National Library of Energy BETA

Sample records for terminal control number

  1. Identification of Export Control Classification Number - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Identification of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" please provide the appropriate Export Control Classification Number (ECCN) for...

  2. OMB Control Number: 1910-5165

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    damages assessed under Contract Work Hours and Safety Standards Act: Page 1 OMB Control Number: 1910-5165 Expires: 04302015 SEMI-ANNUAL DAVIS-BACON ENFORCEMENT REPORT...

  3. Identification of Export Control Classification Number - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Identification of Export Control Classification Number - ITER (April 2012) As the "Shipper of Record" please provide the appropriate Export Control Classification Number (ECCN) for the products (equipment, components and/or materials) and if applicable the nonproprietary associated installation/maintenance documentation that will be shipped from the United States to the ITER International Organization in Cadarache, France or to ITER Members worldwide on behalf of the Company. In rare

  4. OMB Control Number: 1910-5165

    Energy Savers [EERE]

    OMB Control Number: 1910-5165 Expires: xx/xx/201x SEMI-ANNUAL DAVIS-BACON ENFORCEMENT REPORT Please submit this Semi-Annual Davis-Bacon Enforcement Report to your site DOE/NNSA Contractor Human Resource Division (CHRD) Office. If you do not have a DOE/NNSA CHRD Office, please submit the report to: DBAEnforcementReports@hq.doe.gov. The following questions regarding enforcement activity (Davis-Bacon and Related Acts) by this Agency are required by 29 CFR, Part 5.7(b), and Department of Labor, All

  5. STATEMENT AND ACKNOWLEDGMENT OMB Control Number: 9000-0014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ACKNOWLEDGMENT OMB Control Number: 9000-0014 Expiration Date: 12/31/2017 PART I - STATEMENT OF PRIME CONTRACTOR 1. PRIME CONTRACT NO. 2. DATE SUBCONTRACT AWARDED 3. SUBCONTRACT NUMBER 15b. TITLE OF PERSON SIGNING AUTHORIZED FOR LOCAL REPRODUCTION PREVIOUS EDITION IS NOT USABLE STANDARD FORM 1413 (REV. 4/2013) Prescribed by GSA/FAR (48 CFR) 53.222(e) 4. PRIME CONTRACTOR 5. SUBCONTRACTOR a. NAME a. NAME b. STREET ADDRESS b. STREET ADDRESS c. CITY d. STATE e. ZIP CODE c. CITY d. STATE e. ZIP CODE

  6. Adaptation of the control equipment to permit 3-terminal operation of the HVDC link between Sardinia, Corsica and mainland Italy

    SciTech Connect (OSTI)

    Mazzoldi, F.; Taisne, J.P.; Martin, C.J.B.; Rowe, B.A.

    1989-04-01

    After more than 20 years service as a conventional 2-terminal HVdc link, the Sardinia-Mainland Italy hvdc link (200MW, 200kV) is now operating as a three-terminal system. The original control equipment has been modified to allow the introduction of a tapping station on the line for 3-terminal operation. The adaptations to the control equipment, including the means to ensure that the convertors are operated within their capabilities, are explained.

  7. Review of Literature on Terminal Box Control, Occupancy Sensing Technology and Multi-zone Demand Control Ventilation (DCV)

    SciTech Connect (OSTI)

    Liu, Guopeng; Dasu, Aravind R.; Zhang, Jian

    2012-03-01

    This report presents an overall review of the standard requirement, the terminal box control, occupancy sensing technology and DCV. There is system-specific guidance for single-zone systems, but DCV application guidance for multi-zone variable air volume (VAV) systems is not available. No real-world implementation case studies have been found using the CO2-based DCV. The review results also show that the constant minimum air flow set point causes excessive fan power consumption and potential simultaneous heating and cooling. Occupancy-based control (OBC) is needed for the terminal box in order to achieve deep energy savings. Key to OBC is a technology for sensing the actual occupancy of the zone served in real time. Several technologies show promise, but none currently fully meets the need with adequate accuracy and sufficiently low cost.

  8. Number

    Office of Legacy Management (LM)

    ' , /v-i 2 -i 3 -A, This dow'at consists ~f--~-_,_~~~p.~,::, Number -------of.-&--copies, 1 Series.,-a-,-. ! 1 THE UNIVERSITY OF ROCHESTER 1; r-.' L INTRAMURALCORRESPONDENCE i"ks' 3 2.. September 25, 1947 Memo.tor Dr. A. H, Dovdy . From: Dr. H. E, Stokinger Be: Trip Report - Mayvood Chemical Works A trip vas made Nednesday, August 24th vith Messrs. Robert W ilson and George Sprague to the Mayvood Chemical F!orks, Mayvood, New Jersey one of 2 plants in the U.S.A. engaged in the

  9. CONTROL CHART DASHBOARDS MANAGING YOUR NUMBERS INSTEAD OF YOU NUMBER MANAGING YOU

    SciTech Connect (OSTI)

    PREVETTE, S.S.

    2006-11-15

    This paper, which documents Fluor Hanford's application of Statistical Process Control (SPC) and Dashboards to support planning and decision making, is a sequel to ''Leading with Leading Indicators'' that was presented at WM 05. This year's paper provides more detail on management's use of SPC and control charts and discusses their integration into an executive summary using the popular color-cod3ed dashboard methodology. Fluor Hanford has applied SPC in a non-traditional (that is non-manufacturing) manner. Dr. Shewhart's 75-year-old control-chart methodologies have been updated to modern data processing, but are still founded on his sound, tried and true principles. These methods are playing a key role in safety and quality at what has been called the world's largest environmental cleanup project. The US Department of Energy's (DOE's) Hanford Site played a pivotal role in the nation's defense, beginning in the 1940s when it was established as part of the Manhattan Project. After more than 50 years of producing nuclear weapons, Hanford--which covers 586 square miles in southeastern Washington state--is now focused on three outcomes: (1) restoring the Columbia River corridor for multiple uses; (2) transitioning the central plateau to support long-term waste management; and (3) putting DOE assets to work for the future.

  10. W-026 acceptance test plan plant control system hardware (submittal {number_sign} 216)

    SciTech Connect (OSTI)

    Watson, T.L., Fluor Daniel Hanford

    1997-02-14

    Acceptance Testing of the WRAP 1 Plant Control System Hardware will be conducted throughout the construction of WRAP I with the final testing on the Process Area hardware being completed in November 1996. The hardware tests will be broken out by the following functional areas; Local Control Units, Operator Control Stations in the WRAP Control Room, DMS Server, PCS Server, Operator Interface Units, printers, DNS terminals, WRAP Local Area Network/Communications, and bar code equipment. This document will contain completed copies of each of the hardware tests along with the applicable test logs and completed test exception reports.

  11. Size and composition-controlled fabrication of VO2 nanocrystals by terminated cluster growth

    SciTech Connect (OSTI)

    Anders, Andre; Slack, Jonathan

    2013-05-14

    A physical vapor deposition-based route for the fabrication of VO2 nanoparticles is demonstrated, consisting of reactive sputtering and vapor condensation at elevated pressures. The oxidation of vanadium atoms is an efficient heterogeneous nucleation method, leading to high nanoparticle throughtput. Fine control of the nanoparticle size and composition is obtained. Post growth annealing leads to crystalline VO2 nanoparticles with optimum thermocromic and plasmonic properties.

  12. Voluntary Self-Identification of Disability Form CC-305 OMB Control Number 1250-0005

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Voluntary Self-Identification of Disability Form CC-305 OMB Control Number 1250-0005 Expires 1/31/2017 Page 1 of 2 Why are you being asked to complete this form? Because we do business with the government, we must reach out to, hire, and provide equal opportunity to qualified people with disabilities. i To help us measure how well we are doing, we are asking you to tell us if you have a disability or if you ever had a disability. Completing this form is voluntary, but we hope that you will

  13. Superconducting Cable Termination

    DOE Patents [OSTI]

    Sinha, Uday K. (Carrollton, GA); Tolbert, Jerry (Newnan, GA)

    2005-08-30

    Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to 72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.

  14. Terminal structure

    DOE Patents [OSTI]

    Schmidt, Frank (Langenhagen, DE); Allais, Arnaud (Hannover, DE); Mirebeau, Pierre (Villebon sur Yvette, FR); Ganhungu, Francois (Vieux-Reng, FR); Lallouet, Nicolas (Saint Martin Boulogne, FR)

    2009-10-20

    A terminal structure (2) for a superconducting cable (1) is described. It consists of a conductor (2a) and an insulator (2b) that surrounds the conductor (2a), wherein the superconducting cable (1) has a core with a superconducting conductor (5) and a layer of insulation that surrounds the conductor (5), and wherein the core is arranged in such a way that it can move longitudinally in a cryostat. The conductor (2a) of the terminal structure (2) is electrically connected with the superconducting conductor (5) or with a normal conductor (6) that is connected with the superconducting conductor (5) by means of a tubular part (7) made of an electrically conductive material, wherein the superconducting conductor (5) or the normal conductor (6) can slide in the part (7) in the direction of the superconductor.

  15. Termination unit

    DOE Patents [OSTI]

    Traeholt, Chresten [Frederiksberg, DK; Willen, Dag [Klagshamn, SE; Roden, Mark [Newnan, GA; Tolbert, Jerry C [Carrollton, GA; Lindsay, David [Carrollton, GA; Fisher, Paul W [Heiskell, TN; Nielsen, Carsten Thidemann [Jaegerspris, DK

    2014-01-07

    This invention relates to a termination unit comprising an end-section of a cable. The end section of the cable defines a central longitudinal axis and comprising end-parts of N electrical phases, an end-part of a neutral conductor and a surrounding thermally insulation envelope adapted to comprising a cooling fluid. The end-parts of the N electrical phases and the end-part of the neutral conductor each comprising at least one electrical conductor and being arranged in the cable concentrically around a core former with a phase 1 located relatively innermost, and phase N relatively outermost in the cable, phase N being surrounded by the neutral conductor, electrical insulation being arrange between neighboring electrical phases and between phase N and the neutral conductor, and wherein the end-parts of the neutral conductor and the electrical phases each comprise a contacting surface electrically connected to at least one branch current lead to provide an electrical connection: The contacting surfaces each having a longitudinal extension, and being located sequentially along the longitudinal extension of the end-section of the cable. The branch current leads being individually insulated from said thermally insulation envelope by individual electrical insulators.

  16. Control of a high Reynolds number Mach 0.9 heated jet using plasma actuators

    SciTech Connect (OSTI)

    Kearney-Fischer, M.; Kim, J.-H.; Samimy, M.

    2009-09-15

    The results of particle image velocimetry (PIV) measurements in a high subsonic, heated, jet forced using localized arc filament plasma actuators (LAFPAs) show that LAFPAs can consistently produce significant mixing enhancement over a wide range of temperatures. These actuators have been used successfully in high Reynolds number, high-speed unheated jets. The facility consists of an axisymmetric jet with different nozzle blocks of exit diameter of 2.54 cm and variable jet temperature in an anechoic chamber. The focus of this paper is on a high subsonic (M{sub j}=0.9) jet. Twelve experiments with various forcing azimuthal modes (m=0, 1, and {+-}1) and temperatures (T{sub o}/T{sub a}=1.0, 1.4, and 2.0) at a fixed forcing Strouhal number (St{sub DF}=0.3) have been conducted and PIV results compared with the baseline results to characterize the effectiveness of LAFPAs for mixing enhancement. Centerline velocity and turbulent kinetic energy as well as jet width are used for determining the LAFPAs' effectiveness. The characteristics of large-scale structures are analyzed through the use of Galilean streamlines and swirling strength. Across the range of temperatures collected, the effectiveness of LAFPAs improves as temperature increases. Possible reasons for the increase in effectiveness are discussed.

  17. SU-E-T-199: How Number of Control Points Influences the Dynamic IMRT Plan Quality and Deliverability

    SciTech Connect (OSTI)

    Sharma, S; Manigandan, D; Chander, S; Subramani, V; Julka, P; Rath, G

    2014-06-01

    Purpose: To study the influence of number of control points on plan quality and deliverability. Methods: Five previously treated patients of carcinoma of rectum were selected. Planning target volume (PTV) and organs at risk (OARs) i.e. bladder and bowel were contoured. Dynamic IMRT plans (6MV, 7-fields, 45Gy/25 fractions and prescribed at 95% isodose) were created in Eclipse (Varian medical system, Palo Alto, CA) treatment planning system (TPS) for Varian CL2300C/D linear-accelerator. Base plan was calculated with 166 control points, variable mode (Eclipse Default). For generating other plans, all parameters were kept constant, only number of control points (Fixed mode) was varied as follows: 100, 166 and 200. Then, plan quality was analyzed in terms of maximum and mean dose received by the PTV and OARs. For plan deliverability, TPS calculated fluence was verified with ImatriXX (IBA Dosimetry, Germany) array and compared with TPS dose-plane using gamma index criteria of 3% dose difference and 3mm distance to agreement (DTA). Total number of monitor units (MU) required to deliver a plan was also noted. Results: The maximum variation for the PTV maximum with respect to eclipse default control point (166) was 0.28% (0.14Gy). Similarly, PTV mean varied only up to 0.22 %( 0.11Gy). Bladder maximum and bladder mean varied up to 0.51% (0.24Gy) and 0.16% (0.06Gy). The variation for the bowel maximum and bowel mean was also only 0.39% (0.19Gy) and 0.33% (0.04Gy). Total MU was within 0.32 % (4MU). Average gamma pass rate using different control points for five patients are 98.750.33%, 99.370.09%, 99.290.12%, 98.140.13% and 99.250.14% respectively. Conclusion: Slight variation (<1%) in PTV and OARs maximum and mean doses was observed with varying number of control points. Monitor unit was also not varied much. Reducing number of control points did not showed any comprise in plan deliverability in terms of gamma index pass rate.

  18. Effect of Fuel Wobbe Number on Pollutant Emissions from Advanced Technology Residential Water Heaters: Results of Controlled Experiments

    SciTech Connect (OSTI)

    Rapp, Vi H.; Singer, Brett C.

    2014-03-01

    The research summarized in this report is part of a larger effort to evaluate the potential air quality impacts of using liquefied natural gas in California. A difference of potential importance between many liquefied natural gas blends and the natural gas blends that have been distributed in California in recent years is the higher Wobbe number of liquefied natural gas. Wobbe number is a measure of the energy delivery rate for appliances that use orifice- or pressure-based fuel metering. The effect of Wobbe number on pollutant emissions from residential water heaters was evaluated in controlled experiments. Experiments were conducted on eight storage water heaters, including five with “ultra low-NO{sub X}” burners, and four on-demand (tankless) water heaters, all of which featured ultra low-NO{sub X} burners. Pollutant emissions were quantified as air-free concentrations in the appliance flue and fuel-based emission factors in units of nanogram of pollutant emitter per joule of fuel energy consumed. Emissions were measured for carbon monoxide (CO), nitrogen oxides (NO{sub X}), nitrogen oxide (NO), formaldehyde and acetaldehyde as the water heaters were operated through defined operating cycles using fuels with varying Wobbe number. The reference fuel was Northern California line gas with Wobbe number ranging from 1344 to 1365. Test fuels had Wobbe numbers of 1360, 1390 and 1420. The most prominent finding was an increase in NO{sub X} emissions with increasing Wobbe number: all five of the ultra low-NO{sub X} storage water heaters and two of the four ultra low-NO{sub X} on-demand water heaters had statistically discernible (p<0.10) increases in NO{sub X} with fuel Wobbe number. The largest percentage increases occurred for the ultra low-NO{sub X} water heaters. There was a discernible change in CO emissions with Wobbe number for all four of the on-demand devices tested. The on-demand water heater with the highest CO emissions also had the largest CO increase with increasing fuel Wobbe number.

  19. Optimization of cable terminations

    SciTech Connect (OSTI)

    Nikolajevic, S.V.; Pekaric-Nad, N.M.; Dimitrijevic, R.M.

    1997-04-01

    This paper describes a study of various termination constructions for medium voltage cross-linked polyethylene (XLPE) cables. A special device was used for electrical field measurements around the cable termination which made it possible to monitor how stress relief materials with different permittivity and placement of isolated or grounded embedded electrodes (EE) affected electrical stress grading. The results of measurements for each configuration were examined by mathematical modeling based on the finite element method (FEM). Finally, the selected constructions of cable termination have passed severe test conditions with load cycling.

  20. Clothes Dryer Automatic Termination Evaluation

    SciTech Connect (OSTI)

    TeGrotenhuis, Ward E.

    2014-10-01

    Volume 2: Improved Sensor and Control Designs Many residential clothes dryers on the market today provide automatic cycles that are intended to stop when the clothes are dry, as determined by the final remaining moisture content (RMC). However, testing of automatic termination cycles has shown that many dryers are susceptible to over-drying of loads, leading to excess energy consumption. In particular, tests performed using the DOE Test Procedure in Appendix D2 of 10 CFR 430 subpart B have shown that as much as 62% of the energy used in a cycle may be from over-drying. Volume 1 of this report shows an average of 20% excess energy from over-drying when running automatic cycles with various load compositions and dryer settings. Consequently, improving automatic termination sensors and algorithms has the potential for substantial energy savings in the U.S.

  1. Termination and Recovery

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume defines event Termination and determination of when it is appropriate to cease emergency response activities and of associated notifications. Canceled by DOE G 151.1-4.

  2. Integrated emissions control system for residential CWS furnace. Annual status report number 1, 20 September 1989--30 September 1990

    SciTech Connect (OSTI)

    Balsavich, J.C.; Breault, R.W.

    1990-10-01

    One of the major obstacles to the successful development and commercialization of a coal-fired residential furnace is the need for a reliable, cost-effective emission control system. Tecogen Inc. is developing a novel, integrated emission control system to control NO{sub x}, SO{sub 2}, and particulate emissions. A reactor provides high sorbent particle residence time within the reactor to control SO{sub 2} emissions, while providing a means of extracting a substantial amount of the particulates present in the combustion gases. Final cleanup of any flyash exiting the reactor is completed with the use of high-efficiency bag filters. Tecogen Inc. developed a residential-scale Coal Water Slurry (CWS) combustor which makes use of centrifugal forces to separate and confine larger unburned coal particles in the furnace upper chamber. Various partitions are used to retard the axial, downward flow of these particles, and thus maximize their residence time in the hottest section of the combustor. By operating this combustor under staged conditions, the local stoichiometry in the primary zone can be controlled to minimize NO{sub x} emissions. During the first year of the program, work encompassed a literature search, developing an analytical model of the SO{sub 2} reactor, fabricating and assembling the initial prototype components, testing the prototype component, and estimating the operating and manufacturing costs.

  3. All Other Editions Are Obsolete OMB Control No.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OMB Control No. 1910-1800 OMB Burden Disclosure Statement below U.S. Department of Energy ... OF FUTURE EMPLOYER REASON FOR TERMINATION SOCIAL SECURITY NUMBER DATE OF BIRTH DATE OF ...

  4. Advanced emissions control development program. Quarterly technical progress report {number_sign}4, July 1--September 30, 1995

    SciTech Connect (OSTI)

    Farthing, G.A.

    1995-12-31

    Babcock and Wilcox (B and W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls will likely arise as the US Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendments of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B and W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF will provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. The specific objectives of the project are to: (1) measure and understand the production and partitioning of air toxics species for a variety of steam coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems (ESPs, baghouses, scrubbers), (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self-consistent air toxics data library. Development work is currently concentrated on the capture of mercury, fine particulate, and a variety of inorganic species such as the acid gases (hydrogen chloride, hydrogen fluoride, etc.).

  5. Shipboard regasification terminal

    SciTech Connect (OSTI)

    Campbell, G.; Zednik, J.

    1999-07-01

    Mobil Technology Company and Mobil Shipping and Transportation Company have jointly developed a new combination of existing proven equipment to regasify LNG. Advantages of this Shipboard Regasification Terminal (SRT) include accelerated initial gas delivery schedule, low capital cost, delivery of smaller quantities of LNG at a competitive price and shorter term of LNG purchase and improved financing options. These advantages benefit both the supplier of LNG and the purchaser. SRT can be used as an interim supply to developing markets allowing the demand to grow while developing downstream infrastructure. This concept does not involve offshore transfer of cryogenic fluids while delivering near-ambient temperature pipeline quality gas at typical pipeline pressures. During times when gas is not required, the SRT ship can easily be returned to the trade of transporting and delivering LNG to conventional land based terminals. This paper will discuss the merits of Shipboard Regasification Terminals in general, cover the development of this concept and review the factors guiding the use of SRT vs. an onshore terminal.

  6. Request Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3023307 Name: Madeleine Brown Organization: nJa Address: --- -------- -------- -- Country: Phone Number: United States Fax Number: n/a E-mail: --- -------- --------_._------ --- Reasonably Describe Records Description: Please send me a copy of the emails and records relating to the decision to allow the underage son of Bill Gates to tour Hanford in June 2010. Please also send the emails and records that justify the Department of Energy to prevent other minors from visiting B Reactor. Optional

  7. Request Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1074438 Name: Gayle Cooper Organization: nla Address: _ Country: United States Phone Number: Fax Number: nla E-mail: . ~===--------- Reasonably Describe Records Description: Information pertaining to the Department of Energy's cost estimate for reinstating pension benefit service years to the Enterprise Company (ENCO) employees who are active plan participants in the Hanford Site Pension Plan. This cost estimate was an outcome of the DOE's Worker Town Hall Meetings held on September 17-18, 2009.

  8. Complete LNG Terminal Status Maps

    Broader source: Energy.gov [DOE]

    A series of slides showing the status of various LNG terminals (existing, under construction, proposed, etc.) in North America.

  9. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Date: M-16-04-04 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. May 27, 2004 Originator: K. A. Klein Phone:...

  10. Two terminal micropower radar sensor

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1995-01-01

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground.

  11. Two terminal micropower radar sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1995-11-07

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground. 3 figs.

  12. Corpus Christi Liquefaction Terminal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Terminal Corpus Christi Liquefaction Terminal Corpus Christi Liquefaction Terminal Long-Term Contract Information and Registrations at U.S. LNG Export Facilities Filing Date Type...

  13. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modification of the M-016 Series Milestones Description/Justification of Change The Hanford Federal Facility Agreement and Consent Order (TPA) contains commitments for the U.S.

  14. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/5/2002 Originator Phone P. M. Knollmeyer, RL Assistant Manager Central Plateau 376-7435 Class of Change [ I - Signatories [X ] II - Executive Manager [ ] III - Project Manager Change Title Modify Tri-Party Agreement Milestone Series M-015 in Accordance with the Central Plateau Agreement In Principle Description/Justification of Change The Hanford Federal Facility

  15. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    13-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modification of the Central Plateau 200 Area Non-Tank Farm Remedial Action Work Plans (M-013 Series Milestones) Description/Justification of Change The Hanford Federal Facility

  16. Change Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20-02-01 Federal Facility Agreement and Consent Order Change Control Form Do not use blue ink. Type or print using black ink. Date 2/11/2002 Originator Phone P. M. Knollmeyer, RL Assistant Manager Central Plateau 376-7435 Class of Change [X] I - Signatories [ ] II - Executive Manager [ ] III - Project Manager Change Title Modify Tri-Party Agreement Milestone Series M-020 in Accordance with the Central Plateau Agreement In Principle Description/Justification of Change The Hanford Federal Facility

  17. Cameron Terminal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cameron Terminal Cameron Terminal Cameron LNG Terminal Long-Term Contract Information and Registrations at U.S. LNG Export Facilities Filing Date Type (1) Description 06/10/13 C (LNG) Cameron LNG, LLC, FE Docket No. 11-145-LNG Long-Term Contract Summaries R = Registration of company; C (LNG) = Contract involving LNG; C (NG)= Contract involving natural gas supply More Documents & Publications Dominion Cove LNG

  18. Vindicator Lidar Assessment for Wind Turbine Feed-Forward Control Applications: Cooperative Research and Development Final Report, CRADA Number CRD-09-352

    SciTech Connect (OSTI)

    Wright, A.

    2014-01-01

    Collaborative development and testing of feed-forward and other advanced wind turbine controls using a laser wind sensor.

  19. Energy Conservation Program: Energy Conservation Standards for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps, Final Rule

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps is an action issued by the Department of Energy. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document. 1 [6450-01-P] DEPARTMENT OF ENERGY 10 CFR Part 431 [Docket

  20. Static power reduction for midpoint-terminated busses

    DOE Patents [OSTI]

    Coteus, Paul W. (Yorktown Heights, NY); Takken, Todd (Brewster, NY)

    2011-01-18

    A memory system is disclosed which is comprised of a memory controller and addressable memory devices such as DRAMs. The invention provides a programmable register to control the high vs. low drive state of each bit of a memory system address and control bus during periods of bus inactivity. In this way, termination voltage supply current can be minimized, while permitting selected bus bits to be driven to a required state. This minimizes termination power dissipation while not affecting memory system performance. The technique can be extended to work for other high-speed busses as well.

  1. Advanced Emissions Control Development Program. Quarterly Technical Progress Report {number_sign}7 for the period: April 1 to June 30, 1996

    SciTech Connect (OSTI)

    Evans, A.P.

    1996-12-31

    Babcock {ampersand} Wilcox (B{ampersand}W) is conducting a five-year project aimed at the development of practical, cost- effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls may arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendment (CAAA) of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B{ampersand}W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. Development work to date has concentrated on the capture of mercury, other trace metals, fine particulate, and the inorganic species hydrogen chloride and hydrogen fluoride.

  2. Advanced Emissions Control Development Program. Quarterly Technical Progress Report {number_sign}5 for the period October 1 to December 31, 1995

    SciTech Connect (OSTI)

    Farthing, George A.

    1996-12-31

    Babcock {ampersand} Wilcox (B{ampersand}W) is conducting a five year project aimed at the development of practical, cost- effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls will likely arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the Clean Air Act Amendments of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B&W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF will provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. The specific objectives of the project are to: (1) measure and understand the production and partitioning of air toxics species for a variety of steam coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems (ESPs, baghouses, scrubbers), (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self-consistent air toxics data library. Development work is currently concentrated on the capture of mercury, fine particulate, and a variety of inorganic species such as the acid gases (hydrogen chloride, hydrogen fluoride, etc.).

  3. Advanced Emissions Control Development Program. Quarterly Technical Progress Report {number_sign}6 for the period: January 1 to March 31, 1996

    SciTech Connect (OSTI)

    Farthing, George A.

    1996-12-31

    Babcock {ampersand} Wilcox (B{ampersand}W) is conducting a five-year project aimed at the development of practical, cost-effective strategies for reducing the emissions of hazardous air pollutants (commonly called air toxics) from coal-fired electric utility plants. The need for air toxic emissions controls will likely arise as the U. S. Environmental Protection Agency proceeds with implementation of Title III of the clean Air Act Amendments of 1990. Data generated during the program will provide utilities with the technical and economic information necessary to reliably evaluate various air toxics emissions compliance options such as fuel switching, coal cleaning, and flue gas treatment. The development work is being carried out using B{ampersand}W`s new Clean Environment Development Facility (CEDF) wherein air toxics emissions control strategies can be developed under controlled conditions, and with proven predictability to commercial systems. Tests conducted in the CEDF will provide high quality, repeatable, comparable data over a wide range of coal properties, operating conditions, and emissions control systems. The specific objectives of the project are to: (1) measure and understand the production and partitioning of air toxics species for a variety of steam coals, (2) optimize the air toxics removal performance of conventional flue gas cleanup systems (ESPs, baghouses, scrubbers), (3) develop advanced air toxics emissions control concepts, (4) develop and validate air toxics emissions measurement and monitoring techniques, and (5) establish a comprehensive, self- consistent air toxics data library. Development work is currently concentrated on the capture of mercury, fine particulate, and a variety of inorganic species such as the acid gases (hydrogen chloride, hydrogen fluoride, etc.).

  4. Universal null DTE (data terminal equipment)

    DOE Patents [OSTI]

    George, M.; Pierson, L.G.; Wilkins, M.E.

    1987-11-09

    A communication device in the form of data terminal equipment permits two data communication equipments, each having its own master clock and operating at substantially the same nominal clock rate, to communicate with each other in a multi-segment circuit configuration of a general communication network even when phase or frequency errors exist between the two clocks. Data transmitted between communication equipments of two segments of the communication network is buffered. A variable buffer fill circuit is provided to fill the buffer to a selectable extent prior to initiation of data output clocking. Selection switches are provided to select the degree of buffer preload. A dynamic buffer fill circuit may be incorporated for automatically selecting the buffer fill level as a function of the difference in clock frequencies of the two equipments. Controllable alarm circuitry is provided for selectively generating an underflow or an overflow alarm to one or both of the communicating equipments. 5 figs.

  5. Complete LNG Terminal Status Maps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Complete LNG Terminal Status Maps Complete LNG Terminal Status Maps A series of slides showing the status of various LNG terminals (existing, under construction, proposed, etc.) in...

  6. Number | Open Energy Information

    Open Energy Info (EERE)

    Property:NumOfPlants Property:NumProdWells Property:NumRepWells Property:Number of Color Cameras Property:Number of Devices Deployed Property:Number of Plants included in...

  7. OMB Control Number: 1910-5165

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1910-5165 Expires: 01312018 SEMI-ANNUAL DAVIS-BACON ENFORCEMENT REPORT For State Energy Grant and Energy Efficiency and Conservation Block Grant Recipients, please submit this...

  8. OMB Control Number: 1910-5165

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1910-5165 Expires: 01/31/2018 SEMI-ANNUAL DAVIS-BACON ENFORCEMENT REPORT Please submit this form to DBAEnforcementReports@hq.doe.gov with a copy to EECBG@ee.doe.gov. This form is due by April 21 st and October 21 st of each year. The following questions regarding enforcement activity (Davis-Bacon and Related Acts) by this Agency are required by 29 CFR, Part 5.7(b), and Department of Labor, All Agency Memorandum #189. Please refer to the instructions with definitions on page 2. If you have

  9. OMB Control Number: 1910-5165

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1910-5165 Expires: 01312018 SEMI-ANNUAL DAVIS-BACON ENFORCEMENT REPORT Please submit this form to DBAEnforcementReports@hq.doe.gov with a copy to EECBG@ee.doe.gov. This form is...

  10. OMB Control Number: 1910-5165

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Semi-Annual Davis-Bacon Enforcement Report to your site DOENNSA Contractor Human Resource Division (CHRD) Office. If you do not have a DOENNSA CHRD Office, please submit the...

  11. NSR Key Number Retrieval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NSR Key Number Retrieval Pease enter key in the box Submit

  12. Runjob termination | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transfer Debugging & Profiling Allinea DDT Core File Settings Determining Memory Use Using VNC with a Debugger bgqstack gdb Coreprocessor Runjob termination TotalView...

  13. SECURITY TERMINATION STATEMENT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Form provides an individual's statement in connection with the termination of access authorization (security clearance) granted by the U.S. Department of Energy (DOE). PDF icon ...

  14. Crystal Structure of the Glutamate Receptor Glua1 N-Terminal Domain

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect the Glutamate Receptor Glua1 N-Terminal Domain Citation Details In-Document Search Title: Crystal Structure of the Glutamate Receptor Glua1 N-Terminal Domain Authors: Yao, G. ; Zong, Y. ; Gu, S. ; Zhou, J. ; Xu, H. ; Mathews, I.I. ; Jin, R. ; , Publication Date: 2013-09-13 OSTI Identifier: 1092804 Report Number(s): SLAC-REPRINT-2013-700 DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: Biochem. J.

  15. Big Numbers | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Numbers May 16, 2011 This article has some numbers in it. In principle, numbers are just language, like English or Japanese. Nevertheless, it is true that not everyone is comfortable or facile with numbers and may be turned off by too many of them. To those people, I apologize that this article pays less attention to maximizing the readership than some I do. But sometimes it's just appropriate to indulge one's self, so here goes. When we discuss the performance of some piece of equipment, we

  16. Sabine Pass LNG Terminal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sabine Pass LNG Terminal Sabine Pass LNG Terminal Sabine Pass LNG Terminal Long-Term Contract Information and Registrations at U.S. LNG Export Facilities Filing Date Type (1) Description 02/17/13 C (LNG) See Appendix A of Application in Docket 13-30-LNG 04/02/13 C (LNG) See Appendix A of Application in Docket 13-42-LNG 02/14/14 C (NG) Sabine Pass Liquefaction, LLC FE Docket Nos. 10-85-LNG and 10-111-LNG 04/30/14 C (NG) Sabine Pass Liquefaction, LLC FE Docket Nos. 10-85-LNG and 10-111-LNG

  17. Freeport LNG Terminal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Freeport LNG Terminal Freeport LNG Terminal Freeport LNG Terminal Long-Term Contract Information and Registrations at U.S. LNG Export Facilities Filing Date Type (1) Description 09/04/12 R Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC ("FLEX") 09/04/12 R Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC ("FLEX") 04/12/13 C (LNG) Long-term Contracts Freeport LNG Expansion, L.P. and FLNG Liquefaction, LLC ("FLEX") 10/25/13 C (LNG) Long-term Contracts

  18. Dominion Cove LNG Terminal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dominion Cove LNG Terminal Dominion Cove LNG Terminal Dominion Cove LNG Terminal Long-Term Contract Information and Registrations at U.S. LNG Export Facilities Filing Date Type (1) Description 05/12/13 C (LNG) Update of Dominion Cove Point Concerning Signed LNG Export Contracts 12/30/14 C (LNG) Dominion Cove Point LNG, LP - FE Dkt. No. 11-128-LNG - Public Summary of Contract R = Registration of company; C (LNG) = Contract involving LNG; C (NG)= Contract involving natural gas supply More

  19. Corpus Christi Liquefaction Terminal | Department of Energy

    Office of Environmental Management (EM)

    Corpus Christi Liquefaction Terminal Corpus Christi Liquefaction Terminal Corpus Christi Liquefaction Terminal Long-Term Contract Information and Registrations at U.S. LNG Export Facilities Filing Date Type (1) Description 06/10/15 C (LNG) In the Matter of Cheniere Marketing, LLC and Corpus Christi Liquefaction, LLC FE Docket Nos. 12-97-LNG and 12-99-LNG DOE/FE Order Nos. 3164, 3164-A and 3638 Long-Term Contracts 08/21/15 C (LNG) In the Matter of Cheniere Marketing, LLC and Corpus Christi

  20. Modeling of cable terminations with embedded electrodes

    SciTech Connect (OSTI)

    Nikolajevic, S.V.; Pekaric-Nadj, N.M.; Dimitrijevic, R.M.; Djurovic, M.

    1996-12-31

    The paper describes a study of various cable termination constructions for medium voltage cross-linked polyethylene (MV XLPE) cables. A special device was used for electrical field measurements around the cable termination, which made it possible to monitor how stress relief materials with different relative permittivity, thickness of stress relief layer and placement of isolated or grounding embedded electrodes (EE) affect electrical stress grading. The results of measurement for each construction were examined by mathematical modeling based on finite element method (FEM). Also, the influence of dielectric losses in the termination was considered, when relative permittivity of the stress relief material is high. Finally, the selected constructions of cable termination were tested in service conditions with load cycling.

  1. PCs and Computer Terminals in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    thousand users would be much lower. The more PCs and computer terminals used in a given building, the greater the impact on the building's energy consumption. By this measure,...

  2. Planning for a Sustainable Future of the Cincinnati Union Terminal

    SciTech Connect (OSTI)

    2012-04-30

    The Cincinnati Museum Center invited a number of local stakeholders, political leaders, nationally and internationally recognized design professionals and the Design Team, that has been engaged to help shape the future of this remarkable resource, to work together in a Workshop that would begin to shape a truly sustainable future for both the Museum and its home, the Union Terminal, one of the most significant buildings in America. This report summarizes and highlights the discussions that took place during the Workshop and presents recommendations for shaping a direction and a framework for the future.

  3. DOE/ID-Number

    Office of Environmental Management (EM)

    INL/EXT-08-13979 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Enhancing control systems security in the energy sector NSTB National SCADA Test Bed Common Cyber Security Vulnerabilities Observed in Control System Assessments by the INL NSTB Program November 2008 November 2008 INL/EXT-08-13979 Common Cyber Security Vulnerabilities Observed in Control System Assessments by the INL NSTB Program November 2008 Idaho National Laboratory Idaho Falls, Idaho 83415

  4. DOE/ID-Number

    Office of Environmental Management (EM)

    Recommended Practices Guide For Securing ZigBee Wireless Networks in Process Control System Environments Draft April 2007 Author Ken Masica Lawrence Livermore National Laboratory Ken Masica page 1 LLNL Recommended Practices Guide Securing ZigBee Wireless Networks in Process Control System Environments ( D R A F T ) Ken Masica Vulnerability & Risk Assessment Program (VRAP) Lawrence Livermore National Laboratory (LLNL) for DHS US CERT Control Systems Security Program (CSSP) April 2007 This

  5. Controlling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling chaos in low- and high-dimensional systems with periodic parametric perturbations K. A. Mirus and J. C. Sprott Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 ͑Received 29 June 1998͒ The effect of applying a periodic perturbation to an accessible parameter of various chaotic systems is examined. Numerical results indicate that perturbation frequencies near the natural frequencies of the unstable periodic orbits of the chaotic systems can result in limit

  6. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  7. DOE/ID-Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Clean Air Act (CAA): The Federal Clean Air Act (CAA) is the basis for the national air pollution control effort. Basic elements of the act include standards for major air ...

  8. DOE/ID-Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Clean Air Act (CAA): The Federal Clean Air Act, or -CAA, is the basis for the national air pollution control effort. Basic elements of the act include national ambient air ...

  9. DOE/ID-Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Summary of Control System Security Standards Activities in the Energy Sector October 2005 National SCADA Test Bed A Summary of Control System Security Standards Activities in the Energy Sector October 2005 Sandia National Laboratories Idaho National Laboratory Argonne National Laboratory Pacific Northwest National Laboratory Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability 2 iii ABSTRACT This document is a compilation of the activities and

  10. Feedthrough terminal for high-power cell

    DOE Patents [OSTI]

    Kaun, T.D.

    1982-05-28

    A feedthrough terminal for a high power electrochemical storage cell providing low resistance coupling to the conductive elements therein while isolating the terminal electrode from the highly corrosive environment within the cell is disclosed. A large diameter, cylindrical copper electrode is enclosed in a stainless steel tube with a BN powder feedthrough seal maintained around the stainless steel tube by means of facing insulative bushings and an outer sleeve. One end of the copper conductor is silver-brazed directly to a flat, butterfly bus bar within the cell, with the adjacent end of the surrounding outer feedthrough sleeve welded to the bus bar. A threaded seal is fixedly positioned on a distal portion of the stainless steel tube immediately adjacent the distal insulative bushing so as to compress the feedthrough seal in tight fitting relation around the stainless steel tube in providing a rugged, leak-proof electrical feedthrough terminal for the power cell.

  11. Document Details Document Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Document Details Document Number Date of Document Document Title/Description [Links below to each document] D195066340 Not listed. N/A REVISIONS IN STRATIGRAPHIC NOMENCLATURE OF COLUMBIA RIVER BASALT GROUP D196000240 Not listed. N/A EPA DENIAL OF LINER LEACHATE COLLECTION SYSTEM REQUIREMENTS D196005916 Not listed. N/A LATE CENOZOIC STRATIGRAPHY AND TECTONIC EVOLUTION WITHIN SUBSIDING BASIN SOUTH CENTRAL WASHINGTON D196025993 RHO-BWI-ST-14 N/A SUPRABASALT SEDIMENTS OF COLD CREEK SYNCLINE AREA

  12. Cost reduction ideas for LNG terminals

    SciTech Connect (OSTI)

    Habibullah, A.; Weldin, F.

    1999-07-01

    LNG projects are highly capital intensive and this has long been regarded as being inevitable. However, recent developments are forcing the LNG industry to aggressively seek cost reductions. For example, the gas-to-liquids (GTL) process is increasingly seen as a potential rival technology and is often being touted as an economically superior alternative fuel source. Another strong driving force behind needed cost reductions is the low crude oil price which seems to have settled in the $10--13/bb. range. LNG is well positioned as the fuel of choice for environmentally friendly new power projects. As a result of the projected demand for power especially in the Pacific Rim countries several LNG terminal projects are under consideration. Such projects will require a new generation of LNG terminal designs emphasizing low cost, small scale and safe and fully integrated designs from LNG supply to power generation. The integration of the LNG terminal with the combined cycle gas turbine (CCGT) power plant offers substantial cost savings opportunities for both plants. Various cost reduction strategies and their impact on the terminal design are discussed including cost reduction due to integration.

  13. Termination of Safeguards for Accountable Nuclear Materials at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Michael Holzemer; Alan Carvo

    2012-04-01

    Termination of safeguards ends requirements of Nuclear Material Control and Accountability (MC&A) and thereby removes the safeguards basis for applying physical protection requirements for theft and diversion of nuclear material, providing termination requirements are met as described. Department of Energy (DOE) M 470.4 6 (Nuclear Material Control and Accountability [8/26/05]) stipulates: 1. Section A, Chapter I (1)( q) (1): Safeguards can be terminated on nuclear materials provided the following conditions are met: (a) 'If the material is special nuclear material (SNM) or protected as SNM, it must be attractiveness level E and have a measured value.' (b) 'The material has been determined by DOE line management to be of no programmatic value to DOE.' (c) 'The material is transferred to the control of a waste management organization where the material is accounted for and protected in accordance with waste management regulations. The material must not be collocated with other accountable nuclear materials.' Requirements for safeguards termination depend on the safeguards attractiveness levels of the material. For attractiveness level E, approval has been granted from the DOE Idaho Operations Office (DOE ID) to Battelle Energy Alliance, LLC (BEA) Safeguards and Security (S&S). In some cases, it may be necessary to dispose of nuclear materials of attractiveness level D or higher. Termination of safeguards for such materials must be approved by the Departmental Element (this is the DOE Headquarters Office of Nuclear Energy) after consultation with the Office of Security.

  14. Analysis of LNG import terminal release prevention systems

    SciTech Connect (OSTI)

    Baker, E G

    1982-04-01

    The release prevention systems of liquefied natural gas (LNG) import terminal were analyzed. A series of potential release scenarios were analyzed to determine the frequency of the release events, the probability these releases are not stopped or isolated by emergency shutdown systems, the estimated release quantities, and the critical components of the system. The two plant areas identified as being most significant with respect to safety are the unloading system and the storage system. Rupture of the main transfer line and gross failure of the storage tanks are the two release scenarios of primary safety interest. Reducing the rate of failure by improved design, better maintenance and testing, or adding redundancy of the critical system components for these plant areas and release scenarios will result in improved safety. Several design alternatives which have the potential to significantly reduce the probability of a large release of LNG occurring at an import terminal are identified. These design alternatives would reduce the probability of a large release of LNG by reducing the expected number of failures which could cause a release or by reducing the magnitude of releases that do occur. All of these alternatives are technically feasible and have been used or considered for use in at least one LNG facility. A more rigorous analysis of the absolute risk of LNG import terminal operation is necessary before the benefits of these design alternatives can be determined. In addition, an economic evaluation of these alternatives must be made so the costs and benefits can be compared. It is concludd that for remotely located facilities many of these alternatives are probably not justified; however, for facilities located in highly populated areas, these alternatives deserve serious consideration.

  15. Dream controller

    DOE Patents [OSTI]

    Cheng, George Shu-Xing; Mulkey, Steven L; Wang, Qiang; Chow, Andrew J

    2013-11-26

    A method and apparatus for intelligently controlling continuous process variables. A Dream Controller comprises an Intelligent Engine mechanism and a number of Model-Free Adaptive (MFA) controllers, each of which is suitable to control a process with specific behaviors. The Intelligent Engine can automatically select the appropriate MFA controller and its parameters so that the Dream Controller can be easily used by people with limited control experience and those who do not have the time to commission, tune, and maintain automatic controllers.

  16. Vehicle drive module having improved terminal design

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.

    2006-04-25

    A terminal structure for vehicle drive power electronics circuits reduces the need for a DC bus and thereby the incidence of parasitic inductance. The structure is secured to a support that may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as by direct contact between the terminal assembly and AC and DC circuit components. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  17. Power converter having improved terminal structure

    DOE Patents [OSTI]

    Radosevich, Lawrence D.; Kannenberg, Daniel G.; Phillips, Mark G.; Kaishian, Steven C.

    2007-03-06

    A terminal structure for power electronics circuits reduces the need for a DC bus and thereby the incidence of parasitic inductance. The structure is secured to a support that may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as by direct contact between the terminal assembly and AC and DC circuit components. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  18. Texas Natural Gas Number of Residential Consumers (Number of...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) Texas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  19. Texas Natural Gas Number of Commercial Consumers (Number of Elements...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Consumers (Number of Elements) Texas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  20. Connecticut Natural Gas Number of Commercial Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Connecticut Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  1. Connecticut Natural Gas Number of Residential Consumers (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Connecticut Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  2. North Carolina Natural Gas Number of Commercial Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) North Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  3. New York Natural Gas Number of Commercial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) New York Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  4. New York Natural Gas Number of Residential Consumers (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Residential Consumers (Number of Elements) New York Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  5. Indiana Natural Gas Number of Industrial Consumers (Number of...

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Indiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  6. ISSUANCE 2015-06-08: Energy Conservation Program: Test Procedures for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps, Final Rule

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Test Procedures for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps, Final Rule

  7. ISSUANCE 2015-06-30: Energy Conservation Program: Energy Conservation Standards for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps, Final Rule

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps, Final Rule

  8. N-Terminal T4 Lysozyme Fusion Facilitates Crystallization of...

    Office of Scientific and Technical Information (OSTI)

    N-Terminal T4 Lysozyme Fusion Facilitates Crystallization of a G Protein Coupled Receptor Citation Details In-Document Search Title: N-Terminal T4 Lysozyme Fusion Facilitates...

  9. Apparatus and method for detecting and measuring changes in linear relationships between a number of high frequency signals

    DOE Patents [OSTI]

    Bittner, John W. (Shoreham, NY); Biscardi, Richard W. (Ridge, NY)

    1991-01-01

    An electronic measurement circuit for high speed comparison of the relative amplitudes of a predetermined number of electrical input signals independent of variations in the magnitude of the sum of the signals. The circuit includes a high speed electronic switch that is operably connected to receive on its respective input terminals one of said electrical input signals and to have its common terminal serve as an input for a variable-gain amplifier-detector circuit that is operably connected to feed its output to a common terminal of a second high speed electronic switch. The respective terminals of the second high speed electronic switch are operably connected to a plurality of integrating sample and hold circuits, which in turn have their outputs connected to a summing logic circuit that is operable to develop first, second and third output voltages, the first output voltage being proportional to a predetermined ratio of sums and differences between the compared input signals, the second output voltage being proportional to a second summed ratio of predetermined sums and differences between said input signals, and the third output voltage being proportional to the sum of signals to the summing logic circuit. A servo system that is operably connected to receive said third output signal and compare it with a reference voltage to develop a slowly varying feedback voltage to control the variable-gain amplifier in said common amplifier-detector circuit in order to make said first and second output signals independent of variations in the magnitude of the sum of said input signals.

  10. Apparatus and method for detecting and measuring changes in linear relationships between a number of high frequency signals

    DOE Patents [OSTI]

    Bittner, J.W.; Biscardi, R.W.

    1991-03-19

    An electronic measurement circuit is disclosed for high speed comparison of the relative amplitudes of a predetermined number of electrical input signals independent of variations in the magnitude of the sum of the signals. The circuit includes a high speed electronic switch that is operably connected to receive on its respective input terminals one of said electrical input signals and to have its common terminal serve as an input for a variable-gain amplifier-detector circuit that is operably connected to feed its output to a common terminal of a second high speed electronic switch. The respective terminals of the second high speed electronic switch are operably connected to a plurality of integrating sample and hold circuits, which in turn have their outputs connected to a summing logic circuit that is operable to develop first, second and third output voltages, the first output voltage being proportional to a predetermined ratio of sums and differences between the compared input signals, the second output voltage being proportional to a second summed ratio of predetermined sums and differences between said input signals, and the third output voltage being proportional to the sum of signals to the summing logic circuit. A servo system that is operably connected to receive said third output signal and compare it with a reference voltage to develop a slowly varying feedback voltage to control the variable-gain amplifier in said common amplifier-detector circuit in order to make said first and second output signals independent of variations in the magnitude of the sum of said input signals. 2 figures.

  11. Energy Savings for Occupancy-Based Control (OBC) of Variable-Air-Volume (VAV) Systems

    SciTech Connect (OSTI)

    Zhang, Jian; Lutes, Robert G.; Liu, Guopeng; Brambley, Michael R.

    2013-01-24

    This study evaluates the savings potential of occupancy based control (OBC) for large office buildings with VAV terminal boxes installed.

  12. Method of making hermetic seals for hermetic terminal assemblies

    DOE Patents [OSTI]

    Hsu, John S.; Marlino, Laura D.; Ayers, Curtis W.

    2010-04-13

    This invention teaches methods of making a hermetic terminal assembly comprising the steps of: inserting temporary stops, shims and jigs on the bottom face of a terminal assembly thereby blocking assembly core open passageways; mounting the terminal assembly inside a vacuum chamber using a temporary assembly perimeter seal and flange or threaded assembly interfaces; mixing a seal admixture and hardener in a mixer conveyor to form a polymer seal material; conveying the polymer seal material into a polymer reservoir; feeding the polymer seal material from the reservoir through a polymer outlet valve and at least one polymer outlet tube into the terminal assembly core thereby filling interstitial spaces in the core adjacent to service conduits, temporary stop, and the terminal assembly casing; drying the polymer seal material at room temperature thereby hermetically sealing the core of the terminal assembly; removing the terminal assembly from the vacuum chamber, and; removing the temporary stops, shims.

  13. Photovoltaic module electrical termination design requirement study. Final report

    SciTech Connect (OSTI)

    Mosna, F.J. Jr.; Donlinger, J.

    1980-07-01

    Motorola Inc., in conjunction with ITT Cannon, has conducted a study to develop information to facilitate the selection of existing, commercial, electrical termination hardware for photovoltaic modules and arrays. Details of the study are presented in this volume. Module and array design parameters were investigated and recommendations were developed for use in surveying, evaluating, and comparing electrical termination hardware. Electrical termination selection criteria factors were developed and applied to nine generic termination types in each of the four application sectors. Remote, residential, intermediate and industrial. Existing terminations best suited for photovoltaic modules and arrays were identified. Cost information was developed to identify cost drivers and/or requirements which might lead to cost reductions. The general conclusion is that there is no single generic termination that is best suited for photovoltaic application, but that the appropriate termination is strongly dependent upon the module construction and its support structure as well as the specific application sector.

  14. Coordinating Tectons: Bipyridyl Terminated Allenylidene Complexes

    SciTech Connect (OSTI)

    Cifuentes, Marie P.; Humphrey, Mark G.; Koutsantonis, George A.; Lengkeek, Nigel A.; Petrie, Simon; Sanford, Vanessa; Schauer, Phil A.; Skelton, Brian W.; Stranger, Robert; White, Allan H.

    2009-01-15

    A series of complexes with {pi}-conjugated carbon chains terminated by bipyridyl moieties has been prepared. These allenylidene complexes were derived from 9-hydroxy-9-ethynyl-4,5-diazafluorene, the preparation of which is reported; the new allenylidene complexes are highly colored with the cumulated carbon chain terminating in a bipyridyl unit providing a site for further coordination. The synthesis, characterization, and X-ray structure determination of trans-[MCl(P{intersection}P){sub 2}{sub {double_bond}}C{sub {double_bond}}C{sub {double_bond}}(4,5-diazafluoren-9-yl)]PF{sub 6} (M = Ru, P{intersection}P = bis(diphenylphosphino)methane (dppm), 1,2-bis(diphenylphosphino)ethane (dppe), 1,2-bis(dimethylphosphino)ethane (dmpe); M = Os, P{intersection}P = dppm) are described. The effect of the variation in metal and ligand on electronic and electrochemical characteristics of these complexes has been investigated by using UV-vis, solution electrochemistry, and a combination of these techniques in spectroelectrochemical experiments. DFT calculations have been performed on trans-[RuCl(P{intersection}P){sub 2}{sub {double_bond}}C{sub {double_bond}}C{sub {double_bond}}(4,5-diazafluoren-9-yl)]{sup q} (P{intersection}P = dppm, bis(dimethylphosphino)methane (dmpm); q = -1, 0, +1, +2) and subsequently solvent-corrected calculations with use of COSMO were also undertaken to examine the nature of electronic transitions in various oxidation states.

  15. Verification Challenges at Low Numbers

    SciTech Connect (OSTI)

    Benz, Jacob M.; Booker, Paul M.; McDonald, Benjamin S.

    2013-06-01

    Many papers have dealt with the political difficulties and ramifications of deep nuclear arms reductions, and the issues of “Going to Zero”. Political issues include extended deterrence, conventional weapons, ballistic missile defense, and regional and geo-political security issues. At each step on the road to low numbers, the verification required to ensure compliance of all parties will increase significantly. Looking post New START, the next step will likely include warhead limits in the neighborhood of 1000 . Further reductions will include stepping stones at1000 warheads, 100’s of warheads, and then 10’s of warheads before final elimination could be considered of the last few remaining warheads and weapons. This paper will focus on these three threshold reduction levels, 1000, 100’s, 10’s. For each, the issues and challenges will be discussed, potential solutions will be identified, and the verification technologies and chain of custody measures that address these solutions will be surveyed. It is important to note that many of the issues that need to be addressed have no current solution. In these cases, the paper will explore new or novel technologies that could be applied. These technologies will draw from the research and development that is ongoing throughout the national laboratory complex, and will look at technologies utilized in other areas of industry for their application to arms control verification.

  16. Theory Of Alkyl Terminated Silicon Quantum Dots

    SciTech Connect (OSTI)

    Reboredo, F; Galli, G

    2004-08-19

    We have carried out a series of ab-initio calculations to investigate changes in the optical properties of Si quantum dots as a function of surface passivation. In particular, we have compared hydrogen passivated dots with those having alkyl groups at the surface. We find that, while on clusters with reconstructed surfaces a complete alkyl passivation is possible, steric repulsion prevents full passivation of Si dots with unreconstructed surfaces. In addition, our calculations show that steric repulsion may have a dominant effect in determining the surface structure, and eventually the stability of alkyl passivated clusters, with results dependent on the length of the carbon chain. Alkyl passivation weakly affects optical gaps of silicon quantum dots, while it substantially decreases ionization potentials and electron affinities and affect their excited state properties. On the basis of our results we propose that alkyl terminated quantum dots may be size selected taking advantage of the change in ionization potential as a function of the cluster size.

  17. DOE - Office of Legacy Management -- Try Street Terminal - PA 14

    Office of Legacy Management (LM)

    Try Street Terminal - PA 14 FUSRAP Considered Sites Site: TRY STREET TERMINAL (PA.14 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Try Street Terminal , Pittsburgh , Pennsylvania PA.14-1 Evaluation Year: 1987 PA.14-1 Site Operations: Circa 1943 - facility used to store 20 plus drums of uranium slag. PA.14-1 Site Disposition: Eliminated - Potential for residual radioactive contamination considered remote PA.14-1 Radioactive

  18. Alaska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alaska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10 11 8 1990's 8 8 10 11 11 9 202 7 7 9 2000's 9 8 9 9 10 12 11 11 6 3 2010's 3 5 3 3 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Number of Natural Gas

  19. Hawaii Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Hawaii Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 27 26 29 2000's 28 28 29 29 29 28 26 27 27 25 2010's 24 24 22 22 23 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Number of Natural Gas Industrial

  20. Small Scale LNG Terminals Market Installed Capacity is anticipated...

    Open Energy Info (EERE)

    Although large scale LNG terminals have been preferably constructed across the world till date, the emergence of small demand centers for natural gas within small...

  1. Termination of a Major Normal Fault | Open Energy Information

    Open Energy Info (EERE)

    sometimes split into multiple closely-spaced faults that result in increased permeability. Fault sets at these terminations sometimes appear as "horsetailing" splays that...

  2. EECBG Success Story: New San Antonio Airport Terminal Generating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    San Antonio Airport Terminal Generating Clean Power EECBG Success Story: New San Antonio ... Learn more. Addthis Related Articles EECBG Success Story: The Jury's In: Hillsborough ...

  3. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  4. Battery system including batteries that have a plurality of positive terminals and a plurality of negative terminals

    DOE Patents [OSTI]

    Dougherty, Thomas J; Symanski, James S; Kuempers, Joerg A; Miles, Ronald C; Hansen, Scott A; Smith, Nels R; Taghikhani, Majid; Mrotek, Edward N; Andrew, Michael G

    2014-01-21

    A lithium battery for use in a vehicle includes a container, a plurality of positive terminals extending from a first end of the lithium battery, and a plurality of negative terminals extending from a second end of the lithium battery. The plurality of positive terminals are provided in a first configuration and the plurality of negative terminals are provided in a second configuration, the first configuration differing from the second configuration. A battery system for use in a vehicle may include a plurality of electrically connected lithium cells or batteries.

  5. Compendium of Experimental Cetane Numbers

    SciTech Connect (OSTI)

    Yanowitz, J.; Ratcliff, M. A.; McCormick, R. L.; Taylor, J. D.; Murphy, M. J.

    2014-08-01

    This report is an updated version of the 2004 Compendium of Experimental Cetane Number Data and presents a compilation of measured cetane numbers for pure chemical compounds. It includes all available single compound cetane number data found in the scientific literature up until March 2014 as well as a number of unpublished values, most measured over the past decade at the National Renewable Energy Laboratory. This Compendium contains cetane values for 389 pure compounds, including 189 hydrocarbons and 201 oxygenates. More than 250 individual measurements are new to this version of the Compendium. For many compounds, numerous measurements are included, often collected by different researchers using different methods. Cetane number is a relative ranking of a fuel's autoignition characteristics for use in compression ignition engines; it is based on the amount of time between fuel injection and ignition, also known as ignition delay. The cetane number is typically measured either in a single-cylinder engine or a constant volume combustion chamber. Values in the previous Compendium derived from octane numbers have been removed, and replaced with a brief analysis of the correlation between cetane numbers and octane numbers. The discussion on the accuracy and precision of the most commonly used methods for measuring cetane has been expanded and the data has been annotated extensively to provide additional information that will help the reader judge the relative reliability of individual results.

  6. Arizona Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arizona Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 344 354 1990's 526 532 532 526 519 530 534 480 514 555 2000's 526 504 488 450 414 425 439 395 383 390 2010's 368 371 379 383 386 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  7. Montana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Montana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435 435 428 1990's 457 452 459 462 453 463 466 462 454 397 2000's 71 73 439 412 593 716 711 693 693 396 2010's 384 381 372 372 369 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  8. Nevada Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Nevada Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 93 98 100 1990's 100 113 114 117 119 120 121 93 93 109 2000's 90 90 96 97 179 192 207 220 189 192 2010's 184 177 177 195 218 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  9. New Hampshire Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) New Hampshire Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 153 295 376 1990's 364 361 344 334 324 332 367 385 389 417 2000's 432 331 437 550 305 397 421 578 5,298 155 2010's 306 362 466 403 326 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  10. North Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) North Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 138 148 151 1990's 165 170 171 174 186 189 206 216 404 226 2000's 192 203 223 234 241 239 241 253 271 279 2010's 307 259 260 266 269 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  11. Rhode Island Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Rhode Island Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,158 1,152 1,122 1990's 1,135 1,107 1,096 1,066 1,064 359 363 336 325 302 2000's 317 283 54 236 223 223 245 256 243 260 2010's 249 245 248 271 266 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  12. South Dakota Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 261 267 270 1990's 275 283 319 355 381 396 444 481 464 445 2000's 416 402 533 526 475 542 528 548 598 598 2010's 580 556 574 566 575 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  13. Utah Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Utah Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 551 627 550 1990's 1,508 631 783 345 252 713 923 3,379 3,597 3,625 2000's 3,576 3,535 949 924 312 191 274 278 313 293 2010's 293 286 302 323 328 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  14. Vermont Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Vermont Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 22 21 14 1990's 15 13 18 20 24 23 27 30 36 37 2000's 38 36 38 41 43 41 35 37 35 36 2010's 38 36 38 13 13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  15. Delaware Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Delaware Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 233 235 1990's 240 243 248 249 252 253 250 265 257 264 2000's 297 316 182 184 186 179 170 185 165 112 2010's 114 129 134 138 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  16. Florida Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Florida Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 575 552 460 1990's 452 377 388 433 481 515 517 561 574 573 2000's 520 518 451 421 398 432 475 467 449 607 2010's 581 630 507 528 520 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  17. Idaho Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Idaho Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 219 132 64 1990's 62 65 66 75 144 167 183 189 203 200 2000's 217 198 194 191 196 195 192 188 199 187 2010's 184 178 179 183 189 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  18. Maine Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Maine Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 73 73 74 1990's 80 81 80 66 89 74 87 81 110 108 2000's 178 233 66 65 69 69 73 76 82 85 2010's 94 102 108 120 126 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  19. West Virginia Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) West Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 463 208 211 1990's 182 198 159 197 191 192 182 173 217 147 2000's 207 213 184 142 137 145 155 114 109 101 2010's 102 94 97 95 92 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  20. Wyoming Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wyoming Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 190 200 230 1990's 284 228 244 194 135 126 170 194 317 314 2000's 308 295 877 179 121 127 133 133 155 130 2010's 120 123 127 132 131 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  1. Permanent-magnet flowmeter having improved output-terminal means

    DOE Patents [OSTI]

    August, C.; Myers, H.J.

    1981-10-26

    Disclosed is an improved permanent magnet flowmeter capable of withstanding bending stresses in the direction of induced emf signals. The flowmeter includes a unique terminal arrangement integrally formed with the flowmeter by trepanning opposing wall sections of the flowmeter body. The terminal arrangement provides increased flowmeter sensitivity by increasing the strength of the induced emf signals.

  2. Permanent magnet flowmeter having improved output terminal means

    DOE Patents [OSTI]

    August, Charles; Myers, Harry J.

    1984-01-01

    Disclosed is an improved permanent magnet flowmeter capable of withstanding bending stresses in the direction of induced emf signals. The flowmeter includes a unique terminal arrangement integrally formed with the flowmeter by trepanning opposing wall sections of the flowmeter body. The terminal arrangement provides increased flowmeter sensitivity by increasing the strength of the induced emf signals.

  3. Columbia River : Terminal Fisheries Research Report : Annual Report 1994.

    SciTech Connect (OSTI)

    Hirose, Paul; Miller, Marc; Hill, Jim

    1996-12-01

    In 1993 the Northwest Power Planning Council recommended in its Strategy for Salmon that terminal fishing sites be identified and developed. The Council called on the Bonneville Power Administration to fund a 10-year study to investigate the feasibility of creating and expanding terminal known stock fisheries in the Columbia River Basin.

  4. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-05

    To prescribe procedures for assigning identifying numbers to all Department of Energy (DOE), including the National Nuclear Security Administration, business instruments. Cancels DOE 1331.2B. Canceled by DOE O 540.1A.

  5. Departmental Business Instrument Numbering System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-01-27

    The Order prescribes the procedures for assigning identifying numbers to all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) business instruments. Cancels DOE O 540.1. Canceled by DOE O 540.1B.

  6. Document ID Number: RL-721

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ---------------------------------------------------------- Document ID Number: RL-721 REV 4 NEPA REVIEW SCREENING FORM DOE/CX-00066 I. Project Title: Nesting Bird Deterrent Study at the 241-C Tank Farm CX B3.8, "Outdoor Terrestrial Ecological and Environmental Research" II. Project Description and Location (including Time Period over which proposed action will occur and Project Dimensions - e.g., acres displaced/disturbed, excavation length/depth, area/location/number of buildings,

  7. Alabama Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alabama Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 53 54,306 55,400 56,822 1990's 56,903 57,265 58,068 57,827 60,320 60,902 62,064 65,919 76,467 64,185 2000's 66,193 65,794 65,788 65,297 65,223 65,294 66,337 65,879 65,313 67,674 2010's 68,163 67,696 67,252 67,136 67,806 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  8. Alabama Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Alabama Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,313 2,293 2,380 1990's 2,431 2,523 2,509 2,458 2,477 2,491 2,512 2,496 2,464 2,620 2000's 2,792 2,781 2,730 2,743 2,799 2,787 2,735 2,704 2,757 3,057 2010's 3,039 2,988 3,045 3,143 3,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  9. Alabama Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alabama Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 656 662,217 668,432 683,528 1990's 686,149 700,195 711,043 730,114 744,394 751,890 766,322 781,711 788,464 775,311 2000's 805,689 807,770 806,389 809,754 806,660 809,454 808,801 796,476 792,236 785,005 2010's 778,985 772,892 767,396 765,957 769,418 - = No Data Reported; -- = Not Applicable; NA = Not

  10. Alaska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Alaska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 11,484 11,649 11,806 1990's 11,921 12,071 12,204 12,359 12,475 12,584 12,732 12,945 13,176 13,409 2000's 13,711 14,002 14,342 14,502 13,999 14,120 14,384 13,408 12,764 13,215 2010's 12,998 13,027 13,133 13,246 13,399 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  11. Alaska Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Alaska Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 66 67,648 68,612 69,540 1990's 70,808 72,565 74,268 75,842 77,670 79,474 81,348 83,596 86,243 88,924 2000's 91,297 93,896 97,077 100,404 104,360 108,401 112,269 115,500 119,039 120,124 2010's 121,166 121,736 122,983 124,411 126,416 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  12. Arizona Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arizona Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46 46,702 46,636 46,776 1990's 47,292 53,982 47,781 47,678 48,568 49,145 49,693 50,115 51,712 53,022 2000's 54,056 54,724 56,260 56,082 56,186 56,572 57,091 57,169 57,586 57,191 2010's 56,676 56,547 56,532 56,585 56,649 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  13. Arizona Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Arizona Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 545 567,962 564,195 572,461 1990's 586,866 642,659 604,899 610,337 635,335 661,192 689,597 724,911 764,167 802,469 2000's 846,016 884,789 925,927 957,442 993,885 1,042,662 1,088,574 1,119,266 1,128,264 1,130,047 2010's 1,138,448 1,146,286 1,157,688 1,172,003 1,186,794 - = No Data Reported; -- = Not

  14. Arkansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Arkansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60 60,355 61,630 61,848 1990's 61,530 61,731 62,221 62,952 63,821 65,490 67,293 68,413 69,974 71,389 2000's 72,933 71,875 71,530 71,016 70,655 69,990 69,475 69,495 69,144 69,043 2010's 67,987 67,815 68,765 68,791 69,011 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  15. Arkansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Arkansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 1,410 1,151 1,412 1990's 1,396 1,367 1,319 1,364 1,417 1,366 1,488 1,336 1,300 1,393 2000's 1,414 1,122 1,407 1,269 1,223 1,120 1,120 1,055 1,104 1,025 2010's 1,079 1,133 990 1,020 1,009 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. Arkansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Arkansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 475 480,839 485,112 491,110 1990's 488,850 495,148 504,722 513,466 521,176 531,182 539,952 544,460 550,017 554,121 2000's 560,055 552,716 553,192 553,211 554,844 555,861 555,905 557,966 556,746 557,355 2010's 549,970 551,795 549,959 549,764 549,034 - = No Data Reported; -- = Not Applicable; NA =

  17. Massachusetts Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Massachusetts Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 84,636 93,005 92,252 1990's 85,775 88,746 85,873 102,187 92,744 104,453 105,889 107,926 108,832 113,177 2000's 117,993 120,984 122,447 123,006 125,107 120,167 126,713 128,965 242,693 153,826 2010's 144,487 138,225 142,825 144,246 139,556 - = No Data Reported; -- = Not Applicable;

  18. Massachusetts Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Massachusetts Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,626 7,199 13,057 1990's 6,539 5,006 8,723 7,283 8,019 10,447 10,952 11,058 11,245 8,027 2000's 8,794 9,750 9,090 11,272 10,949 12,019 12,456 12,678 36,928 19,208 2010's 12,751 10,721 10,840 11,063 10,946 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  19. Massachusetts Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Massachusetts Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,082,777 1,100,635 1,114,920 1990's 1,118,429 1,127,536 1,137,911 1,155,443 1,179,869 1,180,860 1,188,317 1,204,494 1,212,486 1,232,887 2000's 1,278,781 1,283,008 1,295,952 1,324,715 1,306,142 1,297,508 1,348,848 1,361,470 1,236,480 1,370,353 2010's 1,389,592 1,408,314 1,447,947

  20. Michigan Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Michigan Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 178,469 185,961 191,474 1990's 195,766 198,890 201,561 204,453 207,629 211,817 214,843 222,726 224,506 227,159 2000's 230,558 225,109 247,818 246,123 246,991 253,415 254,923 253,139 252,382 252,017 2010's 249,309 249,456 249,994 250,994 253,127 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Michigan Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Michigan Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 10,885 11,117 11,452 1990's 11,500 11,446 11,460 11,425 11,308 11,454 11,848 12,233 11,888 14,527 2000's 11,384 11,210 10,468 10,378 10,088 10,049 9,885 9,728 10,563 18,186 2010's 9,332 9,088 8,833 8,497 8,156 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. Michigan Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Michigan Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,452,554 2,491,149 2,531,304 1990's 2,573,570 2,609,561 2,640,579 2,677,085 2,717,683 2,767,190 2,812,876 2,859,483 2,903,698 2,949,628 2000's 2,999,737 3,011,205 3,110,743 3,140,021 3,161,370 3,187,583 3,193,920 3,188,152 3,172,623 3,169,026 2010's 3,152,468 3,153,895 3,161,033 3,180,349

  3. Minnesota Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Minnesota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 88,789 90,256 92,916 1990's 95,474 97,388 99,707 93,062 102,857 103,874 105,531 108,686 110,986 114,127 2000's 116,529 119,007 121,751 123,123 125,133 126,310 129,149 128,367 130,847 131,801 2010's 132,163 132,938 134,394 135,557 136,382 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  4. Minnesota Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Minnesota Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,585 2,670 2,638 1990's 2,574 2,486 2,515 2,477 2,592 2,531 2,564 2,233 2,188 2,267 2000's 2,025 1,996 2,029 2,074 2,040 1,432 1,257 1,146 1,131 2,039 2010's 2,106 1,770 1,793 1,870 1,878 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. Minnesota Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Minnesota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 872,148 894,380 911,001 1990's 946,107 970,941 998,201 1,074,631 1,049,263 1,080,009 1,103,709 1,134,019 1,161,423 1,190,190 2000's 1,222,397 1,249,748 1,282,751 1,308,143 1,338,061 1,364,237 1,401,362 1,401,623 1,413,162 1,423,703 2010's 1,429,681 1,436,063 1,445,824 1,459,134 1,472,663 - = No

  6. Mississippi Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Mississippi Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,362 44,170 44,253 1990's 43,184 43,693 44,313 45,310 43,803 45,444 46,029 47,311 45,345 47,620 2000's 50,913 51,109 50,468 50,928 54,027 54,936 55,741 56,155 55,291 50,713 2010's 50,537 50,636 50,689 50,153 50,238 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  7. Mississippi Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Mississippi Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,312 1,263 1,282 1990's 1,317 1,314 1,327 1,324 1,313 1,298 1,241 1,199 1,165 1,246 2000's 1,199 1,214 1,083 1,161 996 1,205 1,181 1,346 1,132 1,141 2010's 980 982 936 933 943 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  8. Mississippi Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Mississippi Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 370,094 372,238 376,353 1990's 382,251 386,264 392,155 398,472 405,312 415,123 418,442 423,397 415,673 426,352 2000's 434,501 438,069 435,146 438,861 445,212 445,856 437,669 445,043 443,025 437,715 2010's 436,840 442,479 442,840 445,589 444,423 - = No Data Reported; -- = Not

  9. Missouri Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Missouri Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,711 97,939 99,721 1990's 105,164 117,675 125,174 125,571 132,378 130,318 133,445 135,553 135,417 133,464 2000's 133,969 135,968 137,924 140,057 141,258 142,148 143,632 142,965 141,529 140,633 2010's 138,670 138,214 144,906 142,495 143,024 - = No Data Reported; -- = Not Applicable; NA = Not

  10. Missouri Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Missouri Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,832 2,880 3,063 1990's 3,140 3,096 2,989 3,040 3,115 3,033 3,408 3,097 3,151 3,152 2000's 3,094 3,085 2,935 3,115 3,600 3,545 3,548 3,511 3,514 3,573 2010's 3,541 3,307 3,692 3,538 3,497 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  11. Missouri Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Missouri Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,180,546 1,194,985 1,208,523 1990's 1,213,305 1,211,342 1,220,203 1,225,921 1,281,007 1,259,102 1,275,465 1,293,032 1,307,563 1,311,865 2000's 1,324,282 1,326,160 1,340,726 1,343,614 1,346,773 1,348,743 1,353,892 1,354,173 1,352,015 1,348,781 2010's 1,348,549 1,342,920 1,389,910 1,357,740

  12. Montana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Montana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 21,382 22,246 22,219 1990's 23,331 23,185 23,610 24,373 25,349 26,329 26,374 27,457 28,065 28,424 2000's 29,215 29,429 30,250 30,814 31,357 31,304 31,817 32,472 33,008 33,731 2010's 34,002 34,305 34,504 34,909 35,205 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  13. Montana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Montana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 167,883 171,785 171,156 1990's 174,384 177,726 182,641 188,879 194,357 203,435 205,199 209,806 218,851 222,114 2000's 224,784 226,171 229,015 232,839 236,511 240,554 245,883 247,035 253,122 255,472 2010's 257,322 259,046 259,957 262,122 265,849 - = No Data Reported; -- = Not Applicable; NA = Not

  14. Nebraska Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Nebraska Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,707 61,365 60,377 1990's 60,405 60,947 61,319 60,599 62,045 61,275 61,117 51,661 63,819 53,943 2000's 55,194 55,692 56,560 55,999 57,087 57,389 56,548 55,761 58,160 56,454 2010's 56,246 56,553 56,608 58,005 57,191 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Nebraska Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Nebraska Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 675 684 702 1990's 712 718 696 718 766 2,432 2,234 11,553 10,673 10,342 2000's 10,161 10,504 9,156 9,022 8,463 7,973 7,697 7,668 11,627 7,863 2010's 7,912 7,955 8,160 8,495 8,791 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  16. Nevada Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Nevada Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 18,294 18,921 19,924 1990's 20,694 22,124 22,799 23,207 24,521 25,593 26,613 27,629 29,030 30,521 2000's 31,789 32,782 33,877 34,590 35,792 37,093 38,546 40,128 41,098 41,303 2010's 40,801 40,944 41,192 41,710 42,338 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  17. Nevada Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Nevada Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,422 219,981 236,237 1990's 256,119 283,307 295,714 305,099 336,353 364,112 393,783 426,221 458,737 490,029 2000's 520,233 550,850 580,319 610,756 648,551 688,058 726,772 750,570 758,315 760,391 2010's 764,435 772,880 782,759 794,150 808,970 - = No Data Reported; -- = Not Applicable; NA = Not

  18. New Hampshire Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) New Hampshire Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 8,831 9,159 10,237 1990's 10,521 11,088 11,383 11,726 12,240 12,450 12,755 13,225 13,512 13,932 2000's 14,219 15,068 15,130 15,047 15,429 16,266 16,139 16,150 41,332 16,937 2010's 16,645 17,186 17,758 17,298 17,421 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  19. New Hampshire Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) New Hampshire Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 60,078 61,969 64,059 1990's 65,310 67,991 69,356 70,938 72,656 74,232 75,175 77,092 78,786 80,958 2000's 82,813 84,760 87,147 88,170 88,600 94,473 94,600 94,963 67,945 96,924 2010's 95,361 97,400 99,738 98,715 99,146 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  20. North Carolina Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) North Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,236 3,196 3,381 1990's 2,802 3,506 3,119 2,664 3,401 3,652 3,973 5,375 6,228 5,672 2000's 5,288 2,962 3,200 3,101 3,021 2,891 2,701 2,991 2,984 2,384 2010's 2,457 2,468 2,525 2,567 2,596 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. North Carolina Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) North Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435,826 472,928 492,821 1990's 520,140 539,321 575,096 607,388 652,307 678,147 699,159 740,013 777,805 815,908 2000's 858,004 891,227 905,816 953,732 948,283 992,906 1,022,430 1,063,871 1,095,362 1,102,001 2010's 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 - = No Data

  2. North Dakota Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) North Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11,905 12,104 12,454 1990's 12,742 12,082 12,353 12,650 12,944 13,399 13,789 14,099 14,422 15,050 2000's 15,531 15,740 16,093 16,202 16,443 16,518 16,848 17,013 17,284 17,632 2010's 17,823 18,421 19,089 19,855 20,687 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  3. North Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) North Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 83,517 84,059 84,643 1990's 85,646 87,880 89,522 91,237 93,398 95,818 97,761 98,326 101,930 104,051 2000's 105,660 106,758 108,716 110,048 112,206 114,152 116,615 118,100 120,056 122,065 2010's 123,585 125,392 130,044 133,975 137,972 - = No Data Reported; -- = Not Applicable; NA =

  4. Ohio Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Ohio Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 213,601 219,257 225,347 1990's 233,075 236,519 237,861 240,684 245,190 250,223 259,663 254,991 258,076 266,102 2000's 269,561 269,327 271,160 271,203 272,445 277,767 270,552 272,555 272,899 270,596 2010's 268,346 268,647 267,793 269,081 269,758 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Ohio Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Ohio Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,929 8,163 8,356 1990's 8,301 8,479 8,573 8,678 8,655 8,650 8,672 7,779 8,112 8,136 2000's 8,267 8,515 8,111 8,098 7,899 8,328 6,929 6,858 6,806 6,712 2010's 6,571 6,482 6,381 6,554 6,526 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  6. Ohio Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Ohio Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,648,972 2,678,838 2,714,839 1990's 2,766,912 2,801,716 2,826,713 2,867,959 2,921,536 2,967,375 2,994,891 3,041,948 3,050,960 3,111,108 2000's 3,178,840 3,195,584 3,208,466 3,225,908 3,250,068 3,272,307 3,263,062 3,273,791 3,262,716 3,253,184 2010's 3,240,619 3,236,160 3,244,274 3,271,074 3,283,869 -

  7. Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 87,824 86,666 86,172 1990's 85,790 86,744 87,120 88,181 87,494 88,358 89,852 90,284 89,711 80,986 2000's 80,558 79,045 80,029 79,733 79,512 78,726 78,745 93,991 94,247 94,314 2010's 92,430 93,903 94,537 95,385 96,004 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,772 2,689 2,877 1990's 2,889 2,840 2,859 2,912 2,853 2,845 2,843 2,531 3,295 3,040 2000's 2,821 3,403 3,438 3,367 3,283 2,855 2,811 2,822 2,920 2,618 2010's 2,731 2,733 2,872 2,958 3,063 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  9. Oklahoma Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 809,171 805,107 806,875 1990's 814,296 824,172 832,677 842,130 845,448 856,604 866,531 872,454 877,236 867,922 2000's 859,951 868,314 875,338 876,420 875,271 880,403 879,589 920,616 923,650 924,745 2010's 914,869 922,240 927,346 931,981 937,237 - = No Data Reported; -- = Not Applicable; NA = Not

  10. Oregon Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oregon Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 40,967 41,998 43,997 1990's 47,175 55,374 50,251 51,910 53,700 55,409 57,613 60,419 63,085 65,034 2000's 66,893 68,098 69,150 74,515 71,762 73,520 74,683 80,998 76,868 76,893 2010's 77,370 77,822 78,237 79,276 80,480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Oregon Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oregon Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 676 1,034 738 1990's 699 787 740 696 765 791 799 704 695 718 2000's 717 821 842 926 907 1,118 1,060 1,136 1,075 1,051 2010's 1,053 1,066 1,076 1,085 1,099 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016

  12. Oregon Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oregon Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 280,670 288,066 302,156 1990's 326,177 376,166 354,256 371,151 391,845 411,465 433,638 456,960 477,796 502,000 2000's 523,952 542,799 563,744 625,398 595,495 626,685 647,635 664,455 674,421 675,582 2010's 682,737 688,681 693,507 700,211 707,010 - = No Data Reported; -- = Not Applicable; NA = Not

  13. Pennsylvania Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 166,901 172,615 178,545 1990's 186,772 191,103 193,863 198,299 206,812 209,245 214,340 215,057 216,519 223,732 2000's 228,037 225,911 226,957 227,708 231,051 233,132 231,540 234,597 233,462 233,334 2010's 233,751 233,588 235,049 237,922 239,681 - = No Data Reported; -- = Not

  14. Pennsylvania Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) Pennsylvania Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,089 6,070 6,023 1990's 6,238 6,344 6,496 6,407 6,388 6,328 6,441 6,492 6,736 7,080 2000's 6,330 6,159 5,880 5,577 5,726 5,577 5,241 4,868 4,772 4,745 2010's 4,624 5,007 5,066 5,024 5,084 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Pennsylvania Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Pennsylvania Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,237,877 2,271,801 2,291,242 1990's 2,311,795 2,333,377 2,363,575 2,386,249 2,393,053 2,413,715 2,431,909 2,452,524 2,493,639 2,486,704 2000's 2,519,794 2,542,724 2,559,024 2,572,584 2,591,458 2,600,574 2,605,782 2,620,755 2,631,340 2,635,886 2010's 2,646,211 2,667,392 2,678,547

  16. Rhode Island Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) Rhode Island Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,128 16,096 16,924 1990's 17,765 18,430 18,607 21,178 21,208 21,472 21,664 21,862 22,136 22,254 2000's 22,592 22,815 23,364 23,270 22,994 23,082 23,150 23,007 23,010 22,988 2010's 23,049 23,177 23,359 23,742 23,934 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  17. Rhode Island Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Rhode Island Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 180,656 185,861 190,796 1990's 195,100 196,438 197,926 198,563 200,959 202,947 204,259 212,777 208,208 211,097 2000's 214,474 216,781 219,769 221,141 223,669 224,320 225,027 223,589 224,103 224,846 2010's 225,204 225,828 228,487 231,763 233,786 - = No Data Reported; -- = Not

  18. South Carolina Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) South Carolina Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 35,414 37,075 38,856 1990's 39,904 39,999 40,968 42,191 45,487 47,293 48,650 50,817 52,237 53,436 2000's 54,794 55,257 55,608 55,909 56,049 56,974 57,452 57,544 56,317 55,850 2010's 55,853 55,846 55,908 55,997 56,172 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  19. South Carolina Natural Gas Number of Industrial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Industrial Consumers (Number of Elements) South Carolina Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,256 1,273 1,307 1990's 1,384 1,400 1,568 1,625 1,928 1,802 1,759 1,764 1,728 1,768 2000's 1,715 1,702 1,563 1,574 1,528 1,535 1,528 1,472 1,426 1,358 2010's 1,325 1,329 1,435 1,452 1,426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  20. South Carolina Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Carolina Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 302,321 313,831 327,527 1990's 339,486 344,763 357,818 370,411 416,773 412,259 426,088 443,093 460,141 473,799 2000's 489,340 501,161 508,686 516,362 527,008 541,523 554,953 570,213 561,196 565,774 2010's 570,797 576,594 583,633 593,286 604,743 - = No Data Reported; -- = Not

  1. South Dakota Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) South Dakota Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,480 12,438 12,771 1990's 13,443 13,692 14,133 16,523 15,539 16,285 16,880 17,432 17,972 18,453 2000's 19,100 19,378 19,794 20,070 20,457 20,771 21,149 21,502 21,819 22,071 2010's 22,267 22,570 22,955 23,214 23,591 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  2. South Dakota Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) South Dakota Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 101,468 102,084 103,538 1990's 105,436 107,846 110,291 128,029 119,544 124,152 127,269 130,307 133,095 136,789 2000's 142,075 144,310 147,356 150,725 148,105 157,457 160,481 163,458 165,694 168,096 2010's 169,838 170,877 173,856 176,204 179,042 - = No Data Reported; -- = Not

  3. Tennessee Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Tennessee Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 77,104 81,159 84,040 1990's 88,753 89,863 91,999 94,860 97,943 101,561 103,867 105,925 109,772 112,978 2000's 115,691 118,561 120,130 131,916 125,042 124,755 126,970 126,324 128,007 127,704 2010's 127,914 128,969 130,139 131,091 131,001 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  4. Tennessee Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Tennessee Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,206 2,151 2,555 1990's 2,361 2,369 2,425 2,512 2,440 2,393 2,306 2,382 5,149 2,159 2000's 2,386 2,704 2,657 2,755 2,738 2,498 2,545 2,656 2,650 2,717 2010's 2,702 2,729 2,679 2,581 2,595 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. Tennessee Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Tennessee Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 534,882 565,856 599,042 1990's 627,031 661,105 696,140 733,363 768,421 804,724 841,232 867,793 905,757 937,896 2000's 969,537 993,363 1,009,225 1,022,628 1,037,429 1,049,307 1,063,328 1,071,756 1,084,102 1,083,573 2010's 1,085,387 1,089,009 1,084,726 1,094,122 1,106,681 - = No Data Reported; -- =

  6. Texas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Texas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,852 4,427 13,383 1990's 13,659 13,770 5,481 5,823 5,222 9,043 8,796 5,339 5,318 5,655 2000's 11,613 10,047 9,143 9,015 9,359 9,136 8,664 11,063 5,568 8,581 2010's 8,779 8,713 8,953 8,525 8,406 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  7. Utah Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Utah Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31,329 32,637 32,966 1990's 34,697 35,627 36,145 37,816 39,183 40,101 40,107 40,689 42,054 43,861 2000's 47,201 47,477 50,202 51,063 51,503 55,174 55,821 57,741 59,502 60,781 2010's 61,976 62,885 63,383 64,114 65,134 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. Utah Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Utah Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 414,020 418,569 432,377 1990's 453,023 455,649 467,664 484,438 503,583 523,622 562,343 567,786 588,364 609,603 2000's 641,111 657,728 660,677 678,833 701,255 743,761 754,554 778,644 794,880 810,442 2010's 821,525 830,219 840,687 854,389 869,052 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Vermont Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Vermont Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,447 2,698 2,768 1990's 2,949 3,154 3,198 3,314 3,512 3,649 3,790 3,928 4,034 4,219 2000's 4,316 4,416 4,516 4,602 4,684 4,781 4,861 4,925 4,980 5,085 2010's 5,137 5,256 5,535 5,441 5,589 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  10. Vermont Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Vermont Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,553 16,616 16,920 1990's 18,300 19,879 20,468 21,553 22,546 23,523 24,383 25,539 26,664 27,931 2000's 28,532 29,463 30,108 30,856 31,971 33,015 34,081 34,937 35,929 37,242 2010's 38,047 38,839 39,917 41,152 42,231 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  11. Virginia Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 54,071 54,892 61,012 1990's 63,751 67,997 69,629 70,161 72,188 74,690 77,284 78,986 77,220 80,500 2000's 84,646 84,839 86,328 87,202 87,919 90,577 91,481 93,015 94,219 95,704 2010's 95,401 96,086 96,503 97,499 98,741 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  12. Virginia Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Virginia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 877 895 895 1990's 929 1,156 1,101 2,706 2,740 2,812 2,822 2,391 2,469 2,984 2000's 1,749 1,261 1,526 1,517 1,217 1,402 1,256 1,271 1,205 1,126 2010's 1,059 1,103 1,132 1,132 1,123 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  13. Virginia Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 550,318 573,731 601,906 1990's 622,883 651,203 664,500 690,061 721,495 753,003 789,985 812,866 847,938 893,887 2000's 907,855 941,582 982,521 996,564 1,029,389 1,066,302 1,085,509 1,101,863 1,113,016 1,124,717 2010's 1,133,103 1,145,049 1,155,636 1,170,161 1,183,894 - = No Data Reported; -- = Not

  14. Washington Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Washington Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,365 56,487 55,231 1990's 58,148 60,887 63,391 65,810 68,118 70,781 73,708 75,550 77,770 80,995 2000's 83,189 84,628 85,286 87,082 93,559 92,417 93,628 95,615 97,799 98,965 2010's 99,231 99,674 100,038 100,939 101,730 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  15. Washington Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Washington Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,355 3,564 3,365 1990's 3,428 3,495 3,490 3,448 3,586 3,544 3,587 3,748 3,848 4,040 2000's 4,007 3,898 3,928 3,775 3,992 3,489 3,428 3,630 3,483 3,428 2010's 3,372 3,353 3,338 3,320 3,355 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  16. Washington Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Washington Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 392,469 413,008 425,624 1990's 458,013 492,189 528,913 565,475 604,315 638,603 673,357 702,701 737,208 779,104 2000's 813,319 841,617 861,943 895,800 926,510 966,199 997,728 1,025,171 1,047,319 1,059,239 2010's 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 - = No Data Reported; -- = Not

  17. California Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) California Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 413 404,507 407,435 410,231 1990's 415,073 421,278 412,467 411,648 411,140 411,535 408,294 406,803 588,224 416,791 2000's 413,003 416,036 420,690 431,795 432,367 434,899 442,052 446,267 447,160 441,806 2010's 439,572 440,990 442,708 444,342 443,115 - = No Data Reported; -- = Not Applicable; NA =

  18. California Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) California Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31 44,764 44,680 46,243 1990's 46,048 44,865 40,528 42,748 38,750 38,457 36,613 35,830 36,235 36,435 2000's 35,391 34,893 33,725 34,617 41,487 40,226 38,637 39,134 39,591 38,746 2010's 38,006 37,575 37,686 37,996 37,548 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  19. California Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) California Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,626 7,904,858 8,113,034 8,313,776 1990's 8,497,848 8,634,774 8,680,613 8,726,187 8,790,733 8,865,541 8,969,308 9,060,473 9,181,928 9,331,206 2000's 9,370,797 9,603,122 9,726,642 9,803,311 9,957,412 10,124,433 10,329,224 10,439,220 10,515,162 10,510,950 2010's 10,542,584 10,625,190 10,681,916

  20. Colorado Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Colorado Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 108 109,770 110,769 112,004 1990's 112,661 113,945 114,898 115,924 115,994 118,502 121,221 123,580 125,178 129,041 2000's 131,613 134,393 136,489 138,621 138,543 137,513 139,746 141,420 144,719 145,624 2010's 145,460 145,837 145,960 150,145 150,235 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Colorado Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Colorado Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1 896 923 976 1990's 1,018 1,074 1,108 1,032 1,176 1,528 2,099 2,923 3,349 4,727 2000's 4,994 4,729 4,337 4,054 4,175 4,318 4,472 4,592 4,816 5,084 2010's 6,232 6,529 6,906 7,293 7,823 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  2. Colorado Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Colorado Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 925 942,571 955,810 970,512 1990's 983,592 1,002,154 1,022,542 1,044,699 1,073,308 1,108,899 1,147,743 1,183,978 1,223,433 1,265,032 2000's 1,315,619 1,365,413 1,412,923 1,453,974 1,496,876 1,524,813 1,558,911 1,583,945 1,606,602 1,622,434 2010's 1,634,587 1,645,716 1,659,808 1,672,312 1,690,581 -

  3. Connecticut Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Connecticut Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2 2,709 2,818 2,908 1990's 3,061 2,921 2,923 2,952 3,754 3,705 3,435 3,459 3,441 3,465 2000's 3,683 3,881 3,716 3,625 3,470 3,437 3,393 3,317 3,196 3,138 2010's 3,063 3,062 3,148 4,454 4,217 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  4. Delaware Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Delaware Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6 6,180 6,566 7,074 1990's 7,485 7,895 8,173 8,409 8,721 9,133 9,518 9,807 10,081 10,441 2000's 9,639 11,075 11,463 11,682 11,921 12,070 12,345 12,576 12,703 12,839 2010's 12,861 12,931 12,997 13,163 13,352 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  5. Delaware Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 81 82,829 84,328 86,428 1990's 88,894 91,467 94,027 96,914 100,431 103,531 106,548 109,400 112,507 115,961 2000's 117,845 122,829 126,418 129,870 133,197 137,115 141,276 145,010 147,541 149,006 2010's 150,458 152,005 153,307 155,627 158,502 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Florida Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Florida Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 41 42,376 43,178 43,802 1990's 43,674 45,012 45,123 47,344 47,851 46,459 47,578 48,251 46,778 50,052 2000's 50,888 53,118 53,794 55,121 55,324 55,479 55,259 57,320 58,125 59,549 2010's 60,854 61,582 63,477 64,772 67,460 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  7. Florida Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Florida Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 442 444,848 446,690 452,544 1990's 457,648 467,221 471,863 484,816 497,777 512,365 521,674 532,790 542,770 556,628 2000's 571,972 590,221 603,690 617,373 639,014 656,069 673,122 682,996 679,265 674,090 2010's 675,551 679,199 686,994 694,210 703,535 - = No Data Reported; -- = Not Applicable; NA = Not

  8. Georgia Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Georgia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 94 98,809 102,277 106,690 1990's 108,295 109,659 111,423 114,889 117,980 120,122 123,200 123,367 126,050 225,020 2000's 128,275 130,373 128,233 129,867 128,923 128,389 127,843 127,832 126,804 127,347 2010's 124,759 123,454 121,243 126,060 122,573 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Georgia Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Georgia Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 3,034 3,144 3,079 1990's 3,153 3,124 3,186 3,302 3,277 3,261 3,310 3,310 3,262 5,580 2000's 3,294 3,330 3,219 3,326 3,161 3,543 3,053 2,913 2,890 2,254 2010's 2,174 2,184 2,112 2,242 2,481 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  10. Georgia Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Georgia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,190 1,237,201 1,275,128 1,308,972 1990's 1,334,935 1,363,723 1,396,860 1,430,626 1,460,141 1,495,992 1,538,458 1,553,948 1,659,730 1,732,865 2000's 1,680,749 1,737,850 1,735,063 1,747,017 1,752,346 1,773,121 1,726,239 1,793,650 1,791,256 1,744,934 2010's 1,740,587 1,740,006 1,739,543 1,805,425

  11. Hawaii Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Hawaii Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,896 2,852 2,842 1990's 2,837 2,786 2,793 3,222 2,805 2,825 2,823 2,783 2,761 2,763 2000's 2,768 2,777 2,781 2,804 2,578 2,572 2,548 2,547 2,540 2,535 2010's 2,551 2,560 2,545 2,627 2,789 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  12. Hawaii Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Hawaii Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,502 28,761 28,970 1990's 29,137 29,701 29,805 29,984 30,614 30,492 31,017 30,990 30,918 30,708 2000's 30,751 30,794 30,731 30,473 26,255 26,219 25,982 25,899 25,632 25,466 2010's 25,389 25,305 25,184 26,374 28,919 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  13. Idaho Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Idaho Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17,482 18,454 18,813 1990's 19,452 20,328 21,145 21,989 22,999 24,150 25,271 26,436 27,697 28,923 2000's 30,018 30,789 31,547 32,274 33,104 33,362 33,625 33,767 37,320 38,245 2010's 38,506 38,912 39,202 39,722 40,229 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  14. Idaho Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Idaho Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 104,824 111,532 113,898 1990's 113,954 126,282 136,121 148,582 162,971 175,320 187,756 200,165 213,786 227,807 2000's 240,399 251,004 261,219 274,481 288,380 301,357 316,915 323,114 336,191 342,277 2010's 346,602 350,871 353,963 359,889 367,394 - = No Data Reported; -- = Not Applicable; NA = Not

  15. Illinois Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Illinois Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241,367 278,473 252,791 1990's 257,851 261,107 263,988 268,104 262,308 264,756 265,007 268,841 271,585 274,919 2000's 279,179 278,506 279,838 281,877 273,967 276,763 300,606 296,465 298,418 294,226 2010's 291,395 293,213 297,523 282,743 294,391 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Illinois Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Illinois Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,460 20,015 25,161 1990's 25,991 26,489 27,178 27,807 25,788 25,929 29,493 28,472 28,063 27,605 2000's 27,348 27,421 27,477 26,698 29,187 29,887 26,109 24,000 23,737 23,857 2010's 25,043 23,722 23,390 23,804 23,829 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  17. Illinois Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Illinois Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,170,364 3,180,199 3,248,117 1990's 3,287,091 3,320,285 3,354,679 3,388,983 3,418,052 3,452,975 3,494,545 3,521,707 3,556,736 3,594,071 2000's 3,631,762 3,670,693 3,688,281 3,702,308 3,754,132 3,975,961 3,812,121 3,845,441 3,869,308 3,839,438 2010's 3,842,206 3,855,942 3,878,806 3,838,120

  18. Indiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Indiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 116,571 119,458 122,803 1990's 124,919 128,223 129,973 131,925 134,336 137,162 139,097 140,515 141,307 145,631 2000's 148,411 148,830 150,092 151,586 151,943 159,649 154,322 155,885 157,223 155,615 2010's 156,557 161,293 158,213 158,965 159,596 - = No Data Reported; -- = Not Applicable; NA = Not

  19. Indiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Indiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,250,476 1,275,401 1,306,747 1990's 1,327,772 1,358,640 1,377,023 1,402,770 1,438,483 1,463,640 1,489,647 1,509,142 1,531,914 1,570,253 2000's 1,604,456 1,613,373 1,657,640 1,644,715 1,588,738 1,707,195 1,661,186 1,677,857 1,678,158 1,662,663 2010's 1,669,026 1,707,148 1,673,132 1,681,841 1,693,267

  20. Iowa Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Iowa Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 80,797 81,294 82,549 1990's 83,047 84,387 85,325 86,452 86,918 88,585 89,663 90,643 91,300 92,306 2000's 93,836 95,485 96,496 96,712 97,274 97,767 97,823 97,979 98,144 98,416 2010's 98,396 98,541 99,113 99,017 99,182 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  1. Iowa Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Iowa Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,033 1,937 1,895 1990's 1,883 1,866 1,835 1,903 1,957 1,957 2,066 1,839 1,862 1,797 2000's 1,831 1,830 1,855 1,791 1,746 1,744 1,670 1,651 1,652 1,626 2010's 1,528 1,465 1,469 1,491 1,572 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  2. Iowa Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Iowa Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 690,532 689,655 701,687 1990's 706,842 716,088 729,081 740,722 750,678 760,848 771,109 780,746 790,162 799,015 2000's 812,323 818,313 824,218 832,230 839,415 850,095 858,915 865,553 872,980 875,781 2010's 879,713 883,733 892,123 895,414 900,420 - = No Data Reported; -- = Not Applicable; NA = Not

  3. Kansas Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kansas Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 82,934 83,810 85,143 1990's 85,539 86,874 86,840 87,735 86,457 88,163 89,168 85,018 89,654 86,003 2000's 87,007 86,592 87,397 88,030 86,640 85,634 85,686 85,376 84,703 84,715 2010's 84,446 84,874 84,673 84,969 85,867 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  4. Kansas Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kansas Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,440 4,314 4,366 1990's 4,357 3,445 3,296 4,369 3,560 3,079 2,988 7,014 10,706 5,861 2000's 8,833 9,341 9,891 9,295 8,955 8,300 8,152 8,327 8,098 7,793 2010's 7,664 7,954 7,970 7,877 7,429 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  5. Kansas Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kansas Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 725,676 733,101 731,792 1990's 747,081 753,839 762,545 777,658 773,357 797,524 804,213 811,975 841,843 824,803 2000's 833,662 836,486 843,353 850,464 855,272 856,761 862,203 858,304 853,125 855,454 2010's 853,842 854,730 854,800 858,572 861,092 - = No Data Reported; -- = Not Applicable; NA = Not

  6. Kentucky Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kentucky Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,024 63,971 65,041 1990's 67,086 68,461 69,466 71,998 73,562 74,521 76,079 77,693 80,147 80,283 2000's 81,588 81,795 82,757 84,110 84,493 85,243 85,236 85,210 84,985 83,862 2010's 84,707 84,977 85,129 85,999 85,318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  7. Kentucky Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kentucky Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,391 1,436 1,443 1990's 1,544 1,587 1,608 1,585 1,621 1,630 1,633 1,698 1,864 1,813 2000's 1,801 1,701 1,785 1,695 1,672 1,698 1,658 1,599 1,585 1,715 2010's 1,742 1,705 1,720 1,767 1,780 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  8. Kentucky Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 596,320 606,106 614,058 1990's 624,477 633,942 644,281 654,664 668,774 685,481 696,989 713,509 726,960 735,371 2000's 744,816 749,106 756,234 763,290 767,022 770,080 770,171 771,047 753,531 754,761 2010's 758,129 759,584 757,790 761,575 760,131 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Louisiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Louisiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 67,382 66,472 64,114 1990's 62,770 61,574 61,030 62,055 62,184 62,930 62,101 62,270 63,029 62,911 2000's 62,710 62,241 62,247 63,512 60,580 58,409 57,097 57,127 57,066 58,396 2010's 58,562 58,749 63,381 59,147 58,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  10. Louisiana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Louisiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,617 1,503 1,531 1990's 1,504 1,469 1,452 1,592 1,737 1,383 1,444 1,406 1,380 1,397 2000's 1,318 1,440 1,357 1,291 1,460 1,086 962 945 988 954 2010's 942 920 963 916 883 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  11. Maine Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maine Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,435 3,731 3,986 1990's 4,250 4,455 4,838 4,979 5,297 5,819 6,414 6,606 6,662 6,582 2000's 6,954 6,936 7,375 7,517 7,687 8,178 8,168 8,334 8,491 8,815 2010's 9,084 9,681 10,179 11,415 11,810 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  12. Maine Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maine Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,134 11,933 11,902 1990's 12,000 12,424 13,766 13,880 14,104 14,917 14,982 15,221 15,646 15,247 2000's 17,111 17,302 17,921 18,385 18,707 18,633 18,824 18,921 19,571 20,806 2010's 21,142 22,461 23,555 24,765 27,047 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  13. Maryland Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Maryland Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 51,252 53,045 54,740 1990's 55,576 61,878 62,858 63,767 64,698 66,094 69,991 69,056 67,850 69,301 2000's 70,671 70,691 71,824 72,076 72,809 73,780 74,584 74,856 75,053 75,771 2010's 75,192 75,788 75,799 77,117 77,846 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  14. Maryland Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Maryland Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,222 5,397 5,570 1990's 5,646 520 514 496 516 481 430 479 1,472 536 2000's 329 795 1,434 1,361 1,354 1,325 1,340 1,333 1,225 1,234 2010's 1,255 1,226 1,163 1,173 1,179 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  15. Maryland Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Maryland Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 755,294 760,754 767,219 1990's 774,707 782,373 894,677 807,204 824,137 841,772 871,012 890,195 901,455 939,029 2000's 941,384 959,772 978,319 987,863 1,009,455 1,024,955 1,040,941 1,053,948 1,057,521 1,067,807 2010's 1,071,566 1,077,168 1,078,978 1,099,272 1,101,292 - = No Data Reported; -- = Not

  16. West Virginia Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) West Virginia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 31,283 33,192 33,880 1990's 32,785 32,755 33,289 33,611 33,756 36,144 33,837 33,970 35,362 35,483 2000's 41,949 35,607 35,016 35,160 34,932 36,635 34,748 34,161 34,275 34,044 2010's 34,063 34,041 34,078 34,283 34,339 - = No Data Reported; -- = Not Applicable; NA = Not Available; W

  17. West Virginia Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) West Virginia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 351,024 349,765 349,347 1990's 349,673 350,489 352,463 352,997 352,929 353,629 358,049 362,432 359,783 362,292 2000's 360,471 363,126 361,171 359,919 358,027 374,301 353,292 347,433 347,368 343,837 2010's 344,131 342,069 340,256 340,102 338,652 - = No Data Reported; -- = Not

  18. Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wisconsin Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,760 99,157 102,492 1990's 106,043 109,616 112,761 115,961 119,788 125,539 129,146 131,238 134,651 135,829 2000's 140,370 144,050 149,774 150,128 151,907 155,109 159,074 160,614 163,026 163,843 2010's 164,173 165,002 165,657 166,845 167,901 - = No Data Reported; -- = Not Applicable; NA = Not

  19. Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Wisconsin Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,411 7,218 7,307 1990's 7,154 7,194 7,396 7,979 7,342 6,454 5,861 8,346 9,158 9,756 2000's 9,630 9,864 9,648 10,138 10,190 8,484 5,707 5,999 5,969 6,396 2010's 6,413 6,376 6,581 6,677 7,000 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  20. Wisconsin Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wisconsin Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,054,347 1,072,585 1,097,514 1990's 1,123,557 1,151,939 1,182,834 1,220,500 1,253,333 1,291,424 1,324,570 1,361,348 1,390,068 1,426,909 2000's 1,458,959 1,484,536 1,514,700 1,541,455 1,569,719 1,592,621 1,611,772 1,632,200 1,646,644 1,656,614 2010's 1,663,583 1,671,834 1,681,001 1,692,891

  1. Wyoming Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Wyoming Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 15,342 15,093 14,012 1990's 13,767 14,931 15,064 15,315 15,348 15,580 17,036 15,907 16,171 16,317 2000's 16,366 16,027 16,170 17,164 17,490 17,904 18,016 18,062 19,286 19,843 2010's 19,977 20,146 20,387 20,617 20,894 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  2. Wyoming Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Wyoming Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113,175 112,126 113,129 1990's 113,598 113,463 114,793 116,027 117,385 119,544 131,910 125,740 127,324 127,750 2000's 129,274 129,897 133,445 135,441 137,434 140,013 142,385 143,644 152,439 153,062 2010's 153,852 155,181 157,226 158,889 160,896 - = No Data Reported; -- = Not Applicable; NA = Not

  3. Terminating Safeguards on Excess Special Nuclear Material: Defense TRU Waste Clean-up and Nonproliferation - 12426

    SciTech Connect (OSTI)

    Hayes, Timothy; Nelson, Roger

    2012-07-01

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) manages defense nuclear material that has been determined to be excess to programmatic needs and declared waste. When these wastes contain plutonium, they almost always meet the definition of defense transuranic (TRU) waste and are thus eligible for disposal at the Waste Isolation Pilot Plant (WIPP). The DOE operates the WIPP in a manner that physical protections for attractiveness level D or higher special nuclear material (SNM) are not the normal operating condition. Therefore, there is currently a requirement to terminate safeguards before disposal of these wastes at the WIPP. Presented are the processes used to terminate safeguards, lessons learned during the termination process, and how these approaches might be useful for future defense TRU waste needing safeguards termination prior to shipment and disposal at the WIPP. Also described is a new criticality control container, which will increase the amount of fissile material that can be loaded per container, and how it will save significant taxpayer dollars. Retrieval, compliant packaging and shipment of retrievably stored legacy TRU waste has dominated disposal operations at WIPP since it began operations 12 years ago. But because most of this legacy waste has successfully been emplaced in WIPP, the TRU waste clean-up focus is turning to newly-generated TRU materials. A major component will be transuranic SNM, currently managed in safeguards-protected vaults around the weapons complex. As DOE and NNSA continue to consolidate and shrink the weapons complex footprint, it is expected that significant quantities of transuranic SNM will be declared surplus to the nation's needs. Safeguards termination of SNM varies due to the wide range of attractiveness level of the potential material that may be directly discarded as waste. To enhance the efficiency of shipping waste with high TRU fissile content to WIPP, DOE designed an over-pack container, similar to the pipe component, called the criticality control over-pack, which will significantly enhance the efficiency of disposal. Hundreds of shipments of transuranic SNM, suitably packaged to meet WIPP waste acceptance criteria and with safeguards terminated have been successfully emplaced at WIPP (primarily from the Rocky Flats site clean-up) since WIPP opened. DOE expects that thousands more may eventually result from SNM consolidation efforts throughout the weapons complex. (authors)

  4. ,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1252016 6:37:20 PM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks" "Sourcekey","MGFSXUS1"...

  5. New San Antonio Airport Terminal Generating Clean Power | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy San Antonio Airport Terminal Generating Clean Power New San Antonio Airport Terminal Generating Clean Power January 27, 2011 - 2:03pm Addthis The new photovoltaic system at the San Antonio International Airport. The new photovoltaic system at the San Antonio International Airport. Todd G. Allen Project Officer, Golden Field Office What are the key facts? The City of San Antonio's EECBG proram staff awarded a block grant for a solar photovoltaic (PV) system at the airport, designed and

  6. Examination of Terminal Land Requirements for Hydrogen Delivery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Examination of Terminal Land Requirements for Hydrogen Delivery Examination of Terminal Land Requirements for Hydrogen Delivery Presentation by Jerry Gillette of Argonne National Laboratory at the Joint Meeting on Hydrogen Delivery Modeling and Analysis, May 8-9, 2007 PDF icon deliv_analysis_gillette_landreq.pdf More Documents & Publications Hydrogen Delivery Analysis Models H2A Delivery Models and Results Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and

  7. EECBG Success Story: New San Antonio Airport Terminal Generating Clean

    Office of Environmental Management (EM)

    Power | Department of Energy New San Antonio Airport Terminal Generating Clean Power EECBG Success Story: New San Antonio Airport Terminal Generating Clean Power January 27, 2011 - 2:03pm Addthis The new photovoltaic system at the San Antonio International Airport. The new photovoltaic system at the San Antonio International Airport. In early 2010, the City of San Antonio's Energy Efficiency and Conservation Block Grant (EECBG) program staff quickly realized a golden opportunity lay right at

  8. DOE-sponsored aging management guideline for electrical cable and terminators

    SciTech Connect (OSTI)

    Gazdzinski, R.F.

    1996-03-01

    The DOE-sponsored Aging Management Guideline (AMG) for Electrical Cable and Terminations provides an analysis of the potential age-related degradation mechanisms and effects for low-voltage and medium-voltage extruded cables and associated terminations used in commercial nuclear power plants. The AMG examined historical industry failure data and correlated this with postulated aging mechanisms and effects. Existing and developmental testing and condition monitoring techniques were evaluated, as well as current industry practices, in order to assess whether all significant aging mechanisms/effects are being effectively managed. Results of the study indicate that some aging mechanisms and effects are not directly addressed by current industry maintenance and surveillance practices; however, empirical evidence indicates that low- and medium-voltage cable and terminations are in general very reliable. A limited number of nondestructive (or essentially nondestructive) techniques currently available are potentially useful for evaluating low-voltage cable condition; however, such techniques do not currently exist for monitoring medium-voltage cable. Troubleshooting or diagnostic techniques are available to identify certain types of degradation.

  9. Defrost Temperature Termination in Supermarket Refrigeration Systems

    SciTech Connect (OSTI)

    Fricke, Brian A; Sharma, Vishaldeep

    2011-11-01

    The objective of this project was to determine the potential energy savings associated with implementing demand defrost strategies to defrost supermarket refrigerated display case evaporators, as compared to the widely accepted current practice of controlling display case defrost cycles with a preset timer. The defrost heater energy use of several representative display case types was evaluated. In addition, demand defrost strategies for refrigerated display cases as well as those used in residential refrigerator/freezers were evaluated. Furthermore, it is anticipated that future work will include identifying a preferred defrost strategy, with input from Retail Energy Alliance members. Based on this strategy, a demand defrost system will be designed which is suitable for supermarket refrigerated display cases. Limited field testing of the preferred defrost strategy will be performed in a supermarket environment.

  10. Evaluation of research and development for terminal isolation of nuclear wastes

    SciTech Connect (OSTI)

    Burton, B.W.

    1982-08-01

    The National Waste Terminal Storage program is responsible for identifying and constructing a geologic repository for spent reactor fuel, high-level waste, and transuranic waste. Extensive research and development work is in progress in the areas of site selection, waste treatment and waste form development, model development and validation, and long-term repository performance assessment. Many potential technologies are under investigation, but specific technologies cannot be identified until a repository site is selected. It is too early in the program to assess the adequacy of environmental control technologies for deep geologic disposal.

  11. A valiant little terminal: A VLT user's manual

    SciTech Connect (OSTI)

    Weinstein, A.

    1992-08-01

    VLT came to be used at SLAC (Stanford Linear Accelerator Center), because SLAC wanted to assess the Amiga's usefulness as a color graphics terminal and T{sub E}X workstation. Before the project could really begin, the people at SLAC needed a terminal emulator which could successfully talk to the IBM 3081 (now the IBM ES9000-580) and all the VAXes on the site. Moreover, it had to compete in quality with the Ann Arbor Ambassador GXL terminals which were already in use at the laboratory. Unfortunately, at the time there was no commercial program which fit the bill. Luckily, Willy Langeveld had been independently hacking up a public domain VT100 emulator written by Dave Wecker et al. and the result, VLT, suited SLAC's purpose. Over the years, as the program was debugged and rewritten, the original code disappeared, so that now, in the present version of VLT, none of the original VT100 code remains.

  12. Cooled electrical terminal assembly and device incorporating same

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.

    2006-08-22

    A terminal structure provides interfacing with power electronics circuitry and external circuitry. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the terminal structure and the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  13. Cooled electrical terminal assembly and device incorporating same

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Phillips, Mark G.; Kehl, Dennis L.; Kaishian, Steven C.; Kannenberg, Daniel G.

    2005-05-24

    A terminal structure provides interfacing with power electronics circuitry and external circuitry. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the terminal structure and the circuits through fluid circulating through the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  14. 2014-03-06 Issuance: Test Procedures for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps; Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding test procedures for packaged terminal air conditioners and packaged terminal heat pumps, as issued by the Deputy Assistant Secretary on March 6, 2014.

  15. Base drive circuit for a four-terminal power Darlington

    DOE Patents [OSTI]

    Lee, Fred C. (Blacksburg, VA); Carter, Roy A. (Salem, VA)

    1983-01-01

    A high power switching circuit which utilizes a four-terminal Darlington transistor block to improve switching speed, particularly in rapid turn-off. Two independent reverse drive currents are utilized during turn off in order to expel the minority carriers of the Darlington pair at their own charge sweep-out rate. The reverse drive current may be provided by a current transformer, the secondary of which is tapped to the base terminal of the power stage of the Darlington block. In one application, the switching circuit is used in each power switching element in a chopper-inverter drive of an electric vehicle propulsion system.

  16. 2014-08-28 Issuance: Energy Conservation Standards for Packaged Terminal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Conditioners and Packaged Terminal Heat Pumps; Notice of Proposed Rulemaking and Public Meeting | Department of Energy 8-28 Issuance: Energy Conservation Standards for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps; Notice of Proposed Rulemaking and Public Meeting 2014-08-28 Issuance: Energy Conservation Standards for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps; Notice of Proposed Rulemaking and Public Meeting This document is a

  17. QER- Comment of Lake Charles Harbor & Terminal District

    Broader source: Energy.gov [DOE]

    Good Afternoon, Please find the Lake Charles Harbor and Terminal District’s comments on Infrastructure Constraints in re: the QER Investigation hearing scheduled for Bismarck, ND on August 8, 2014. Please include these comments in the public record of the hearing. Thank you.

  18. Columbia River: Terminal fisheries research project. 1994 Annual report

    SciTech Connect (OSTI)

    Hirose, P.; Miller, M.; Hill, J.

    1996-12-01

    Columbia River terminal fisheries have been conducted in Youngs Bay, Oregon, since the early 1960`s targeting coho salmon produced at the state facility on the North Fork Klaskanine River. In 1977 the Clatsop County Economic Development Council`s (CEDC) Fisheries Project began augmenting the Oregon Department of Fish and Wildlife production efforts. Together ODFW and CEDC smolt releases totaled 5,060,000 coho and 411,300 spring chinook in 1993 with most of the releases from the net pen acclimation program. During 1980-82 fall commercial terminal fisheries were conducted adjacent to the mouth of Big Creek in Oregon. All past terminal fisheries were successful in harvesting surplus hatchery fish with minimal impact on nonlocal weak stocks. In 1993 the Northwest Power Planning Council recommended in its` Strategy for Salmon that terminal fishing sites be identified and developed. The Council called on the Bonneville Power Administration to fund a 10-year study to investigate the feasibility of creating and expanding terminal known stock fisheries in the Columbia River Basin. The findings of the initial year of the study are included in this report. The geographic area considered for study extends from Bonneville Dam to the river mouth. The initial year`s work is the beginning of a 2-year research stage to investigate potential sites, salmon stocks, and methodologies; a second 3-year stage will focus on expansion in Youngs Bay and experimental releases into sites with greatest potential; and a final 5-year phase establishing programs at full capacity at all acceptable sites. After ranking all possible sites using five harvest and five rearing criteria, four sites in Oregon (Tongue Point, Blind Slough, Clifton Channel and Wallace Slough) and three in Washington (Deep River, Steamboat Slough and Cathlamet Channel) were chosen for study.

  19. California's Efforts for Advancing Ultrafine Particle Number...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efforts for Advancing Ultrafine Particle Number Measurements for Clean Diesel Exhaust California's Efforts for Advancing Ultrafine Particle Number Measurements for Clean Diesel...

  20. U.S. LPG pipeline begins deliveries to Pemex terminal

    SciTech Connect (OSTI)

    Bodenhamer, K.C.

    1997-08-11

    LPG deliveries began this spring to the new Mendez LPG receiving terminal near Juarez, State of Chihuahua, Mexico. Supplying the terminal is the 265-mile, 8-in. Rio Grande Pipeline that includes a reconditioned 217-mile, 8-in. former refined-products pipeline from near Odessa, Texas, and a new 48-mile, 8-in. line beginning in Hudspeth County and crossing the US-Mexico border near San Elizario, Texas. Capacity of the pipeline is 24,000 b/d. The LPG supplied to Mexico is a blend of approximately 85% propane and 15% butane. Before construction and operation of the pipeline, PGPB blended the propane-butane mix at a truck dock during loading. Demand for LPG in northern Mexico is strong. Less than 5% of the homes in Juarez have natural gas, making LPG the predominant energy source for cooking and heating in a city of more than 1 million. LPG also is widely used as a motor fuel.

  1. United States National Waste Terminal Storage argillaceous rock studies

    SciTech Connect (OSTI)

    Brunton, G.D.

    1981-01-01

    The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock.

  2. Lower Columbia River Terminal Fisheries Research Project : Final Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1995-04-01

    This notice announces BPA`S`s decision to fund the Oregon Department of Fish and Wildlife (ODFW), the Washington Department of Fish and Wildlife (WDFW), and the Clatsop Economic Development Committee for the Lower Columbia River Terminal Fisheries Research Project (Project). The Project will continue the testing of various species/stocks, rearing regimes, and harvest options for terminal fisheries, as a means to increase lower river sport and commercial harvest of hatchery fish, while providing both greater protection of weaker wild stocks and increasing the return of upriver salmon runs to potential Zone 6 Treaty fisheries. The Project involves relocating hatchery smolts to new, additional pen locations in three bays/sloughs in the lower Columbia River along both the Oregon and Washington sides. The sites are Blind Slough and Tongue Point in Clatsop County, Oregon, and Grays Bay/Deep River, Wahkiakum County, Washington. The smolts will be acclimated for various lengths of time in the net pens and released from these sites. The Project will expand upon an existing terminal fisheries project in Youngs Bay, Oregon. The Project may be expanded to other sites in the future, depending on the results of this initial expansion. BPA`S has determined the project is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and BPA`S is issuing this FONSI.

  3. B&W Y-12 to terminate WSI contract | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to terminate ... B&W Y-12 to terminate WSI contract Posted: September 28, 2012 - 8:01pm Following the recommendation from the National Nuclear Security Administration (NNSA) that...

  4. Climate Zone Number 5 | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 5 is defined as Cool- Humid(5A) with IP Units 5400...

  5. Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Alabama Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  6. Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Ohio Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  7. Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  8. Texas Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Texas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  9. Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Indiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  10. Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Alaska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  11. Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Oregon Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  12. U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) U.S. Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  13. Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Nevada Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  14. Utah Natural Gas Number of Gas and Gas Condensate Wells (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Utah Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  15. ARM - Measurement - Cloud particle number concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    number concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle number concentration The total number of cloud particles present in any given volume of air. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  16. Calculating Atomic Number Densities for Uranium

    Energy Science and Technology Software Center (OSTI)

    1993-01-01

    Provides method to calculate atomic number densities of selected uranium compounds and hydrogenous moderators for use in nuclear criticality safety analyses at gaseous diffusion uranium enrichment facilities.

  17. Low Mach Number Models in Computational Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ann Almgren Low Mach Number Models in Computational Astrophysics February 4, 2014 Ann Almgren. Berkeley Lab Downloads Almgren-nug2014.pdf | Adobe Acrobat PDF file Low Mach Number Models in Computational Astrophysics - Ann Almgren, Berkeley Lab Last edited: 2016-02-01 08:06:52

  18. Compendium of Experimental Cetane Number Data

    SciTech Connect (OSTI)

    Murphy, M. J.; Taylor, J. D.; McCormick, R. L.

    2004-09-01

    In this report, we present a compilation of reported cetane numbers for pure chemical compounds. The compiled database contains cetane values for 299 pure compounds, including 156 hydrocarbons and 143 oxygenates. Cetane number is a relative ranking of fuels based on the amount of time between fuel injection and ignition. The cetane number is typically measured either in a combustion bomb or in a single-cylinder research engine. This report includes cetane values from several different measurement techniques - each of which has associated uncertainties. Additionally, many of the reported values are determined by measuring blending cetane numbers, which introduces significant error. In many cases, the measurement technique is not reported nor is there any discussion about the purity of the compounds. Nonetheless, the data in this report represent the best pure compound cetane number values available from the literature as of August 2004.

  19. High pressure, high current, low inductance, high reliability sealed terminals

    DOE Patents [OSTI]

    Hsu, John S. (Oak Ridge, TN) [Oak Ridge, TN; McKeever, John W. (Oak Ridge, TN) [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  20. V-204: A specially crafted query can cause BIND to terminate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    affected source distributions may crash with assertion failures triggered in the same fashion. IMPACT: A specially crafted DNS query could cause the DNS service to terminate...

  1. Particle Number & Particulate Mass Emissions Measurements on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies Particle Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP ...

  2. Stockpile Stewardship Quarterly Volume 1, Number 4

    National Nuclear Security Administration (NNSA)

    1, Number 4 * February 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 1, Number 4 Inside this Issue 2 Applying Advanced Simulation Models to Neutron Tube Ion Extraction 3 Advanced Optical Cavities for Subcritical and Hydrodynamic Experiments 5 Progress Toward Ignition on the National Ignition Facility 7 Commissioning URSA Minor: The First LTD-Based Accelerator for Radiography 8 Publication

  3. With growing numbers of solar energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pending SOLAR GLARE HAZARD ANALYSIS TOOL (SGHAT) TECHNOLOGY SUMMARY Figure 1. Glare from solar panels viewed from an air traffic control tower. Figure 2. Screen image of glare...

  4. Controlled Synthesis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lUU iIII---11111 q o m Controlled Synthesis of Polyenes by Catalytic Methods Progress Report for the period 12/01/92 - 11/30/93 Richard R. Schrock Five papers have appeared in the last year (see list at end), numbers 225,229, 233, 236, and 240. The living cyclopolymerization of dipropargyl derivatives has been reported for diethyl dipropargylmalonate (X = C(CO2Et)2; Scheme I; #225). We have found that c_ addition and [3 addition take place approximately to an equivalent degree, on the basis of

  5. Probing lepton number violation on three frontiers

    SciTech Connect (OSTI)

    Deppisch, Frank F. [Department of Physics and Astronomy, University College London (United Kingdom)

    2013-12-30

    Neutrinoless double beta decay constitutes the main probe for lepton number violation at low energies, motivated by the expected Majorana nature of the light but massive neutrinos. On the other hand, the theoretical interpretation of the (non-)observation of this process is not straightforward as the Majorana neutrinos can destructively interfere in their contribution and many other New Physics mechanisms can additionally mediate the process. We here highlight the potential of combining neutrinoless double beta decay with searches for Tritium decay, cosmological observations and LHC physics to improve the quantitative insight into the neutrino properties and to unravel potential sources of lepton number violation.

  6. Battling bird flu by the numbers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battling bird flu by the numbers Battling bird flu by the numbers Lab theorists have developed a mathematical tool that could help health experts and crisis managers determine in real time whether an emerging infectious disease such as avian influenza H5N1 is poised to spread globally. May 27, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience,

  7. WIPP Documents - All documents by number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Note: Documents that do not have document numbers are not included in this listing. Large file size alert This symbol means the document may be a large file size. All documents by number Common document prefixes DOE/CAO DOE/TRU DOE/CBFO DOE/WIPP DOE/EA NM DOE/EIS Other DOE/CAO Back to top DOE/CAO 95-1095, Oct. 1995 Remote Handled Transuranic Waste Study This study was conducted to satisfy the requirements defined by the WIPP Land Withdrawal Act and considered by DOE to be a prudent exercise in

  8. Digitally controlled distributed phase shifter

    DOE Patents [OSTI]

    Hietala, Vincent M. (Placitas, NM); Kravitz, Stanley H. (Placitas, NM); Vawter, Gregory A. (Albuquerque, NM)

    1993-01-01

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  9. Digitally controlled distributed phase shifter

    DOE Patents [OSTI]

    Hietala, V.M.; Kravitz, S.H.; Vawter, G.A.

    1993-08-17

    A digitally controlled distributed phase shifter is comprised of N phase shifters. Digital control is achieved by using N binary length-weighted electrodes located on the top surface of a waveguide. A control terminal is attached to each electrode thereby allowing the application of a control signal. The control signal is either one or two discrete bias voltages. The application of the discrete bias voltages changes the modal index of a portion of the waveguide that corresponds to a length of the electrode to which the bias voltage is applied, thereby causing the phase to change through the underlying portion of the waveguide. The digitally controlled distributed phase shift network has a total phase shift comprised of the sum of the individual phase shifters.

  10. Heliostat control

    DOE Patents [OSTI]

    Kaehler, James A.

    1984-01-01

    An improvement in a system and method of controlling heliostat in which the heliostat is operable in azimuth and elevation by respective stepper motors and including the respective steps or means for calculating the position for the heliostat to be at a commanded position, determining the number of steps in azimuth and elevation for each respective motor to get to the commanded position and energizing both the azimuth and elevation stepper motors to run in parallel until predetermined number of steps away from the closest commanded position in azimuth and elevation so that the closest position has been achieved, and thereafter energizing only the remaining motor to bring it to its commanded position. In this way, the heliostat can be started from a stowed position in the morning and operated by a computer means to its commanded position and kept correctly oriented throughout the day using only the time of the day without requiring the usual sensors and feedback apparatus. A computer, or microprocessor, can then control a plurality of many heliostats easily and efficiently throughout the day.

  11. The 17 GHz active region number

    SciTech Connect (OSTI)

    Selhorst, C. L.; Pacini, A. A.; Costa, J. E. R.; Gimnez de Castro, C. G.; Valio, A.; Shibasaki, K.

    2014-08-01

    We report the statistics of the number of active regions (NAR) observed at 17 GHz with the Nobeyama Radioheliograph between 1992, near the maximum of cycle 22, and 2013, which also includes the maximum of cycle 24, and we compare with other activity indexes. We find that NAR minima are shorter than those of the sunspot number (SSN) and radio flux at 10.7 cm (F10.7). This shorter NAR minima could reflect the presence of active regions generated by faint magnetic fields or spotless regions, which were a considerable fraction of the counted active regions. The ratio between the solar radio indexes F10.7/NAR shows a similar reduction during the two minima analyzed, which contrasts with the increase of the ratio of both radio indexes in relation to the SSN during the minimum of cycle 23-24. These results indicate that the radio indexes are more sensitive to weaker magnetic fields than those necessary to form sunspots, of the order of 1500 G. The analysis of the monthly averages of the active region brightness temperatures shows that its long-term variation mimics the solar cycle; however, due to the gyro-resonance emission, a great number of intense spikes are observed in the maximum temperature study. The decrease in the number of these spikes is also evident during the current cycle 24, a consequence of the sunspot magnetic field weakening in the last few years.

  12. Pennsylvania Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 618 606 604 540 627 666 1967-2014 Industrial Number of Consumers 4,745 4,624 5,007 5,066 5,024 5,084 1987-2014...

  13. The New Element Curium (Atomic Number 96)

    DOE R&D Accomplishments [OSTI]

    Seaborg, G. T.; James, R. A.; Ghiorso, A.

    1948-00-00

    Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.

  14. Washington Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    059,239 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1987-2014 Sales 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1997-2014 Commercial Number of Consumers 98,965 99,231...

  15. Minnesota Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,436,063 1,445,824 1,459,134 1,472,663 1997-2014 Commercial Number of Consumers 131,801 132,163 132,938 134,394 135,557 136,382 1987-2014 Sales 131,986 132,697 134,165 135,235...

  16. West Virginia Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    343,837 344,131 342,069 340,256 340,102 338,652 1987-2014 Sales 344,125 342,063 340,251 340,098 338,649 1997-2014 Transported 6 6 5 4 3 1997-2014 Commercial Number of Consumers...

  17. Connecticut Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    489,349 490,185 494,970 504,138 513,492 522,658 1986-2014 Sales 489,380 494,065 503,241 512,110 521,460 1997-2014 Transported 805 905 897 1,382 1,198 1997-2014 Commercial Number of...

  18. North Carolina Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    ,102,001 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 1987-2014 Sales 1,115,532 1,128,963 1,142,947 1,161,398 1,183,152 1997-2014 Commercial Number of Consumers 113,630...

  19. Climate Zone Number 1 | Open Energy Information

    Open Energy Info (EERE)

    Zone Number 1 is defined as Very Hot - Humid(1A) with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C Dry(1B) with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C...

  20. Maine Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    20,806 21,142 22,461 23,555 24,765 27,047 1987-2014 Sales 21,141 22,461 23,555 24,765 27,047 1997-2014 Transported 1 0 0 0 0 2010-2014 Commercial Number of Consumers 8,815 9,084...

  1. South Dakota Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    173,856 176,204 179,042 1997-2014 Commercial Number of Consumers 22,071 22,267 22,570 22,955 23,214 23,591 1987-2014 Sales 22,028 22,332 22,716 22,947 23,330 1998-2014...

  2. Standard terminal panel and UPS (uninterruptible power supply) design for exterior intrusion detectors and data collection applications

    SciTech Connect (OSTI)

    Wolfenbarger, F.M.

    1989-01-01

    Need for standardization has been discussed for years by many government agencies. In the past, every perimeter site upgrade resulted in the design, specification, procurement, and fabrication of a unique power and signal junction box. To save design and specification cost, a standard terminal panel and uninterruptible power supply (UPS) design for an exterior intrusion sensor detection system was developed for a security system within the Sandia National Laboratories complex at Albuquerque, New Mexico. In facilitating this requirement a design was sought that could easily be modified for other government or commercial applications and one that could easily be fabricated in the shop. Also of primary importance was the need for lightning protection for both the communications and voltage sources. A 12V dc UPS with a current capacity of up to 4 amperes complements the standard terminal design and allows uninterrupted sensor operation for a number of hours should the primary ac source be interrupted. This report encompasses the features of the designs. The designs are also being used and continuously evaluated in Sandia's Area III exterior test field. 7 figs.

  3. Total number of longwall faces drops below 50

    SciTech Connect (OSTI)

    Fiscor, S.

    2009-02-15

    For the first time since Coal Age began its annual Longwall Census the number of faces has dropped below 50. A total of five mines operate two longwall faces. CONSOL Energy remains the leader with 12 faces. Arch Coal operates five longwall mines; Robert E. Murray owns five longwall mines. West Virginia has 13 longwalls, followed by Pennsylvania (8), Utah (6) and Alabama (6). A detailed table gives for each longwall installation, the ownership, seam height, cutting height, panel width and length, overburden, number of gate entries, depth of cut, model of equipment used (shearer, haulage system, roof support, face conveyor, stage loader, crusher, electrical controls and voltage to face). 2 tabs., 1 photo.

  4. WFR Totals by Fiscal Year of Employee Termination Date

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    323 1995 17,149 2,631 1994 21,039 56 1993 23,284 1,124 1992 24,591 1 1991 24,553 0 The work force at Savannah River Site has fluctuated in number due to changing missions and...

  5. Rhode Island Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    24,846 225,204 225,828 228,487 231,763 233,786 1987-2014 Sales 225,204 225,828 228,487 231,763 233,786 1997-2014 Commercial Number of Consumers 22,988 23,049 23,177 23,359 23,742 23,934 1987-2014 Sales 21,507 21,421 21,442 21,731 21,947 1998-2014 Transported 1,542 1,756 1,917 2,011 1,987 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 467 454 468 432 490 551 1967-2014 Industrial Number of Consumers 260 249 245 248 271 266 1987-2014 Sales 57 53 56 62 62 1998-2014 Transported 192

  6. South Carolina Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    565,774 570,797 576,594 583,633 593,286 604,743 1987-2014 Sales 570,797 576,594 583,633 593,286 604,743 1997-2014 Commercial Number of Consumers 55,850 55,853 55,846 55,908 55,997 56,172 1987-2014 Sales 55,776 55,760 55,815 55,902 56,074 1998-2014 Transported 77 86 93 95 98 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 393 432 396 383 426 452 1967-2014 Industrial Number of Consumers 1,358 1,325 1,329 1,435 1,452 1,426 1987-2014 Sales 1,139 1,137 1,215 1,223 1,199 1998-2014

  7. Tennessee Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ,083,573 1,085,387 1,089,009 1,084,726 1,094,122 1,106,681 1987-2014 Sales 1,085,387 1,089,009 1,084,726 1,094,122 1,106,681 1997-2014 Commercial Number of Consumers 127,704 127,914 128,969 130,139 131,091 131,001 1987-2014 Sales 127,806 128,866 130,035 130,989 130,905 1998-2014 Transported 108 103 104 102 96 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 406 439 404 345 411 438 1967-2014 Industrial Number of Consumers 2,717 2,702 2,729 2,679 2,581 2,595 1987-2014 Sales 2,340

  8. Texas Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4,248,613 4,288,495 4,326,156 4,370,057 4,424,103 4,469,282 1987-2014 Sales 4,287,929 4,326,076 4,369,990 4,424,037 4,469,220 1997-2014 Transported 566 80 67 66 62 1997-2014 Commercial Number of Consumers 313,384 312,277 314,041 314,811 314,036 317,217 1987-2014 Sales 310,842 312,164 312,574 311,493 313,971 1998-2014 Transported 1,435 1,877 2,237 2,543 3,246 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 534 605 587 512 553 583 1967-2014 Industrial Number of Consumers 8,581

  9. Kentucky Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    754,761 758,129 759,584 757,790 761,575 760,131 1987-2014 Sales 728,940 730,602 730,184 736,011 735,486 1997-2014 Transported 29,189 28,982 27,606 25,564 24,645 1997-2014 Commercial Number of Consumers 83,862 84,707 84,977 85,129 85,999 85,318 1987-2014 Sales 80,541 80,392 80,644 81,579 81,026 1998-2014 Transported 4,166 4,585 4,485 4,420 4,292 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 423 435 407 361 435 469 1967-2014 Industrial Number of Consumers 1,715 1,742 1,705 1,720

  10. Louisiana Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    889,570 893,400 897,513 963,688 901,635 899,378 1987-2014 Sales 893,400 897,513 963,688 901,635 899,378 1997-2014 Transported 0 0 0 0 0 1997-2014 Commercial Number of Consumers 58,396 58,562 58,749 63,381 59,147 58,611 1987-2014 Sales 58,501 58,685 63,256 58,985 58,438 1998-2014 Transported 61 64 125 162 173 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 405 461 441 415 488 532 1967-2014 Industrial Number of Consumers 954 942 920 963 916 883 1987-2014 Sales 586 573 628 570 546

  11. Maryland Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    067,807 1,071,566 1,077,168 1,078,978 1,099,272 1,101,292 1987-2014 Sales 923,870 892,844 867,627 852,555 858,352 1997-2014 Transported 147,696 184,324 211,351 246,717 242,940 1997-2014 Commercial Number of Consumers 75,771 75,192 75,788 75,799 77,117 77,846 1987-2014 Sales 54,966 53,778 52,383 52,763 53,961 1998-2014 Transported 20,226 22,010 23,416 24,354 23,885 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 912 898 891 846 923 961 1967-2014 Industrial Number of Consumers

  12. Mississippi Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    437,715 436,840 442,479 442,840 445,589 444,423 1987-2014 Sales 436,840 439,511 440,171 442,974 444,423 1997-2014 Transported 0 2,968 2,669 2,615 0 2010-2014 Commercial Number of Consumers 50,713 50,537 50,636 50,689 50,153 50,238 1987-2014 Sales 50,503 50,273 50,360 49,829 50,197 1998-2014 Transported 34 363 329 324 41 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 377 419 400 352 388 442 1967-2014 Industrial Number of Consumers 1,141 980 982 936 933 943 1987-2014 Sales 860 853

  13. Missouri Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    348,781 1,348,549 1,342,920 1,389,910 1,357,740 1,363,286 1987-2014 Sales 1,348,549 1,342,920 1,389,910 1,357,740 1,363,286 1997-2014 Transported 0 0 0 0 0 2010-2014 Commercial Number of Consumers 140,633 138,670 138,214 144,906 142,495 143,024 1987-2014 Sales 137,342 136,843 143,487 141,047 141,477 1998-2014 Transported 1,328 1,371 1,419 1,448 1,547 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 437 441 451 378 453 510 1967-2014 Industrial Number of Consumers 3,573 3,541 3,307

  14. Montana Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    255,472 257,322 259,046 259,957 262,122 265,849 1987-2014 Sales 256,841 258,579 259,484 261,637 265,323 1997-2014 Transported 481 467 473 485 526 2005-2014 Commercial Number of Consumers 33,731 34,002 34,305 34,504 34,909 35,205 1987-2014 Sales 33,652 33,939 33,967 34,305 34,558 1998-2014 Transported 350 366 537 604 647 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 699 602 651 557 601 612 1967-2014 Industrial Number of Consumers 396 384 381 372 372 369 1987-2014 Sales 312 304

  15. Utah Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    810,442 821,525 830,219 840,687 854,389 869,052 1987-2014 Sales 821,525 830,219 840,687 854,389 869,052 1997-2014 Commercial Number of Consumers 60,781 61,976 62,885 63,383 64,114 65,134 1987-2014 Sales 61,929 62,831 63,298 63,960 64,931 1998-2014 Transported 47 54 85 154 203 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 609 621 643 558 646 586 1967-2014 Industrial Number of Consumers 293 293 286 302 323 328 1987-2014 Sales 205 189 189 187 178 1998-2014 Transported 88 97 113

  16. Vermont Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    37,242 38,047 38,839 39,917 41,152 42,231 1987-2014 Sales 38,047 38,839 39,917 41,152 42,231 1997-2014 Commercial Number of Consumers 5,085 5,137 5,256 5,535 5,441 5,589 1987-2014 Sales 5,137 5,256 5,535 5,441 5,589 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 488 464 472 418 873 864 1967-2014 Industrial Number of Consumers 36 38 36 38 13 13 1987-2014 Sales 37 35 38 13 13 1998-2014 Transported 1 1 0 0 0 1999-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 80,290

  17. Virginia Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,124,717 1,133,103 1,145,049 1,155,636 1,170,161 1,183,894 1987-2014 Sales 1,076,080 1,081,581 1,088,340 1,102,646 1,114,224 1997-2014 Transported 57,023 63,468 67,296 67,515 69,670 1997-2014 Commercial Number of Consumers 95,704 95,401 96,086 96,503 97,499 98,741 1987-2014 Sales 85,521 85,522 85,595 86,618 87,470 1998-2014 Transported 9,880 10,564 10,908 10,881 11,271 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 707 722 669 624 699 731 1967-2014 Industrial Number of

  18. Washington Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    059,239 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1987-2014 Sales 1,067,979 1,079,277 1,088,762 1,102,318 1,118,193 1997-2014 Commercial Number of Consumers 98,965 99,231 99,674 100,038 100,939 101,730 1987-2014 Sales 99,166 99,584 99,930 100,819 101,606 1998-2014 Transported 65 90 108 120 124 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 563 517 567 534 553 535 1967-2014 Industrial Number of Consumers 3,428 3,372 3,353 3,338 3,320 3,355 1987-2014 Sales 3,056 3,031

  19. Wisconsin Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    656,614 1,663,583 1,671,834 1,681,001 1,692,891 1,705,907 1987-2014 Sales 1,663,583 1,671,834 1,681,001 1,692,891 1,705,907 1997-2014 Transported 0 0 0 0 0 1997-2014 Commercial Number of Consumers 163,843 164,173 165,002 165,657 166,845 167,901 1987-2014 Sales 163,060 163,905 164,575 165,718 166,750 1998-2014 Transported 1,113 1,097 1,082 1,127 1,151 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 558 501 528 465 596 637 1967-2014 Industrial Number of Consumers 6,396 6,413 6,376

  20. Wyoming Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    153,062 153,852 155,181 157,226 158,889 160,896 1987-2014 Sales 117,735 118,433 118,691 117,948 118,396 1997-2014 Transported 36,117 36,748 38,535 40,941 42,500 1997-2014 Commercial Number of Consumers 19,843 19,977 20,146 20,387 20,617 20,894 1987-2014 Sales 14,319 14,292 14,187 14,221 14,452 1998-2014 Transported 5,658 5,854 6,200 6,396 6,442 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 523 558 580 514 583 583 1967-2014 Industrial Number of Consumers 130 120 123 127 132 131

  1. Nebraska Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    512,551 510,776 514,481 515,338 527,397 522,408 1987-2014 Sales 442,413 446,652 447,617 459,712 454,725 1997-2014 Transported 68,363 67,829 67,721 67,685 67,683 1997-2014 Commercial Number of Consumers 56,454 56,246 56,553 56,608 58,005 57,191 1987-2014 Sales 40,348 40,881 41,074 42,400 41,467 1998-2014 Transported 15,898 15,672 15,534 15,605 15,724 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 563 569 568 468 555 567 1967-2014 Industrial Number of Consumers 7,863 7,912 7,955

  2. Nevada Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    760,391 764,435 772,880 782,759 794,150 808,970 1987-2014 Sales 764,435 772,880 782,759 794,150 808,970 1997-2014 Commercial Number of Consumers 41,303 40,801 40,944 41,192 41,710 42,338 1987-2014 Sales 40,655 40,786 41,023 41,536 42,163 1998-2014 Transported 146 158 169 174 175 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 715 722 751 704 748 687 1967-2014 Industrial Number of Consumers 192 184 177 177 195 218 1987-2014 Sales 152 147 146 162 183 1998-2014 Transported 32 30 31

  3. New Hampshire Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    96,924 95,361 97,400 99,738 98,715 99,146 1987-2014 Sales 95,360 97,400 99,738 98,715 99,146 1997-2014 Transported 1 0 0 0 0 2010-2014 Commercial Number of Consumers 16,937 16,645 17,186 17,758 17,298 17,421 1987-2014 Sales 15,004 15,198 15,429 14,685 14,527 1998-2014 Transported 1,641 1,988 2,329 2,613 2,894 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 587 505 517 458 532 540 1967-2014 Industrial Number of Consumers 155 306 362 466 403 326 1987-2014 Sales 31 25 30 35 45

  4. New Mexico Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    560,479 559,852 570,637 561,713 572,224 614,313 1987-2014 Sales 559,825 570,592 561,652 572,146 614,231 1997-2014 Transported 27 45 61 78 82 1997-2014 Commercial Number of Consumers 48,846 48,757 49,406 48,914 50,163 55,689 1987-2014 Sales 45,679 46,104 45,298 46,348 51,772 1998-2014 Transported 3,078 3,302 3,616 3,815 3,917 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 506 516 507 509 534 461 1967-2014 Industrial Number of Consumers 471 438 360 121 123 116 1987-2014 Sales 390

  5. North Dakota Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    22,065 123,585 125,392 130,044 133,975 137,972 1987-2014 Sales 123,585 125,392 130,044 133,975 137,972 1997-2014 Transported 0 0 0 0 0 2004-2014 Commercial Number of Consumers 17,632 17,823 18,421 19,089 19,855 20,687 1987-2014 Sales 17,745 18,347 19,021 19,788 20,623 1998-2014 Transported 78 74 68 67 64 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 623 578 596 543 667 677 1967-2014 Industrial Number of Consumers 279 307 259 260 266 269 1987-2014 Sales 255 204 206 211 210

  6. Oklahoma Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    924,745 914,869 922,240 927,346 931,981 937,237 1987-2014 Sales 914,869 922,240 927,346 931,981 937,237 1997-2014 Transported 0 0 0 0 0 1997-2014 Commercial Number of Consumers 94,314 92,430 93,903 94,537 95,385 96,004 1987-2014 Sales 88,217 89,573 90,097 90,861 91,402 1998-2014 Transported 4,213 4,330 4,440 4,524 4,602 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 439 452 430 382 464 489 1967-2014 Industrial Number of Consumers 2,618 2,731 2,733 2,872 2,958 3,063 1987-2014

  7. Oregon Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    675,582 682,737 688,681 693,507 700,211 707,010 1987-2014 Sales 682,737 688,681 693,507 700,211 707,010 1997-2014 Commercial Number of Consumers 76,893 77,370 77,822 78,237 79,276 80,480 1987-2014 Sales 77,351 77,793 78,197 79,227 80,422 1998-2014 Transported 19 29 40 49 58 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 387 352 390 368 386 353 1967-2014 Industrial Number of Consumers 1,051 1,053 1,066 1,076 1,085 1,099 1987-2014 Sales 821 828 817 821 839 1998-2014 Transported

  8. Sensitivity in risk analyses with uncertain numbers.

    SciTech Connect (OSTI)

    Tucker, W. Troy; Ferson, Scott

    2006-06-01

    Sensitivity analysis is a study of how changes in the inputs to a model influence the results of the model. Many techniques have recently been proposed for use when the model is probabilistic. This report considers the related problem of sensitivity analysis when the model includes uncertain numbers that can involve both aleatory and epistemic uncertainty and the method of calculation is Dempster-Shafer evidence theory or probability bounds analysis. Some traditional methods for sensitivity analysis generalize directly for use with uncertain numbers, but, in some respects, sensitivity analysis for these analyses differs from traditional deterministic or probabilistic sensitivity analyses. A case study of a dike reliability assessment illustrates several methods of sensitivity analysis, including traditional probabilistic assessment, local derivatives, and a ''pinching'' strategy that hypothetically reduces the epistemic uncertainty or aleatory uncertainty, or both, in an input variable to estimate the reduction of uncertainty in the outputs. The prospects for applying the methods to black box models are also considered.

  9. Colorado Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    ,622,434 1,634,587 1,645,716 1,659,808 1,672,312 1,690,581 1986-2014 Sales 1,634,582 1,645,711 1,659,803 1,672,307 1,690,576 1997-2014 Transported 5 5 5 5 5 1997-2014 Commercial Number of Consumers 145,624 145,460 145,837 145,960 150,145 150,235 1986-2014 Sales 145,236 145,557 145,563 149,826 149,921 1998-2014 Transported 224 280 397 319 314 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 429 396 383 355 392 386 1967-2014 Industrial Number of Consumers 5,084 6,232 6,529 6,906

  10. Delaware Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    9,006 150,458 152,005 153,307 155,627 158,502 1986-2014 Sales 150,458 152,005 153,307 155,627 158,502 1997-2014 Commercial Number of Consumers 12,839 12,861 12,931 12,997 13,163 13,352 1986-2014 Sales 12,706 12,656 12,644 12,777 12,902 1998-2014 Transported 155 275 353 386 450 1999-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 910 948 810 772 849 890 1967-2014 Industrial Number of Consumers 112 114 129 134 138 141 1987-2014 Sales 40 35 29 28 28 1998-2014 Transported 74 94 105 110

  11. Florida Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    674,090 675,551 679,199 686,994 694,210 703,535 1986-2014 Sales 661,768 664,564 672,133 679,191 687,766 1997-2014 Transported 13,783 14,635 14,861 15,019 15,769 1997-2014 Commercial Number of Consumers 59,549 60,854 61,582 63,477 64,772 67,460 1986-2014 Sales 41,750 41,068 41,102 40,434 41,303 1998-2014 Transported 19,104 20,514 22,375 24,338 26,157 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 846 888 869 861 926 929 1967-2014 Industrial Number of Consumers 607 581 630 507 528

  12. Georgia Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    1,744,934 1,740,587 1,740,006 1,739,543 1,805,425 1,755,847 1986-2014 Sales 321,290 321,515 319,179 377,652 315,562 1997-2014 Transported 1,419,297 1,418,491 1,420,364 1,427,773 1,440,285 1997-2014 Commercial Number of Consumers 127,347 124,759 123,454 121,243 126,060 122,573 1986-2014 Sales 32,318 32,162 31,755 36,556 31,845 1998-2014 Transported 92,441 91,292 89,488 89,504 90,728 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 421 482 458 428 454 482 1967-2014 Industrial Number

  13. Hawaii Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    25,466 25,389 25,305 25,184 26,374 28,919 1987-2014 Sales 25,389 25,305 25,184 26,374 28,919 1998-2014 Commercial Number of Consumers 2,535 2,551 2,560 2,545 2,627 2,789 1987-2014 Sales 2,551 2,560 2,545 2,627 2,789 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 691 697 691 727 713 692 1980-2014 Industrial Number of Consumers 25 24 24 22 22 23 1997-2014 Sales 24 24 22 22 23 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 13,753 14,111 15,087 16,126 17,635 17,

  14. Idaho Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    42,277 346,602 350,871 353,963 359,889 367,394 1987-2014 Sales 346,602 350,871 353,963 359,889 367,394 1997-2014 Commercial Number of Consumers 38,245 38,506 38,912 39,202 39,722 40,229 1987-2014 Sales 38,468 38,872 39,160 39,681 40,188 1998-2014 Transported 38 40 42 41 41 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 412 390 433 404 465 422 1967-2014 Industrial Number of Consumers 187 184 178 179 183 189 1987-2014 Sales 108 103 105 109 115 1998-2014 Transported 76 75 74 74 74

  15. Iowa Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    875,781 879,713 883,733 892,123 895,414 900,420 1987-2014 Sales 879,713 883,733 892,123 895,414 900,420 1997-2014 Commercial Number of Consumers 98,416 98,396 98,541 99,113 99,017 99,182 1987-2014 Sales 96,996 97,075 97,580 97,334 97,409 1998-2014 Transported 1,400 1,466 1,533 1,683 1,773 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 576 525 526 442 572 579 1967-2014 Industrial Number of Consumers 1,626 1,528 1,465 1,469 1,491 1,572 1987-2014 Sales 1,161 1,110 1,042 1,074 1,135

  16. Kansas Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    855,454 853,842 854,730 854,800 858,572 861,092 1987-2014 Sales 853,842 854,730 854,779 858,546 861,066 1997-2014 Transported 0 0 21 26 26 2004-2014 Commercial Number of Consumers 84,715 84,446 84,874 84,673 84,969 85,867 1987-2014 Sales 78,310 78,559 78,230 78,441 79,231 1998-2014 Transported 6,136 6,315 6,443 6,528 6,636 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 384 377 378 301 391 425 1967-2014 Industrial Number of Consumers 7,793 7,664 7,954 7,970 7,877 7,429 1987-2014

  17. Alabama Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    785,005 778,985 772,892 767,396 765,957 769,418 1986-2014 Sales 778,985 772,892 767,396 765,957 769,418 1997-2014 Transported 0 0 0 0 0 1997-2014 Commercial Number of Consumers 67,674 68,163 67,696 67,252 67,136 67,806 1986-2014 Sales 68,017 67,561 67,117 67,006 67,677 1998-2014 Transported 146 135 135 130 129 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 359 397 371 320 377 406 1967-2014 Industrial Number of Consumers 3,057 3,039 2,988 3,045 3,143 3,244 1986-2014 Sales 2,758

  18. Alaska Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    120,124 121,166 121,736 122,983 124,411 126,416 1986-2014 Sales 121,166 121,736 122,983 124,411 126,416 1997-2014 Commercial Number of Consumers 13,215 12,998 13,027 13,133 13,246 13,399 1986-2014 Sales 12,673 12,724 13,072 13,184 13,336 1998-2014 Transported 325 303 61 62 63 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 1,258 1,225 1,489 1,515 1,411 1,338 1967-2014 Industrial Number of Consumers 3 3 5 3 3 1 1987-2014 Sales 2 2 3 2 1 1998-2014 Transported 1 3 0 1 0 1998-2014

  19. Arizona Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    ,130,047 1,138,448 1,146,286 1,157,688 1,172,003 1,186,794 1986-2014 Sales 1,138,448 1,146,280 1,157,682 1,171,997 1,186,788 1997-2014 Transported 0 6 6 6 6 1997-2014 Commercial Number of Consumers 57,191 56,676 56,547 56,532 56,585 56,649 1986-2014 Sales 56,510 56,349 56,252 56,270 56,331 1998-2014 Transported 166 198 280 315 318 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 563 564 577 558 581 538 1967-2014 Industrial Number of Consumers 390 368 371 379 383 386 1987-2014

  20. Arkansas Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    557,355 549,970 551,795 549,959 549,764 549,034 1986-2014 Sales 549,970 551,795 549,959 549,764 549,034 1997-2014 Commercial Number of Consumers 69,043 67,987 67,815 68,765 68,791 69,011 1986-2014 Sales 67,676 67,454 68,151 68,127 68,291 1998-2014 Transported 311 361 614 664 720 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 527 592 590 603 692 734 1967-2014 Industrial Number of Consumers 1,025 1,079 1,133 990 1,020 1,009 1986-2014 Sales 580 554 523 513 531 1998-2014 Transported

  1. Volume, Number of Shipments Surpass Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shatters records in first year of accelerated shipping effort October 3, 2012 Los Alamos National Laboratory shatters records in first year of accelerated shipping effort Volume, Number of Shipments Surpass Goals LOS ALAMOS, NEW MEXICO, October 3, 2012-In the first year of an effort to accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP), Los Alamos National Laboratory shattered its own record with 59 more shipments than planned, and became one of the largest

  2. Low Mach Number Models in Computational Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In memoriam: Michael Welcome 1957 - 2014 RIP Almgren CCSE Low Mach Number Models in Computational Astrophysics Ann Almgren Center for Computational Sciences and Engineering Lawrence Berkeley National Laboratory NUG 2014: NERSC@40 February 4, 2014 Collaborators: John Bell, Chris Malone, Andy Nonaka, Stan Woosley, Michael Zingale Almgren CCSE Introduction We often associate astrophysics with explosive phenomena: novae supernovae gamma-ray bursts X-ray bursts Type Ia Supernovae Largest

  3. Notices Total Estimated Number of Annual

    Energy Savers [EERE]

    372 Federal Register / Vol. 78, No. 181 / Wednesday, September 18, 2013 / Notices Total Estimated Number of Annual Burden Hours: 10,128. Abstract: Enrollment in the Federal Student Aid (FSA) Student Aid Internet Gateway (SAIG) allows eligible entities to securely exchange Title IV, Higher Education Act (HEA) assistance programs data electronically with the Department of Education processors. Organizations establish Destination Point Administrators (DPAs) to transmit, receive, view and update

  4. Stockpile Stewardship Quarterly, Volume 2, Number 1

    National Nuclear Security Administration (NNSA)

    1 * May 2012 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Defense Programs Stockpile Stewardship in Action Volume 2, Number 1 Inside this Issue 2 LANL and ANL Complete Groundbreaking Shock Experiments at the Advanced Photon Source 3 Characterization of Activity-Size-Distribution of Nuclear Fallout 5 Modeling Mix in High-Energy-Density Plasma 6 Quality Input for Microscopic Fission Theory 8 Fiber Reinforced Composites Under Pressure: A Case Study in

  5. U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number

    U.S. Energy Information Administration (EIA) Indexed Site

    of Elements) Acquifers Capacity (Number of Elements) U.S. Natural Gas Number of Underground Storage Acquifers Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49 2000's 49 39 38 43 43 44 44 43 43 43 2010's 43 43 44 47 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Number of

  6. LLW Notes, Volume 12, Number 1

    SciTech Connect (OSTI)

    Norris, C.; Brown, H.; Colsant, J.; Lovinger, T.; Scheele, L.; Shaker, M.A.

    1997-01-01

    Contents include articles entitled: Suit against Envirocare sparks investigations: Formal petition filed with NRC; Group alleges misconduct by USGS re Beatty study; EPA rescinds NESHAPs subpart 1; Northwest Compact executive director changes jobs; New forum participant for the state of New Jersey; and Director of North Carolina division of radiation control retires.

  7. Monitoring Environmental Recovery at Terminated Produced Water Discharge Sites in Coastal Louisiana Waters

    SciTech Connect (OSTI)

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents the results of a study of terminated produced water discharge sites in the coastal waters of Louisiana. Environmental recovery at the sites is documented by comparing pre-termination and post-termination (six months and one year) data. Produced water, sediments, and sediment interstitial water samples were analyzed for radionuclides, metals, and hydrocarbons. Benthic infauna were identified from samples collected in the vicinity of the discharge and reference sites. Radium isotope activities were determined in fish and crustacean samples. In addition, an environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  8. Recent results at ultrahigh spin: Terminating states and beyond in mass 160 rare-earth nuclei

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Paul, E. S.; Rees, J. M.; Hampson, P.; Riley, M. A.; Simpson, J.; Ayangeakaa, A. D.; Baron, J. S.; Carpenter, M. P.; Chiara, C. J.; Garg, U.; et al

    2015-01-01

    A classic region of band termination at high spin occurs in rare-earth nuclei with around ten valence nucleons above the 146Gd closed core. The results are presented here for such non-collective oblate (γ = 60°) terminating states in odd-Z 155Ho, odd–odd 156Ho, and even–even 156Er, where they are compared with neighboring nuclei. In addition to these particularly favoured states, the occurrence of collective triaxial strongly deformed (TSD) bands, bypassing the terminating states and extending to over 65ℏ, is reviewed.

  9. Property:Number of Plants Included in Planned Estimate | Open...

    Open Energy Info (EERE)

    Number of Plants Included in Planned Estimate Jump to: navigation, search Property Name Number of Plants Included in Planned Estimate Property Type String Description Number of...

  10. Property:NumberOfLEDSTools | Open Energy Information

    Open Energy Info (EERE)

    Name NumberOfLEDSTools Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfLEDSTools&oldid322418" Feedback Contact needs updating Image...

  11. Property:Number of Color Cameras | Open Energy Information

    Open Energy Info (EERE)

    Color Cameras Jump to: navigation, search Property Name Number of Color Cameras Property Type Number Pages using the property "Number of Color Cameras" Showing 25 pages using this...

  12. Health Code Number (HCN) Development Procedure

    SciTech Connect (OSTI)

    Petrocchi, Rocky; Craig, Douglas K.; Bond, Jayne-Anne; Trott, Donna M.; Yu, Xiao-Ying

    2013-09-01

    This report provides the detailed description of health code numbers (HCNs) and the procedure of how each HCN is assigned. It contains many guidelines and rationales of HCNs. HCNs are used in the chemical mixture methodology (CMM), a method recommended by the department of energy (DOE) for assessing health effects as a result of exposures to airborne aerosols in an emergency. The procedure is a useful tool for proficient HCN code developers. Intense training and quality assurance with qualified HCN developers are required before an individual comprehends the procedure to develop HCNs for DOE.

  13. The numbers will follow | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The numbers will follow September 26, 2008 As all of you well know, the safety performance of Jefferson Lab, our laboratory, has been nothing short of stellar over the past couple of years. To cap it all, you were subjected to what is usually rated as the toughest of the sit-down examinations, the HSS audit. Not only did you exceed expectations, but you did so by a large margin. A basis for this great result, as documented by the HSS team, was the engagement and commitment of the workforce, the

  14. Mo Year Report Period: EIA ID NUMBER:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mo Year Report Period: EIA ID NUMBER: http://www.eia.gov/survey/form/eia_14/instructions.pdf Mailing Address: Secure File Transfer option available at: (e.g., PO Box, RR) https://signon.eia.doe.gov/upload/noticeoog.jsp Electronic Transmission: The PC Electronic Zip Code - Data Reporting Option (PEDRO) is available. If interested in software, call (202) 586-9659. Email form to: OOG.SURVEYS@eia.doe.gov - - - - Fax form to: (202) 586-9772 Mail form to: Oil & Gas Survey Email address: U.S.

  15. Experimental Stations by Number | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource Experimental Stations by Number Beam Line by Techniques Photon Source Parameters Station Type Techniques Energy Range Contact Person Experimental Station 1-5 X-ray Materials Small-angle X-ray Scattering (SAXS) focused 4600-16000 eV Christopher J. Tassone Tim J. Dunn Experimental Station 2-1 X-ray Powder diffraction Thin film diffraction Focused 5000 - 14500 eV Apurva Mehta Charles Troxel Jr Experimental Station 2-2 X-ray X-ray Absorption Spectroscopy 1000-40000 eV Ryan Davis

  16. What's Behind the Numbers? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    What's Behind the Numbers? Dr. Richard Newell Dr. Richard Newell What does this mean for me? New website shows data on the why's, when's and how's of crude oil prices. Among the most visible prices that consumers may see on a daily basis are the ones found on the large signs at the gasoline stations alongside our streets and highways. The biggest single factor affecting gasoline prices is the cost of crude oil, the main raw material for gasoline production, which accounts for well over half the

  17. Control rod driveline and grapple

    DOE Patents [OSTI]

    Germer, John H. (San Jose, CA)

    1987-01-01

    A control rod driveline and grapple is disclosed for placement between a control rod drive and a nuclear reactor control rod containing poison for parasitic neutron absorption required for reactor shutdown. The control rod is provided with an enlarged cylindrical handle which terminates in an upwardly extending rod to provide a grapple point for the driveline. The grapple mechanism includes a tension rod which receives the upwardly extending handle and is provided with a lower annular flange. A plurality of preferably six grapple segments surround and grip the control rod handle. Each grapple rod segment grips the flange on the tension rod at an interior upper annular indentation, bears against the enlarged cylindrical handle at an intermediate annulus and captures the upwardly flaring frustum shaped handle at a lower and complementary female segment. The tension rods and grapple segments are surrounded by and encased within a cylinder. The cylinder terminates immediately and outward extending annulus at the lower portion of the grapple segments. Excursion of the tension rod relative to the encasing cylinder causes rod release at the handle by permitting the grapple segments to pivot outwardly and about the annulus on the tension rod so as to open the lower defined frustum shaped annulus and drop the rod. Relative movement between the tension rod and cylinder can occur either due to electromagnetic release of the tension rod within defined limits of travel or differential thermal expansion as between the tension rod and cylinder as where the reactor exceeds design thermal limits.

  18. A 1.3-Å Structure of Zinc-bound N-terminal Domain of Calmodulin...

    Office of Scientific and Technical Information (OSTI)

    of Zinc-bound N-terminal Domain of Calmodulin Elucidates Potential Early Ion-binding Step Citation Details In-Document Search Title: A 1.3- Structure of Zinc-bound ...

  19. N-terminal additions to the WE14 peptide of chromogranin A create...

    Office of Scientific and Technical Information (OSTI)

    type 1 diabetes Citation Details In-Document Search Title: N-terminal additions to the WE14 peptide of chromogranin A create strong autoantigen agonists in type 1 diabetes ...

  20. Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Arizona Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3 1990's 5 6 6 6 6 7 7 8 8 8 2000's 9 8 7 9 6 6 7 7 6 6 2010's 5 5 5 5 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages:

  1. EIS-0493: Corpus Christi LNG Terminal and Pipeline Project, Nueces and San Patricio Counties, Texas

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) prepared, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas export and import terminal on the north shore of Corpus Christi Bay in Nueces and San Patricio Counties, Texas; a marine berth connecting the terminal to the adjacent La Quinta Channel; and an approximately 23-mile-long natural gas transmission pipeline and associated facilities.

  2. Horizontal cryogenic bushing for the termination of a superconducting power-transmission line

    DOE Patents [OSTI]

    Minati, K.F.; Morgan, G.H.; McNerney, A.J.; Schauer, F.

    1982-07-29

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminated the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  3. Termination for a superconducting power transmission line including a horizontal cryogenic bushing

    DOE Patents [OSTI]

    Minati, Kurt F. (Northport, NY); Morgan, Gerry H. (Patchogue, NY); McNerney, Andrew J. (Shoreham, NY); Schauer, Felix (Upton, NY)

    1984-01-01

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminates the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  4. Impact of the N-Terminal Domain of STAT3 in STAT3-Dependent Transcriptional

    Office of Scientific and Technical Information (OSTI)

    Activity (Journal Article) | SciTech Connect Impact of the N-Terminal Domain of STAT3 in STAT3-Dependent Transcriptional Activity Citation Details In-Document Search Title: Impact of the N-Terminal Domain of STAT3 in STAT3-Dependent Transcriptional Activity Authors: Hu, Tiancen ; Yeh, Jennifer E. ; Pinello, Luca ; Jacob, Jaison ; Chakravarthy, Srinivas ; Yuan, Guo-Cheng ; Chopra, Rajiv ; Frank, David A. [1] ; DFCI) [2] ; Harvard) [2] ; IIT) [2] ; BWH) [2] + Show Author Affiliations

  5. N-terminal additions to the WE14 peptide of chromogranin A create strong

    Office of Scientific and Technical Information (OSTI)

    autoantigen agonists in type 1 diabetes (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: N-terminal additions to the WE14 peptide of chromogranin A create strong autoantigen agonists in type 1 diabetes Citation Details In-Document Search Title: N-terminal additions to the WE14 peptide of chromogranin A create strong autoantigen agonists in type 1 diabetes Authors: Jin, Niyun ; Wang, Yang ; Crawford, Frances ; White, Janice ; Marrack, Philippa ; Dai,

  6. A Novel Mechanism for Binding of Galactose-terminated Glycans by the C-type

    Office of Scientific and Technical Information (OSTI)

    Carbohydrate Recognition Domain in Blood Dendritic Cell Antigen 2 (Journal Article) | SciTech Connect A Novel Mechanism for Binding of Galactose-terminated Glycans by the C-type Carbohydrate Recognition Domain in Blood Dendritic Cell Antigen 2 Citation Details In-Document Search Title: A Novel Mechanism for Binding of Galactose-terminated Glycans by the C-type Carbohydrate Recognition Domain in Blood Dendritic Cell Antigen 2 Authors: Jégouzo, Sabine A.F. ; Feinberg, Hadar ; Dungarwalla,

  7. Michigan Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3,169,026 3,152,468 3,153,895 3,161,033 3,180,349 3,192,807 1987-2014 Sales 2,952,550 2,946,507 2,939,693 2,950,315 2,985,315 1997-2014 Transported 199,918 207,388 221,340 230,034 207,492 1997-2014 Commercial Number of Consumers 252,017 249,309 249,456 249,994 250,994 253,127 1987-2014 Sales 217,325 213,995 212,411 213,532 219,240 1998-2014 Transported 31,984 35,461 37,583 37,462 33,887 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 649 611 656 578 683 736 1967-2014 Industrial

  8. New Jersey Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,635,324 2,649,282 2,659,205 2,671,308 2,686,452 2,705,274 1987-2014 Sales 2,556,514 2,514,492 2,467,520 2,428,664 2,482,281 1997-2014 Transported 92,768 144,713 203,788 257,788 222,993 1997-2014 Commercial Number of Consumers 234,125 234,158 234,721 237,602 236,746 240,083 1987-2014 Sales 200,680 196,963 192,913 185,030 186,591 1998-2014 Transported 33,478 37,758 44,689 51,716 53,492 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 771 775 817 735 726 842 1967-2014 Industrial

  9. Ohio Number of Natural Gas Consumers

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3,253,184 3,240,619 3,236,160 3,244,274 3,271,074 3,283,869 1987-2014 Sales 1,418,217 1,352,292 855,055 636,744 664,015 1997-2014 Transported 1,822,402 1,883,868 2,389,219 2,634,330 2,619,854 1997-2014 Commercial Number of Consumers 270,596 268,346 268,647 267,793 269,081 269,758 1987-2014 Sales 92,621 85,877 51,308 35,966 37,035 1998-2014 Transported 175,725 182,770 216,485 233,115 232,723 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 594 583 601 543 625 679 1967-2014

  10. California Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    0,510,950 10,542,584 10,625,190 10,681,916 10,754,908 10,781,720 1986-2014 Sales 10,469,734 10,545,585 10,547,706 10,471,814 10,372,973 1997-2014 Transported 72,850 79,605 134,210 283,094 408,747 1997-2014 Commercial Number of Consumers 441,806 439,572 440,990 442,708 444,342 443,115 1986-2014 Sales 399,290 390,547 387,760 387,806 385,878 1998-2014 Transported 40,282 50,443 54,948 56,536 57,237 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 561 564 558 572 574 536 1967-2014

  11. Illinois Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    ,839,438 3,842,206 3,855,942 3,878,806 3,838,120 3,868,501 1987-2014 Sales 3,568,120 3,594,047 3,605,796 3,550,217 3,570,339 1997-2014 Transported 274,086 261,895 273,010 287,903 298,162 1997-2014 Commercial Number of Consumers 294,226 291,395 293,213 297,523 282,743 294,391 1987-2014 Sales 240,197 241,582 244,480 225,913 235,097 1998-2014 Transported 51,198 51,631 53,043 56,830 59,294 1998-2014 Average Consumption per Consumer (Thousand Cubic Ft.) 757 680 735 632 816 837 1967-2014 Industrial

  12. Contractor: Contract Number: Contract Type: Total Estimated

    Office of Environmental Management (EM)

    Contract Number: Contract Type: Total Estimated Contract Cost: Performance Period Total Fee Paid FY2004 $294,316 FY2005 $820,074 FY2006 $799,449 FY2007 $877,898 FY2008 $866,608 FY2009 $886,404 FY2010 $800,314 FY2011 $871,280 FY2012 $824,517 FY2013 Cumulative Fee Paid $7,040,860 $820,074 $799,449 $877,898 $916,130 $886,608 Computer Sciences Corporation DE-AC06-04RL14383 $895,358 $899,230 $907,583 Cost Plus Award Fee $134,100,336 $8,221,404 Fee Available Contract Period: Fee Information Minimum

  13. Is the acceleration of anomalous cosmic rays affected by the geometry of the termination shock?

    SciTech Connect (OSTI)

    Senanayake, U. K.; Florinski, V. E-mail: vaf0001@uah.edu

    2013-12-01

    Historically, anomalous cosmic rays (ACRs) were thought to be accelerated at the solar-wind termination shock (TS) by the diffusive shock acceleration process. When Voyager 1 crossed the TS in 2004, the measured ACR spectra did not match the theoretical prediction of a continuous power law, and the source of the high-energy ACRs was not observed. When the Voyager 2 crossed the TS in 2007, it produced similar results. Several possible explanations have since appeared in the literature, but we follow the suggestion that ACRs are still accelerated at the shock, only away from the Voyager crossing points. To investigate this hypothesis closer, we study ACR acceleration using a three-dimensional, non-spherical model of the heliosphere that is axisymmetric with respect to the interstellar flow direction. We then compare the results with those obtained for a spherical TS. A semi-analytic model of the plasma and magnetic field backgrounds is developed to permit an investigation over a wide range of parameters under controlled conditions. The model is applied to helium ACRs, whose phase-space trajectories are stochastically integrated backward in time until a pre-specified, low-energy boundary, taken to be 0.5 MeV n{sup 1} (the so-called injection energy), is reached. Our results show that ACR acceleration is quite efficient on the heliotail-facing part of the TS. For small values of the perpendicular diffusion coefficient, our model yields a positive intensity gradient between the TS and about midway through the heliosheath, in agreement with the Voyager observations.

  14. Automated remote control of fuel supply section for the coal fired power plant

    SciTech Connect (OSTI)

    Chudin, O.V.; Maidan, B.V.; Tsymbal, A.A.

    1996-05-01

    Approximately 6,000 miles east of Moscow, lays the city of Khabarovsk. This city`s coal-fired Power Plant 3 supplies electricity, heat and hot water to approximately 250,000 customers. Plant 3 has three units with a combined turbine capacity of 540 MW, (3 {times} 180) electrical and 780 (3 {times} 260) Gkal an hour thermal capacity with steam productivity of 2010 (3 {times} 670) tons per hour at 540 C. Coal fired thermal electric power plants rely on the equipment of the fuel supply section. The mechanism of the fuel supply section includes: conveyor belts, hammer crushers, guiding devices, dumping devices, systems for dust neutralizing, iron separators, metal detectors and other devices. As a rule, the fuel path in the power plant has three main directions: from the railroad car unloading terminal to the coal warehouse; from the coal warehouse to the acceptance bunkers of the power units, and the railroad car unloading terminal to the acceptance bunkers of power units. The fuel supply section always has a reserve and is capable of uninterruptible fuel supply during routine maintenance and/or repair work. This flexibility requires a large number of fuel traffic routes, some of which operate simultaneously with the feeding of coal from the warehouse to the acceptance bunkers of the power units, or in cases when rapid filling of the bunkers is needed, two fuel supply routes operate at the same time. The remote control of the fuel handling system at Power Plant 3 is described.

  15. U.S. Natural Gas Number of Commercial Consumers - Sales (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) - Sales (Number of Elements) U.S. Natural Gas Number of Commercial Consumers - Sales (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4,823,842 4,599,494 2000's 4,576,873 4,532,034 4,588,964 4,662,853 4,644,363 4,698,626 4,733,822 2010's 4,584,884 4,556,220 4,518,745 4,491,326 4,533,729 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  16. U.S. Natural Gas Number of Commercial Consumers - Transported (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Transported (Number of Elements) U.S. Natural Gas Number of Commercial Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 220,655 410,695 2000's 433,944 464,412 475,420 489,324 495,586 499,402 539,557 2010's 716,692 763,597 837,652 881,196 885,257 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  17. U.S. Natural Gas Number of Industrial Consumers - Sales (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Sales (Number of Elements) U.S. Natural Gas Number of Industrial Consumers - Sales (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 182,424 157,050 2000's 157,806 152,974 143,177 142,816 151,386 146,450 135,070 2010's 129,119 124,552 121,821 123,124 122,182 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  18. U.S. Natural Gas Number of Industrial Consumers - Transported (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Transported (Number of Elements) U.S. Natural Gas Number of Industrial Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 49,014 71,281 2000's 75,826 64,052 62,738 62,698 57,672 59,773 58,760 2010's 63,611 64,749 67,551 69,164 69,953 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  19. U.S. Natural Gas Number of Residential Consumers - Sales (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Sales (Number of Elements) U.S. Natural Gas Number of Residential Consumers - Sales (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 55,934,175 56,520,482 56,023,710 2000's 56,261,031 56,710,548 57,267,445 57,815,669 58,524,797 59,787,524 60,129,047 2010's 60,267,648 60,408,842 60,010,723 59,877,464 60,222,681 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  20. U.S. Natural Gas Number of Residential Consumers - Transported (Number of

    Gasoline and Diesel Fuel Update (EIA)

    Elements) Transported (Number of Elements) U.S. Natural Gas Number of Residential Consumers - Transported (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 252,783 801,264 2,199,519 2000's 2,978,319 3,576,181 3,839,809 4,055,781 3,971,337 3,829,303 4,037,233 2010's 5,274,697 5,531,680 6,364,411 6,934,929 7,005,081 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  1. Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,700 1990's 2,607 2,802 2,890 3,075 2,940 2,918 2,990 3,071 3,423 3,634 2000's 3,321 4,331 4,544 4,539 4,971 5,751 6,578 6,925 7,095 7,031 2010's 6,059 6,477 6,240 5,754 5,754 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  2. New Jersey Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) New Jersey Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 200,387 206,261 212,496 1990's 217,548 215,408 212,726 215,948 219,061 222,632 224,749 226,714 234,459 232,831 2000's 243,541 212,726 214,526 223,564 223,595 226,007 227,819 230,855 229,235 234,125 2010's 234,158 234,721 237,602 236,746 240,083 - = No Data Reported; -- = Not Applicable; NA = Not

  3. New Jersey Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) New Jersey Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,265 6,123 6,079 1990's 5,976 8,444 11,474 11,224 10,608 10,362 10,139 17,625 16,282 10,089 2000's 9,686 9,247 8,473 9,027 8,947 8,500 8,245 8,036 7,680 7,871 2010's 7,505 7,391 7,290 7,216 7,157 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  4. New Jersey Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) New Jersey Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,869,903 1,918,185 1,950,165 1990's 1,982,136 2,005,020 2,032,115 2,060,511 2,089,911 2,123,323 2,147,622 2,193,629 2,252,248 2,245,904 2000's 2,364,058 2,466,771 2,434,533 2,562,856 2,582,714 2,540,283 2,578,191 2,609,788 2,601,051 2,635,324 2010's 2,649,282 2,659,205 2,671,308 2,686,452

  5. New Mexico Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) New Mexico Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 36,444 36,940 36,960 1990's 38,026 38,622 40,312 40,166 39,846 38,099 37,796 38,918 42,067 43,834 2000's 44,164 44,306 45,469 45,491 45,961 47,745 47,233 48,047 49,235 48,846 2010's 48,757 49,406 48,914 50,163 55,689 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  6. New Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) New Mexico Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 17,087 1990's 17,124 20,021 18,040 20,846 23,292 23,510 24,134 27,421 28,200 26,007 2000's 33,948 35,217 35,873 37,100 38,574 40,157 41,634 42,644 44,241 44,784 2010's 44,748 32,302 28,206 27,073 27,957 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  7. New Mexico Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) New Mexico Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,703 1,668 1,653 1990's 1,407 1,337 141 152 1,097 1,065 1,365 1,366 1,549 1,482 2000's 1,517 1,875 1,356 1,270 1,164 988 1,062 470 383 471 2010's 438 360 121 123 116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  8. New Mexico Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) New Mexico Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 348,759 356,192 361,521 1990's 369,451 379,472 389,063 397,681 409,095 421,896 428,621 443,167 454,065 473,375 2000's 479,894 485,969 496,577 498,852 509,119 530,277 533,971 547,512 556,905 560,479 2010's 559,852 570,637 561,713 572,224 614,313 - = No Data Reported; -- = Not Applicable; NA = Not

  9. New York Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) New York Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 23,276 24,654 27,426 1990's 25,008 28,837 28,198 23,833 21,833 22,484 15,300 23,099 5,294 6,136 2000's 6,553 6,501 3,068 2,984 2,963 3,752 3,642 7,484 7,080 6,634 2010's 6,236 6,609 5,910 6,311 6,313 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  10. U.S. Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) U.S. Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,013,040 4,124,745 4,168,048 1990's 4,236,280 4,357,252 4,409,699 4,464,906 4,533,905 4,636,500 4,720,227 4,761,409 5,044,497 5,010,189 2000's 5,010,817 4,996,446 5,064,384 5,152,177 5,139,949 5,198,028 5,273,379 5,308,785 5,444,335 5,322,332 2010's 5,301,576 5,319,817 5,356,397 5,372,522 5,418,986 - =

  11. U.S. Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) U.S. Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 195,544 199,041 225,346 1990's 218,341 216,529 209,616 209,666 202,940 209,398 206,049 234,855 226,191 228,331 2000's 220,251 217,026 205,915 205,514 209,058 206,223 193,830 198,289 225,044 207,624 2010's 192,730 189,301 189,372 192,288 192,135 - = No Data Reported; -- = Not Applicable; NA = Not

  12. U.S. Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) U.S. Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 47,710,444 48,474,449 49,309,593 1990's 50,187,178 51,593,206 52,331,397 52,535,411 53,392,557 54,322,179 55,263,673 56,186,958 57,321,746 58,223,229 2000's 59,252,728 60,286,364 61,107,254 61,871,450 62,496,134 63,616,827 64,166,280 64,964,769 65,073,996 65,329,582 2010's 65,542,345 65,940,522

  13. California Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) California Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,214 1990's 1,162 1,377 1,126 1,092 1,261 997 978 930 847 1,152 2000's 1,169 1,244 1,232 1,249 1,272 1,356 1,451 1,540 1,645 1,643 2010's 1,580 1,308 1,423 1,335 1,118 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  14. District of Columbia Natural Gas Number of Commercial Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Commercial Consumers (Number of Elements) District of Columbia Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 11 14,683 11,370 11,354 1990's 11,322 11,318 11,206 11,133 11,132 11,089 10,952 10,874 10,658 12,108 2000's 11,106 10,816 10,870 10,565 10,406 10,381 10,410 9,915 10,024 10,288 2010's 9,879 10,050 9,771 9,963 10,049 - = No Data Reported; -- = Not Applicable; NA = Not

  15. District of Columbia Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) District of Columbia Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 134 130,748 134,758 134,837 1990's 136,183 136,629 136,438 135,986 135,119 135,299 135,215 134,807 132,867 137,206 2000's 138,252 138,412 143,874 136,258 138,134 141,012 141,953 142,384 142,819 143,436 2010's 144,151 145,524 145,938 146,712 147,877 - = No Data Reported; --

  16. Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Kansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 13,935 1990's 16,980 17,948 18,400 19,472 19,365 22,020 21,388 21,500 21,000 17,568 2000's 15,206 15,357 16,957 17,387 18,120 18,946 19,713 19,713 17,862 21,243 2010's 22,145 25,758 24,697 23,792 24,354 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  17. OMB Control No.

    Energy Savers [EERE]

    7 (02-94) OMB Control No. 1910-0600 U.S. Department of Energy APPLICANT DISABILITY, RACE/NATIONAL ORIGIN AND SEX IDENTIFICATION (Please read the Instructions and Privacy Act Statement before completing this form) Vacancy Announcement Number Name (Last, First, Middle Initial) Position Title, Series, Grade Social Security Number Sex Male Female OMB Burden Disclosure Statement Public reporting burden for this collection of information is estimated to average 10 minutes per response, including the

  18. Constraining the atmospheric composition of the day-night terminators of HD 189733b: Atmospheric retrieval with aerosols

    SciTech Connect (OSTI)

    Lee, Jae-Min; Irwin, Patrick G. J.; Fletcher, Leigh N.; Barstow, Joanna K.; Heng, Kevin

    2014-07-01

    A number of observations have shown that Rayleigh scattering by aerosols dominates the transmission spectrum of HD 189733b at wavelengths shortward of 1 ?m. In this study, we retrieve a range of aerosol distributions consistent with transmission spectroscopy between 0.3-24 ?m that were recently re-analyzed by Pont et al. To constrain the particle size and the optical depth of the aerosol layer, we investigate the degeneracies between aerosol composition, temperature, planetary radius, and molecular abundances that prevent unique solutions for transit spectroscopy. Assuming that the aerosol is composed of MgSiO{sub 3}, we suggest that a vertically uniform aerosol layer over all pressures with a monodisperse particle size smaller than about 0.1 ?m and an optical depth in the range 0.002-0.02 at 1 ?m provides statistically meaningful solutions for the day/night terminator regions of HD 189733b. Generally, we find that a uniform aerosol layer provide adequate fits to the data if the optical depth is less than 0.1 and the particle size is smaller than 0.1 ?m, irrespective of the atmospheric temperature, planetary radius, aerosol composition, and gaseous molecules. Strong constraints on the aerosol properties are provided by spectra at wavelengths shortward of 1 ?m as well as longward of 8 ?m, if the aerosol material has absorption features in this region. We show that these are the optimal wavelengths for quantifying the effects of aerosols, which may guide the design of future space observations. The present investigation indicates that the current data offer sufficient information to constrain some of the aerosol properties of HD189733b, but the chemistry in the terminator regions remains uncertain.

  19. Project Registration Number Assignments (Active) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Registration Number Assignments (Active) Project Registration Number Assignments (Active) As of: October 2015 Provides a table of Project Registration Number Assignments (Active) PDF icon Project Registration Number Assignment (Active) More Documents & Publications Project Registration Number Assignments (Completed) All Active DOE Technical Standards Document Active Project Justification Statement For Additional Information Contact: Jeffrey Feit phone: 301-903-0471 e-mail:

  20. Project Registration Number Assignments (Completed) | Department of Energy

    Energy Savers [EERE]

    Registration Number Assignments (Completed) Project Registration Number Assignments (Completed) As of: March 2016 Provides a table of Project Registration Number Assignments (Completed) PDF icon Project Registration Number Assignments (Completed) More Documents & Publications All Active DOE Technical Standards Document Project Registration Number Assignments (Active) The Proposed Reaffirmations and Cancellations For Additional Information Contact: Jeffrey Feit phone: 301-903-0471 e-mail:

  1. Property:NEPA SerialNumber | Open Energy Information

    Open Energy Info (EERE)

    SerialNumber Jump to: navigation, search Property Name NEPA SerialNumber Property Type String This is a property of type String. Pages using the property "NEPA SerialNumber"...

  2. Property:OutagePhoneNumber | Open Energy Information

    Open Energy Info (EERE)

    OutagePhoneNumber Jump to: navigation, search Property Name OutagePhoneNumber Property Type String Description An outage hotline or 24-hour customer service number Note: uses...

  3. Alaska Maximum Number of Active Crews Engaged in Seismic Surveying...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Seismic Surveying (Number of Elements) Alaska Maximum Number of Active Crews Engaged in Seismic Surveying (Number of Elements) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec...

  4. Virginia Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  5. Colorado Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  6. Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  7. Missouri Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  8. Michigan Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  9. Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  10. Tennessee Natural Gas Number of Gas and Gas Condensate Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  11. Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  12. Mississippi Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  13. Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  14. Illinois Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  15. Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  16. Maryland Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  17. Louisiana Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  18. Property:Number of Plants included in Capacity Estimate | Open...

    Open Energy Info (EERE)

    Plants included in Capacity Estimate Jump to: navigation, search Property Name Number of Plants included in Capacity Estimate Property Type Number Retrieved from "http:...

  19. Property:NumberOfLowEmissionDevelopmentStrategiesExample | Open...

    Open Energy Info (EERE)

    issionDevelopmentStrategiesExample Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfLowEmissionDevelopmentStrategiesExample&oldid326472...

  20. Property:NumberOfLowEmissionDevelopmentStrategiesExamples | Open...

    Open Energy Info (EERE)

    sionDevelopmentStrategiesExamples Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfLowEmissionDevelopmentStrategiesExamples&oldid323715...

  1. Property:NumberOfResourceAssessments | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:NumberOfResourceAssessments&oldid31439...

  2. Alpha Emission Near 100Sn and the Termination of the rp Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alpha Emission Near 100 Sn and the Termination of the rp Process The astrophysical rp-process is thought to reach a termination point in the region of 100 Sn, via the Sn(p,γ)⟶Sb(p,γ)⟶Te(γ,α) cycle, due to changing mass surface above the closed Z=50 shell. By measuring the decay properties of nuclei in this region, information can be provided to determine the actual endpoint for the rp-process, as well as measure single particle states near 100 Sn. We have identified a small alpha branch

  3. Crystal structure of the N-terminal region of human Ash2L shows a

    Office of Scientific and Technical Information (OSTI)

    winged-helix motif involved in DNA binding (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Crystal structure of the N-terminal region of human Ash2L shows a winged-helix motif involved in DNA binding Citation Details In-Document Search Title: Crystal structure of the N-terminal region of human Ash2L shows a winged-helix motif involved in DNA binding Ash2L is a core component of the MLL family histone methyltransferases and has an important role in

  4. N-terminal horseshoe conformation of DCC is functionally required for axon

    Office of Scientific and Technical Information (OSTI)

    guidance and might be shared by other neural receptors (Journal Article) | SciTech Connect N-terminal horseshoe conformation of DCC is functionally required for axon guidance and might be shared by other neural receptors Citation Details In-Document Search Title: N-terminal horseshoe conformation of DCC is functionally required for axon guidance and might be shared by other neural receptors Authors: Chen, Qiang ; Sun, Xiaqin ; Zhou, Xiao-hong ; Liu, Jin-huan ; Wu, Jane ; Zhang, Yan ; Wang,

  5. Dynamical properties of three terminal magnetic tunnel junctions: Spintronics meets spin-orbitronics

    SciTech Connect (OSTI)

    Tomasello, R.; Carpentieri, M.; Finocchio, G.

    2013-12-16

    This Letter introduces a micromagnetic model able to characterize the magnetization dynamics in three terminal magnetic tunnel junctions, where the effects of spin-transfer torque and spin-orbit torque are taken into account. Our results predict that the possibility to separate electrically those two torque sources is very promising from a technological point of view for both next generation of nanoscale spintronic oscillators and microwave detectors. A scalable synchronization scheme based on the parallel connection of those three terminal devices is also proposed.

  6. Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by

    Office of Scientific and Technical Information (OSTI)

    the Wnt receptor LRP6 (Journal Article) | SciTech Connect Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6 Citation Details In-Document Search Title: Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6 Authors: Stamos, Jennifer L. ; Chu, Matthew Ling-Hon ; Enos, Michael D. ; Shah, Niket ; Weis, William I. [1] + Show Author Affiliations (Stanford) Publication Date: 2015-02-19 OSTI Identifier: 1168492

  7. Study of Engine Operating Parameter Effects on GDI Engine Particle-Number

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions | Department of Energy Study of Engine Operating Parameter Effects on GDI Engine Particle-Number Emissions Study of Engine Operating Parameter Effects on GDI Engine Particle-Number Emissions Results show that fuel-injection timing is the dominant factor contributing to PN emissions from this wall-guided GDI engine. PDF icon p-10_he.pdf More Documents & Publications Advanced Combustion and Fuels Vehicle Technologies Office Merit Review 2014: Particulate Emissions Control by

  8. DEVICE CONTROLLER, CAMERA CONTROL

    Energy Science and Technology Software Center (OSTI)

    1998-07-20

    This is a C++ application that is the server for the cameral control system. Devserv drives serial devices, such as cameras and videoswitchers used in a videoconference, upon request from a client such as the camxfgbfbx ccint program. cc Deverv listens on UPD ports for clients to make network contractions. After a client connects and sends a request to control a device (such as to pan,tilt, or zooma camera or do picture-in-picture with a videoswitcher),more » devserv formats the request into an RS232 message appropriate for the device and sends this message over the serial port to which the device is connected. Devserv then reads the reply from the device from the serial port to which the device is connected. Devserv then reads the reply from the device from the serial port and then formats and sends via multicast a status message. In addition, devserv periodically multicasts status or description messages so that all clients connected to the multicast channel know what devices are supported and their ranges of motion and the current position. The software design employs a class hierarchy such that an abstract base class for devices can be subclassed into classes for various device categories(e.g. sonyevid30, cononvco4, panasonicwjmx50, etc.). which are further subclassed into classes for various device categories. The devices currently supported are the Sony evi-D30, Canon, VCC1, Canon VCC3, and Canon VCC4 cameras and the Panasonic WJ-MX50 videoswitcher. However, developers can extend the class hierarchy to support other devices.« less

  9. Laserjet Control Program

    Energy Science and Technology Software Center (OSTI)

    1992-07-02

    LC is a single program designed to serve as a Laser Jet printer controller. Options include specifying paper size, print orientation, number of lines per inch, top and bottom margins, end-of-line wrap, symbol set, typeface, style (upright or italic), stroke weight, proportional or fixed spaced font, and point size (height of character whose size can be scaled.

  10. Stormwater Controls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stormwater Controls Stormwater Controls Originally built to provide drinking water, the Los Alamos Canyon Reservoir now serves to keep flow at safe levels and slow down flood...

  11. Effect of Surface Termination on the Electonic Properties of LaNiO₃ Films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kumah, Divine P.; Malashevich, Andrei; Disa, Ankit S.; Arena, Dario A.; Walker, Fred J.; Ismail-Beigi, Sohrab; Ahn, Charles H.

    2014-11-06

    The electronic and structural properties of thin LaNiO₃ films grown by using molecular beam epitaxy are studied as a function of the net ionic charge of the surface terminating layer. We demonstrate that electronic transport in nickelate heterostructures can be manipulated through changes in the surface termination due to a strong coupling of the surface electrostatic properties to the structural properties of the Ni—O bonds that govern electronic conduction. We observe experimentally and from first-principles theory an asymmetric response of the structural properties of the films to the sign of the surface charge, which results from a strong interplay betweenmore » electrostatic and mechanical boundary conditions governing the system. The structural response results in ionic buckling in the near-surface NiO₂ planes for films terminated with negatively charged NiO₂ and bulklike NiO₂ planes for films terminated with positively charged LaO planes. The ability to modify transport properties by the deposition of a single atomic layer can be used as a guiding principle for nanoscale device fabrication.« less

  12. Effect of Surface Termination on the Electonic Properties of LaNiO? Films

    SciTech Connect (OSTI)

    Kumah, Divine P.; Malashevich, Andrei; Disa, Ankit S.; Arena, Dario A.; Walker, Fred J.; Ismail-Beigi, Sohrab; Ahn, Charles H.

    2014-11-06

    The electronic and structural properties of thin LaNiO? films grown by using molecular beam epitaxy are studied as a function of the net ionic charge of the surface terminating layer. We demonstrate that electronic transport in nickelate heterostructures can be manipulated through changes in the surface termination due to a strong coupling of the surface electrostatic properties to the structural properties of the NiO bonds that govern electronic conduction. We observe experimentally and from first-principles theory an asymmetric response of the structural properties of the films to the sign of the surface charge, which results from a strong interplay between electrostatic and mechanical boundary conditions governing the system. The structural response results in ionic buckling in the near-surface NiO? planes for films terminated with negatively charged NiO? and bulklike NiO? planes for films terminated with positively charged LaO planes. The ability to modify transport properties by the deposition of a single atomic layer can be used as a guiding principle for nanoscale device fabrication.

  13. Process for producing radiation-induced self-terminating protective coatings on a substrate

    DOE Patents [OSTI]

    Klebanoff, Leonard E. (Dublin, CA)

    2001-01-01

    A gas and radiation are used to produce a protective coating that is substantially void-free on the molecular scale, self-terminating, and degradation resistant. The process can be used to deposit very thin (.apprxeq.5-20 .ANG.) coatings on critical surfaces needing protection from degradative processes including, corrosion and contamination.

  14. Offshore refrigerated LPG loading/unloading terminal using a CALM buoy

    SciTech Connect (OSTI)

    Bonjour, E.L.; Simon, J.M.

    1985-03-01

    In existing Liquefied Petroleum Gases terminals, the transfer of liquefied gases to the tanker is performed via articulated loading arms or flexible hoses, working under quasistatic conditions. The tanker has to be firmly moored alongside a jetty or a process barge in a protected area (such as a harbour in most cases). This paper gives the main results of the development of an offshore refrigerated LPG (-48/sup 0/C) loading/unloading system, using a CALM buoy and LPG floating hoses working under dynamic conditions. The aim of this new concept is to replace the standard harbour structure for loading/unloading refrigerated LPG and to provide a considerable reduction in investments and a greater flexibility regarding the terminal location. The main components of that terminal have been designed so as to enable the loading of a 75 000 cubic meter LPG carrier in 15 hours. The results of static and dynamic low temperature tests on a LPG swivel joint for CALM buoy and LPG floating hoses show that such a SPM terminal is now a realistic solution.

  15. Export support of renewable energy industries. Task number 1, deliverable number 3. Final report

    SciTech Connect (OSTI)

    1998-01-14

    The United States Export Council for Renewable Energy (US/ECRE), a consortium of six industry associations, promotes the interests of the renewable energy and energy efficiency member companies which provide goods and services in biomass, geothermal, hydropower, passive solar, photovoltaics, solar thermal, wind, wood energy, and energy efficiency technologies. US/ECRE`s mission is to catalyze export markets for renewable energy and energy efficiency technologies worldwide. Under this grant, US/ECRE has conducted a number of in-house activities, as well as to manage activities by member trade associations, affiliate organizations and non-member contractors and consultants. The purpose of this document is to report on task coordination and effectiveness.

  16. Export support of renewable energy industries, grant number 1, deliverable number 3. Final report

    SciTech Connect (OSTI)

    1998-01-14

    The United States Export Council for Renewable Energy (US/ECRE), a consortium of six industry associations, promotes the interests of the renewable energy and energy efficiency member companies which provide goods and services in biomass, geothermal, hydropower, passive solar, photovoltaics, solar thermal, wind, wood energy, and energy efficiency technologies. US/ECRE`s mission is to catalyze export markets for renewable energy and energy efficiency technologies worldwide. Under this grant, US/ECRE has conducted a number of in-house activities, as well as to manage activities by member trade associations, affiliate organizations and non-member contractors and consultants. The purpose of this document is to report on grant coordination and effectiveness.

  17. Proactive investigation of hydrocarbons released into a linked groundwater-surfacewater hydrologic system: Chevron Estero Marine Terminal

    SciTech Connect (OSTI)

    Tormey, D.; Waldron, J.; Culbertson, D.

    1996-12-31

    When regulatory concern is high, it is critical to address potential ecological impacts early, and hence {open_quotes}close the door{close_quotes} on further unnecessary studies, as illustrated by the Chevron Estero Marine Terminal case study. Cutter stock (diesel-like hydrocarbons) leaked from a facility sump, reached the water table, and migrated laterally an unknown distance. Media reports led to heightened public and regulatory concern, and the information gap led to worst-case assumptions about the extent and impact of the release to the biota of a nearby creek (Toro Creek). Chevron undertook a rapid assessment with two goals: define the extent of cutter stock in soil and groundwater, and close the door on expensive biological studies of Toro Creek. The assessment consisted of installing a large number of small-diameter soil borings and temporary well points, monitor wells, and analyzing soil, groundwater, and hydraulic gradient. The information gap was very rapidly filled with the following comprehensive picture: (1) the cutter stock had mixed with heavy crude oil, was highly adsorptive to soil and practically insoluble in water; (2) the cutter stock had not reached Toro Creek; (3) Toro Creek is always a losing stream, hydraulically connected to groundwater beneath the Chevron facility; (4) the groundwater basin is isolated by bedrock boundaries. Early attention to Toro Creek and the Pacific Ocean, and open communication with concerned agencies effectively limited the investigation to soil and water.

  18. OVERPRESSURE BY SYSTEM DESIGN APPROVAL FORM PS-2 GENERAL Pressure System Number:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OVERPRESSURE BY SYSTEM DESIGN APPROVAL FORM PS-2 GENERAL Pressure System Number: Pressure System Name: Design Authority: OVERPRESSURE BY SYSTEM DESIGN REPORT CONTAINS: (check if complete) Reason for using overprotection by design Detailed failure analysis by multidisciplinary team Detailed analysis to determine maximum credible pressure Requirements for periodic inspections and testing of controls, procedures and instrumentation APPROVAL: Comments: Pressure Systems Committee Chair signature:

  19. Property:ASHRAE 169 Climate Zone Number | Open Energy Information

    Open Energy Info (EERE)

    5 + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + Climate Zone Number 3 + Adams County, Colorado ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adams County,...

  20. Morphology and chemical termination of HF-etched Si{sub 3}N{sub 4} surfaces

    SciTech Connect (OSTI)

    Liu, Li-Hong; Debenedetti, William J. I.; Peixoto, Tatiana; Gokalp, Sumeyra; Shafiq, Natis; Veyan, Jean-François; Chabal, Yves J.; Michalak, David J.; Hourani, Rami

    2014-12-29

    Several reports on the chemical termination of silicon nitride films after HF etching, an important process in the microelectronics industry, are inconsistent claiming N-H{sub x}, Si-H, or fluorine termination. An investigation combining infrared and x-ray photoelectron spectroscopies with atomic force and scanning electron microscopy imaging reveals that under some processing conditions, salt microcrystals are formed and stabilized on the surface, resulting from products of Si{sub 3}N{sub 4} etching. Rinsing in deionized water immediately after HF etching for at least 30 s avoids such deposition and yields a smooth surface without evidence of Si-H termination. Instead, fluorine and oxygen are found to terminate a sizeable fraction of the surface in the form of Si-F and possibly Si-OH bonds. The relatively unique fluorine termination is remarkably stable in both air and water and could lead to further chemical functionalization pathways.

  1. Convergent synthesis of proteins by kinetically controlled ligation

    DOE Patents [OSTI]

    Kent, Stephen (Chicago, IL); Pentelute, Brad (Chicago, IL); Bang, Duhee (Boston, MA); Johnson, Erik (Chicago, IL); Durek, Thomas (Chicago, IL)

    2010-03-09

    The present invention concerns methods and compositions for synthesizing a polypeptide using kinetically controlled reactions involving fragments of the polypeptide for a fully convergent process. In more specific embodiments, a ligation involves reacting a first peptide having a protected cysteyl group at its N-terminal and a phenylthioester at its C-terminal with a second peptide having a cysteine residue at its N-termini and a thioester at its C-termini to form a ligation product. Subsequent reactions may involve deprotecting the cysteyl group of the resulting ligation product and/or converting the thioester into a thiophenylester.

  2. Modeling the Number of Ignitions Following an Earthquake: Developing

    Office of Environmental Management (EM)

    Prediction Limits for Overdispersed Count Data | Department of Energy the Number of Ignitions Following an Earthquake: Developing Prediction Limits for Overdispersed Count Data Modeling the Number of Ignitions Following an Earthquake: Developing Prediction Limits for Overdispersed Count Data Modeling the Number of Ignitions Following an Earthquake: Developing Prediction Limits for Overdispersed Count Data Authors: Elizabeth J. Kelly and Raymond N. Tell PDF icon Modeling the Number of

  3. Non-synchronous control of self-oscillating resonant converters

    DOE Patents [OSTI]

    Glaser, John Stanley (Niskayuna, NY); Zane, Regan Andrew (Scotia, NY)

    2002-01-01

    A self-oscillating switching power converter has a controllable reactance including an active device connected to a reactive element, wherein the effective reactance of the reactance and the active device is controlled such that the control waveform for the active device is binary digital and is not synchronized with the switching converter output frequency. The active device is turned completely on and off at a frequency that is substantially greater than the maximum frequency imposed on the output terminals of the active device. The effect is to vary the average resistance across the active device output terminals, and thus the effective output reactance, thereby providing converter output control, while maintaining the response speed of the converter.

  4. Multi-mode ultrasonic welding control and optimization

    DOE Patents [OSTI]

    Tang, Jason C.H.; Cai, Wayne W

    2013-05-28

    A system and method for providing multi-mode control of an ultrasonic welding system. In one embodiment, the control modes include the energy of the weld, the time of the welding process and the compression displacement of the parts being welded during the welding process. The method includes providing thresholds for each of the modes, and terminating the welding process after the threshold for each mode has been reached, the threshold for more than one mode has been reached or the threshold for one of the modes has been reached. The welding control can be either open-loop or closed-loop, where the open-loop process provides the mode thresholds and once one or more of those thresholds is reached the welding process is terminated. The closed-loop control provides feedback of the weld energy and/or the compression displacement so that the weld power and/or weld pressure can be increased or decreased accordingly.

  5. Social Security Number Reduction Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Social Security Number Reduction Project Social Security Number Reduction Project The document below provides information regarding acceptable uses of the Social Security Number (SSN). PDF icon Baseline Inventory.pdf More Documents & Publications DOE Guidance on the Use of the SSN Manchester Software 1099 Reporting PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory

  6. Stormwater Controls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stormwater Controls Stormwater Controls Originally built to provide drinking water, the Los Alamos Canyon Reservoir now serves to keep flow at safe levels and slow down flood impacts. August 1, 2013 Los Alamos Canyon Reservoir Los Alamos Canyon Reservoir

  7. Project Controls

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

  8. Bi-directional power control system for voltage converter

    DOE Patents [OSTI]

    Garrigan, Neil Richard (Niskayuna, NY); King, Robert Dean (Schenectady, NY); Schwartz, James Edward (Slingerlands, NY)

    1999-01-01

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals.

  9. Bi-directional power control system for voltage converter

    DOE Patents [OSTI]

    Garrigan, N.R.; King, R.D.; Schwartz, J.E.

    1999-05-11

    A control system for a voltage converter includes: a power comparator for comparing a power signal on input terminals of the converter with a commanded power signal and producing a power comparison signal; a power regulator for transforming the power comparison signal to a commanded current signal; a current comparator for comparing the commanded current signal with a measured current signal on output terminals of the converter and producing a current comparison signal; a current regulator for transforming the current comparison signal to a pulse width modulator (PWM) duty cycle command signal; and a PWM for using the PWM duty cycle command signal to control electrical switches of the converter. The control system may further include: a command multiplier for converting a voltage signal across the output terminals of the converter to a gain signal having a value between zero (0) and unity (1), and a power multiplier for multiplying the commanded power signal by the gain signal to provide a limited commanded power signal, wherein power comparator compares the limited commanded power signal with the power signal on the input terminals. 10 figs.

  10. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOE Patents [OSTI]

    Schrodi, Yann

    2013-07-09

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  11. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOE Patents [OSTI]

    Schrodi, Yann

    2015-09-22

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  12. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOE Patents [OSTI]

    Schrodi, Yann (Agoura Hills, CA)

    2011-11-29

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  13. A valiant little terminal: A VLT user`s manual. Revision 4

    SciTech Connect (OSTI)

    Weinstein, A.

    1992-08-01

    VLT came to be used at SLAC (Stanford Linear Accelerator Center), because SLAC wanted to assess the Amiga`s usefulness as a color graphics terminal and T{sub E}X workstation. Before the project could really begin, the people at SLAC needed a terminal emulator which could successfully talk to the IBM 3081 (now the IBM ES9000-580) and all the VAXes on the site. Moreover, it had to compete in quality with the Ann Arbor Ambassador GXL terminals which were already in use at the laboratory. Unfortunately, at the time there was no commercial program which fit the bill. Luckily, Willy Langeveld had been independently hacking up a public domain VT100 emulator written by Dave Wecker et al. and the result, VLT, suited SLAC`s purpose. Over the years, as the program was debugged and rewritten, the original code disappeared, so that now, in the present version of VLT, none of the original VT100 code remains.

  14. Hydrogen-terminated silicon nanowire photocatalysis: Benzene oxidation and methyl red decomposition

    SciTech Connect (OSTI)

    Lian, Suoyuan; School of Chemical Engineering and Materials, Dalian Polytechnic University, Dalian 116034 ; Tsang, Chi Him A.; Centre of Super Diamond and Advanced Films, City University of Hong Kong, Hong Kong ; Kang, Zhenhui; Liu, Yang; Wong, Ningbew; Lee, Shuit-Tong; Centre of Super Diamond and Advanced Films, City University of Hong Kong, Hong Kong

    2011-12-15

    Graphical abstract: H-SiNWs can catalyze hydroxylation of benzene and degradation of methyl red under visible light irradiation. Highlights: Black-Right-Pointing-Pointer Hydrogen-terminated silicon nanowires were active photocatalyst in the hydroxylation of benzene under light. Black-Right-Pointing-Pointer Hydrogen-terminated silicon nanowires were also effective in the decomposition of methyl red dye. Black-Right-Pointing-Pointer The Si/SiO{sub x} core-shell structure is the main reason of the obtained high selectivity during the hydroxylation. -- Abstract: Hydrogen-terminated silicon nanowires (H-SiNWs) were used as heterogeneous photocatalysts for the hydroxylation of benzene and for the decomposition of methyl red under visible light irradiation. The above reactions were monitored by GC-MS and UV-Vis spectrophotometry, respectively, which shows 100% selectivity for the transformation of benzene to phenol. A complete decomposition of a 2 Multiplication-Sign 10{sup -4} M methyl red solution was achieved within 30 min. The high selectivity for the hydroxylation of benzene and the photodecomposition demonstrate the catalytic activity of ultrafine H-SiNWs during nanocatalysis.

  15. Controlled Document Tracking Software

    Energy Science and Technology Software Center (OSTI)

    1992-08-24

    MANTRACK is an automated, controlled document tracking system which does the following and reduces staff time required to perform these tasks: generates transmittal letters/receipts for every controlled copy issued (merged from a current distribution list), tracks the return of transmittal receipts, facilitates the check-in of the large number of transmittal receipts returned (using a barcode reader), generates a reminder list which prompts the cyclic review and evaluation of existing documents, generates overdue reminders for themore » return of past-due transmittal receipts, tracks the number of Procedure Change Directives (PCD) currently in effect for each procedure, generates and maintains current distribution lists for each document, generates a current table of contents when updates to the document (usually a procedure manual) are made.« less

  16. Integrating preconcentrator heat controller

    DOE Patents [OSTI]

    Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

    2007-10-16

    A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

  17. Radiological Control Technician Training

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE-HDBK-1122-2009 (Revised 2013) Module 2.03 Counting Errors and Statistics Instructor's Material Course Title: Radiological Control Technician Module Title: Counting Errors and Statistics Module Number: 2.03 Objectives: (This document, Instructor's Material, is referred to as Instructor's Guide in the Program Management Guide) 2.03.01. Identify five general types of errors that can occur when analyzing radioactive samples, and describe the effect of each source of error on sample

  18. ORISE: Report shows number of health physics degrees for 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    report shows number of health physics degrees increased for graduates, decreased for undergraduates in 2010 Decreased number of B.S. degrees remains higher than levels in the early 2000 FOR IMMEDIATE RELEASE Dec. 20, 2011 FY12-09 OAK RIDGE, Tenn.-The number of health physics graduate degrees increased for both master's and doctoral candidates in 2010, but decreased for bachelor's degrees, says a report released this year by the Oak Ridge Institute for Science and Education. The ORISE report,

  19. Heavy pair production currents with general quantum numbers in

    Office of Scientific and Technical Information (OSTI)

    dimensionally regularized nonrelativistic QCD (Journal Article) | SciTech Connect Heavy pair production currents with general quantum numbers in dimensionally regularized nonrelativistic QCD Citation Details In-Document Search Title: Heavy pair production currents with general quantum numbers in dimensionally regularized nonrelativistic QCD We discuss the form and construction of general color singlet heavy particle-antiparticle pair production currents for arbitrary quantum numbers, and

  20. Developing and Enhancing Workforce Training Programs: Number of Projects by

    Energy Savers [EERE]

    State | Department of Energy Developing and Enhancing Workforce Training Programs: Number of Projects by State Developing and Enhancing Workforce Training Programs: Number of Projects by State Map of the United States showing the location of Workforce Training Projects, funded through the American Recovery and Reinvestment Act PDF icon Developing and Enhancing Workforce Training Programs: Number of Projects by State More Documents & Publications Workforce Development Wind Projects

  1. Radiological Control

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-06-16

    The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs.

  2. Modeling the Number of Ignitions Following an Earthquake: Developing...

    Office of Environmental Management (EM)

    Developing Prediction Limits for Overdispersed Count Data Authors: Elizabeth J. Kelly and Raymond N. Tell PDF icon Modeling the Number of Ignitions Following an Earthquake:...

  3. Conducting Your Annual VPP Self-Evaluation by the Numbers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... VPP Annual Self-evaluation: By the Numbers Example pre-meeting training 5. Picking who to interview * Fixed - Pick by positionlocation - Safety Council Chair - Union Steward - ...

  4. Dependence of Band Renormalization Effect on the Number of Copper...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: Submitted to Physical Review Letters; Journal Volume: 103; Journal Issue: 6 ...

  5. Request for Proposals Number RHB-5-52483

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 National Renewable Energy Laboratory Managed and Operated by the Alliance for Sustainable Energy, LLC Request for Proposals Number RHB-5-52483 "Subsurface Utility Engineering...

  6. Quark-Gluon Plasma Model and Origin of Magic Numbers

    SciTech Connect (OSTI)

    Ghahramany, N.; Ghanaatian, M.; Hooshmand, M.

    2008-04-21

    Using Boltzman distribution in a quark-gluon plasma sample it is possible to obtain all existing magic numbers and their extensions without applying the spin and spin-orbit couplings. In this model it is assumed that in a quark-gluon thermodynamic plasma, quarks have no interactions and they are trying to form nucleons. Considering a lattice for a central quark and the surrounding quarks, using a statistical approach to find the maximum number of microstates, the origin of magic numbers is explained and a new magic number is obtained.

  7. Number of NERSC Users and Projects Through the Years

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Through the Years Careers Visitor Info Web Policies Home About Usage and User Demographics Users and Projects Through the Years Number of NERSC Users and Projects Through...

  8. Temporary EPA ID Number Request | Open Energy Information

    Open Energy Info (EERE)

    Temporary EPA ID Number RequestLegal Abstract A developer that may "generate hazardous waste only from an episodic event" may instead apply for a temporary hazardous waste...

  9. Post-treatment control of HIV infection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Conway, Jessica M.; Perelson, Alan S.

    2015-04-13

    Antiretroviral therapy (ART) for HIV is not a cure. However, recent studies suggest that ART, initiated early during primary infection, may induce post-treatment control (PTC) of HIV infection with HIV RNA maintained at <50 copies per mL. We investigate the hypothesis that ART initiated early during primary infection permits PTC by limiting the size of the latent reservoir, which, if small enough at treatment termination, may allow the adaptive immune response to prevent viral rebound (VR) and control infection. We use a mathematical model of within host HIV dynamics to capture interactions among target cells, productively infected cells, latently infectedmore » cells, virus, and cytotoxic T lymphocytes (CTLs). Analysis of our model reveals a range in CTL response strengths where a patient may show either VR or PTC, depending on the size of the latent reservoir at treatment termination. Below this range, patients will always rebound, whereas above this range, patients are predicted to behave like elite controllers. As a result, using data on latent reservoir sizes in patients treated during primary infection, we also predict population-level VR times for non-controllers consistent with observations.« less

  10. Post-treatment control of HIV infection

    SciTech Connect (OSTI)

    Conway, Jessica M.; Perelson, Alan S.

    2015-04-13

    Antiretroviral therapy (ART) for HIV is not a cure. However, recent studies suggest that ART, initiated early during primary infection, may induce post-treatment control (PTC) of HIV infection with HIV RNA maintained at <50 copies per mL. We investigate the hypothesis that ART initiated early during primary infection permits PTC by limiting the size of the latent reservoir, which, if small enough at treatment termination, may allow the adaptive immune response to prevent viral rebound (VR) and control infection. We use a mathematical model of within host HIV dynamics to capture interactions among target cells, productively infected cells, latently infected cells, virus, and cytotoxic T lymphocytes (CTLs). Analysis of our model reveals a range in CTL response strengths where a patient may show either VR or PTC, depending on the size of the latent reservoir at treatment termination. Below this range, patients will always rebound, whereas above this range, patients are predicted to behave like elite controllers. As a result, using data on latent reservoir sizes in patients treated during primary infection, we also predict population-level VR times for non-controllers consistent with observations.

  11. NUCLEAR REACTOR CONTROL SYSTEM

    DOE Patents [OSTI]

    Howard, D.F.; Motta, E.E.

    1961-06-27

    A method for controlling the excess reactivity in a nuclear reactor throughout the core life while maintaining the neutron flux distribution at the desired level is described. The control unit embodies a container having two electrodes of different surface area immersed in an electrolytic solution of a good neutron sbsorbing metal ion such as boron, gadolinium, or cadmium. Initially, the neutron absorber is plated on the larger electrode to control the greater neutron flux of a freshly refueled core. As the fuel burns up, the excess reactivity decreases and the neutron absorber is then plated onto the smaller electrode so that the number of neutrons absorbed also decreases. The excess reactivity in the core may thus be maintained without the introduction of serious perturbations in the neutron flux distributibn.

  12. Coastal energy transportation study, phase ii, volume 1: a study of OCS onshore support bases and coal export terminals

    SciTech Connect (OSTI)

    Cribbins, P.D.

    1981-08-01

    This study concentrates on siting alternatives for on-shore support bases for Outer Continental Shelf (OCS) oil and gas exploration and coal export terminals. Sixteen alternative OCS sites are described, and a parametric analysis is utilized to select the most promising sites. Site-specific recommendations regarding infrastructure requirements and transportation impacts are provided. Eleven alternative coal terminal sites are identified and assessed for their potential impacts.

  13. Issues Pertaining to the Termination of Ms. Donna Busche, a Contractor Employee at the Waste Treatment Plant Project

    Office of Environmental Management (EM)

    REVIEW Issues Pertaining to the Termination of Ms. Donna Busche, a Contractor Employee at the Waste Treatment Plant Project DOE/IG-0923 October 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 October 17, 2014 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: Special Review of "Issues Pertaining to the Termination of Ms. Donna Busche, a Contractor Employee at the Waste

  14. Lower Columbia River Salmon Business Plan for Terminal Fisheries : Final Report.

    SciTech Connect (OSTI)

    Salmon For All

    1996-07-01

    Salmon fishing in the Northwest requires a public-private partnership. The public through its decision-makers, agencies, and laws states it will do all that is necessary to protect and preserve the valuable salmon resource. Yet, the public side of the partnership is broken. The Columbia River salmon fishing industry, with over 140 years of documented history, is at a crossroads. This report explores a variety of issues, concerns, and ideas related to terminal fishery development. In some cases recommendations are made. In addition, options are explored with an understanding that those designated as decision-makers must make decisions following considerable discussion and reflection.

  15. Compositions of Stardust Impact Tracks and Terminal Particles in Aerogel by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hard X-ray Microprobe at SSRL Compositions of Stardust Impact Tracks and Terminal Particles in Aerogel by Hard X-ray Microprobe at SSRL Until 1974, Comet 81P/Wild 2 orbited beyond Jupiter, but a gravitational kick from that planet altered its orbit transforming it into a short-period comet in the inner solar system. This allowed NASA's solar-powered Stardust spacecraft to intercept the comet's tail within the orbit of Mars. The fly-by was completed at a relative speed of 6.1 km/s passing

  16. Spin transport and precession in graphene measured by nonlocal and three-terminal methods

    SciTech Connect (OSTI)

    Dankert, André Kamalakar, Mutta Venkata; Bergsten, Johan; Dash, Saroj P.

    2014-05-12

    We investigate the spin transport and precession in graphene by using the Hanle effect in nonlocal and three-terminal measurement geometries. Identical spin lifetimes, spin diffusion lengths, and spin polarizations are observed in graphene devices for both techniques over a wide range of temperatures. The magnitude of the spin signals is well explained by spin transport models. These observations rules out any signal enhancements or additional scattering mechanisms at the interfaces for both geometries. This validates the applicability of both the measurement methods for graphene based spintronics devices and their reliable extractions of spin parameters.

  17. Time-resolved energy transfer from single chloride-terminated nanocrystals to graphene

    SciTech Connect (OSTI)

    Ajayi, O. A. E-mail: cww2104@columbia.edu; Wong, C. W. E-mail: cww2104@columbia.edu; Anderson, N. C.; Wolcott, A.; Owen, J. S.; Cotlet, M.; Petrone, N.; Hone, J.; Gu, T.; Gesuele, F.

    2014-04-28

    We examine the time-resolved resonance energy transfer of excitons from single n-butyl amine-bound, chloride-terminated nanocrystals to two-dimensional graphene through time-correlated single photon counting. The radiative biexponential lifetime kinetics and blinking statistics of the individual surface-modified nanocrystal elucidate the non-radiative decay channels. Blinking modification as well as a 4 reduction in spontaneous emission were observed with the short chloride and n-butylamine ligands, probing the energy transfer pathways for the development of graphene-nanocrystal nanophotonic devices.

  18. STANDING ORDER 1. Standing Order Number: EP-DIV-S0-20222, R.O

    Office of Environmental Management (EM)

    STANDING ORDER 1. Standing Order Number: EP-DIV-S0-20222, R.O 2. Standing Order Type: (check one) [8J Division D Facility 3. Applicable Facilities: All EWMO Facilities 4. Standing Order Title: EWMO Legacy TRU Waste Pause 5. Distribution List: (By Functional Title) TA-54 Timely Order Book, Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Timely Order Book, Radioassay and Nondestructive Testing (RANT) Facility Timely Order Book, and Environmental Programs (EP) Document Control

  19. DATE: October 3, 2003 Audit Report Number: OAS-L-04-01 REPLY TO

    Office of Environmental Management (EM)

    8,, United ,tates Government Department of Energ memorandum DATE: October 3, 2003 Audit Report Number: OAS-L-04-01 REPLY TO ATTN OF: IG-35 (A03DC010) SUBJECT: Audit of "Audit of Resolution of Safety Deficiencies" TO: Assistant Secretary for Environmental Management Assistant Secretary for Environment, Safety and Health Director, Policy and Internal Controls Management Director, Office of Nuclear Energy, Science and Technology Director, Office of Science INTRODUCTION AND OBJECTIVE The

  20. Version Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Control at NERSC Jack Deslippe Options at NERSC SVN Great for small projects with few developers working on a single branch. GIT Great for big projects with many developers...

  1. Table B10. Employment Size Category, Number of Buildings, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Employment Size Category, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Number of Workers" ,,"Fewer than 5 Workers","5 to 9 Workers","10 to 19 Workers","20 to 49 Workers","50 to 99 Workers","100 to 249 Workers","250 or More Workers" "All Buildings ................",4657,2376,807,683,487,174,90,39 "Building Floorspace" "(Square

  2. Mailing Addresses and Information Numbers for Operations, Field, and Site

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offices | Department of Energy About Energy.gov » Mailing Addresses and Information Numbers for Operations, Field, and Site Offices Mailing Addresses and Information Numbers for Operations, Field, and Site Offices Name Telephone Number U.S. Department of Energy Ames Site Office 111 TASF, Iowa State University Ames, Iowa 50011 515-294-9557 U.S. Department of Energy Argonne Site Office 9800 S. Cass Avenue Argonne, IL 60439 630-252-2000 U.S. Department of Energy Berkeley Site Office Berkeley

  3. Modeling the Number of Ignitions Following an Earthquake: Developing...

    Office of Environmental Management (EM)

    the likelihood of various fire scenarios. The first component of the approach is a statistical model to predict the number of ignitions for a new earthquake event. This model is...

  4. Property:NumberOfUsers | Open Energy Information

    Open Energy Info (EERE)

    property "NumberOfUsers" Showing 25 pages using this property. (previous 25) (next 25) H HOMER + 578 + HOMER + 14 + HOMER + 1 + HOMER + 34 + HOMER + 6 + HOMER + 68 + HOMER + 89...

  5. Number of NERSC Users and Projects Through the Years

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users and Projects Through the Years Careers Visitor Info Web Policies Home » About » Usage and User Demographics » Users and Projects Through the Years Number of NERSC Users and Projects Through the Years These numbers exclude staff and vendor accounts. Year Number of Users Number of Projects 2014 5,950 846 2013 5.191 768 2012 4,659 728 2011 4,934 641 2010 4,294 540 2009 3,731 506 2008 3,271 464 2007 3,111 404 2006 2,978 385 2005 2,677 348 2004 2,416 347 2003 2,323 318 2002 2,594 337 2001

  6. Property:Buildings/ReportNumber | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type String. Pages using the property "BuildingsReportNumber" Showing 2 pages using this property. G General Merchandise 50%...

  7. Parameterized reduced-order models using hyper-dual numbers....

    Office of Scientific and Technical Information (OSTI)

    This report presents a methodology for developing parameterized ROMs, which is based on ... DOE Contract Number: AC04-94AL85000 Resource Type: Technical Report Research Org: Sandia ...

  8. Alaska Maximum Number of Active Crews Engaged in Seismic Surveying...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Seismic Surveying (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 13 4 23 12...

  9. Physical Modeling of Spinel Crystals Settling at Low Reynolds Numbers

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Physical Modeling of Spinel Crystals Settling at Low Reynolds Numbers Citation Details In-Document Search Title: Physical Modeling of Spinel Crystals Settling at Low Reynolds Numbers The crystallization of large octahedral crystals of spinel during the high-level waste (HLW) vitrification process poses a potential danger to electrically heated ceramic melters. Large spinel crystals rapidly settle under gravitational attraction and

  10. Reducing the Particulate Emission Numbers in DI Gasoline Engines |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy the Particulate Emission Numbers in DI Gasoline Engines Reducing the Particulate Emission Numbers in DI Gasoline Engines Formation of droplets was minimized through optimization of fuel vaporization and distribution avoiding air/fuel zones richer than stoichiometric and temperatures that promote particle formation PDF icon deer10_klindt.pdf More Documents & Publications Bosch Powertrain Technologies Vehicle Emissions Review - 2012 Ethanol Effects on Lean-Burn and

  11. Treatment of the intrinsic Hamiltonian in particle-number nonconserving

    Office of Scientific and Technical Information (OSTI)

    theories (Journal Article) | SciTech Connect Treatment of the intrinsic Hamiltonian in particle-number nonconserving theories Citation Details In-Document Search Title: Treatment of the intrinsic Hamiltonian in particle-number nonconserving theories Authors: Hergert, H. ; Roth, R. Publication Date: 2009-11-01 OSTI Identifier: 1209398 Type: Published Article Journal Name: Physics Letters. Section B Additional Journal Information: Journal Volume: 682; Journal Issue: 1; Journal ID: ISSN

  12. California's Efforts for Advancing Ultrafine Particle Number Measurements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Clean Diesel Exhaust | Department of Energy Efforts for Advancing Ultrafine Particle Number Measurements for Clean Diesel Exhaust California's Efforts for Advancing Ultrafine Particle Number Measurements for Clean Diesel Exhaust Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_huai.pdf More Documents & Publications Measurement of diesel solid

  13. Record Number Attend EM's Science Alliance | Department of Energy

    Energy Savers [EERE]

    Record Number Attend EM's Science Alliance Record Number Attend EM's Science Alliance October 30, 2013 - 12:00pm Addthis A record 1,200 students and educators visited EM’s Portsmouth Gaseous Diffusion Plant for the fourth annual Science Alliance. A record 1,200 students and educators visited EM's Portsmouth Gaseous Diffusion Plant for the fourth annual Science Alliance. PIKETON, Ohio - More than 1,200 students and educators from 23 southern Ohio schools visited EM's Portsmouth Gaseous

  14. Video: Recovery Act by the Numbers | Department of Energy

    Energy Savers [EERE]

    Recovery Act by the Numbers Video: Recovery Act by the Numbers February 17, 2016 - 11:30am Addthis Watch this video to learn how the Recovery Act helped jumpstart America's clean energy economy. | Video by Simon Edelman and graphics by Carly Wilkins, Energy Department. Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs Simon Edelman Simon Edelman Chief Creative Officer Carly Wilkins Carly Wilkins Multimedia Designer MORE ON THE RECOVERY ACT MAP: Learn about the impact

  15. INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers |

    Energy Savers [EERE]

    Department of Energy INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers INTERACTIVE: Energy Intensity and Carbon Intensity by the Numbers February 19, 2016 - 11:53am Addthis Daniel Wood Daniel Wood Data Visualization and Cartographic Specialist, Office of Public Affairs Watch our CO2 drop dramatically compared to other countries in this interactive Curious about the total amount of carbon we emit into the atmosphere? Compare countries from around the globe using this tool. If

  16. The terminator "toy" chemistry test: A simple tool to assess errors in transport schemes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lauritzen, P. H.; Conley, A. J.; Lamarque, J. -F.; Vitt, F.; Taylor, M. A.

    2015-05-04

    This test extends the evaluation of transport schemes from prescribed advection of inert scalars to reactive species. The test consists of transporting two interacting chemical species in the Nair and Lauritzen 2-D idealized flow field. The sources and sinks for these two species are given by a simple, but non-linear, "toy" chemistry that represents combination (X+X → X2) and dissociation (X2 → X+X). This chemistry mimics photolysis-driven conditions near the solar terminator, where strong gradients in the spatial distribution of the species develop near its edge. Despite the large spatial variations in each species, the weighted sum XT = X+2X2more » should always be preserved at spatial scales at which molecular diffusion is excluded. The terminator test demonstrates how well the advection–transport scheme preserves linear correlations. Chemistry–transport (physics–dynamics) coupling can also be studied with this test. Examples of the consequences of this test are shown for illustration.« less

  17. The terminator "toy" chemistry test: A simple tool to assess errors in transport schemes

    SciTech Connect (OSTI)

    Lauritzen, P. H.; Conley, A. J.; Lamarque, J. -F.; Vitt, F.; Taylor, M. A.

    2015-05-04

    This test extends the evaluation of transport schemes from prescribed advection of inert scalars to reactive species. The test consists of transporting two interacting chemical species in the Nair and Lauritzen 2-D idealized flow field. The sources and sinks for these two species are given by a simple, but non-linear, "toy" chemistry that represents combination (X+X → X2) and dissociation (X2 → X+X). This chemistry mimics photolysis-driven conditions near the solar terminator, where strong gradients in the spatial distribution of the species develop near its edge. Despite the large spatial variations in each species, the weighted sum XT = X+2X2 should always be preserved at spatial scales at which molecular diffusion is excluded. The terminator test demonstrates how well the advection–transport scheme preserves linear correlations. Chemistry–transport (physics–dynamics) coupling can also be studied with this test. Examples of the consequences of this test are shown for illustration.

  18. Radiological Control

    Energy Savers [EERE]

    DOE-STD-1098-2008 October 2008 DOE STANDARD RADIOLOGICAL CONTROL U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ii DOE-STD-1098-2008 This document is available on the Department of Energy Technical Standards Program Website at http://www.standards.doe.gov/ DOE-STD-1098-2008 Radiological Control DOE Policy October 2008 iii Foreword The Department of Energy (DOE) has developed this Standard to assist

  19. LNG fire and vapor control system technologies

    SciTech Connect (OSTI)

    Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

    1982-06-01

    This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

  20. IMPACT OF CAPILLARY AND BOND NUMBERS ON RELATIVE PERMEABILITY

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2002-09-30

    Recovery and recovery rate of oil, gas and condensates depend crucially on their relative permeability. Relative permeability in turn depends on the pore structure, wettability and flooding conditions, which can be represented by a set of dimensionless groups including capillary and bond numbers. The effect of flooding conditions on drainage relative permeabilities is not well understood and is the overall goal of this project. This project has three specific objectives: to improve the centrifuge relative permeability method, to measure capillary and bond number effects experimentally, and to develop a pore network model for multiphase flows. A centrifuge has been built that can accommodate high pressure core holders and x-ray saturation monitoring. The centrifuge core holders can operate at a pore pressure of 6.9 MPa (1000 psi) and an overburden pressure of 17 MPa (2500 psi). The effect of capillary number on residual saturation and relative permeability in drainage flow has been measured. A pore network model has been developed to study the effect of capillary numbers and viscosity ratio on drainage relative permeability. Capillary and Reynolds number dependence of gas-condensate flow has been studied during well testing. A method has been developed to estimate relative permeability parameters from gas-condensate well test data.