parish, Louisiana. If successful, this project will demonstrate that the use of air injection in the Double Displacement Process can economically recover oil in reservoirs where tertiary oil recovery is presently uneconomic. The first quarter of 1996 was outstanding both in terms of volume of air injected and low cost operations. More air was injected during this quarter than in any preceding quarter. The compressors experienced much improved run time with minimal repairs. Low operating costs resulted from no repairs required for injection or production wells. A discussion of the following topics are contained herein: (1) performance summary for the injection and production wells, (2) air compressor operations, (3) updated bottom hole pressure data, (4) technology transfer activities and (5) plans for the upcoming quarter.

  5. Wall rock-magma interactions in Etna, Italy, studied by U-Th disequilibrium and rare earth element systematics

    SciTech Connect (OSTI)

    Villemant, B. CNRS URA 196, Paris ); Michaud, V.; Metrich, N. )

    1993-03-01

    [sup 230]Th/[sup 238]U disequilibria have been studied in xenoliths and associated lavas of the 1892 and 1989 eruptions of Etna. Most xenoliths are out of secular equilibrium within 1 [sigma] errors and have lower [sup 230]Th/[sup 232]Th ratios than their host magmas. Siliceous and peraluminous xenoliths display large ranges of Th/U ratios for similar [sup 230]Th/[sup 232]Th values, which are interpreted in terms of Th isotopic rehomogenization. The siliceous xenoliths have also suffered thorium and uranium enrichments, which are best explained by chemical diffusion between xenolith melts and differentiated magmas. Estimates of thorium self-diffusivities and [sup 230]Th-[sup 238]U disequilibria give age constraints on these events corresponding to the last major volcanic event of Etna at 14 ka (formation of the elliptic crater caldera). These results suggest that magma storage in superficial and long-lived magma chambers favors the thorium isotopic homogenization of wall rocks by a thermal effect. Chemical diffusion of uranium and thorium and isotopic homogenization between siliceous melts of wall rocks and differentiated magmas may significantly modify the initial thorium isotopic compositions. Such contamination processes could explain the large variations of the [sup 230]Th/[sup 232]Th initial ratios of Etna magmas. 33 refs., 7 figs., 1 tab.

  6. Experimental Program for Used Fuel Disposition in Crystalline Rocks

    Office of Scientific and Technical Information (OSTI)

    SAND2015-2980C Nuclear Energy Experimental Program for Used Fuel Disposition in Crystalline Rocks Yifeng Wang Sandia National Laboratories Nuclear Energy Crystalline Disposal R&D Work Packages ■ Objectives * Advance our understanding of long-term disposal of used fuel in crystalline rocks; * Develop experimental and computational capabilities to evaluate various disposal concepts in such media. ■ Focus on two key components of deep geologic repository in crystalline rocks * Better

  7. United States National Waste Terminal Storage argillaceous rock studies

    SciTech Connect (OSTI)

    Brunton, G.D.

    1981-01-01

    The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock.

  8. Picture of the Week: Bismuth and tin on the rocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Bismuth and tin on the rocks Scientists at Los Alamos National Laboratory are using state-of-the-art experimental techniques to see and understand how microstructures evolve during materials processing. February 15, 2016 Bismuth and tin on the rocks Scientists at Los Alamos National Laboratory are using state-of-the-art experimental techniques to see and understand how microstructures evolve during materials processing. Bismuth and tin on the rocks Scientists at Los Alamos National Laboratory

  9. Rock the Watt: An Energy Conservation Campaign at Pacific Northwest

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Lab | Department of Energy Rock the Watt: An Energy Conservation Campaign at Pacific Northwest National Lab Rock the Watt: An Energy Conservation Campaign at Pacific Northwest National Lab Case study describes Pacific Northwest National Laboratory's (PNNL) three-month Rock the Watt campaign to reduce energy use at its main campus in Richland, Washington. The campaign objectives were to educate PNNL employees about energy conservation opportunities in their workplace and to motivate

  10. A Physical Model For The Origin Of Volcanism Of The Tyrrhenian...

    Open Energy Info (EERE)

    Of Neapolitan Area Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Physical Model For The Origin Of Volcanism Of The Tyrrhenian Margin- The...

  11. Evaluation Of Used Fuel Disposition In Clay-Bearing Rock

    Broader source: Energy.gov [DOE]

    Radioactive waste disposal in shale/argillite rock formations has been widely considered given its desirable isolation properties, e.g., low permeability, potential geochemically reduced conditions...

  12. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...

    Open Energy Info (EERE)

    Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title...

  13. Fractured rock stress-permeability relationships from in situ...

    Office of Scientific and Technical Information (OSTI)

    Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings Citation Details In-Document Search Title: Fractured...

  14. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Phillips, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area...

  15. Rock Island County, Illinois: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Illinois Hillsdale, Illinois Milan, Illinois Moline, Illinois Oak Grove, Illinois Port Byron, Illinois Rapids City, Illinois Reynolds, Illinois Rock Island Arsenal, Illinois...

  16. City of Rock Hill, South Carolina (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Hill, South Carolina (Utility Company) Jump to: navigation, search Name: City of Rock Hill Place: South Carolina Phone Number: 803-325-2500 Website: www.cityofrockhill.comdepartm...

  17. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area...

    Open Energy Info (EERE)

    Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown References...

  18. Rock Density At Alum Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Density At Alum Area (DOE GTP) Exploration Activity Details Location Alum Geothermal Area...

  19. Doug Hollett, Director Geothermal Technologies Office Hot Rocks...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Rocks and Hard Places Geothermal Resources Council Annual Meeting - September 30, 2013 Courtesy GRC Courtesy CPikeACEP Courtesy RAM Power 2 Identify New Geothermal ...

  20. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    WoldeGabriel & Goff, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

  1. Rock Sampling At Long Valley Caldera Geothermal Area (Goff, Et...

    Open Energy Info (EERE)

    Long Valley Caldera Geothermal Area (Goff, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Long Valley Caldera...

  2. Fundamental Research on Percussion Drilling: Improved rock mechanics...

    Office of Scientific and Technical Information (OSTI)

    Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations Citation Details In-Document...

  3. Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    Office of Scientific and Technical Information (OSTI)

    Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Gutierrez, Marte 54 ENVIRONMENTAL...

  4. Rock Sampling At Socorro Mountain Area (Armstrong, Et Al., 1995...

    Open Energy Info (EERE)

    SEM studies, and John Repetski (USGS, Reston, Virgina) conodont stratigraphy and color and textural alteration as guides to the carbonate rocks' thermal history. The...

  5. Glen Rock, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    congressional district.12 Registered Energy Companies in Glen Rock, New Jersey BGA Engineering LLC References US Census Bureau Incorporated place and minor civil...

  6. Eruptive history and petrochemistry of the Bulusan volcanic complex: Implications for the hydrothermal system and volcanic hazards of Mt. Bulusan, Philippines

    SciTech Connect (OSTI)

    Delfin, F.G. Jr.; Panem, C.C.; Defant, M.J.

    1993-10-01

    Two contrasting conceptual models of the postcaldera magmatic system of the Bulusan volcanic complex are constructed on the basis of a synthesis of volcanological, petrochemical, and petrologic data. These models predict that hydrothermal convection below the complex will occur either in discrete, structurally-focused zones or over a much broader area. Both models, however, agree that hydrothermal fluids at depth will be highly acidic and volcanic-related. Future ash-fall eruptions and mudflows are likely to affect the area previously chosen for possible drilling. Such risks, combined with the expected acidic character of the hydrothermal system, argue against drilling into this system.

  7. Late Cenozoic volcanism in the Lassen area, southernmost Cascade Range, California

    SciTech Connect (OSTI)

    Clynne, M.A.; Muffler, L.J.P.; Dalrymple, G.B. )

    1993-04-01

    Volcanism in the southernmost Cascade Range can be characterized on two scales. Regional volcanism is predominantly basaltic to andesitic, and hundreds of coalescing volcanoes of small volume (10[sup [minus]3] to 10[sup 1] km[sup 3]) with short lifetimes have built a broad platform. Superimposed on the regional volcanism are a few long-lived ([approximately]10[sup 6] years) much larger (>10 [sup 2] km[sup 3]) volcanic centers. Each of these larger centers consists of a basaltic-andesite to andesite composite cone and flanking silicic domes and flows. The evolution of these volcanic centers conforms to a generalized three-stage model during which a conspicuous edifice is constructed. Stages 1 and 2 comprise a dominantly andesitic composite cone; Stage 3 marks a change to dominantly silicic volcanism and is accompanied by development of a hydrothermal system in the permeable core of the andesitic composite cone. Subsequent fluvial and glacial erosion produces a caldera-like depression with a topographically high resistant rim of Stage 2 lavas surrounding the deeply eroded, hydrothermally altered core of the composite cone. Two types of basalt are recognized in the southernmost Cascades; medium-K calc-alkaline (CAB) and low-K olivine tholeiite (LKOT). CAB exhibits considerable geochemical diversity and is the parent magma for the volcanic-center lavas and the majority of the evolved regional lavas. LKOT is chemically homogeneous, and outcrops sporadically in association with extensional tectonics of the Basin and Range Province, and is related to Pleistocene encroachment of Basin-and-Range tectonics on the subduction-related volcanism of the Cascade Range.

  8. Elemental composition of two cumulate rocks

    SciTech Connect (OSTI)

    Naeem, A.; Almohandis, A.A.

    1983-04-01

    Two cumulate rock samples K-185, K-250 from the Kapalagulu intrusion, W. Tanzania, were analyzed using X-ray fluorescence (XRF), wet chemical and neutron activation analysis (NAA) techniques. Major element oxides were determined by XRF and wet chemical methods, while the concentration of trace elements were measured by NAA, using high resolution Ge(Li) detector, minicomputer-based data acquisition system and off-line computer. The percentage of major oxides and sixteen trace elements have been reported. It has been found that Cr, Ni, and Co are highly concentrated in K-250 while Sc, and most of the major elements are more concentrated in K-185. The variation of major and trace elements in these two samples have been discussed.

  9. Airborne gamma-ray spectrometer and magnetometer survey. Canyon City quadrangle (Oregon). Final report

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    Fourteen uranium anomalies meet the minimum statistical requirements as defined in Volume I. These anomalies are listed and are shown on the Uranium Anomaly Interpretation Map. Potassium (%K), equivalent Uranium (ppM eU), equivalent Thorium (eT), eU/eT, eU/K, eT/K, and Magnetic Pseudo Contour Maps are presented in Appendix E. Stacked Profiles showing geologic strip maps along each flight-line, together with sensor data, and ancillary data are presented in Appendix F. All maps and profiles were prepared on a scale of 1:250,000, but have been reduced to 1:500,000 for presentation in Volume II. Anomaly No. 1 is over mainly sedimentary rocks of undifferentitatd Paleozoic/Mesozoic age (MzPza). Anomaly No. 2 is over a fault contact between Strawberry volcanics (Ts), and volcanic rocks of the Clarno (Tc). Anomaly No. 3 is over an intensely faulted block of Strawberry volcanics (Ts). Anomaly No. 4 is over the contact area between Strawberry volcanic rocks (Ts) and a basalt plug of Tertiary age (Tbi). Anomaly No. 5 is over the contact area between volcanic rocks of the Clarno formation (Tc) and undivided sedimentary rocks of Jurassic/Triassic age. Part of the anomaly is over landslide debris (Q1). Anomalies No. 6 and No. 7 are over a fault contact between volcanic rocks of the Clarno formation (Tc) and undivided sedimentary rocks of Jurassic/Triassic age (JTru).

  10. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide

    Broader source: Energy.gov [DOE]

    Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock interactions.

  11. Determining inert content in coal dust/rock dust mixture

    DOE Patents [OSTI]

    Sapko, Michael J.; Ward, Jr., Jack A.

    1989-01-01

    A method and apparatus for determining the inert content of a coal dust and rock dust mixture uses a transparent window pressed against the mixture. An infrared light beam is directed through the window such that a portion of the infrared light beam is reflected from the mixture. The concentration of the reflected light is detected and a signal indicative of the reflected light is generated. A normalized value for the generated signal is determined according to the relationship .phi.=(log i.sub.c `log i.sub.co) / (log i.sub.c100 -log i.sub.co) where i.sub.co =measured signal at 0% rock dust i.sub.c100 =measured signal at 100% rock dust i.sub.c =measured signal of the mixture. This normalized value is then correlated to a predetermined relationship of .phi. to rock dust percentage to determine the rock dust content of the mixture. The rock dust content is displayed where the percentage is between 30 and 100%, and an indication of out-of-range is displayed where the rock dust percent is less than 30%. Preferably, the rock dust percentage (RD%) is calculated from the predetermined relationship RD%=100+30 log .phi.. where the dust mixture initially includes moisture, the dust mixture is dried before measuring by use of 8 to 12 mesh molecular-sieves which are shaken with the dust mixture and subsequently screened from the dust mixture.

  12. Experience with in situ measurement of rock deformability

    SciTech Connect (OSTI)

    Bieniawski, Z.T.

    1981-07-01

    Although in situ tests have the advantage of involving a large volume or rock tested under the same environmental conditions as are prevailing in the rock mass, such tests are expensive and time consuming. In addition, there are a number of controversial questions pertinent to in situ tests.

  13. Constitutive relationships for elastic deformation of clay rock: Data Analysis

    SciTech Connect (OSTI)

    Liu, H.H.; Rutqvist, J.; Birkholzer, J.T.

    2011-04-15

    Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations.

  14. A compound power-law model for volcanic eruptions: Implications for risk assessment of volcanism at the proposed nuclear waste repository at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Ho, Chih-Hsiang

    1994-10-17

    Much of the ongoing debate on the use of nuclear power plants in U.S.A. centers on the safe disposal of the radioactive waste. Congress, aware of the importance of the waste issue, passed the Nuclear Waste Policy Act of 1982, requiring the federal government to develop a geologic repository for the permanent disposal of high level radioactive wastes from civilian nuclear power plants. The Department of Energy (DOE) established the Office of Civilian Radioactive Waste Management (OCRWM) in 1983 to identify potential sites. When OCRWM had selected three potential sites to study, Congress enacted the Nuclear Waste Policy Amendments Act of 1987, which directed the DOE to characterize only one of those sites, Yucca Mountain, in southern Nevada. For a site to be acceptable, theses studies must demonstrate that the site could comply with regulations and guidelines established by the federal agencies that will be responsible for licensing, regulating, and managing the waste facility. Advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Recent volcanism in the vicinity of Yucca Mountain is readily recognized as an important factor in determining future public and environmental safety because of the possibility of direct disruption of a repository site by volcanism. In particular, basaltic volcanism is regarded as direct and unequivocal evidence of deep-seated geologic instability. In this paper, statistical analysis of volcanic hazard assessment at the Yucca Mountain site is discussed, taking into account some significant geological factors raised by experts. Three types of models are considered in the data analysis. The first model assumes that both past and future volcanic activities follow a homogeneous Poisson process (HPP).

  15. Photo of the Week: Laser Beats Rock | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laser Beats Rock Photo of the Week: Laser Beats Rock April 8, 2013 - 5:28pm Addthis On August 5, 2012, the Curiosity rover touched down on the surface of Mars. The ChemCam instrument package, developed at Los Alamos National Laboratory, is a device mounted on the Mars Curiosity rover that uses two remote sensing instruments: the Laser-Induced Breakdown Spectrometer (LIBS) and a Remote Micro-Imager (RMI). The LIBS fires a powerful laser that determines chemical compositions of rock and soil

  16. America's Atomic Army: The Historical Archaeology of Camp Desert Rock

    SciTech Connect (OSTI)

    Susan R. Edwards

    2007-11-02

    Established in 1951, Camp Desert Rock served as the training ground for America's 'Atomic Army'. For the next six years, U.S. ground troops traveled to the Nevada desert to participate in military maneuvers during atmospheric atomic weapons testing. Nearly 60,000 soldiers received physical and psychological training in atomic warfare. Abandoned when atmospheric testing ended, Camp Desert Rock was dismantled and its buildings moved to other locations. Today, the camp appears as a sterile expanse of desert marked by rock-lined tent platforms, concrete foundations, and trash scatters. Although visually unimposing, the site is rich with the history of America's nuclear testing program.

  17. Mechanical Behavior of the Near-field Host Rock Surrounding Excavation...

    Office of Scientific and Technical Information (OSTI)

    Mechanical Behavior of the Near-field Host Rock Surrounding Excavations Citation Details In-Document Search Title: Mechanical Behavior of the Near-field Host Rock Surrounding ...

  18. Used Fuel Disposal in Crystalline Rocks: Status and FY14 Progress...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Used Fuel Disposal in Crystalline Rocks: Status and FY14 Progress. Citation Details In-Document Search Title: Used Fuel Disposal in Crystalline Rocks: Status and ...

  19. Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes

    SciTech Connect (OSTI)

    Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.; Stow, S.H.

    2003-11-15

    The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of a ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.

  20. Big Rock, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Big Rock is a village in Kane County, Illinois.1 References US Census Bureau...

  1. Project Reports for Standing Rock Sioux Tribe- 2011 Project

    Broader source: Energy.gov [DOE]

    The Standing Rock Sioux Tribe's (SRST) cultural identity demands that tribal development occur in a sustainable manner and in a manner protective of the tribe's natural resources to preserve them for following generations.

  2. Y-12s Moon Rocks and Jim Williams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moon Rocks and Jim Williams Often I am stopped and given suggestions about what would be good information to include in the history of Y-12 being published weekly in The Oak...

  3. Apparent Welding Textures In Altered Pumice-Rich Rocks | Open...

    Open Energy Info (EERE)

    Apparent Welding Textures In Altered Pumice-Rich Rocks Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Apparent Welding Textures In Altered...

  4. POSSIBLE ALTERATION OF ROCKS OBSERVED BY CHEMCAM ALONG THE TRAVERSE...

    Office of Scientific and Technical Information (OSTI)

    TO GLENELG IN GALE CRATER ON MARS. Citation Details In-Document Search Title: POSSIBLE ALTERATION OF ROCKS OBSERVED BY CHEMCAM ALONG THE TRAVERSE TO GLENELG IN GALE CRATER ON ...

  5. Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In...

    Open Energy Info (EERE)

    In The 1.25 Ma Lake Of Valles Caldera, New Mexico, USA Abstract Quantitative X-ray diffraction analysis of about 80 rhyolite and associated lacustrine rocks has characterized...

  6. Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In...

    Open Energy Info (EERE)

    In The 1.25 Ma Lake Of Valles Caldera, New Mexico, Usa Abstract Quantitative X-ray diffraction analysis of about 80 rhyolite and associated lacustrine rocks has characterized...

  7. Disposal in Crystalline Rocks: FY’15 Progress Report

    Broader source: Energy.gov [DOE]

    The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and...

  8. Electrical Conductivity of Soils and Rocks | Open Energy Information

    Open Energy Info (EERE)

    Reference LibraryAdd to library Report: Electrical Conductivity of Soils and Rocks Author J.D. McNeill Organization Geonics Limited Published Geonics Limited, 1980 Report Number...

  9. Rock Sampling At Coso Geothermal Area (1995) | Open Energy Information

    Open Energy Info (EERE)

    and analytical analyses of reservoir rock and vein material. References Lutz, S.J.; Moore, J.N. ; Copp, J.F. (1 June 1995) Lithology and alteration mineralogy of...

  10. Lithology and alteration mineralogy of reservoir rocks at Coso...

    Open Energy Info (EERE)

    using petrographic and analytical analyses of reservoir rock and vein material. The nature of the low-angle outflow zone and the overlying cap that prevents a surface expression...

  11. Lithology and Alteration Mineralogy of Reservoir Rocks at Coso...

    Open Energy Info (EERE)

    using petrographic and analytical analyses of reservoir rock and vein material. The nature of the low-angle outflow zone and the overlying cap that prevents a surface expression...

  12. Drilling Complete on Australian Hot Dry Rock Project

    Broader source: Energy.gov [DOE]

    The first commercial attempt to create a commercial geothermal power plant using hot dry rock technology reached a crucial milestone on January 22, when a production well successfully reached its target depth.

  13. EGS rock reactions with Supercritical CO2 saturated with water...

    Office of Scientific and Technical Information (OSTI)

    Title: EGS rock reactions with Supercritical CO2 saturated with water and water saturated with Supercritical CO2 EGS using CO2 as a working fluid will likely involve hydro-shearing ...

  14. Geochemical Data on Waters, Gases, Scales, and Rocks from the...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geochemical Data on Waters, Gases, Scales, and Rocks from the Dixie Valley Region, Nevada (1996-1999)...

  15. Reservoir Investigations on the Hot Dry Rock Geothermal System...

    Open Energy Info (EERE)

    Investigations on the Hot Dry Rock Geothermal System, Fenton Hill, New Mexico- Tracer Test Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  16. Rock Hill Utilities- Water Heater and Heat Pump Rebate Program

    Broader source: Energy.gov [DOE]

    Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed...

  17. Regional Geology: GIS Database for Alternative Host Rocks and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The objective of this work is to develop a spatial database that integrates both geologic data for alternative host-rock formations and information that has been historically used ...

  18. Integrated Experimental and Modeling Studies of Mineral Carbonation as a Mechanism for Permanent Carbon Sequestration in Mafic/Ultramafic Rocks

    SciTech Connect (OSTI)

    Wang, Zhengrong; Qiu, Lin; Zhang, Shuang; Bolton, Edward; Bercovici, David; Ague, Jay; Karato, Shun-Ichiro; Oristaglio, Michael; Zhu, Wen-Iu; Lisabeth, Harry; Johnson, Kevin

    2014-09-30

    A program of laboratory experiments, modeling and fieldwork was carried out at Yale University, University of Maryland, and University of Hawaii, under a DOE Award (DE-FE0004375) to study mineral carbonation as a practical method of geologic carbon sequestration. Mineral carbonation, also called carbon mineralization, is the conversion of (fluid) carbon dioxide into (solid) carbonate minerals in rocks, by way of naturally occurring chemical reactions. Mafic and ultramafic rocks, such as volcanic basalt, are natural candidates for carbonation, because the magnesium and iron silicate minerals in these rocks react with brines of dissolved carbon dioxide to form carbonate minerals. By trapping carbon dioxide (CO2) underground as a constituent of solid rock, carbonation of natural basalt formations would be a secure method of sequestering CO2 captured at power plants in efforts to mitigate climate change. Geochemical laboratory experiments at Yale, carried out in a batch reactor at 200C and 150 bar (15 MPa), studied carbonation of the olivine mineral forsterite (Mg2SiO4) reacting with CO2 brines in the form of sodium bicarbonate (NaHCO3) solutions. The main carbonation product in these reactions is the carbonate mineral magnesite (MgCO3). A series of 32 runs varied the reaction time, the reactive surface area of olivine grains and powders, the concentration of the reacting fluid, and the starting ratio of fluid to olivine mass. These experiments were the first to study the rate of olivine carbonation under passive conditions approaching equilibrium. The results show that, in a simple batch reaction, olivine carbonation is fastest during the first 24 hours and then slows significantly and even reverses. A natural measure of the extent of carbonation is a quantity called the carbonation fraction, which compares the amount of carbon removed from solution, during a run, to the maximum amount that could have been removed if the olivine initially present had fully dissolved and the cations released had subsequently precipitated in carbonate minerals. The carbonation fractions observed in batch experiments with olivine grains and powders varied significantly, from less than 0.01 (1%) to more than 0.5 (50%). Over time, the carbonation fractions reached an upper limit after about 24 to 72 hours of reaction, then stayed constant or decreased. The peak Final Scientific/Technical Report DE-FE0004275 | Mineral Carbonation | 4 coincided with the appearance of secondary magnesium-bearing silicate minerals, whose formation competes for magnesium ions in solution and can even promote conditions that dissolve magnesite. The highest carbonation fractions resulted from experiments with low ratios of concentrated solution to olivine, during which amorphous silica spheres or meshes formed, instead of secondary silicate minerals. The highest carbonation fractions appear to result from competing effects. Precipitation of silica layers on olivine reduces the reactive surface area and, thus, the rate of olivine dissolution (which ultimately limits the carbonation rate), but these same silica layers can also inhibit the formation of secondary silicate minerals that consume magnesite formed in earlier stages of carbonation. Simulation of these experiments with simple geochemical models using the software program EQ3/6 reproduces the general trends observedespecially the results for the carbonation fraction in short-run experiments. Although further experimentation and better models are needed, this study nevertheless provides a framework for understanding the optimal conditions for sequestering carbon dioxide by reacting CO2-bearing fluids with rocks containing olivine minerals. A series of experiments at the Rock Physics Laboratory at the University of Maryland studied the carbonation process during deformation of thermally cracked olivine-rich rock samples (dunit

  19. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    SciTech Connect (OSTI)

    Hackett, W.R.; Smith, R.P.

    1992-01-01

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  20. Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area

    SciTech Connect (OSTI)

    Hackett, W.R.; Smith, R.P.

    1992-09-01

    In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

  1. Experimental Program for Used Fuel Disposition in Crystalline Rocks.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Experimental Program for Used Fuel Disposition in Crystalline Rocks. Citation Details In-Document Search Title: Experimental Program for Used Fuel Disposition in Crystalline Rocks. Abstract not provided. Authors: Wang, Yifeng Publication Date: 2014-10-01 OSTI Identifier: 1242086 Report Number(s): SAND2014-19251C 540815 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the DOE Fuel Cycle

  2. Experimental Program for Used Fuel Disposition in Crystalline Rocks.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Experimental Program for Used Fuel Disposition in Crystalline Rocks. Citation Details In-Document Search Title: Experimental Program for Used Fuel Disposition in Crystalline Rocks. Abstract not provided. Authors: Wang, Yifeng Publication Date: 2015-04-01 OSTI Identifier: 1248848 Report Number(s): SAND2015-2980C 583331 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the USA-ROK Joint Fuel

  3. Assessing the relative permeability of heterogeneous reservoir rock

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Assessing the relative permeability of heterogeneous reservoir rock Citation Details In-Document Search Title: Assessing the relative permeability of heterogeneous reservoir rock Reservoir engineers are often faced with heterogeneous core material, for which conventional methods of estimating relative permeability are susceptible to error and may lead to incorrect conclusions regarding displacement efficiency, wettability and reservoir performance.

  4. Environmental assessment of remedial action at the slick rock Uranium Mill Tailings sites Slick Rock, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section} 7901 et seq.), hereafter referred to as the UMTRCA, authorized the U.S. Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VPs) associated with the sites. Contaminated materials cover an estimated 55 acres of the Union Carbide (UC) processing site and 12 ac of the North Continent (NC) processing site. The total estimated volume of contaminated materials is approximately 61 8,300 cubic yards. In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the sites on land administered by the Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. All solid contaminated materials would be buried under 5 feet (ft) of rock and soil materials. The proposed disposal site area is currently used by ranchers for cattle grazing over a 7-month period. The closest residence to the proposed disposal site is 2 air mi. An estimated 44 ac of land would be permanently transferred from the BLM to the DOE and restricted from future use.

  5. SIMULATION OF THE ICELAND VOLCANIC ERUPTION OF APRIL 2010 USING THE ENSEMBLE SYSTEM

    SciTech Connect (OSTI)

    Buckley, R.

    2011-05-10

    The Eyjafjallajokull volcanic eruption in Iceland in April 2010 disrupted transportation in Europe which ultimately affected travel plans for many on a global basis. The Volcanic Ash Advisory Centre (VAAC) is responsible for providing guidance to the aviation industry of the transport of volcanic ash clouds. There are nine such centers located globally, and the London branch (headed by the United Kingdom Meteorological Office, or UKMet) was responsible for modeling the Iceland volcano. The guidance provided by the VAAC created some controversy due to the burdensome travel restrictions and uncertainty involved in the prediction of ash transport. The Iceland volcanic eruption provides a useful exercise of the European ENSEMBLE program, coordinated by the Joint Research Centre (JRC) in Ispra, Italy. ENSEMBLE, a decision support system for emergency response, uses transport model results from a variety of countries in an effort to better understand the uncertainty involved with a given accident scenario. Model results in the form of airborne concentration and surface deposition are required from each member of the ensemble in a prescribed format that may then be uploaded to a website for manipulation. The Savannah River National Laboratory (SRNL) is the lone regular United States participant throughout the 10-year existence of ENSEMBLE. For the Iceland volcano, four separate source term estimates have been provided to ENSEMBLE participants. This paper focuses only on one of those source terms. The SRNL results in relation to other modeling agency results along with useful information obtained using an ensemble of transport results will be discussed.

  6. Proceedings of the scientific visit on crystalline rock repository development.

    SciTech Connect (OSTI)

    Mariner, Paul E.; Hardin, Ernest L.; Miksova, Jitka

    2013-02-01

    A scientific visit on Crystalline Rock Repository Development was held in the Czech Republic on September 24-27, 2012. The visit was hosted by the Czech Radioactive Waste Repository Authority (RAWRA), co-hosted by Sandia National Laboratories (SNL), and supported by the International Atomic Energy Agency (IAEA). The purpose of the visit was to promote technical information exchange between participants from countries engaged in the investigation and exploration of crystalline rock for the eventual construction of nuclear waste repositories. The visit was designed especially for participants of countries that have recently commenced (or recommenced) national repository programmes in crystalline host rock formations. Discussion topics included repository programme development, site screening and selection, site characterization, disposal concepts in crystalline host rock, regulatory frameworks, and safety assessment methodology. Interest was surveyed in establishing a %E2%80%9Cclub,%E2%80%9D the mission of which would be to identify and address the various technical challenges that confront the disposal of radioactive waste in crystalline rock environments. The idea of a second scientific visit to be held one year later in another host country received popular support. The visit concluded with a trip to the countryside south of Prague where participants were treated to a tour of the laboratory and underground facilities of the Josef Regional Underground Research Centre.

  7. Superhard nanophase cutter materials for rock drilling applications

    SciTech Connect (OSTI)

    Voronov, O.; Tompa, G.; Sadangi, R.; Kear, B.; Wilson, C.; Yan, P.

    2000-06-23

    The Low Pressure-High Temperature (LPHT) System has been developed for sintering of nanophase cutter and anvil materials. Microstructured and nanostructured cutters were sintered and studied for rock drilling applications. The WC/Co anvils were sintered and used for development of High Pressure-High Temperature (HPHT) Systems. Binderless diamond and superhard nanophase cutter materials were manufactured with help of HPHT Systems. The diamond materials were studied for rock machining and drilling applications. Binderless Polycrystalline Diamonds (BPCD) have high thermal stability and can be used in geothermal drilling of hard rock formations. Nanophase Polycrystalline Diamonds (NPCD) are under study in precision machining of optical lenses. Triphasic Diamond/Carbide/Metal Composites (TDCC) will be commercialized in drilling and machining applications.

  8. Viscuous Mech Behavior of Rock Mass Under Therm Stress

    Energy Science and Technology Software Center (OSTI)

    1998-10-14

    VISCOT is a nonlinear, transient , thermal-stress, finite-element program designed to determine the viscoelastic, viscoplastic, or elastoplastic deformation of a rock mass due to mechanical and thermal loading. A major application of VISCOT in conjunction with a SCEPTER heat transfer code, e.g. DOT-BPMD, is the thermomechanical analysis of a rock mass such as salt in which significant time-dependent, nonlinear deformations are expected to occur. Such problems include room and canister scale studies during the excavation,more » operation, and long term, post closure stages in a salt repository.« less

  9. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2003-10-01

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have (1) Studied relationships between velocity and permeability. (2) Used independent experimental methods to measure the elastic moduli of clay minerals as functions of pressure and saturation. (3) Applied different statistical methods for characterizing heterogeneity and textures from scanning acoustic microscope (SAM) images of shale microstructures. (4) Analyzed the directional dependence of velocity and attenuation in different reservoir rocks (5) Compared Vp measured under hydrostatic and non-hydrostatic stress conditions in sands. (6) Studied stratification as a source of intrinsic anisotropy in sediments using Vp and statistical methods for characterizing textures in sands.

  10. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado

    SciTech Connect (OSTI)

    1995-01-01

    The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project.

  11. Acoustic waves in the atmosphere and ground generated by volcanic activity

    SciTech Connect (OSTI)

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  12. Localization of Volcanic Activity: Topographic Effects on Dike Propagation, Eruption and COnduit Formation

    SciTech Connect (OSTI)

    E.S. Gaffney; B. Damjanac

    2006-05-12

    Magma flow in a dike rising in a crack whose strike runs from a highland or a ridge to an adjacent lowland has been modeled to determine the effect of topography on the flow. It is found that there is a distinct tendency for the flow to be diverted away from the highland end of the strike toward the lowland. Separation of the geometric effect of the topography from its effect on lateral confining stresses on the crack indicates that both contribute to the effect but that the effect of stress is less important. Although this analysis explains a tendency for volcanic eruptions to occur in low lands, it does not preclude eruptions on highlands. The particular configuration modeled mimics topography around the proposed nuclear waste repository at Yucca Mountain, Nevada, so that the results may indicate some reduction in the volcanic hazard to the site.

  13. An evaluation of the effect of volcanic eruption on the solar radiation at Australian and Canadian stations

    SciTech Connect (OSTI)

    Yatko, B.R.; Garrison, J.D.

    1996-11-01

    Peak (most probable) and average values of {angstrom}`s turbidity coefficient {beta} and peak (most probable) and average values of the diffuse index k{sub d} are obtained from the solar radiation data from 21 stations in Australia and 5 stations in Canada. These data exhibit clear increases in their values when the volcanic aerosols in the stratosphere increase following volcanic eruptions of sufficient magnitude. The effect of the eruptions of Fuego (1974), El Chichon (1982) and Pinatubo (1991) are seen most clearly in the data. The effect of lesser eruptions is also seen. The store of volcanic aerosols in the stratosphere shifts with the season so that scattering by volcanic aerosols in the spring half of the year is stronger than in the fall.

  14. Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Johnson, Gary E.

    2010-01-29

    This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

  15. Process of breaking and rendering permeable a subterranean rock mass

    DOE Patents [OSTI]

    Lekas, Mitchell A.

    1980-01-01

    The process of the present invention involves the following steps: producing, as by hydrofracing, a substantially horizontal fracture in the subterranean rock mass to be processed; emplacing an explosive charge in the mass in spaced juxtaposed position to the fracture; enlarging the fracture to create a void space thereat, an initial lifting of the overburden, and to provide a free face juxtaposed to and arranged to cooperate with the emplaced explosive charge; and exploding the charge against the free face for fragmenting the rock and to distribute the space, thus providing fractured, pervious, rubble-ized rock in an enclosed subterranean chamber. Firing of the charge provides a further lifting of the overburden, an enlargement of the chamber and a larger void space to distribute throughout the rubble-ized rock within the chamber. In some forms of the invention an explosive charge is used to produce a transitory enlargement of the fracture, and the juxtaposed emplaced charge is fired during the critical period of enlargement of the fracture.

  16. Rock mass response to the decline in underground coal mining

    SciTech Connect (OSTI)

    Holub, K.

    2006-01-15

    Geomechanical problems of mining in the Ostrava-Karvina Coal Basin were studied on the basis of longterm experience gained from seismological observations. They could serve as reasonable models of rock-mass response to temporary reduction and gradual decline in mining activities and mine closure.

  17. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2004-08-01

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have continued our work on analyzing well logs and microstructural constraints on seismic signatures. We report results of three studies in this report. The first one deals with fractures and faults that provide the primary control on the underground fluid flow through low permeability massive carbonate rocks. Fault cores often represent lower transmissibility whereas the surrounding damaged rocks and main slip surfaces are high transmissibility elements. We determined the physical properties of fault rocks collected in and around the fault cores of large normal faults in central Italy. After studying the P- and S-wave velocity variation during cycles of confining pressure, we conclude that a rigid pore frame characterizes the fault gouge whereas the fractured limestone comprises pores with a larger aspect ratio. The second study was to characterize the seismic properties of brine as its temperature decreases from 25 C to -21 C. The purpose was to understand how the transmitted wave changes with the onset of freezing. The main practical reason for this experiment was to use partially frozen brine as an analogue for a mixture of methane hydrate and water present in the pore space of a gas hydrate reservoir. In the third study we analyzed variations in dynamic moduli in various carbonate reservoirs. The investigations include log and laboratory data from velocity, porosity, permeability, and attenuation measurements.

  18. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2003-06-30

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) Methods for detection of stress-induced velocity anisotropy in sands. (2) We have initiated efforts for velocity upscaling to quantify long-wavelength and short-wavelength velocity behavior and the scale-dependent dispersion caused by sediment variability in different depositional environments.

  19. Petrology of Eocene rocks, southeastern Georgia coastal plain

    SciTech Connect (OSTI)

    Thayer, P.A.; Miller, J.A.

    1988-09-01

    Study of cores from a US Geological Survey test well in Wayne County indicates that Eocene strata represent an overall shallowing-upward, clastic-carbonate sequence. The 1397-ft (426-m) Eocene section is divided into three units: unnamed lower Eocene rocks, middle Eocene (Claibornian) Lisbon and Avon Park Formations, and upper Eocene (Jacksonian) Ocala Limestone.

  20. Geologic and geophysical investigations of the Zuni-Bandera volcanic field, New Mexico

    SciTech Connect (OSTI)

    Ander, M.E.; Heiken, G.; Eichelberger, J.; Laughlin, A.W.; Huestis, S.

    1981-05-01

    A positive, northeast-trending gravity anomaly, 90 km long and 30 km wide, extends southwest from the Zuni uplift, New Mexico. The Zuni-Bandera volcanic field, an alignment of 74 basaltic vents, is parallel to the eastern edge of the anomaly. Lavas display a bimodal distribution of tholeiitic and alkalic compositions, and were erupted over a period from 4 Myr to present. A residual gravity profile taken perpendicular to the major axis of the anomaly was analyzed using linear programming and ideal body theory to obtain bounds on the density contrast, depth, and minimum thickness of the gravity body. Two-dimensionality was assumed. The limiting case where the anomalous body reaches the surface gives 0.1 g/cm/sup 3/ as the greatest lower bound on the maximum density contrast. If 0.4 g/cm/sup 3/ is taken as the geologically reasonable upper limit on the maximum density contrast, the least upper bound on the depth of burial is 3.5 km and minimum thickness is 2 km. A shallow mafic intrusion, emplaced sometime before Laramide deformation, is proposed to account for the positive gravity anomaly. Analysis of a magnetotelluric survey suggests that the intrusion is not due to recent basaltic magma associated with the Zuni-Bandera volcanic field. This large basement structure has controlled the development of the volcanic field; vent orientations have changed somewhat through time, but the trend of the volcanic chain followed the edge of the basement structure. It has also exhibited some control on deformation of the sedimentary section.

  1. Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the

    Broader source: Energy.gov (indexed) [DOE]

    Development and Evolution of Geothermal Systems: Collaborative Project in Chile | Department of Energy Effects of Volcanism, Crustal Thickness, and Large Scale Faulting on the Development and Evolution of Geothermal Systems: Collaborative Project in Chile presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon collaborative_project_chile_peer2013.pdf More Documents & Publications track 2: hydrothermal | geothermal 2015 peer review Blind Geothermal System

  2. 2008 Rock Deformation GRC - Conference August 3-8, 2008

    SciTech Connect (OSTI)

    James G. Hirth

    2009-09-21

    The GRC on Rock Deformation highlights the latest research in brittle and ductile rock mechanics from experimental, field and theoretical perspectives. The conference promotes a multi-disciplinary forum for assessing our understanding of rock strength and related physical properties in the Earth. The theme for the 2008 conference is 'Real-time Rheology'. Using ever-improving geophysical techniques, our ability to constrain the rheological behavior during earthquakes and post-seismic creep has improved significantly. Such data are used to investigate the frictional behavior of faults, processes responsible for strain localization, the viscosity of the lower crust, and viscous coupling between the crust and mantle. Seismological data also provide information on the rheology of the lower crust and mantle through analysis of seismic attenuation and anisotropy. Geologists are improving our understanding of rheology by combining novel analyses of microstructures in naturally deformed rocks with petrologic data. This conference will bring together experts and students in these research areas with experimentalists and theoreticians studying the same processes. We will discuss and assess where agreement exists on rheological constraints derived at different length/time scales using different techniques - and where new insight is required. To encompass the elements of these topics, speakers and discussion leaders with backgrounds in geodesy, experimental rock deformation, structural geology, earthquake seismology, geodynamics, glaciology, materials science, and mineral physics will be invited to the conference. Thematic sessions will be organized on the dynamics of earthquake rupture, the rheology of the lower crust and coupling with the upper mantle, the measurement and interpretation of seismic attenuation and anisotropy, the dynamics of ice sheets and the coupling of reactive porous flow and brittle deformation for understanding geothermal and chemical properties of the shallow crust that are important for developing ideas in CO2 sequestration, geothermal and petrochemical research and the mechanics of shallow faults.

  3. Iridium profile for 10 million years across the Cretaceous-Tertiary boundary at Gubbio (Italy)

    SciTech Connect (OSTI)

    Alvarez, W.; Montanari, A. ); Asaro, F. )

    1990-12-21

    The iridium anomaly at the Cretaceous-Tertiary (KT) boundary was discovered in the pelagic limestone sequence at Gubbio on the basis of 12 samples analyzed by neutron activation analysis (NAA) and was interpreted as indicating impact of a large extraterrestrial object at exactly the time of the KT mass extinction. Continuing controversy over the shape of the Ir profile at the Gubbio KT boundary and its interpretation called for a more detailed follow-up study. Analysis of a 57-meter-thick, 10-million-year-old part of the Gubbio sequence using improved NAA techniques revealed that there is only one Ir anomaly at the KT boundary, but this anomaly shows an intricate fine structure, the origin of which cannot yet be entirely explained. The KT Ir anomaly peaks in a 1-centimeter-thick clay layer, where the average Ir concentration is 3,000 parts per trillion (ppt); this peak is flanked by tails with Ir concentrations of 20 to 80 ppt that rise above a background of 12 to 13 ppt. The fine structure of the tails is probably due in part to lateral reworking, diffusion, burrowing, and perhaps Milankovitch cyclicity.

  4. Synsedimentary tectonics in Late Cretaceous-Early Tertiary pelagic basin of northern Apennines, Italy

    SciTech Connect (OSTI)

    Montanari, A.; Chan, L.S.; Alvarez, W.

    1987-05-01

    The sequence of Upper Cretaceous-Lower Tertiary pelagic limestones in the Umbria-Marches Apennines of Italy have recorded, with remarkable continuity, the geologic history of an epeiric sea on the eastern continental margin of the Ligurian Ocean during a time of widespread tectonism in the western Tethys domain. Sedimentary facies and paleocurrent analyses indicate that intrabasinal depocenters and structural highs have formed in response to extensional tectonic movements which started to affect the central part of the paleobasin in the early Turonian. The topography of the paleobasin was probably controlled by a complex pattern of buried fault blocks formed during the passive margin phase of the western Tethys and then reactivated in the Turonian after a prolonged time (Aptian to Cenomanian) of tectonic quiescence. Calcareous turbidites essentially made of remobilized pelagic mud were generated on the newly formed intrabasinal slopes and deposited in the adjacent depocenters. Conspicuous sedimentary events such as maxima in turbiditic deposition and soft-sediment slumps in these intrabasinal depocenters are attributed to major syndepositional earthquakes of regional extent. A detailed event-stratigraphy based on these sedimentary features indicates that the level of syndepositional tectonic activity reached a peak in the late Maastrichtian-early Paleocene and rapidly diminished in the Eocene.

  5. Comparison of the effects in the rock mass of large-scale chemical...

    Office of Scientific and Technical Information (OSTI)

    Comparison of the effects in the rock mass of large-scale chemical and nuclear explosions. ... Title: Comparison of the effects in the rock mass of large-scale chemical and nuclear ...

  6. Economics of a Conceptual 75 MW Hot Dry Rock Geothermal Electric...

    Open Energy Info (EERE)

    Economics of a Conceptual 75 MW Hot Dry Rock Geothermal Electric Power-Station Abstract Man-made, hot dry rock (HDR) geothermal energy reservoirs have been investigated for over...

  7. EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville County, ID |

    Energy Savers [EERE]

    Department of Energy 1: Areva Eagle Rock Enrichment Facility in Bonneville County, ID EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville County, ID May 20, 2011 delete me old download page duplicate

  8. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems I. Fluid...

  9. Used Fuel Disposal in Crystalline Rocks. FY15 Progress Report

    SciTech Connect (OSTI)

    Wang, Yifeng

    2015-08-20

    The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media. Chapter headings are as follows: Fuel matrix degradation model and its integration with performance assessments, Investigation of thermal effects on the chemical behavior of clays, Investigation of uranium diffusion and retardation in bentonite, Long-term diffusion of U(VI) in bentonite: dependence on density, Sorption and desorption of plutonium by bentonite, Dissolution of plutonium intrinsic colloids in the presence of clay and as a function of temperature, Laboratory investigation of colloid-facilitated transport of cesium by bentonite colloids in a crystalline rock system, Development and demonstration of discrete fracture network model, Fracture continuum model and its comparison with discrete fracture network model.

  10. Panel discussion on rock mechanics issues in repository design

    SciTech Connect (OSTI)

    Bieniawski, Z.T.; Kim, K.S.; Nataraja, M.

    1996-04-01

    The panel discussion was introduced by Mr. Z.T.(Richard) Bieniawski and then continued with five additional speakers. The topics covered in the discussion included rock mechanics pertaining to the design of underground facilities for the disposal of radioactive wastes and the safety of such facilities. The speakers included: Mr. Kun-Soo Kim who is a specialist in the area of rock mechanics testing during the Basalt Waste Isolation Project; Dr. Mysore Nataraja who is the senior project manager with the NRC; Dr. Michael Voegele who is the project manager for Science Applications International Corporation (SAIC) on the Yucca Mountain Project; Dr. Edward Cording who is a member of the Nuclear Waste Technical Review Board; and Dr. Hemendra Kalia who is employed by Los Alamos National Laboratory and coordinates various activities of testing programs at the Yucca Mountain Site.

  11. Rock Island Dam Smolt Monitoring; 1994-1995 Annual Report.

    SciTech Connect (OSTI)

    Truscott, Keith B.; Fielder, Paul C.

    1995-10-01

    Downstream migrating salmon and steelhead trout (Oncorhynchus spp.) smolts were monitored at the Rock Island Dam bypass trap from April 1 - August 31, 1954. This was the tenth consecutive year that the bypass trap was monitored. Data collected included: (1) number of fish caught by species, (2) number of adipose clipped and/or Passive Integrated Transponder (PIT) tagged fish caught by species, (3) daily average riverflow, (4) daily average powerhouse No. 1 and No. 2 flows and daily average spill. These data were transmitted to the Fish Passage Center, which manages the Smolt Monitoring Program throughout the Columbia River Basin. The Smolt Monitoring Program is used to manage the {open_quotes}water budget{close_quotes}, releasing upstream reservoir water storage allocated to supplement river flows to enhance survival of downstream migrating juvenile salmonids. The Rock Island Dam trapping facility collected 37,795 downstream migrating salmonids in 1994. Collected fish included 4 yearling and 4 sub-yearling chinook salmon (O. tshawytscha) that had been previously PIT tagged to help determine migration rates. Additionally, 1,132 sub-yearling chinook, 4,185 yearling chinook, 6,627 steelhead, (O. mykiss) and 422 sockeye (O. nerka) with clipped adipose fins were collected. The middle 80% of the 1994 spring migration (excluding sub-yearling chinooks) passed Rock Island Dam during a 34 day period, April 25 - May 28. Passage rates of chinook and steelhead smolts released from hatcheries and the downstream migration timing of all salmonids are presented. The spring migration timing of juvenile salmonids is strongly influenced by hatchery releases above Rock Island Dam.

  12. Finite element model for heat conduction in jointed rock masses

    SciTech Connect (OSTI)

    Gartling, D.K.; Thomas, R.K.

    1981-01-01

    A computatonal procedure for simulating heat conduction in a fractured rock mass is proposed and illustrated in the present paper. The method makes use of a simple local model for conduction in the vicinity of a single open fracture. The distributions of fractures and fracture properties within the finite element model are based on a statistical representation of geologic field data. Fracture behavior is included in the finite element computation by locating local, discrete fractures at the element integration points.

  13. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions which are needed for formation evaluation by NMR well logging. NMR well logging is finding wide use in formation evaluation. The formation parameters commonly estimated were porosity, permeability, and capillary bound water. Special cases include estimation of oil viscosity, residual oil saturation, location of oil/water contact, and interpretation on whether the hydrocarbon is oil or gas.

  14. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity.

  15. Chemical hydrofracturing of the Hot Dry Rock reservoir

    SciTech Connect (OSTI)

    Yakovlev, Leonid

    1996-01-24

    The experimental study of the water-rock interaction shows that the secondary mineral assemblage depends on the water composition. For example, granite-pure water interaction produces zeolites (relatively low-dense, Mg-poor minerals), whereas seawater yields chlorites (high-dense, Mg-rich minerals). The reactions have volumetric effects from several % to 20 % in magnitude. Volume deformations in the heterogeneous matrix cause uneven mechanical strains. Reactions with the effect of about 0,1 vol.% may cause strains of the order of 100-1000 bars being enough for destruction of rocks. Signs and magnitudes of local volume changes depend on the mineral composition of the secondary assemblage. Hence, one can provide either healing or cracking of primary fractures, as desired, by changing the composition of water in the water-felsic rock system where some elements (Mg, Fe) are in lack. The techniques of "chemical hydrofracturing" looks promising as applied to a granite HDR massif. One can regulate the permeability of fractured flow paths by changing in concord the composition and pressure of the injected water. This approach should promote efficient extraction of the petrothermal energy.

  16. Fluid-rock interaction: A reactive transport approach

    SciTech Connect (OSTI)

    Steefel, C.; Maher, K.

    2009-04-01

    Fluid-rock interaction (or water-rock interaction, as it was more commonly known) is a subject that has evolved considerably in its scope over the years. Initially its focus was primarily on interactions between subsurface fluids of various temperatures and mostly crystalline rocks, but the scope has broadened now to include fluid interaction with all forms of subsurface materials, whether they are unconsolidated or crystalline ('fluid-solid interaction' is perhaps less euphonious). Disciplines that previously carried their own distinct names, for example, basin diagenesis, early diagenesis, metamorphic petrology, reactive contaminant transport, chemical weathering, are now considered to fall under the broader rubric of fluid-rock interaction, although certainly some of the key research questions differ depending on the environment considered. Beyond the broadening of the environments considered in the study of fluid-rock interaction, the discipline has evolved in perhaps an even more important way. The study of water-rock interaction began by focusing on geochemical interactions in the absence of transport processes, although a few notable exceptions exist (Thompson 1959; Weare et al. 1976). Moreover, these analyses began by adopting a primarily thermodynamic approach, with the implicit or explicit assumption of equilibrium between the fluid and rock. As a result, these early models were fundamentally static rather than dynamic in nature. This all changed with the seminal papers by Helgeson and his co-workers (Helgeson 1968; Helgeson et al. 1969) wherein the concept of an irreversible reaction path was formally introduced into the geochemical literature. In addition to treating the reaction network as a dynamically evolving system, the Helgeson studies introduced an approach that allowed for the consideration of a multicomponent geochemical system, with multiple minerals and species appearing as both reactants and products, at least one of which could be irreversible. Helgeson's pioneering approach was given a more formal kinetic basis (including the introduction of real time rather than reaction progress as the independent variable) in subsequent studies (Lasaga 1981; Aagaard and Helgeson 1982; Lasaga 1984). The reaction path approach can be used to describe chemical processes in a batch or closed system (e.g., a laboratory beaker), but such systems are of limited interest in the Earth sciences where the driving force for most reactions is transport. Lichtner (1988) clarified the application of the reaction path models to water-rock interaction involving transport by demonstrating that they could be used to describe pure advective transport through porous media. By adopting a reference frame which followed the fluid packet as it moved through the medium, the reaction progress variable could be thought of as travel time instead. Multi-component reactive transport models that could treat any combination of transport and biogeochemical processes date back to the early 1980s. Berner and his students applied continuum reactive transport models to describe processes taking place during the early diagenesis of marine sediments (Berner 1980). Lichtner (1985) outlined much of the basic theory for a continuum model for multicomponent reactive transport. Yeh and Tripathi (1989) also presented the theoretical and numerical basis for the treatment of reactive contaminant transport. Steefel and Lasaga (1994) presented a reactive flow and transport model for nonisothermal, kinetically-controlled water-rock interaction and fracture sealing in hydrothermal systems based on simultaneous numerical solution of both reaction and transport This chapter begins with a review of the important transport processes that affect or even control fluid-rock interaction. This is followed by a general introduction to the governing equations for reactive transport, which are broadly applicable to both qualitative and quantitative interpretations of fluid-rock interactions. This framework is expanded through a discussion of specific topics that are the focus of current research, or are either incompletely understood or not fully appreciated. At this point, the focus shifts to a brief discussion of the three major approaches to modeling multi-scale porous media (1) continuum models, (2) pore scale and pore network models, and (3) hybrid or multi-continuum models. From here, the chapter proceeds to investigate some case studies which illuminate the power of modern numerical reactive transport modeling in deciphering fluid-rock interaction.

  17. Protected Polycrystalline Diamond Compact Bits For Hard Rock Drilling

    SciTech Connect (OSTI)

    Robert Lee Cardenas

    2000-10-31

    Two bits were designed. One bit was fabricated and tested at Terra-Tek's Drilling Research Laboratory. Fabrication of the second bit was not completed due to complications in fabrication and meeting scheduled test dates at the test facility. A conical bit was tested in a Carthage Marble (compressive strength 14,500 psi) and Sierra White Granite (compressive strength 28,200 psi). During the testing, Hydraulic Horsepower, Bit Weight, Rotation Rate, were varied for the Conical Bit, a Varel Tricone Bit and Varel PDC bit. The Conical Bi did cut rock at a reasonable rate in both rocks. Beneficial effects from the near and through cutter water nozzles were not evident in the marble due to test conditions and were not conclusive in the granite due to test conditions. At atmospheric drilling, the Conical Bit's penetration rate was as good as the standard PDC bit and better than the Tricone Bit. Torque requirements for the Conical Bit were higher than that required for the Standard Bits. Spudding the conical bit into the rock required some care to avoid overloading the nose cutters. The nose design should be evaluated to improve the bit's spudding characteristics.

  18. Spencer Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  19. Chocolate Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  20. Colado Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  1. Lualualei Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  2. Little Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  3. Wedell Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  4. Double Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  5. Alvord Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  6. Bailey Bay Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  7. Dixie Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  8. Honokowai Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  9. Buffalo Valley Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  10. Big Windy Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  11. Computation of probabilistic hazard maps and source parameter estimation for volcanic ash transport and dispersion

    SciTech Connect (OSTI)

    Madankan, R.; Pouget, S.; Singla, P.; Bursik, M.; Dehn, J.; Jones, M.; Patra, A.; Pavolonis, M.; Pitman, E.B.; Singh, T.; Webley, P.

    2014-08-15

    Volcanic ash advisory centers are charged with forecasting the movement of volcanic ash plumes, for aviation, health and safety preparation. Deterministic mathematical equations model the advection and dispersion of these plumes. However initial plume conditions height, profile of particle location, volcanic vent parameters are known only approximately at best, and other features of the governing system such as the windfield are stochastic. These uncertainties make forecasting plume motion difficult. As a result of these uncertainties, ash advisories based on a deterministic approach tend to be conservative, and many times over/under estimate the extent of a plume. This paper presents an end-to-end framework for generating a probabilistic approach to ash plume forecasting. This framework uses an ensemble of solutions, guided by Conjugate Unscented Transform (CUT) method for evaluating expectation integrals. This ensemble is used to construct a polynomial chaos expansion that can be sampled cheaply, to provide a probabilistic model forecast. The CUT method is then combined with a minimum variance condition, to provide a full posterior pdf of the uncertain source parameters, based on observed satellite imagery. The April 2010 eruption of the Eyjafjallajkull volcano in Iceland is employed as a test example. The puff advection/dispersion model is used to hindcast the motion of the ash plume through time, concentrating on the period 1416 April 2010. Variability in the height and particle loading of that eruption is introduced through a volcano column model called bent. Output uncertainty due to the assumed uncertain input parameter probability distributions, and a probabilistic spatial-temporal estimate of ash presence are computed.

  12. TECTONIC VERSUS VOLCANIC ORIGIN OF THE SUMMIT DEPRESSION AT MEDICINE LAKE VOLCANO, CALIFORNIA

    SciTech Connect (OSTI)

    Mark Leon Gwynn

    2010-05-01

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys, alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and Range extension. Interaction of dextral shear, Basin and Range extension, and the zone of crustal weakness expressed as the Mount Shasta-Medicine Lake volcanic highland controlled the location and initiation of Medicine Lake Volcano at about 500 ka.

  13. Tectonic versus volcanic origin of the summit depression at Medicine Lake Volcano, California

    SciTech Connect (OSTI)

    Mark Leon Gwynn

    2010-05-01

    Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys, alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and Range extension. Interaction of dextral shear, Basin and Range extension, and the zone of crustal weakness expressed as the Mount Shasta-Medicine Lake volcanic highland controlled the location and initiation of Medicine Lake Volcano at about 500 ka.

  14. Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management

    SciTech Connect (OSTI)

    David Dzombak; Radisav Vidic; Amy Landis

    2012-06-30

    Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by nitrification helped to reduce the corrosivity and biocide demand. Also, the lower pH and alkalinity resulting from nitrification reduced the scaling to an acceptable level, without the addition of anti-scalant chemicals. Additional GAC adsorption treatment, MWW_NFG, yielded no net benefit. Removal of organic matter resulted in pitting corrosion in copper and cupronickel alloys. Negligible improvement was observed in scaling control and biofouling control. For all of the tertiary treatments, biofouling control was achievable, and most effectively with pre-formed monochloramine (2-3 ppm) in comparison with NaOCl and ClO2. Life cycle cost (LCC) analyses were performed for the tertiary treatment systems studied experimentally and for several other treatment options. A public domain conceptual costing tool (LC3 model) was developed for this purpose. MWW_SF (lime softening and sand filtration) and MWW_NF were the most cost-effective treatment options among the tertiary treatment alternatives considered because of the higher effluent quality with moderate infrastructure costs and the relatively low doses of conditioning chemicals required. Life cycle inventory (LCI) analysis along with integration of external costs of emissions with direct costs was performed to evaluate relative emissions to the environment and external costs associated with construction and operation of tertiary treatment alternatives. Integrated LCI and LCC analysis indicated that three-tiered treatment alternatives such as MWW_NSF and MWW_NFG, with regular chemical addition for treatment and conditioning and/or regeneration, tend to increase the impact costs and in turn the overall costs of tertiary treatment. River water supply and MWW_F alternatives with a single step of tertiary treatment were associated with lower impact costs, but the contribution of impact costs to overall annual costs was higher than all other treatment alternatives. MWW_NF and MWW_SF alternatives exhibited moderate external impact costs with moderate infrastructure and chemical conditioner dosing, which makes them (especially MWW_NF) better treatment alternatives from the environmental sustainability perspective since they exhibited minimal contribution to environmental damage from emissions.

  15. The Cobb-Eickelberg seamount chain: Hotspot volcanism with mid-ocean ridge basalt affinity

    SciTech Connect (OSTI)

    Desonie, D.L.; Duncan, R.A. )

    1990-08-10

    Cobb hotspot, currently located beneath Axial seamount on the Juan de Fuca ridge, has the temporal but not the isotopic characteristics usually attributed to a mantle plume. The earlier volcanic products of the hotspot, form eight volcanoes in the Cobb-Eickelberg seamount (CES) chain, show a westward age progression away from the hotspot and a westward increase in the age difference between the seamounts and the crust on which they formed. These results are consistent with movement of the Pacific plate over a fixed Cobb hotspot and eventual encroachment by the westwardly migrating Juan de Fuca ridge. CES lavas are slightly enriched in alkalies and incompatible elements relative to those of the Juan de Fuca ridge but they have Sr, Nd, and Pb isotopic compositions virtually identical to those found along the ridge. Therefore, Cobb hotspot is a stationary, upper mantle melting anomaly whose volcanic products show strong mid-ocean ridge basalt (MORB) affinity. These observations can be explained by low degrees of partial melting of entrained heterogeneous upper mantle MORB source material within a thermally driven lower mantle diapir or by an intrinsic MORB-like composition of the deeper mantle source region from which northeast Pacific plumes rise.

  16. Hydrologic characterization of fractured rocks: An interdisciplinary methodology

    SciTech Connect (OSTI)

    Long, J.C.S.; Majer, E.L.; Martel, S.J.; Karasaki, K.; Peterson, J.E. Jr.; Davey, A.; Hestir, K. )

    1990-11-01

    The characterization of fractured rock is a critical problem in the development of nuclear waste repositories in geologic media. A good methodology for characterizing these systems should be focused on the large important features first and concentrate on building numerical models which can reproduce the observed hydrologic behavior of the fracture system. In many rocks, fracture zones dominate the behavior. These can be described using the tools of geology and geomechanics in order to understand what kind of features might be important hydrologically and to qualitatively describe the way flow might occur in the rock. Geophysics can then be employed to locate these features between boreholes. Then well testing can be used to see if the identified features are in fact important. Given this information, a conceptual model of the system can be developed which honors the geologic description, the tomographic data and the evidence of high permeability. Such a model can then be modified through an inverse process, such as simulated annealing, until it reproduces the cross-hole well test behavior which has been observed insitu. Other possible inversion techniques might take advantage of self similar structure. Once a model is constructed, we need to see how well the model makes predictions. We can use a cross-validation technique which sequentially puts aside parts of the data and uses the model to predict that part in order to calculate the prediction error. This approach combines many types of information in a methodology which can be modified to fit a particular field site. 114 refs., 81 figs., 7 tabs.

  17. Simulation of water transport in heated rock salt

    SciTech Connect (OSTI)

    Schlich, M.; Jockwer, N.

    1986-01-01

    This paper summarizes computer simulation studies on water transport in German rock salt. Based on JOCKWERS experimental investigations on water content and water liberation, the object of these studies was to select a water transport model, that matches the water inflow which was measured in some heater experiments in the Asse Salt Mine. The main result is, that an evaporation front model, with Knudsen-type vapor transport combined with fluid transport by thermal expansion of the adsorbed water layers in the non evaporated zone, showed the best agreement with experimental evidence.

  18. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2002-05-01

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) How to quantify elastic properties of clay minerals using Atomic Force Acoustic Microscopy. We show how bulk modulus of clay can be measured using atomic force acoustic microscopy (AFAM) (2) We have successfully measured elastic properties of unconsolidated sediments in an effort to quantify attributes for detection of overpressures from seismic (3) We have initiated efforts for velocity upscaling to quantify long-wavelength and short-wavelength velocity behavior and the scale-dependent dispersion caused by sediment variability in different depositional environments.

  19. Source rock screening studies of Ordovician Maquoketa shale in western Illinois

    SciTech Connect (OSTI)

    Autrey, A.; Crockett, J.E.; Dickerson, D.R.; Oltz, D.F.; Seyler, B.J.; Warren, R.

    1987-09-01

    Rock-Eval (pyrolysis) studies of Ordovician Maquoketa Shale samples (cuttings and cores) from the shallow subsurface (500-800 ft deep) in western Illinois indicate that facies within the Maquoketa have potential as hydrocarbon source rocks. Dark, presumably organic-rich zones within the Maquoketa Shale were selected and analyzed for total organic carbon (TOC), Rock-Eval (pyrolysis), and bulk and clay mineralogy using x-ray diffraction. Preliminary results from six samples from Schuyler, McDonough, and Fulton Counties show TOC values ranging from 4.70% to as high as 12.90%. Rock-Eval parameters, measured by heating organic matter in an inert atmosphere, indicate source rock maturity and petroleum-generative potential. Screening studies, using the Rock-Eval process, describe very good source rock potential in facies of the Maquoketa Shale. Further studies at the Illinois State Geological Survey will expand on these preliminary results. This study complements a proposed exploration model in western Illinois and further suggests the possibility of source rocks on the flanks of the Illinois basin. Long-distance migration from more deeply buried effective source rocks in southern Illinois has been the traditional mechanism proposed for petroleum in basin-flank reservoirs. Localized source rocks can be an alternative to long-distance migration, and can expand the possibilities of basin-flank reservoirs, encouraging further exploration in these areas.

  20. Completion Report for Well Cluster ER-5-4

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office; Bechtel Nevada

    2005-02-01

    Well Cluster ER-5-4 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The cluster consists of two wells, positioned about 30 meters apart on the same drill pad, constructed as part of a hydrogeologic investigation program for Frenchman Flat at the Nevada Test Site. Detailed lithologic descriptions with preliminary stratigraphic assignments for the well cluster are included in this report. These are based on composite drill cuttings collected every 3 meters, and 156 sidewall samples taken at various depths below 192 meters in both boreholes, supplemented by geophysical log data. Detailed petrographic, chemical, and mineralogical studies of rock samples were conducted on 122 samples. Well ER-5-4 penetrated approximately 1,120 meters of Quaternary and Tertiary alluvium before reaching total depth in Tertiary volcanic rocks at 1,137.5 meters. The deeper Well ER-5-4 No.2 penetrated 1,120.4 meters of alluvial sediments, and was terminated within Tertiary volcanic rocks at a depth of 2,133.6 meters, indicating that Paleozoic rocks are deeper than expected at this site.

  1. Source rocks of the Sub-Andean basins

    SciTech Connect (OSTI)

    Raedeke, L.D. )

    1993-02-01

    Seven source rock systems were mapped using a consistent methodology to allow basin comparison from Trinidad to southern Chile. Silurian and Devonian systems, deposited in passive margin and intracratonic settings, have fair-good original oil/gas potential from central and northern Bolivia to southern Peru. Kerogens range from mature in the foreland to overmature in the thrust belt. Permian to Carboniferous deposition in local restricted basins formed organic-rich shales and carbonates with very good original oil/gas potential, principally in northern Bolivia and southern Peru. Late Triassic to early Jurassic marine shales and limestones, deposited in deep, narrow, basins from Ecuador to north-central maturity. Locally, in the Cuyo rift basin of northern Argentina, a Triassic lacustrine unit is a very good, mature oil source. Early Cretaceous to Jurassic marine incursions into the back-arc basins of Chile-Argentina deposited shales and limestones. Although time transgressive (younging to the south), this system is the principal source in southern back-arc basins, with best potential in Neuquen, where three intervals are stacked A late Cretaceous marine transgressive shale is the most important source in northern South America. The unit includes the La Luna and equivalents extending from Trinidad through Venezuela, Colombia, Ecuador, and into northern Peru. Elsewhere in South America upper Cretaceous marine-lacustrine rocks are a possible source in the Altiplano and Northwest basins of Bolivia and Argentina. Middle Miocene to Oligocene source system includes shallow marine, deltaic, and lacustrine sediments from Trinidad to northern Peru.

  2. Micromachined low frequency rocking accelerometer with capacitive pickoff

    DOE Patents [OSTI]

    Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.

    2001-01-01

    A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.

  3. ChemCam Rock Laser for the Mars Science Laboratory

    ScienceCinema (OSTI)

    LANL

    2009-09-01

    Los Alamos has a long history of space-related instr... Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components are concurrently being assembled at Los Alamos and in Toulouse, France, and will be delivered to JPL in July. The Mars Science Laboratory is scheduled to launch in 2009. Animations courtesy of JPL/NASA.

  4. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    Hirasaki, George J.; Mohanty, Kishore, K.

    2001-07-13

    The objective of this project is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. This is the first annual progress report submitted to the DOE. It reports on the work completed during the reporting period even if it may have started before this period. This project is a partnership between Professor George J. Hirasaki at Rice University and Professor Kishore Mohanty at University of Houston. In addition to the DOE, this project is supported by a consortium of oil companies and service companies. The fluid properties characterization has emphasized the departure of live oils from correlations based on dead oils. Also, asphaltic components can result in a difference between the T1 and T2 relaxation time distributions as well as reduce the hydrogen index. The fluid rock characterizations that are reported here are the effects of wettability and internal magnetic field gradients. A pore reconstruction method ha s been developed to recreate three-dimensional porous media from two-dimensional images that reproduce some of their key statistical properties. A Monte Carlo simulation technique has been developed to calculate the magnetization decay in fluid saturated porous media given their pore structure.

  5. Design methodology for rock excavations at the Yucca Mountain project

    SciTech Connect (OSTI)

    Alber, M.; Bieniawski, Z.T.

    1993-12-31

    The problems involved in the design of the proposed underground repository for high-level nuclear waste call for novel design approaches. Guidelines for the design are given by the Mission Plan Amendment in which licensing and regulatory aspects have to be satisfied. Moreover, systems engineering was proposed, advocating a top-down approach leading to the identification of discrete, implementable system elements. These objectives for the design process can be integrated in an engineering design methodology. While design methodologies for some engineering disciplines are available, they were of limited use for rock engineering because of the inherent uncertainties about the geologic media. Based on the axiomatic design approach of Suh, Bieniawski developed a methodology for design in rock. Design principles and design stages are clearly stated to assist in effective decision making. For overall performance goals, the domain of objectives is defined through components (DCs) - representing a design solution - satisfy the FRs, resulting in discrete, independent functional relations. Implementation is satisfied by evaluation and optimization of the design with respect to the constructibility of the design components.

  6. ChemCam rock laser for Mars Science Laboratory "Curiosity"

    ScienceCinema (OSTI)

    Wiens, Roger

    2014-08-12

    Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. The Flight Model was shipped in August, 2010 for installation on the rover at JPL. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components were concurrently assembled at Los Alamos and in Toulouse, France. The Mars Science Laboratory is scheduled to launch in 2011. Animations courtesy of JPL/NASA.

  7. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    George J. Hirasaki; Kishore K. Mohanty

    2005-09-05

    The objective of this report is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity. Oil based drilling fluids can have an adverse effect on NMR well logging if it alters the wettability of the formation. The effect of various surfactants on wettability and surface relaxivity are evaluated for silica sand. The relation between the relaxation time and diffusivity distinguishes the response of brine, oil, and gas in a NMR well log. A new NMR pulse sequence in the presence of a field gradient and a new inversion technique enables the T{sub 2} and diffusivity distributions to be displayed as a two-dimensional map. The objectives of pore morphology and rock characterization are to identify vug connectivity by using X-ray CT scan, and to improve NMR permeability correlation. Improved estimation of permeability from NMR response is possible by using estimated tortuosity as a parameter to interpolate between two existing permeability models.

  8. Method and apparatus for determining two-phase flow in rock fracture

    DOE Patents [OSTI]

    Persoff, Peter; Pruess, Karsten; Myer, Larry

    1994-01-01

    An improved method and apparatus as disclosed for measuring the permeability of multiple phases through a rock fracture. The improvement in the method comprises delivering the respective phases through manifolds to uniformly deliver and collect the respective phases to and from opposite edges of the rock fracture in a distributed manner across the edge of the fracture. The improved apparatus comprises first and second manifolds comprising bores extending within porous blocks parallel to the rock fracture for distributing and collecting the wetting phase to and from surfaces of the porous blocks, which respectively face the opposite edges of the rock fracture. The improved apparatus further comprises other manifolds in the form of plenums located adjacent the respective porous blocks for uniform delivery of the non-wetting phase to parallel grooves disposed on the respective surfaces of the porous blocks facing the opposite edges of the rock fracture and generally perpendicular to the rock fracture.

  9. Standing Rock Sioux Tribe - Lakota/Dakota Nation: Establishment of Renewable Energy & Energy Development Office

    Energy Savers [EERE]

    8540 fwasinzi@standingrock.org Establishment of Renewable Energy & Energy Development Office Standing Rock Sioux Tribe - Lakota/Dakota Nation OVERVIEW: BACKGROUND INFORMATION ON STANDING ROCK RESERVATION SITTING BULL COLLEGE WIND TURBINE EECBG ENERGY EFFICIENCY & WIND TURBINE INSTALLATION AT SITTING BULL COLLEGE WIND ASSESSMENT STUDY ESTABLISHMENT OF RENEWABLE ENERGY & ENERGY DEVELOPMENT OFFICE (REEDO) STANDING ROCK ONE OF SEVEN RESERVATIONS OF THE GREAT SIOUX NATION LOCATED IN

  10. AltaRock Energy Announces Successful Multiple-Zone Stimulation of Well at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Newberry Enhanced Geothermal Systems Demonstration | Department of Energy AltaRock Energy Announces Successful Multiple-Zone Stimulation of Well at the Newberry Enhanced Geothermal Systems Demonstration AltaRock Energy Announces Successful Multiple-Zone Stimulation of Well at the Newberry Enhanced Geothermal Systems Demonstration January 22, 2013 - 3:41pm Addthis SEATTLE -- AltaRock Energy today announced that it has created multiple stimulated zones from a single wellbore at the

  11. Rock the Watt: An Energy Conservation Campaign at Pacific Northwest National Lab

    Energy Savers [EERE]

    Rock the Watt was a direct applica- tion of the Framework for Organiza- tional Change that included building sustainability champions, integration of a sustainability checklist, and sup- port for employees to come up with their own energy saving actions. Rock the Watt: An Energy Conservation Campaign at Pacific Northwest National Lab Pacifc Northwest National Laboratory (PNNL), one of the seventeen Department of Energy laboratories, implemented the 3-month Rock the Watt campaign in FY2015 to

  12. EGS rock reactions with Supercritical CO2 saturated with water and water

    Office of Scientific and Technical Information (OSTI)

    saturated with Supercritical CO2 (Conference) | SciTech Connect Conference: EGS rock reactions with Supercritical CO2 saturated with water and water saturated with Supercritical CO2 Citation Details In-Document Search Title: EGS rock reactions with Supercritical CO2 saturated with water and water saturated with Supercritical CO2 EGS using CO2 as a working fluid will likely involve hydro-shearing low-permeability hot rock reservoirs with a water solution. After that process, the fractures

  13. Numerical studies of fluid-rock interactions in EnhancedGeothermal...

    Office of Scientific and Technical Information (OSTI)

    rates of heat extraction, and can offer geologic storage of carbon as an ancillary benefit. Fluid-rock interactions ... reservoir zone with anhydrous supercritical COsub 2. ...

  14. The US Hot Dry Rock Program-20 Years of Experience in Reservoir...

    Open Energy Info (EERE)

    The US Hot Dry Rock Program-20 Years of Experience in Reservoir Testing Author Donald Brown Conference World Geothermal Congress; Florence, Italy; 19950101 Published...

  15. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    Rock Geothermal Systems II. Modeling Geochemical Behavior Abstract A transient mass balance model is developed to account for the dynamic behavior of an artificially stimulated...

  16. Rock Sampling At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    collected included: geographic coordinates, rock type, magnetic susceptibility, and density. References US Geological Survey (2012) Geophysical Studies in the Vicinity of Blue...

  17. Rock Density At Silver Peak Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Density At Silver Peak Area (DOE GTP) Exploration Activity Details Location Silver Peak Area...

  18. Scientists to Meet in Carlsbad, NM for Hard Rock Lab Task Force

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the movement of radionuclides in crystalline rock. The data, along with additional geotechnical information, will be used to support the licensing of a permanent nuclear waste...

  19. Rock Sampling At Seven Mile Hole Area (Larson, Et Al., 2009)...

    Open Energy Info (EERE)

    Seven Mile Hole Area (Larson, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Seven Mile Hole Area (Larson, Et...

  20. Rock Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Informatio...

    Open Energy Info (EERE)

    Exploration Activity Details Location Mt Ranier Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes This paper relies...

  1. 2010 DOE National Science Bowl® Photos - Little Rock Central...

    Office of Science (SC) Website

    Little Rock Central High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni ...

  2. Bibliography of the geological and geophysical aspects of hot dry rock geothermal resources

    SciTech Connect (OSTI)

    Heiken, G.; Sayer, S.

    1980-02-01

    This is the first issue of an annual compilation of references that are useful to the exploration, understanding and development of the hot dry rock geothermal resource.

  3. Long-term desorption behavior of uranium and neptunium in heterogeneous volcanic tuff materials /

    SciTech Connect (OSTI)

    Dean, Cynthia A.

    2010-05-01

    Uranium and neptunium desorption were studied in long-term laboratory experiments using four well-characterized volcanic tuff cores collected from southeast of Yucca Mountain, Nevada. The objectives of the experiments were to 1. Demonstrate a methodology aimed at characterizing distributions of sorption parameters (attributes of multiple sorption sites) that can be applied to moderately-sorbing species in heterogeneous systems to provide more realistic reactive transport parameters and a more realistic approach to modeling transport in heterogeneous systems. 2. Focus on uranium and neptunium because of their high solubility, relatively weak sorption, and high contributions to predicted dose in Yucca Mountain performance assessments. Also, uranium is a contaminant of concern at many DOE legacy sites and uranium mining sites.

  4. Method and apparatus for water jet drilling of rock

    DOE Patents [OSTI]

    Summers, David A.; Mazurkiewicz, Marian; Bushnell, Dwight J.; Blaine, James

    1978-01-01

    Rock drilling method and apparatus utilizing high pressure water jets for drilling holes of relatively small diameter at speeds significantly greater than that attainable with existing drilling tools. Greatly increased drilling rates are attained due to jet nozzle geometry and speed of rotation. The jet nozzle design has two orifices, one pointing axially ahead in the direction of travel and the second inclined at an angle of approximately 30.degree. from the axis. The two orifices have diameters in the ratio of approximately 1:2. Liquid jet velocities in excess of 1,000 ft/sec are used, and the nozzle is rotated at speeds up to 1,000 rpm and higher.

  5. Hydrologic test system for fracture flow studies in crystalline rock

    SciTech Connect (OSTI)

    Raber, E; Lord, D.; Burklund, P.

    1982-05-05

    A hydrologic test system has been designed to measure the intrinsic permeabilities of individual fractures in crystalline rock. This system is used to conduct constant pressure-declining flow rate and pressure pulse hydraulic tests. The system is composed of four distinct units: (1) the Packer System, (2) Injection system, (3) Collection System, and (4) Electronic Data Acquisition System. The apparatus is built in modules so it can be easily transported and re-assembled. It is also designed to operate over a wide range of pressures (0 to 300 psig) and flow rates (0.2 to 1.0 gal/min). This system has proved extremely effective and versatile in its use at the Climax Facility, Nevada Test Site.

  6. Spatial statistics for predicting flow through a rock fracture

    SciTech Connect (OSTI)

    Coakley, K.J.

    1989-03-01

    Fluid flow through a single rock fracture depends on the shape of the space between the upper and lower pieces of rock which define the fracture. In this thesis, the normalized flow through a fracture, i.e. the equivalent permeability of a fracture, is predicted in terms of spatial statistics computed from the arrangement of voids, i.e. open spaces, and contact areas within the fracture. Patterns of voids and contact areas, with complexity typical of experimental data, are simulated by clipping a correlated Gaussian process defined on a N by N pixel square region. The voids have constant aperture; the distance between the upper and lower surfaces which define the fracture is either zero or a constant. Local flow is assumed to be proportional to local aperture cubed times local pressure gradient. The flow through a pattern of voids and contact areas is solved using a finite-difference method. After solving for the flow through simulated 10 by 10 by 30 pixel patterns of voids and contact areas, a model to predict equivalent permeability is developed. The first model is for patterns with 80% voids where all voids have the same aperture. The equivalent permeability of a pattern is predicted in terms of spatial statistics computed from the arrangement of voids and contact areas within the pattern. Four spatial statistics are examined. The change point statistic measures how often adjacent pixel alternate from void to contact area (or vice versa ) in the rows of the patterns which are parallel to the overall flow direction. 37 refs., 66 figs., 41 tabs.

  7. Preliminary gravity inversion model of basins east of Yucca Flat, Nevada Test Site, Nevada.

    SciTech Connect (OSTI)

    Geoffrey A. Phelps; Carter W. Roberts, and Barry C. Moring

    2006-03-17

    The Yucca Flat eastern extension study area, a 14 kilometer by 45 kilometer region contiguous to Yucca Flat on the west and Frenchman Flat on the south, is being studied to expand the boundary of the Yucca Flat hydrogeologic model. The isostatic residual gravity anomaly was inverted to create a model of the depth of the geologic basins within the study area. Such basins typically are floored by dense pre-Tertiary basement rocks and filled with less-dense Tertiary volcanic and sedimentary rocks and Quaternary alluvium, a necessary condition for the use of gravity modeling to predict the depth to the pre-Tertiary basement rocks within the basins. Three models were created: a preferred model to represent the best estimate of depth to pre-Tertiary basement rocks in the study area, and two end-member models to demonstrate the possible range of solutions. The preferred model predicts shallow basins, generally less than 1,000m depth, throughout the study area, with only Emigrant Valley reaching a depth of 1,100m. Plutonium valley and West Fork Scarp Canyon have maximum depths of 800m and 1,000m, respectively. The end-member models indicate that the uncertainty in the preferred model is less than 200m for most of the study area.

  8. Nondestructive and automated testing for soil and rock properties. ASTM special technical publication 1350

    SciTech Connect (OSTI)

    Marr, W.A.; Fairhurst, C.E.

    1999-07-01

    The purpose of the symposium was to highlight recent developments in nondestructive and automated testing for soil and rock properties. Speakers present results of recent research in these areas that have practical application for the rapid and economical testing of soil and rock. Authors were encouraged to identify which testing equipment and methods have sufficient practical application to warrant standards development.

  9. Final Report: Geothermal Dual Acoustic Tool for Measurement of Rock Stress

    SciTech Connect (OSTI)

    Normann, Randy A.

    2014-12-01

    This paper outlines the technology need for a rock formation stress measurement in future EGS wells. This paper reports on the results of work undertaken under a Phase I, DOE/SBIR on the feasibility to build an acoustic well logging tool for measuring rock formation stress.

  10. Final Report. Geothermal Dual Acoustic Tool for Measurement of Rock Stress

    SciTech Connect (OSTI)

    Normann, Randy A

    2014-12-01

    This paper outlines the technology need for a rock formation stress measurement in future EGS wells. This paper reports on the results of work undertaken under a Phase I, DOE/SBIR on the feasibility to build an acoustic well logging tool for measuring rock formation stress.

  11. Numerical simulation of fracture rocks and wave propagation by means of fractal theory

    SciTech Connect (OSTI)

    Valle G., R. del

    1994-12-31

    A numerical approach was developed for the dynamic simulation of fracture rocks and wave propagation. Based on some ideas of percolation theory and fractal growth, a network of particles and strings represent the rock model. To simulate an inhomogeneous medium, the particles and springs have random distributed elastic parameters and are implemented in the dynamic Navier equation. Some of the springs snap with criteria based on the confined stress applied, therefore creating a fractured rock consistent with the physical environment. The basic purpose of this research was to provide a method to construct a fractured rock with confined stress conditions as well as the wave propagation imposed in the model. Such models provide a better understanding of the behavior of wave propagation in fractured media. The synthetic seismic data obtained henceforth, can be used as a tool to develop methods for characterizing fractured rocks by means of geophysical inference.

  12. Evaluation of Used Fuel Disposition in Clay-Bearing Rock

    SciTech Connect (OSTI)

    Jové Colón, Carlos F.; Weck, Philippe F.; Sassani, David H.; Zheng, Liange; Rutqvist, Jonny; Steefel, Carl I.; Kim, Kunhwi; Nakagawa, Seiji; Houseworth, James; Birkholzer, Jens; Caporuscio, Florie A.; Cheshire, Michael; Rearick, Michael S.; McCarney, Mary K.; Zavarin, Mavrik; Benedicto, Ana; Kersting, Annie B.; Sutton, Mark; Jerden, James; Frey, Kurt E.; Copple, Jacqueline M.; Ebert, William

    2014-08-29

    Radioactive waste disposal in shale/argillite rock formations has been widely considered given its desirable isolation properties (low permeability), geochemically reduced conditions, anomalous groundwater pressures, and widespread geologic occurrence. Clay/shale rock formations are characterized by their high content of clay minerals such as smectites and illites where diffusive transport and chemisorption phenomena predominate. These, in addition to low permeability, are key attributes of shale to impede radionuclide mobility. Shale host-media has been comprehensively studied in international nuclear waste repository programs as part of underground research laboratories (URLs) programs in Switzerland, France, Belgium, and Japan. These investigations, in some cases a decade or more long, have produced a large but fundamental body of information spanning from site characterization data (geological, hydrogeological, geochemical, geomechanical) to controlled experiments on the engineered barrier system (EBS) (barrier clay and seals materials). Evaluation of nuclear waste disposal in shale formations in the USA was conducted in the late 70’s and mid 80’s. Most of these studies evaluated the potential for shale to host a nuclear waste repository but not at the programmatic level of URLs in international repository programs. This report covers various R&D work and capabilities relevant to disposal of heat-generating nuclear waste in shale/argillite media. Integration and cross-fertilization of these capabilities will be utilized in the development and implementation of the shale/argillite reference case planned for FY15. Disposal R&D activities under the UFDC in the past few years have produced state-of-the-art modeling capabilities for coupled Thermal-Hydrological-Mechanical-Chemical (THMC), used fuel degradation (source term), and thermodynamic modeling and database development to evaluate generic disposal concepts. The THMC models have been developed for shale repository leveraging in large part on the information garnered in URLs and laboratory data to test and demonstrate model prediction capability and to accurately represent behavior of the EBS and the natural (barrier) system (NS). In addition, experimental work to improve our understanding of clay barrier interactions and TM couplings at high temperatures are key to evaluate thermal effects as a result of relatively high heat loads from waste and the extent of sacrificial zones in the EBS. To assess the latter, experiments and modeling approaches have provided important information on the stability and fate of barrier materials under high heat loads. This information is central to the assessment of thermal limits and the implementation of the reference case when constraining EBS properties and the repository layout (e.g., waste package and drift spacing). This report is comprised of various parts, each one describing various R&D activities applicable to shale/argillite media. For example, progress made on modeling and experimental approaches to analyze physical and chemical interactions affecting clay in the EBS, NS, and used nuclear fuel (source term) in support of R&D objectives. It also describes the development of a reference case for shale/argillite media. The accomplishments of these activities are summarized as follows: Development of a reference case for shale/argillite; Investigation of Reactive Transport and Coupled THM Processes in EBS: FY14; Update on Experimental Activities on Buffer/Backfill Interactions at elevated Pressure and Temperature; and Thermodynamic Database Development: Evaluation Strategy, Modeling Tools, First-Principles Modeling of Clay, and Sorption Database Assessment;ANL Mixed Potential Model For Used Fuel Degradation: Application to Argillite and Crystalline Rock Environments.

  13. Hot dry rock geothermal energy. Draft final report

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This second EPRI workshop on hot dry rock (HDR) geothermal energy, held in May 1994, focused on the status of worldwide HDR research and development and used that status review as the starting point for discussions of what could and should be done next: by U.S. federal government, by U.S. industry, by U.S. state governments, and by international organizations or through international agreements. The papers presented and the discussion that took place indicate that there is a community of researchers and industrial partners that could join forces, with government support, to begin a new effort on hot dry rock geothermal development. This new heat mining effort would start with site selection and confirmatory studies, done concurrently. The confirmatory studies would test past evaluations against the most current results (from the U.S. site at Fenton Hill, New Mexico, and from the two sites in Japan, the one in Russia, and the two in western Europe) and the best models of relevant physical and economic aspects. Site selection would be done in the light of the confirmatory studies and would be influenced by the need to find a site where success is probable and which is representative enough of other sites so that its success would imply good prospects for success at numerous other sites. The test of success would be circulation between a pair of wells, or more wells, in a way that confirmed, with the help of flow modeling, that a multi-well system would yield temperatures, flows and lifetimes that support economically feasible power generation. The flow modeling would have to have previously achieved its own confirmation from relevant data taken from both heat mining and conventional hydrothermal geothermal experience. There may be very relevant experience from the enhancement of ''hot wet rock'' sites, i.e., sites where hydrothermal reservoirs lack, or have come to lack, enough natural water or steam and are helped by water injected cold and produced hot. The new site would have to be selected in parallel with the confirmatory studies because it would have to be modeled as part of the studies and because its similarity to other candidate sites must be known well enough to assure that results at the selected site are relevant to many others. Also, the industry partners in the joint effort at the new site must be part of the confirmatory studies, because they must be convinced of the economic feasibility. This meeting may have brought together the core of people who can make such a joint effort take place. EPRI sponsored the organization of this meeting in order to provide utilities with an update on the prospects for power generation via heat mining. Although the emerging rules for electric utilities competing in power generation make it very unlikely that the rate-payers of any one utility (or small group of utilities) can pay the differential to support this new heat mining research and development effort, the community represented at this meeting may be able to make the case for national or international support of a new heat mining effort, based on the potential size and economics of this resource as a benefit for the nation as a whole and as a contribution to reduced emissions of fossil CO{sub 2} worldwide.

  14. Fission track thermochronologic constraints on the timing and nature of major Middle Tertiary extension, Ruby Mountains - East Humboldt Range, Nevada

    SciTech Connect (OSTI)

    Dokka, R.K.; Mahaffie, M.J.; Snoke, A.W.

    1985-01-01

    Fission Track (FT) apatite, zircon, and sphene ages were determined from both mylonitic and non-mylonitic rocks of the Ruby Mountains-East Humboldt Range metamorphic core complex. The analyzed sample suite included various mylonitic orthogneisses as well as amphibolitic orthogneisses from the non-mylonitic infrastructural core. Porphyritic biotite granodiorite of the Oligocene Harrison Pass pluton was also dated. FT ages are concordant and range in age from 27 - 24 Ma. These dates reflect rapid cooling of the lower plate from temperatures above 250/sup 0/C to below 100/sup 0/C during the early Miocene. The general concordance of the FT dates with /sup 40/Ar//sup 39/Ar biotite and hornblende plateau ages from the same sample suite suggest an even more pronounced cooling history. This rapid cooling history is considered to reflect large-scale tectonic denudation (intracrustal thinning), a manifestation of intense crustal extension. Mylonitic rocks that originally formed along ductile shear zones in the middle crust (10-15 km) were quickly brought near the surface and juxtaposed against brittly distended rocks deformed under upper crustal conditions. FT data firmly establish the upper age limit on the timing of mylonitization during the shear zone deformation. This rapid cooling interval also coincides with the inferred age of extensive landscape disruption and the development of an alluvial fan-lacustrine system which included the periodic emplacement of landslide deposits (megabreccias).

  15. Rock drilling bit and a method of producing the same

    SciTech Connect (OSTI)

    Kane, R.F.; Portugal, J.J.; Kuzniar, P.S.

    1989-09-19

    This patent describes a method for forming a drill bit of the type used for drilling rock and including a drill bit body defining a cutting face having a plurality of hard material cutting inserts mounted in openings formed in the cutting face. The method comprising the steps of: providing a drill bit body formed from a steel capable of being carburized, the body having a cutting face surface; identifying on the cutting face surface those locations wherein insert mounting openings are needed; covering each location with a material capable of preventing penetration of carbon into the bit body in the area of the location during carburizing, the area covered at each such location being at least slightly greater that the size of the insert mounting opening needed; with the insert mounting locations covered, carburizing and heat treating the bit body to case harden the cutting face to a hardness above 50 on the Rockwell C scale; and thereafter, drilling an insert receiving opening at each location and press-fitting hard material cutting inserts into each such opening.

  16. Hot-dry-rock energy: review of environmental aspects

    SciTech Connect (OSTI)

    O'Banion, K.

    1981-10-13

    The potential environmental and socioeconomic impacts of the production of energy contained in hot dry rock (HDR) is surveyed here. In general, careful siting and timing and routine control measures should be adequate to prevent significant environmental harm; sites of particular ecological or visual and recreational value, however, may require more extensive (and more expensive) precautions such as using multiwell pads to reduce land disturbance and dry or wet and dry cooling towers to reduce or eliminate the consumptive use of water. The most important uncertainty among the environmental concerns is the seismic response of HDR formations to short-duration fluid injections at pressures above fracture thresholds; continued monitoring at HDR development sites is necessary. The direct socioeconomic impacts of HDR development should be relatively minor, owing to its capital-intensive nature. Of greater potential importance are the indirect jobs resulting from such development, which could cause significant demographic (and thus fiscal and social) impacts in sparsely populated regions. However, such indirect growth is not expected to begin until a large, stable HDR industry is established in a region, and thus its impacts are expected to be permanent rather than transient.

  17. Improved microstructure of cement-based composites through the addition of rock wool particles

    SciTech Connect (OSTI)

    Lin, Wei-Ting; Cheng, An; Huang, Ran; Zou, Si-Yu

    2013-10-15

    Rock wool is an inorganic fibrous substance produced by steam blasting and cooling molten glass. As with other industrial by-products, rock wool particles can be used as cementitious materials or ultra fine fillers in cement-based composites. This study investigated the microstructure of mortar specimens produced with cement-based composites that include various forms of rock wool particles. It conducted compressive strength testing, rapid chloride penetration tests, X-ray diffraction analysis, thermo-gravimetric analysis, and scanning electronic microscopy to evaluate the macro- and micro-properties of the cement-based composites. Test results indicate that inclusion of rock wool particles in composites improved compressive strength and reduced chloride ion penetration at the age of 91 days due to the reduction of calcium hydroxide content. Microscopic analysis confirms that the use of rock wool particles contributed to the formation of a denser, more compact microstructure within the hardened paste. In addition, X-ray diffraction analysis shows few changes in formation of pozzolanic reaction products and no new hydrations are formed with incorporating rock wool particles. - Highlights: We report the microstructural characterization of cement-based composites. Different mixes produced with various rock wool particles have been tested. The influence of different mixes on macro and micro properties has been discussed. The macro properties are included compressive strength and permeability. XRD and SEM observations confirm the pozzolanic reaction in the resulting pastes.

  18. Stratified precambrian rocks (sedimentary?) beneath the midcontinent region of the US. Final technical report

    SciTech Connect (OSTI)

    Hauser, E.C.

    1993-02-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the US midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1--3 times as thick as the overlying Paleozoic cover, but the origin of this sequence and its ultimate lateral extent are unknown. However, the occurrences of Precambrian layered rocks on both the COCORP profiles and reprocessed industry seismic reflection data from the region lie within regions of generally low amplitude and low frequency aeromagnetic anomaly, suggesting an even greater distribution. Unmetamorphosed Precambrian sedimentary rocks have been recovered from drill holes in southwest Ohio and adjacent northern Kentucky and southwesternmost Indiana. These Precambrian sedimentary rocks lie above and may be part of an underlying package of strongly layered rocks imaged on a short and shallow seismic profile in southwest Ohio. These Precambrian sedimentary rocks were originally viewed as part of a late Precambrian (Keweenawan?) rift; however, in light of Grenville foreland structures seen on the COCORP profile to the north in west central Ohio, these Precambrian strata may (1) be part of a heretofore unrecognized Grenville foreland basin, or (2) indicate that unmetamorphosed Precambrian sedimentary material may be an important constituent of the layered rocks observed on COCORP beneath southern Illinois and Indiana.

  19. Stratified precambrian rocks (sedimentary ) beneath the midcontinent region of the US

    SciTech Connect (OSTI)

    Hauser, E.C.

    1993-02-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the US midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1--3 times as thick as the overlying Paleozoic cover, but the origin of this sequence and its ultimate lateral extent are unknown. However, the occurrences of Precambrian layered rocks on both the COCORP profiles and reprocessed industry seismic reflection data from the region lie within regions of generally low amplitude and low frequency aeromagnetic anomaly, suggesting an even greater distribution. Unmetamorphosed Precambrian sedimentary rocks have been recovered from drill holes in southwest Ohio and adjacent northern Kentucky and southwesternmost Indiana. These Precambrian sedimentary rocks lie above and may be part of an underlying package of strongly layered rocks imaged on a short and shallow seismic profile in southwest Ohio. These Precambrian sedimentary rocks were originally viewed as part of a late Precambrian (Keweenawan ) rift; however, in light of Grenville foreland structures seen on the COCORP profile to the north in west central Ohio, these Precambrian strata may (1) be part of a heretofore unrecognized Grenville foreland basin, or (2) indicate that unmetamorphosed Precambrian sedimentary material may be an important constituent of the layered rocks observed on COCORP beneath southern Illinois and Indiana.

  20. Four-year prospective study of the respiratory effects of volcanic ash from Mt. St. Helens

    SciTech Connect (OSTI)

    Buist, A.S.; Vollmer, W.M.; Johnson, L.R.; Bernstein, R.S.; McCamant, L.E.

    1986-04-01

    This report describes the 4-yr follow-up of 712 loggers exposed over an extended period to varying levels of fresh volcanic ash from the 1980 eruptions of Mt. St. Helens. Concerns related to the irritant effect the ash might have on the airways and also to its fibrogenic potential if exposures were intense and continued over many years. Our subjects were divided into 3 groups: high, low, and no exposure. Baseline testing was begun in June 1980, 1 month after the major eruption, and follow-up testing continued on an annual basis through 1984; 88% of the loggers have been tested at least 3 times. Analysis of lung function data showed that a significant, exposure-related decline in FEV1 occurred during the first year after the eruption. The decline was short-lived, however, and by 1984 the differences between exposure groups were no longer significant. Self-reported symptoms of cough, phlegm, and wheeze showed a similar pattern. No ash-related changes were seen in chest roentgenograms taken in 1980 and in 1984. Our findings are consistent with the hypothesis that the inhaled ash caused mucus hypersecretion and/or airway inflammation that reversed when the exposure levels decreased. The ash levels to which the loggers were exposed were low compared with permissible occupational levels for nuisance dusts, but generally higher than the total suspended particulate levels permissible in ambient air.

  1. Volcanic episodes near Yucca Mountain as determined by paleomagnetic studies as Lathrop Wells, Crater Flat, and Sleeping Butte, Nevada

    SciTech Connect (OSTI)

    Champion, D.E.

    1991-12-31

    It has been suggested that mafic volcanism in the vicinity of Yucca Mountain, Nevada, is both recent (20 ka) and a product of complex {open_quotes}polycyclic{close_quotes} eruptions. This pattern of volcanism, as interpreted by some workers at the Lathrop Wells volcanic complex, comprises a sequence of numerous small-volume eruptions that become more tephra-producing over time. Such sequences are thought to occur over timespans as long as 100,000 years. However, paleomagnetic studies of the tephra and lava flows from mafic volcanoes near Yucca Mountain fail to find evidence of repeated eruptive activity over timespans of 10{sup 3} to 10{sup 5} years, even though samples have been taken that represent approximately 95% of the products of these volcanoes. Instead, the eruptions seem to have occurred as discrete episodes at each center and thus can be considered to be {open_quotes}monogenetic.{close_quotes} Dates of these episodes have been obtained by the proven radiometric-geochronometer methods of K-Ar or {sup 40}Ar/{sup 39}Ar dating.

  2. Apparatus for the measurement of radionuclide transport rates in rock cores

    SciTech Connect (OSTI)

    Weed, H.C.; Koszykowski, R.F.; Dibley, L.L.; Murray, I.

    1981-09-01

    An apparatus and procedure for the study of radionuclide transport in intact rock cores are presented in this report. This equipment more closely simulates natural conditions of radionuclide transport than do crushed rock columns. The apparatus and the procedure from rock core preparation through data analysis are described. The retardation factors measured are the ratio of the transport rate of a non-retarded radionuclide, such as /sup 3/H, to the transport rate of a retarded radionuclide. Sample results from a study of the transport of /sup 95m/Tc and /sup 85/Sr in brine through a sandstone core are included.

  3. Used Fuel Disposal in Crystalline Rocks: Status and FY14 Progress |

    Energy Savers [EERE]

    Department of Energy Disposal in Crystalline Rocks: Status and FY14 Progress Used Fuel Disposal in Crystalline Rocks: Status and FY14 Progress The objective of the Crystalline Disposal R&D work is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media. The major accomplishments during the year include: 1) R&D plan was developed for

  4. Strontium-85 and plutonium-239 sorption in rock samples from the Semipalatinsk Test Site, Kazakhstan

    SciTech Connect (OSTI)

    Mason, C.F.V.; Lu, N.; Marusak, N.L.; Scheber, B.; Chipera, S.; Daukeyev, D.; Khromushin, I.

    1999-03-01

    The adsorption and desorption of strontium and plutonium were studied as a function of rock type and simulated ground waters from the Semipalatinsk Test Site (STS). Seven different rock types were obtained from the Balapan Region of the STS and were subjected to x-ray diffraction analyses. Two different ground waters were simulated using data supplied by the National Nuclear Center. The results indicate the sorption of strontium is strongly dependent on the minerals present in the rock species and on the total ionic strength of the ground water whereas, in all cases, plutonium was strongly irreversibly sorbed.

  5. Two-phase flow in fractured rock (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Two-phase flow in fractured rock Citation Details In-Document Search Title: Two-phase flow in fractured rock This report gives the results of a three-day workshop on two-phase flow in fractured rock. The workshop focused on two-phase flow processes that are important in geologic disposal of nuclear waste as experienced in a variety of repository settings. The goals and objectives of the workshop were threefold: exchange information; describe the current state of understanding; and identify

  6. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section}7901 et seq.), hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miquel County. Contaminated materials cover an estimated 63 acres of the Union Carbide (UC) processing site and 15 ac of the North Continent (NC) processing site. The sites are within 1 mile of each other and are adjacent to the Dolores River. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The total estimated volume of contaminated materials is approximately 621,300 cubic yards (yd{sup 3}). In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designing site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi northeast of the sites on land administered by the Bureau of Land Management (BLM).

  7. Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks

    Broader source: Energy.gov [DOE]

    Improved seismic imaging of geology across high-velocity Earth surfaces will allow more rigorous evaluation of geothermal prospects beneath volcanic outcrops. Seismic-based quantification of fracture orientation and intensity will result in optimal positioning of geothermal wells.

  8. Predicting and validating the tracking of a Volcanic Ash Cloud during the 2006 Eruption of Mt. Augustine Volcano

    SciTech Connect (OSTI)

    Webley, Peter W.; Atkinson, D.; Collins, Richard L.; Dean, K.; Fochesatto, J.; Sassen, Kenneth; Cahill, Catherine F.; Prata, A.; Flynn, Connor J.; Mizutani, K.

    2008-11-01

    On 11 January 2006, Mount Augustine volcano in southern Alaska began erupting after 20-year repose. The Anchorage Forecast Office of the National Weather Service (NWS) issued an advisory on 28 January for Kodiak City. On 31 January, Alaska Airlines cancelled all flights to and from Anchorage after multiple advisories from the NWS for Anchorage and the surrounding region. The Alaska Volcano Observatory (AVO) had reported the onset of the continuous eruption. AVO monitors the approximately 100 active volcanoes in the Northern Pacific. Ash clouds from these volcanoes can cause serious damage to an aircraft and pose a serious threat to the local communities, and to transcontinental air traffic throughout the Arctic and sub-Arctic region. Within AVO, a dispersion model has been developed to track the dispersion of volcanic ash clouds. The model, Puff, was used operational by AVO during the Augustine eruptive period. Here, we examine the dispersion of a volcanic ash cloud from Mount Augustine across Alaska from 29 January through the 2 February 2006. We present the synoptic meteorology, the Puff predictions, and measurements from aerosol samplers, laser radar (or lidar) systems, and satellites. UAF aerosol samplers revealed the presence of volcanic aerosols at the surface at sites where Puff predicted the ash clouds movement. Remote sensing satellite data showed the development of the ash cloud in close proximity to the volcano and a sulfur-dioxide cloud further from the volcano consistent with the Puff predictions. Lidars showed the presence of volcanic aerosol with consistent characteristics aloft over Alaska and were capable of detecting the aerosol, even in the presence of scattered clouds and where the cloud is too thin/disperse to be detected by remote sensing satellite data. The lidar measurements revealed the different trajectories of ash consistent with the Puff predictions. Dispersion models provide a forecast of volcanic ash cloud movement that might be undetectable by any other means but are still a significant hazard. Validation is the key to assessing the accuracy of any future predictions. The study highlights the use of multiple and complementary observations used in detecting the trajectory ash cloud, both at the surface and aloft within the atmosphere.

  9. Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines

    Broader source: Energy.gov [DOE]

    The objective of this work is to develop a spatial database that integrates both geologic data for alternative host-rock formations and information that has been historically used for siting...

  10. Properties of CO2-Rich Pore Fluids and Their Effect on Porosity Evolution in EGS Rocks

    Broader source: Energy.gov [DOE]

    Project objective: Quantify key parameters critically needed for developing and validating numerical modeling of chemical interactions between EGS reservoir rocks and supercritical CO2and CO2-rich aqueous fluids.

  11. Multiporosity flow in fractured low-permeability rocks: Extension to shale hydrocarbon reservoirs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kuhlman, Kristopher L.; Malama, Bwalya; Heath, Jason E.

    2015-02-05

    We presented a multiporosity extension of classical double and triple-porosity fractured rock flow models for slightly compressible fluids. The multiporosity model is an adaptation of the multirate solute transport model of Haggerty and Gorelick (1995) to viscous flow in fractured rock reservoirs. It is a generalization of both pseudo steady state and transient interporosity flow double-porosity models. The model includes a fracture continuum and an overlapping distribution of multiple rock matrix continua, whose fracture-matrix exchange coefficients are specified through a discrete probability mass function. Semianalytical cylindrically symmetric solutions to the multiporosity mathematical model are developed using the Laplace transform tomore » illustrate its behavior. Furthermore, the multiporosity model presented here is conceptually simple, yet flexible enough to simulate common conceptualizations of double and triple-porosity flow. This combination of generality and simplicity makes the multiporosity model a good choice for flow modelling in low-permeability fractured rocks.« less

  12. Multiporosity flow in fractured low-permeability rocks: Extension to shale hydrocarbon reservoirs

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L.; Malama, Bwalya; Heath, Jason E.

    2015-02-05

    We presented a multiporosity extension of classical double and triple-porosity fractured rock flow models for slightly compressible fluids. The multiporosity model is an adaptation of the multirate solute transport model of Haggerty and Gorelick (1995) to viscous flow in fractured rock reservoirs. It is a generalization of both pseudo steady state and transient interporosity flow double-porosity models. The model includes a fracture continuum and an overlapping distribution of multiple rock matrix continua, whose fracture-matrix exchange coefficients are specified through a discrete probability mass function. Semianalytical cylindrically symmetric solutions to the multiporosity mathematical model are developed using the Laplace transform to illustrate its behavior. Furthermore, the multiporosity model presented here is conceptually simple, yet flexible enough to simulate common conceptualizations of double and triple-porosity flow. This combination of generality and simplicity makes the multiporosity model a good choice for flow modelling in low-permeability fractured rocks.

  13. EA-1987: Parker-Headgate Rock and Parker-Bouse Rebuild Project...

    Broader source: Energy.gov (indexed) [DOE]

    a proposal to rebuild the existing Parker Dam-Headgate Rock and Parker Dam-Bouse 161-kilovolt transmission lines along the Colorado River in western Arizona and eastern California. ...

  14. Synchrotron X-ray Studies of Super-critical Carbon Dioxide / Reservoir Rock Interfaces

    Broader source: Energy.gov [DOE]

    Project obectives: Utilize synchrotron X-ray measurements, to monitor all aspects of atomic to nanoscale structural changes resulting from chemical interactions of scCO2-H2O binary fluids with rocks under environments directly relevant to EGS.

  15. Mechanical Behavior of the Near-field Host Rock Surrounding Excavations

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Mechanical Behavior of the Near-field Host Rock Surrounding Excavations Citation Details In-Document Search Title: Mechanical Behavior of the Near-field Host Rock Surrounding Excavations Authors: Kelkar, Sharad M. [1] ; Stauffer, Philip H. [1] ; Robinson, Bruce Alan [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2015-01-09 OSTI Identifier: 1167232 Report Number(s): LA-UR-14-27717 DOE Contract Number:

  16. Precise orientation of single crystals by a simple x-ray diffraction rocking curve method

    SciTech Connect (OSTI)

    Doucette, L.D.; Pereira da Cunha, M.; Lad, R.J.

    2005-03-01

    A simple method has been developed for accurately measuring the crystallographic orientation of a single crystal boule, employing a conventional four-circle x-ray diffraction arrangement in the rocking curve mode which relaxes the need for precise instrument and/or reference alignment. By acquiring a total of eight rocking curve measurements at specific orientations about the specimen azimuth, the absolute miscut angle between a crystal surface and the desired crystallographic plane can be resolved to within {+-}0.01 deg.

  17. Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances

    SciTech Connect (OSTI)

    Faybishenko, B.

    1999-02-01

    This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.

  18. Proceedings of the international symposium on engineering in complex rock formations

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This book contains over 100 papers. Some of the titles are: Rheology of rock-salt and its application for radioactive waste disposal purposes; A scale model study on the deformation around the drift in Korean inclined coal seam; Stabilization of a landslide in fractured marls and limestone; Dead Sea underground hydroelectric power station; and Rock mechanics in design of underground power house of lubuge hydropower project.

  19. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect (OSTI)

    Thurman E. Scott, Jr.; Younane Abousleiman

    2004-04-01

    The research during this project has concentrated on developing a correlation between rock deformation mechanisms and their acoustic velocity signature. This has included investigating: (1) the acoustic signature of drained and undrained unconsolidated sands, (2) the acoustic emission signature of deforming high porosity rocks (in comparison to their low porosity high strength counterparts), (3) the effects of deformation on anisotropic elastic and poroelastic moduli, and (4) the acoustic tomographic imaging of damage development in rocks. Each of these four areas involve triaxial experimental testing of weak porous rocks or unconsolidated sand and involves measuring acoustic properties. The research is directed at determining the seismic velocity signature of damaged rocks so that 3-D or 4-D seismic imaging can be utilized to image rock damage. These four areas of study are described in the report: (1) Triaxial compression experiments have been conducted on unconsolidated Oil Creek sand at high confining pressures. (2) Initial experiments on measuring the acoustic emission activity from deforming high porosity Danian chalk were accomplished and these indicate that the AE activity was of a very low amplitude. (3) A series of triaxial compression experiments were conducted to investigate the effects of induced stress on the anisotropy developed in dynamic elastic and poroelastic parameters in rocks. (4) Tomographic acoustic imaging was utilized to image the internal damage in a deforming porous limestone sample. Results indicate that the deformation damage in rocks induced during laboratory experimentation can be imaged tomographically in the laboratory. By extension the results also indicate that 4-D seismic imaging of a reservoir may become a powerful tool for imaging reservoir deformation (including imaging compaction and subsidence) and for imaging zones where drilling operation may encounter hazardous shallow water flows.

  20. Completion Report for Well ER-12-3 Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada Corporation

    2006-05-01

    Well ER-12-3 was drilled for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, in support of the Nevada Environmental Restoration Project at the Nevada Test Site, Nye County, Nevada. The well was drilled in March and April 2005 as part of a hydrogeologic investigation program for the Rainier Mesa-Shoshone Mountain Corrective Action Unit. The overall purpose of the well was to gather subsurface data to better characterize the hydrogeology of central Rainier Mesa, especially in the older Tertiary volcanic rocks and Paleozoic sedimentary rocks. The main 47.0-centimeter hole was drilled to a depth of 799.2 meters and cased with 33.97-centimeter casing to 743.1 meters. The hole diameter was then decreased to 31.1 centimeters, and the well was drilled to a total depth of 1,496.0 meters. The completion string consisted of 13.97-centimeter stainless steel casing, with two slotted intervals open to the lower carbonate aquifer, suspended from 19.37-centimeter carbon steel casing. A piezometer string was installed outside the 33.97-centimeter casing to a depth of 467.1 meters to monitor a zone of perched water within the Tertiary volcanic section. Data gathered during and shortly after hole construction include composite drill cuttings samples collected every 3 meters (extra cuttings samples were collected from the Paleozoic rocks for paleontological analyses), sidewall core samples from 35 depths, various geophysical logs, and water level measurements. These data indicate that the well penetrated 674.2 meters of Tertiary volcanic rocks and 821.7 meters of Paleozoic dolomite and limestone. Forty-nine days after the well was completed, but prior to well development and testing, the water level inside the main hole was tagged at the depth of 949.1 meters, and the water level inside the piezometer string was tagged at 379.9 meters.

  1. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect (OSTI)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2001-01-31

    During this phase of the project the research team concentrated on acquisition of acoustic emission data from the high porosity rock samples. The initial experiments indicated that the acoustic emission activity from high porosity Danian chalk were of a very low amplitude. Even though the sample underwent yielding and significant plastic deformation the sample did not generate significant AE activity. This was somewhat surprising. These initial results call into question the validity of attempting to locate AE activity in this weak rock type. As a result the testing program was slightly altered to include measuring the acoustic emission activity from many of the rock types listed in the research program. The preliminary experimental results indicate that AE activity in the sandstones is much higher than in the carbonate rocks (i.e., the chalks and limestones). This observation may be particularly important for planning microseismic imaging of reservoir rocks in the field environment. The preliminary results suggest that microseismic imaging of reservoir rock from acoustic emission activity generated from matrix deformation (during compaction and subsidence) would be extremely difficult to accomplish.

  2. MicroRNA-340 suppresses osteosarcoma tumor growth and metastasis by directly targeting ROCK1

    SciTech Connect (OSTI)

    Zhou, Xin; Wei, Min; Wang, Wei

    2013-08-09

    Highlights: •miR-340 is downregulated in OS cell lines and tissues. •miR-340 suppresses OS cell proliferation, migration and invasion. •miR-340 suppresses tumor growth and metastasis of OS cells in nude mice. •ROCK1 is a target gene of miR-340. •ROCK1 is involved in miR-340-induced suppression of OS cell proliferation, migration and invasion. -- Abstract: MicroRNAs (miRNAs) play key roles in cancer development and progression. In the present study, we investigated the role of miR-340 in the progression and metastasis of osteosarcoma (OS). Our results showed that miR-340 was frequently downregulated in OS tumors and cell lines. Overexpression of miR-340 in OS cell lines significantly inhibited cell proliferation, migration, and invasion in vitro, and tumor growth and metastasis in a xenograft mouse model. ROCK1 was identified as a target of miR-340, and ectopic expression of miR-340 downregulated ROCK1 by direct binding to its 3′ untranslated region. siRNA-mediated silencing of ROCK1 phenocopied the effects of miR-340 overexpression, whereas restoration of ROCK1 in miR-340-overexpressing OS cells reversed the suppressive effects of miR-340. Together, these findings indicate that miR-340 acts as a tumor suppressor and its downregulation in tumor tissues may contribute to the progression and metastasis of OS through a mechanism involving ROCK1, suggesting miR-340 as a potential new diagnostic and therapeutic target for the treatment of OS.

  3. Integrating rock mechanics issues with repository design through design process principles and methodology

    SciTech Connect (OSTI)

    Bieniawski, Z.T.

    1996-04-01

    A good designer needs not only knowledge for designing (technical know-how that is used to generate alternative design solutions) but also must have knowledge about designing (appropriate principles and systematic methodology to follow). Concepts such as {open_quotes}design for manufacture{close_quotes} or {open_quotes}concurrent engineering{close_quotes} are widely used in the industry. In the field of rock engineering, only limited attention has been paid to the design process because design of structures in rock masses presents unique challenges to the designers as a result of the uncertainties inherent in characterization of geologic media. However, a stage has now been reached where we are be able to sufficiently characterize rock masses for engineering purposes and identify the rock mechanics issues involved but are still lacking engineering design principles and methodology to maximize our design performance. This paper discusses the principles and methodology of the engineering design process directed to integrating site characterization activities with design, construction and performance of an underground repository. Using the latest information from the Yucca Mountain Project on geology, rock mechanics and starter tunnel design, the current lack of integration is pointed out and it is shown how rock mechanics issues can be effectively interwoven with repository design through a systematic design process methodology leading to improved repository performance. In essence, the design process is seen as the use of design principles within an integrating design methodology, leading to innovative problem solving. In particular, a new concept of {open_quotes}Design for Constructibility and Performance{close_quotes} is introduced. This is discussed with respect to ten rock mechanics issues identified for repository design and performance.

  4. Porosity and surface area evolution during weathering of two igneous rocks

    SciTech Connect (OSTI)

    Navarre-Sitchler, Alexis; Cole, David; Rother, Gernot; Jin, Lixin; Buss, Heather; Brantley, S. L.

    2013-01-01

    During weathering, rocks release nutrients and storewater vital for growth ofmicrobial and plant life. Thus, the growth of porosity as weathering advances into bedrock is a life-sustaining process for terrestrial ecosystems. Here, we use small-angle and ultra small-angle neutron scattering to show how porosity develops during initial weathering under tropical conditions of two igneous rock compositions, basaltic andesite and quartz diorite. The quartz diorite weathers spheroidally while the basaltic andesite does not. The weathering advance rates of the two systems also differ, perhaps due to this difference in mechanism, from 0.24 to 100 mm kyr1, respectively. The scattering data document how surfaces inside the feldspar-dominated rocks change as weathering advances into the protolith. In the unaltered rocks, neutrons scatter fromtwo types of featureswhose dimensions vary from6 nmto 40 lm: pores and bumps on pore grain surfaces. These features result in scattering data for both unaltered rocks that document multi-fractal behavior: scattering is best described by amass fractal dimension (Dm) and a surface fractal dimension (Ds) for features of length scales greater than and less than 1 lm, respectively. In the basaltic andesite, Dm is approximately 2.9 and Ds is approximately 2.7. The mechanism of solute transport during weathering of this rock is diffusion. Porosity and surface area increase from 1.5%to 8.5%and 3 to 23 m2 g1 respectively in a relatively consistent trend across themm-thick plagioclase reaction front. Across this front, both fractal dimensions decrease, consistentwith development of amoremonodisperse pore networkwith smoother pore surfaces. Both changes are consistent largely with increasing connectivity of pores without significant surface roughening, as expected for transport-limited weathering. In contrast, porosity and surface area increase from 1.3% to 9.5% and 1.5 to 13 m2 g1 respectively across a many cm-thick reaction front in the spheroidally weathering quartz diorite. In that rock, Dm is approximately 2.8 andDs is approximately 2.5 prior to weathering. These two fractals transform during weathering to multiple surface fractals as micro-cracking reduces the size of diffusion-limited subzones of thematrix.Across the reaction front of plagioclase in the quartz diorite, the specific surface area and porosity change very little until the pointwhere the rock disaggregates into saprolite. The different patterns in porosity development of the two rocks are attributed to advective infiltration plus diffusion in the rock that spheroidally fractures versus diffusion-only in the rock that does not. Fracturing apparently diminishes the size of the diffusion-limited parts of the spheroidally weathering rock system to promote infiltration of meteoric fluids, thereforeexplaining the faster weathering advance rate into that rock.

  5. P 1607 Cover 1.eps

    National Nuclear Security Administration (NNSA)

    Structural Relationships of Pre-Tertiary Rocks in the Nevada Test Site Region, Southern ... of Pre-Tertiary Rocks in the Nevada Test Site Region, Southern Nevada By James C. ...

  6. Integrated system for investigating sub-surface features of a rock formation

    DOE Patents [OSTI]

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre -Yves; Larmat, Carene S.

    2015-08-18

    A system for investigating non-linear properties of a rock formation around a borehole is provided. The system includes a first sub-system configured to perform data acquisition, control and recording of data; a second subsystem in communication with the first sub-system and configured to perform non-linearity and velocity preliminary imaging; a third subsystem in communication with the first subsystem and configured to emit controlled acoustic broadcasts and receive acoustic energy; a fourth subsystem in communication with the first subsystem and the third subsystem and configured to generate a source signal directed towards the rock formation; and a fifth subsystem in communication with the third subsystem and the fourth subsystem and configured to perform detection of signals representative of the non-linear properties of the rock formation.

  7. Organic geochemistry and correlation of Paleozoic source rocks and Trenton crude oils, Indiana

    SciTech Connect (OSTI)

    Guthrie, J. )

    1989-08-01

    Shale samples from four cores of the New Albany and Antrim Shales (Devonian) and from six cores of the Maquoketa Group (Ordovician), representing a broad geographic area of Indiana, have been analyzed for total organic carbon, total sulfur, pyrolysis yield (Rock-Eval), bitumen content, and illite crystallinity data. These data indicate that the New Albany, Antrim, and Maquoketa shales contain a sufficient quantity and quality of organic matter to be good petroleum source rocks. Bitumen ratios, Rock-Eval yields, gas chromatography of saturated hydrocarbons, and illite crystallinity data show that the Maquoketa shales have reached a higher level of thermal maturity than the New Albany and Antrim shales. The level of thermal maturity of the Maquoketa shales suggested a maximum burial depth considerably greater than the present depth.

  8. Revegetation/rock cover for stabilization of inactive uranium mill tailings disposal sites

    SciTech Connect (OSTI)

    Beedlow, P.A.; McShane, M.C.; Cadwell, L.L.

    1982-07-01

    Pacific Northwest Laboratory is developing design and performance guidelines for surface stabilization of inactive uranium mill tailings. In this work, vegetation and rock covers are being evaluated for maintaining long-term integrity of impoundment systems. Methods are being developed to estimate erosion rates associated with rock and/or vegetation covers, and to determine the effects of surface treatments on soil moisture. Interactions between surface treatments and barriers (radon and biological) are being studied as well. The product will be a set of guidelines to aid in designing surface covers. This report presents the status of this program and a discussion of considerations pertinent to the application of surface covers to tailings. Test plots located in Grand Junction, Colorado and Waterflow, New Mexico are being used to study: (1) the interactions between vegetation and radon and biological barriers, (2) the effects of surface covers on soil moisture, and (3) the effects of rock covers on vegetation.

  9. Paint Rock and southwest Paint Rock fields, Concho County, Texas: Strawn analogs of modern island carbonate facies of Ambergris Cay, Belize

    SciTech Connect (OSTI)

    Reid, A.M.; Mazzullo, S.J.

    1987-02-01

    Lower Strawn (Desmoinesian Goen Limestone) reservoirs at Paint Rock and Southwest Paint Rock fields are a complex of carbonate and associated facies interpreted as having been deposited in various environments on and around large, emergent islands on shallow carbonate shelves. The origin and geometries of the component lithofacies in these fields, and their reservoir diagenetic histories, are similar to those presently accumulating on Ambergris Cay, a linear island complex on the northern shelf of Belize. Paint Rock field originated as a narrow, elongate Chaetetes reef trend that formed the foundation on which the overlying island facies were deposited. As on Ambergris Cay, these reef limestones developed extensive porosity during postdepositional subaerial exposure due to meteoric leaching. In contrast, Southwest Paint Rock field is cored by older island deposits rather than reef limestones. With ensuing stillstand or subsequent sea level rise, beach grainstones were deposited along the windward and leeward margins of the foundation highs in these fields. Tight lagoonal micrites and coals (peat-swamp facies) comprise the inner island facies, and are locally associated with porous supratidal dolomites. These island complexes are transected locally by tidal channels that are filled with nonporous micrites. Repeated sea level fluctuations during the history of these fields resulted in a characteristic cyclic stratigraphy of stacked island facies and reservoirs. The reservoirs in the field are developed in the bedrock or older island cores, as well as in the overlying beach facies and supratidal dolomites. These fields are mappable as linear stratigraphic traps with low-relief closure, and are readily identified by subsurface geologic and facies analyses. Similar shelf island-type fields analogous to these strawn and Holocene Belizean examples are found throughout the Midland basin and Eastern shelf.

  10. An asixymmetric diffusion experiment for the determination of diffusion and sorption coefficients of rock samples

    SciTech Connect (OSTI)

    Takeda, M.; Hiratsuka, T.; Ito, K.; Finsterle, S.

    2011-02-01

    Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an axisymmetric diffusion experiment coupled with tracer profiling may be a promising approach to estimate of diffusion anisotropy of sedimentary rocks.

  11. Petroleum potential of lower and middle Paleozoic rocks in Nebraska portion of Mid-Continent

    SciTech Connect (OSTI)

    Carlson, M.P. )

    1989-08-01

    Central North America during the Paleozoic was characterized by northern (Williston) and southern (Anadarko) depositional regimes separated by a stable Transcontinental arch. Nebraska lies on the southern flank of this arch and contains the northern zero edges of the lower and middle Paleozoic rocks of the southern regime. Most of these rocks are secondary dolomites with zones of excellent intercrystalline porosity. The Reagan-LaMotte Sandstones and the overlying Arbuckle dolomites are overlapped by Middle Ordovician rocks toward the Transcontinental arch. Rocks equivalent to the Simpson consist of a basal sand (St. Peter) and overlying interbedded gray-green shales and dolomitic limestones. An uppermost shale facies is present in the Upper Ordovician (Viola-Maquoketa) eastward and southward across Nebraska. The dolomite facies extends northward into the Williston basin. The Silurian dolomites, originally more widely deposited, are overlapped by Devonian dolomites in southeastern Nebraska. Upper Devonian rocks exhibit a regional facies change from carbonate to green-gray shale to black shale southeastward across the Mid-Continent. Mississippian carbonates overlap the Devonian westward and northward across the Transcontinental arch. Pennsylvanian uplift and erosion were widespread, producing numerous stratigraphic traps. Sands related to the basal Pennsylvanian unconformity produce along the Cambridge arch. Arbuckle, Simpson, Viola, and Hunton production is present in the Forest City basin and along the Central Kansas uplift. Although source rocks are scarce and the maturation is marginal, current theories of long-distance oil migration encourage exploration in the extensive lower and middle Paleozoic reservoirs in this portion of the Mid-Continent.

  12. MULTI-ATTRIBUTE SEISMIC/ROCK PHYSICS APPROACH TO CHARACTERIZING FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Gary Mavko

    2000-10-01

    This project consists of three key interrelated Phases, each focusing on the central issue of imaging and quantifying fractured reservoirs, through improved integration of the principles of rock physics, geology, and seismic wave propagation. This report summarizes the results of Phase I of the project. The key to successful development of low permeability reservoirs lies in reliably characterizing fractures. Fractures play a crucial role in controlling almost all of the fluid transport in tight reservoirs. Current seismic methods to characterize fractures depend on various anisotropic wave propagation signatures that can arise from aligned fractures. We are pursuing an integrated study that relates to high-resolution seismic images of natural fractures to the rock parameters that control the storage and mobility of fluids. Our goal is to go beyond the current state-of-the art to develop and demonstrate next generation methodologies for detecting and quantitatively characterizing fracture zones using seismic measurements. Our study incorporates 3 key elements: (1) Theoretical rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, including up scaling analysis and rock-fluid interactions to define the factors relating fractures in the lab and in the field. (2) Modeling of optimal seismic attributes, including offset and azimuth dependence of travel time, amplitude, impedance and spectral signatures of anisotropic fractured rocks. We will quantify the information content of combinations of seismic attributes, and the impact of multi-attribute analyses in reducing uncertainty in fracture interpretations. (3) Integration and interpretation of seismic, well log, and laboratory data, incorporating field geologic fracture characterization and the theoretical results of items 1 and 2 above. The focal point for this project is the demonstration of these methodologies in the Marathon Oil Company Yates Field in West Texas.

  13. POSSIBLE ALTERATION OF ROCKS OBSERVED BY CHEMCAM ALONG THE TRAVERSE TO

    Office of Scientific and Technical Information (OSTI)

    GLENELG IN GALE CRATER ON MARS. (Technical Report) | SciTech Connect Technical Report: POSSIBLE ALTERATION OF ROCKS OBSERVED BY CHEMCAM ALONG THE TRAVERSE TO GLENELG IN GALE CRATER ON MARS. Citation Details In-Document Search Title: POSSIBLE ALTERATION OF ROCKS OBSERVED BY CHEMCAM ALONG THE TRAVERSE TO GLENELG IN GALE CRATER ON MARS. Authors: Berger, B. [1] ; Blaney, D. [2] ; Bridges, J. [3] ; Cousin, A. [1] ; Forni, O. [1] ; Gasnault, O. [1] ; Lasue, J. [1] ; Mangold, N. [4] ; Maurice, S.

  14. The Effect of Scale on the Mechanical Properties of Jointed Rock Masses

    SciTech Connect (OSTI)

    Heuze, F E

    2004-05-24

    These notes were prepared for presentation at the Defense Threat Reduction Agency's (DTRA) Hard Target Research and Analysis Center (HTRAC), at the occasion of a short course held on June 14-15, 2004. The material is intended for analysts who must evaluate the geo-mechanical characteristics of sites of interest, in order to provide appropriate input to calculations of ground shock effects on underground facilities in rock masses. These analysts are associated with the Interagency Geotechnical Assessment Team (IGAT). Because geological discontinuities introduce scale effects on the mechanical properties of rock formations, these large-scale properties cannot be estimated on the basis of tests on small cores.

  15. The effects of heat conduction on the vaporization of liquid invading superheated permeable rock

    SciTech Connect (OSTI)

    Woods, Andrew, W.; Fitzgerald, Shaun D.

    1996-01-24

    We examine the role of conductive and convective heat transfer in the vaporization of liquid as it slowly invades a superheated permeable rock. For very slow migration, virtually all of the liquid vaporizes. As the liquid supply rate increases beyond the rate of heat transfer by thermal conduction, a decreasing fraction of the liquid can vaporize. Indeed, for sufficiently high flow rates, the fraction vaporizing depends solely on the superheat of the rock, and any heat transfer from the superheated region is negligible. These results complement earlier studies of vaporization under very high injection rates, in which case the dynamic vapour pressure reduces the mass fraction vaporizing to very small values.

  16. Investigation of Coupled Processes and Impact of High Temperature Limits in Argillite Rock

    SciTech Connect (OSTI)

    Zheng, Liange; Rutqvist, Jonny; Kim, Kunhwi; Houseworth, Jim

    2015-07-01

    The focus of research within the UFD Campaign is on repository-induced interactions that may affect the key safety characteristics of an argillaceous rock. These include thermal-hydrological-mechanical-chemical (THMC) process interactions that occur as a result of repository construction and waste emplacement. Some of the key questions addressed in this report include the development of fracturing in the excavation damaged zone (EDZ) and THMC effects on the near-field argillaceous rock and buffer minerals and petrophysical characteristics, particularly the impacts of induced temperature rise caused by waste heat.

  17. Two-phase flow in fractured rock (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Two-phase flow in fractured rock Citation Details In-Document Search Title: Two-phase flow in fractured rock × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to the public from the National

  18. Microsoft Word - Comments received at White Rock Scoping Mtg.doc

    National Nuclear Security Administration (NNSA)

    CMRR-NF Supplemental EIS Scoping Meeting October 19, 2010 / White Rock Town Hall, White Rock, NM Written Comments (transcribed) 061 Joni Arends The meeting format does not work. One of the purposes of the scoping meeting is for the public to hear the concerns of other community members. The people of N. NM have a strong oral tradition where people learn by listening to others. We request a "classroom" type format, such as that used during the draft document hearing process. A format

  19. Proximal impact deposits at the Cretaceous-Tertiary boundary in the Gulf of Mexico: A restudy of DSDP Leg 77 Sites 536 and 540

    SciTech Connect (OSTI)

    Alvarez, W.; Asaro, F. ); Smit, J. ); Lowrie, W. ); Asaro, F. ); Margolis, S.V.; Claeys, P. ); Kastner, M. ); Hildebrand, A.R. )

    1992-08-01

    Restudy of Deep Sea Drilling Project Sites 536 and 540 in the southeast Gulf of Mexico gives evidence for a giant wave at Cretaceous-Tertiary boundary time. Five units are recognized: (1) Cenomanian limestone underlies a hiatus in which the five highest Cretaceous stages are missing, possibly because of catastrophic K-T erosion. (2) Pebbly mudstone, 45 m thick, represents a submarine landslide possibly of K-T age. (3) Current-bedded sandstone, more than 2.5 m thick, contains anomalous iridium, tektite glass, and shocked quartz; it is interpreted as ejecta from a nearby impact crater, reworked on the deep-sea floor by the resulting tsunami. (4) A 50-cm interval of calcareous mudstone containing small Cretaceous planktic foraminifera and the Ir peak is interpreted as the silt-size fraction of the Cretaceous material suspended by the impact-generated wave. (5) Calcareous mudstone with basal Tertiary forams and the uppermost tail of the Ir anomaly overlies the disturbed interval, dating the impact and wave event as K-T boundary age. Like Beloc in Haiti and Mimbral in Mexico, Sites 536 and 540 are consistent with a large K-T age impact at the nearby Chicxulub crater.

  20. Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling

    SciTech Connect (OSTI)

    Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.

    2009-01-15

    A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.

  1. Sorptivity of rocks and soils of the van Genuchten-Mualem type

    SciTech Connect (OSTI)

    Zimmerman, R.W.; Bodvarsson, G.S.

    1991-06-01

    One hydrological process that will have great relevance to the performance of the proposed underground radioactive waste repository at Yucca Mountain, Nevada, is that of the absorption of water from a water-filled fracture into the adjacent unsaturated rock formation. The rate at which water is imbibed by a rock depends on the hydrological properties of the rock and on the initial saturation (or initial capillary suction) of the formation. The hydrological properties that affect imbibition are the relative permeability function and the capillary pressure function. These functions are often collectively referred to as the `characteristic functions` of the porous medium. For one-dimensional absorption, it can be shown that, regardless of the details of the characteristic functions, the total amount of water imbibed by the formation, per unit surface area, will be proportional to the square root of the elapsed time. Hence the ability of a rock or soil to imbibe water can be quantified by a parameter known as the sorptivity S, which is defined such that the cumulative volumetric liquid influx per unit area is given by Q = S{radical}t. The paper discusses the simplification of these characteristic functions of porous medium.

  2. Rock the Watt: An Energy Conservation Campaign at Pacific Northwest National Lab

    SciTech Connect (OSTI)

    2016-01-01

    Case study describes Pacific Northwest National Laboratory's (PNNL) three-month Rock the Watt campaign to reduce energy use at its main campus in Richland, Washington. The campaign objectives were to educate PNNL employees about energy conservation opportunities in their workplace and to motivate them to help PNNL save energy and costs and to reduce greenhouse gas emissions.

  3. Status and prospects for hot dry rock (HDR) in the United States

    SciTech Connect (OSTI)

    Brown, D.; Duchane, D.

    1992-01-01

    The vast majority of accessible geothermal energy exists in the form of heat stored in dry rock at depth. For nearly the last two decades, the Los Alamos National Laboratory has been engaged in a program to develop the technology to mine the thermal energy in this hot dry rock (HDR). The world's first heat mine was developed and operated at Fenton Hill, N.M. in the 1970's by using drilling and hydraulic fracturing techniques to create an artificial reservoir in hot rock and subsequently circulating water through this reservoir to mine the heat from the rock. Over the last ten years, a much larger, deeper, and hotter heat mine has been constructed at Fenton Hill and a permanent energy extraction plant has been built on the surface. A long-term testing program has recently begun to evaluate the potential for sustained energy extraction from the large Fenton Hill heat mine. This paper summarizes the history of HDR research and development at Los Alamos, reports the initial results of the long-term testing program at Fenton Hill, and discusses the possible future course of HDR technology.

  4. Status and prospects for hot dry rock (HDR) in the United States

    SciTech Connect (OSTI)

    Brown, D.; Duchane, D.

    1992-08-01

    The vast majority of accessible geothermal energy exists in the form of heat stored in dry rock at depth. For nearly the last two decades, the Los Alamos National Laboratory has been engaged in a program to develop the technology to mine the thermal energy in this hot dry rock (HDR). The world`s first heat mine was developed and operated at Fenton Hill, N.M. in the 1970`s by using drilling and hydraulic fracturing techniques to create an artificial reservoir in hot rock and subsequently circulating water through this reservoir to mine the heat from the rock. Over the last ten years, a much larger, deeper, and hotter heat mine has been constructed at Fenton Hill and a permanent energy extraction plant has been built on the surface. A long-term testing program has recently begun to evaluate the potential for sustained energy extraction from the large Fenton Hill heat mine. This paper summarizes the history of HDR research and development at Los Alamos, reports the initial results of the long-term testing program at Fenton Hill, and discusses the possible future course of HDR technology.

  5. A pore-scale model of two-phase flow in water-wet rock

    SciTech Connect (OSTI)

    Silin, Dmitriy; Patzek, Tad

    2009-02-01

    A finite-difference discretization of Stokes equations is used to simulate flow in the pore space of natural rocks. Numerical solutions are obtained using the method of artificial compressibility. In conjunction with Maximal Inscribed Spheres method, these computations produce relative permeability curves. The results of computations are in agreement with laboratory measurements.

  6. Diamond formation due to a pH drop during fluid–rock interactions

    SciTech Connect (OSTI)

    Sverjensky, Dimitri A.; Huang, Fang

    2015-11-03

    Diamond formation has typically been attributed to redox reactions during precipitation from fluids or magmas. Either the oxidation of methane or the reduction of carbon dioxide has been suggested, based on simplistic models of deep fluids consisting of mixtures of dissolved neutral gas molecules without consideration of aqueous ions. The role of pH changes associated with water–silicate rock interactions during diamond formation is unknown. Here we show that diamonds could form due to a drop in pH during water–rock interactions. We use a recent theoretical model of deep fluids that includes ions, to show that fluid can react irreversibly with eclogite at 900 °C and 5.0 GPa, generating diamond and secondary minerals due to a decrease in pH at almost constant oxygen fugacity. Overall, our results constitute a new quantitative theory of diamond formation as a consequence of the reaction of deep fluids with the rock types that they encounter during migration. Diamond can form in the deep Earth during water–rock interactions without changes in oxidation state.

  7. EA-1987: Parker-Headgate Rock and Parker-Bouse Rebuild Project, Arizona and California

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing an EA that will assess the potential environmental impacts of a proposal to rebuild the existing Parker Dam-Headgate Rock and Parker Dam-Bouse 161-kilovolt transmission lines along the Colorado River in western Arizona and eastern California.

  8. Alleghanian development of the Goat Rock fault zone, southernmost Appalachians: Temporal compatibility with the master decollement

    SciTech Connect (OSTI)

    Steltenpohl, M.G. (Auburn Univ., AL (United States)); Goldberg, S.A. (Univ. of North Carolina, Chapel Hill (United States)); Hanley, T.B. (Columbus College, GA (United States)); Kunk, M.J. (Geological Survey, Reston, VA (United States))

    1992-09-01

    The Goat Rock and associated Bartletts Ferry fault zones, which mark the eastern margin of the Pine Mountain Grenville basement massif, are controversial due to the suggestion that they are rare exposed segments of the late Paleozoic southern Appalachian master decollement. The controversy in part stems from reported middle Paleozoic (Acadian) radiometric dates postulated as the time of movement along these fault zones. Ultramylonite samples from the type area at Goat Rock Dam yield a 287 [plus minus] 15 Ma Rb-Sr isochron interpreted as the time of Sr isotopic rehomgenization during mylonitization. This date is corroborated by Late Pennsylvanian-Early Permian [sup 40]Ar/[sup 39]Ar mineral ages on hornblende (297-288 Ma) and muscovite (285-278 Ma) from neomineralized and dynamically recrystallized rocks within and straddling the fault zone. These Late Pennsylvanian-Early Permian dates indicate the time of right-slip movement (Alleghenian) along the Goat Rock fault zone, which is compatible with the timing suggested by COCORP for thrusting along the southern Appalachian master decollement.

  9. Capabilities for measuring physical and chemical properties of rocks at high pressure

    SciTech Connect (OSTI)

    Durham, W.B.

    1990-01-01

    The Experimental Geophysics Group of the Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) has experimental equipment that measures a variety of physical properties and phase equilibria and kinetics on rocks and minerals at extreme pressures (to 500 GPa) and temperatures (from 10 to 2800 K). These experimental capabilities are described in this report in terms of published results, photographs, and schematic diagrams.

  10. Diamond formation due to a pH drop during fluid–rock interactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sverjensky, Dimitri A.; Huang, Fang

    2015-11-03

    Diamond formation has typically been attributed to redox reactions during precipitation from fluids or magmas. Either the oxidation of methane or the reduction of carbon dioxide has been suggested, based on simplistic models of deep fluids consisting of mixtures of dissolved neutral gas molecules without consideration of aqueous ions. The role of pH changes associated with water–silicate rock interactions during diamond formation is unknown. Here we show that diamonds could form due to a drop in pH during water–rock interactions. We use a recent theoretical model of deep fluids that includes ions, to show that fluid can react irreversibly withmore » eclogite at 900 °C and 5.0 GPa, generating diamond and secondary minerals due to a decrease in pH at almost constant oxygen fugacity. Overall, our results constitute a new quantitative theory of diamond formation as a consequence of the reaction of deep fluids with the rock types that they encounter during migration. Diamond can form in the deep Earth during water–rock interactions without changes in oxidation state.« less

  11. Fluid-evaporation records preserved in salt assemblages in Meridiani rocks

    SciTech Connect (OSTI)

    Rao, M.N.; Nyquist, L.E.; Sutton, S.R.; Dreibus, G.; Garrison, D.H.; Herrin, J.

    2009-09-25

    We studied the inter-relationships between the major anions (SO{sub 3}, Cl, and Br) and cations (FeO, CaO and MgO) using elemental abundances determined by APXS in salt assemblages of RATted (abraded) rocks at Meridiani to characterize the behavior of fluids that infiltrated into this region on Mars. A plot of SO{sub 3} versus Cl for the abraded rocks yielded an unusual pattern, whereas the SO{sub 3}/Cl ratios versus Cl for the same rocks showed a monotonically decreasing trend represented by a hyperbola. The systematic behavior of the SO{sub 3} and Cl data in the documented rocks at Meridiani suggests that these anions behaved conservatively during fluid-rock interactions. These results further indicate that two kinds of fluids, referred to as SOL-I and SOL-II, infiltrated into Endurance/Eagle/Fram craters, where they underwent progressive evaporative concentration. SOL-I is a low pH fluid consisting of high SO{sub 3} and low Cl and high Br, (this fluid infiltrated all the way to the crater-top region), whereas SOL-II fluid of high pH with low SO{sub 3} and high Cl and low Br reached only an intermediary level known as the Whatanga contact at Endurance. Based on the FeO/MgO as well as CaO/MgO versus SO{sub 3}/Cl diagram for rocks above the Whatanga contact, the cation and anion relationships in this system suggest that the Fe{sup 2+}/SO{sub 4} and Ca{sup 2+}/SO{sub 4} ratios in SOL-I fluids at Meridiani were > 1 before the onset of evaporation based on the 'chemical divide' considerations. Below the Whatanga contact, relatively dilute SOL-II fluids seem to have infiltrated and dissolved/flushed away the easily soluble Mg-sulfate/chloride phases (along with Br) without significantly altering the SO{sub 3}/Cl ratios in the residual salt assemblages. Further, Cl/Br versus Br in rocks above the Whatanga contact show a hyperbolic trend suggesting that Cl and Br behaved conservatively similar to SO{sub 3} and Cl in the SOL-1 fluids at Meridiani. Our results are consistent with a scenario involving two episodes (SOL-I and SOL-II) of groundwater recharge at Meridiani Planum.

  12. Dynamic coupling of volcanic CO2 flow and wind at the HorseshoeLake tree kill, Mammoth Mountain, CA

    SciTech Connect (OSTI)

    Lewicki, J.L.; Hilley, G.E.; Tosha, T.; Aoyagi, R.; Yamamoto, K.; Benson, S.M.

    2006-11-20

    We investigate spatio-temporal relationships between soilCO2 flux (FCO2), meteorological variables, and topography over a ten-dayperiod (09/12/2006 to 09/21/2006) at the Horseshoe Lake tree kill,Mammoth Mountain, CA. Total CO2 discharge varied from 16 to 52 t d-1,suggesting a decline in CO2 emissions over decadal timescales. Weobserved systematic changes in FCO2 in space and time in association witha weather front with relatively high wind speeds from the west and lowatmospheric pressures. The largest FCO2 changes were observed inrelatively high elevation areas. The variations in FCO2 may be due todynamic coupling of wind-driven airflow through the subsurface and flowof source CO2 at depth. Our results highlight the influence of weatherfronts on volcanic gas flow in the near-surface environment and how thisinfluence can vary spatially within a study area.

  13. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect (OSTI)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2002-11-18

    During the sixth quarter of this research project the research team developed a method and the experimental procedures for acquiring the data needed for ultrasonic tomography of rock core samples under triaxial stress conditions as outlined in Task 10. Traditional triaxial compression experiments, where compressional and shear wave velocities are measured, provide little or no information about the internal spatial distribution of mechanical damage within the sample. The velocities measured between platen-to-platen or sensor-to-sensor reflects an averaging of all the velocities occurring along that particular raypath across the boundaries of the rock. The research team is attempting to develop and refine a laboratory equivalent of seismic tomography for use on rock samples deformed under triaxial stress conditions. Seismic tomography, utilized for example in crosswell tomography, allows an imaging of the velocities within a discrete zone within the rock. Ultrasonic or acoustic tomography is essentially the extension of that field technology applied to rock samples deforming in the laboratory at high pressures. This report outlines the technical steps and procedures for developing this technology for use on weak, soft chalk samples. Laboratory tests indicate that the chalk samples exhibit major changes in compressional and shear wave velocities during compaction. Since chalk is the rock type responsible for the severe subsidence and compaction in the North Sea it was selected for the first efforts at tomographic imaging of soft rocks. Field evidence from the North Sea suggests that compaction, which has resulted in over 30 feet of subsidence to date, is heterogeneously distributed within the reservoir. The research team will attempt to image this very process in chalk samples. The initial tomographic studies (Scott et al., 1994a,b; 1998) were accomplished on well cemented, competent rocks such as Berea sandstone. The extension of the technology to weaker samples is more difficult but potentially much more rewarding. The chalk, since it is a weak material, also attenuates wave propagation more than other rock types. Three different types of sensors were considered (and tested) for the tomographic imaging project: 600 KHz PZT, 1 MHz PZT, and PVDF film sensors. 600 KHz PZT crystals were selected because they generated a sufficiently high amplitude pulse to propagate across the damaged chalk. A number of different configurations were considered for placement of the acoustic arrays. It was decided after preliminary testing that the most optimum arrangement of the acoustic sensors was to place three arrays of sensors, with each array containing twenty sensors, around the sample. There would be two horizontal arrays to tomographically image two circular cross-sectional planes through the rock core sample. A third array would be vertically oriented to provide a vertical cross-sectional view of the sample. A total of 260 acoustic raypaths would be shot and acquired in the horizontal acoustic array to create each horizontal tomographic image. The sensors can be used as both acoustic sources or as acoustic each of the 10 pulsers to the 10 receivers.

  14. Source rock geochemistry and liquid and solid petroleum occurrences of the Ouachita Mountains, Oklahoma

    SciTech Connect (OSTI)

    Curiale, J.A.

    1981-01-01

    Crude oils, solid bitumens and potential oil source rocks of the Frontal and Central Ouachita Mountains of southeastern Oklahoma were examined. The purposes of this study are to characterize the organic matter in each of these materials, and to correlate oils to potential source rocks in the Ouachita Mountains. Four Ouachita Mountain oils and seven solid bitumens (grahamite and impsonite were analyzed. The oils are paraffinic and range from 31.8 to 43.1 API gravity. Results indicate that the oils are thermally mature and generally unaltered. All four oils are commonly sourced, as suggested by n-alkane, sterane and hopane distributions, stable isotope ratios, infrared spectra and vanadium/nickel ratios. A common source for the solid bitumens is also suggested by isotope ratios and pyrolyzate characteristics. An origin due to crude oil biodegradation is suggested for these solids, based on carbon isotope ratios, elemental analyses, and sterane distributions of the solid bitumen pyrolyzates. Several stratigraphic intervals in the Ouachita Mountains possess adequate source potential for petroleum generation, based on contents of total organic carbon and extractable organic matter. Devonian rocks are oil-generative. The entire Paleozoic section examined is thermally mature enough to have generated oil, being located at about the middle of the oil window. In general, the best oil source potential is present in upper Ordovician (Polk Creek/Womble) rocks. Oil-source rock correlation techniques indicate that oils examined from the Frontal and Central Ouachita Mountains have a Siluro-Ordovician (Missouri Mountain-Polk Creek-Womble) source.

  15. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect (OSTI)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2002-11-18

    During the seven quarter of the project the research team analyzed some of the acoustic velocity data and rock deformation data. The goal is to create a series of ''deformation-velocity maps'' which can outline the types of rock deformational mechanisms which can occur at high pressures and then associate those with specific compressional or shear wave velocity signatures. During this quarter, we began to analyze both the acoustical and deformational properties of the various rock types. Some of the preliminary velocity data from the Danian chalk will be presented in this report. This rock type was selected for the initial efforts as it will be used in the tomographic imaging study outlined in Task 10. This is one of the more important rock types in the study as the Danian chalk is thought to represent an excellent analog to the Ekofisk chalk that has caused so many problems in the North Sea. Some of the preliminary acoustic velocity data obtained during this phase of the project indicates that during pore collapse and compaction of this chalk, the acoustic velocities can change by as much as 200 m/s. Theoretically, this significant velocity change should be detectable during repeated successive 3-D seismic images. In addition, research continues with an analysis of the unconsolidated sand samples at high confining pressures obtained in Task 9. The analysis of the results indicate that sands with 10% volume of fines can undergo liquefaction at lower stress conditions than sand samples which do not have fines added. This liquefaction and/or sand flow is similar to ''shallow water'' flows observed during drilling in the offshore Gulf of Mexico.

  16. Precarious Rock Methodology for Seismic Hazard: Physical Testing, Numerical Modeling and Coherence Studies

    SciTech Connect (OSTI)

    Anooshehpoor, Rasool; Purvance, Matthew D.; Brune, James N.; Preston, Leiph A.; Anderson, John G.; Smith, Kenneth D.

    2006-09-29

    This report covers the following projects: Shake table tests of precarious rock methodology, field tests of precarious rocks at Yucca Mountain and comparison of the results with PSHA predictions, study of the coherence of the wave field in the ESF, and a limited survey of precarious rocks south of the proposed repository footprint. A series of shake table experiments have been carried out at the University of Nevada, Reno Large Scale Structures Laboratory. The bulk of the experiments involved scaling acceleration time histories (uniaxial forcing) from 0.1g to the point where the objects on the shake table overturned a specified number of times. The results of these experiments have been compared with numerical overturning predictions. Numerical predictions for toppling of large objects with simple contact conditions (e.g., I-beams with sharp basal edges) agree well with shake-table results. The numerical model slightly underpredicts the overturning of small rectangular blocks. It overpredicts the overturning PGA for asymmetric granite boulders with complex basal contact conditions. In general the results confirm the approximate predictions of previous studies. Field testing of several rocks at Yucca Mountain has approximately confirmed the preliminary results from previous studies, suggesting that he PSHA predictions are too high, possibly because the uncertainty in the mean of the attenuation relations. Study of the coherence of wavefields in the ESF has provided results which will be very important in design of the canisters distribution, in particular a preliminary estimate of the wavelengths at which the wavefields become incoherent. No evidence was found for extreme focusing by lens-like inhomogeneities. A limited survey for precarious rocks confirmed that they extend south of the repository, and one of these has been field tested.

  17. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect (OSTI)

    Thurman E. Scott, Jr., Ph.D.; Musharraf Zaman, Ph.D.; Younane Abousleiman, Ph.D.

    2001-04-01

    The oil and gas industry has encountered significant problems in the production of oil and gas from weak rocks (such as chalks and limestones) and from unconsolidated sand formations. Problems include subsidence, compaction, sand production, and catastrophic shallow water sand flows during deep water drilling. Together these cost the petroleum industry hundreds of millions of dollars annually. The goals of this first quarterly report is to document the progress on the project to provide data on the acoustic imaging and mechanical properties of soft rock and marine sediments. The project is intended to determine the geophysical (acoustic velocities) rock properties of weak, poorly cemented rocks and unconsolidated sands. In some cases these weak formations can create problems for reservoir engineers. For example, it cost Phillips Petroleum 1 billion dollars to repair of offshore production facilities damaged during the unexpected subsidence and compaction of the Ekofisk Field in the North Sea (Sulak 1991). Another example is the problem of shallow water flows (SWF) occurring in sands just below the seafloor encountered during deep water drilling operations. In these cases the unconsolidated sands uncontrollably flow up around the annulus of the borehole resulting in loss of the drill casing. The $150 million dollar loss of the Ursa development project in the U.S. Gulf Coast resulted from an uncontrolled SWF (Furlow 1998a,b; 1999a,b). The first three tasks outlined in the work plan are: (1) obtain rock samples, (2) construct new acoustic platens, (3) calibrate and test the equipment. These have been completed as scheduled. Rock Mechanics Institute researchers at the University of Oklahoma have obtained eight different types of samples for the experimental program. These include: (a) Danian Chalk, (b) Cordoba Cream Limestone, (c) Indiana Limestone, (d) Ekofisk Chalk, (e) Oil Creek Sandstone, (f) unconsolidated Oil Creek sand, and (g) unconsolidated Brazos river sand. These weak rocks and sands are intended to represent analogs to the formations that present oil and gas engineers with problems during oil and gas production and drilling operations. A series of new axial acoustic sensors have been constructed (and tested) to allow measurement of compressional and shear wave velocities during high pressure triaxial tests on these weak rock and sand samples. In addition, equipment to be utilized over the next 18 months of the project have tested and calibrated. These include the load frames, triaxial pressure cells, pressure sensors, load cells, extensometers, and oscilloscopes have been calibrated and tested. The multichannel acoustic emission and acoustic pulse transmission systems have also been tested. Graduate research assistant, research faculty, and the laboratory technician have begun Tasks 4 and 5 which involve preparing the sand samples and rock samples for testing. The construction of the lateral acoustic sensors has also been started during this quarter as outlined in the project timeline. With the equipment having been tested and calibrated, and the samples now being prepared, the experiments are on schedule to be started in April, 2001.

  18. Geophysical interpretations west of and within the northwestern part of the Nevada Test Site

    SciTech Connect (OSTI)

    Grauch, V.J.; Sawyer, D.A.; Fridrich, C.J.; Hudson, M.R.

    1997-12-31

    This report focuses on interpretation of gravity and new magnetic data west of the Nevada Test Site (NTS) and within the northwestern part of NTS. The interpretations integrate the gravity and magnetic data with other geophysical, geological, and rock property data to put constraints on tectonic and magmatic features not exposed at the surface. West of NTS, where drill hole information is absent, these geophysical data provide the best available information on the subsurface. Interpreted subsurface features include calderas, intrusions, basalt flows and volcanoes, Tertiary basins, structurally high pre-Tertiary rocks, and fault zones. New features revealed by this study include (1) a north-south buried tectonic fault east of Oasis Mountain, which the authors call the Hogback fault; (2) an east striking fault or accommodation zone along the south side of Oasis Valley basin, which they call the Hot Springs fault; (3) a NNE striking structural zone coinciding with the western margins of the caldera complexes; (4) regional magnetic highs that probably represent a thick sequence of Tertiary volcanic rocks; and (5) two probable buried calderas that may be related to the tuffs of Tolicha Peak and of Sleeping Butte, respectively.

  19. EA-1331: Remediation of Subsurface and Groundwater Contamination at the Rock Springs in situ Oil Shale Retort Site, Sweetwater County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal for the Rock Springs In-Situ Oil Shale Retort Test Site remediation that would be performed at the Rock Springs site in Sweetwater...

  20. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect (OSTI)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2001-07-01

    Mechanically weak formations, such as chalks, high porosity sandstones, and marine sediments, pose significant problems for oil and gas operators. Problems such as compaction, subsidence, and loss of permeability can affect reservoir production operations. For example, the unexpected subsidence of the Ekofisk chalk in the North Sea required over one billion dollars to re-engineer production facilities to account for losses created during that compaction (Sulak 1991). Another problem in weak formations is that of shallow water flows (SWF). Deep water drilling operations sometimes encounter cases where the marine sediments, at shallow depths just below the seafloor, begin to uncontrollably flow up and around the drill pipe. SWF problems created a loss of $150 million for the Ursa development project in the U.S. Gulf Coast SWF (Furlow 1998a,b; 1999a,b). The goal of this project is to provide a database on both the rock mechanical properties and the geophysical properties of weak rocks and sediments. These could be used by oil and gas companies to detect, evaluate, and alleviate potential production and drilling problems. The results will be useful in, for example, pre-drill detection of events such as SWF's by allowing a correlation of seismic data (such as hazard surveys) to rock mechanical properties. The data sets could also be useful for 4-D monitoring of the compaction and subsidence of an existing reservoir and imaging the zones of damage. During the second quarter of the project the research team has: (1) completed acoustic sensor construction, (2) conducted reconnaissance tests to map the deformational behaviors of the various rocks, (3) developed a sample assembly for the measurement of dynamic elastic and poroelastic parameters during triaxial testing, and (4) conducted a detailed review of the scientific literature and compiled a bibliography of that review. During the first quarter of the project the research team acquired several rock types for testing including: (a) Danian chalk, (b) Cordoba Cream limestone, (c) Indiana limestone, (d) Ekofisk chalk, (e) Oil Creek sandstone, (f) unconsolidated Oil Creek sand, and (g) unconsolidated Brazos river sand. During the second quarter experiments were begun on these rock types. A series of reconnaissance experiments have been carried out on all but the Ekofisk (for which there is a preliminary data set already inhouse). A series of triaxial tests have been conducted on the Danian chalk, the Cordoba Cream limestone, the Indiana limestone, and sand samples to make a preliminary determination of the deformational mechanisms present in these samples.

  1. The cretaceous source rocks in the Zagros Foothills of Iran: An example of a large size intracratonic basin

    SciTech Connect (OSTI)

    Bordenave, M.L. ); Huc, A.Y. )

    1993-02-01

    The Zagros orogenic belt of Iran is one of the world most prolific petroleum producing area. However, most of the oil production is originated from a relatively small area, the 60,000 km[sup 2] wide Dezful Embayment which contains approximately 12% of the proven oil global reserves. The distribution of the oil and gas fields results from the area extent of six identified source rock layers, their thermal history and reservoir, cap rock and trap availability. In this paper, the emphasis is three of the layers of Cretaceous sources rocks. The Garau facies was deposited during the Neocomian to Albian interval over Lurestan, Northeast Khuzestan and extends over the extreme northeast part of Fars, the Kazhdumi source rock which deposited over the Dezful Embayment, and eventually the Senonian Gurpi Formation which has marginal source rock characteristics in limited areas of Khuzestan and Northern Fars. The deposition environment of these source rock layers corresponds to semipermanent depressions, included in an overall shallow water intracratonic basin communicating with the South Tethys Ocean. These depressions became anoxic when climatic oceanographical and geological conditions were adequate, i.e., humid climate, high stand water, influxes of fine grained clastics and the existence of sills separating the depression from the open sea. Distribution maps of these source rock layers resulting from extensive field work and well control are also given. The maturation history of source rocks is reconstructed from a set of isopachs. It was found that the main contributor to the oil reserves is the Kazhdumi source rock which is associated with excellent calcareous reservoirs.

  2. Effect of recirculation pump trip following anticipated transients without scram at Big Rock Point

    SciTech Connect (OSTI)

    Lyon, R.E.

    1981-08-01

    As requested by the US Atomic Energy Commission (now US Nuclear Regulatory Commission) in their Technical Report on Anticipated Transients Without Scram (ATWS) for Water-Cooled Reactors (WASH-1270), Consumers Power Company has submitted analyses which describe the response of their Big Rock Point (BRP) Plant to ATWS. The original analyses were submitted on Febuary 21, 1975, and results indicated that a recirculation pump trip (RPT) was effective in limiting the consequences of an ATWS. The response of BRP to an ATWS was reanalyzed as a part of the Big Rock Point Probabilistic Risk Assessment (PRA). Results of the analysis were submitted on February 26, 1981, with the conclusion that automatic RPT provides little safety improvement at BRP. Purpose of this report is to evaluate the submitted analyses to determine the effectiveness of Recirculation Pump Trip in ATWS recovery.

  3. Stable isotope evidence for limited fluid infiltration of deep crustal rocks from the Ivrea Zone, Italy

    SciTech Connect (OSTI)

    Baker, A.J.

    1988-06-01

    Isotopic and petrologic studies of the Ivrea Zone, a segment of deep-crustal high-grade rocks, suggest that metamorphism did not involve the transfer of large quantities of CO/sub 2/ from mantle to crust. High-grade Ivrea Zone calcites may retain high ..delta../sup 18/O (up to 24 per thousand SMOW), indicating little interaction with externally derived fluid. Graphite isotopic compositions (..delta../sup 13/C = -10 per thousand to -25 per thousand PDB) that do not vary with grade are attributed to mixing between carbonate carbon and biogenic noncarbonate carbon. Calcites from high-grade, carbonate-poor amphibolites have ..delta../sup 13/C of about 1 per thousand PDB and sedimentary, not infiltrative, origins. The general lack of carbon and oxygen isotopic homogenization suggests that fluid interactions may be explained in terms of fluid generated internally to the Ivrea Zone metasedimentary rocks.

  4. Method of measuring material properties of rock in the wall of a borehole

    DOE Patents [OSTI]

    Overmier, David K.

    1985-01-01

    To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurement of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.

  5. Method of measuring material properties of rock in the wall of a borehole

    DOE Patents [OSTI]

    Overmier, D.K.

    1984-01-01

    To measure the modulus of elasticity of the rock in the wall of a borehole, a plug is cut in the borehole wall. The plug, its base attached to the surrounding rock, acts as a short column in response to applied forces. A loading piston is applied to the top of the plug and compression of the plug is measured as load is increased. Measurements of piston load and plug longitudinal deformation are made to determine the elastic modulus of the plug material. Poisson's ratio can be determined by simultaneous measurements of longitudinal and lateral deformation of the plug in response to loading. To determine shear modulus, the top of the plug is twisted while measurements are taken of torsional deformation.

  6. A new friction factor correlation for laminar, single-phase flows through rock fractures

    SciTech Connect (OSTI)

    Nazridoust, K. (Clarkson Univ., Potsdam, NY); Ahmadi, G. (Clarkson Univ., Potsdam, NY); Smith, D.H.

    2006-09-30

    Single-phase flow through fractured media occurs in various situations, such as transport of dissolved contaminants through geological strata, sequestration of carbon dioxide in depleted gas reservoirs, and in primary oil recovery. In the present study, fluid flows through a rock fracture were simulated. The fracture geometry was obtained from the CT scans of a rock fracture produced by the Brazilian method in a sandstone sample. A post-processing code using a CAD package was developed and used to generate the three-dimensional fracture from the CT scan data. Several sections along the fracture were considered and the GambitTM code was used to generate unstructured grids for flow simulations. FLUENTTM was used to analyze the flow conditions through the fracture section for different flow rates. Because of the small aperture of the fractures, the gravitational effects could be neglected. It was confirmed that the pressure drop was dominated by the smallest aperture passages of the fracture. The accuracy of parallel plate models for estimating the pressure drops through fractures was studied. It was shown that the parallel plate flow model with the use of an appropriate effective fracture aperture and inclusion of the tortuosity factor could provide reasonable estimates for pressure drops in the fracture. On the basis of the CFD simulation data, a new expression for the friction factor for flows through fractures was developed. The new model predictions were compared with the simulation results and favorable agreement was found. It was shown that when the length of the fracture and the mean and standard deviation of the fracture are known, the pressure loss as a function of the flow rate could be estimated. These findings may prove useful for design of lab experiments, computational studied of flows through real rock fractures, or inclusions in simulators for large-scale flows in highly fractured rocks.

  7. The Bolivian source rocks: Sub Andean Zone-Madre de Dios-Chaco

    SciTech Connect (OSTI)

    Moretti, I.; Montemurro, G.; Aguilera, E.; Perez, M.; Martinez, E.Diaz

    1996-08-01

    A complete study of source rocks has been carried out in the Bolivian foothills and foreland (Sub Andean Zone, Chaco and Madre de Dios) in order to quantify the petroleum potential of the area. Besides the classical mid-Devonian source rocks (Tequeje Formation in the north, Limoncito Formation in the center and Los Monos Formation in the south), others are important: the Tomachi Formation (late Devonian) in the north and the Copacabana Formation (Upper Carboniferous-lower Permian) in the northern Sub Andean Zone. Both show an excellent potential with S{sub 2} over 50 mg HC/g and average values higher than 10 mg HC/g over few hundred meters. The Latest Cretaceous Flora Formation present locally a high potential but is very thin. Almost all the source rocks matured during the Neogene due to the subsidence in the Andean foreland and in the piggyback basins, and are thus involved on the current petroleum system. Silurian and Lower Paleozoic units also contain thick shale beds, but these source rocks were mature before the Jurassic in the south of the country. In the center, the Silurian is not nowadays overmature and may play an important role. The different zones are compared based on their Source Potential Index which indicates that the richest areas are the northern Sub Andean Zone and the Madre de Dios basin with SPI greater than 10 t/m{sup 2}. Since these two areas remain almost unexplored, these results allow us to be optimistic about the possibilities for future exploration.

  8. A LANL Scientist's Dream Takes Off to Zap Rocks on Mars

    ScienceCinema (OSTI)

    Wiens, Roger

    2012-08-02

    Roger Wiens, with a team of 40 people at Los Alamos National Laboratory and the collaboration of the French space institute IRAP, created ChemCam, a laser spectrometer and telescope device aboard the Curiosity rover. ChemCam will blast rocks from as far as 7 meters, vaporize bits of their surfaces, and spectroscopically determine their chemical composition, aiding in the search for life on Mars, and making this scientist's boyhood dream a reality.

  9. Figure 2. Stratigraphic Summary of Ages, Names and Rock Types in the ANWR

    U.S. Energy Information Administration (EIA) Indexed Site

    1002 2. Stratigraphic Summary of Ages, Names and Rock Types in the ANWR 1002 and Coastal Plain Area of the Alaska North Slope. Potentially Productive Reservoirs and Plays Assessed by the USGS are Indicated fig2.jpg (30091 bytes) Source: Edited from U.S. Geological Survey, "The Oil and Gas Resource Potential of the Arctic National Wildlife Refuge 1002 Area, Alaska," Open File Report 98-34, 1999.

  10. Field-Scale Effective Matrix Diffusion Coefficient for FracturedRock: Results From Literature Survey

    SciTech Connect (OSTI)

    Zhou, Quanlin; Liu, Hui Hai; Molz, Fred J.; Zhang, Yingqi; Bodvarsson, Gudmundur S.

    2005-03-28

    Matrix diffusion is an important mechanism for solutetransport in fractured rock. We recently conducted a literature survey onthe effective matrix diffusion coefficient, Dem, a key parameter fordescribing matrix diffusion processes at the field scale. Forty fieldtracer tests at 15 fractured geologic sites were surveyed and selectedfor study, based on data availability and quality. Field-scale Dem valueswere calculated, either directly using data reported in the literature orby reanalyzing the corresponding field tracer tests. Surveyed dataindicate that the effective-matrix-diffusion-coefficient factor FD(defined as the ratio of Dem to the lab-scale matrix diffusioncoefficient [Dem]of the same tracer) is generally larger than one,indicating that the effective matrix diffusion coefficient in the fieldis comparatively larger than the matrix diffusion coefficient at therock-core scale. This larger value could be attributed to the manymass-transfer processes at different scales in naturally heterogeneous,fractured rock systems. Furthermore, we observed a moderate trend towardsystematic increase in the emDFmDDF value with observation scale,indicating that the effective matrix diffusion coefficient is likely tobe statistically scale dependent. The FD value ranges from 1 to 10,000for observation scales from 5 to 2,000 m. At a given scale, the FD valuevaries by two orders of magnitude, reflecting the influence of differingdegrees of fractured rock heterogeneity at different sites. In addition,the surveyed data indicate that field-scale longitudinal dispersivitygenerally increases with observation scale, which is consistent withprevious studies. The scale-dependent field-scale matrix diffusioncoefficient (and dispersivity) may have significant implications forassessing long-term, large-scale radionuclide and contaminant transportevents in fractured rock, both for nuclear waste disposal and contaminantremediation.

  11. Landslides and other mass movements near TA-33, northern White Rock Canyon, New Mexico. Final report

    SciTech Connect (OSTI)

    Dethier, D.P.

    1993-09-01

    Massive slump complexes and at least two rock avalanches flank the eastern rim of the Pajarito Plateau along northern White Rock Canyon, north of TA-33. Landslides failed along mechanically weak rocks in the Santa Fe Group, within the Puye Formation, or in Pliocene alluvial and lacustrine units. The landslides are mainly of early or middle Pleistocene age. The toe area of at least,one slump complex has been active in the late Pleistocene, damming White Rock Canyon near the mouth of Water Canyon. Lacustrine sediment that filled this lake, or series of lakes, to an elevation of at least 1710 m is preserved at a number of upstream sites, including a deposit near the Buckman townsite that exposes 30 m of lacustrine sediment. Charcoal collected at several sites has been submitted for {sup 14}C dating. Landslides, however, probably do not represent a significant short-term threat to the material disposal areas at TA-33. Bedrock that lies beneath the TA-33 mesa is relatively stable, the mesa shows no signs of incipient failure, and past periods of slide activity were responses to rapid downcutting of the Rio Grande and climate change, probably over periods of several decades, at least. Rockfall and headward erosion of gullies do not represent significant decadal hazards on canyon rims near TA-33. Gully migration near MDA-K is a potential threat, but the gullies were not examined in detail. A system of north-trending faults, at least one of which displays Pleistocene activity, bisects the TA-33 mesa. If these faults are capable of producing significant seismic shaking, generalizations about landslide and rockfall hazards must be reevaluated.

  12. Summary of three dimensional pump testing of a fractured rock aquifer in the western Siberian Basin

    SciTech Connect (OSTI)

    Nichols, R.L.; Looney, B.B.; Eddy-Dilek, C.A.; Drozhko, E.G.; Glalolenko, Y.V.; Mokrov, Y.G.; Ivanov, I.A.; Glagolev, A.V.; Vasil`kova, N.A.

    1996-10-30

    A group of scientists from the Savannah River Technology Center and Russia successfully completed a 17 day field investigation of a fractured rock aquifer at the MAYAK PA nuclear production facility in Russia. The test site is located in the western Siberian Basin near the floodplain of the Mishelyak river. The fractured rock aquifer is composed of orphyrites, tuff, tuffbreccia and lava and is overlain by 0.5--12 meters of elluvial and alluvial sediments. A network of 3 uncased wells (176, 1/96, and 2/96) was used to conduct the tests. Wells 176 and 2/96 were used as observation wells and the centrally located well 1/96 was used as the pumping well. Six packers were installed and inflated in each of the observation wells at a depth of up to 85 meters. The use of 6 packers in each well resulted in isolating 7 zones for monitoring. The packers were inflated to different pressures to accommodate the increasing hydrostatic pressure. A straddle packer assembly was installed in the pumping well to allow testing of each of the individual zones isolated in the observation wells. A constant rate pumping test was run on each of the 7 zones. The results of the pumping tests are included in Appendix A. The test provided new information about the nature of the fractured rock aquifers in the vicinity of the Mishelyak river and will be key information in understanding the behavior of contaminants originating from process wastes discharged to Lake Karachi. Results from the tests will be analyzed to determine the hydraulic properties of different zones within the fractured rock aquifer and to determine the most cost effective clean-up approach for the site.

  13. Insensitive explosive composition and method of fracturing rock using an extrudable form of the composition

    DOE Patents [OSTI]

    Davis, Lloyd L

    2013-11-05

    Insensitive explosive compositions were prepared by reacting di-isocyanate and/or poly-isocyanate monomers with an explosive diamine monomer. Prior to a final cure, the compositions are extrudable. The di-isocyanate monomers tend to produce tough, rubbery materials while polyfunctional monomers (i.e. having more than two isocyanate groups) tend to form rigid products. The extrudable form of the composition may be used in a variety of applications including rock fracturing.

  14. Insensitive explosive composition and method of fracturing rock using an extrudable form of the composition

    DOE Patents [OSTI]

    Davis, Lloyd L.

    2015-07-28

    Insensitive explosive compositions were prepared by reacting di-isocyanate and/or poly-isocyanate monomers with an explosive diamine monomer. Prior to a final cure, the compositions are extrudable. The di-isocyanate monomers tend to produce tough, rubbery materials while polyfunctional monomers (i.e. having more than two isocyanate groups) tend to form rigid products. The extrudable form of the composition may be used in a variety of applications including rock fracturing.

  15. Subsurface cross section of lower Paleozoic rocks, Powder River basin, Wyoming and Montana

    SciTech Connect (OSTI)

    Macke, D.L.

    1988-07-01

    The Powder River basin is one of the most actively explored Rocky Mountain basins for hydrocarbons, yet the lower Paleozoic (Cambrian through Mississippian) rocks of this interval remain little studied. As a part of a program studying the evolution of sedimentary basins, approximately 3200 km of cross section, based on more than 50 combined geophysical and lithologic logs, have been constructed covering an area of about 200,000 km/sup 2/. The present-day basin is a Cenozoic structural feature located between the stable interior of the North American craton and the Cordilleran orogenic belt. At various times during the early Paleozoic, the basin area was not distinguishable from either the stable craton, the Williston basin, the Central Montana trough, or the Cordilleran miogeocline. Both deposition and preservation in the basin have been greatly influenced by the relative uplift of the Transcontinental arch. Shows of oil and dead oil in well cuttings confirm that hydrocarbons have migrated through at least parts of the basin's lower Paleozoic carbonate section. These rocks may have been conduits for long-distance migration of hydrocarbons as early as Late Cretaceous, based on (1) the probable timing of thermal maturation of hydrocarbon-source rocks within the basin area and to the west, (2) the timing of Laramide structural events, (3) the discontinuous nature of the reservoirs in the overlying, highly productive Pennsylvanian-Permian Minnelusa Formation, and (4) the under-pressuring observed in some Minnelusa oil fields. Vertical migration into the overlying reservoirs could have been through deep fractures within the basin, represented by major lineament systems. Moreover, the lower Paleozoic rocks themselves may also be hydrocarbon reservoirs.

  16. Peer Review of the Hot Dry Rock Project at Fenton Hill, New Mexico

    SciTech Connect (OSTI)

    1998-12-01

    This report briefly describes the history of the hot dry rock experiment project conducted by the U.S. Department of Energy and Los Alamos National Laboratory at Fenton Hill, New Mexico, from about 1971 through 1995. The authors identify the primary lessons learned and techniques developed during the course of the Fenton Hill project, and summarize the extent to which these technologies have been transferred to the U.S. geothermal industry.

  17. Thoughts Regarding the Dimensions of Faults at Rainier and Aqueduct Mesas, Nye County, Nevada, Based on Surface and Underground Mapping

    SciTech Connect (OSTI)

    Drellack, S.L.; Prothro, L.B.; Townsend, M.J.; Townsend, D.R.

    2011-02-01

    The geologic setting and history, along with observations through 50 years of detailed geologic field work, show that large-displacement (i.e., greater than 30 meters of displacement) syn- to post-volcanic faults are rare in the Rainier Mesa area. Faults observed in tunnels and drill holes are mostly tight, with small displacements (most less than 1.5 meters) and small associated damage zones. Faults are much more abundant in the zeolitized tuffs than in the overlying vitric tuffs, and there is little evidence that faults extend downward from the tuff section through the argillic paleocolluvium into pre-Tertiary rocks. The differences in geomechanical characteristics of the various tuff lithologies at Rainier Mesa suggest that most faults on Rainer Mesa are limited to the zeolitic units sandwiched between the overlying vitric bedded tuffs and the underlying pre-Tertiary units (lower carbonate aquifer3, lower clastic confining unit1, and Mesozoic granite confining unit).

  18. Potential increases in natural radon emissions due to heating of the Yucca Mountain rock mass

    SciTech Connect (OSTI)

    Pescatore, C.; Sullivan, T.M.

    1992-02-01

    Heating of the rock mass by the spent fuel in the proposed repository at Yucca Mountain will cause extra amounts of natural radon to diffuse into the fracture system and to migrate faster to the accessible environment. Indeed, free-convection currents due to heating will act to shorten the radon travel times and will cause larger releases than would be possible under undistributed conditions. To estimate the amount of additional radon released due to heating of the Yucca Mountain rock mass, we obtain an expression for the release enhancement factor, E. This factor is defined as the ratio between the total flux of radon at the surface of the mountain before and after closure of the repository assuming the only cause of disturbance to be the heating of the rock mass. With appropriate approximations and using a heat load representative of that expected at Yucca Mountain, the present calculations indicate that the average enhancement factor over the first 10,000 years will be 4.5 as a minimum. These calculations are based on the assumption that barometric pumping does not significantly influence radon release. The latter assumption will need to be substantiated.

  19. Measurements and modeling of surface waves in drilled shafts in rock

    SciTech Connect (OSTI)

    Kalinski, M.E.; Stokoe, K.H. II; Roesset, J.M.; Cheng, D.S.

    1999-07-01

    Seismic testing was conducted in the WIPP facility in November 1994 by personnel from the Geotechnical Engineering Center at the University of Texas at Austin. Surface wave measurements were made in horizontal drilled shafts in rock salt to characterize the stiffness of the rock around the shafts. The Spectral-Analysis-of-Surface-Waves (SASW) method was used to determine dispersion curves of surface wave velocity versus wavelength. Dispersion curves were measured for surface waves propagating axially and circumferentially in the shafts. Surface wave velocities determined from axial testing increased slightly with increasing wavelength due to the cylindrical geometry of the shafts. On the other hand, surface wave velocities determined from circumferential testing exhibited a completely different type of geometry-induced dispersion. In both instances, finite-element forward modeling of the experimental dispersion curves revealed the presence of a thin, slightly softer disturbed rock zone (DRZ) around the shafts. This phenomenon has been previously confirmed by crosshole and other seismic measurements and is generally associated with relaxation of the individual salt crystals after confirming stress is relieved by excavation.

  20. Chemical analyses of rocks, minerals, and detritus, Yucca Mountain--Preliminary report, special report No. 11

    SciTech Connect (OSTI)

    Hill, C.A.; Livingston, D.E.

    1993-09-01

    This chemical analysis study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed assessment of the geology and geochemistry of Yucca Mountain and adjacent regions. This report is preliminary in the sense that more chemical analyses may be needed in the future and also in the sense that these chemical analyses should be considered as a small part of a much larger geological data base. The interpretations discussed herein may be modified as that larger data base is examined and established. All of the chemical analyses performed to date are shown in Table 1. There are three parts to this table: (1) trace element analyses on rocks (limestone and tuff) and minerals (calcite/opal), (2) rare earth analyses on rocks (tuff) and minerals (calcite/opal), and (3) major element analyses + CO{sub 2} on rocks (tuff) and detritus sand. In this report, for each of the three parts of the table, the data and its possible significance will be discussed first, then some overall conclusions will be made, and finally some recommendations for future work will be offered.

  1. Thermal Expansion Behavior of Cerro Prieto Sandstones and Other Sedimentary Rocks Under Stress

    SciTech Connect (OSTI)

    Contreras, E.; Bermejo, F.

    1983-12-15

    This paper describes the experimental work and presents the results of a research program carried out to investigate the thermal expansion behavior of sedimentary rocks under high stress conditions. The aspects that were investigated include the effects of temperature, temperature cycling, and confining pressure. Furthermore, the validity of the usual assumption on thermal expansion isotropy was investigated. On the other hand, the matrix thermal expansion concept is analyzed and its physical meaning and aplications are discussed. The effect of temperature on porosity is also a subject investigated regarding experimental methods for its estimation and comparison of earlier results. The experiments carried out consisted basically of thermal strain versus temperature measurements on jacketed and unjacketed samples subjected to different confining pressures and covering the temperature range from 25 C to 280 C and the pressure range from 3.0 MPa to 34.4 MPa. A review of earlier work is included as a reference frame to discuss and compare the results of this work, as well as to emphasize the limited extent of the research on thermal expansion behavior of sedimentary rocks that had been accomplished. Results are presented by means of thermal strain versus temperature curves and tabular data of thermal expansion coefficients. Several important conclusions for laborarory and field applications are reached from each of the aspects investigated. The wide research scope of considerable amount of data reported may represent an important contribution to the knowledge of thermal expansion behavior of sedimentary rocks.

  2. Chemically- and mechanically-mediated influences on the transport and mechanical characteristics of rock fractures

    SciTech Connect (OSTI)

    Min, K.-B.; Rutqvist, J.; Elsworth, D.

    2009-02-01

    A model is presented to represent changes in the mechanical and transport characteristics of fractured rock that result from coupled mechanical and chemical effects. The specific influence is the elevation of dissolution rates on contacting asperities, which results in a stress- and temperature-dependent permanent closure. A model representing this pressure-dissolution-like behavior is adapted to define the threshold and resulting response in terms of fundamental thermodynamic properties of a contacting fracture. These relations are incorporated in a stress-stiffening model of fracture closure to define the stress- and temperature-dependency of aperture loss and behavior during stress and temperature cycling. These models compare well with laboratory and field experiments, representing both decoupled isobaric and isothermal responses. The model was applied to explore the impact of these responses on heated structures in rock. The result showed a reduction in ultimate induced stresses over the case where chemical effects were not incorporated, with permanent reduction in final stresses after cooling to ambient conditions. Similarly, permeabilities may be lower than they were in the case where chemical effects were not considered, with a net reduction apparent even after cooling to ambient temperature. These heretofore-neglected effects may have a correspondingly significant impact on the performance of heated structures in rock, such as repositories for the containment of radioactive wastes.

  3. WETTABILITY ALTERATION OF CARBONATE ROCK MEDIATED BY BIOSURFACTANT PRODUCED FROM HIGH-STARCH AGRICULTURAL EFFLUENTS

    SciTech Connect (OSTI)

    Mehdi Salehi; Stephen Johnson; Gregory Bala; Jenn-Tai Liang

    2006-09-01

    Surfactants can be used to alter wettability of reservoir rock, increasing spontaneous imbibition and thus improving oil yields. Commercial synthetic surfactants are often prohibitively expensive and so a crude preparation of the anionic biosurfactant, surfactin, from Bacillus subtilis grown on high-starch industrial and agricultural effluents has been proposed as an economical alternative. To assess the effectiveness of the surfactin, it is compared to commercially available surfactants. In selecting a suitable benchmark surfactant, two metrics are examined: the ability of the surfactants to alter wettability at low concentrations, and the degree to which they are absorbed onto reservoir matrix. We review the literature to survey the adsorption models that have been developed to describe surfactant adsorption in porous media. These models are evaluated using the experimental data from this study. Crushed carbonate rock samples are cleaned and aged in crude oil. The wettability change mediated by dilute solutions of commercial anionic surfactants and surfactin is assessed using a two-phase separation; and surfactant loss due to retention and adsorption the rock is determined.

  4. Final Report - Advanced Conceptual Models for Unsaturated and Two-Phase Flow in Fractured Rock

    SciTech Connect (OSTI)

    Nicholl, Michael J.

    2006-07-10

    The Department of Energy Environmental Management Program is faced with two major issues involving two-phase flow in fractured rock; specifically, transport of dissolved contaminants in the Vadose Zone, and the fate of Dense Nonaqueous Phase Liquids (DNAPLs) below the water table. Conceptual models currently used to address these problems do not correctly include the influence of the fractures, thus leading to erroneous predictions. Recent work has shown that it is crucial to understand the topology, or ''structure'' of the fluid phases (air/water or water/DNAPL) within the subsurface. It has also been shown that even under steady boundary conditions, the influence of fractures can lead to complex and dynamic phase structure that controls system behavior, with or without the presence of a porous rock matrix. Complicated phase structures within the fracture network can facilitate rapid transport, and lead to a sparsely populated and widespread distribution of concentrated contaminants; these qualities are highly difficult to describe with current conceptual models. The focus of our work is to improve predictive modeling through the development of advanced conceptual models for two-phase flow in fractured rock.

  5. Commercial potential of natural gas storage in lined rock caverns (LRC)

    SciTech Connect (OSTI)

    1999-11-01

    The geologic conditions in many regions of the United States will not permit the development of economical high-deliverability gas storage in salt caverns. These regions include the entire Eastern Seaboard; several northern states, notably Minnesota and Wisconsin; many of the Rocky Mountain States; and most of the Pacific Northwest. In late 1997, the United States Department of Energy (USDOE) Federal Energy Technology Center engaged Sofregaz US to investigate the commercialization potential of natural gas storage in Lined Rock Caverns (LRC). Sofregaz US teamed with Gaz de France and Sydkraft, who had formed a consortium, called LRC, to perform the study for the USDOE. Underground storage of natural gas is generally achieved in depleted oil and gas fields, aquifers, and solution-mined salt caverns. These storage technologies require specific geologic conditions. Unlined rock caverns have been used for decades to store hydrocarbons - mostly liquids such as crude oil, butane, and propane. The maximum operating pressure in unlined rock caverns is limited, since the host rock is never entirely impervious. The LRC technology allows a significant increase in the maximum operating pressure over the unlined storage cavern concept, since the gas in storage is completely contained with an impervious liner. The LRC technology has been under development in Sweden by Sydkraft since 1987. The development process has included extensive technical studies, laboratory testing, field tests, and most recently includes a storage facility being constructed in southern Sweden (Skallen). The LRC development effort has shown that the concept is technically and economically viable. The Skallen storage facility will have a rock cover of 115 meters (375 feet), a storage volume of 40,000 cubic meters (250,000 petroleum barrels), and a maximum operating pressure of 20 MPa (2,900 psi). There is a potential for commercialization of the LRC technology in the United States. Two regions were studied in some detail - the Northeast and the Southeast. The investment cost for an LRC facility in the Northeast is approximately $182 million and $343 million for a 2.6-billion cubic foot (bcf) working gas facility and a 5.2-bcf working gas storage facility, respectively. The relatively high investment cost is a strong function of the cost of labor in the Northeast. The labor union-related rules and requirements in the Northeast result in much higher underground construction costs than might result in Sweden, for example. The LRC technology gas storage service is compared to other alternative technologies. The LRC technology gas storage service was found to be competitive with other alternative technologies for a variety of market scenarios.

  6. FIELD-SCALE EFFECTIVE MATRIX DIFFUSION COEFFICIENT FOR FRACTURED ROCK:RESULTS FROM LITERATURE SURVEY

    SciTech Connect (OSTI)

    Q. Zhou; Hui-Hai Liu; F.J. Molz; Y. Zhang; G.S. Bodvarsson

    2005-04-08

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D{sub m}{sup e}, a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D{sub m}{sup e} values were calculated, either directly using data reported in the literature or by reanalyzing the corresponding field tracer tests. Surveyed data indicate that the effective-matrix-diffusion-coefficient factor F{sub D} (defined as the ratio of D{sub m}{sup e} to the lab-scale matrix diffusion coefficient [D{sub m}] of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate trend toward systematic increase in the F{sub D} value with observation scale, indicating that the effective matrix diffusion coefficient is likely to be statistically scale dependent. The F{sub D} value ranges from 1 to 10,000 for observation scales from 5 to 2,000 m. At a given scale, the F{sub D} value varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal and contaminant remediation.

  7. GEOCHEMICAL INVESTIGATIONS OF CO₂-BRINE-ROCK INTERACTIONS OF THE KNOX GROUP IN THE ILLINOIS BASIN

    SciTech Connect (OSTI)

    Yoksoulian, Lois; Berger, Peter; Freiburg, Jared; Butler, Shane; Leetaru, Hannes

    2014-09-30

    Increased output of greenhouse gases, particularly carbon dioxide (CO₂), into the atmosphere from anthropogenic sources is of great concern. A potential technology to reduce CO₂ emissions is geologic carbon sequestration. This technology is currently being evaluated in the United States and throughout the world. The geology of the Illinois Basin exhibits outstanding potential as a carbon sequestration target, as demonstrated by the ongoing Illinois Basin – Decatur Project that is using the Mt. Simon Sandstone reservoir and Eau Claire Shale seal system to store and contain 1 million tonnes of CO₂. The Knox Group-Maquoketa Shale reservoir and seal system, located stratigraphically above the Mt. Simon Sandstone-Eau Claire Shale reservoir and seal system, has little economic value as a resource for fossil fuels or as a potable water source, making it ideal as a potential carbon sequestration target. In order for a reservoir-seal system to be effective, it must be able to contain the injected CO₂ without the potential for the release of harmful contaminants liberated by the reaction between CO₂-formation fluids and reservoir and seal rocks. This study examines portions of the Knox Group (Potosi Dolomite, Gunter Sandstone, New Richmond Sandstone) and St. Peter Sandstone, and Maquoketa Shale from various locations around the Illinois Basin. A total of 14 rock and fluid samples were exposed to simulated sequestration conditions (9101–9860 kPa [1320–1430 psi] and 32°–42°C [90°– 108°F]) for varying amounts of time (6 hours to 4 months). Knox Group reservoir rocks exhibited dissolution of dolomite in the presence of CO₂ as indicated by petrographic examination, X-ray diffraction analysis, and fluid chemistry analysis. These reactions equilibrated rapidly, and geochemical modeling confirmed that these reactions reached equilibrium within the time frames of the experiments. Pre-reaction sample mineralogy and postreaction fluid geochemistry from this study suggests only limited potential for the release of United States Environmental Protection Agency regulated inorganic contaminants into potable water sources. Short-term core flood experiments further verify that the carbonate reactions occurring in Knox Group reservoir samples reach equilibrium rapidly. The core flood experiments also lend insight to pressure changes that may occur during CO₂ injection. The Maquoketa Shale experiments reveal that this rock is initially chemically reactive when in contact with CO₂ and brine. However, due to the conservative nature of silicate and clay reaction kinetics and the rapid equilibration of carbonate reactions that occur in the shale, these reactions would not present a significant risk to the competency of the shale as an effective seal rock.

  8. Actualistic and Geochemical Modeling of Reservoir Rock, CO2 and Formation Fluid Interaction, Citronelle Oil Field, Alabama

    SciTech Connect (OSTI)

    Weislogel, Amy

    2014-01-31

    This report includes description of the Citronelle field study area and the work carried out in the project to characterize the geology and composition of reservoir rock material and to collect an analyze the geochemical composition of produced fluid waters from the Citronelle field. Reservoir rock samples collected from well bore core were made into thin-sections and assessed for textural properties, including pore types and porosity distribution. Compositional framework grain modal data were collected via point-counting, and grain and cement mineralogy was assessed using SEM-EDS. Geochemistry of fluid samples is described and modeled using PHREEQC. Composition of rock and produced fluids were used as inputs for TOUGHREACT reactive transport modeling, which determined the rock-fluid system was in disequilibrium.

  9. Innovative Computational Tools for Reducing Exploration Risk Through Integration of Water-Rock Interactions and Magnetotelluric Surveys

    Broader source: Energy.gov [DOE]

    Innovative Computational Tools for Reducing Exploration Risk Through Integration of Water-Rock Interactions and Magnetotelluric Surveys presentation at the April 2013 peer review meeting held in Denver, Colorado.

  10. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    SciTech Connect (OSTI)

    Wardaya, P. D. Noh, K. A. B. M. Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.

    2014-09-25

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave velocity of rock.

  11. Heat Flow Determinations and Implied Thermal Regime of the Coso...

    Open Energy Info (EERE)

    hydrothermally altered rocks. Abundant Pleistocene volcanic rocks, including a cluster of thirty-seven rhyolite domes, occupy a north-trending structural and topographic...

  12. Heat flow determinations and implied thermal regime of the Coso...

    Open Energy Info (EERE)

    hydrothermally altered rocks. Abundant Pleistocene volcanic rocks, including a cluster of thirty-seven rhyolite domes, occupy a north-trending structural and topographic...

  13. Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions

    SciTech Connect (OSTI)

    Davies, D.K.; Vessell, R.K.; Doublet, L.E.

    1997-08-01

    An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

  14. Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1979

    SciTech Connect (OSTI)

    Cremer, G.M.; Duffield, R.B.; Smith, M.C.; Wilson, M.G.

    1980-08-01

    The Fenton Hill Project is still the principal center for developing methods, equipment, and instrumentation for creating and utilizing HDR geothermal reservoirs. The search for a second site for a similar experimental system in a different geological environment has been intensified, as have the identification and characterization of other HDR areas that may prove suitable for either experimental or commercial development. The Phase I fracture system was enlarged during FY79. Drilling of the injection well of the Phase II system began at Fenton Hill in April 1979. Environmental monitoring of the Fenton Hill area continued through FY79. The environmental studies indicate that the hot dry rock operations have caused no significant environmental impact. Other supporting activities included rock physics, rock mechanics, fracture mapping, and instrumentation development. Two closely related activities - evaluation of the potential HDR energy resource of the US and the selection of a site for development of a second experimental heat-extraction system generally similar to that at Fenton Hill - have resulted in the collection of geology, hydrology, and heat-flow data on some level of field activity in 30 states. The resource-evaluation activity included reconnaissance field studies and a listing and preliminary characterization of US geothermal areas in which HDR energy extraction methods may be applicable. The selection of Site 2 has taken into account such legal, institutional, and economic factors as land ownership and use, proximity to possible users, permitting and licensing requirements and procedures, environmental issues, areal extent of the geothermal area, and visibility to and apparent interest by potential industrial developers.

  15. Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin

    SciTech Connect (OSTI)

    Wood, James R.; Harrison, William B.

    2000-10-24

    The main objective of this project is for a university-industry consortium to develop a comprehensive model for fracture carbonate reservoirs based on the ''data cube'' concept using the Michigan Basin as a prototype. This project combined traditional historical data with 2D and 3D seismic data as well as data from modern logging tools in a novel way to produce a new methodology for characterizing fractured reservoirs in carbonate rocks. Advanced visualization software was used to fuse the data and to image it on a variety of scales, ranging from basin-scale to well-scales.

  16. High temperature thermoelectric properties of rock-salt structure PbS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Parker, David S.; Singh, David J.

    2013-12-18

    We present an analysis of the high temperature transport properties of rock-salt structure PbS, a sister compound to the better studied lead chalcogenides PbSe and PbTe. In this study, we find thermopower magnitudes exceeding 200 V/K in a wide doping range for temperatures of 800 K and above. Based on these calculations, and an analysis of recent experimental work we find that this material has a potential for high thermoelectric performance. Also, we find favorable mechanical properties, based on an analysis of published data.

  17. Multiscale heterogeneity characterization of tidal channel, tidal delta and foreshore facies, Almond Formation outcrops, Rock Springs uplift, Wyoming

    SciTech Connect (OSTI)

    Schatzinger, R.A.; Tomutsa, L.

    1997-08-01

    In order to accurately predict fluid flow within a reservoir, variability in the rock properties at all scales relevant to the specific depositional environment needs to be taken into account. The present work describes rock variability at scales from hundreds of meters (facies level) to millimeters (laminae) based on outcrop studies of the Almond Formation. Tidal channel, tidal delta and foreshore facies were sampled on the eastern flank of the Rock Springs uplift, southeast of Rock Springs, Wyoming. The Almond Fm. was deposited as part of a mesotidal Upper Cretaceous transgressive systems tract within the greater Green River Basin. Bedding style, lithology, lateral extent of beds of bedsets, bed thickness, amount and distribution of depositional clay matrix, bioturbation and grain sorting provide controls on sandstone properties that may vary more than an order of magnitude within and between depositional facies in outcrops of the Almond Formation. These features can be mapped on the scale of an outcrop. The products of diagenesis such as the relative timing of carbonate cement, scale of cemented zones, continuity of cemented zones, selectively leached framework grains, lateral variability of compaction of sedimentary rock fragments, and the resultant pore structure play an equally important, although less predictable role in determining rock property heterogeneity. A knowledge of the spatial distribution of the products of diagenesis such as calcite cement or compaction is critical to modeling variation even within a single facies in the Almond Fin. because diagenesis can enhance or reduce primary (depositional) rock property heterogeneity. Application of outcrop heterogeneity models to the subsurface is greatly hindered by differences in diagenesis between the two settings. The measurements upon which this study is based were performed both on drilled outcrop plugs and on blocks.

  18. THERMO-HYDRO-MECHANICAL MODELING OF WORKING FLUID INJECTION AND THERMAL ENERGY EXTRACTION IN EGS FRACTURES AND ROCK MATRIX

    SciTech Connect (OSTI)

    Robert Podgorney; Chuan Lu; Hai Huang

    2012-01-01

    Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions of EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability evolution.

  19. Hydrothermal dolomitization of Jurassic-Cretaceous limestones in the southern Alps (Italy): Relation to tectonics and volcanism

    SciTech Connect (OSTI)

    Cervato, C. )

    1990-05-01

    Dolomitization has affected up to 750m of the Jurassic and Cretaceous pelagic carbonate sequence of the southern continental margin of the Alpine Tethys; the sequence crops out in the southern Alps of Italy (Monti Lessini). Late Paleocene to Miocene extrusion of basaltic tuffs, breccias, and lavas was contemporaneous with the dolomitization was was associated with extensive tectonism in an ancient back-arc basin. More than 200 samples were analyzed by X-ray diffraction, cathodoluminescence, scanning electron microscopy, stable isotope ratios (carbon, oxygen, strontium), and clay mineralogy. The dolomite contains 40% to 50% MgCO{sub 3}. In thin sections, the crystal size distribution is unimodal (about 100 {mu}m), possibly indicating a single nucleation for the main crystallization phase. The {delta}{sup 13}C of the dolomite is not appreciably different from the undolomitized pelagic limestone (+1.0{per thousand} to +2.0{per thousand} Peedee belemnite (PDB)). The {delta}{sup 18}O variation (-5.0{per thousand} to -13.0{per thousand} PDB) is due to temperature variation in the system. The {sup 87}Sr/{sup 86}Sr ratio in the dolomite (0.70839-0.70867) is consistent with the ratio in late Oligocene-Miocene marine water. Clay minerals in limestone and dolomite differ in the presence of neoformed Mg-chlorite, indicating a maximum temperature of about 150C for dolomitization. The dolomite is suggested to have a hydrothermal origin. The heat flow associated with the volcanism allowed marine water to penetrate the system and circulate in convective cells through the tectonic breccias, locally dolomitizing the limestone.

  20. Computational Modeling of Fluid Flow through a Fracture in Permeable Rock

    SciTech Connect (OSTI)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H

    2010-01-01

    Laminar, single-phase, finite-volume solutions to the NavierStokes equations of fluid flow through a fracture within permeable media have been obtained. The fracture geometry was acquired from computed tomography scans of a fracture in Berea sandstone, capturing the small-scale roughness of these natural fluid conduits. First, the roughness of the two-dimensional fracture profiles was analyzed and shown to be similar to Brownian fractal structures. The permeability and tortuosity of each fracture profile was determined from simulations of fluid flow through these geometries with impermeable fracture walls. A surrounding permeable medium, assumed to obey Darcys Law with permeabilities from 0.2 to 2,000 millidarcies, was then included in the analysis. A series of simulations for flows in fractured permeable rocks was performed, and the results were used to develop a relationship between the flow rate and pressure loss for fractures in porous rocks. The resulting frictionfactor, which accounts for the fracture geometric properties, is similar to the cubic law; it has the potential to be of use in discrete fracture reservoir-scale simulations of fluid flow through highly fractured geologic formations with appreciable matrix permeability. The observed fluid flow from the surrounding permeable medium to the fracture was significant when the resistance within the fracture and the medium were of the same order. An increase in the volumetric flow rate within the fracture profile increased by more than 5% was observed for flows within high permeability-fractured porous media.

  1. Hot dry rock geothermal energy for U.S. electric utilities. Draft final report

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    In order to bring an electric utility component into the study of hot dry rock geothermal energy called for in the Energy Policy Act of 1992 (EPAct), EPRI organized a one-day conference in Philadelphia on January 14,1993. The conference was planned as the first day of a two-day sequence, by coordinating with the U.S. Geological Survey (USGS) and the U.S. Department of Energy (DOE). These two federal agencies were charged under EPAct with the development of a report on the potential for hot dry rock geothermal energy production in the US, especially the eastern US. The USGS was given lead responsibility for a report to be done in association with DOE. The EPRI conference emphasized first the status of technology development and testing in the U.S. and abroad, i.e., in western Europe, Russia and Japan. The conference went on to address the extent of knowledge regarding the resource base in the US, especially in the eastern half of the country, and then to address some practical business aspects of organizing projects or industries that could bring these resources into use, either for thermal applications or for electric power generation.

  2. Analysis of the hydraulic data from the MI fracture zone at the Grimsel Rock Laboratory, Switzerland

    SciTech Connect (OSTI)

    Davey, A.; Karasaki, K.; Long, J.C.S.; Landsfeld, M.; Mensch, A.; Martel, S.J.

    1989-10-01

    One of the major problems in analyzing flow and transport in fractured rock is that the flow may be largely confined to a poorly connected network of fractures. In order to overcome some of this problem, Lawrence Berkeley Laboratory (LBL) has been developing a new type of fracture hydrology model called an equivalent discontinuum model. In this model the authors represent the discontinuous nature of the problem through flow on a partially filled lattice. A key component in constructing an equivalent discontinuum model from this lattice is removing some of the conductive elements such that the system is partially connected in the same manner as the fracture network. This is done through a statistical inverse technique called simulated annealing. The fracture network model is annealed by continually modifying a base model, or template such that the modified systems behave more and more like the observed system. In order to see how the simulated annealing algorithm works, the authors have developed a series of synthetic real cases. In these cases, the real system is completely known so that the results of annealing to steady state data can be evaluated absolutely. The effect of the starting configuration has been studied by varying the percent of conducting elements in the initial configuration. Results have shown that the final configurations converge to about the same percentage of conducting elements. An example using Nagra field data from the Migration Experiment (MI) at Grimsel Rock Laboratory in Switzerland is also analyzed. 24 refs., 33 figs., 3 tabs.

  3. [Investigation of ultrasonic wave interactions with fluid-saturated porous rocks]. [Annual report

    SciTech Connect (OSTI)

    Adler, L.

    1992-07-01

    During the last two years we have continued our investigation of ultrasonic wave propagation in fluid-filled porous materials. First, we studied the feasibility of using different surface modes to characterize both synthetic and natural rocks. We introduced a novel experimental technique based on the direct generation of surface waves by edge excitation. We used two low-frequency (100--500 kHz) shear transducers in pitch-catch mode to launch and receive the ultrasonic surface wave. The contact transducers were coupled to the opposite edges of the porous specimens with normal polarization relative to the surface. The same technique was successfully used to generate Rayleigh-type surface modes on the free surface of both dry and water-saturated specimens, as well as Stoneley-type interface modes on the fluid-loaded surfaces of immersed samples. Our main achievement in this area is the realization that, due to surface tension, practically closed-pore boundary conditions can prevail on the free surface of a water-saturated rock for completely open pores. As a result, the velocity of the true surface mode might be much lower than the Rayleigh velocity of the dry skeleton.

  4. (Investigation of ultrasonic wave interactions with fluid-saturated porous rocks)

    SciTech Connect (OSTI)

    Adler, L.

    1992-01-01

    During the last two years we have continued our investigation of ultrasonic wave propagation in fluid-filled porous materials. First, we studied the feasibility of using different surface modes to characterize both synthetic and natural rocks. We introduced a novel experimental technique based on the direct generation of surface waves by edge excitation. We used two low-frequency (100--500 kHz) shear transducers in pitch-catch mode to launch and receive the ultrasonic surface wave. The contact transducers were coupled to the opposite edges of the porous specimens with normal polarization relative to the surface. The same technique was successfully used to generate Rayleigh-type surface modes on the free surface of both dry and water-saturated specimens, as well as Stoneley-type interface modes on the fluid-loaded surfaces of immersed samples. Our main achievement in this area is the realization that, due to surface tension, practically closed-pore boundary conditions can prevail on the free surface of a water-saturated rock for completely open pores. As a result, the velocity of the true surface mode might be much lower than the Rayleigh velocity of the dry skeleton.

  5. Rock matrix and fracture analysis of flow in western tight gas sands: Annual report, Phase 3

    SciTech Connect (OSTI)

    Dandge, V.; Graham, M.; Gonzales, B.; Coker, D.

    1987-12-01

    Tight gas sands are a vast future source of natural gas. These sands are characterized as having very low porosity and permeability. The main resource development problem is efficiently extracting the gas from the reservoir. Future production depends on a combination of gas price and technological advances. Gas production can be enhanced by fracturing. Studies have shown that many aspects of fracture design and gas production are influenced by properties of the rock matrix. Computer models for stimulation procedures require accurate knowledge of flow properties of both the rock matrix and the fractured regions. In the proposed work, these properties will be measured along with advanced core analysis procedure aimed at understanding the relationship between pore structure and properties. The objective of this project is to develop reliable core analysis techniques for measuring the petrophysical properties of tight gas sands. Recent research has indicated that the flow conditions in the reservoir can be greatly enhanced by the presence of natural fractures, which serve as a transport path for gas from the less permeable matrix. The study is mainly concerned with the dependence of flow in tight gas matrix and healed tectonic fractures on water saturation and confining pressure. This dependency is to be related to the detailed pore structure of tight sands as typified by cores recovered in the Multi-Well experiment. 22 refs., 34 figs., 9 tabs.

  6. Numerical simulation of gas flow through unsaturated fractured rock at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Cooper, C.A.

    1990-01-01

    Numerical analysis is used to identify the physical phenomena associated with barometrically driven gas (air and water vapor) flow through unsaturated fractured rock at Yucca Mountain, Nevada. Results from simple finite difference simulations indicate that for a fractured rock scenario, the maximum velocity of air out of an uncased 10 cm borehole is 0.002 m s{sub {minus}1}. An equivalent porous medium (EPM) model was incorporated into a multiphase, multicomponent simulator to test more complex conceptual models. Results indicate that for a typical June day, a diurnal pressure wave propagates about 160 m into the surrounding Tiva Canyon hydrogeologic unit. Dry air that enters the formation evaporates water around the borehole which reduces capillary pressure. Multiphase countercurrent flow develops in the vicinity of the hole; the gas phase flows into the formation while the liquid phase flows toward the borehole. The effect occurs within 0.5 m of the borehole. The amount of water vapor leaving the formation during 1 day is 900 cm{sup 3}. This is less than 0.1% of the total recharge into the formation, suggesting that the barometric effect may be insignificant in drying the unsaturated zone. However, gas phase velocities out of the borehole (3 m s{sup {minus}1}), indicating that observed flow rates from wells along the east flank of Yucca Mountain were able to be simulated with a barometric model.

  7. An experimental and theoretical study to relate uncommon rock/fluid properties to oil recovery. Final report

    SciTech Connect (OSTI)

    Watson, R.

    1995-07-01

    Waterflooding is the most commonly used secondary oil recovery technique. One of the requirements for understanding waterflood performance is a good knowledge of the basic properties of the reservoir rocks. This study is aimed at correlating rock-pore characteristics to oil recovery from various reservoir rock types and incorporating these properties into empirical models for Predicting oil recovery. For that reason, this report deals with the analyses and interpretation of experimental data collected from core floods and correlated against measurements of absolute permeability, porosity. wettability index, mercury porosimetry properties and irreducible water saturation. The results of the radial-core the radial-core and linear-core flow investigations and the other associated experimental analyses are presented and incorporated into empirical models to improve the predictions of oil recovery resulting from waterflooding, for sandstone and limestone reservoirs. For the radial-core case, the standardized regression model selected, based on a subset of the variables, predicted oil recovery by waterflooding with a standard deviation of 7%. For the linear-core case, separate models are developed using common, uncommon and combination of both types of rock properties. It was observed that residual oil saturation and oil recovery are better predicted with the inclusion of both common and uncommon rock/fluid properties into the predictive models.

  8. Multi-Attribute Seismic/Rock Physics Approach to Characterizing Fractured Reservoirs

    SciTech Connect (OSTI)

    Gary Mavko

    2004-11-30

    Most current seismic methods to seismically characterize fractures in tight reservoirs depend on a few anisotropic wave propagation signatures that can arise from aligned fractures. While seismic anisotropy can be a powerful fracture diagnostic, a number of situations can lessen its usefulness or introduce interpretation ambiguities. Fortunately, laboratory and theoretical work in rock physics indicates that a much broader spectrum of fracture seismic signatures can occur, including a decrease in P- and S-wave velocities, a change in Poisson's ratio, an increase in velocity dispersion and wave attenuation, as well as well as indirect images of structural features that can control fracture occurrence. The goal of this project was to demonstrate a practical interpretation and integration strategy for detecting and characterizing natural fractures in rocks. The approach was to exploit as many sources of information as possible, and to use the principles of rock physics as the link among seismic, geologic, and log data. Since no single seismic attribute is a reliable fracture indicator in all situations, the focus was to develop a quantitative scheme for integrating the diverse sources of information. The integrated study incorporated three key elements: The first element was establishing prior constraints on fracture occurrence, based on laboratory data, previous field observations, and geologic patterns of fracturing. The geologic aspects include analysis of the stratigraphic, structural, and tectonic environments of the field sites. Field observations and geomechanical analysis indicates that fractures tend to occur in the more brittle facies, for example, in tight sands and carbonates. In contrast, strain in shale is more likely to be accommodated by ductile flow. Hence, prior knowledge of bed thickness and facies architecture, calibrated to outcrops, are powerful constraints on the interpreted fracture distribution. Another important constraint is that fracturing is likely to be more intense near faults--sometimes referred to as the damaged zone. Yet another constraint, based on world-wide observations, is that the maximum likely fracture density increases with depth in a well-defined way. Defining these prior constrains has several benefits: they lead to a priori probability distributions of fractures, that are important for objective statistical integration; they limit the number of geologic hypotheses that need to be theoretically modeled; they provide plausible models for fracture distributions below the seismic resolution. The second element was theoretical rock physics modeling of optimal seismic attributes, including offset and azimuth dependence of traveltime, amplitude, and impedance signatures of anisotropic fractured rocks. The suggested workflow is to begin with an elastic earth model, based on well logs, theoretically add fractures to the likely facies as defined by the geologic prior information, and then compute synthetic seismic traces and attributes, including variations in P and S-wave velocities, Poisson's ratio, reflectivity, travel time, attenuation, and anisotropies of these parameters. This workflow is done in a Monte-Carlo fashion, yielding ranges of expected fracture signatures, and allowing realistic assessments of uncertainty to be honored. The third element was statistical integration of the geophysical data and prior constraints to map fracture intensity and orientations, along with uncertainties. A Bayesian framework was developed that allowed systematic integration of the prior constraints, the theoretical relations between fractures and their seismic signatures, and the various observed seismic observations. The integration scheme was successfully applied on an East Texas field site. The primary benefit from the study was the optimization and refinement of practical workflows for improved geophysical characterization of natural fractures and for quantifying the uncertainty of these interpretations. By presenting a methodology for integrating various types of information, the workflow will

  9. U.S. National Committee for Rock Mechanics; and Conceptual model of fluid infiltration in fractured media. Project summary, July 28, 1997--July 27, 1998

    SciTech Connect (OSTI)

    1998-09-01

    The title describes the two tasks summarized in this report. The remainder of the report contains information on meetings held or to be held on the subjects. The US National Committee for Rock Mechanics (USNC/RM) provides for US participation in international activities in rock mechanics, principally through adherence to the International Society for Rock Mechanics (ISRM). It also keeps the US rock mechanics community informed about new programs directed toward major areas of national concern in which rock mechanics problems represent critical or limiting factors, such as energy resources, excavation, underground storage and waste disposal, and reactor siting. The committee also guides or produces advisory studies and reports on problem areas in rock mechanics. A new panel under the auspices of the US National Committee for Rock Mechanics has been appointed to conduct a study on Conceptual Models of Fluid Infiltration in Fractured Media. The study has health and environmental applications related to the underground flow of pollutants through fractured rock in and around mines and waste repositories. Support of the study has been received from the US Nuclear Regulatory Commission and the Department of Energy`s Yucca Mountain Project Office. The new study builds on the success of a recent USNC/RM report entitled Rock Fractures and Fluid Flow: Contemporary Understanding and Applications (National Academy Press, 1996, 551 pp.). A summary of the new study is provided.

  10. Determination of Transport Properties From Flowing Fluid Temperature LoggingIn Unsaturated Fractured Rocks: Theory And Semi-Analytical Solution

    SciTech Connect (OSTI)

    Mukhopadhyay, Sumit; Tsang, Yvonne W.

    2008-08-01

    Flowing fluid temperature logging (FFTL) has been recently proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this paper, we present a simplified conceptualization of FFTL in unsaturated fractured rock, and develop a semianalytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. Based on the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this paper is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel paper [Mukhopadhyay et al., 2008], we extend the conceptual model to evaluate some of these assumptions. We also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks.

  11. Geochemistry, palynology, and regional geology of worldclass Upper Devonian source rocks in the Madre de Dios basin, Bolivia

    SciTech Connect (OSTI)

    Peters, K.E.; Conrad, K.T.; Carpenter, D.G.; Wagner, J.B.

    1996-08-01

    Recent exploration drilling indicates the existence of world-class source rock in the Madre de Dios basin, Bolivia. In the Pando-1 X and -2X wells, over 200 m of poorly bioturbated, organic-rich (TOC = 3-16 wt.%) prodelta to shelf mudstones in the Frasnian-Famennian Tomachi Formation contain oil-prone organic matter (hydrogen index = 400-600 mg HC/g TOC). Our calculated source prolificity indices for this interval in these wells (SPI = 15-18 tons of hydrocarbons per square meter of source rock) exceed that for the Upper Jurassic in Central Saudi Arabia. The Tomachi interval is lithologically equivalent to the Colpacucho Formation in the northern Altiplano, the Iquiri Formation in the Cordillera Oriental, and is coeval with other excellent source rocks in North America, Africa, and Eurasia. All of these rocks were deposited under conditions favorable for accumulation of organic matter, including a global highstand and high productivity. However, the Madre de Dios basin was situated at high latitude during the Late Devonian and some of the deposits are interpreted to be of glacial origin, indicating conditions not generally associated with organic-rich deposition. A biomarker and palynological study of Upper Devonian rocks in the Pando-1X well suggests deposition under conditions similar to certain modern fjords. High productivity resulted in preservation of abundant organic matter in the bottom sediments despite a cold, toxic water column. Low-sulfur crude oil produced from the Pando-1X well is geochemically similar to, but more mature than, extracts from associated organic-rich Tomachi samples, and was generated from deeper equivalents of these rocks.

  12. Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rutqvist, J.

    2014-09-19

    The purpose of this paper is to (i) review field data on stress-induced permeability changes in fractured rock; (ii) describe estimation of fractured rock stress-permeability relationships through model calibration against such field data; and (iii) discuss observations of temperature and chemically mediated fracture closure and its effect on fractured rock permeability. The field data that are reviewed include in situ block experiments, excavation-induced changes in permeability around tunnels, borehole injection experiments, depth (and stress) dependent permeability, and permeability changes associated with a large-scale rock-mass heating experiment. Data show how the stress-permeability relationship of fractured rock very much depends on localmore » in situ conditions, such as fracture shear offset and fracture infilling by mineral precipitation. Field and laboratory experiments involving temperature have shown significant temperature-driven fracture closure even under constant stress. Such temperature-driven fracture closure has been described as thermal overclosure and relates to better fitting of opposing fracture surfaces at high temperatures, or is attributed to chemically mediated fracture closure related to pressure solution (and compaction) of stressed fracture surface asperities. Back-calculated stress-permeability relationships from field data may implicitly account for such effects, but the relative contribution of purely thermal-mechanical and chemically mediated changes is difficult to isolate. Therefore, it is concluded that further laboratory and in situ experiments are needed to increase the knowledge of the true mechanisms behind thermally driven fracture closure, and to further assess the importance of chemical-mechanical coupling for the long-term evolution of fractured rock permeability.« less

  13. Simulation of CO2 Sequestration at Rock Spring Uplift, Wyoming: Heterogeneity and Uncertainties in Storage Capacity, Injectivity and Leakage

    SciTech Connect (OSTI)

    Deng, Hailin; Dai, Zhenxue; Jiao, Zunsheng; Stauffer, Philip H.; Surdam, Ronald C.

    2011-01-01

    Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target saline aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline aquifer and surrounding formations. This uncertainty in leakage will be used to feed into risk assessment modeling.

  14. Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings

    SciTech Connect (OSTI)

    Rutqvist, J.

    2014-09-19

    The purpose of this paper is to (i) review field data on stress-induced permeability changes in fractured rock; (ii) describe estimation of fractured rock stress-permeability relationships through model calibration against such field data; and (iii) discuss observations of temperature and chemically mediated fracture closure and its effect on fractured rock permeability. The field data that are reviewed include in situ block experiments, excavation-induced changes in permeability around tunnels, borehole injection experiments, depth (and stress) dependent permeability, and permeability changes associated with a large-scale rock-mass heating experiment. Data show how the stress-permeability relationship of fractured rock very much depends on local in situ conditions, such as fracture shear offset and fracture infilling by mineral precipitation. Field and laboratory experiments involving temperature have shown significant temperature-driven fracture closure even under constant stress. Such temperature-driven fracture closure has been described as thermal overclosure and relates to better fitting of opposing fracture surfaces at high temperatures, or is attributed to chemically mediated fracture closure related to pressure solution (and compaction) of stressed fracture surface asperities. Back-calculated stress-permeability relationships from field data may implicitly account for such effects, but the relative contribution of purely thermal-mechanical and chemically mediated changes is difficult to isolate. Therefore, it is concluded that further laboratory and in situ experiments are needed to increase the knowledge of the true mechanisms behind thermally driven fracture closure, and to further assess the importance of chemical-mechanical coupling for the long-term evolution of fractured rock permeability.

  15. Geochemical character and origin of oils in Ordovician reservoir rock, Illinois and Indiana, USA

    SciTech Connect (OSTI)

    Guthrie, J.M.; Pratt, L.M.

    1995-11-01

    Twenty-three oils produced from reservoirs within the Ordovician Galena Group (Trenton equivalent) and one oil from the Mississippian Ste. Genevieve Limestone in the Illinois and Indiana portions of the Illinois basin are characterized. Two end-member oil groups (1) and (2) and one intermediate group (1A) are identified using conventional carbon isotopic analysis of whole and fractionated oils, gas chromatography (GC) of saturated hydrocarbon fractions, isotope-ratio-monitoring gas chromatography/mass spectrometry (irm-GC/MS) of n-alkanes ranging from C{sub 15} to C{sub 25}, and gas chromatography/mass spectrometry (GC/MS) of the aromatic hydrocarbon fractions. Group 1 is characterized by high odd-carbon predominance in mid-chain n-alkanes (C{sub 15}-C{sub 19}), low abundance Of C{sub 20+}, n-alkanes, and an absence of pristane and phytane. Group IA is characterized by slightly lower odd-carbon predominance of mid-chain n-alkanes, greater abundance of C{sub 20+} n-alkanes compared to group 1, and no pristane and phytane. Conventional correlations of oil to source rock based on carbon isotopic-type curves and hopane (m/z 191) and sterane (m/z 217) distributions are of limited use in distinguishing Ordovician-reservoired oil groups and determining their origin. Oil to source rock correlations using the distribution and carbon isotopic composition of n-alkanes and the m/z 133 chromatograms of n-alkylarenes show that groups 1 and 1A originated from strata of the Upper Ordovician Galena Group. Group 2 either originated solely from the Upper Ordovician Maquoketa Group or from a mixture of oils generated from the Maquoketa Group and the Galena Group. The Mississippian-reservoired oil most likely originated from the Devonian New Albany Group. The use of GC, irm-GC/MS, and GC/MS illustrates the value of integrated molecular and isotopic approaches for correlating oil groups with source rocks.

  16. Quasistatic Shock Waves: A Mechanism for Nonuniform Compaction in Porous Rock

    SciTech Connect (OSTI)

    OLSSON,WILLIAM A.

    2000-09-08

    Recent studies have observed compaction zones pass through porous rock under axisymmetric compression. An initially thin, compacted layer appears at the yield point of the stress-strain curve and then grows by thickening in the direction of maximum compression at constant stress. Strain localization theory has been applied to compaction to explain the formation of these features. This paper describes the growth of the compaction zones, that is, the propagation of their boundaries, in terms of shock wave analysis. The ratio of the applied shortening rate to the velocity of the boundary is related to the porosity change across the boundary. Certain features of the stress-strain curve are explained by the model.

  17. (Relative mobilities and transport mechanisms of trace elements during contact metamorphism of carbonate rocks). Progress report

    SciTech Connect (OSTI)

    1980-01-01

    The main objective of this study is to investigate the relative mobilities and transport mechanisms of major, minor, and trace elements during the contact metamorphism of carbonate rocks. The large contrasts in chemical potentials of SiO/sub 2/, Al/sub 2/O/sub 3/, and CaO across a granitic pluton-limestone contact may induce metasomatism. In addition, rare earth and transition metal elements may act as tracers, and their redistribution during metamorphism may record convective cooling processes. The results of this study may have an application toward the problem of radioactive waste disposal and the degree to which radioactive nuclides may be expected to migrate during geologically significant periods of time.

  18. Chemical migration by contact metamorphism between pegmatite and country rocks: natural analogs for radionuclide migration

    SciTech Connect (OSTI)

    Laul, J.C.; Walker, R.J.; Shearer, C.K.; Papike, J.J.; Simon, S.B.

    1984-01-01

    Comparison of trace element signatures of country rocks as a function of distance from the contact with two pegmatites, Tin Mountain and Etta, in the Black Hills of South Dakota, suggests that some elements such as K, Li, Rb, Cs, As, Sb, Zn and Pb, have migrated to distances of 4 to 40 meters during contact metamorphism. The relative degree of migration varies depending on the element. On the other hand, there is virtually no migration of rare earth elements (REE), Al, Sc, Cr, Hf, U, and Th. Biotite and muscovite are effective trace element traps for Li, Rb, and Cs. Biotite has a greater affinity for Rb, Cs and Li than muscovite. 9 references, 5 figures, 1 table.

  19. Coupled In-Rock and In-Drift Hydrothermal Model Stuudy For Yucca Mountain

    SciTech Connect (OSTI)

    G. Danko; J. Birkholzer; D. Bahrami

    2006-12-18

    A thermal-hydrologic-natural-ventilation model is configured for simulating temperature, humidity, and condensate distributions in the coupled domains of the in-drift airspace and the near-field rockmass in the proposed Yucca Mountain repository. The multi-physics problem is solved with MULTIFLUX in which a lumped-parameter computational fluid dynamics model is iterated with TOUGH2. The solution includes natural convection, conduction, and radiation for heat as well as moisture convection and diffusion for moisture transport with half waste package scale details in the drift, and mountain-scale heat and moisture transport in the porous and fractured rock-mass. The method provides fast convergence on a personal computer computational platform. Numerical examples and comparison with a TOUGH2 based, integrated model are presented.

  20. Fractured rock modeling in the National Waste Terminal Storage Program: a review of requirements and status

    SciTech Connect (OSTI)

    St. John, C.; Krug, A.; Key, S.; Monsees, J.

    1983-05-01

    Generalized computer codes capable of forming the basis for numerical models of fractured rock masses are being used within the NWTS program. Little additional development of these codes is considered justifiable, except in the area of representation of discrete fractures. On the other hand, model preparation requires definition of medium-specific constitutive descriptions and site characteristics and is therefore legitimately conducted by each of the media-oriented projects within the National Waste Terminal Storage program. However, it is essential that a uniform approach to the role of numerical modeling be adopted, including agreement upon the contribution of modeling to the design and licensing process and the need for, and means of, model qualification for particular purposes. This report discusses the role of numerical modeling, reviews the capabilities of several computer codes that are being used to support design or performance assessment, and proposes a framework for future numerical modeling activities within the NWTS program.

  1. Deep crustal sediment study: Widespread precambrian layered rocks (sedimentary ?) beneath the US midcontinent

    SciTech Connect (OSTI)

    Hauser, E.C. [Cornell Univ., Ithaca, NY (United States)

    1992-05-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the U.S. midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1-3 times as thick as the overlying Paleozoic cover, but the origin of this sequence, its ultimate lateral extent, and resource potential are unknown. The objective of this project is to seek and reprocess seismic reflection data provided by industry from the U.S. midcontinent, and together with the COCORP deep reflection data and information from the scattered basement-penetrating drill holes, to begin to constrain the distribution, origin and evolution of this enigmatic layered sequence, particularly to evaluate if sedimentary material may be an important constituent (i.e., deep gas potential).

  2. Deep crustal sediment study: Widespread Precambrian layered rocks (Sedimentary ) beneath the US midcontinent

    SciTech Connect (OSTI)

    Hauser, E.C.

    1992-01-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the US midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1--3 times as thick as the overlying Paleozoic cover, but the origin of this sequence, its ultimate lateral extent, and resource potential are unknown. The objective of this project is to seek and reprocess seismic reflection data provided by industry from the US midcontinent and together with the COCORP deep reflection data and information from the scattered basement-penetrating drill holes, to begin to constrain the distribution, origin and evolution of this enigmatic layered sequence, particularly to evaluate if sedimentary material may be an important constituent (i.e., deep gas potential).

  3. Deep crustal sediment study: Widespread Precambrian layered rocks (Sedimentary ?) beneath the US midcontinent

    SciTech Connect (OSTI)

    Hauser, E.C.

    1992-06-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the US midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1--3 times as thick as the overlying Paleozoic cover, but the origin of this sequence, its ultimate lateral extent, and resource potential are unknown. The objective of this project is to seek and reprocess seismic reflection data provided by industry from the US midcontinent and together with the COCORP deep reflection data and information from the scattered basement-penetrating drill holes, to begin to constrain the distribution, origin and evolution of this enigmatic layered sequence, particularly to evaluate if sedimentary material may be an important constituent (i.e., deep gas potential).

  4. Influence of shape and skin of matrix-rock blocks on pressure transients in fractured reservoirs

    SciTech Connect (OSTI)

    de Swaan, A.

    1986-01-01

    A formulation of pressure transients in terms of the intrinsic, or core, properties of the two media that compose the fractured reservoir, establishes the influence of these properties, and reciprocally, their corroboration from - the pressure-time relationship observed in well tests and interference tests. The following reservoir characteristics are analyzed: the area of fractures transverse to flow; the dimensions, shape and properties of rectangular parallelepiped matrix-rock blocks; and a permeability reduction in the blocks surface. A restatement of the so-called pseudo-steady state inter-media flow gives to parameters alfa and lambda in the theory of a previous study the physical meaning they lacked, and allows a direct determination of the blocks minimum dimension.

  5. Analysis of Ground-Water Levels and Associated Trends in Yucca Flat, Nevada Test Site, Nye County, Nevada, 1951-2003

    SciTech Connect (OSTI)

    J.M. Fenelon

    2005-10-05

    Almost 4,000 water-level measurements in 216 wells in the Yucca Flat area from 1951 to 2003 were quality assured and analyzed. An interpretative database was developed that describes water-level conditions for each water level measured in Yucca Flat. Multiple attributes were assigned to each water-level measurement in the database to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed for each water-level measurement. The database also includes narratives that discuss the water-level history of each well. Water levels in 34 wells were analyzed for variability and for statistically significant trends. An attempt was made to identify the cause of many of the water-level fluctuations or trends. Potential causes include equilibration following well construction or development, pumping in the monitoring well, withdrawals from a nearby supply well, recharge from precipitation, earthquakes, underground nuclear tests, land subsidence, barometric pressure, and Earth tides. Some of the naturally occurring fluctuations in water levels may result from variations in recharge. The magnitude of the overall water-level change for these fluctuations generally is less than 2 feet. Long-term steady-state hydrographs for most of the wells open to carbonate rock have a very similar pattern. Carbonate-rock wells without the characteristic pattern are directly west of the Yucca and Topgallant faults in the southwestern part of Yucca Flat. Long-term steady-state hydrographs from wells open to volcanic tuffs or the Eleana confining unit have a distinctly different pattern from the general water-level pattern of the carbonate-rock aquifers. Anthropogenic water-level fluctuations were caused primarily by water withdrawals and nuclear testing. Nuclear tests affected water levels in many wells. Trends in these wells are attributed to test-cavity infilling or the effects of depressurization following nuclear testing. The magnitude of the overall water-level change for wells with anthropogenic trends can be large, ranging from several feet to hundreds of feet. Vertical water-level differences at 27 sites in Yucca Flat with multiple open intervals were compared. Large vertical differences were noted in volcanic rocks and in boreholes where water levels were affected by nuclear tests. Small vertical differences were noted within the carbonate-rock and valley-fill aquifers. Vertical hydraulic gradients generally are downward in volcanic rocks and from pre-Tertiary clastic rocks toward volcanic- or carbonate-rock units.

  6. GEOCHEMISTRY OF ROCK UNITS AT THE POTENTIAL REPOSITORY LEVEL, YUCCA MOUNTAIN, NEVADA

    SciTech Connect (OSTI)

    Z.E. Peterman; P.L. Cloke

    2000-12-13

    The compositional variability of the phenocryst-poor member of the 12.8-million-year Topopah Spring Tuff at the potential repository level was assessed by duplicate analysis of 20 core samples from the cross drift at Yucca Mountain, Nevada. Previous analyses of outcrop and core samples of the Topopah Spring Tuff showed that the phenocryst-poor rhyolite, which includes both lithophysal and nonlithophysal zones, is relatively uniform in composition. Analyses of rock samples from the cross drift, the first from the actual potential repository block, also indicate the chemical homogeneity of this unit excluding localized deposits of vapor-phase minerals and low-temperature calcite and opal in fractures, cavities, and faults, The possible influence of vapor-phase minerals and calcite and opal coatings on rock composition at a scale sufficiently large to incorporate these heterogeneously distributed deposits was evaluated and is considered to be relatively minor. Therefore, the composition of the phenocryst-poor member of the Topopah Spring Tuff is considered to be adequately represented by the analyses of samples from the cross drift. The mean composition as represented by the 10 most abundant oxides in weight percent or grams per hundred grams is: SiO{sub 2}, 76.29; Al{sub 2}O{sub 3}, 12.55; FeO, 0.14; Fe{sub 2}O{sub 3}, 0.97; MgO, 0.13; CaO, 0.50; Na{sub 2}O, 3.52; K{sub 2}O, 4.83; TiO{sub 2}, 0.11; and MnO, 0.07.

  7. Hot dry rock geothermal energy development program. Annual report, fiscal year 1980

    SciTech Connect (OSTI)

    Cremer, G.M.

    1981-07-01

    Investigation and flow testing of the enlarged Phase I heat-extraction system at Fenton Hill continued throughout FY80. Temperature drawdown observed at that time indicated an effective fracture of approximately 40,000 to 60,000 m/sup 2/. In May 1980, hot dry rock (HDR) technology was used to produce electricity in an interface demonstration experiment at Fenton Hill. A 60-kVA binary-cycle electrical generator was installed in the Phase I surface system and heat from about 3 kg/s of geothermal fluid at 132/sup 0/C was used to boil Freon R-114, whose vapor drove a turboalternator. A Phase II system was designed and is now being constructed at Fenton Hill that should approach commercial requirements. Borehole EE-2, the injection well, was completed on May 12, 1980. It was drilled to a vertical depth of about 4500 m, where the rock temperature is approximately 320/sup 0/C. The production well, EE-3 had been drilled to a depth of 3044 m and drilling was continuing. Environmental monitoring of Fenton Hill site continued. Development of equipment, instruments, and materials for technical support at Fenton Hill continued during FY80. Several kinds of models were also developed to understand the behavior of the Phase I system and to develop a predictive capability for future systems. Data from extensive resource investigations were collected, analyzed, and assembled into a geothermal gradient map of the US, and studies were completed on five specific areas as possible locations for HDR Experimental Site 2.

  8. Late Pleistocene landslide-dammed lakes along the Rio Grande, White Rock Canyon, New Mexico

    SciTech Connect (OSTI)

    Reneau, S.L.; Dethier, D.P.

    1996-11-01

    Massive slump complexes composed of Pliocene basaltic rocks and underlying Miocene and Pliocene sediments flank the Rio Grande along 16 km of northern White Rock Canyon, New Mexico. The toe area of at least one slump complex was active in the late Pleistocene, damming the Rio Grande at least four times during the period from 18 to 12 {sup 14}C ka and impounding lakes that extended 10-20 km upriver. Stratigraphic relationships and radiocarbon age constraints indicate that three separate lakes formed between 13.7 and 12.4 {sup 14}C ka. The age and dimensions of the ca. 12.4 ka lake are best constrained; it had an estimated maximum depth of {approx}30 m, a length of {approx}13 km, a surface area of {approx}2.7 km{sup 2}, and an initial volume of {approx}2.5 x 10{sup 7} m{sup 3}. The youngest landslide-dammed lakes formed during a period of significantly wetter regional climate, strongly suggesting that climate changes were responsible for reactivation of the slump complexes. We are not certain about the exact triggering mechanisms for these landslides, but they probably involved removal of lateral support due to erosion of the slope base by the Rio Grande during periods of exceptionally high flood discharge or rapid incision; increased pore pressures associated with higher water tables; higher seepage forces at sites of ground-water discharge; or some combination of these processes. Seismic shaking could also have contributed to triggering of some of the landslides, particularly if aided by wet antecedent conditions. 54 refs., 19 figs., 3 tabs.

  9. Geology and geophysics of Proterozoic basement rocks in the eastern midcontinent of the United States

    SciTech Connect (OSTI)

    Lidiak, E.G. )

    1992-01-01

    Upper crustal Proterozoic rocks of the eastern midcontinent of the U.S. are part of the transcontinental Proterozoic province, a 3,000 km-long belt of anorogenic igneous rocks that extends from western Ohio to southern California. Regional magnetic and gravity anomaly maps reveal a variety of prominent anomalies and gradients that reflect major basement or intrabasement structures. Widespread are pronounced (10--20 km diameter), high-amplitude (600--700 gamma) circular to elliptical positive magnetic anomalies that are associated with magnetite-series granites and coeval rhyolites. Also present (in Indiana) are a series of ring-shaped magnetic anomalies that have a diameter of about 50 km and form circular to elliptical patterns of narrow positive anomalies bordered by negative anomalies and ringing a central minimum. Modeling of the anomalies suggests that they may be ring dike complexes associated with calderas. Two prominent circular gravity lows associated with large granitic batholiths have also been identified. The larger of these, the Wisconsin gravity minimum, has a diameter of about 250 km and an amplitude of about [minus]65 mgals and is associated with the Wolf River batholith. The second gravity low has a diameter of about 75 km and an amplitude of about [minus]25 mgals and is in east-central Kentucky. Several major rift zones are present in the eastern midcontinent. The most prominent of these is the New Madrid rift complex, a failed-arm structure that extends into the craton beneath the Mississippi embayment. Also present are linear arrays of positive magnetic and gravity anomalies that are associated with basaltic rift zones. These include the mid-Michigan rift and the Ft. Wayne rift, as well as with possible rifts associated with the mid-Tennessee and Louisville positive anomalies.

  10. Mobilization and Transport of Organic Compounds from Reservoir Rock and Caprock in Geological Carbon Sequestration Sites

    SciTech Connect (OSTI)

    Zhong, Lirong; Cantrell, Kirk J.; Mitroshkov, Alexandre V.; Shewell, Jesse L.

    2014-05-06

    Supercritical CO2 (scCO2) is an excellent solvent for organic compounds, including benzene, toluene, ethyl-benzene, and xylene (BTEX), phenols, and polycyclic aromatic hydrocarbons (PAHs). Monitoring results from geological carbon sequestration (GCS) field tests has shown that organic compounds are mobilized following CO2 injection. Such results have raised concerns regarding the potential for groundwater contamination by toxic organic compounds mobilized during GCS. Knowledge of the mobilization mechanism of organic compounds and their transport and fate in the subsurface is essential for assessing risks associated with GCS. Extraction tests using scCO2 and methylene chloride (CH2Cl2) were conducted to study the mobilization of volatile organic compounds (VOCs, including BTEX), the PAH naphthalene, and n-alkanes (n-C20 – n-C30) by scCO2 from representative reservoir rock and caprock obtained from depleted oil reservoirs and coal from an enhanced coal-bed methane recovery site. More VOCs and naphthalene were extractable by scCO2 compared to the CH2Cl2 extractions, while scCO2 extractable alkane concentrations were much lower than concentrations extractable by CH2Cl2. In addition, dry scCO2 was found to extract more VOCs than water saturated scCO2, but water saturated scCO2 mobilized more naphthalene than dry scCO2. In sand column experiments, moisture content was found to have an important influence on the transport of the organic compounds. In dry sand columns the majority of the compounds were retained in the column except benzene and toluene. In wet sand columns the mobility of the BTEX was much higher than that of naphthalene. Based upon results determined for the reservoir rock, caprock, and coal samples studied here, the risk to aquifers from contamination by organic compounds appears to be relatively low; however, further work is necessary to fully evaluate risks from depleted oil reservoirs.

  11. The Timber Mountain magmato-thermal event: An intense widespread culmination of magmatic and hydrothermal activity at the southwestern Nevada volcanic field

    SciTech Connect (OSTI)

    Jackson, M.R. Jr.

    1988-05-01

    Eruption of the Rainier Mesa and Ammonia Tanks Members Timber Mountain Tuff at about 11.5 and 11.3 Ma, respectively, resulted in formation of the timber Mountain (TM) caldera; new K-Ar ages show that volcanism within and around the TM caldera continued for about 1 m.y. after collapse. Some TM age magmatic activity took place west and southeast of the TM caldera in the Beatty -- Bullfrog Hills and Shoshone Mountain areas, suggesting that volcanic activity at the TM caldera was an intense expression of an areally extensive magmatic system active from about 11.5 to 10Ma. Epithermal Au-Ag, Hg and fluorite mineralization and hydrothermal alteration are found in both within and surrounding the Timber Mountain -- Oasis Valley caldera complex. New K-Ar ages date this hydrothermal activity between about 13 and 10 Ma, largely between about 11.5 and 10 Ma, suggesting a genetic relation of hydrothermal activity to the TM magmatic system.

  12. Development of Chemical Model to Predict the Interactions between Supercritical CO2and Fluid, and Rocks in EGS Reservoirs

    Broader source: Energy.gov [DOE]

    This project will develop a chemical model, based on existing models and databases, that is capable of simulating chemical reactions between supercritical (SC) CO2 and Enhanced Geothermal System (EGS) reservoir rocks of various compositions in aqueous, non-aqueous and 2-phase environments.

  13. Comparative Probabilistic-Deterministic Studies and RVT based SASSI Analyses of Nuclear Structures for Soil and Rock Sites

    Broader source: Energy.gov [DOE]

    Comparative Probabilistic-Deterministic Studies and RVT based SASSI Analyses of Nuclear Structures for Soil and Rock Sites Dr. Dan M. Ghiocel Ghiocel Predictive Technologies Inc. http://www.ghiocel-tech.com 2014 DOE Natural Phenomena Hazards Meeting Germantown, MD, October 21-22, 2014

  14. EIS-0471: Department of Energy Loan Guarantee to Support Proposed Eagle Rock Enrichment Facility in Bonneville County, Idaho

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of construction, operation, and decommissioning of the proposed Eagle Rock Enrichment Facility (EREF), a gas centrifuge uranium enrichment facility to be located in a rural area in western Bonneville County, Idaho. (DOE adopted this EIS issued by NRC on 04/13/2007.)

  15. Radiocarbon as a Reactive Tracer for Tracking Permanent CO2 Storage in Basaltic Rocks

    SciTech Connect (OSTI)

    Matter, Juerg; Stute, Martin; Schlosser, Peter; Broecker, Wallace

    2015-09-30

    In view of concerns about the long-term integrity and containment of CO2 storage in geologic reservoirs, many efforts have been made to improve the monitoring, verification and accounting methods for geologically stored CO2. Our project aimed to demonstrate that carbon-14 (14C) could be used as a reactive tracer to monitor geochemical reactions and evaluate the extent of mineral trapping of CO2 in basaltic rocks. The capacity of a storage reservoir for mineral trapping of CO2 is largely a function of host rock composition. Mineral carbonation involves combining CO2 with divalent cations including Ca2+, Mg2+ and Fe2+. The most abundant geological sources for these cations are basaltic rocks. Based on initial storage capacity estimates, we know that basalts have the necessary capacity to store million to billion tons of CO2 via in situ mineral carbonation. However, little is known about CO2-fluid-rock reactions occurring in a basaltic storage reservoir during and post-CO2 injection. None of the common monitoring and verification techniques have been able to provide a surveying tool for mineral trapping. The most direct method for quantitative monitoring and accounting involves the tagging of the injected CO2 with 14C because 14C is not present in deep geologic reservoirs prior to injection. Accordingly, we conducted two CO2 injection tests at the CarbFix pilot injection site in Iceland to study the feasibility of 14C as a reactive tracer for monitoring CO2-fluid-rock reactions and CO2 mineralization. Our newly developed monitoring techniques, using 14C as a reactive tracer, have been successfully demonstrated. For the first time, permanent and safe disposal of CO2 as environmentally benign carbonate minerals in basaltic rocks could be shown. Over 95% of the injected CO2 at the CarbFix pilot injection site was mineralized to carbonate minerals in less than two years after injection. Our monitoring results confirm that CO2 mineralization in basaltic rocks is far faster than previously postulated.

  16. Mass transfer during wall-rock alteration: An example from a quartz-graphite vein, Black Hills, South Dakota

    SciTech Connect (OSTI)

    Galbreath, K.C.; Duke, E.F.; Papike, J.J. ); Laul, J.C. )

    1988-07-01

    Mass transfer and fluid-rock interaction have been evaluated along two sample traverses in low-sillimanite grade quartz-mica schist adjacent to a synmetamorphic quartz-graphite vein in the southern Black Hills, South Dakota. In an {approximately}17 cm halo between apparently unaltered schist and the vein contact is an outer zone of cryptic alteration and three inner zones of visible alteration. The cryptic zone consists of the original prograde metamorphic mineral assemblage plus anomalously high amounts of tourmaline. The outermost visible zone contains abundant graphite. The second visible zone is defined by intensive bleaching of the schist. The innermost visible zone, immediately adjacent to the vein, is tourmaline + quartz + plagioclase + limonite + graphite. The vein is composed almost entirely of quartz, but also contains trace amounts of graphite. Mass balance calculations indicate that Al was essentially inert. The predominant chemical changes during wall-rock alteration were addition of B and C from the vein-forming fluid along with loss of K from the wall rocks, corresponding to precipitation of tourmaline and graphite, and the progressive destruction of microcline, biotite, and muscovite toward the vein. In addition, the elements V, Cr, Cu, Zn, Pb, As, Sb, W, and Au were introduced into the country rock, whereas Si, Rb, Ba, and Cs were removed. Fluid-rock interaction modeling suggests that between one and four equivalent masses of fluid interacted chemically with the most altered mineral assemblages. In addition, greater than one equivalent mass of reactive fluid penetrated to distances of at least 5 cm from the vein contact.

  17. Estimation of host rock thermal conductivities using thetemperature data from the drift-scale test at Yucca Mountain,Nevada

    SciTech Connect (OSTI)

    Mukhopadhyay, Sumitra; Tsang, Y.W.

    2003-11-25

    A large volume of temperature data has been collected from a very large, underground heater test, the Drift Scale Test (DST) at Yucca Mountain, Nevada. The DST was designed to obtain thermal, hydrological, mechanical, and chemical (THMC) data in the unsaturated fractured rock of Yucca Mountain. Sophisticated numerical models have been developed to analyze the collected THMC data. In these analyses, thermal conductivities measured from core samples have been used as input parameters to the model. However, it was not known whether these core measurements represented the true field-scale thermal conductivity of the host rock. Realizing these difficulties, elaborate, computationally intensive geostatistical simulations have also been performed to obtain field-scale thermal conductivity of the host rock from the core measurements. In this paper, we use the temperature data from the DST as the input (instead of the measured core-scale thermal conductivity values) to develop an estimate of the field-scale thermal conductivity values. Assuming a conductive thermal regime, we develop an analytical solution for the temperature rise in the host rock of the DST; and using a nonlinear fitting routine, we obtain a best-fit estimate of field-scale thermal conductivity for the DST host rock. The temperature data collected from the DST shows clear evidence of two distinct thermal regimes: a zone below boiling (wet) and a zone above boiling (dry). We obtain estimates of thermal conductivity for both the wet and dry zones. We also analyze the sensitivity of these estimates to the input heating power of the DST.

  18. Sm-Nd systematics of lunar ferroan anorthositic suite rocks: Constraints on lunar crust

    SciTech Connect (OSTI)

    Boyet, Maud; Carlson, Richard W.; Borg, Lars E.; Horan, Mary

    2014-09-28

    Here, we have measured Sm–Nd systematics, including the short-lived 146Sm–142Nd chronometer, in lunar ferroan anorthositic suite (FAS) whole rocks (15415, 62236, 62255, 65315, 60025). At least some members of the suite are thought to be primary crystallization products formed by plagioclase flotation during crystallization of the lunar magma ocean (LMO). Most of these samples, except 62236, have not been exposed to galactic cosmic rays for a long period and thus require minimal correction to their 142Nd isotope composition. These samples all have measured deficits in 142Nd relative to the JNdi-1 terrestrial standard in the range –45 to –21 ppm. The range is –45 to –15 ppm once the 62236 142Nd/144Nd ratio is corrected from neutron-capture effects. Analyzed FAS samples do not define a single isochron in either 146Sm–142Nd or 147Sm–143Nd systematics, suggesting that they either do not have the same crystallization age, come from different sources, or have suffered isotopic disturbance. Because the age is not known for some samples, we explore the implications of their initial isotopic compositions for crystallization ages in the first 400 Ma of solar system history, a timing interval that covers all the ages determined for the ferroan anorthositic suite whole rocks as well as different estimates for the crystallization of the LMO. 62255 has the largest deficit in initial 142Nd and does not appear to have followed the same differentiation path as the other FAS samples. The large deficit in 142Nd of FAN 62255 may suggest a crystallization age around 60–125 Ma after the beginning of solar system accretion. This result provides essential information about the age of the giant impact forming the Moon. The initial Nd isotopic compositions of FAS samples can be matched either with a bulk-Moon with chondritic Sm/Nd ratio but enstatite-chondrite-like initial 142Nd/144Nd (e.g. 10 ppm below modern terrestrial), or a bulk-Moon with superchondritic Sm/Nd ratio and initial 142Nd/144Nd similar to ordinary chondrites.

  19. Sm-Nd systematics of lunar ferroan anorthositic suite rocks: Constraints on lunar crust

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boyet, Maud; Carlson, Richard W.; Borg, Lars E.; Horan, Mary

    2014-09-28

    Here, we have measured Sm–Nd systematics, including the short-lived 146Sm–142Nd chronometer, in lunar ferroan anorthositic suite (FAS) whole rocks (15415, 62236, 62255, 65315, 60025). At least some members of the suite are thought to be primary crystallization products formed by plagioclase flotation during crystallization of the lunar magma ocean (LMO). Most of these samples, except 62236, have not been exposed to galactic cosmic rays for a long period and thus require minimal correction to their 142Nd isotope composition. These samples all have measured deficits in 142Nd relative to the JNdi-1 terrestrial standard in the range –45 to –21 ppm. Themore » range is –45 to –15 ppm once the 62236 142Nd/144Nd ratio is corrected from neutron-capture effects. Analyzed FAS samples do not define a single isochron in either 146Sm–142Nd or 147Sm–143Nd systematics, suggesting that they either do not have the same crystallization age, come from different sources, or have suffered isotopic disturbance. Because the age is not known for some samples, we explore the implications of their initial isotopic compositions for crystallization ages in the first 400 Ma of solar system history, a timing interval that covers all the ages determined for the ferroan anorthositic suite whole rocks as well as different estimates for the crystallization of the LMO. 62255 has the largest deficit in initial 142Nd and does not appear to have followed the same differentiation path as the other FAS samples. The large deficit in 142Nd of FAN 62255 may suggest a crystallization age around 60–125 Ma after the beginning of solar system accretion. This result provides essential information about the age of the giant impact forming the Moon. The initial Nd isotopic compositions of FAS samples can be matched either with a bulk-Moon with chondritic Sm/Nd ratio but enstatite-chondrite-like initial 142Nd/144Nd (e.g. 10 ppm below modern terrestrial), or a bulk-Moon with superchondritic Sm/Nd ratio and initial 142Nd/144Nd similar to ordinary chondrites.« less

  20. Multiscale framework for predicting the coupling between deformation and fluid diffusion in porous rocks

    SciTech Connect (OSTI)

    Andrade, José E; Rudnicki, John W

    2012-12-14

    In this project, a predictive multiscale framework will be developed to simulate the strong coupling between solid deformations and fluid diffusion in porous rocks. We intend to improve macroscale modeling by incorporating fundamental physical modeling at the microscale in a computationally efficient way. This is an essential step toward further developments in multiphysics modeling, linking hydraulic, thermal, chemical, and geomechanical processes. This research will focus on areas where severe deformations are observed, such as deformation bands, where classical phenomenology breaks down. Multiscale geometric complexities and key geomechanical and hydraulic attributes of deformation bands (e.g., grain sliding and crushing, and pore collapse, causing interstitial fluid expulsion under saturated conditions), can significantly affect the constitutive response of the skeleton and the intrinsic permeability. Discrete mechanics (DEM) and the lattice Boltzmann method (LBM) will be used to probe the microstructure---under the current state---to extract the evolution of macroscopic constitutive parameters and the permeability tensor. These evolving macroscopic constitutive parameters are then directly used in continuum scale predictions using the finite element method (FEM) accounting for the coupled solid deformation and fluid diffusion. A particularly valuable aspect of this research is the thorough quantitative verification and validation program at different scales. The multiscale homogenization framework will be validated using X-ray computed tomography and 3D digital image correlation in situ at the Advanced Photon Source in Argonne National Laboratories. Also, the hierarchical computations at the specimen level will be validated using the aforementioned techniques in samples of sandstone undergoing deformation bands.

  1. Surface water supply for the Clearlake, California Hot Dry Rock Geothermal Project

    SciTech Connect (OSTI)

    Jager, A.R.

    1996-03-01

    It is proposed to construct a demonstration Hot Dry Rock (HDR) geothermal plant in the vicinity of the City of Clearlake. An interim evaluation has been made of the availability of surface water to supply the plant. The evaluation has required consideration of the likely water consumption of such a plant. It has also required consideration of population, land, and water uses in the drainage basins adjacent to Clear Lake, where the HDR demonstration project is likely to be located. Five sources were identified that appear to be able to supply water of suitable quality in adequate quantity for initial filling of the reservoir, and on a continuing basis, as makeup for water losses during operation. Those sources are California Cities Water Company, a municipal supplier to the City of Clearlake; Clear Lake, controlled by Yolo County Flood Control and Water Conservation District; Borax Lake, controlled by a local developer; Southeast Regional Wastewater Treatment Plant, controlled by Lake County; and wells, ponds, and streams on private land. The evaluation involved the water uses, water rights, stream flows, precipitation, evaporation, a water balance, and water quality. In spite of California`s prolonged drought, the interim conclusion is that adequate water is available at a reasonable cost to supply the proposed HDR demonstration project.

  2. MODELING COUPLED PROCESSES OF MULTIPHASE FLOW AND HEAT TRANSFER IN UNSATURATED FRACTURED ROCK

    SciTech Connect (OSTI)

    Y. Wu; S. Mukhopadhyay; K. Zhang; G.S. Bodvarsson

    2006-02-28

    A mountain-scale, thermal-hydrologic (TH) numerical model is developed for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository at Yucca Mountain, Nevada, USA. The TH model, consisting of three-dimensional (3-D) representations of the unsaturated zone, is based on the current repository design, drift layout, and thermal loading scenario under estimated current and future climate conditions. More specifically, the TH model implements the current geological framework and hydrogeological conceptual models, and incorporates the most updated, best-estimated input parameters. This mountain-scale TH model simulates the coupled TH processes related to mountain-scale multiphase fluid flow, and evaluates the impact of radioactive waste heat on the hydrogeological system, including thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. For a better description of the ambient geothermal condition of the unsaturated zone system, the TH model is first calibrated against measured borehole temperature data. The ambient temperature calibration provides the necessary surface and water table boundary as well as initial conditions. Then, the TH model is used to obtain scientific understanding of TH processes in the Yucca Mountain unsaturated zone under the designed schedule of repository thermal load.

  3. Estimating Liquid Fluxes in Thermally Perturbed Fractured Rock Using Measured Temperature Profiles

    SciTech Connect (OSTI)

    J.T. Birkholzer

    2005-02-14

    A new temperature-profile method was recently developed for analyzing perturbed flow conditions in superheated porous media. The method uses high-resolution temperature data to estimate the magnitude of the heat-driven liquid and gas fluxes that form as a result of boiling, condensation, and recirculation of pore water. In this paper, we evaluate the applicability of this new method to the more complex flow behavior in fractured formations with porous rock matrix. In such formations, with their intrinsic heterogeneity, the porous but low-permeable matrix provides most of the mass and heat storage capacity, and dominates conductive heat transfer, Fractures, on the other hand, offer highly effective conduits for gas and liquid flow, thereby generating significant convective heat transfer. After establishing the accuracy of the temperature-profile method for fractured porous formations, we apply the method in analyzing the perturbed flow conditions in a large-scale underground heater test conducted in unsaturated fractured porous tuff. The flux estimates for this test indicate a significant reflux of water near the heat source, on the order of a few hundred millimeter per year-much larger than the ambient percolation flux of only a few millimeter per year.

  4. Kinematic Interaction and Rocking Effects on the Seismic Response of Viaducts on Pile Foundations

    SciTech Connect (OSTI)

    Dezi, F.; Carbonari, S.; Leoni, G.

    2008-07-08

    This paper is aimed at providing a contribution for a more accurate and effective design of bridges founded on piles. A numerical model is employed herein to determine the stresses and displacements in the piles taking into account soil-foundation-structure interaction. A 3D finite element approach is developed for piles and superstructure whereas the soil is assumed to be a Winkler-type medium. The method is applied to single piers representative for a class of bridges. Varying the soil layers characteristics and the pile spacing (from 3 to 5 diameters), bending and axial stresses along piles as well as the pier base shear are computed. A comparison with respect to a fixed-base model is provided. Special issues such as the contribution of the soil profile, of the local amplification and of the rocking at the foundation level are discussed. Soil-structure interaction is found to be essential for effective design of bridges especially for squat piers and soft soil.

  5. Fractured rock aquifer tests in the Western Siberian Basin, Ozyorsk, Russia

    SciTech Connect (OSTI)

    Nichols, R.L.; Looney, B.B.; Eddy-Dilek, C.A.

    1997-10-01

    A series of multi-zone pumping tests was conducted in a contaminated fractured rock aquifer in the Western Siberian Basin, Ozyorsk, Russia. The tests were conducted adjacent to the Mishelyak River floodplain in fractured Paleozoic porphyrites, tufts, tuff breccia, and lava typical of the Ural mountain complex. Geophysical logs, borehole photography, core samples, and results from previous borehole contamination studies were used to identify the zones to be tested. A network of three uncased wells was tested using a system of inflatable packers, pressure transducers and data loggers. Seven zones were isolated and monitored in two of the uncased wells. A straddle packer assembly was used to isolate individual zones within the pumping well. Eight constant rate pumping tests were conducted. Results of the testing indicate that shallow groundwater migrates primarily in two intervals that are separated by an interval with low lateral conductivity. The water bearing intervals have moderate to high specific capacities (1.3 and 30 L/min/m). Several processes are responsible for fracturing present in the lower interval. The network of compound fractures produced a complex array of fracture intersections yielding a fractured media with hydraulic behavior similar to porous media. Models used for the analysis of pumping tests in porous media provide a good estimation of the hydraulic response of the lower interval to pumping. Future work will include more complex analysis of the data to determine hydraulic conductivity ellipses.

  6. Gap solitons in rocking optical lattices and waveguides with undulating gratings

    SciTech Connect (OSTI)

    Mayteevarunyoo, Thawatchai; Malomed, Boris A.

    2009-07-15

    We report results of a systematic analysis of the stability of one-dimensional solitons in a model including the self-repulsive or attractive cubic nonlinearity and a linear potential represented by a periodically shaking lattice, which was recently implemented in experiments with Bose-Einstein condensates. In optics, the same model applies to undulated waveguiding arrays, which are also available to the experiment. In the case of the repulsive nonlinearity, stability regions are presented, in relevant parameter planes, for fundamental gap solitons and their two-peak and three-peak bound complexes, in the first and second finite band gaps. In the model with the attractive nonlinearity, stability regions are produced for fundamental solitons and their bound states populating the semi-infinite gap. In the first finite and semi-infinite gaps, unstable solitons gradually decay into radiation, while, in the second finite band gap, they are transformed into more complex states, which may represent new species of solitons. For a large amplitude of the rocking-lattice drive, the model is tantamount to that with a 'flashing' lattice potential, which is controlled by periodic sequences of instantaneous kicks. Using this correspondence, we explain generic features of the stability diagrams for the solitons. We also derive a limit case of the latter system, in the form of coupled-mode equations with a 'flashing' linear coupling.

  7. P-waves imaging of the FRI and BK zones at the Grimsel Rock Laboratory

    SciTech Connect (OSTI)

    Majer, E.L.; Peterson, J.E. Jr. ); Blueming, P.; Sattel, G. )

    1990-08-01

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a rock mass as a geological repository for nuclear waste. Tomographic imaging studies using a high frequency (10 Khz.) piezoelectric source and a three component receiver were carried out in two different regions of the underground Nagra Grimsel test facility in Switzerland. Both sites were in fractured granite, one being in a strongly foliated granite (FRI site), and the other being in a relatively homogeneous granite (BK zone). The object of the work was to determine if the seismic techniques could be useful in imaging the fracture zones and provide information on the hydrologic conditions. Both amplitude and velocity tomograms were obtained from the Data. The results indicate that the fracture zones strongly influenced the seismic wave propagation, thus imaging the fracture zones that were hydrologically important. 11 refs., 24 figs.

  8. Oils and source rocks from the Anadarko Basin: Final report, March 1, 1985-March 15, 1995

    SciTech Connect (OSTI)

    Philp, R. P. [School of Geology and Geophysics, Univ. of Oklahoma, Norman, OK (United States)

    1996-11-01

    The research project investigated various geochemical aspects of oils, suspected source rocks, and tar sands collected from the Anadarko Basin, Oklahoma. The information has been used, in general, to investigate possible sources for the oils in the basin, to study mechanisms of oil generation and migration, and characterization of depositional environments. The major thrust of the recent work involved characterization of potential source formations in the Basin in addition to the Woodford shale. The formations evaluated included the Morrow, Springer, Viola, Arbuckle, Oil Creek, and Sylvan shales. A good distribution of these samples was obtained from throughout the basin and were evaluated in terms of source potential and thermal maturity based on geochemical characteristics. The data were incorporated into a basin modelling program aimed at predicting the quantities of oil that could, potentially, have been generated from each formation. The study of crude oils was extended from our earlier work to cover a much wider area of the basin to determine the distribution of genetically-related oils, and whether or not they were derived from single or multiple sources, as well as attempting to correlate them with their suspected source formations. Recent studies in our laboratory also demonstrated the presence of high molecular weight components(C{sub 4}-C{sub 80}) in oils and waxes from drill pipes of various wells in the region. Results from such a study will have possible ramifications for enhanced oil recovery and reservoir engineering studies.

  9. Geomechanical Simulation of CO{sub 2} Leakage and Cap Rock Remediation

    SciTech Connect (OSTI)

    Nygaard, Runar; Bai, Baojun; Eckert, Andreas

    2012-09-30

    CO{sub 2} sequestration into porous and permeable brine filled aquifers is seen as one of the most likely near-term solutions for reducing greenhouse gases. Safely storing injected CO{sub 2}, which is less dense than water, requires trapping the CO{sub 2} under an impermeable rock which would act as a seal. One of the concerns with CO{sub 2} sequestration is the generation of new fractures or reactivation of existing fractures and faults caused by CO{sub 2} injection into the sealing formation. Mitigation strategies must be developed to remediate potentially leaking faults or fractures. This project evaluated potential storage scenarios in the state of Missouri and developed coupled reservoir and geomechanic simulations to identify storage potential and leakage risks. Further, several injectable materials used to seal discontinuities were evaluated under subsurface conditions. The four sealant materials investigated were paraffin wax, silica based gel, polymer based gel, and micro-cement, which all significantly reduced the fracture permeability. However, the micro-cement was the most effective sealing agent and the only sealant able to withstand the large differential pressure caused by CO{sub 2} or brine injection and create a strong seal to prevent further fracturing.

  10. Unique aspects of drilling and completing hot-dry-rock geothermal wells

    SciTech Connect (OSTI)

    Carden, R.S.; Nicholson, R.W.; Pettitt, R.A.; Rowley, J.C.

    1983-01-01

    Drilling operations at the Fenton Hill Hot Dry Rock (HDR) Geothermal Test Site have led to numerous developments needed to solve the problems caused by a very harsh downhole environment. A pair of deep wells were drilled to approximately 15,000 ft (4.6 km); formation temperatures were in excess of 600/sup 0/F (300/sup 0/C). The wells were directionally drilled, inclined at 35/sup 0/, one above the other, in a direction orthogonal to the least principal stress field. The well site is near the flank of a young silicic composite volcano in the Jemez Mountains of northern New Mexico. The completion of this pair of wells is unique in reservoir development. The lower well was planned as a cold water injector which will be cooled by the introduced water from the static geothermal gradient to about 80/sup 0/F (25/sup 0/C). The upper well will be heated during production to over 500/sup 0/F (250/sup 0/C). The well pair is designed to perform as a closed loop heat-extraction system connected by hydraulic fractures with a vertical spacing of 1200 ft between the wells. These conditions strongly constrain the drilling technique, casing design, cement formulation, and cementing operations.

  11. Petrology of lower and middle Eocene carbonate rocks, Floridan aquifer, central Florida

    SciTech Connect (OSTI)

    Thayer, P.A.; Miller, J.A.

    1984-09-01

    Study of cores from a US Geological Survey test well near Polk City, Florida, indicates that the Avon Park-Lake City (Claibornian) and Oldsmar (Sabinian) Limestones, which comprise most of the Floridan aquifer in central Florida, can be divided into six microfacies: foraminiferal mudstone, foraminiferal wackestone-packstone, foraminiferal grainstone, nodular anhydrite, laminated dolomicrite, and replacement dolomite. Dolomite containing variable amounts of nodular anhydrite forms more than 90% of the Avon Park-Lake city interval, whereas thte Oldsmar is chiefly limestone. Several episodes of dolomite formation are recognized. Laminated dolomicrite formed syngenetically in a supratidal-sabhka environment. Crystalline dolomite with nodular anhydrite formed early by replacement of limestone through reflux of dense, magnesium-rich brines. Replacement dolomite not associated with evaporites and containing limpid crystals probably formed later by a mixed-water process in the subsurface environment. Late diagenetic processes affecting crystalline dolomites include hydration of anhydrite to gypsum, partial dissolution of gypsum, minor alteration of gypsum to calcite, and dissolution of calcian dolomite cores in stoichiometric crystals. Crystalline dolomite and grainstone are the only rock types that have high enough porosities and permeabilities to provide significant yields of water. Medium and finely crystalline dolomites show best values of porosity and permeability because they have high percentages of intercrystal and moldic pores that are well connected. Filling of pores by anhydrite or gypsum can significantly reduce porosity and permeability.

  12. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Tertiary Treatment

    Broader source: Energy.gov [DOE]

    This infographic was created by students from Nikola Tesla STEM High School in Redmond, WA, as part of the U.S. Department of Energy-BioenergizeME Infographic Challenge. The BioenergizeME...

  13. Laboratory evaluation of mechanical properties of rock using an automated triaxial compression test with a constant mean stress criterion

    SciTech Connect (OSTI)

    Mellegard, K.D.; Pfeifle, T.W.

    1999-07-01

    A computerized, servohydraulic test system has been used in the laboratory to perform axisymmetric, triaxial compression tests on natural rock salt using a load path that maintains constant mean stress. The constant mean stress test protocol illustrates that modern test systems allow a nonstandard load path which can focus on a particular aspect of rock characterization; namely, the onset of dilation. Included are discussions of how the constant mean stress test could be used to investigate material anisotropy and determine elastic moduli. The results from the constant mean stress tests are compared to test results from a traditional test method. The paper also addresses system calibration concerns and the effects of pressure changes on the direct-contact extensometers used to measure strain.

  14. Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock

    SciTech Connect (OSTI)

    Liu, H.H.; Li, L.; Zheng, L.; Houseworth, J.E.; Rutqvist, J.

    2011-06-20

    Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of radioactive waste. Figure 1-1 presents the distribution of clay/shale formations within the USA.

  15. Waste/Rock Interactions Technology Program: the status of radionuclide sorption-desorption studies performed by the WRIT program

    SciTech Connect (OSTI)

    Serne, R.J.; Relyea, J.F.

    1982-04-01

    The most credible means for radionuclides disposed as solid wastes in deep-geologic repositories to reach the biosphere is through dissolution of the solid waste and subsequent radionuclide transport by circulating ground water. Thus safety assessment activities must consider the physicochemical interactions between radionculides present in ground water with package components, rocks and sediments since these processes can significantly delay or constrain the mass transport of radionuclides in comparison to ground-water movement. This paper focuses on interactions between dissolved radiouclides in ground water and rocks and sediments away from the near-field repository. The primary mechanism discussed is adsorption-desorption, which has been studied using two approaches. Empirical studies of adsorption-desorption rely on distribution coefficient measurements while mechanism studies strive to identify, differentiate and quantify the processes that control nuclide retardation.

  16. Project test plan for runoff and erosion on fine-soil barrier surfaces and rock-covered side slopes

    SciTech Connect (OSTI)

    Walters, W.H.; Hoover, K.A.; Cadwell, L.L.

    1990-06-01

    Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company are working together to develop protective barriers to isolate near-surface radioactive waste. The purpose of the barriers is to protect defense wastes at the US Department of Energy's (DOE) Hanford Site from infiltration of precipitation, biointrusion, and surficial erosion for up to 10,000 years without the need for long-term monitoring, maintenance, or institutional control. The barriers will be constructed of layered earth and rock material designed to direct surface and groundwater pathways away from the buried waste. To address soil erosion as it applies to barrier design and long-term stability, a task designed to study this problem has been included in the Protective Barriers Program at PNL. The barrier soil-erosion task will investigate the ability of the soil cover and side slopes to resist the erosional and destabilizing processes from externally applied water. The study will include identification and field testing of the dominant processes contributing to erosion and barrier failure. The effects of rock mulches, vegetation cover on the top fine-grained soil surface, as well as the stability of rock armoring on the side slopes, will be evaluated. Some of the testing will include the effects of animal intrusion on barrier erosion, and these will be coordinated with other animal intrusion studies. 6 refs., 4 figs., 1 tab.

  17. Geochemistry and sedimentation of organic matter in the Triassic-Liassic carbonate laminated source rocks of the Ragusa basin (Italy)

    SciTech Connect (OSTI)

    Brosse, E.; Loreau, J.P.; Frixa, A.

    1988-08-01

    The Noto and Streppenosa formations of the Ragusa basin (southeastern Sicily) are considered the main source rocks for oil in this area. They display various styles of sedimentation in a generally carbonate context. The organic matter is basically of marine planktonic origin but with some variations, especially in terms of O/C ratio and kinetic behavior. Three main styles of sedimentation occurred within these formations: (1) laminates in a dominantly carbonate rock with thin recurrent interlayers of black shales; (2) alternating layers of marls and limestones, both containing interlayers of black shales and with occasional laminations in the limestones; and (3) silty shales, more or less rich in carbonates (30-70%). The highest petroleum potentials are neither strictly associated with the algal-sedimentary laminites nor with the basinal silty facies but with the black shales interbedded in the different facies or abruptly overlying limestones. In these black shales, oxygen-poor kerogens are dominant. Limestones of the alternated layers are generally organic lean (TOC < 1%), and oxygen-rich kerogens are dominant. The transition from one type of kerogen to the other occurs in the marly layers of the sequence. A tentative integration of both sedimentological and geochemical results is proposed, at the scale of the core, to interpret the respective influence of the depositional pattern and the diagenetic conditions on the content and nature of the kerogen in the source rocks.

  18. Distribution and geochemistry of contaminated subsurface waters in fissured volcanogenic bed rocks of the Lake Karachai Area, Chelyabinsk, Southern Urals

    SciTech Connect (OSTI)

    Solodov, I.N.; Belichkin, V.I.; Zotov, A.V.; Kochkin, B.T.; Drozhko, E.G.; Glagolev, A.V.; Skokov, A.N.

    1994-06-01

    The present investigation is devoted to the study of the distribution and geochemistry of contaminated subsurface waters, beneath the site of temporary storage of liquid radioactive waste known as Lake Karachai. For this purpose a method of hydrogeochemical logging (HGCL) together with standard hydrogeochemical and geophysical methods of uncased hole logging were used. The distribution of sodium nitrate brine plumes in the subsurface was determined by the physical and physico-chemical properties of these brines and by the petrochemical composition of enclosing rocks and the structural setting of the flow paths. The latter is represented by fractures and large faults in the bedrock of volcanogenic and volcanogenic-sedimentary rocks of intermediate-to-basic composition. The volcanogenic rocks are overlain in some places by a thin cover of unconsolidated sediments, i.e., by loams and relatively impermeable silts. Contaminated waters flow-in accordance with the eluvium bottom relief towards local areas of natural (Mishelyak and Techa rivers) and artificial (Novogomenskii water intake) discharge of subsurface waters. The large Mishelyak fault, southwest of Lake Karachai and under fluvial sediments of the Mishelyak, is assumed to significantly influence the flow pattern of contaminated waters, diverting them from an intake of drinking water.

  19. Joint seismic, hydrogeological, and geomechanical investigations of a fracture zone in the Grimsel Rock Laboratory, Switzerland

    SciTech Connect (OSTI)

    Majer, E.L.; Myer, L.R.; Peterson, J.E. Jr.; Karasaki, K.; Long, J.C.S.; Martel, S.J. ); Bluemling, P.; Vomvoris, S. )

    1990-06-01

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a rock mass as a geologic repository for nuclear waste. From 1987 to 1989 the United States Department of Energy (DOE) and the Swiss Cooperative for the Storage of Nuclear Waste (Nagra) participated in an agreement to carryout experiments for understanding the effect of fractures in the storage and disposal of nuclear waste. As part of this joint work field and laboratory experiments were conducted at a controlled site in the Nagra underground Grimsel test site in Switzerland. The primary goal of these experiments in this fractured granite was to determine the fundamental nature of the propagation of seismic waves in fractured media, and to relate the seismological parameters to the hydrological parameters. The work is ultimately aimed at the characterization and monitoring of subsurface sites for the storage of nuclear waste. The seismic experiments utilizes high frequency (1000 to 10,000 Hertz) signals in a cross-hole configuration at scales of several tens of meters. Two-, three-, and four-sided tomographic images of the fractures and geologic structure were produced from over 60,000 raypaths through a 10 by 21 meter region bounded by two nearly horizontal boreholes and two tunnels. Intersecting this region was a dominant fracture zone which was the target of the investigations. In addition to these controlled seismic imaging experiments, laboratory work using core from this region were studied for the relation between fracture content, saturation, and seismic velocity and attenuation. In-situ geomechanical and hydrologic tests were carried out to determine the mechanical stiffness and conductivity of the fractures. 20 refs., 90 figs., 6 tabs.

  20. End-to-End Models for Effects of System Noise on LIMS Analysis of Igneous Rocks

    SciTech Connect (OSTI)

    Clegg, Samuel M; Bender, Steven; Wiens, R. C.; Carmosino, Marco L; Speicher, Elly A; Dyar, M. D.

    2010-12-23

    The ChemCam instrument on the Mars Science Laboratory will be the first extraterrestial deployment of laser-induced breakdown spectroscopy (UBS) for remote geochemical analysis. LIBS instruments are also being proposed for future NASA missions. In quantitative LIBS applications using multivariate analysis techniques, it is essential to understand the effects of key instrument parameters and their variability on the elemental predictions. Baseline experiments were run on a laboratory instrument in conditions reproducing ChemCam performance on Mars. These experiments employed Nd:YAG laser producing 17 mJ/pulse on target and an with a 200 {micro}m FWHM spot size on the surface of a sample. The emission is collected by a telescope, imaged on a fiber optic and then interfaced to a demultiplexer capable of >40% transmission into each spectrometer. We report here on an integrated end-to-end system performance model that simulates the effects of output signal degradation that might result from the input signal chain and the impact on multivariate model predictions. There are two approaches to modifying signal to noise (SNR): degrade the signal and/or increase the noise. Ishibashi used a much smaller data set to show that the addition of noise had significant impact while degradation of spectral resolution had much less impact on accuracy and precision. Here, we specifically focus on aspects of remote LIBS instrument performance as they relate to various types of signal degradation. To assess the sensitivity of LIBS analysis to signal-to-noise ratio (SNR) and spectral resolution, the signal in each spectrum from a suite of 50 laboratory spectra of igneous rocks was variably degraded by increasing the peak widths (simulating misalignment) and decreasing the spectral amplitude (simulating decreases in SNR).

  1. Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1983

    SciTech Connect (OSTI)

    Smith, M.C.; Nunz, G.J.; Wilson, M.G.

    1985-02-01

    Emphasis was on hydraulic-fracturing experiments at depths around 3.5 km (11,473 ft) in the two inclined wells of the Phase II system at Fenton Hill, New Mexico; on improved facilities and techniques for mapping the source locations of acoustic signals generated by the fracturing events; on mathematical modeling of the fracture systems produced in these and earlier experiments; and on development of a family of slimline high-temperature downhole instruments that can be used within or through relatively small-diameter pressure tubing. Hydraulic fracturing at a vertical depth of approximately 3500 m (11,500 ft) in well EE-2, the deeper well, produced fractures that, in acoustic maps, appear to occupy a large, roughly ellipsoidal volume whose major axis is directed to the north of the other well, EE-3. Hydraulic fracturing from EE-3 at a similar depth produced another set of fractures that appear to be approximately parallel to and centered about 180 m (600 ft) east of the earlier set. Subsequent fluid injections reduced the distance between the two sets, but no hydraulic connection between them was established. Modeling the silica concentrations of fluid circulated through the earlier Phase I system indicates that this type of permeation also contributes significantly to heat extraction during system operation. The precision and accuracy of locating the sources of acoustic signals detected during hydraulic-fracturing operations have been increased by improvements in equipment, drilling of another deep hole for geophone emplacement, and additional station calibrations. Analysis of the signals has also been improved and broadened. Development of slimline downhole instruments has included a detonator tool, a geophone package, and final design of a high-temperature borehole acoustic televiewer. A crosswell acoustic transceiver has also been developed for investigating rock type and structure between wellbores. 32 refs., 35 figs.

  2. Failure of cap-rock seals as determined from mechanical stratigraphy, stress history, and tensile-failure analysis of exhumed analogs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Petrie, E. S.; Evans, J. P.; Bauer, S. J.

    2014-11-01

    In this study, the sedimentologic and tectonic histories of clastic cap rocks and their inherent mechanical properties control the nature of permeable fractures within them. The migration of fluid through mm- to cm-scale fracture networks can result in focused fluid flow allowing hydrocarbon production from unconventional reservoirs or compromising the seal integrity of fluid traps. To understand the nature and distribution of subsurface fluid-flow pathways through fracture networks in cap-rock seals we examine four exhumed Paleozoic and Mesozoic seal analogs in Utah. We combine these outcrop analyses with subsidence analysis, paleoloading histories, and rock-strength testing data in modified Mohr–Coulomb–Griffith analysesmore » to evaluate the effects of differential stress and rock type on fracture mode.« less

  3. Remedial action and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 2, Geology report

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This report presents geologic considerations that are pertinent to the Remedial Action Plan for Slick Rock mill tailings. Topics covered include regional geology, site geology, geologic stability, and geologic suitability.

  4. Failure of cap-rock seals as determined from mechanical stratigraphy, stress history, and tensile-failure analysis of exhumed analogs

    SciTech Connect (OSTI)

    Petrie, E. S.; Evans, J. P.; Bauer, S. J.

    2014-11-01

    In this study, the sedimentologic and tectonic histories of clastic cap rocks and their inherent mechanical properties control the nature of permeable fractures within them. The migration of fluid through mm- to cm-scale fracture networks can result in focused fluid flow allowing hydrocarbon production from unconventional reservoirs or compromising the seal integrity of fluid traps. To understand the nature and distribution of subsurface fluid-flow pathways through fracture networks in cap-rock seals we examine four exhumed Paleozoic and Mesozoic seal analogs in Utah. We combine these outcrop analyses with subsidence analysis, paleoloading histories, and rock-strength testing data in modified Mohr–Coulomb–Griffith analyses to evaluate the effects of differential stress and rock type on fracture mode.

  5. A Hydrostratigraphic Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat-Climax Mine, Lincoln and Nye Counties, Nevada

    SciTech Connect (OSTI)

    Geotechnical Sciences Group Bechtel Nevada

    2006-01-01

    A new three-dimensional hydrostratigraphic framework model for the Yucca Flat-Climax Mine Corrective Action Unit was completed in 2005. The model area includes Yucca Flat and Climax Mine, former nuclear testing areas at the Nevada Test Site, and proximal areas. The model area is approximately 1,250 square kilometers in size and is geologically complex. Yucca Flat is a topographically closed basin typical of many valleys in the Basin and Range province. Faulted and tilted blocks of Tertiary-age volcanic rocks and underlying Proterozoic and Paleozoic sedimentary rocks form low ranges around the structural basin. During the Cretaceous Period a granitic intrusive was emplaced at the north end of Yucca Flat. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the basin. These were integrated using EarthVision? software to develop the 3-dimensional hydrostratigraphic framework model. Fifty-six stratigraphic units in the model area were grouped into 25 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the alluvial section into 3 hydrostratigraphic units including 2 aquifers and 1 confining unit. The volcanic units in the model area are organized into 13 hydrostratigraphic units that include 8 aquifers and 5 confining units. The underlying pre-Tertiary rocks are divided into 7 hydrostratigraphic units, including 3 aquifers and 4 confining units. Other units include 1 Tertiary-age sedimentary confining unit and 1 Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with the major structural features (i.e., faults). The model incorporates 178 high-angle normal faults of Tertiary age and 2 low-angle thrust faults of Mesozoic age. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to formulate alternative interpretations for some of the major features in the model. Five of these alternatives were developed so they could be modeled in the same fashion as the base model. This work was done for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Underground Test Area subproject of the Environmental Restoration Project.

  6. Standing Rock Sioux Tribe - Lakota/Dakota Nation Feasibility Study Supporting Wind Development and Establishment of Renewable Energy and Energy Development Office

    Energy Savers [EERE]

    (Washee Zee) 701-854-3437 fwasinzi@standingrock.org Standing Rock Sioux Tribe - Lakota/Dakota Nation  BACKGROUND INFORMATION ON STANDING ROCK RESERVATION  SITTING BULL COLLEGE WIND TURBINE  EECBG ENERGY EFFICIENCY & WIND TURBINE INSTALLATION AT SITTING BULL COLLEGE  WIND ASSESSMENT STUDY  ESTABLISHMENT OF RENEWABLE ENERGY & ENERGY DEVELOPMENT OFFICE (REEDO)  WIND FEASIBILITY STUDY  OCETI SAKOWIN POWER PROJECT  ONE OF SEVEN RESERVATIONS OF THE GREAT SIOUX NATION

  7. Completion Report for Well Cluster ER-6-1

    SciTech Connect (OSTI)

    Bechtel Nevada

    2004-10-01

    Well Cluster ER-6-1 was constructed for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office in support of the Nevada Environmental Restoration Division at the Nevada Test Site, Nye County, Nevada. This work was initiated as part of the Groundwater Characterization Project, now known as the Underground Test Area Project. The well cluster is located in southeastern Yucca Flat. Detailed lithologic descriptions with stratigraphic assignments for Well Cluster ER-6-1 are included in this report. These are based on composite drill cuttings collected every 3 meters and conventional core samples taken below 639 meters, supplemented by geophysical log data. Detailed petrographic, chemical, and mineralogical studies of rock samples were conducted on 11 samples to resolve complex interrelationships between several of the Tertiary tuff units. Additionally, paleontological analyses by the U.S. Geological Survey confirmed the stratigraphic assignments below 539 meters within the Paleozoic sedimentary section. All three wells in the Well ER-6-1 cluster were drilled within the Quaternary and Tertiary alluvium section, the Tertiary volcanic section, and into the Paleozoic sedimentary section.

  8. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah. Annual report, February 9, 1997--February 8, 1998

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1998-03-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. At least 200 million barrels (31,800,000 m{sup 3}) of oil are at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. This study utilized representative core and modern geophysical logs to characterize and grade each of the five fields for suitability of enhanced recovery projects. The typical vertical sequence or cycle of lithofacies from each field, as determined from conventional core, was tied to its corresponding log response. The diagenetic fabrics and porosity types found in the various hydrocarbon-bearing rocks of each field can be an indicator of reservoir flow capacity, storage capacity, and potential for water- and/or CO{sub 2}-flooding. Diagenetic histories of the various Desert Creek reservoirs were determined from 50 representative samples selected from the conventional cores of each field. Thin sections were also made of each sample for petrographic description.

  9. Reactive transport of uranium in fractured crystalline rock: Upscaling in time and distance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dittrich, Timothy M.; Reimus, Paul W.

    2015-09-29

    In this study, batch adsorption and breakthrough column experiments were conducted to evaluate uranium transport through altered material that fills fractures in a granite rock system at the Grimsel Test Site in Switzerland at pH 6.9 and 7.9. The role of adsorption and desorption kinetics was evaluated with reactive transport modeling by comparing one-, two-, and three-site models. Emphasis was placed on describing long desorption tails that are important for upscaling in time and distance. The effect of increasing pH in injection solutions was also evaluated. For pH 6.9, a three-site model with forward rate constants between 0.07 and 0.8more » ml g–1 h–1, reverse rate constants between 0.001 and 0.06 h–1, and site densities of 1.3, 0.104, and 0.026 μmol g–1 for ‘weak/fast’, ‘strong/slow’, and ‘very strong/very slow’ sites provided the best fits. For pH 7.9, a three-site model with forward rate constants between 0.05 and 0.8 mL g–1 h–1, reverse rate constants between 0.001 and 0.6 h–1, and site densities of 1.3, 0.039, and 0.013 μmol g–1 for a ‘weak/fast’, ‘strong/slow’, and ‘very strong/very slow’ sites provided the best fits. Column retardation coefficients (Rd) were 80 for pH 6.9 and 10.3 for pH 7.9. Model parameters determined from the batch and column experiments were used in 50 year large-scale simulations for continuous and pulse injections and indicated that a three-site model is necessary at pH 6.9, although a Kd-type equilibrium partition model with one-site was adequate for large scale predictions at pH 7.9. Batch experiments were useful for predicting early breakthrough times in the columns while column experiments helped differentiate the relative importance of sorption sites and desorption rate constants on transport.« less

  10. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    SciTech Connect (OSTI)

    TerraTek, A Schlumberger Company

    2008-12-31

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.

  11. Chemical migration by contact metamorphism between pegmatite/country rocks: natural analogs for radionuclides migration. [Black Hills, South Dakota

    SciTech Connect (OSTI)

    Laul, J.C.; Walker, R.J.; Shearer, C.K.; Papike, J.J.; Simon, S.B.

    1983-10-01

    Comparison of trace element signatures of country rocks as a function of distance from the contact with two pegmatites, Tin Mountain and Etta, in the Black Hills of South Dakota, suggests that some elements such as K, Li, Rb, Cs, As, Sb, Zn and Pb, have migrated to distances of 4 to 40 meters during contact metamorphism. The relative degree of migration varies depending on the element. On the other hand, there is virtually no migration of rare earth elements (REE), Al, Sc, Cr, Hf, U, and Th. Biotite and muscovite are effective trace element traps for Li, Rb and Cs. Biotite has a greater affinity for Rb, Cs and Li than muscovite.

  12. Susceptibility of Granite Rock to scCO2/Water at 200 degrees C and 250 degrees C

    SciTech Connect (OSTI)

    Sugama, T.; Gill, S., Ecker, L., Butcher, T., Warren, J.

    2011-01-01

    Granite rock comprising anorthoclase-type albite and quartz as its major phases and biotite mica as the minor one was exposed to supercritical carbon dioxide (scCO{sub 2})/water at 250 C and 13.78 MPa pressure for 104 hours. For comparison purpose, four other rocks, albite, hornblende, diorite, and quartz, also were exposed. During the exposure of granite, ionic carbonic acid, known as the wet carbonation reactant, preferentially reacted with anorthoclase-type albite and biotite, rather than with quartz. The susceptibility of biotite to wet carbonation was higher than that of anorthoclase-type albite. All the carbonation by-products of anorthoclase-type albite were amorphous phases including Na- and K-carbonates, a kaolinite clay-like compound, and silicon dioxide, while wet carbonation converted biotite into potassium aluminum silicate, siderite, and magnesite in crystalline phases and hydrogen fluoride (HF). Three of these reaction by-products, Na- and K-carbonates and HF, were highly soluble in water. Correspondingly, the carbonated top surface layer, about 1.27 mm thick as carbonation depth, developed porous microstructure with numerous large voids, some of which have a size of {>=} 10 {mu}m, reflecting the erosion of granite by the leaching of these water-soluble reaction by-products. Comparing with this carbonation depth, its depth of other minerals was considerable lower, particularly, for hornblende and diorite with 0.07 and 0.02 mm, while no carbonate compound was detected in quartz. The major factor governing these low carbonation depths in these rocks was the formation of water-insensitive scale-like carbonate by-products such as calcite (CaCO{sub 3}), siderite (FeCO{sub 3}), and magnesite (MgCO{sub 3}). Their formation within the superficial layer of these minerals served as protective barrier layer that inhibits and retards further carbonation of fresh underlying minerals, even if the exposure time was extended. Thus, the coverage by this barrier layer of the non-carbonated surfaces of the underlying rock was reason why the hornblende and diorite exhibited a minimum depth of carbonation. Under exposure to the scCO{sub 2}/water at 200 C and 10.34 MPa pressure for up to 42 days, the ranking of the magnitude of erosion caused by wet carbonation was in the following order; granite > albite > hornblende > diorite > quartz. The eroding-caused weight loss of granite (0.88 %) was {approx}2.4, {approx}5.2, {approx}9.8, and {approx}17.6 times greater than that of albite, hornblends, diorite, and quartz, respectively.

  13. Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan. Final report, May 1, 1995--November 30, 1997

    SciTech Connect (OSTI)

    Garg, S.K.; Combs, J.; Pritchett, J.W.

    1997-07-01

    The principal purpose of this case study of the Sumikawa Geothermal Field is to document and to evaluate the use of drilling logs, surface and downhole geophysical measurements, chemical analyses and pressure transient data for the assessment of a high temperature volcanic geothermal field. This comprehensive report describes the work accomplished during FY 1993-1996. A brief review of the geological and geophysical surveys at the Sumikawa Geothermal Field is presented (Section 2). Chemical data, consisting of analyses of steam and water from Sumikawa wells, are described and interpreted to indicate compositions and temperatures of reservoir fluids (Section 3). The drilling information and downhole pressure, temperature and spinner surveys are used to determine feedzone locations, pressures and temperatures (Section 4). Available injection and production data from both slim holes and large-diameter wells are analyzed to evaluate injectivity/productivity indices and to investigate the variation of discharge rate with borehole diameter (Section 5). New interpretations of pressure transient data from several wells are discussed (Section 6). The available data have been synthesized to formulate a conceptual model for the Sumikawa Geothermal Field (Section 7).

  14. Characterization of calculation of in-situ retardation factors of contaminant transport using naturally-radionuclides and rock/water interaction occurring U-Series disequilibria timescales. 1997 annual progress report

    SciTech Connect (OSTI)

    Roback, R.; Murrel, M.; Goldstein, S.; Ku, T.L.; Luo, S.

    1997-01-01

    'The research is directed toward a quantitative assessment of contaminant transport rates in fracture-rock systems using uranium-series radionuclides. Naturally occurring uranium-and thorium-series radioactive disequilibria will provide information on the rates of adsorption-desorption and transport of radioactive contaminants as well as on fluid transport and rock dissolution in a natural setting. This study will also provide an improved characterization of preferential flow and contaminant transport at the Idaho Environmental and Engineering Lab. (INEEL) site. To a lesser extent, the study will include rocks in the unsaturated zone. The authors will produce a realistic model of radionuclide migration under unsaturated and saturated field conditions at the INEEL site, taking into account the retardation processes involved in the rock/water interaction. The major tasks are to (1) determine the natural distribution of U, Th, Pa and Ra isotopes in rock minerals. sorbed phases on the rocks, and in fluids from both saturated and unsaturated zones at the site, and (2) study rock/water interaction processes using U/Th series disequilibrium and a statistical analysis-based model for the Geologic heterogeneity plays an important role in transporting contaminants in fractured rocks. Preferential flow paths in the fractured rocks act as a major pathway for transport of radioactive contaminants in groundwaters. The weathering/dissolution of rock by groundwater also influences contaminant mobility. Thus, it is important to understand the hydrogeologic features of the site and their impact on the migration of radioactive contaminants. In this regard, quantification of the rock weathering/dissolution rate and fluid residence time from the observed decay-series disequilibria will be valuable. By mapping the spatial distribution of the residence time of groundwater in fractured rocks, the subsurface preferential flow paths (with high rock permeability and short fluid residence time) can be determined.'

  15. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect (OSTI)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2002-04-30

    Three major goals were accomplished during this phase. First, a study was completed of the effects of stress-induced changes in anisotropic elastic moduli in sandstone. Second, a new method for measuring the anisotropic poroelastic moduli from acoustic data was developed. Third, a series of triaxial experiments were conducted on unconsolidated sands to identify pressure/stress conditions where liquefaction occurs under high confining pressures. Stress-induced changes in anisotropic Young's moduli and shear moduli were observed during deformational pathway experiments. A new method was made for the acquisition of compressional and shear wave velocities along a series of 3-dimensional raypaths through a core sample as it is subjected to deformation. Three different deformational pathway experiments were conducted. During the hydrostatic deformation experiment, little or no anisotropy was observed in either the Young's moduli or shear moduli. Significant deformational anisotropies were observed in both moduli during the uniaxial strain test and the triaxial compression experiment but each had a different nature. During the triaxial experiment the axial and lateral Young's moduli and shear moduli continued to diverge as load was applied. During the uniaxial strain experiment the anisotropy was ''locked in'' early in the loading phase but then remained steady as both the confining pressure and axial stress were applied. A new method for measuring anisotropic Biot's effective stress parameters has also been developed. The method involves measuring the compressional and shear wave velocities in the aforementioned acoustic velocity experiments while varying stress paths. For a stress-induced transversely isotropic medium the acoustic velocity data are utilized to calculate the five independent elastic stiffness components. Once the elastic stiffness components are determined these can be used to calculate the anisotropic Biot's effective stress parameters, {alpha}{sub v} and {alpha}{sub h}, using the equations of Abousleiman et al. (1996). A series of experiments have been conducted, on an initially inherently isotropic Berea sandstone rock sample, to dynamically determine these anisotropic Biot's parameters during deformational pathway experiments. Data acquired during hydrostatic, triaxial, and uniaxial strain pathway experiments indicates that Biot's effective stress parameter changes significantly if the applied stresses are not hydrostatic. Variations, as large as 20% between the axial (vertical) and lateral (horizontal) Biot's effective stress parameters, were observed in some experiments. A series of triaxial compression experiments have been conducted on unconsolidated sand (Oil Creek sand) to determine the pressure/stress conditions which would be favorable for liquefaction. Liquefaction of geopressured sands is thought to be one of the major causative mechanisms of damaging shallow water flows. The experiments were developed to determine if: (1) liquefaction could be made to occur in this particular sand at high confining pressures, and (2) the state of liquefication had the same nature at high pressure conditions typical of shallow water flows as it does in low confining pressure soil mechanics tests. A series of undrained triaxial experiments were successfully used to document that the Oil Creek sand could undergo liquefaction. The nature (i.e., the shape of the deformational pathway in mean pressure/shear stress space) was very similar to those observed in soil mechanics experiments. The undrained triaxial experiments also indicated that this sand would strain soften at relatively high confining pressures--a necessary precursor to liquefaction. These experiments serve as a starting point for a series of acoustic experiments to determine the signature of compressional and shear wave properties as the sand packs approach the state of liquefaction (and shallow water flows).

  16. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

    SciTech Connect (OSTI)

    James R. Wood; William B. Harrison

    2002-12-01

    The purpose of the study was to collect and analyze existing data on the Michigan Basin for fracture patterns on scales ranging form thin section to basin. The data acquisition phase has been successfully concluded with the compilation of several large digital databases containing nearly all the existing information on formation tops, lithology and hydrocarbon production over the entire Michigan Basin. These databases represent the cumulative result of over 80 years of drilling and exploration. Plotting and examination of these data show that contrary to most depictions, the Michigan Basin is in fact extensively faulted and fractured, particularly in the central portion of the basin. This is in contrast to most of the existing work on the Michigan Basin, which tends to show relatively simple structure with few or minor faults. It also appears that these fractures and faults control the Paleozoic sediment deposition, the subsequent hydrocarbon traps and very likely the regional dolomitization patterns. Recent work has revealed that a detailed fracture pattern exists in the interior of the Central Michigan Basin, which is related to the mid-continent gravity high. The inference is that early Precambrian, ({approx}1 Ga) rifting events presumed by many to account for the gravity anomaly subsequently controlled Paleozoic sedimentation and later hydrocarbon accumulation. There is a systematic relationship between the faults and a number of gas and oil reservoirs: major hydrocarbon accumulations consistently occur in small anticlines on the upthrown side of the faults. The main tools used in this study to map the fault/fracture patterns are detailed, close-interval (CI = 10 feet) contouring of the formation top picks accompanied by a new way of visualizing the data using a special color spectrum to bring out the third dimension. In addition, recent improvements in visualization and contouring software were instrumental in the study. Dolomitization is common in the Michigan Basin, and it is crucial in developing reservoir quality rocks in some fields. Data on the occurrence of dolomite was extracted from driller's reports for all reported occurrences in Michigan, nearly 50 fields and over 500 wells. A digital database was developed containing the geographic location of all these wells (latitude-longitude) as well as the elevation of the first encounter of dolomite in the field/reservoir. Analysis shows that these dolomite occurrences are largely confined to the center of the basin, but with some exceptions, such as N. Adams Field. Further, some of the dolomite occurrences show a definite relationship to the fracture pattern described above, suggesting a genetic relationship that needs further work. Other accomplishments of this past reporting period include obtaining a complete land grid for the State of Michigan and further processing of the high and medium resolution DEM files. We also have measured new fluid inclusion data on dolomites from several fields that suggest that the dolomitization occurred at temperatures between 100 and 150 C. Finally, we have extracted the lithologic data for about 5000 wells and are in the process of integrating this data into the overall model for the Michigan Basin.

  17. A direct method for determining complete positive and negative capillary pressure curves for reservoir rock using the centrifuge

    SciTech Connect (OSTI)

    Spinler, E.A.; Baldwin, B.A.

    1997-08-01

    A method is being developed for direct experimental determination of capillary pressure curves from saturation distributions produced during centrifuging fluids in a rock plug. A free water level is positioned along the length of the plugs to enable simultaneous determination of both positive and negative capillary pressures. Octadecane as the oil phase is solidified by temperature reduction while centrifuging to prevent fluid redistribution upon removal from the centrifuge. The water saturation is then measured via magnetic resonance imaging. The saturation profile within the plug and the calculation of pressures for each point of the saturation profile allows for a complete capillary pressure curve to be determined from one experiment. Centrifuging under oil with a free water level into a 100 percent water saturated plug results in the development of a primary drainage capillary pressure curve. Centrifuging similarly at an initial water saturation in the plug results in the development of an imbibition capillary pressure curve. Examples of these measurements are presented for Berea sandstone and chalk rocks.

  18. Biogenicity and Syngeneity of Organic Matter in Ancient Sedimentary Rocks: Recent Advances in the Search for Evidence of Past Life

    SciTech Connect (OSTI)

    Oehler, Dorothy Z.; Cady, Sherry L.

    2014-12-01

    he past decade has seen an explosion of new technologies for assessment of biogenicity and syngeneity of carbonaceous material within sedimentary rocks. Advances have been made in techniques for analysis of in situ organic matter as well as for extracted bulk samples of soluble and insoluble (kerogen) organic fractions. The in situ techniques allow analysis of micrometer-to-sub-micrometer-scale organic residues within their host rocks and include Raman and fluorescence spectroscopy/imagery, confocal laser scanning microscopy, and forms of secondary ion/laser-based mass spectrometry, analytical transmission electron microscopy, and X-ray absorption microscopy/spectroscopy. Analyses can be made for chemical, molecular, and isotopic composition coupled with assessment of spatial relationships to surrounding minerals, veins, and fractures. The bulk analyses include improved methods for minimizing contamination and recognizing syngenetic constituents of soluble organic fractions as well as enhanced spectroscopic and pyrolytic techniques for unlocking syngenetic molecular signatures in kerogen. Together, these technologies provide vital tools for the study of some of the oldest and problematic carbonaceous residues and for advancing our understanding of the earliest stages of biological evolution on Earth and the search for evidence of life beyond Earth. We discuss each of these new technologies, emphasizing their advantages and disadvantages, applications, and likely future directions.

  19. Tomographic imaging of rock conditions ahead of mining using the shearer as a seismic source - A feasibility study

    SciTech Connect (OSTI)

    Luo, X.; King, A.; Van de Werken, M.

    2009-11-15

    Roof falls due to poor rock conditions in a coal longwall panel may threaten miner's life and cause significant interruption to mine production. There has been a requirement for technologies that are capable of imaging the rock conditions in longwall coal mining, ahead of the working face and without any interruption to production. A feasibility study was carried out to investigate the characteristics of seismic signals generated by the continuous coal cutter (shearer) and recorded by geophone arrays deployed ahead of the working face, for the purpose of seismic tomographic imaging of roof strata condition before mining. Two experiments were conducted at a coal mine using two arrays of geophones. The experiments have demonstrated that the longwall shearer generates strong and low-frequency (similar to 40 Hz) seismic energy that can be adequately detected by geophones deployed in shallow boreholes along the roadways as far as 300 m from the face. Using noise filtering and signal cross correlation techniques, the seismic arrival times associated with the shearer cutting can be reliably determined. It has proved the concept that velocity variations ahead of the face can be mapped out using tomographic techniques while mining is in progress.

  20. Characterising and modelling the excavation damaged zone (EDZ) in crystalline rock in the context of radioactive waste disposal

    SciTech Connect (OSTI)

    Hudson, J.A.; Backstrom, A.; Rutqvist, J.; Jing, L.; Backers, T.; Chijimatsu, M.; Christiansson, R.; Feng, X.-T.; Kobayashi, A.; Koyama, T.; Lee, H.-S.; Neretnieks, I.; Pan, P.Z.; Rinne, M.; Shen, B.-T.

    2008-10-01

    This paper describes current knowledge about the nature of and potential for thermo-hydro-mechanical-chemical modelling of the Excavation Damaged Zone (EDZ) around the excavations for an underground radioactive waste repository. In the first part of the paper, the disturbances associated with excavation are explained, together with reviews of Workshops that have been held on the subject. In the second part of the paper, the results of a DECOVALEX research programme on modelling the EDZ are presented. Four research teams used four different models to simulate the complete stress-strain curve for Avro granite from the Swedish Aespoe Hard Rock Laboratory. Subsequent research extended the work to computer simulation of the evolution of the repository using a 'wall block model' and a 'near-field model'. This included assessing the evolution of stress, failure and permeability and time dependent effects during repository evolution. As discussed, all the computer models are well suited to sensitivity studies for evaluating the influence of their respective supporting parameters on the complete stress-strain curve for rock and for modelling the EDZ.