National Library of Energy BETA

Sample records for terminal generating clean

  1. New San Antonio Airport Terminal Generating Clean Power | Department...

    Office of Environmental Management (EM)

    Moreover, the project team integrated electric vehicle charging stations with the PV system and the garage's electrical system to increase the uses for the electricity generated ...

  2. EECBG Success Story: New San Antonio Airport Terminal Generating Clean Power

    Broader source: Energy.gov [DOE]

    In early 2010, the City of San Antonio’s Energy Efficiency and Conservation Block Grant (EECBG) program staff quickly realized a golden opportunity lay right at their fingertips. The opening of the new San Antonio International Airport terminal was just months away and the team knew that a solar photovoltaic (PV) system at the airport would offer a highly visible location to showcase renewable energy technologies, help the city accelerate its “Mission Verde” sustainable development plan and create local jobs. Learn more.

  3. CleanDistributedGeneration.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CleanDistributedGeneration.pdf CleanDistributedGeneration.pdf CleanDistributedGeneration.pdf CleanDistributedGeneration.pdf (381 KB) More Documents & Publications Output-Based Regulations: A Handbook for Air Regulators (U.S. EPA), August 2004 CHP Assessment, California Energy Commission, October 2009 Flexible CHP System with Low NOx, CO and VOC Emissions - Fact Sheet, 2014

  4. Terminating Safeguards on Excess Special Nuclear Material: Defense TRU Waste Clean-up and Nonproliferation - 12426

    SciTech Connect (OSTI)

    Hayes, Timothy; Nelson, Roger

    2012-07-01

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) manages defense nuclear material that has been determined to be excess to programmatic needs and declared waste. When these wastes contain plutonium, they almost always meet the definition of defense transuranic (TRU) waste and are thus eligible for disposal at the Waste Isolation Pilot Plant (WIPP). The DOE operates the WIPP in a manner that physical protections for attractiveness level D or higher special nuclear material (SNM) are not the normal operating condition. Therefore, there is currently a requirement to terminate safeguards before disposal of these wastes at the WIPP. Presented are the processes used to terminate safeguards, lessons learned during the termination process, and how these approaches might be useful for future defense TRU waste needing safeguards termination prior to shipment and disposal at the WIPP. Also described is a new criticality control container, which will increase the amount of fissile material that can be loaded per container, and how it will save significant taxpayer dollars. Retrieval, compliant packaging and shipment of retrievably stored legacy TRU waste has dominated disposal operations at WIPP since it began operations 12 years ago. But because most of this legacy waste has successfully been emplaced in WIPP, the TRU waste clean-up focus is turning to newly-generated TRU materials. A major component will be transuranic SNM, currently managed in safeguards-protected vaults around the weapons complex. As DOE and NNSA continue to consolidate and shrink the weapons complex footprint, it is expected that significant quantities of transuranic SNM will be declared surplus to the nation's needs. Safeguards termination of SNM varies due to the wide range of attractiveness level of the potential material that may be directly discarded as waste. To enhance the efficiency of shipping waste with high TRU fissile content to WIPP, DOE designed an over

  5. Cleantech University Prize Highlights Next Generation of Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovators | Department of Energy Cleantech University Prize Highlights Next Generation of Clean Energy Innovators Cleantech University Prize Highlights Next Generation of Clean Energy Innovators June 23, 2016 - 5:55pm Addthis Heila Technologies, from the Massachusetts Institute of Technology, won the 2016 Cleantech UP National Competition. | Energy Department photo. Heila Technologies, from the Massachusetts Institute of Technology, won the 2016 Cleantech UP National Competition. | Energy

  6. Generating Bioenergy Solutions for the Clean Energy Economy of Tomorrow |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Generating Bioenergy Solutions for the Clean Energy Economy of Tomorrow Generating Bioenergy Solutions for the Clean Energy Economy of Tomorrow June 10, 2014 - 2:50pm Addthis Imagine Tomorrow participants Pavan Kumar (from left), Isaak Nanneman, Ethan Perrin, Andrew Wang and Oisin Doherty were selected by the Bioenergy Technologies Office to present their idea at the Biomass 2014 conference next month. The student team from Redmond, Washington, was chosen for their idea

  7. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect (OSTI)

    Janos Beer; Karen Obenshain

    2006-07-15

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  8. New geothermal heat extraction process to deliver clean power generation

    ScienceCinema (OSTI)

    Pete McGrail

    2012-12-31

    A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

  9. Solar Decathlon 2015: The Next Generation of Clean Energy Leaders...

    Broader source: Energy.gov (indexed) [DOE]

    Teams gather to hear the final results at the U.S. Department of Energy Solar Decathlon 2013. Many former Solar Decathlon participants have gone on to pursue careers in clean ...

  10. Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Steven Chu issued the following statement today on the unveiling of the Beowawe Geothermal Plant in Eastern Nevada. This is the first geothermal project funded under the American Recovery and Reinvestment Act to start generating power.

  11. Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator

    SciTech Connect (OSTI)

    Elsner, N. B.; Bass, J. C.; Ghamaty, S.; Krommenhoek, D.; Kushch, A.; Snowden, D.; Marchetti, S.

    2005-03-16

    Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCAR's test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of

  12. Providing Clean, Low-Cost, Onsite Distributed Generation at Very High Fuel Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Integrated with Burners for Packaged Boilers ADVANCED MANUFACTURING OFFICE Providing Clean, Low-Cost, Onsite Distributed Generation at Very High Fuel Efficiency This project integrated a gas-fred, simple-cycle 100 kilowatt (kW) microturbine (SCMT) with a new ultra-low nitrogen oxide (NO x ) gas-fred burner (ULNB) to develop a combined heat and power (CHP) assembly called the Boiler Burner Energy System Technology (BBEST). Introduction CHP systems can achieve signifcant

  13. Navajo Generating Station and Clean-Energy Alternatives: Options for Renewables

    SciTech Connect (OSTI)

    Hurlbut, D. J.; Haase, S.; Turchi, C. S.; Burman, K.

    2012-06-01

    In January 2012, the National Renewable Energy Laboratory delivered to the Department of the Interior the first part of a study on Navajo Generating Station (Navajo GS) and the likely impacts of BART compliance options. That document establishes a comprehensive baseline for the analysis of clean energy alternatives, and their ability to achieve benefits similar to those that Navajo GS currently provides. This analysis is a supplement to NREL's January 2012 study. It provides a high level examination of several clean energy alternatives, based on the previous analysis. Each has particular characteristics affecting its relevance as an alternative to Navajo GS. It is assumed that the development of any alternative resource (or portfolio of resources) to replace all or a portion of Navajo GS would occur at the end of a staged transition plan designed to reduce economic disruption. We assume that replacing the federal government's 24.3% share of Navajo GS would be a cooperative responsibility of both the U.S. Bureau of Reclamation (USBR) and the Central Arizona Water Conservation District (CAWCD).

  14. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    SciTech Connect (OSTI)

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    useful thermal energy. Recycled energy produces no or little increase in fossil fuel consumption and pollutant emissions. Examples of energy recycling methods include industrial gasification technologies to increase energy recovery, as well as less traditional CHP technologies, and the use of energy that is typically discarded from pressure release vents or from the burning and flaring of waste streams. These energy recovery technologies have the ability to reduce costs for power generation. This report is a preliminary study of the potential contribution of this ''new'' generation of clean recycled energy supply technologies to the power supply of the United States. For each of the technologies this report provides a short technical description, as well as an estimate of the potential for application in the U.S., estimated investment and operation costs, as well as impact on air pollutant emission reductions. The report summarizes the potential magnitude of the benefits of these new technologies. The report does not yet provide a robust cost-benefit analysis. It is stressed that the report provides a preliminary assessment to help focus future efforts by the federal government to further investigate the opportunities offered by new clean power generation technologies, as well as initiate policies to support further development and uptake of clean power generation technologies.

  15. EERE Day at MIT Inspires Next Generation of Clean Energy Leaders

    Office of Energy Efficiency and Renewable Energy (EERE)

    It’s easy to break down our research and development investments into the programs we support, the partnerships we’ve built, and the cutting edge clean energy technologies our partners deploy. But...

  16. Building upon Historical Competencies: Next-generation Clean-up Technologies for World-Wide Application - 13368

    SciTech Connect (OSTI)

    Guevara, K.C.; Fellinger, A.P.; Aylward, R.S.; Griffin, J.C.; Hyatt, J.E.; Bush, S.R.

    2013-07-01

    The Department of Energy's Savannah River Site has a 60-year history of successfully operating nuclear facilities and cleaning up the nuclear legacy of the Cold War era through the processing of radioactive and otherwise hazardous wastes, remediation of contaminated soil and groundwater, management of nuclear materials, and deactivation and decommissioning of excess facilities. SRS recently unveiled its Enterprise.SRS (E.SRS) strategic vision to identify and facilitate application of the historical competencies of the site to current and future national and global challenges. E.SRS initiatives such as the initiative to Develop and Demonstrate Next generation Clean-up Technologies seek timely and mutually beneficial engagements with entities around the country and the world. One such ongoing engagement is with government and industry in Japan in the recovery from the devastation of the Fukushima Daiichi Nuclear Power Station. (authors)

  17. Next Generation Natural Gas Vehicle Program Phase I: Clean Air Partners 0.5 g/hp-h NOx Engine Concept; Final Report

    SciTech Connect (OSTI)

    Wong, H. C.

    2003-07-01

    Subcontractor report details work done by Clean Air Partners to develop 0.5 g/hp-h NOx natural gas engine exhaust gas recirculation (EGR) technology for the Next Generation Natural Gas Vehicle Program.

  18. Economic comparison of clean coal generating technologies with natural gas-combined cycle systems

    SciTech Connect (OSTI)

    Sebesta, J.J.; Hoskins, W.W. )

    1990-01-01

    This paper reports that there are four combustion technologies upon which U.S. electric utilities are expected to rely for the majority of their future power generating needs. These technologies are pulverized coal- fired combustion (PC); coal-fired fluidized bed combustion (AFBC); coal gasification, combined cycle systems (CGCC); and natural gas-fired combined cycle systems (NGCC). The engineering and economic parameters which affect the choice of a technology include capital costs, operating and maintenance costs, fuel costs, construction schedule, process risk, environmental and site impacts, fuel efficiency and flexibility, plant availability, capacity factors, timing of startup, and the importance of utility economic and financial factors.

  19. American Clean Coal Fuels | Open Energy Information

    Open Energy Info (EERE)

    American Clean Coal Fuels Retrieved from "http:en.openei.orgwindex.php?titleAmericanCleanCoalFuels&oldid768408" Categories: Organizations Energy Generation Organizations...

  20. Clean Coal Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

  1. Enhancing the Smart Grid: Integrating Clean Distributed and Renewable...

    Energy Savers [EERE]

    Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid ...

  2. Funding for Nationwide Student-Focused Clean Energy Business...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    generation of American clean energy entrepreneurs, U.S. Energy Secretary Steven Chu ... next generation of clean energy entrepreneurs is vital to ensuring our nation's ...

  3. Gas cleaning system and method

    DOE Patents [OSTI]

    Newby, Richard Allen

    2006-06-06

    A gas cleaning system for removing at least a portion of contaminants, such as halides, sulfur, particulates, mercury, and others, from a synthesis gas (syngas). The gas cleaning system may include one or more filter vessels coupled in series for removing halides, particulates, and sulfur from the syngas. The gas cleaning system may be operated by receiving gas at a first temperature and pressure and dropping the temperature of the syngas as the gas flows through the system. The gas cleaning system may be used for an application requiring clean syngas, such as, but not limited to, fuel cell power generation, IGCC power generation, and chemical synthesis.

  4. Cleaning method and apparatus

    DOE Patents [OSTI]

    Jackson, Darryl D. (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM)

    1983-01-01

    A new automatable cleaning apparatus which makes use of a method of very thoroughly and quickly cleaning a gauze electrode used in chemical analyses is given. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg. plutonium sample was removed in less than 3 minutes, using only about 60 ml. of rinse solution and two main rinse steps.

  5. Cleaning method and apparatus

    DOE Patents [OSTI]

    Jackson, D.D.; Hollen, R.M.

    1981-02-27

    A method of very thoroughly and quikcly cleaning a guaze electrode used in chemical analyses is given, as well as an automobile cleaning apparatus which makes use of the method. The method generates very little waste solution, and this is very important in analyzing radioactive materials, especially in aqueous solutions. The cleaning apparatus can be used in a larger, fully automated controlled potential coulometric apparatus. About 99.98% of a 5 mg plutonium sample was removed in less than 3 minutes, using only about 60 ml of rinse solution and two main rinse steps.

  6. Clean Cities

    Broader source: Energy.gov [DOE]

    Clean Cities works to reduce U.S. reliance on petroleum in transportation by establishing local coalitions of public- and private-sector stakeholders across the country.

  7. Clean Energy Technologies: A Preliminary Inventory of the Potential...

    Office of Scientific and Technical Information (OSTI)

    Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation Citation Details In-Document Search Title: Clean Energy Technologies: A Preliminary ...

  8. General Motors Clean Combustion Engines Advanced with Predictive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motors Clean Combustion Engines Advanced with Predictive Simulation Tools Sandia National ... batteries and hydrogen storage; clean advanced combustion; and future generation ...

  9. Texas Clean Energy Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Texas Clean Energy Project Texas Clean Energy Project On March 12, 2010, DOE announced the award of a Cooperative Agreement to Summit Texas Clean Energy, LLC to construct the Texas Clean Energy Project (TCEP), an integrated gasification combined cycle (IGCC) poly-generation facility with fully integrated CO2 capture. Under Round 3 of the Clean Coal Power Initiative (CCPI), DOE is providing up to $450 million in financial assistance, including funding from the Recovery Act of 2009. Due to the

  10. Buying Clean Electricity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity & Fuel » Buying & Making Electricity » Buying Clean Electricity Buying Clean Electricity You have the option to purchase renewable electricity, either directly from your power supplier, from an independent clean power generator, or through renewable energy certificates. | Photo courtesy of Alstom 2010. You have the option to purchase renewable electricity, either directly from your power supplier, from an independent clean power generator, or through renewable energy

  11. CLEAN AIR | FEDEX | NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY...

    Open Energy Info (EERE)

    | NATIONAL CLEAN ENERGY SUMMIT | CLEAN ENERGY ACT | ENERGY INDEPENDENCE | FREDRICK SMITH | OIL | RENEWABLE ENERGY Home There are currently no posts in this category. Syndicate...

  12. Clean Cities Internships

    Broader source: Energy.gov [DOE]

    Clean Cities offers internships through the Clean Cities University Workforce Development Program, which unites Clean Cities coalitions with students interested in changing the future of onroad...

  13. What is Clean Cities?; Clean Cities Fact Sheet (September 2008...

    Energy Savers [EERE]

    is Clean Cities?; Clean Cities Fact Sheet (September 2008 Update) What is Clean Cities?; Clean Cities Fact Sheet (September 2008 Update) Fact sheet describes the Clean Cities ...

  14. Clean coal technologies market potential

    SciTech Connect (OSTI)

    Drazga, B.

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  15. Clean Cities: Ann Arbor Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Cities Coalition in April 2015. She served as Clean Cities intern for both the Detroit and Ann Arbor Clean Cities Coalitions from the fall 2013 through the winter 2015 and...

  16. Buying Clean Electricity | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to pay a small premium in exchange for electricity generated from clean, renewable ("green") energy sources. The premium covers the increased costs incurred by the power...

  17. Buying Clean Electricity | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an optional service, called green pricing, that allows customers to pay a small premium in exchange for electricity generated from clean, renewable ("green") energy sources. ...

  18. Clean Cities: North Dakota Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities. Moffitt is the communications director for the Clean Fuel & Vehicle Technology program of the American Lung Association of the Upper Midwest. He joined the...

  19. Clean Cities: Denver Metro Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metro Clean Cities coalition Contact Information Tyler Svitak 303-847-0281 tsvitak@lungs.org Coalition Website Clean Cities Coordinator Tyler Svitak Photo of Tyler Svitak...

  20. Clean Cities: Maine Clean Communities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maine Clean Communities Coalition The Maine Clean Communities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use...

  1. Clean Cities: Southern Colorado Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colorado Clean Cities coalition Contact Information Kyle Lisek 303-847-0271 klisek@lungs.org Coalition Website Clean Cities Coordinator Kyle Lisek Kyle Lisek is coordinator of...

  2. Enhancing the Smart Grid: Integrating Clean Distributed and Renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation | Department of Energy Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid where utilities and consumers work together to alleviate congestion and meet growing energy demands. RDSI is working to facilitate this reality by focusing on the integration of on-site, clean distributed and renewable generation. Enhancing the Smart Grid: Integrating Clean

  3. Sandia National Laboratories: Clean leap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean leap By Nancy Salem Thursday, September 01, 2016 5 energy companies get technology-to-market help from Sandia 5 energy companies get technology-to-market help from Sandia DOE has announced that five more small, clean-energy businesses were chosen to work with Sandia to bring next-generation technologies to market faster. "These are innovative companies working to build the clean-energy economy," says Mary Monson, senior manager of Industrial Partnerships Dept. 1930. "Many of

  4. Chicago Clean Air, Clean Water Project: Environmental Monitoring...

    Office of Scientific and Technical Information (OSTI)

    Chicago Clean Air, Clean Water Project: Environmental Monitoring for a Healthy, Sustainable Urban Future Citation Details In-Document Search Title: Chicago Clean Air, Clean Water ...

  5. Small Businesses Helping Drive Economy: Clean Energy, Clean Sites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Businesses Helping Drive Economy: Clean Energy, Clean Sites Small Businesses Helping Drive Economy: Clean Energy, Clean Sites A memo on small businesses helping drive the economy: ...

  6. Clean Energy Policy Analysis: Impact Analysis of Potential Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative Clean Energy Policy Analysis: Impact Analysis of ...

  7. Terminal structure

    DOE Patents [OSTI]

    Schmidt, Frank; Allais, Arnaud; Mirebeau, Pierre; Ganhungu, Francois; Lallouet, Nicolas

    2009-10-20

    A terminal structure (2) for a superconducting cable (1) is described. It consists of a conductor (2a) and an insulator (2b) that surrounds the conductor (2a), wherein the superconducting cable (1) has a core with a superconducting conductor (5) and a layer of insulation that surrounds the conductor (5), and wherein the core is arranged in such a way that it can move longitudinally in a cryostat. The conductor (2a) of the terminal structure (2) is electrically connected with the superconducting conductor (5) or with a normal conductor (6) that is connected with the superconducting conductor (5) by means of a tubular part (7) made of an electrically conductive material, wherein the superconducting conductor (5) or the normal conductor (6) can slide in the part (7) in the direction of the superconductor.

  8. Clean Cities: Denver Metro Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metro Clean Cities coalition Contact Information Tyler Svitak 303-847-0281 tsvitak@lungs.org Janna West-Heiss 303-847-0276 jwheiss@lungs.org Coalition Website Clean Cities...

  9. Clean Cities: Wisconsin Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as co-director for South Shore Clean Cities of Northern Indiana from 2005-2011. Her dedication to the Clean Cities' mission extends north to Wisconsin where she has served as...

  10. Clean coal

    SciTech Connect (OSTI)

    Liang-Shih Fan; Fanxing Li

    2006-07-15

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  11. Clean Cities Coalition Regions

    Broader source: Energy.gov [DOE]

    Nearly 100 Clean Cities coalitions work to reduce petroleum use in communities across the country. Led by Clean Cities coordinators, coalitions are composed of businesses, fuel providers, vehicle...

  12. NCAT Harvesting Clean Energy

    Broader source: Energy.gov [DOE]

    The National Center for Appropriate Technology (NCAT) is hosting the 14th Annual Harvesting Clean Energy Conference to help advance rural economic development through clean energy development and...

  13. Missouri Clean Energy District

    Broader source: Energy.gov [DOE]

    In July 2010 Missouri enacted the Property Assessed Clean Energy Act, which led to the creation of the statewide Missouri Clean Energy District (MCED) in January 2011.

  14. CT Clean Energy Communities

    Broader source: Energy.gov [DOE]

    The Clean Energy Communities program, offered by the Clean Energy Finance & Investment Authority and the Connecticut Energy Efficiency Fund, offers incentives for communities that pledge their...

  15. Biotechnology for Clean Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biotechnology for Clean Vehicles Biotechnology for Clean Vehicles Biotechnology for Clean Vehicles: Harnessing Synthetic Biology to Enable Next-Generation Biomaterials and Biofuels Even as the deployment of renewable power such as wind and solar have served to substantially reduce greenhouse gas emissions from the utility sector, emissions from the transportation sector have remained largely unchanged. Effectively addressing climate emissions from the transportation sector will require

  16. CLEAN C O A L RESEARCH PROGRAM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pathway for readying the next generation of affordable clean energy technology -Carbon Capture, Utilization, and Storage (CCUS) CLEAN C O A L RESEARCH PROGRAM 2012 TECHNOLOGY READINESS ASSESSMENT DECEMBER 2012 United States Department of Energy | Office of Fossil Energy -ANALYSIS OF ACTIVE RESEARCH PORTFOLIO ii 2012 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM iii DISCLAIMER DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States

  17. Clean Coal Diesel Demonstration Project

    SciTech Connect (OSTI)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  18. International Clean Energy Coalition

    SciTech Connect (OSTI)

    Erin Skootsky; Matt Gardner; Bevan Flansburgh

    2010-09-28

    In 2003, the National Association of Regulatory Utility Commissioners (NARUC) and National Energy Technology Laboratories (NETL) collaboratively established the International Clean Energy Coalition (ICEC). The coalition consisting of energy policy-makers, technologists, and financial institutions was designed to assist developing countries in forming and supporting local approaches to greenhouse gas mitigation within the energy sector. ICEC's work focused on capacity building and clean energy deployment in countries that rely heavily on fossil-based electric generation. Under ICEC, the coalition formed a steering committee consisting of NARUC members and held a series of meetings to develop and manage the workplan and define successful outcomes for the projects. ICEC identified India as a target country for their work and completed a country assessment that helped ICEC build a framework for discussion with Indian energy decisionmakers including two follow-on in-country workshops. As of the conclusion of the project in 2010, ICEC had also conducted outreach activities conducted during United Nations Framework Convention on Climate Change (UNFCCC) Ninth Conference of Parties (COP 9) and COP 10. The broad goal of this project was to develop a coalition of decision-makers, technologists, and financial institutions to assist developing countries in implementing affordable, effective and resource appropriate technology and policy strategies to mitigate greenhouse gas emissions. Project goals were met through international forums, a country assessment, and in-country workshops. This project focused on countries that rely heavily on fossil-based electric generation.

  19. Clean Electricity Initiatives in California

    U.S. Energy Information Administration (EIA) Indexed Site

    Edward Randolph Director, Energy Division California Public Utilities Commission July 14, 2014 2014 EIA Energy Conference Clean Electricity Policy Initiatives In California (Partial) * Wholesale Renewables : - Renewables Portfolio Standard - Feet in Tariffs (RAM & ReMAT) - All source procurement (under development) * Customer Renewable Generation - California Solar Initiative - Net Energy Metering - Green Tariffs - Energy Efficiency - Demand Response - Rate Reform - Storage - Retirement of

  20. Plasma discharge self-cleaning filtration system

    DOE Patents [OSTI]

    Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong

    2014-07-22

    The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.

  1. Clean Energy Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2016 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JANUARY 2016 2 Welcome to the January 2016 issue! The Clean Cities Alternative Fuel Price Report is a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative and conventional fuels in the United States. This issue summarizes prices that were submitted between January 1, 2016 and January 15, 2016 by Clean Cities coordinators, fuel providers, and other Clean Cities

  2. Clean Cities: Los Angeles Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    took on the role of Clean Cities Coordinator. His major job duties focus on mobile source air pollution reduction programs. He has managed the City's Interdepartmental Alternative...

  3. Clean Cities: Norwich Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    administering and reporting on various programs and grant awards, including the Connecticut Clean Fuels Program and the recent Congestion Mitigation and Air Quality (CMAQ)...

  4. Termination unit

    DOE Patents [OSTI]

    Traeholt, Chresten [Frederiksberg, DK; Willen, Dag [Klagshamn, SE; Roden, Mark [Newnan, GA; Tolbert, Jerry C [Carrollton, GA; Lindsay, David [Carrollton, GA; Fisher, Paul W [Heiskell, TN; Nielsen, Carsten Thidemann [Jaegerspris, DK

    2014-01-07

    This invention relates to a termination unit comprising an end-section of a cable. The end section of the cable defines a central longitudinal axis and comprising end-parts of N electrical phases, an end-part of a neutral conductor and a surrounding thermally insulation envelope adapted to comprising a cooling fluid. The end-parts of the N electrical phases and the end-part of the neutral conductor each comprising at least one electrical conductor and being arranged in the cable concentrically around a core former with a phase 1 located relatively innermost, and phase N relatively outermost in the cable, phase N being surrounded by the neutral conductor, electrical insulation being arrange between neighboring electrical phases and between phase N and the neutral conductor, and wherein the end-parts of the neutral conductor and the electrical phases each comprise a contacting surface electrically connected to at least one branch current lead to provide an electrical connection: The contacting surfaces each having a longitudinal extension, and being located sequentially along the longitudinal extension of the end-section of the cable. The branch current leads being individually insulated from said thermally insulation envelope by individual electrical insulators.

  5. Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Finance Guide (Chapter 5: Basic Concepts for Clean Energy Unsecured Lending and Loan Loss Reserve Funds) Clean Energy Finance Guide (Chapter 5: Basic Concepts for ...

  6. Ultrasonic cleaning of interior surfaces

    DOE Patents [OSTI]

    Odell, D. MacKenzie C.

    1996-01-01

    An ultrasonic cleaning method for cleaning the interior surfaces of tubes. The method uses an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface.

  7. Ultrasonic cleaning of interior surfaces

    DOE Patents [OSTI]

    Odell, D. MacKenzie C.

    1994-01-01

    An ultrasonic cleaning apparatus for cleaning the interior surfaces of tubes. The apparatus includes an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface.

  8. Ultrasonic cleaning of interior surfaces

    DOE Patents [OSTI]

    MacKenzie, D.; Odell, C.

    1994-03-01

    An ultrasonic cleaning apparatus is described for cleaning the interior surfaces of tubes. The apparatus includes an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface. 3 figures.

  9. What We Clean Up & Why

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Stewardship Environmental Cleanup What We Clean Up & Why What We Clean Up & Why We clean up legacy waste sites and contaminated areas for return to the public. ...

  10. Clean Cities Program Contacts

    SciTech Connect (OSTI)

    2015-07-31

    Contact information for the U.S. Department of Energy's Clean Cities program staff and for the coordinators of the nearly 100 local Clean Cities coalitions across the country.

  11. What Is Clean Cities?

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    This Clean Cities Program fact sheet describes the purpose and scope of this DOE program. Clean Cities facilitates the use of alternative and advanced fuels and vehicles to displace petroleum in the transportation sector.

  12. Bioenergy & Clean Cities

    Broader source: Energy.gov [DOE]

    DOE's Bioenergy Technologies Office and the Clean Cities program regularly conduct a joint Web conference for state energy office representatives and Clean Cities coordinators. The Web conferences...

  13. Clean Cities: Coalition Contacts

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ficicchia Empire Clean Cities Northeast 212-839-7728 Christina Ficicchia See Bio 55 Water St, 9th Fl New York, NY 10041 Website New York David Keefe Genesee Region Clean...

  14. Clean the Past

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean the Past Image of MDA B excavation with text overlay of 'How does LANL protect human ... Clean the Past Home Google Earth Tour: Environmental Cleanup Protections: Cleanup What ...

  15. What Is Clean Cities?

    SciTech Connect (OSTI)

    Not Available

    2008-04-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  16. What is Clean Cities?

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  17. Finding the cheapest Clean power options

    SciTech Connect (OSTI)

    Casten, Thomas R.; Smith, Jeffrey A.

    2009-12-15

    Speculation about why policies favor high-cost low-carbon generation options could fill a book. Vested interests? Lack of knowledge? Industry lobbying? Cost-plus regulatory mentality? Regardless of reasons, the data show that efficient generation that uses energy twice is largely ignored. While all other generation, both clean and dirty, receives large subsidies, energy recycling is ignored. (author)

  18. Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture...

    Office of Scientific and Technical Information (OSTI)

    use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies such as wind turbines and solar cells. ...

  19. Energy Department Report Finds Major Potential to Increase Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Report Finds Major Potential to Increase Clean Hydroelectric ... to develop electric power generation at existing dams across the United States that aren't ...

  20. Clean Cities: Clean Cities-Georgia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atlanta was designated as the first Clean Cities coalition in the nation at the Georgia Dome in 1993. Prior to being elected as the coalition's executive director, Francis served...

  1. Clean Cities: Long Beach Clean Cities coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    15 years. Tedtaotao was appointed co-coordinator of Long Beach Clean Cities in January, 2014. LA County Public Works 2275 Alcazar St Los Angeles, CA 90033 Search Coalitions Search...

  2. South Carolina Clean Energy Summit

    Broader source: Energy.gov [DOE]

    The South Carolina Clean Energy Business Alliance will host the fourth annual Clean Energy Summit. Learn more. 

  3. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THE OPPORTUNITY OF CLEAN ENERGY MANUFACTURING By 2030, the global market for new energy generation technology is expected to reach $790B annually-an $11 trillion cumulative investment from 2013. Leveraging energy productivity and domestic energy resources in manufacturing represents important opportunities for U.S. manufacturers to enhance their global competitiveness by realizing lower energy costs. A focus on increased energy productivity will save manufacturers billions of dollars, grow the

  4. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative (HCEI)

    SciTech Connect (OSTI)

    Busche, S.; Doris, E.; Braccio, R.; Lippert, D.; Finch, P.; O'Toole, D.; Fetter, J.

    2010-04-01

    This report provides detailed analyses of 21 clean energy policy options considered by the Hawaii Clean Energy Initiative working groups for recommendation to the 2010 Hawaii State Legislature. The report considers the impact each policy may have on ratepayers, businesses, and the state in terms of energy saved, clean energy generated, and the financial costs and benefits. The analyses provide insight into the possible impacts, both qualitative and quantitative, that these policies may have in Hawaii based on the experience with these policies elsewhere. As much as possible, the analyses incorporate Hawaii-specific context to reflect the many unique aspects of energy use in the State of Hawaii.

  5. Cathodic ARC surface cleaning prior to brazing

    SciTech Connect (OSTI)

    Dave, V. R.; Hollis, K. J.; Castro, R. G.; Smith, F. M.; Javernick, D. A.

    2002-01-01

    Surface cleanliness is one the critical process variables in vacuum furnace brazing operations. For a large number of metallic components, cleaning is usually accomplished either by water-based alkali cleaning, but may also involve acid etching or solvent cleaning / rinsing. Nickel plating may also be necessary to ensure proper wetting. All of these cleaning or plating technologies have associated waste disposal issues, and this article explores an alternative cleaning process that generates minimal waste. Cathodic arc, or reserve polarity, is well known for welding of materials with tenacious oxide layers such as aluminum alloys. In this work the reverse polarity effect is used to clean austenitic stainless steel substrates prior to brazing with Ag-28%Cu. This cleaning process is compared to acid pickling and is shown to produce similar wetting behavior as measured by dynamic contact angle experiments. Additionally, dynamic contact angle measurements with water drops are conducted to show that cathodic arc cleaning can remove organic contaminants as well. The process does have its limitations however, and alloys with high titanium and aluminum content such as nickel-based superalloys may still require plating to ensure adequate wetting.

  6. Clean Coal Power Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other pollutants from coal-burning power plants. In the late 1980s and early 1990s, the U.S. Department of Energy conducted a joint program with industry and State agencies to demonstrate the best of these new technologies at scales large enough for companies to make commercial decisions. More than 20 of the technologies

  7. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy Options for the Hawaii Clean Energy Initiative | Department of Energy Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative This report provides detailed analyses of the following policies to determine the impact they may have on ratepayers, businesses, and the state in terms of energy

  8. Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge April 11, 2014 - 11:20am Addthis Black Pine Engineering's pilot compressor in California. The team won the Clean Energy Trust Clean Energy Challenge, securing its spot as a regional finalist in the National Clean Energy Business Plan Competition. | Photo courtesy of Black Pine Engineering Black Pine Engineering's pilot compressor in

  9. What is Clean Cities?

    SciTech Connect (OSTI)

    Not Available

    2008-01-01

    Fact sheet describes the Clean Cities program, outlines its resources, and lists the contact information for its almost 90 coalition coordinators.

  10. Clean Energy Development Fund

    Broader source: Energy.gov [DOE]

    Vermont's Clean Energy Development Fund (CEDF) was established in 2005 to promote the development and deployment of cost-effective and environmentally sustainable electric power and thermal...

  11. Clean Cities & Transportation Tools

    Broader source: Energy.gov [DOE]

    This presentation, presented on July 28, 2010, was on the DOE Clean Cities program to promote the use of alternative fuels and reduce petroleum consumption.

  12. Clean Energy Manufacturing Initiative

    SciTech Connect (OSTI)

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  13. 2013 Second Quarter Clean Energy/Clean Transportation Jobs Report

    Broader source: Energy.gov [DOE]

    Enivronmental Entrepreneurs (E2) Clean Energy/Clean Transportation Jobs Report tracks clean energy job announcements from companies, elected officials, the media and other sources, to show how how...

  14. Quantitative cleaning characterization of a lithium-fluoride ion diode

    SciTech Connect (OSTI)

    Menge, P.R.; Cuneo, M.E.

    1997-04-01

    An ion source cleaning testbed was created to test plasma-cleaning techniques, and to provide quantitative data on plasma-cleaning protocols prior to implementation on the SABRE accelerator. The testbed was designed to resolve issues regarding the quantity of contaminants absorbed by the anode source (LiF), and the best cleaning methodology. A test chamber was devised containing a duplicate of the SABRE diode. Radio-frequency (RF) power was fed to the anode, which was isolated from ground and thus served as the plasma discharge electrode. RF plasma discharges in 1--3 mtorr of Ar with 10% O{sub 2} were found to provide the best cleaning of the LiF surface. X-ray photoelectron spectroscopy (XPS) showed that the LiF could accrue dozens of monolayers of carbon just by sitting in a 2 {times} 10{sup {minus}5} vacuum for 24 h. Tests of various discharge cleaning protocols indicated that 15 min of an Ar/O{sub 2} discharge was sufficient to reduce this initial 13--45 monolayers of carbon impurities to 2--4 monolayers. Rapid recontamination of the LiF was also observed. Up to ten monolayers of carbon returned in 2 min after termination of the plasma discharge and subsequent pumping back to the 10{sup {minus}5} torr range. Heating of the LiF also was found to provide anode cleaning. Application of heating combined with plasma cleaning provided the highest cleaning rates.

  15. Design of petroleum products terminal wastewater systems

    SciTech Connect (OSTI)

    Klock, B.

    1995-12-31

    Petroleum products terminals, used in conjunction with transportation operations to accomplish the flow of products from their source in refineries down to the consumers, are relatively simple facilities comprising product storage, the means for connecting storage to transportation operations, and other operations to support those functions. Although wastewater generation at terminals is relatively minor, increasingly strict regulation of wastewater from even minor sources is making it more critical that terminal wastewater handling, treatment, and disposal be understood and optimized to ensure that effective wastewater treatment is accomplished at reasonable cost. Anticipating the increased demands on terminal wastewater handling, the API Marketing Terminal Effluent Task Force has sponsored a number of studies to characterize wastewater at terminals and to develop practical means for treating the water. In addition, the Task Force sponsored Texaco`s writing of the report on which this paper is based, API 4602, Minimization, Handling, Treatment, and Disposal of Petroleum Products Terminal Wastewaters. This paper highlights some of the key recommendations in the report, which are: (1) begin characterizing the terminal`s tank bottoms water flow and quality as soon as possible; (2) determine the optimum wastewater disposal option; (3) for most situations, segregate stormwater from contaminated water; (4) if wastewater is treated, use a collection tank to equalize the flow and concentration of tank bottoms water; (5) if wastewater is hauled off to a disposal company, consider removing benzene first; and (6) minimize the use of detergents in the terminal.

  16. Clean Cities: Yellowstone-Teton Clean Energy coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yellowstone-Teton Clean Energy Coalition The Yellowstone-Teton Clean Energy coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce...

  17. Clean Cities: Alamo Area Clean Cities (San Antonio) coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamo Area Clean Cities (San Antonio) Coalition The Alamo Area Clean Cities (San Antonio) coalition works with vehicle fleets, fuel providers, community leaders, and other...

  18. Clean Cities: Connecticut Southwestern Area Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connecticut Southwestern Area Clean Cities Coalition The Connecticut Southwestern Area Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and...

  19. Clean Cities: Capitol Clean Cities of Connecticut coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capitol Clean Cities of Connecticut Coalition The Capitol Clean Cities of Connecticut coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders...

  20. Clean Cities: Lone Star Clean Fuels Alliance (Central Texas)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lone Star Clean Fuels Alliance (Central Texas) Coalition The Lone Star Clean Fuels Alliance (Central Texas) coalition works with vehicle fleets, fuel providers, community leaders,...

  1. Field demonstration of the ICE 250{trademark} Cleaning System

    SciTech Connect (OSTI)

    Johnston, J.L.; Jackson, L.M.

    1999-10-05

    The ICE 250{trademark} Cleaning System was engineered to convert water into small ice particles for use in cleaning and decontamination applications. Ice crystals are produced in a special icemaker and pressured through a hose-nozzle onto the surface to be cleaned. The Rocky Mountain Oilfield Testing Center and Ice Cleaning Systems, Inc., conducted a test of this system at Naval Petroleum Reserve No. 3 to evaluate the system's cleaning capabilities in an oil field environment. Equipment cleaned included an oil storage tank, a rod pumping unit, a road grader, and a wellhead. Contaminants were unrefined sour crude oil, hydraulic fluid, paraffin, and dirt, occurring separately and as mixtures. In all four demonstration cleaning tasks, the ICE 250 System effectively removed surface contaminant mixtures in a timely manner and left no oily residue. A minimal amount of waste moisture was generated, thereby reducing cleanup and disposal costs.

  2. Clean distributed generation performance and cost analysis

    SciTech Connect (OSTI)

    None, None

    2004-04-01

    This assessment examined the performance, cost, and timing of ultra-low emissions CHP technologies driven by certain air quality regions in the U.S.

  3. Clean Currents | Open Energy Information

    Open Energy Info (EERE)

    Currents Jump to: navigation, search Logo: Clean Currents Name: Clean Currents Address: 155 Gibbs St. Suite 425 Place: Rockville, Maryland Zip: 20850 Sector: Wind energy...

  4. Clean Fractionation - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Clean ... Using a single-phase mixture digestion process followed by a phase separation, Clean ...

  5. Cameron Terminal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cameron Terminal Cameron Terminal Cameron LNG Terminal Long-Term Contract Information and Registrations at U.S. LNG Export Facilities Filing Date Type (1) Description 061013 C ...

  6. Water Power for a Clean Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power for a Clean Energy Future Water Power for a Clean Energy Future This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower and marine and hydrokinetic technologies. Accomplishments Report: Water Power for a Clean Energy Future (9.59 MB) More Documents & Publications Before the Subcommittee on Water and Power - Senate Committee on

  7. Funding for Nationwide Student-Focused Clean Energy Business Competitions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Funding for Nationwide Student-Focused Clean Energy Business Competitions Funding for Nationwide Student-Focused Clean Energy Business Competitions July 22, 2011 - 3:02pm Addthis Office Of Public Affairs - Thursday, July 21, 2011 Washington, D.C. - As part of the Obama Administration's effort to support and empower the next generation of American clean energy entrepreneurs, U.S. Energy Secretary Steven Chu today announced $2 million in available funding for the National

  8. Energy Department Announces Regional Winners of University Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business Competition | Department of Energy Regional Winners of University Clean Energy Business Competition Energy Department Announces Regional Winners of University Clean Energy Business Competition May 13, 2013 - 10:22am Addthis News Media Contact (202) 586-4940 WASHINGTON - Underscoring the Obama Administration's commitment to support the next generation of energy leaders, the U.S. Energy Department today announced the six regional winners of its National Clean Energy Business Plan

  9. NREL, Governor's Office Help Coloradans Make Clean Energy Choices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL, Governor's Office Help Coloradans Make Clean Energy Choices For more information contact: Sarah Holmes Barba, 303-275-3023 email: Sarah Holmes Barba Golden, Colo., Sept. 13, 2000 - A new publication provides Colorado consumers with the tools to select sensible clean-energy solutions. The booklet, Colorado's Clean Energy Choices, provides basic information on green power available today from Colorado utilities around the state. It also outlines how farmers and ranchers can generate their

  10. CHP: A Clean Energy Solution, August 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP: A Clean Energy Solution, August 2012 CHP: A Clean Energy Solution, August 2012 Combined heat and power (CHP) is an efficient and clean approach to generating electric power and useful thermal energy from a single fuel source. This paper provides a foundation for national discussions on effective ways to reach the 40 GW target, and includes an overview of the key issues currently impacting CHP deployment and the factors that need to be considered by stakeholders participating in the

  11. Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant potential exists for clean diesel combustion by recouping exhaust energy to generate syngas either with a dedicated reformer or in-cylinder fuel reforming. p-10_hou.pdf (155.5 KB) More Documents & Publications Adaptive PCCI with Variable Orifice Injector for Low Cost High Efficiency

  12. Technology Development for High Efficiency Clean Diesel Engines and a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathway to 50% Thermal Efficiency | Department of Energy High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Cost reduction is a key area of emphasis for the Cummins 2nd Generation ORC WHR System. deer09_stanton.pdf (455.27 KB) More Documents & Publications High Efficient Clean Combustion for SuperTruck Advanced Diesel Engine Technology Development for HECC

  13. Clean Energy Procurement

    Office of Energy Efficiency and Renewable Energy (EERE)

    Subsequently, in 2009, the state embarked upon an initiative with the University System of Maryland, termed "Clean Energy Horizons," to contract for renewable energy through long-term power...

  14. Clean Energy Works

    Broader source: Energy.gov [DOE]

    Through Clean Energy Works, homeowners can finance up to $30,000 at a fixed interest rate for home energy efficiency retrofits for a variety of measures. Customers have varying lender and loan op...

  15. Enhanced Chemical Cleaning

    SciTech Connect (OSTI)

    Spires, Renee H.

    2010-11-01

    Renee Spires, Project Manager at Savannah River Remediation, opens Session 3 (Accelerated Waste Retrieval and Closure: Key Technologies) at the 2010 EM Waste Processing Technical Exchange with a talk on enhanced chemical cleaning.

  16. Clean Energy Fund (CEF)

    Broader source: Energy.gov [DOE]

    On January 2016, the New York Public Service Commission (PUC) approved $5 billion Clean Energy Fund (CEF) as a successor to the New York’s Energy Efficiency Portfolio Standard (EEPS) and Renewable...

  17. Clean Energy Ministerial

    Broader source: Energy.gov [DOE]

    The United States will host the seventh Clean Energy Ministerial (CEM7) in San Francisco, California, on June 1–2, 2016. The annual meeting of energy ministers and other high-level delegates from...

  18. Clean Tech Now | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now Clean Tech Now America's energy landscape is undergoing a dramatic transformation. According to a new Energy Department report, falling costs for four clean energy technologies -- land-based wind power, solar panels, electric cars and LED lighting -- have led to a surge in demand and deployment. The numbers tell an exciting story: America is experiencing a

  19. #CleanTechNow

    ScienceCinema (OSTI)

    Moniz, Ernest

    2014-01-10

    Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

  20. #CleanTechNow

    SciTech Connect (OSTI)

    Moniz, Ernest

    2013-09-17

    Over the past four years, America's clean energy future has come into sharper focus. Yesterday's visionary goals are now hard data -- tangible evidence that our energy system is undergoing a transformation. The Energy Department's new paper "Revolution Now: The Future Arrives for Four Clean Energy Technologies" highlights these changes and shows how cost reductions and product improvements have sparked a surge in consumer demand for wind turbines, solar panels, electric cars and super efficient lighting.

  1. Top 5 Tips from Clean Energy Moms for Mother’s Day

    Broader source: Energy.gov [DOE]

    With Mother's Day approaching, the Office of Energy Efficiency and Renewable Energy (EERE) polled 20 clean energy moms on their top five tips to help raise the next generation of clean energy advocates.

  2. Investments in Existing Hydropower Unlock More Clean Energy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Investments in Existing Hydropower Unlock More Clean Energy Investments in Existing Hydropower Unlock More Clean Energy August 14, 2013 - 2:21pm Addthis Tacoma Power's Cushman Hydroelectric Project installed a new two-generator powerhouse that increases electric generation capacity by 3.6 megawatts and captures energy from previously untapped water flows. | Photo courtesy of Tacoma Power. Tacoma Power's Cushman Hydroelectric Project installed a new two-generator powerhouse that

  3. What is Clean Cities? (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 87 coalitions.

  4. Clean Energy Works Oregon (CEWO)

    Broader source: Energy.gov [DOE]

    Presents Clean Energy Works Oregon's program background and the four easy steps to lender selection.

  5. Revolutionizing Clean Energy Technology with Advanced Composites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revolutionizing Clean Energy Technology with Advanced Composites Revolutionizing Clean Energy Technology with Advanced Composites Addthis

  6. Repowering with clean coal technologies

    SciTech Connect (OSTI)

    Freier, M.D.; Buchanan, T.L.; DeLallo, M.L.; Goldstein, H.N.

    1996-02-01

    Repowering with clean coal technology can offer significant advantages, including lower heat rates and production costs, environmental compliance, incremental capacity increases, and life extension of existing facilities. Significant savings of capital costs can result by refurbishing and reusing existing sites and infrastructure relative to a greenfield siting approach. This paper summarizes some key results of a study performed by Parsons Power Group, Inc., under a contract with DOE/METC, which investigates many of the promising advanced power generation technologies in a repowering application. The purpose of this study was to evaluate the technical and economic results of applying each of a menu of Clean Coal Technologies in a repowering of a hypothetical representative fossil fueled power station. Pittsburgh No. 8 coal is used as the fuel for most of the cases evaluated herein, as well as serving as the fuel for the original unrepowered station. The steam turbine-generator, condenser, and circulating water system are refurbished and reused in this study, as is most of the existing site infrastructure such as transmission lines, railroad, coal yard and coal handling equipment, etc. The technologies evaluated in this study consisted of an atmospheric fluidized bed combustor, several varieties of pressurized fluid bed combustors, several types of gasifiers, a refueling with a process derived fuel, and, for reference, a natural gas fired combustion turbine-combined cycle.

  7. Clean Coal Power Initiative

    SciTech Connect (OSTI)

    Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

    2006-03-31

    This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

  8. Clean Cities Program Contacts

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Coordinators Each Clean Cities coalition is led by a coordinator. Contact a coordinator to find out more about Clean Cities activities in your area. AL-Alabama Mark Bentley 205-402-2755 mark@alabamacleanfuels.org AR-Arkansas Patti Springs 501-682-8065 psprings@arkansasedc.com AZ-Valley of the Sun (Phoenix) Bill Sheaffer 480-314-0360 bill@cleanairaz.org AZ-Tucson Colleen Crowninshield 520-792-1093, x426 ccrowninshield@pagregion.com CA-Central Coast (San Luis Obispo) Melissa Guise 805-305-5491

  9. Precision cleaning apparatus and method

    DOE Patents [OSTI]

    Schneider, Thomas W.; Frye, Gregory C.; Martin, Stephen J.

    1998-01-01

    A precision cleaning apparatus and method. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece.

  10. Precision cleaning apparatus and method

    DOE Patents [OSTI]

    Schneider, T.W.; Frye, G.C.; Martin, S.J.

    1998-01-13

    A precision cleaning apparatus and method are disclosed. The precision cleaning apparatus includes a cleaning monitor further comprising an acoustic wave cleaning sensor such as a quartz crystal microbalance (QCM), a flexural plate wave (FPW) sensor, a shear horizontal acoustic plate mode (SH--APM) sensor, or a shear horizontal surface acoustic wave (SH--SAW) sensor; and measurement means connectable to the sensor for measuring in-situ one or more electrical response characteristics that vary in response to removal of one or more contaminants from the sensor and a workpiece located adjacent to the sensor during cleaning. Methods are disclosed for precision cleaning of one or more contaminants from a surface of the workpiece by means of the cleaning monitor that determines a state of cleanliness and any residual contamination that may be present after cleaning; and also for determining an effectiveness of a cleaning medium for removing one or more contaminants from a workpiece. 11 figs.

  11. Superconducting Cable Termination

    DOE Patents [OSTI]

    Sinha, Uday K.; Tolbert, Jerry

    2005-08-30

    Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to ˜72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.

  12. Superconducting Cable Termination

    DOE Patents [OSTI]

    Sinha, Uday K. (Carrollton, GA); Tolbert, Jerry (Newnan, GA)

    2005-08-30

    Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to 72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.

  13. Clean Cities Tools

    SciTech Connect (OSTI)

    2014-12-19

    The U.S. Department of Energy's Clean Cities offers a large collection of Web-based tools on the Alternative Fuels Data Center. These calculators, interactive maps, and data searches can assist fleets, fuels providers, and other transportation decision makers in their efforts to reduce petroleum use.

  14. Clean Air Act

    Office of Energy Efficiency and Renewable Energy (EERE)

    The primary law governing the Department of Energy (DOE) air pollution control activities is the Clean Air Act (CAA). This law defines the role of the U.S. Environmental Protection Agency (EPA) and state, local and tribal air programs in protecting and improving the nation’s air quality and stratospheric ozone layer by regulating emissions from mobile and stationary sources.

  15. What is Clean Cities? Clean Cities, March 2010 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  16. What Is Clean Cities? Clean Cities, November 2009 (Revised) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    Fact sheet describes the Clean Cities program and includes the contact information for its 86 active coalitions.

  17. Clean Energy Materials EERE's Clean Energy Manufacturing Initiative Launches

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sparking a Revolution in Clean Energy Materials EERE's Clean Energy Manufacturing Initiative Launches Energy Materials Network Volume 2, No. 1, January/February 2016 What's Happening @ EERE 2 A Message from Dave............................................ 3 ENERGY MATERIALS NETWORK Accelerating Materials Innovation & Advanced Manufacturing .......................................................... 4 Sparking a Revolution in Clean Energy Materials

  18. IDEA Clean Energy Application Center

    SciTech Connect (OSTI)

    Thornton, Robert

    2013-09-30

    /feasibility tool for these types of community energy projects. The Excel based tool incorporates hourly climate based building loads data to arrive at the composite energy demand for the district and compares the Net Present Value (NPV) of the costs of CHP/DE alternatives. This tool has been used to provide assistance to several projects in the Northeast, Mid-Atlantic, Intermountain and Pacific Regions. The tool was disseminated to the CEACs and supplemented by a Training Webinar and a How to Guide IDEA produced a US Community Energy Development Guide to support mayors, planners, community leaders, real estate developers and economic development officials who are interested in planning more sustainable urban energy infrastructure, creating community energy master plans and implementing CHP/ District Energy systems in cities, communities and towns. IDEA has collected industry data and provided a comprehensive data set containing information on District Energy installations in the US. District energy systems are present in 49 states and the District of Columbia. Of the 597 systems 55% were DE alone while the remainder was some combination of CHP, district heating, and district cooling. District energy systems that do not currently involve electric generation are strong near-term candidates for the adoption of CHP due to the magnitude of their aggregated thermal load. This data has helped inform specific and targeted initiatives including technical assistance provided by the CEAC’s for EPA’s Boiler MACT Compliance by large District Heating System boilers. These outcomes have been greatly enabled by the close coordination and collaboration with DOE CEAC leadership and with the eight regional US DOE Clean Energy Application Centers and the award’s incremental funding has allowed IDEA to leverage our resources to be an effective champion for Clean Energy.

  19. Optimization of cable terminations

    SciTech Connect (OSTI)

    Nikolajevic, S.V.; Pekaric-Nad, N.M.; Dimitrijevic, R.M.

    1997-04-01

    This paper describes a study of various termination constructions for medium voltage cross-linked polyethylene (XLPE) cables. A special device was used for electrical field measurements around the cable termination which made it possible to monitor how stress relief materials with different permittivity and placement of isolated or grounded embedded electrodes (EE) affected electrical stress grading. The results of measurements for each configuration were examined by mathematical modeling based on the finite element method (FEM). Finally, the selected constructions of cable termination have passed severe test conditions with load cycling.

  20. clean energy | OpenEI Community

    Open Energy Info (EERE)

    Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation...

  1. Clean Economy Network Foundation | Open Energy Information

    Open Energy Info (EERE)

    Clean Economy Network Foundation Jump to: navigation, search Logo: Clean Economy Network Foundation Name: Clean Economy Network Foundation Address: 1301 Pennsylvania Ave NW, Suite...

  2. Leaf Clean Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Company Jump to: navigation, search Logo: Leaf Clean Energy Company Name: Leaf Clean Energy Company Place: London, United Kingdom Website: www.leafcleanenergy.com...

  3. Category:CLEAN Webinar | Open Energy Information

    Open Energy Info (EERE)

    CLEAN Webinar Jump to: navigation, search This page contains webinars hosted by the Coordinated Low Emissions Assistance Network (CLEAN). Pages in category "CLEAN Webinar" The...

  4. Clean Energy Solutions Center | Open Energy Information

    Open Energy Info (EERE)

    Center Jump to: navigation, search Logo: Clean Energy Solutions Center Name Clean Energy Solutions Center AgencyCompany Organization Clean Energy Ministerial Sector Energy Focus...

  5. The Clean Energy Fund | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Fund Jump to: navigation, search Name: The Clean Energy Fund Place: Santa Monica, California Zip: 90403 Product: The Clean Energy Fund hopes to begin investing in...

  6. About the Clean Energy Manufacturing Initiative | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Clean Energy Manufacturing Initiative About the Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative (CEMI) is a U.S. Department of Energy ...

  7. Turkey Clean Energy Partnership | Open Energy Information

    Open Energy Info (EERE)

    Turkey Clean Energy Partnership Jump to: navigation, search Logo: Turkey Clean Energy Partnership Name Turkey Clean Energy Partnership AgencyCompany Organization Argonne National...

  8. Twenty Years of Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Twenty Years of Clean Energy For more information contact: George Douglas (303) 275-4096 ... the floors of U.S. forests is converted into clean-burning ethanol to power cars. ...

  9. Sustainable development with clean coal

    SciTech Connect (OSTI)

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  10. Fuel cell generator energy dissipator

    DOE Patents [OSTI]

    Veyo, Stephen Emery; Dederer, Jeffrey Todd; Gordon, John Thomas; Shockling, Larry Anthony

    2000-01-01

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

  11. Nearest Alignment Space Termination

    Energy Science and Technology Software Center (OSTI)

    2006-07-13

    Near Alignment Space Termination (NAST) is the Greengenes algorithm that matches up submitted sequences with the Greengenes database to look for similarities and align the submitted sequences based on those similarities.

  12. Termination and Recovery

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume defines event Termination and determination of when it is appropriate to cease emergency response activities and of associated notifications. Canceled by DOE G 151.1-4.

  13. Riding the Clean Energy Wave: New Projects Aim to Improve Water Power Devices

    Broader source: Energy.gov [DOE]

    The Energy Department announces two projects as part of a larger effort to deploy innovative technologies for clean, domestic power generation from water power resources.

  14. Department of Energy Announces Funding for Nationwide Student-Focused Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Business Competitions | Department of Energy for Nationwide Student-Focused Clean Energy Business Competitions Department of Energy Announces Funding for Nationwide Student-Focused Clean Energy Business Competitions July 21, 2011 - 12:50pm Addthis Competitions Will Encourage Entrepreneurship in Clean Energy Nationwide Washington, D.C. - As part of the Obama Administration's effort to support and empower the next generation of American clean energy entrepreneurs, U.S. Energy Secretary

  15. Healy Clean Coal Project

    SciTech Connect (OSTI)

    1997-12-31

    The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

  16. Clean fractionation of biomass

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The AF program is conducting ongoing research on a clean fractionation process. This project is designed to convert biomass into materials that can be used for chemical processes and products. Clean fractionation separates a single feedstock into individual components cellulose, hemicellulose, and lignin.

  17. Clean room wiping cloths

    SciTech Connect (OSTI)

    Harding, W.B.

    1981-01-01

    The suitability of various fabrics for use as clean room wiping cloths was investigated. These fabrics included knit polyester, knit nylon, urethane foam, woven cotton, nonwoven polyester, nonwoven rayon, nonwoven polyethylene and polypropylene, and woven nylon. These materials were tested for detachable lint and fibers, deterioration, and oil content which could leave contaminating films on wiped surfaces. Well-laundered nylon and polyester cloths knitted from filamentary yarn, with hems, were found to be suitable. (LCL)

  18. DOE - Fossil Energy: Clean Coal Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-Clean Coal Technology An Energy Lesson Cleaning Up Coal The Clean Coal Technology Program The Clean Coal Technology Program began in 1985 when the United States and Canada ...

  19. NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE

    SciTech Connect (OSTI)

    Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

    2005-12-01

    Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the individual gas cleaning stages, and the probable operating

  20. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01

    Describes Clean Cities' National Clean Fleets Partnership, an initiative that helps large private fleets reduce petroleum use.

  1. INFOGRAPHIC | Made in America: Clean Energy Jobs

    Broader source: Energy.gov [DOE]

    As the clean energy economy grows -- thousands of clean energy job opportunities are being created all across the country.

  2. Clean Energy Manufacturing Innovation Institute for Composites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures ...

  3. The NOXSO clean coal project

    SciTech Connect (OSTI)

    Black, J.B.; Woods, M.C.; Friedrich, J.J.; Browning, J.P.

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% of the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).

  4. Clean Energy Solutions Center: Assisting Countries with Clean Energy Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Continuum Magazine | NREL A photo of colorful, light- colored buildings in Ghana. Solutions Center assistance will help develop policies to support renewable energy deployment in Ghana. Clean Energy Solutions Center: Assisting Countries with Clean Energy Policy NREL helps developing countries combat barriers to pave the way for policies and programs that advance clean energy technology deployment. Many countries are looking to grow their renewable energy and energy efficiency portfolios to

  5. Clean Cities: Northeast Ohio Clean Cities coalition (Cleveland...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Data Center. Cleveland Car Dealership Working Toward a More Sustainable Future Text version Search Coalitions Search for another coalition Northeast Ohio Clean...

  6. Clean Cities: San Diego Regional Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Kevin Wood Kevin Wood is an associate program manager for transportation at the California Center for Sustainable Energy. He joined the San Diego Regional Clean Cities...

  7. Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge...

    Office of Environmental Management (EM)

    ... hours, which lowers both energy costs and the risk of food spoiling during power outages. | Courtesy of Axiom Exergy National Clean Energy Business Plan ...

  8. Clean Cities: Greater Lansing Area Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calnin has worked with the Clean Cities initiative since 2007, having supported the Detroit Area coalition as well as the Greater Lansing Area coalition. With a background that...

  9. Analysis of the Clean Energy Standard Act of 2012

    Gasoline and Diesel Fuel Update (EIA)

    5 Appendix D: Request Letter and Bill May 2012 U.S. Energy Information Administration | Analysis of the Clean Energy Standard Act of 2012 16 May 2012 U.S. Energy Information Administration | Analysis of the Clean Energy Standard Act of 2012 17 II 112TH CONGRESS 2D SESSION S. 2146 To amend the Public Utility Regulatory Policies Act of 1978 to create a market-oriented standard for clean electric energy generation, and for other purposes. IN THE SENATE OF THE UNITED STATES MARCH 1, 2012 Mr.

  10. Clean fractionation of biomass

    SciTech Connect (OSTI)

    1995-09-01

    The US DOE Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R&D) that uses green feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. A consortium of five DOE national laboratories has been formed with the objectives of providing industry with a broad range of expertise and helping to lower the risk of new process development through federal cost sharing. The AF program is conducting ongoing research on a clean fractionation process, designed to convert biomass into materials that can be used for chemical processes and products. The focus of the clean fractionation research is to demonstrate to industry that one technology can successfully separate all types of feedstocks into predictable types of chemical intermediates.

  11. Energy Department Announces Regional Winners of University Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business Competitions | Department of Energy Regional Winners of University Clean Energy Business Competitions Energy Department Announces Regional Winners of University Clean Energy Business Competitions May 4, 2012 - 11:00am Addthis WASHINGTON, D.C. - Underscoring the Obama Administration's commitments to keep college affordable for American families and students and support the next generation of energy leaders, the U.S. Energy Department today announced the regional winners of its

  12. Identification of Selected Areas to Support Federal Clean Energy Goals

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Small Modular Reactors | Department of Energy Identification of Selected Areas to Support Federal Clean Energy Goals Using Small Modular Reactors Identification of Selected Areas to Support Federal Clean Energy Goals Using Small Modular Reactors The objective of this report is to provide DOE-NE support in evaluating future electrical generation deployment options for SMRs in areas with significant energy demand from the federal sector. The report identifies several locations with a

  13. Advancing Women in Clean Energy

    Broader source: Energy.gov [DOE]

    As part of the Clean Energy Ministerial, C3E and its ambassadors have made it their mission to advance the leadership of women in clean energy around the world. In this series, we will leverage the experience and wisdom of some of the amazing C3E ambassadors who will share advice or suggestions that may be helpful for women seeking to advance their careers in clean energy.

  14. Prematurely terminated slug tests

    SciTech Connect (OSTI)

    Karasaki, K. )

    1990-07-01

    A solution of the well response to a prematurely terminated slug test (PTST) is presented. The advantages of a PTST over conventional slug tests are discussed. A systematized procedure of a PTST is proposed, where a slug test is terminated in the midpoint of the flow point, and the subsequent shut-in data is recorded and analyzed. This method requires a downhole shut-in device and a pressure transducer, which is no more than the conventional deep-well slug testing. As opposed to slug tests, which are ineffective when a skin is present, more accurate estimate of formation permeability can be made using a PTST. Premature termination also shortens the test duration considerably. Because in most cases no more information is gained by completing a slug test to the end, the author recommends that conventional slug tests be replaced by the premature termination technique. This study is part of an investigation of the feasibility of geologic isolation of nuclear wastes being carried out by the US Department of Energy and the National Cooperative for the Storage of Radioactive Waste of Switzerland.

  15. Shipboard regasification terminal

    SciTech Connect (OSTI)

    Campbell, G.; Zednik, J.

    1999-07-01

    Mobil Technology Company and Mobil Shipping and Transportation Company have jointly developed a new combination of existing proven equipment to regasify LNG. Advantages of this Shipboard Regasification Terminal (SRT) include accelerated initial gas delivery schedule, low capital cost, delivery of smaller quantities of LNG at a competitive price and shorter term of LNG purchase and improved financing options. These advantages benefit both the supplier of LNG and the purchaser. SRT can be used as an interim supply to developing markets allowing the demand to grow while developing downstream infrastructure. This concept does not involve offshore transfer of cryogenic fluids while delivering near-ambient temperature pipeline quality gas at typical pipeline pressures. During times when gas is not required, the SRT ship can easily be returned to the trade of transporting and delivering LNG to conventional land based terminals. This paper will discuss the merits of Shipboard Regasification Terminals in general, cover the development of this concept and review the factors guiding the use of SRT vs. an onshore terminal.

  16. NREL: Technology Deployment - Clean Cities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy's Clean Cities program in supporting local ... advanced vehicles, and energy efficiency in ... in thousands of communities across the country, ...

  17. Self-Cleaning CSP Collectors

    Broader source: Energy.gov [DOE]

    This fact sheet details the efforts of a Boston University-led team which is working on a DOE SunShot Initative project. The concentrated solar power industry needs an automated, efficient cleaning process that requires neither water nor moving parts to keep the solar collectors clean for maximum reflectance and energy output. This project team is working to develop a transparent electrodynamic screen as a self-cleaning technology for solar concentrators; cleaning is achieved without water, moving parts, or manual labor. Because of these features, it has a strong potential for worldwide deployment.

  18. CLEAN Reports | Open Energy Information

    Open Energy Info (EERE)

    methodologies and tools International Assistance for Low-Emission Development Planning: CLEAN Inventory of Activities and Tools-Preliminary Trends National Renewable Energy...

  19. Clean Markets | Open Energy Information

    Open Energy Info (EERE)

    Markets Jump to: navigation, search Name: Clean Markets Place: Philadelphia, Pennsylvania Zip: 19118 Sector: Services Product: Philadelphia-based provider of market development...

  20. EPA Clean Power Plan Seminar

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is hosting an informational seminar addressing the opportunities and challenges presented by EPA's Clean Power Plan.

  1. Clean Cities Around the World

    SciTech Connect (OSTI)

    Not Available

    2005-11-01

    This fact sheet provides an update of Clean Cities International news, including successful activities, notable accomplishments, and plans for the future. It also includes background information.

  2. Clean Air Act, Section 309

    Energy Savers [EERE]

    CLEAN AIR ACT 309* 7609. Policy review (a) The Administrator shall review and comment in writing on the environmental impact of any matter relating to duties and ...

  3. Connecting with Clean Tech CEO's

    Broader source: Energy.gov [DOE]

    Findings of CEO Roundtable discussions about how to drive economic development and job growth of the clean tech sector within the Sacramento Region.

  4. Clean Cities Around the World

    SciTech Connect (OSTI)

    Not Available

    2005-01-01

    This 2-page fact sheet provides general information regarding Clean Cities International, including background, successful activities, importance of partnerships, accomplishments, and plans.

  5. Local Option- Clean Energy Financing

    Broader source: Energy.gov [DOE]

    Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money through their local government to pay for energy improvements. The amount borrowed is typically...

  6. Residential Clean Energy Grant Program

    Broader source: Energy.gov [DOE]

    Maryland's Residential Clean Energy Grant Program, administered by the Maryland Energy Administration (MEA), provides financial incentives to homeowners that install solar water-heating, solar...

  7. Hawaii Clean Energy Final PEIS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A 1 2 Public Notices 3 Notices about the Draft Programmatic EIS Appendix A Hawai i Clean Energy Final PEIS A-1 September 2015 DOE/EIS-0459 The following Notice of Availability appeared in the Federal Register on April 18, 2014. Appendix A Hawai i Clean Energy Final PEIS A-2 September 2015 DOE/EIS-0459 Appendix A Hawai i Clean Energy Final PEIS A-3 September 2015 DOE/EIS-0459 DOE-Hawaii placed the following advertisement in The Garden Island on May 5 and 9, 2014. Appendix A Hawai i Clean Energy

  8. Clean Vita | Open Energy Information

    Open Energy Info (EERE)

    Provider of products and services to the building trade. Involved in a distribution joint venture with Solco International. References: Clean Vita1 This article is a stub....

  9. EPA The Clean Power Plan

    Office of Environmental Management (EM)

    This means carbon and air pollution are already decreasing, improving public health each and every year. The Clean Power Plan 7 Overview * Sets carbon dioxide emissions performance ...

  10. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    DOE Patents [OSTI]

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1996-05-07

    The present invention is a tetrahydrofurfuryl alcohol and limonene or terpineol cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  11. Limonene and tetrahydrofurfurly alcohol cleaning agent

    DOE Patents [OSTI]

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  12. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    DOE Patents [OSTI]

    Bohnert, G.W.; Carter, R.D.; Hand, T.E.; Powers, M.T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  13. Pay for Clean Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pay for Clean Energy Pay for Clean Energy PCEE.png Transitioning to a clean energy economy requires innovative financing solutions that enable state, local, and tribal governments to invest in clean energy technologies. However, the clean energy puzzle can be daunting, especially when it comes to paying for clean energy efforts. The resources available here aim to provide an overview of financing for state, local, and tribal governments who are designing and implementing clean energy financing

  14. Commercialization of clean coal technologies

    SciTech Connect (OSTI)

    Bharucha, N.

    1994-12-31

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

  15. The Clean Air Mercury Rule

    SciTech Connect (OSTI)

    Michael Rossler

    2005-07-01

    Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

  16. Clean Energy Business Plan Competition

    ScienceCinema (OSTI)

    Maxted, Sara Jane; Lojewski, Brandon; Scherson, Yaniv;

    2013-05-29

    Top Students Pitch Clean Energy Business Plans The six regional finalists of the National Clean Energy Business Plan Competition pitched their business plans to a panel of judges June 13 in Washington, D.C. The expert judges announced NuMat Technologies from Northwestern University as the grand prize winner.

  17. Clean Energy Business Plan Competition

    SciTech Connect (OSTI)

    Maxted, Sara Jane; Lojewski, Brandon; Scherson, Yaniv

    2012-01-01

    Top Students Pitch Clean Energy Business Plans The six regional finalists of the National Clean Energy Business Plan Competition pitched their business plans to a panel of judges June 13 in Washington, D.C. The expert judges announced NuMat Technologies from Northwestern University as the grand prize winner.

  18. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. Clean Energy Manufacturing Initiative: http://www1.eere.energy.gov/energymanufacturing

  19. High Efficiency, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous

  20. land art generator initiative | OpenEI Community

    Open Energy Info (EERE)

    land art generator initiative Home Dc's picture Submitted by Dc(266) Contributor 20 March, 2015 - 11:22 Public Art Generates Renewable Energy Beautifully biofuel art clean energy...

  1. Cost reduction ideas for LNG terminals

    SciTech Connect (OSTI)

    Habibullah, A.; Weldin, F.

    1999-07-01

    LNG projects are highly capital intensive and this has long been regarded as being inevitable. However, recent developments are forcing the LNG industry to aggressively seek cost reductions. For example, the gas-to-liquids (GTL) process is increasingly seen as a potential rival technology and is often being touted as an economically superior alternative fuel source. Another strong driving force behind needed cost reductions is the low crude oil price which seems to have settled in the $10--13/bb. range. LNG is well positioned as the fuel of choice for environmentally friendly new power projects. As a result of the projected demand for power especially in the Pacific Rim countries several LNG terminal projects are under consideration. Such projects will require a new generation of LNG terminal designs emphasizing low cost, small scale and safe and fully integrated designs from LNG supply to power generation. The integration of the LNG terminal with the combined cycle gas turbine (CCGT) power plant offers substantial cost savings opportunities for both plants. Various cost reduction strategies and their impact on the terminal design are discussed including cost reduction due to integration.

  2. Comprehensive Report to Congress Clean Coal Technology Program: Clean power from integrated coal/ore reduction

    SciTech Connect (OSTI)

    1996-10-01

    This report describes a clean coal program in which an iron making technology is paired with combined cycle power generation to produce 3300 tons per day of hot metal and 195 MWe of electricity. The COREX technology consists of a metal-pyrolyzer connected to a reduction shaft, in which the reducing gas comes directly from coal pyrolysis. The offgas is utilized to fuel a combined cycle power plant.

  3. Clean Energy Solutions Centers Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Solutions Centers Fact Sheet Clean Energy Solutions Centers Fact Sheet A fact sheet describing the mission of the Clean Energy Solution Center. Clean Energy Solutions ...

  4. CleanTech Biofuels | Open Energy Information

    Open Energy Info (EERE)

    CleanTech Biofuels Jump to: navigation, search Name: CleanTech Biofuels Place: St. Louis, Missouri Zip: 63130 Sector: Biofuels Product: CleanTech Biofuels holds exclusive licenses...

  5. Degreasing and cleaning superconducting RF Niobium cavities

    SciTech Connect (OSTI)

    Rauchmiller, Michael; Kellett, Ron; /Fermilab

    2011-09-01

    The purpose and scope of this report is to detail the steps necessary for degreasing and cleaning of superconducting RF Niobium cavities in the A0 clean room. It lists the required equipment and the cleaning procedure.

  6. Clean Energy Fuels | OpenEI Community

    Open Energy Info (EERE)

    by Jessi3bl(15) Member 16 December, 2012 - 19:18 GE, Clean Energy Fuels Partner to Expand Natural Gas Highway clean energy Clean Energy Fuels energy Environment Fuel GE Innovation...

  7. E5 Clean Energy | Open Energy Information

    Open Energy Info (EERE)

    E5 Clean Energy Jump to: navigation, search Name: e5 Clean Energy Place: Agoura Hills, California Zip: 91301 Sector: Solar Product: Sells solar energy systems. References: e5 Clean...

  8. Clean Fleets Announcement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Domain | Clean Fleets Announcement 4 of 14 4 of 14 Clean Fleets Announcement 4 of 14 Martha Johnson, General Services Administrator, speaks at a Clean Fleets event held at the...

  9. WATER POWER FOR A CLEAN ENERGY FUTURE

    Office of Environmental Management (EM)

    WATER POWER FOR A CLEAN ENERGY FUTURE March 2016 WATER POWER PROGRAM WATER POWER PROGRAM Building a Clean Energy Economy Leading the world in clean energy is critical to ...

  10. Penning discharge ion source with self-cleaning aperture

    DOE Patents [OSTI]

    Gavin, Basil F.; MacGill, Robert A.; Thatcher, Raymond K.

    1982-01-01

    An ion source of the Penning discharge type having a self-cleaning aperture is provided by a second dynode (24) with an exit aperture (12) in a position opposite a first dynode 10a, from which the ions are sputtered, two opposing cathodes (14, 16), each with an anode (18, 20) for accelerating electrons emitted from the cathodes into a cylindrical space defined by the first and second dynode. A support gas maintained in this space is ionized by the electrons. While the cathodes are supplied with a negative pulse to emit electrons, the first dynode is supplied with a negative pulse (e.g., -300 V) to attract atoms of the ionized gas (plasma). At the same time, the second dynode may also be supplied with a small voltage that is negative with respect to the plasma (e.g., -5 V) for tuning the position of the plasma miniscus for optimum extraction geometry. When the negative pulse to the first dynode is terminated, the second dynode is driven strongly negative (e.g., -600 V) thereby allowing heavy sputtering to take place for a short period to remove virtually all of the atoms deposited on the second dynode from material sputtered off the first dynode. An extractor (22) immediately outside the exit aperture of the second dynode is maintained at ground potential during this entire period of sputtering while the anode, dynode and cathode reference voltage is driven strongly positive (about +20 kV to +30 kV) so that ions accelerated through the aperture will be at ground potential. In that manner, material from the first dynode deposited on the second dynode will be sputtered, in time, to add to the ion beam. Atoms sputtered from the second dynode which do not become ionized and exit through the slit will be redeposited on the first dynode, and hence recycled for further ion beam generation during subsequent operating cycles.

  11. Clean Metal Casting

    SciTech Connect (OSTI)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  12. Engineering analysis of biomass gasifier product gas cleaning technology

    SciTech Connect (OSTI)

    Baker, E.G.; Brown, M.D.; Moore, R.H.; Mudge, L.K.; Elliott, D.C.

    1986-08-01

    For biomass gasification to make a significant contribution to the energy picture in the next decade, emphasis must be placed on the generation of clean, pollutant-free gas products. This reports attempts to quantify levels of particulated, tars, oils, and various other pollutants generated by biomass gasifiers of all types. End uses for biomass gases and appropriate gas cleaning technologies are examined. Complete systems analysis is used to predit the performance of various gasifier/gas cleanup/end use combinations. Further research needs are identified. 128 refs., 20 figs., 19 tabs.

  13. FEDERAL FINANCING PROGRAMS for CLEAN ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FEDERAL FINANCING PROGRAMS for CLEAN ENERGY FEDERAL FINANCING PROGRAMS FOR CLEAN ENERGY * 2016 | INSIDE COVER THIS PAGE INTENTIONALLY LEFT BLANK FOR PRINTING CONTENTS Foreword 3 Acknowledgements 5 Indexes of Federal Financing Programs for Clean Energy 6 * Federal Financing Programs for Clean Energy by Administering Agency * Federal Financing Programs for Clean Energy by Program Type Profiles of Federal Financing Programs 11 for Clean Energy by Agency * United States Department of Energy (DOE) *

  14. Clean Cities: Valley of the Sun Clean Cities coalition (Phoenix...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Photo of Bill Sheaffer Bill Sheaffer began serving as coordinator of the Valley of the Sun Clean Cities coalition in 2002 and now serves as the executive director of this...

  15. Clean Cities: Eastern Pennsylvania Alliance for Clean Transportation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resides. In 2006, Bandiero was elected to the Board of Directors of the Greater Philadelphia Clean Cities (GPCC) Coalition, where he served for over 2-12 years. In 2009, he...

  16. Clean Cities: Silicon Valley Clean Cities (San Jose) coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    various programs at Breathe California of the Bay Area the "Local Clean Air and Healthy Lungs Leader," a nonprofit grassroots organization founded in 1911 to fight lung disease and...

  17. Environmental issues affecting clean coal technology deployment

    SciTech Connect (OSTI)

    Miller, M.J.

    1997-12-31

    The author outlines what he considers to be the key environmental issues affecting Clean Coal Technology (CCT) deployment both in the US and internationally. Since the international issues are difficult to characterize given different environmental drivers in various countries and regions, the primary focus of his remarks is on US deployment. However, he makes some general remarks, particularly regarding the environmental issues in developing vs. developed countries and how these issues may affect CCT deployment. Further, how environment affects deployment depends on which particular type of clean coal technology one is addressing. It is not the author`s intention to mention many specific technologies other than to use them for the purposes of example. He generally categorizes CCTs into four groups since environment is likely to affect deployment for each category somewhat differently. These four categories are: Precombustion technologies such as coal cleaning; Combustion technologies such as low NOx burners; Postcombustion technologies such as FGD systems and postcombustion NOx control; and New generation technologies such as gasification and fluidized bed combustion.

  18. Regional Effort to Deploy Clean Coal Technologies

    SciTech Connect (OSTI)

    Gerald Hill; Kenneth Nemeth; Gary Garrett; Kimberly Sams

    2009-01-31

    The Southern States Energy Board's (SSEB) 'Regional Effort to Deploy Clean Coal Technologies' program began on June 1, 2003, and was completed on January 31, 2009. The project proved beneficial in providing state decision-makers with information that assisted them in removing barriers or implementing incentives to deploy clean coal technologies. This was accomplished through two specific tasks: (1) domestic energy security and diversity; and (2) the energy-water interface. Milestones accomplished during the project period are: (1) Presentations to Annual Meetings of SSEB Members, Associate Member Meetings, and the Gasification Technologies Council. (2) Energy: Water reports - (A) Regional Efforts to Deploy Clean Coal Technologies: Impacts and Implications for Water Supply and Quality. June 2004. (B) Energy-Water Interface Challenges: Coal Bed Methane and Mine Pool Water Characterization in the Southern States Region. 2004. (C) Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S. June 2008. (3) Blackwater Interactive Tabletop Exercise - Decatur, Georgia April 2007. (4) Blackwater Report: Blackwater: Energy and Water Interdependency Issues: Best Practices and Lessons Learned. August 2007. (5) Blackwater Report: BLACKWATER: Energy Water Interdependency Issues REPORT SUMMARY. April 2008.

  19. METHOD OF CLEANING METAL SURFACES

    DOE Patents [OSTI]

    Winkler, H.W.; Morfitt, J.W.; Little, T.H.

    1959-05-19

    Cleaning fluids for removing deposits from metal surfaces are described. The cleaning agents of the invention consist of aqueous nitric acid and an amhydrous nitrate salt of a metal which is lower in the electromotive series than the element of the deposit to be removed. In general, the salt content of thc cleaning agents ranged from 10 to 90%, preferably from 10 to 40% by weight; and the balance of the composition comprises nitric acid of any strength from extremely dilute up to concentrated strength.

  20. Dry-cleaning of graphene

    SciTech Connect (OSTI)

    Algara-Siller, Gerardo; Lehtinen, Ossi; Kaiser, Ute; Turchanin, Andrey

    2014-04-14

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

  1. Freeport LNG Terminal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Freeport LNG Terminal Freeport LNG Terminal Freeport LNG Terminal Long-Term Contract Information and Registrations at U.S. LNG Export Facilities Filing Date Type (1) Description ...

  2. Corpus Christi Liquefaction Terminal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Terminal Corpus Christi Liquefaction Terminal Corpus Christi Liquefaction Terminal Long-Term Contract Information and Registrations at U.S. LNG Export Facilities Filing Date Type...

  3. Hydraulic seal battery terminal

    SciTech Connect (OSTI)

    Stadnick, S.J.

    1980-09-23

    A self-sealing battery terminal is described that includes a hydroformed Inconel outer case, a low shear strength sealant material, and a central post in the form of a bolt which acts as both a conductor and transmits the preload from a pair of Belleville washers to a lower ceramic washer. The lower ceramic washer acts like a piston to compress the sealant when the nut on the central post is tightened. The Belleville washers serve to maintain a minimum tension on the central post. A top ceramic washer is held in place by the tension in the central bolt as long as the tension exceeds a minimum value.

  4. Clean Transportation Education Project | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Clean Cities Education & Outreach Activities Vehicle Technologies Office Merit Review 2014: Alternative Fuels Implementation Team (AFIT) for North Carolina Puget Sound Clean Cities ...

  5. FE Clean Coal News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity from Innovative DOE-Supported Clean Coal Project An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned...

  6. baepgig-clean | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comprehensive Report to Congress Comprehensive Report to Congress on the Clean Coal Technology Program: Combustion Engineering IGCC Repowering Project, Clean Energy Demonstration ...

  7. SciTech Connect: "clean coal"

    Office of Scientific and Technical Information (OSTI)

    clean coal" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "clean coal" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  8. Clean Cites Now, Vol. 11, No. 4

    SciTech Connect (OSTI)

    Not Available

    2007-10-01

    Clean Cities Now is the official publication of the Clean Cities program. It features articles on alternative fuels and vehicles, idle reduction, fuel economy, and hybrid vehicles.

  9. Clean Energy Manufacturing Initiative Southeast Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative Southeast Regional Summit Clean Energy Manufacturing Initiative Southeast Regional Summit July 9, 2015 8:30AM to 6:00PM EDT Renaissance...

  10. DOE - NNSA/NFO -- Operation Clean Desert

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ZONE > Operation Clean Desert NNSANFO Language Options U.S. DOENNSA - Nevada Field Office Operation Clean Desert FUN FOR ALL AGES Dr. Proton Graphic Adam - Smiling Operation ...

  11. Clean Economy Network | Open Energy Information

    Open Energy Info (EERE)

    Network Jump to: navigation, search Name: Clean Economy Network Place: Washington, Washington, DC Zip: 20004 Product: Washingt (DC-based advocacy group focused on clean energy and...

  12. Clean Power Research | Open Energy Information

    Open Energy Info (EERE)

    search Name: Clean Power Research Place: Napa, California Product: California-based clean energy consulting and research company. Coordinates: 38.298855, -122.285194 Show...

  13. Hudson Clean Energy Partners | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Partners Jump to: navigation, search Name: Hudson Clean Energy Partners Place: Teaneck, New Jersey Zip: 7666 Product: New Jersey-based private equity fund manager...

  14. Evergreen Clean Energy | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Jump to: navigation, search Name: Evergreen Clean Energy Place: Provo, Utah Zip: 84604 Sector: Geothermal energy Product: Utah-based private equity fund targeting...

  15. Connecticut Clean Energy Fund | Open Energy Information

    Open Energy Info (EERE)

    Connecticut Clean Energy Fund Jump to: navigation, search Name: Connecticut Clean Energy Fund Address: 200 Corporate Place Place: Rocky Hill, Connecticut Zip: 06067 Region:...

  16. Clean Pacific Ventures | Open Energy Information

    Open Energy Info (EERE)

    Ventures Jump to: navigation, search Logo: Clean Pacific Ventures Name: Clean Pacific Ventures Address: 425 California Street, Suite 2450 Place: San Francisco, California Zip:...

  17. Clean Diesel Technologies | Open Energy Information

    Open Energy Info (EERE)

    Clean Diesel Technologies Retrieved from "http:en.openei.orgwindex.php?titleCleanDieselTechnologies&oldid768455" Categories: Organizations Energy Efficiency...

  18. Suncatcher Clean Energy | Open Energy Information

    Open Energy Info (EERE)

    Suncatcher Clean Energy Jump to: navigation, search Name: Suncatcher Clean Energy Place: Corinth, New Jersey Zip: 5039 Sector: Renewable Energy Product: Sun Catcher, is dedicated...

  19. Clean Energy Incubator | Open Energy Information

    Open Energy Info (EERE)

    Incubator Jump to: navigation, search Name: Clean Energy Incubator Place: Austin, Texas Zip: Texas 78759 Sector: Renewable Energy Product: The Clean Energy Incubator is a program...

  20. Clean Energy Group Virginia | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Group Virginia Jump to: navigation, search Name: Clean Energy Group (Virginia) Place: Reston, Virginia Zip: VA 20191 Product: Virginia-based state regional office of...

  1. Austin Clean Energy Incubator | Open Energy Information

    Open Energy Info (EERE)

    Incubator Jump to: navigation, search Logo: Austin Clean Energy Incubator Name: Austin Clean Energy Incubator Address: 3925 West Braker Lane Place: Austin, Texas Zip: 78759 Region:...

  2. Clean Edge Inc | Open Energy Information

    Open Energy Info (EERE)

    Edge Inc Jump to: navigation, search Logo: Clean Edge Inc Name: Clean Edge Inc Place: Portland, Oregon Zip: 97213 Region: Pacific Northwest Area Website: www.cleanedge.com...

  3. FE Clean Energy Group | Open Energy Information

    Open Energy Info (EERE)

    FE Clean Energy Group Jump to: navigation, search Name: FE Clean Energy Group Place: Darien, Connecticut Zip: 6820 Sector: Efficiency Product: A Private Equity Fund Manager which...

  4. Clean Energy Portfolio Goal | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewables Portfolio Standard Summary In May 2011, Indiana enacted SB 251, creating the Clean Energy Portfolio Standard (CPS). The program sets a voluntary goal of 10% clean...

  5. Clean Energy Economy | Open Energy Information

    Open Energy Info (EERE)

    Portal Linkedin.jpg CleanTech Cleantech Venture Capital Global Renewable Energy Network (GReEN) MIT Club of Northern California CleanTech Renewable Energy Business...

  6. New England Clean Fuels | Open Energy Information

    Open Energy Info (EERE)

    New England Clean Fuels Place: MA, Massachusetts Zip: 2420 Product: New England Clean Fuels, Inc (NECF) is a startup based on the concept of using photosynthetic microorganisms as...

  7. FEDERAL FINANCING PROGRAMS for CLEAN ENERGY

    Broader source: Energy.gov (indexed) [DOE]

    FEDERAL FINANCING PROGRAMS for CLEAN ENERGY FEDERAL FINANCING PROGRAMS FOR CLEAN ENERGY * 2016 | INSIDE COVER THIS PAGE INTENTIONALLY LEFT BLANK FOR PRINTING CONTENTS Foreword 3 ...

  8. Share Your Clean Energy Economy Story

    Broader source: Energy.gov [DOE]

    How did you get involved in the Clean Energy Economy? Help other people learn the opportunities available in the clean energy sector by sharing your own story below.

  9. #CleanTechNow | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    #CleanTechNow #CleanTechNow Addthis Speakers Secretary Ernest Moniz Duration :44 Topic Commercial Lighting Alternative Fuel Vehicles Solar Wind

  10. National Clean Energy Business Plan Competition | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Competition National Clean Energy Business Plan Competition The National Clean Energy Business Plan Competition inspired nearly 300 university teams across the country to create ...