Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

End Use and Fuel Certification  

Broader source: Energy.gov [DOE]

Breakout Session 2: Frontiers and Horizons Session 2–B: End Use and Fuel Certification John Eichberger, Vice President of Government Relations, National Association for Convenience Stores

2

,"Colorado Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Consumption by End Use",6,"Monthly","112014","1151989" ,"Release...

3

End-use taxes: Current EIA practices  

SciTech Connect (OSTI)

There are inconsistencies in the EIA published end-use price data with respect to Federal, state, and local government sales and excise taxes; some publications include end-use taxes and others do not. The reason for including these taxes in end-use energy prices is to provide consistent and accurate information on the total cost of energy purchased by the final consumer. Preliminary estimates are made of the effect on prices (bias) reported in SEPER (State Energy Price and Expenditure Report) resulting from the inconsistent treatment of taxes. EIA has undertaken several actions to enhance the reporting of end-use energy prices.

Not Available

1994-08-17T23:59:59.000Z

4

Biomass Resource Allocation among Competing End Uses  

SciTech Connect (OSTI)

The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

2012-05-01T23:59:59.000Z

5

Healthcare Energy End-Use Monitoring  

SciTech Connect (OSTI)

NREL partnered with two hospitals (MGH and SUNY UMU) to collect data on the energy used for multiple thermal and electrical end-use categories, including preheat, heating, and reheat; humidification; service water heating; cooling; fans; pumps; lighting; and select plug and process loads. Additional data from medical office buildings were provided for an analysis focused on plug loads. Facility managers, energy managers, and engineers in the healthcare sector will be able to use these results to more effectively prioritize and refine the scope of investments in new metering and energy audits.

Sheppy, M.; Pless, S.; Kung, F.

2014-08-01T23:59:59.000Z

6

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End Uses of Fuel3 End43.

7

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End Uses of Fuel3

8

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End Uses of Fuel38 End

9

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End Uses of Fuel38 End7

10

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End Uses of Fuel38 End78

11

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End Uses of Fuel38

12

" Row: End Uses;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End Uses of Fuel388 End

13

Ten Problems  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an overarchingInformationTHERMOANALYTICALSLAC,Ten Problems

14

,"New Mexico Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Consumption by End Use",6,"Monthly","12015","1151989" ,"Release...

15

,"New York Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Consumption by End Use",6,"Monthly","102014","1151989" ,"Release...

16

Monitoring of Electrical End-Use Loads in Commercial Buildings  

E-Print Network [OSTI]

Southern California Edison is currently conducting a program to collect end-use metered data from commercial buildings in its service area. The data will provide actual measurements of end-use loads and will be used in research and in designing...

Martinez, M.; Alereza, T.; Mort, D.

1988-01-01T23:59:59.000Z

17

Canadian Industrial Energy End-use Data and Analysis  

E-Print Network [OSTI]

CIEEDAC Canadian Industrial Energy End-use Data and Analysis Centre Prospectus and Business Plan as part clearinghouse, part depository, and part analysis centre for energy data on the Canadian EXECUTIVE SUMMARY CIEEDAC ii Executive Summary 1. Background The Canadian Industrial Energy End-use Data

18

Residential Behavioral Savings: An Analysis of Principal Electricity End Uses in British Columbia  

E-Print Network [OSTI]

of residential end use electricity consumption for Britishresidential electricity consumption by end use Apply theresidential end use electricity consumption using a

Tiedemann, Kenneth Mr.

2013-01-01T23:59:59.000Z

19

Industrial Steam Power Cycles Final End-Use Classification  

E-Print Network [OSTI]

Final end uses of steam include two major classifications: those uses that condense the steam against heat transfer surfaces to provide heat to an item of process or service equipment; and those that require a mass flow of steam for stripping...

Waterland, A. F.

1983-01-01T23:59:59.000Z

20

Energy End-Use Flow Maps for the Buildings Sector  

SciTech Connect (OSTI)

Graphical presentations of energy flows are widely used within the industrial sector to depict energy production and use. PNNL developed two energy flow maps, one each for the residential and commercial buildings sectors, in response to a need for a clear, concise, graphical depiction of the flows of energy from source to end-use in the building sector.

Belzer, David B.

2006-12-04T23:59:59.000Z

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ris Energy Report 4 Interaction between supply and end-use 4 8 Interaction between supply and end-use  

E-Print Network [OSTI]

of the wholesale power markets has intro- duced market-based pricing for the marginal electricity supply. PricesRisø Energy Report 4 Interaction between supply and end-use 4 8 Interaction between supply and end and consumption is a market issue, in the sense that the market balance is set some time before the physical

22

REFINING AND END USE STUDY OF COAL LIQUIDS  

SciTech Connect (OSTI)

This document summarizes all of the work conducted as part of the Refining and End Use Study of Coal Liquids. There were several distinct objectives set, as the study developed over time: (1) Demonstration of a Refinery Accepting Coal Liquids; (2) Emissions Screening of Indirect Diesel; (3) Biomass Gasification F-T Modeling; and (4) Updated Gas to Liquids (GTL) Baseline Design/Economic Study.

Unknown

2002-01-01T23:59:59.000Z

23

1999 Commercial Buildings Characteristics--End-Use Equipment  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)WyomingSquareEnd-Use Equipment Topics: Energy

24

1999 Commercial Buildings Characteristics--Energy Sources and End Uses  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion Cubic Feet)WyomingSquareEnd-Use Equipment Topics:

25

Table 5.4 End Uses of Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.134 End Uses of Fuel

26

Table 5.5 End Uses of Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.134 End Uses of Fuel5 End

27

Table 5.6 End Uses of Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.134 End Uses of Fuel5 End6

28

Table 5.7 End Uses of Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.134 End Uses of Fuel5

29

Table 5.8 End Uses of Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.134 End Uses of Fuel58 End

30

Realizing Building End-Use Efficiency with Ermerging Technologies |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList?Department of Energy Realizing Building End-Use

31

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End Uses of Fuel

32

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End Uses of Fuel3 End

33

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End Uses of Fuel3 End4

34

End-use energy characterization and conservation potentials at DoD Facilities: An analysis of electricity use at Fort Hood, Texas  

SciTech Connect (OSTI)

This report discusses the application of the LBL`s End-use Disaggregation Algorithm (EDA) to a DoD installation and presents hourly reconciled end-use data for all major building types and end uses. The project initially focused on achieving these objectives and pilot-testing the methodology at Fort Hood, Texas. Fort Hood, with over 5000 buildings was determined to have representative samples of nearly all of the major building types in use on DoD installations. These building types at Fort Hood include: office, administration, vehicle maintenance, shop, hospital, grocery store, retail store, car wash, church, restaurant, single-family detached housing, two and four-plex housings, and apartment building. Up to 11 end uses were developed for each prototype, consisting of 9 electric and 2 gas; however, only electric end uses were reconciled against known data and weather conditions. The electric end uses are space cooling, ventilation, cooking, miscellaneous/plugs, refrigeration, exterior lighting, interior lighting, process loads, and street lighting. The gas end uses are space heating and hot water heating. Space heating energy-use intensities were simulated only. The EDA was applied to 10 separate feeders from the three substations at Fort Hood. The results from the analyses of these ten feeders were extrapolated to estimate energy use by end use for the entire installation. The results show that administration, residential, and the bar-rack buildings are the largest consumers of electricity for a total of 250GWh per year (74% of annual consumption). By end use, cooling, ventilation, miscellaneous, and indoor lighting consume almost 84% of total electricity use. The contribution to the peak power demand is highest by residential sector (35%, 24 MW), followed by administration buildings (30%), and barrack (14%). For the entire Fort Hood installation, cooling is 54% of the peak demand (38 MW), followed by interior lighting at 18%, and miscellaneous end uses by 12%.

Akbari, H.; Konopacki, S.

1995-05-01T23:59:59.000Z

35

End-Use Load and Consumer Assessment Program: Characterizing residential thermal performance from high resolution end-use data  

SciTech Connect (OSTI)

This document is part of a two-volume set describing a series of thermal analyses of the residential buildings monitored under the End-Use Load and Consumer Assessment Program. Volume 1 describes in detail the thermal analysis methodology employed. Volume 2 presents the results of applying the methodology in a series of four distinct analyses: (1) an analysis of the first monitored heating season, 1985--1986; (2) an analysis of the second monitored heating season, (3) a comparison of first- and second-year analyses showing changes in residential consumption with changes in weather and evaluating the ability of the analytical technique to discriminate those changes; and (4) a continuation of the previous analyses evaluating the effects of foundation type and heating system type on the results.

Miller, N.E.; Williamson, M.A.; Bailey, S.A.; Pratt, R.G.; Stokes, G.M.; Sandusky, W.F.; Pearson, E.W.; Roberts, J.S.

1991-06-01T23:59:59.000Z

36

End use energy consumption data base: transportation sector  

SciTech Connect (OSTI)

The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

Hooker, J.N.; Rose, A.B.; Greene, D.L.

1980-02-01T23:59:59.000Z

37

India Energy Outlook: End Use Demand in India to 2020  

SciTech Connect (OSTI)

Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries often poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.

de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

2009-03-30T23:59:59.000Z

38

Rare Earth Elements--End Use and Recyclability Scientific Investigations Report 20115094  

E-Print Network [OSTI]

Rare Earth Elements--End Use and Recyclability Scientific Investigations Report 2011­5094 U outside of China. Photograph by Dan Cordier, U.S. Geological Survey. #12;Rare Earth Elements--End Use materials contained within this report. Suggested citation: Goonan, T.G., 2011, Rare earth elements--End use

39

ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.2  

E-Print Network [OSTI]

4.50 Foreign LBL 7896 ENERGY CONSERVATION: POLICY ISSUES ANDBarriers to Industrial Energy Conservation 2) The Process ofs·------------- 6. END-USE ENERGY CONSERVATION DATA BASE AND

Authors, Various

2011-01-01T23:59:59.000Z

40

Data on energy end-use patterns and energy efficiencies in major CO sub 2 emitting countries  

SciTech Connect (OSTI)

This is a report of the basic data regarding energy end-uses and efficiencies in major CO{sub 2} emitting countries. The task is part of the multi-lab carbon dioxide energy system research program. Fossil energy production and use are the largest anthropogenic source of CO{sub 2} emissions. To gain an insight into the relationship between CO{sub 2} emission and energy use, the global energy consumption patterns and the changing energy efficiencies must be better analyzed and understood. This work attempts to collect and organize the data on energy use and energy efficiency for the ten major CO{sub 2} emitting countries: USA, USSR, the People's Republic of China, Japan, the Federal Republic of Germany, the United Kingdom, France, Canada, Italy, and Australia. A wide variety of information sources have been examined. The data base is presented in tabular format. It is documented by three main parts, the first shows the total final energy consumption by fuel type and end-use sector for each nation. The second shows the detailed energy use by fuel type and function for each end-use sector: residential, commercial, transportation and industrial. The third part shows the country-specific energy balances for electricity generation and use. The data base is a living document and will be updated as additional information becomes available. The data base is to be used to accomplish the ultimate objective of improving the reliability of future CO{sub 2}-emissions estimates. 7 refs., 12 tabs.

Cheng, Hsing C.

1990-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A functional analysis of electrical load curve modelling for some households specific electricity end-uses  

E-Print Network [OSTI]

domestic end-uses, the development of plug-in hybrid and electric vehicles, the increase of heat pumps heating systems such as heat pumps in new building or which will replace old installed fossil fuels based systems; · integration of new end-uses such as Plug-in Electric Vehicles and an always growing number

Paris-Sud XI, Université de

42

String universality in ten dimensions  

E-Print Network [OSTI]

We show that the ${\\cal N}=1$ supergravity theories in ten dimensions with gauge groups $U(1)^{496}$ and $E_8 \\times U(1)^{248}$ are not consistent quantum theories. Cancellation of anomalies cannot be made compatible with supersymmetry and abelian gauge invariance. Thus, in ten dimensions all supersymmetric theories of gravity without known inconsistencies are realized in string theory.

Allan Adams; Oliver DeWolfe; Washington Taylor

2014-10-29T23:59:59.000Z

43

Estimates of Energy Consumption by Building Type and End Use at U.S. Army Installations  

E-Print Network [OSTI]

4. Figure 5-5. 1993 Electricity Consumption Estimates by EndkWh/ft ) 1993 Electricity Consumption Estimates by End Useof Total) 1993 Electricity Consumption Estimates by End Use

Konopacki, S.J.

2010-01-01T23:59:59.000Z

44

Commercial equipment loads: End-Use Load and Consumer Assessment Program (ELCAP)  

SciTech Connect (OSTI)

The Office of Energy Resources of the Bonneville Power Administration is generally responsible for the agency's power and conservation resource planning. As associated responsibility which supports a variety of office functions is the analysis of historical trends in and determinants of energy consumption. The Office of Energy Resources' End-Use Research Section operates a comprehensive data collection program to provide pertinent information to support demand-side planning, load forecasting, and demand-side program development and delivery. Part of this on-going program is known as the End-Use Load and Consumer Assessment Program (ELCAP), an effort designed to collect electricity usage data through direct monitoring of end-use loads in buildings. This program is conducted for Bonneville by the Pacific Northwest Laboratory. This report provides detailed information on electricity consumption of miscellaneous equipment from the commercial portion of ELCAP. Miscellaneous equipment includes all commercial end-uses except heating, ventilating, air conditioning, and central lighting systems. Some examples of end-uses covered in this report are office equipment, computers, task lighting, refrigeration, and food preparation. Electricity consumption estimates, in kilowatt-hours per square food per year, are provided for each end-use by building type. The following types of buildings are covered: office, retail, restaurant, grocery, warehouse, school, university, and hotel/motel. 6 refs., 35 figs., 12 tabs.

Pratt, R.G.; Williamson, M.A.; Richman, E.E.; Miller, N.E.

1990-07-01T23:59:59.000Z

45

Analysis of PG E's residential end-use metered data to improve electricity demand forecasts  

SciTech Connect (OSTI)

It is generally acknowledged that improvements to end-use load shape and peak demand forecasts for electricity are limited primarily by the absence of reliable end-use data. In this report we analyze recent end-use metered data collected by the Pacific Gas and Electric Company from more than 700 residential customers to develop new inputs for the load shape and peak demand electricity forecasting models used by the Pacific Gas and Electric Company and the California Energy Commission. Hourly load shapes are normalized to facilitate separate accounting (by the models) of annual energy use and the distribution of that energy use over the hours of the day. Cooling electricity consumption by central air-conditioning is represented analytically as a function of climate. Limited analysis of annual energy use, including unit energy consumption (UEC), and of the allocation of energy use to seasons and system peak days, is also presented.

Eto, J.H.; Moezzi, M.M.

1992-06-01T23:59:59.000Z

46

GridLAB-D Technical Support Document: Residential End-Use Module Version 1.0  

SciTech Connect (OSTI)

1.0 Introduction The residential module implements the following end uses and characteristics to simulate the power demand in a single family home: • Water heater • Lights • Dishwasher • Range • Microwave • Refrigerator • Internal gains (plug loads) • House (heating/cooling loads) The house model considers the following four major heat gains/losses that contribute to the building heating/cooling load: 1. Conduction through exterior walls, roof and fenestration (based on envelope UA) 2. Air infiltration (based on specified air change rate) 3. Solar radiation (based on CLTD model and using tmy data) 4. Internal gains from lighting, people, equipment and other end use objects. The Equivalent Thermal Parameter (ETP) approach is used to model the residential loads and energy consumption. The following sections describe the modeling assumptions for each of the above end uses and the details of power demand calculations in the residential module.

Taylor, Zachary T.; Gowri, Krishnan; Katipamula, Srinivas

2008-07-31T23:59:59.000Z

47

End-Use Load and Consumer Assessment Program: Analysis of residential refrigerator/freezer performance  

SciTech Connect (OSTI)

The Bonneville Power Administration (Bonneville) is conducting a large end-use data acquisition program in an effort to understand how energy is utilized in buildings with permanent electric space heating equipment in the Pacific Northwest. The initial portion of effort, known as the End-Use Load and Consumer Assessment Program (ELCAP), was conducted for Bonneville by the Pacific Northwest Laboratory (PNL). The collection of detailed end-use data provided an opportunity to analyze the amount of energy consumed by both refrigerators and separate freezers units located in residential buildings. By obtaining this information, the uncertainty of long- term regional end-use forecasting can be improved and potential utility marketing programs for new appliances with a reduced overall energy demand can be identified. It was found that standby loads derived from hourly averages between 4 a.m. and 5 a.m. reflected the minimum consumption needed to maintain interior refrigerator temperatures at a steady-state condition. Next, an average 24-hour consumption that included cooling loads from door openings and cooling food items was also determined. Later, analyses were conducted to develop a model capable of predicting refrigerator standby loads and 24-hour consumption for comparison with national refrigerator label ratings. Data for 140 residential sites with a refrigeration end-use were screened to develop a sample of 119 residences with pure refrigeration for use in this analysis. To identify those refrigerators that were considered to be pure (having no other devices present on the circuit) in terms of their end-use classification, the screening procedure used a statistical clustering technique that was based on standby loads with 24-hour consumption. 5 refs., 18 figs., 4 tabs.

Ross, B.A.

1991-09-01T23:59:59.000Z

48

Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results  

E-Print Network [OSTI]

End-Use Forecasting with EPRI-REEPS 2.1. Lawrence BerkeleyEnd-Use Forecasting with EPRI-REEPS 2.1. Lawrence BerkeleyPower Research Institute. EPRI Research Project Meier, Alan

Koomey, Jonathan G.

2010-01-01T23:59:59.000Z

49

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End Uses of5 End Uses of

50

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End Uses of5 End Uses

51

Electricity end-use efficiency: Experience with technologies, markets, and policies throughout the world  

SciTech Connect (OSTI)

In its August meeting in Geneva, the Energy and Industry Subcommittee (EIS) of the Policy Response Panel of the Intergovernmental Panel on Climate Change (IPCC) identified a series of reports to be produced. One of these reports was to be a synthesis of available information on global electricity end-use efficiency, with emphasis on developing nations. The report will be reviewed by the IPCC and approved prior to the UN Conference on Environment and Development (UNCED), Brazil, June 1992. A draft outline for the report was submitted for review at the November 1991 meeting of the EIS. This outline, which was accepted by the EIS, identified three main topics to be addressed in the report: status of available technologies for increasing electricity end-use efficiency; review of factors currently limiting application of end-use efficiency technologies; and review of policies available to increase electricity end-use efficiency. The United States delegation to the EIS agreed to make arrangements for the writing of the report.

Levine, M.D.; Koomey, J.; Price, L. [Lawrence Berkeley Lab., CA (United States); Geller, H.; Nadel, S. [American Council for an Energy-Efficient Economy, Washington, DC (United States)

1992-03-01T23:59:59.000Z

52

Estimates of energy consumption by building type and end use at U.S. Army installations  

SciTech Connect (OSTI)

This report discusses the use of LBNL`s End-use Disaggregation Alogrithm (EDA) to 12 US Army installations nationwide in order to obtain annual estimates of electricity use for all major building types and end uses. The building types include barrack, dining hall, gymnasium, administration, vehicle maintenance, hospital, residential, warehouse, and misc. Up to 8 electric end uses for each type were considered: space cooling, ventilation (air handling units, fans, chilled and hot water pumps), cooking, misc./plugs, refrigeration, exterior and interior lighting, and process loads. Through building simulations, we also obtained estimates of natural gas space heating energy use. Average electricity use for these 12 installations and Fort Hood are: HVAC, misc., and indoor lighting end uses consumed the most electricity (28, 27, and 26% of total[3.8, 3.5, and 3.3 kWh/ft{sup 2}]). Refrigeration, street lighting, exterior lighting, and cooking consumed 7, 7, 3, and 2% of total (0.9, 0.9, 0.4, and 0.3 kWh/ft{sup 2})

Konopacki, S.J.; Akbari, H.

1996-08-01T23:59:59.000Z

53

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End Uses of

54

Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results  

E-Print Network [OSTI]

and the size of refrigerators and freezers; for all otherwhile water heating, refrigerator, and freezer end-uses showas projected by REEPS. Refrigerator and freezer percentage

Koomey, Jonathan G.

2010-01-01T23:59:59.000Z

55

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

Administration. April. EPRI. 1982. Residential End-UseInstitute. EA-2512. July. EPRI. 1990. REEPS 2.0 HVAC ModelInstitute. October 11. EPRI, Electric Power Research

Johnson, F.X.

2010-01-01T23:59:59.000Z

56

Table E9. Total End-Use Energy Expenditure Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use Energy Expenditure

57

Energy End-Use Intensities in Commercial Buildings 1995 - Index Page  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional Wholesaleand1995 End-Use

58

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End Uses of Fuel388

59

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End Uses of Fuel3882.

60

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End Uses of Fuel3882.5

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End Uses of Fuel3882.56

62

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End Uses of Fuel3882.565

63

Residential Appliance Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

LBL-34046 UC-350 Residential Appliance Data, Assumptions and Methodology for End-Use Forecasting-use forecasting of appliance energy use in the U.S. residential sector. Our analysis uses the modeling framework provided by the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which

64

The Value of End-Use Energy Efficiency in Mitigation of U.S. Carbon Emissions  

SciTech Connect (OSTI)

This report documents a scenario analysis exploring the value of advanced technologies in the U.S. buildings, industrial, and transportation sectors in stabilizing atmospheric greenhouse gas concentrations. The analysis was conducted by staff members of Pacific Northwest National Laboratory (PNNL), working at the Joint Global Change Research Institute (JGCRI) in support of the strategic planning process of the U.S. Department of Energy (U.S. DOE) Office of Energy Efficiency and Renewable Energy (EERE). The conceptual framework for the analysis is an integration of detailed buildings, industrial, and transportation modules into MiniCAM, a global integrated assessment model. The analysis is based on three technology scenarios, which differ in their assumed rates of deployment of new or presently available energy-saving technologies in the end-use sectors. These technology scenarios are explored with no carbon policy, and under two CO2 stabilization policies, in which an economic price on carbon is applied such that emissions follow prescribed trajectories leading to long-term stabilization of CO2 at roughly 450 and 550 parts per million by volume (ppmv). The costs of meeting the emissions targets prescribed by these policies are examined, and compared between technology scenarios. Relative to the reference technology scenario, advanced technologies in all three sectors reduce costs by 50% and 85% for the 450 and 550 ppmv policies, respectively. The 450 ppmv policy is more stringent and imposes higher costs than the 550 ppmv policy; as a result, the magnitude of the economic value of energy efficiency is four times greater for the 450 ppmv policy than the 550 ppmv policy. While they substantially reduce the costs of meeting emissions requirements, advanced end-use technologies do not lead to greenhouse gas stabilization without a carbon policy. This is due mostly to the effects of increasing service demands over time, the high consumption of fossil fuels in the electricity sector, and the use of unconventional feedstocks in the liquid fuel refining sector. Of the three end-use sectors, advanced transportation technologies have the greatest potential to reduce costs of meeting carbon policy requirements. Services in the buildings and industrial sectors can often be supplied by technologies that consume low-emissions fuels such as biomass or, in policy cases, electricity. Passenger transportation, in contrast, is especially unresponsive to climate policies, as the fuel costs are small compared to the time value of transportation and vehicle capital and operating costs. Delaying the transition from reference to advanced technologies by 15 years increases the costs of meeting 450 ppmv stabilization emissions requirements by 21%, but the costs are still 39% lower than the costs assuming reference technology. The report provides a detailed description of the end-use technology scenarios and provides a thorough analysis of the results. Assumptions are documented in the Appendix.

Kyle, G. Page; Smith, Steven J.; Clarke, Leon E.; Kim, Son H.; Wise, Marshall A.

2007-11-27T23:59:59.000Z

65

Residential Lighting End-Use Consumption Study: Estimation Framework and Initial Estimates  

SciTech Connect (OSTI)

The U.S. DOE Residential Lighting End-Use Consumption Study is an initiative of the U.S. Department of Energy’s (DOE’s) Solid-State Lighting Program that aims to improve the understanding of lighting energy usage in residential dwellings. The study has developed a regional estimation framework within a national sample design that allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3) by location within the home, 4) by certain lamp characteristics, and 5) by certain categorical cross-classifications (e.g., by dwelling type AND lamp type or fixture type AND control type).

Gifford, Will R.; Goldberg, Miriam L.; Tanimoto, Paulo M.; Celnicker, Dane R.; Poplawski, Michael E.

2012-12-01T23:59:59.000Z

66

July 11 Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances  

Broader source: Energy.gov [DOE]

These documents contain the three slide decks presented at the public meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances, held on July 11, 2014 in Washington, DC.

67

Measured commercial load shapes and energy-use intensities and validation of the LBL end-use disaggregation algorithm  

SciTech Connect (OSTI)

The Southern California Edison Company (SCE) has conducted an extensive metering project in which electricity end use in 53 commercial buildings in Southern California has been measured. The building types monitored include offices, retail stores, groceries, restaurants, and warehouses. One year (June 1989 through May 1990) of the SCE measured hourly end-use data are reviewed in this report. Annual whole-building and end-use energy use intensities (EUIs) and monthly load shapes (LSs) have been calculated for the different building types based on the monitored data. This report compares the monitored buildings' EUIs and LSs to EUIs and LSs determined using whole-building load data and the End-Use Disaggregation Algorithm (EDA). Two sets of EDA determined EUIs and LSs are compared to the monitored data values. The data sets represent: (1) average buildings in the SCE service territory and (2) specific buildings that were monitored.

Akbari, H.; Rainer, L.; Heinemeier, K.; Huang, J.; Franconi, E.

1993-01-01T23:59:59.000Z

68

Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results  

E-Print Network [OSTI]

Richard E. Brown, James W. Hanford, Alan H . Sanstad, andFrancis X . , James W. Hanford, Richard E. Brown, Alan H.place for these end-uses (Hanford et al. 1994, Hwang et al.

Koomey, Jonathan G.

2010-01-01T23:59:59.000Z

69

Residential applliance data, assumptions and methodology for end-use forecasting with EPRI-REEPS 2.1  

SciTech Connect (OSTI)

This report details the data, assumptions and methodology for end-use forecasting of appliance energy use in the US residential sector. Our analysis uses the modeling framework provided by the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which was developed by the Electric Power Research Institute. In this modeling framework, appliances include essentially all residential end-uses other than space conditioning end-uses. We have defined a distinct appliance model for each end-use based on a common modeling framework provided in the REEPS software. This report details our development of the following appliance models: refrigerator, freezer, dryer, water heater, clothes washer, dishwasher, lighting, cooking and miscellaneous. Taken together, appliances account for approximately 70% of electricity consumption and 30% of natural gas consumption in the US residential sector. Appliances are thus important to those residential sector policies or programs aimed at improving the efficiency of electricity and natural gas consumption. This report is primarily methodological in nature, taking the reader through the entire process of developing the baseline for residential appliance end-uses. Analysis steps documented in this report include: gathering technology and market data for each appliance end-use and specific technologies within those end-uses, developing cost data for the various technologies, and specifying decision models to forecast future purchase decisions by households. Our implementation of the REEPS 2.1 modeling framework draws on the extensive technology, cost and market data assembled by LBL for the purpose of analyzing federal energy conservation standards. The resulting residential appliance forecasting model offers a flexible and accurate tool for analyzing the effect of policies at the national level.

Hwang, R.J,; Johnson, F.X.; Brown, R.E.; Hanford, J.W.; Kommey, J.G.

1994-05-01T23:59:59.000Z

70

Global warming and end-use efficiency implications of replacing CFCs  

SciTech Connect (OSTI)

The direct contribution of CFCs to calculated global warming has been recognized for some time. As a result of the international agreement to phase out CFCs due to stratospheric ozone and the ensuing search for suitable alternatives, there has recently been increased attention on the DIRECT global warming potential (GWP) of the fluorocarbon alternatives as greenhouse gases. However, to date there has been little focus on the INDIRECT global warming effect arising from end-use efficiency changes and associated CO{sub 2} emissions. A study being conducted at Oak Ridge National Laboratory (ORNL) addresses this combined or total global warming impact of viable options to replace CFCs in their major energy-related applications. This paper reviews selected results for air-conditioning, refrigeration, and heat pump applications. The analysis indicates that the CFC user industries have made substantial progress in approaching near-equal energy efficiency with the HCFC/HFC alternative refrigerants. The findings also bring into question the relative importance of the DIRECT (chemical-related) effect in many applications. Replacing CFCs is an important step in reducing the total global warming impact, and at present the HCFC and HFCS appear to offer the best efficiency and lowest total impact of options available in the relatively short time period required for the transition away from CFCs.

Fairchild, P.D.; Fischer, S.K.

1991-12-31T23:59:59.000Z

71

Development of an Energy Savings Benchmark for All Residential End-Uses: Preprint  

SciTech Connect (OSTI)

To track progress toward aggressive multi-year whole-house energy savings goals of 40-70% and onsite power production of up to 30%, the U.S. Department of Energy (DOE) Residential Buildings Program and the National Renewable Energy Laboratory (NREL) developed the Building America Research Benchmark in 2003. The Benchmark is generally consistent with mid-1990s standard practice, as reflected in the Home Energy Rating System (HERS) Technical Guidelines, with additional definitions that allow the analyst to evaluate all residential end-uses, an extension of the traditional HERS rating approach that focuses on space conditioning and hot water. A series of user profiles, intended to represent the behavior of a''standard'' set of occupants, was created for use in conjunction with the Benchmark. Finally, a set of tools was developed by NREL and other Building America partners to help analysts compare whole-house energy use for a Prototype house to the Benchmark in a fair and consistent manner.

Hendron, R.; Anderson, R.; Christensen, C.; Eastment, M.; Reeves, P.

2004-08-01T23:59:59.000Z

72

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

SciTech Connect (OSTI)

This study assesses for California how increasing end-use electrical energy efficiency from installing residential insulation impacts exposures and disease burden from power-plant pollutant emissions. Installation of fiberglass attic insulation in the nearly 3 million electricity-heated homes throughout California is used as a case study. The pollutants nitrous oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), fine particulate matter (PM2.5), benzo(a)pyrene, benzene, and naphthalene are selected for the assessment. Exposure is characterized separately for rural and urban environments using the CalTOX model, which is a key input to the US Environmental Protection Agency (EPA) Tool for the Reduction and Assessment of Chemicals and other environmental Impacts (TRACI). The output of CalTOX provides for urban and rural populations emissions-to-intake factors, which are expressed as an individual intake fraction (iFi). The typical iFi from power plant emissions are on the order of 10{sup -13} (g intake per g emitted) in urban and rural regions. The cumulative (rural and urban) product of emissions, population, and iFi is combined with toxic effects factors to determine human damage factors (HDFs). HDF are expressed as disability adjusted life years (DALYs) per kilogram pollutant emitted. The HDF approach is applied to the insulation case study. Upgrading existing residential insulation to US Department of Energy (DOE) recommended levels eliminates over the assmned 50-year lifetime of the insulation an estimated 1000 DALYs from power-plant emissions per million tonne (Mt) of insulation installed, mostly from the elimination of PM2.5 emissions. In comparison, the estimated burden from the manufacture of this insulation in DALYs per Mt is roughly four orders of magnitude lower than that avoided.

McKone, Thomas E.; Lobscheid, A.B.

2006-06-01T23:59:59.000Z

73

Significant ELCAP analysis results: Summary report. [End-use Load and Consumer Assessment Program  

SciTech Connect (OSTI)

The evolution of the End-Use Load and Consumer Assessment Program (ELCAP) since 1983 at Bonneville Power Administration (Bonneville) has been eventful and somewhat tortuous. The birth pangs of a data set so large and encompassing as this have been overwhelming at times. The early adolescent stage of data set development and use has now been reached and preliminary results of early analyses of the data are becoming well known. However, the full maturity of the data set and the corresponding wealth of analytic insights are not fully realized. This document is in some sense a milestone in the brief history of the program. It is a summary of the results of the first five years of the program, principally containing excerpts from a number of previous reports. It is meant to highlight significant accomplishments and analytical results, with a focus on the principal results. Many of the results have a broad application in the utility load research community in general, although the real breadth of the data set remains largely unexplored. The first section of the document introduces the data set: how the buildings were selected, how the metering equipment was installed, and how the data set has been prepared for analysis. Each of the sections that follow the introduction summarize a particular analytic result. A large majority of the analyses to date involve the residential samples, as these were installed first and had highest priority on the analytic agenda. Two exploratory analyses using commercial data are included as an introduction to the commercial analyses that are currently underway. Most of the sections reference more complete technical reports which the reader should refer to for details of the methodology and for more complete discussion of the results. Sections have been processed separately for inclusion on the data base.

Pratt, R.G.; Conner, C.C.; Drost, M.K.; Miller, N.E.; Cooke, B.A.; Halverson, M.A.; Lebaron, B.A.; Lucas, R.G.; Jo, J.; Richman, E.E.; Sandusky, W.F. (Pacific Northwest Lab., Richland, WA (USA)); Ritland, K.G. (Ritland Associates, Seattle, WA (USA)); Taylor, M.E. (USDOE Bonneville Power Administration, Portland, OR (USA)); Hauser, S.G. (Solar Energy Research Inst., Golden, CO (USA))

1991-02-01T23:59:59.000Z

74

Analysis of PG&E`s residential end-use metered data to improve electricity demand forecasts  

SciTech Connect (OSTI)

It is generally acknowledged that improvements to end-use load shape and peak demand forecasts for electricity are limited primarily by the absence of reliable end-use data. In this report we analyze recent end-use metered data collected by the Pacific Gas and Electric Company from more than 700 residential customers to develop new inputs for the load shape and peak demand electricity forecasting models used by the Pacific Gas and Electric Company and the California Energy Commission. Hourly load shapes are normalized to facilitate separate accounting (by the models) of annual energy use and the distribution of that energy use over the hours of the day. Cooling electricity consumption by central air-conditioning is represented analytically as a function of climate. Limited analysis of annual energy use, including unit energy consumption (UEC), and of the allocation of energy use to seasons and system peak days, is also presented.

Eto, J.H.; Moezzi, M.M.

1992-06-01T23:59:59.000Z

75

Technology data characterizing refrigeration in commercial buildings: Application to end-use forecasting with COMMEND 4.0  

SciTech Connect (OSTI)

In the United States, energy consumption is increasing most rapidly in the commercial sector. Consequently, the commercial sector is becoming an increasingly important target for state and federal energy policies and also for utility-sponsored demand side management (DSM) programs. The rapid growth in commercial-sector energy consumption also makes it important for analysts working on energy policy and DSM issues to have access to energy end-use forecasting models that include more detailed representations of energy-using technologies in the commercial sector. These new forecasting models disaggregate energy consumption not only by fuel type, end use, and building type, but also by specific technology. The disaggregation of the refrigeration end use in terms of specific technologies, however, is complicated by several factors. First, the number of configurations of refrigeration cases and systems is quite large. Also, energy use is a complex function of the refrigeration-case properties and the refrigeration-system properties. The Electric Power Research Institute`s (EPRI`s) Commercial End-Use Planning System (COMMEND 4.0) and the associated data development presented in this report attempt to address the above complications and create a consistent forecasting framework. Expanding end-use forecasting models so that they address individual technology options requires characterization of the present floorstock in terms of service requirements, energy technologies used, and cost-efficiency attributes of the energy technologies that consumers may choose for new buildings and retrofits. This report describes the process by which we collected refrigeration technology data. The data were generated for COMMEND 4.0 but are also generally applicable to other end-use forecasting frameworks for the commercial sector.

Sezgen, O.; Koomey, J.G.

1995-12-01T23:59:59.000Z

76

Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)  

Reports and Publications (EIA)

Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

2007-01-01T23:59:59.000Z

77

2 Large CO2 reductions via offshore wind power matched to inherent 3 storage in energy end-uses  

E-Print Network [OSTI]

2 Large CO2 reductions via offshore wind power matched to inherent 3 storage in energy end-uses 4 by matching the winds of the 14 Middle-Atlantic Bight (MAB) to energy demand in the 15 adjacent states] We develop methods for assessing offshore wind 9 resources, using a model of the vertical structure

Firestone, Jeremy

78

Robust ASR front-end using spectral-based and discriminant features: experiments on the Aurora tasks  

E-Print Network [OSTI]

Robust ASR front-end using spectral-based and discriminant features: experiments on the Aurora was tested on the set of speech corpora used for the "Aurora" evaluation. Using the feature stream generated and server side ASR processing, a standartization initiative called "Aurora" was initiated within European

Dupont, Stéphane

79

Technology data characterizing lighting in commercial buildings: Application to end-use forecasting with commend 4.0  

SciTech Connect (OSTI)

End-use forecasting models typically utilize technology tradeoff curves to represent technology options available to consumers. A tradeoff curve, in general terms, is a functional form which relates efficiency to capital cost. Each end-use is modeled by a single tradeoff curve. This type of representation is satisfactory in the analysis of many policy options. On the other hand, for policies addressing individual technology options or groups of technology options, because individual technology options are accessible to the analyst, representation in such reduced form is not satisfactory. To address this and other analysis needs, the Electric Power Research Institute (EPRI) has enhanced its Commercial End-Use Planning System (COMMEND) to allow modeling of specific lighting and space conditioning (HVAC) technology options. This report characterizes the present commercial floorstock in terms of lighting technologies and develops cost-efficiency data for these lighting technologies. This report also characterizes the interactions between the lighting and space conditioning end uses in commercial buildings in the US In general, lighting energy reductions increase the heating and decrease the cooling requirements. The net change in a building`s energy requirements, however, depends on the building characteristics, operating conditions, and the climate. Lighting/HVAC interactions data were generated through computer simulations using the DOE-2 building energy analysis program.

Sezgen, A.O.; Huang, Y.J.; Atkinson, B.A.; Eto, J.H.; Koomey, J.G.

1994-05-01T23:59:59.000Z

80

Control Policy: End-User and End-Use Based Part 744--page 1 Export Administration Regulations October 1, 2001  

E-Print Network [OSTI]

of items subject to the EAR to defined nuclear, missile, chemical and biological weapons, and nuclear nuclear, missile, chemical, or biological end- uses regardless of whether that support involves the export items for certain aircraft and vessels. In addition, these sections include license review standards

Bernstein, Daniel

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

IMPACTS OF GREENHOUSE GAS AND PARTICULATE EMISSIONS FROM WOODFUEL PRODUCTION AND END-USE IN SUB-SAHARAN AFRICA  

E-Print Network [OSTI]

the pollution associated with production, distribution and end-use of common household fuels and assess. At the household level, energy is derived primarily from solid biomass fuels burned in simple stoves with poor & African Center for Technology Studies, Nairobi, Kenya ABSTRACT: Household energy in sub-Saharan Africa

Kammen, Daniel M.

82

TenTen: A New Array of Multi-TeV Imaging Cherenkov Telescopes  

E-Print Network [OSTI]

The exciting results from H.E.S.S. point to a new population of gamma-ray sources at energies E > 10 TeV, paving the way for future studies and new discoveries in the multi-TeV energy range. Connected with these energies is the search for sources of PeV cosmic-rays (CRs) and the study of multi-TeV gamma-ray production in a growing number of astrophysical environments. TenTen is a proposed stereoscopic array (with a suggested site in Australia) of modest-sized (10 to 30m^2) Cherenkov imaging telescopes with a wide field of view (8 to 10deg diameter) optimised for the E~10 to 100 TeV range. TenTen will achieve an effective area of ~10 km^2 at energies above 10 TeV. We outline here the motivation for TenTen and summarise key performance parameters.

Rowell, G; Clay, R; Dawson, B; Denman, J; Protheroe, R; Smith, A G K; Thornton, G; Wild, N

2007-01-01T23:59:59.000Z

83

TenTen: A New Array of Multi-TeV Imaging Cherenkov Telescopes  

E-Print Network [OSTI]

The exciting results from H.E.S.S. point to a new population of gamma-ray sources at energies E > 10 TeV, paving the way for future studies and new discoveries in the multi-TeV energy range. Connected with these energies is the search for sources of PeV cosmic-rays (CRs) and the study of multi-TeV gamma-ray production in a growing number of astrophysical environments. TenTen is a proposed stereoscopic array (with a suggested site in Australia) of modest-sized (10 to 30m^2) Cherenkov imaging telescopes with a wide field of view (8 to 10deg diameter) optimised for the E~10 to 100 TeV range. TenTen will achieve an effective area of ~10 km^2 at energies above 10 TeV. We outline here the motivation for TenTen and summarise key performance parameters.

G. Rowell; V. Stamatescu; R. Clay; B. Dawson; J. Denman; R. Protheroe; A. G. K. Smith; G. Thornton; N. Wild

2007-10-10T23:59:59.000Z

84

Technology data characterizing space conditioning in commercial buildings: Application to end-use forecasting with COMMEND 4.0  

SciTech Connect (OSTI)

In the US, energy consumption is increasing most rapidly in the commercial sector. Consequently, the commercial sector is becoming an increasingly important target for state and federal energy policies and also for utility-sponsored demand side management (DSM) programs. The rapid growth in commercial-sector energy consumption also makes it important for analysts working on energy policy and DSM issues to have access to energy end-use forecasting models that include more detailed representations of energy-using technologies in the commercial sector. These new forecasting models disaggregate energy consumption not only by fuel type, end use, and building type, but also by specific technology. The disaggregation of space conditioning end uses in terms of specific technologies is complicated by several factors. First, the number of configurations of heating, ventilating, and air conditioning (HVAC) systems and heating and cooling plants is very large. Second, the properties of the building envelope are an integral part of a building`s HVAC energy consumption characteristics. Third, the characteristics of commercial buildings vary greatly by building type. The Electric Power Research Institute`s (EPRI`s) Commercial End-Use Planning System (COMMEND 4.0) and the associated data development presented in this report attempt to address the above complications and create a consistent forecasting framework. This report describes the process by which the authors collected space-conditioning technology data and then mapped it into the COMMEND 4.0 input format. The data are also generally applicable to other end-use forecasting frameworks for the commercial sector.

Sezgen, O.; Franconi, E.M.; Koomey, J.G.; Greenberg, S.E.; Afzal, A.; Shown, L.

1995-12-01T23:59:59.000Z

85

Graphics Recognition: The Last Ten Years and the Next Ten Years  

E-Print Network [OSTI]

Graphics Recognition: The Last Ten Years and the Next Ten Years Karl Tombre LORIA-INPL, ´Ecole des'05 marked the 10th anniversary of the series of inter- national workshops on graphics recognition to be Drifting Away Looking at the research themes of the groups active in graphics recognition, it appears

Paris-Sud XI, Université de

86

Residential sector end-use forecasting with EPRI-Reeps 2.1: Summary input assumptions and results  

SciTech Connect (OSTI)

This paper describes current and projected future energy use by end-use and fuel for the U.S. residential sector, and assesses which end-uses are growing most rapidly over time. The inputs to this forecast are based on a multi-year data compilation effort funded by the U.S. Department of Energy. We use the Electric Power Research Institute`s (EPRI`s) REEPS model, as reconfigured to reflect the latest end-use technology data. Residential primary energy use is expected to grow 0.3% per year between 1995 and 2010, while electricity demand is projected to grow at about 0.7% per year over this period. The number of households is expected to grow at about 0.8% per year, which implies that the overall primary energy intensity per household of the residential sector is declining, and the electricity intensity per household is remaining roughly constant over the forecast period. These relatively low growth rates are dependent on the assumed growth rate for miscellaneous electricity, which is the single largest contributor to demand growth in many recent forecasts.

Koomey, J.G.; Brown, R.E.; Richey, R. [and others

1995-12-01T23:59:59.000Z

87

The FY 2008 Budget Request - Twenty in Ten: Strengthening America...  

Office of Environmental Management (EM)

8 Budget Request - Twenty in Ten: Strengthening America's Energy Security The FY 2008 Budget Request - Twenty in Ten: Strengthening America's Energy Security DOE's Office of Energy...

88

Ten Years of Development Experience with Advanced Light Truck...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ten Years of Development Experience with Advanced Light Truck Diesel Engines Ten Years of Development Experience with Advanced Light Truck Diesel Engines 2004 Diesel Engine...

89

Bos ten AG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:formBlueBombayInformationInformationJumpBos ten

90

Ten Year Site Plans | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergy Secretary ChuAsWhatTheTed Donat -A Ten

91

Measured electric hot water standby and demand loads from Pacific Northwest homes. End-Use Load and Consumer Assessment Program  

SciTech Connect (OSTI)

The Bonneville Power Administration began the End-Use Load and Consumer Assessment Program (ELCAP) in 1983 to obtain metered hourly end-use consumption data for a large sample of new and existing residential and commercial buildings in the Pacific Northwest. Loads and load shapes from the first 3 years of data fro each of several ELCAP residential studies representing various segments of the housing population have been summarized by Pratt et al. The analysis reported here uses the ELCAP data to investigate in much greater detail the relationship of key occupant and tank characteristics to the consumption of electricity for water heating. The hourly data collected provides opportunities to understand electricity consumption for heating water and to examine assumptions about water heating that are critical to load forecasting and conservation resource assessments. Specific objectives of this analysis are to: (A) determine the current baseline for standby heat losses by determining the standby heat loss of each hot water tank in the sample, (B) examine key assumptions affecting standby heat losses such as hot water temperatures and tank sizes and locations, (C) estimate, where possible, impacts on standby heat losses by conservation measures such as insulating tank wraps, pipe wraps, anticonvection valves or traps, and insulating bottom boards, (D) estimate the EF-factors used by the federal efficiency standards and the nominal R-values of the tanks in the sample, (E) develop estimates of demand for hot water for each home in the sample by subtracting the standby load from the total hot water load, (F) examine the relationship between the ages and number of occupants and the hot water demand, (G) place the standby and demand components of water heating electricity consumption in perspective with the total hot water load and load shape.

Pratt, R.G.; Ross, B.A.

1991-11-01T23:59:59.000Z

92

Characterization of changes in commercial building structure, equipment, and occupants: End-Use Load and Consumer Assessment Program  

SciTech Connect (OSTI)

Changes in commercial building structure, equipment, and occupants result in changes in building energy use. The frequency and magnitude of those changes have substantial implications for conservation programs and resource planning. For example, changes may shorten the useful lifetime of a conservation measure as well as impact the savings from that measure. This report summarizes the frequency of changes in a commercial building sample that was end-use metered under the End-Use Load and Consumer Assessment Program (ELCAP). The sample includes offices, dry good retails, groceries, restaurants, warehouses, schools, and hotels. Two years of metered data, site visit records, and audit data were examined for evidence of building changes. The observed changes were then classified into 12 categories, which included business type, equipment, remodel, vacancy, and operating schedule. The analysis characterized changes in terms of frequency of types of change; relationship to building vintage and floor area; and variation by building type. The analysis also examined the energy impacts of various changes. The analysis determined that the rate of change in commercial buildings is high--50% of the buildings experienced one type of change during the 2 years for which monitoring data were examined. Equipment changes were found to be most frequent in offices and retail stores. Larger, older office buildings tend to experience a wider variety of changes more frequently than the smaller, newer buildings. Key findings and observations are presented in Section 2. Section 3 provides the underlying motivation and objectives. In Section 4, the methodology used is documented, including the commercial building sample and the data sources used. Included are the definitions of change events and the overall approach taken. Results are analyzed in Section 5, with additional technical details in Appendixes. 2 refs., 46 figs., 22 tabs. (JF)

Lucas, R.G.; Taylor, Z.T.; Miller, N.E.; Pratt, R.G.

1990-12-01T23:59:59.000Z

93

Analysis of Michigan's demand-side electricity resources in the residential sector: Volume 3, End-use studies: Revised final report  

SciTech Connect (OSTI)

This volume of the ''Analysis of Michigan's Demand-Side Electricity Resources in the Residential Sector'' contains end-use studies on various household appliances including: refrigerators, freezers, lighting systems, water heaters, air conditioners, space heaters, and heat pumps. (JEF)

Krause, F.; Brown, J.; Connell, D.; DuPont, P.; Greely, K.; Meal, M.; Meier, A.; Mills, E.; Nordman, B.

1988-04-01T23:59:59.000Z

94

Measured commercial load shapes and energy-use intensities and validation of the LBL end-use disaggregation algorithm. Final report  

SciTech Connect (OSTI)

The Southern California Edison Company (SCE) has conducted an extensive metering project in which electricity end use in 53 commercial buildings in Southern California has been measured. The building types monitored include offices, retail stores, groceries, restaurants, and warehouses. One year (June 1989 through May 1990) of the SCE measured hourly end-use data are reviewed in this report. Annual whole-building and end-use energy use intensities (EUIs) and monthly load shapes (LSs) have been calculated for the different building types based on the monitored data. This report compares the monitored buildings` EUIs and LSs to EUIs and LSs determined using whole-building load data and the End-Use Disaggregation Algorithm (EDA). Two sets of EDA determined EUIs and LSs are compared to the monitored data values. The data sets represent: (1) average buildings in the SCE service territory and (2) specific buildings that were monitored.

Akbari, H.; Rainer, L.; Heinemeier, K.; Huang, J.; Franconi, E.

1993-01-01T23:59:59.000Z

95

2014-04-30 Public Meeting Presentation Slides: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances  

Broader source: Energy.gov [DOE]

These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

96

Financing end-use solar technologies in a restructured electricity industry: Comparing the cost of public policies  

SciTech Connect (OSTI)

Renewable energy technologies are capital intensive. Successful public policies for promoting renewable energy must address the significant resources needed to finance them. Public policies to support financing for renewable energy technologies must pay special attention to interactions with federal, state, and local taxes. These interactions are important because they can dramatically increase or decrease the effectiveness of a policy, and they determine the total cost of a policy to society as a whole. This report describes a comparative analysis of the cost of public policies to support financing for two end-use solar technologies: residential solar domestic hot water heating (SDHW) and residential rooftop photovoltaic (PV) systems. The analysis focuses on the cost of the technologies under five different ownership and financing scenarios. Four scenarios involve leasing the technologies to homeowners in return for a payment that is determined by the financing requirements of each form of ownership. For each scenario, the authors examine nine public policies that might be used to lower the cost of these technologies: investment tax credits (federal and state), production tax credits (federal and state), production incentives, low-interest loans, grants (taxable and two types of nontaxable), direct customer payments, property and sales tax reductions, and accelerated depreciation.

Jones, E.; Eto, J.

1997-09-01T23:59:59.000Z

97

Integrated estimation of commercial sector end-use load shapes and energy use intensities in the PG&E service area  

SciTech Connect (OSTI)

This project represents a unique research effort to address the commercial sector end-use energy forecasting data needs of the Pacific Gas and Electric Company (PG&E) and the California Energy Commission (CEC). The object of the project was to develop an updated set of commercial sector end-use energy use intensity (EUI) data that has been fully reconciled with measured data. The research was conducted in two stages. First, we developed reconciled electricity end-use EUIs and load shapes for each of the 11 building types in the inland and coastal regions of the PG&E service territory using information collected in 1986. Second, we developed procedures to translate these results into a consistent set of commercial sector forecasting model inputs recognizing the separate modeling conventions used by PG&E and CEC. EUIs have been developed for: II commercial building types; up to 10 end uses; up to 3 fuel types; 2 and 5 subservice territory forecasting regions (as specified by the PG&E and CEC forecasting models, respectively); and up to 2 distinct vintages corresponding to the period prior to and immediately following the adoption of the first generation of California building and equipment standards. For the electricity end uses, 36 sets of daily load shapes have been developed representing average weekday, average weekend, and peak weekday electricity use for each month of the year by building type for both the inland and coastal climate zones.

Akbari, H.; Eto, J.; Konopacki, S.; Afzal, A.; Heinemeier, K.; Rainer, L.

1993-12-01T23:59:59.000Z

98

Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith,...

99

Water Sampling At Valley Of Ten Thousand Smokes Region Area ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992)...

100

Ten LLNL researchers named 2014 APS fellows | National Nuclear...  

National Nuclear Security Administration (NNSA)

and diffuse the knowledge of physics through research journals, scientific meetings, education, outreach, advocacy and international activities. Ten fellows is the highest number...

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Final Environmental Impact Report: North Brawley Ten Megawatt...  

Open Energy Info (EERE)

Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Final...

102

Concurrence' Lawrence Livermore National Laboratory FY2015 Ten...  

National Nuclear Security Administration (NNSA)

manufacturing * Special nuclear materials-plutonium and tritium * High performance computing FY2015 Ten Year Site Plan Limited Report Page 3 of 6 Lawrence Livermore...

103

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor...  

Office of Scientific and Technical Information (OSTI)

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor Design and Feasibility Problem Re-direct Destination: Temp Data Fields Rosen, M. A.; Coburn, D. B.; Flynn, T....

104

Paraho environmental data. Part IV. Land reclamation and revegetation. Part V. Biological effects. Part VI. Occupational health and safety. Part VII. End use  

SciTech Connect (OSTI)

Characteristics of the environment and ecosystems at Anvil Points, reclamation of retorted shale, revegetation of retorted shale, and ecological effects of retorted shale are reported in the first section of this report. Methods used in screening shale oil and retort water for mutagens and carcinogens as well as toxicity studies are reported in the second section of this report. The third section contains information concerning the industrial hygiene and medical studies made at Anvil Points during Paraho research operations. The last section discusses the end uses of shale crude oil and possible health effects associated with end use. (DMC)

Limbach, L.K.

1982-06-01T23:59:59.000Z

105

TungsTen--2004 79. Referencesthatincludeasectionmark()arefoundintheInternet  

E-Print Network [OSTI]

TungsTen--2004 79. Referencesthatincludeasectionmark(§)arefoundintheInternet ReferencesCitedsection. TungsTen ByKimB.shedd Domestic survey data and tables were prepared by Amy C. Tolcin, statistical assistant, and the world production table was prepared by Glenn J. Wallace, international data coordinator

106

Compound and Elemental Analysis At Valley Of Ten Thousand Smokes...  

Open Energy Info (EERE)

DOE-funding Unknown References T. E. C. Keith, J. M. Thompson, R. A. Hutchinson, L. D. White (1992) Geochemistry Of Waters In The Valley Of Ten Thousand Smokes Region, Alaska...

107

Schneider Electric Boasts Ten Facilities Certified to Superior...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ten facilities certified to the Superior Energy Performance (SEP(tm)) program and to ISO 50001 in the United States, Canada, and Mexico. This is the most SEP certifications...

108

HYBRID LOGICS Carlos Areces and Balder ten Cate  

E-Print Network [OSTI]

14 HYBRID LOGICS Carlos Areces and Balder ten Cate 1 What are Hybrid Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828 2.3 Very Expressive Hybrid Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 863 This chapter provides a modern overview of the field of hybrid logic. Hybrid logics are ex

Sattler, Ulrike

109

HYBRID LOGICS Carlos Areces and Balder ten Cate  

E-Print Network [OSTI]

14 HYBRID LOGICS Carlos Areces and Balder ten Cate 1 What are Hybrid Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Very Expressive Hybrid Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 This chapter provides a modern overview of the field of hybrid logic. Hybrid logics are ex

ten Cate, Balder

110

April 30 Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances  

Broader source: Energy.gov [DOE]

These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014. The first document includes the first presentation from the meeting: DOE Vision and Objectives. The second document includes all other presentations from the meeting: Terminology and Definitions; End-User and Grid Services; Physical Characterization Framework; Value, Benefits & Metrics.

111

1980 survey and evaluation of utility conservation, load management, and solar end-use projects. Volume 3: utility load management projects. Final report  

SciTech Connect (OSTI)

The results of the 1980 survey of electric utility-sponsored energy conservation, load management, and end-use solar energy conversion projects are described. The work is an expansion of a previous survey and evaluation and has been jointly sponsored by EPRI and DOE through the Oak Ridge National Laboratory. There are three volumes and a summary document. Each volume presents the results of an extensive survey to determine electric utility involvement in customer-side projects related to the particular technology (i.e., conservation, solar, or load management), selected descriptions of utility projects and results, and first-level technical and economic evaluations.

Not Available

1982-01-01T23:59:59.000Z

112

Mobile Agents: Ten Reasons For Failure Giovanni Vigna  

E-Print Network [OSTI]

Mobile Agents: Ten Reasons For Failure Giovanni Vigna Reliable Software Group Department of Computer Science University of California, Santa Barbara vigna@cs.ucsb.edu Abstract Mobile agents have applications in a dynamic environment. Mobile agents pro- vide a very appealing, intuitive, and apparently

California at Santa Barbara, University of

113

Ten-year PVC geomembrane durability E. J. Newman1  

E-Print Network [OSTI]

PROOFS Ten-year PVC geomembrane durability E. J. Newman1 and T. D. Stark2 1 Graduate Research of an ongoing study on the long-term performance of a PVC geomembrane in northern Minnesota are presented. Samples of PVC geomembrane and seams are exhumed periodically over a 30-year period and tested to measure

114

Technical descriptions of ten irrigation technologies for conserving energy  

SciTech Connect (OSTI)

Technical description of ten technologies which were researched to save energy in irrigated agriculture are presented. These technologies are: well design and development ground water supply system optimization, column and pump redesign, variable-speed pumping, pipe network optimization, reduced-pressure center-pivot systems, low-energy precision application, automated gated-pipe system, computerized irrigation scheduling, and instrumented irrigation scheduling. (MHR)

Harrer, B.J.; Wilfert, G.L.

1983-05-01T23:59:59.000Z

115

TopTen Energy Efficient Products Website | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective: TerminologyTolerableTop Crop WindTopTopTen

116

Ten-Year Site Plans (TYSP) | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartmentStewardship ScienceAdministration | NationalTen-Year Site Plans

117

Ten Projects Awarded NERSC Allocations under DOE's ALCC Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and How ToMay HanfordOctober ResearchTen

118

Keys to success: Ten case studies of effective weatherization programs  

SciTech Connect (OSTI)

In 1990, DOE initiated a nationwide evaluation of its Weatherization Program, with assistance from Oak Ridge National Laboratory and an advisory group of 40 weatherization professionals, program managers, and researchers. The evaluation is comprised of three impact studies covering the Program`s major market segments: Single-family homes, mobile homes, and dwellings in small (2 to 4-unit) multifamily buildings (the Single-Family Study), Single-family homes heated primarily with fuel oil (the Fuel-Oil Study), and Dwellings in buildings with five or more units (the Multifamily Study). The Single-Family Study, the subject of this report, is a critical part of this coordinated evaluation effort. Its focus on single-family dwellings, mobile homes, and dwellings in small multifamily buildings covers 83% of the income-eligible population and 96% of the dwellings weatherized during Program Year 1989. The first phase of the Single-Family Study involved the analysis of a massive data base of information collected from 368 local weatherization agencies and 543 electric and gas utilities. This analysis resulted in energy-saving and cost-effectiveness estimates for the Weatherization Program and the identification of a set of ten high-performing agencies located throughout the country. The second phase, which is the subject of this report, involves a ``process`` evaluation of these ten high performers, aimed at identifying those weatherization practices that explain their documented success.

Brown, M.A.; Berry, L.G.; Kolb, J.O.; White, D.L. [Oak Ridge National Lab., TN (United States); Kinney, L.F.; Wilson, T. [Synertech Systems Corp., Syracuse, NY (United States)

1993-11-01T23:59:59.000Z

119

Fact #770: March 11, 2013 Changes to the Top Ten Vehicles Sold...  

Broader source: Energy.gov (indexed) [DOE]

70: March 11, 2013 Changes to the Top Ten Vehicles Sold over the Last Five Years Fact 770: March 11, 2013 Changes to the Top Ten Vehicles Sold over the Last Five Years When...

120

Ten Ways to Lower Perceived Risk and Finance Rates within Utility...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ten Ways to Lower Perceived Risk and Finance Rates within Utility Contract Ten Ways to Lower Perceived Risk and Finance Rates within Utility Contract Federal agencies can use the...

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A critical comparison of ten disposable cup LCAs  

SciTech Connect (OSTI)

Disposable cups can be made from conventional petro-plastics, bioplastics, or paperboard (coated with petro-plastics or bioplastics). This study compared ten life cycle assessment (LCA) studies of disposable cups with the aim to evaluate the robustness of their results. The selected studies have only one impact category in common, namely climate change with global warming potential (GWP) as its category indicator. Quantitative GWP results of the studies were closer examined. GWPs within and across each study show none of the cup materials to be consistently better than the others. Comparison of the absolute GWPs (after correction for the cup volume) also shows no consistent better or worse cup material. An evaluation of the methodological choices and the data sets used in the studies revealed their influence on the GWP. The differences in GWP can be attributed to a multitude of factors, i.e., cup material and weight, production processes, waste processes, allocation options, and data used. These factors basically represent different types of uncertainty. Sensitivity and scenario analyses provided only the influence of one factor at once. A systematic and simultaneous use of sensitivity and scenario analyses could, in a next research, result in more robust outcomes. -- Highlights: • Conflicting results from life cycle assessment (LCA) on disposable cups • GWP results of LCAs did not point to a best or worst cup material. • Differences in GWP results are due to methodological choices and data sets used. • Standardized LCA: transparency of LCA studies, but still different in approaches.

Harst, Eugenie van der, E-mail: eugenie.vanderharst@wur.nl [Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, NL-6700 AA Wageningen (Netherlands); Potting, José, E-mail: jose.potting@wur.nl [Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, NL-6700 AA Wageningen (Netherlands) [Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, NL-6700 AA Wageningen (Netherlands); Environmental Strategies Research (fms), KTH Royal Institute of Technology, SE-110 44 Stockholm (Sweden)

2013-11-15T23:59:59.000Z

122

Fact #779: May 13, 2013 EPA's Top Ten Rated Vehicles List for...  

Broader source: Energy.gov (indexed) [DOE]

Agency's (EPA's) top ten most fuel efficient vehicles list is comprised entirely of electric vehicles. Electric vehicles are highly efficient so it is not surprising to see...

123

EECBG 11-002 Clarification of Ten Percent Limitation on Use of...  

Energy Savers [EERE]

Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency and Conservation Block Grant Program (EECBG), ten percent limitation, administrative expenses, the...

124

Ten Hundred and One word challenge | U.S. DOE Office of Science...  

Office of Science (SC) Website

People's Choice Voting for the Ten Hundred and One Word Challenge Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

125

Social media impact factor: the top ten dermatology journals on facebook and twitter  

E-Print Network [OSTI]

top ten dermatology journals on facebook and twitter ChanteKey words: dermatology; Facebook; Twitter; social media;24 billion page views on Facebook daily making it the second

Karimkhani, Chante; Gamble, Ryan; Dellavalle, Robert P

2014-01-01T23:59:59.000Z

126

FY 2015 Ten Year Site Plan-Limited Update Los Alamos National...  

National Nuclear Security Administration (NNSA)

goals, the Laboratory will pursue a combination of additional investments in renewable energy, green construction practices, and operational improvements for energy FY 2015 Ten...

127

E-Print Network 3.0 - anal cancer ten Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: anal cancer ten Page: << < 1 2 3 4 5 > >> 1 aallll IIrreell aanndd ccaanncceerr...

128

Ten years of marine CSEM for hydrocarbon exploration Steven Constable1  

E-Print Network [OSTI]

Ten years of marine CSEM for hydrocarbon exploration Steven Constable1 ABSTRACT Marine controlled, several more surveys were carried out in the same region Constable and Srnka, 2007 , and within two years

Constable, Steve

129

Fact #775: April 15, 2013 Top Ten Urban Areas for Fuel Wasted...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information &127;Top Ten Urban Areas for Fuel Wasted due to Traffic Congestion, 2011 Rank Urban Area Fuel Wasted due to Congestion (Million Gallons) 1 New York-Newark NY-NJ-CT...

130

TEN THINGS I HATE ABOUT YOU: FERC and the Pacific Northwest  

E-Print Network [OSTI]

TEN THINGS I HATE ABOUT YOU: FERC and the Pacific Northwest Power Markets Presentation by Eric Lee) "FERC Lite" (Section 211A) Mandatory Reliability Standards (Section 215) Anti-Manipulation Rules #12

131

Regulations for Gas Transmission Lines Less than Ten Miles Long (New York)  

Broader source: Energy.gov [DOE]

Any person who wishes to construct a gas transmission line that is less than ten miles long must file documents describing the construction plans and potential land use and environmental impacts of...

132

Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York)  

Broader source: Energy.gov [DOE]

Any person who wishes to construct an electric or gas transmission line that is more than ten miles long must file documents describing the construction plans and potential land use and...

133

The correct taxon name, authorship, and publication date of extant ten-armed coleoids  

E-Print Network [OSTI]

January 29, 2015 Lawrence, Kansas, USA ISSN 1946-0279 (online) paleo.ku.edu/contributions Number 11 Paleontological Contributions The correct taxon name, authorship, and publication date of extant ten-armed coleoids René Hoffmann January 29..., 2015 Number 11 Copyright © 2015, The University of Kansas, Paleontological Institute Paleontological Contributions THE CORRECT TAXON NAME, AUTHORSHIP, AND PUBLICATION DATE OF EXTANT TEN-ARMED COLEOIDS René Hoffmann Department of Earth Sciences, Ruhr...

Hoffmann, René

2015-01-29T23:59:59.000Z

134

Ten Problems  

Office of Scientific and Technical Information (OSTI)

94720. dhbailey@lbl.gov. This work supported by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of...

135

Colorado Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

504,783 523,726 501,350 466,680 443,750 468,221 1997-2013 Lease and Plant Fuel 1967-1998 Lease Fuel 44,231 64,873 66,083 78,800 76,462 71,105 1983-2013 Plant Fuel 18,613 21,288...

136

Wisconsin Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008 2009 2010from2009 2010 2011

137

Wyoming Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14 Nov-14 Dec-14Year Jan

138

Office Buildings - End-Use Equipment  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade Year-0Year Jan Feb Mar Apr

139

Ohio Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade Year-0YearSales (Billion

140

Oklahoma Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (MillionThousandFeet)44Year Jan

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Oregon Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet)Decade

142

Pennsylvania Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0Sales (Billion CubicDecade Year-03,660

143

Alabama Natural Gas Consumption by End Use  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727 1,342Increases4 16

144

Alaska Natural Gas Consumption by End Use  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) BaseSep-14Extensions

145

Arizona Natural Gas Consumption by End Use  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan FebForeignDecade Year-0

146

Arkansas Natural Gas Consumption by End Use  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan(MillionSales (BillionYear Jan

147

Tennessee Natural Gas Consumption by End Use  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24. U.S.Year Jan FebYear Jan

148

Texas Natural Gas Consumption by End Use  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14 Oct-14 Nov-14 Dec-14Year

149

Iowa Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0Year Jan Feb3,151,8872009Year JanNA

150

Kansas Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0Extensions (Billion2009 20106 5

151

Kentucky Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0MonthIncreases (Billion Cubic200941,712

152

Louisiana Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0 0 0Feet)2009Year

153

Maine Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-14 Oct-14 Nov-14

154

Maryland Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342CubicSep-140.0 0.0Sep-14Year Jan

155

Massachusetts Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343Decade81 170 115 89Sep-1423,448 28,360

156

Michigan Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3 1979-2013 Adjustments -1 04,261

157

Minnesota Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15continues, with theMay65 70320,847

158

Mississippi Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb Mar Apr May Jun Jul Aug

159

Missouri Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year JanThousand Cubic0 0 012,199 16,950

160

Montana Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384 388 413NewSep-14 Oct-14Year

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Colorado Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47ExtensionsYear Jan Feb Mar Apr

162

Connecticut Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180Number ofFuel2009Year

163

Delaware Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar1320097,930

164

Florida Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013 Adjustments 0 1 -1 0109,108

165

Georgia Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.5 57.1 54.8 49.4Year Jan Feb Mar

166

Hawaii Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 058.588,219 719,4351998 19992009Year

167

Idaho Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade Year-0 Year-1ThousandSep-14Year

168

Illinois Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0Decade (MillionSep-14 Oct-1444,805 63,652

169

Indiana Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0 0 0 1996-2005. 61,707Year Jan

170

California Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002;5,,"I",86,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0000,7,00000,"WAT","HY"5YearIncreases1 -5 2 7

171

Utah Natural Gas Consumption by End Use  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321 601 631New2009 201011,172

172

Vermont Natural Gas Consumption by End Use  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321Working40 2352009470 609 994

173

Virginia Natural Gas Consumption by End Use  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases (Billion Cubic Feet) Virginia58 81Year

174

Washington Natural Gas Consumption by End Use  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980 267,227Thousand-657 532 0

175

End-Use Taxes: Current EIA Practices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96Nebraska NuclearDecade Year-08/03)1 Eliminating MTBE in3

176

Biomass Resource Allocation among Competing End Uses  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for aCouldBiofuelHelpBiologyB I I O O m m a a s

177

Nebraska Natural Gas Consumption by End Use  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough Monthly2. Average8 2009 2010Decade9,141

178

Nevada Natural Gas Consumption by End Use  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb MarthroughYear Jan Feb MarDry NaturalYear Jan

179

The Evolution Towards Grids: Ten Years of High-Speed, Wide Area, Data Intensive Computing  

E-Print Network [OSTI]

systems (e.g., multi-component turbomachine simulation); · Management of very large parameter space / Boeing Remote Help Desk that will provide aircraft field maintenance personnel use of coupled video1 The Evolution Towards Grids: Ten Years of High-Speed, Wide Area, Data Intensive Computing William

180

Design and performance of a 30 KV electron gun with ten independent cathodes & a magnetic lens.  

SciTech Connect (OSTI)

Measurements on a 30 kV electron gun with ten independent cathodes, operating in a 6.5 Tesla (T) magnetic field are presented. An earlier paper covered the design of this electron gun [1]. Experimental results are compared to model predictions. Beam current is compared to theoretical space charge limited flow.

Rudys, Joseph Matthew; Reed, Kim Warren

2006-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Ten Years of Genetic Fuzzy Systems: Current Framework and New Trends O. Cordon, F. Herrera  

E-Print Network [OSTI]

algorithms GAs are general purpose search algorithms which use principles inspired by natural geneticsTen Years of Genetic Fuzzy Systems: Current Framework and New Trends O. Cord´on, F. Herrera Dept algorithms are search algorithms, based on natural genetics, that provide robust search capabilities in com

Hoffmann, Frank

182

Sir --As 27 April 2004 marks ten years of multiracial democracy in South Africa,  

E-Print Network [OSTI]

Sir -- As 27 April 2004 marks ten years of multiracial democracy in South Africa, it is appropriate, engineering and technology. The strategy rightly notes that, given South Africa's correspondence NATURE|VOL428 of Research in South Africa (CAPRISA), University of KwaZulu-Natal, King George V Avenue, Durban 4041, South

183

Picosecond spectroscopy of the isolated reaction centers from the photosystems of oxygenic photosynthesis--ten years  

E-Print Network [OSTI]

of oxygenic photosynthesis--ten years (1987­1997) of fun A tribute to Michael R. Wasielewski on his 60th's pioneering work on Pho- tosystem II photochemistry has an important place in the history of photosynthesis states Á History of photosynthesis Early work with Mike Wasielewski was on photosystem I in 1987 Both

Govindjee "Gov"

184

Ten channel background alpha radiometer for nondestructive analysis of low activity samples  

SciTech Connect (OSTI)

The description of a ten-channel alpha-radiometer based on large-area semiconductor detectors is presented in this paper. The radiometer is intended for determination of soil pollution by alpha-active radionuclides using thick samples. The analysis of isotopes is also provided. The concentrations of Pu and Am isotopes in soil samples are determined.

Pugatch, V.M.; Pavlenko, Y.N.; Vasiliev, Y.O.; Nenakhov, A.N.; Tkatch, N.M.; Barabash, L.I.; Berdnichenko, S.V.; Litovchenko, P.G.; Rosenfeld, A.B.; Zinets, O.S. (Inst. for Nuclear Research, Kiev (USSR))

1992-10-01T23:59:59.000Z

185

Ten Years at the Calif. Energy Commission White Roofs to Cool your Building, your City and  

E-Print Network [OSTI]

Ten Years at the Calif. Energy Commission & White Roofs to Cool your Building, your City and (this" 32" 37" 42" 50" CEC Max Screen Area (1400 in2 or ~57.4 diagonal inches) Energy Star 3.0 TVs (10 is new !) Cool the World Arthur H. Rosenfeld, Former Commissioner California Energy Commission

Kammen, Daniel M.

186

Mary Whitton_SIGGRAPH09 1 Lessons Learned from Ten Years of Studies of Virtual Environments  

E-Print Network [OSTI]

Mary Whitton_SIGGRAPH09 1 Lessons Learned from Ten Years of Studies of Virtual Environments User lessons the Effective Virtual Environments (EVE) research team learned while doing a dozen or more studies and lessons learned by another, cross-disciplinary team in the Distributed nanoManipulator project

North Carolina at Chapel Hill, University of

187

most are government agencies --local, national and international. A ten-year industry forecast put together  

E-Print Network [OSTI]

most are government agencies -- local, national and international. A ten-year industry forecast put environmental, civil government, defence and security, and transportation as the most active market segments combine geographic information systems with satellite data are in demand in a variety of disciplines

Wisconsin at Madison, University of

188

It is ten years since... Daniel Bond and Derek R. Lovley's AEM paper `Electricity Production by  

E-Print Network [OSTI]

2 It is ten years since... Daniel Bond and Derek R. Lovley's AEM paper `Electricity Production by Geobacter sulfurreducens Attached To Electrodes' was published in 2003. "Science is as much luck as anything to electricity at high columbic efficiencies and that this could be a sustainable process because

Lovley, Derek

189

Hybrid logics with Sahlqvist axioms BALDER ten CATE, ISLA, Informatics Institute, University of  

E-Print Network [OSTI]

Hybrid logics with Sahlqvist axioms BALDER ten CATE, ISLA, Informatics Institute, University that every extension of the basic hybrid logic with modal Sahlqvist axioms is complete. As a corollary of our approach, we also obtain the Beth property for a large class of hybrid logics. Finally, we show

ten Cate, Balder

190

A review of ten years of triggered-lightning experiments at Camp Blanding, Florida  

E-Print Network [OSTI]

of Florida, 533 Engineering Bldg. #33, P.O. Box 116130, Gainesville, FL 32611, United States Received 31 30 per year, with about 20 of them containing return-strokes. Out of a total of 208 flashes in TableA review of ten years of triggered-lightning experiments at Camp Blanding, Florida Vladimir A

Florida, University of

191

De grote droge tijd. Het Nederlandse Surinamebeleid ten tijde van de opschorting van het ontwikkelingssamenwerkingsverdrag, 1982-1988.  

E-Print Network [OSTI]

??In deze scriptie wordt aandacht besteed aan de vraag in hoeverre het Nederlandse Surinamebeleid ten tijde van de opschorting van het ontwikkelingssamenwerkingsverdrag tussen beide landen… (more)

Verheij, Elise

2007-01-01T23:59:59.000Z

192

Indexes of the Proceedings for the Ten International Symposia on Detonation 1951-93  

SciTech Connect (OSTI)

The Proceedings of the ten Detonation Symposia have become the major archival source of information of international research in explosive phenomenology, theory, experimental techniques, numerical modeling, and high-rate reaction chemistry. In many cases, they contain the original reference or the only reference to major progress in the field. For some papers, the information is more complete than the complementary article appearing in a formal journal; yet for others, authors elected to publish only an abstract in the Proceedings. For the large majority of papers, the Symposia Proceedings provide the only published reference to a body of work. This report indexes the ten existing Proceedings of the Detonation Symposia by paper titles, topic phrases, authors, and first appearance of acronyms and code names.

Deal, William E.; Ramsay, John B.; Roach, Alita M.; Takala, Bruce E.

1998-09-01T23:59:59.000Z

193

Club Convergence of House Prices: Evidence from China's Ten Key Cities  

E-Print Network [OSTI]

The latest global financial tsunami and its follow-up global economic recession has uncovered the crucial impact of housing markets on financial and economic systems. The Chinese stock market experienced a markedly fall during the global financial tsunami and China's economy has also slowed down by about 2\\%-3\\% when measured in GDP. Nevertheless, the housing markets in diverse Chinese cities seemed to continue the almost nonstop mania for more than ten years. However, the structure and dynamics of the Chinese housing market are less studied. Here we perform an extensive study of the Chinese housing market by analyzing ten representative key cities based on both linear and nonlinear econophysical and econometric methods. We identify a common collective driving force which accounts for 96.5\\% of the house price growth, indicating very high systemic risk in the Chinese housing market. The ten key cities can be categorized into clubs and the house prices of the cities in the same club exhibit an evident converge...

Meng, Hao; Zhou, Wei-Xing

2015-01-01T23:59:59.000Z

194

Test Plan for Long-Term Operation of a Ten-Cell High Temperature Electrolysis Stack  

SciTech Connect (OSTI)

This document defines a test plan for a long-term (2500 Hour) test of a ten-cell high-temperature electrolysis stack to be performed at INL during FY09 under the Nuclear Hydrogen Initiative. This test was originally planned for FY08, but was removed from our work scope as a result of the severe budget cuts in the FY08 NHI Program. The purpose of this test is to evaluate stack performance degradation over a relatively long time period and to attempt to identify some of the degradation mechanisms via post-test examination. This test will be performed using a planar ten-cell Ceramatec stack, with each cell having dimensions of 10 cm × 10 cm. The specific makeup of the stack will be based on the results of a series of shorter duration ten-cell stack tests being performed during FY08, funded by NGNP. This series of tests was aimed at evaluating stack performance with different interconnect materials and coatings and with or without brazed edge rails. The best performing stack from the FY08 series, in which five different interconnect/coating/edge rail combinations were tested, will be selected for the FY09 long-term test described herein.

James E. O'Brien; Carl M. Stoots; J. Stephen Herring

2008-07-01T23:59:59.000Z

195

An analysis of processing methods and a comparison of operational efficiencies in ten Texas broiler processing plants  

E-Print Network [OSTI]

OF CONTENTS INTHODUCTIONe ~ e ~ ~ ~ ~ ~ i ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ oe ~ 1 REVIEW OF LITEHATUHEo ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 2 METHOD OF PHOCEDUHE ~ ~ ~ ~ ~ ~ ~ i ~ ~ e ~ ~ ~ ~ e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 5 RESULTS... TABLE 19 Number of Workers Used in the Ice Packing Operation in Ten Processing Plants ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 ~ ~ ~ ~ ~ ~ i ~ ~ ~ ~ ~ ~ ~ ~ 0 40 Broilers Packed per Man Hour in Ten Processing Plants - Ice Pack. . . i...

Gardner, Frederick Albert

1955-01-01T23:59:59.000Z

196

Energy End-Use Intensities in Commercial Buildings1992 -- Overview/End-Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional Wholesaleand1995

197

Idaho National Laboratory 2013-2022 Ten-Year Site Plan  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) Ten-Year Site Plan (TYSP) describes the strategy for accomplishing the long-term objective of transforming the laboratory to meet Department of Energy (DOE) national nuclear research and development (R&D) goals, as outlined in DOE strategic plans. The plan links R&D mission goals and INL core capabilities with infrastructure requirements (single- and multi-program), establishs the 10-year end-state vision for INL complexes, and identifies and prioritizes infrastructure needs and capability gaps. The TYSP serves as the basis for documenting and justifying infrastructure investments proposed as part of the FY 2013 budget formulation process.

Calvin Ozaki; Sheryl L. Morton; Elizabeth A. Connell; William T. Buyers; Craig L. Jacobson; Charles T. Mullen; Christopher P. Ischay; Ernest L. Fossum; Robert D. Logan

2011-06-01T23:59:59.000Z

198

The Cost-Effectiveness of Continuous Commissioning® Over the Past Ten Years  

E-Print Network [OSTI]

The 8 th International Conference for Enhanced Building Operations (ICEBO 2008) October 20-22, 2008, Berlin, Germany The Cost-Effectiveness of Continuous Commissioning ? Over the Past Ten Years John Bynum David E. Claridge, Ph.D., P.E. W...-IC-08-10-44 1 The 8 th International Conference for Enhanced Building Operations (ICEBO 2008) October 20-22, 2008, Berlin, Germany During the process of gathering the information that is relevant to the established methodology, three items were...

Bynum, J.; Claridge, D. E.; Turner, W. D.; Deng, S.; Wei, G.

199

Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail Share AlternativeRight Now Ten Ways You Can Start

200

Ten scenarios from early radiation to late time acceleration with a minimally coupled dark energy  

E-Print Network [OSTI]

We consider General Relativity with matter, radiation and a minimally coupled dark energy defined by an equation of state w. Using dynamical system method, we find the equilibrium points of such a theory assuming an expanding Universe and a positive dark energy density. Two of these points correspond to classical radiation and matter dominated epochs for the Universe. For the other points, dark energy mimics matter, radiation or accelerates Universe expansion. We then look for possible sequences of epochs describing a Universe starting with some radiation dominated epoch(s) (mimicked or not by dark energy), then matter dominated epoch(s) (mimicked or not by dark energy) and ending with an accelerated expansion. We find ten sequences able to follow this Universe history without singular behaviour of w at some saddle points. Most of them are new in dark energy literature. To get more than these ten sequences, w has to be singular at some specific saddle equilibrium points. This is an unusual mathematical proper...

Fay, Stephane

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Idaho National Laboratory 2015-2023 Ten-Year Site Plan  

SciTech Connect (OSTI)

This Idaho National Laboratory (INL) Ten-Year Site Plan (TYSP) describes the strategy for accomplishing the long-term objective of sustaining the INL infrastructure to meet the Department of Energy Office of Nuclear Energy (DOE-NE) mission: to promote nuclear power as a resource capable of making major contributions in meeting the nation’s energy supply, environmental and energy security needs. This TYSP provides the strategy for INL to accomplish its mission by: (1) linking R&D mission goals to core capabilities and infrastructure requirements; (2) establishing a ten-year end-state vision for INL facility complexes; (3) identifying and prioritizing infrastructure needs and capability gaps; (4) establishing maintenance and repair strategies that allow for sustainment of mission-critical (MC) facilities; and (5) applying sustainability principles to each decision and action. The TYSP serves as the infrastructure-planning baseline for INL; and, though budget formulation documents are informed by the TYSP, it is not itself a budget document.

Sheryl Morton; Elizabeth Connell; Bill Buyers; John Reisenauer; Rob Logan; Chris Ischay; Ernest Fossum; Paul Contreras; Joel Zarret; Steve Hill; Jon Tillo

2013-09-01T23:59:59.000Z

202

Novel Insights into the Diversity of Catabolic Metabolism from Ten Haloarchaeal Genomes  

SciTech Connect (OSTI)

The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis. We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles were isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses. These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment.

Anderson, Iain; Scheuner, Carmen; Goker, Markus; Mavromatis, Kostas; Hooper, Sean D.; Porat, Iris; Klenk, Hans-Peter; Ivanova, Natalia; Kyrpides, Nikos

2011-05-03T23:59:59.000Z

203

Development of an ELISA microarray assay for the sensitive and simultaneous detection of ten biodefense toxins.  

SciTech Connect (OSTI)

Plant and microbial toxins are considered bioterrorism threat agents because of their extreme toxicity and/or ease of availability. Additionally, some of these toxins are increasingly responsible for accidental food poisonings. The current study utilized an ELISA-based protein antibody microarray for the multiplexed detection of ten biothreat toxins, botulinum neurotoxins (BoNT) A, B, C, D, E, F, ricin, shiga toxins 1 and 2 (Stx), and staphylococcus enterotoxin B (SEB), in buffer and complex biological matrices. The multiplexed assay displayed a sensitivity of 1.3 pg/mL (BoNT/A, BoNT/B, SEB, Stx-1 and Stx-2), 3.3 pg/mL (BoNT/C, BoNT/E, BoNT/F) and 8.2 pg/mL (BoNT/D, ricin). All assays demonstrated high accuracy (75-120 percent recovery) and reproducibility (most coefficients of variation < 20%). Quantification curves for the ten toxins were also evaluated in clinical samples (serum, plasma, nasal fluid, saliva, stool, and urine) and environmental samples (apple juice, milk and baby food) with overall minimal matrix effects. The multiplex assays were highly specific, with little crossreactivity observed between the selected toxin antibodies. The results demonstrate a multiplex microarray that improves current immunoassay sensitivity for biological warfare agents in buffer, clinical, and environmental samples.

Jenko, Kathryn; Zhang, Yanfeng; Kostenko, Yulia; Fan, Yongfeng; Garcia-Rodriguez, Consuelo; Lou, Jianlong; Marks, James D.; Varnum, Susan M.

2014-10-21T23:59:59.000Z

204

A Ten-Year, $7 Million Energy Initiative Marching on: Texas A&M University Campus Energy Systems CC  

E-Print Network [OSTI]

The $35 million in measured savings for the ten-year, $7 million continuous commissioning (CC) program at the Texas A&M University (TAMU) makes the decision to continue easy. In today's energy environment and with the volatilities...

Deng, S.; Claridge, D. E.; Turner, W. D.; Bruner, H. L.; Williams, L.; Riley, J. G.

2006-01-01T23:59:59.000Z

205

Cracked lifting lug welds on ten-ton UF{sub 6} cylinders  

SciTech Connect (OSTI)

Ten-ton, Type 48X, UF{sub 6} cylinders are used at the Portsmouth Gaseous Diffusion Plant to withdraw enriched uranium hexafluoride from the cascade, transfer enriched uranium hexafluoride to customer cylinders, and feed enriched product to the cascade. To accomplish these activities, the cylinders are lifted by cranes and straddle carriers which engage the cylinder lifting lugs. In August of 1988, weld cracks on two lifting lugs were discovered during preparation to lift a cylinder. The cylinder was rejected and tagged out, and an investigating committee formed to determine the cause of cracking and recommend remedial actions. Further investigation revealed the problem may be general to this class of cylinder in this use cycle. This paper discusses the actions taken at the Portsmouth site to deal with the cracked lifting lug weld problem. The actions include inspection activities, interim corrective actions, metallurgical evaluation of cracked welds, weld repairs, and current monitoring/inspection program.

Dorning, R.E. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)

1991-12-31T23:59:59.000Z

206

Idaho National Laboratory Ten-Year Site Plan Project Description Document  

SciTech Connect (OSTI)

This document describes the currently active and proposed infrastructure projects listed in Appendix B of the Idaho National Laboratory 2013-2022 Ten Year Site Plan (DOE/ID-11449). It was produced in accordance with Contract Data Requirements List I.06. The projects delineated in this document support infrastructure needs at INL's Research and Education Campus, Materials and Fuels Complex, Advanced Test Reactor Complex and the greater site-wide area. The projects provide critical infrastructure needed to meet current and future INL opereational and research needs. Execution of these projects will restore, rebuild, and revitalize INL's physical infrastructure; enhance program execution, and make a significant contribution toward reducing complex-wide deferred maintenance.

Not Listed

2012-03-01T23:59:59.000Z

207

Ten case history studies of energy efficiency improvements in pulp and paper mills. Final report  

SciTech Connect (OSTI)

The ten technologies chosen for case history development are: sonic sootblowing in boilers, boiler operation on oil-water emulsified fuel, energy efficient motors, computerized control of excess air for boilers, boiler control and load allocation, driving of waste-activated sludge by multiple effect evaporation, pre-drying of hog fuel, lime kiln computerization, heat wheel for process heat recovery, and organic Rankine bottoming cycle for thermomechanical pulping heat recovery. For each case study, there is given: the company name, employee contact, plant summary, a description of the energy consuming process and of the energy-saving action, an assessment of energy savings, and the decision process leading to the adoption of the measure. A data summary for discounted cash flow analysis is tabulated for each case. (LEW)

Not Available

1981-01-01T23:59:59.000Z

208

Modeling the Office of Science Ten Year FacilitiesPlan: The PERI Architecture Tiger Team  

SciTech Connect (OSTI)

The Performance Engineering Institute (PERI) originally proposed a tiger team activity as a mechanism to target significant effort to the optimization of key Office of Science applications, a model that was successfully realized with the assistance of two JOULE metric teams. However, the Office of Science requested a new focus beginning in 2008: assistance in forming its ten year facilities plan. To meet this request, PERI formed the Architecture Tiger Team, which is modeling the performance of key science applications on future architectures, with S3D, FLASH and GTC chosen as the first application targets. In this activity, we have measured the performance of these applications on current systems in order to understand their baseline performance and to ensure that our modeling activity focuses on the right versions and inputs of the applications. We have applied a variety of modeling techniques to anticipate the performance of these applications on a range of anticipated systems. While our initial findings predict that Office of Science applications will continue to perform well on future machines from major hardware vendors, we have also encountered several areas in which we must extend our modeling techniques in order to fulfill our mission accurately and completely. In addition, we anticipate that models of a wider range of applications will reveal critical differences between expected future systems, thus providing guidance for future Office of Science procurement decisions, and will enable DOE applications to exploit machines in future facilities fully.

de Supinski, B R; Alam, S R; Bailey, D H; Carrington, L; Daley, C

2009-05-27T23:59:59.000Z

209

Ten New and Updated Multi-planet Systems, and a Survey of Exoplanetary Systems  

E-Print Network [OSTI]

We present the latest velocities for 10 multi-planet systems, including a re-analysis of archival Keck and Lick data, resulting in improved velocities that supersede our previously published measurements. We derive updated orbital fits for ten Lick and Keck systems, including two systems (HD 11964, HD 183263) for which we provide confirmation of second planets only tentatively identified elsewhere, and two others (HD 187123, and HD 217107) for which we provide a major revision of the outer planet's orbit. We compile orbital elements from the literature to generate a catalog of the 28 published multiple-planet systems around stars within 200 pc. From this catalog we find several intriguing patterns emerging: - Including those systems with long-term radial velocity trends, at least 28% of known planetary systems appear to contain multiple planets. - Planets in multiple-planet systems have somewhat smaller eccentricities than single planets. - The distribution of orbital distances of planets in multi-planet systems and single planets are inconsistent: single-planet systems show a pile-up at P ~ 3 days and a jump near 1 AU, while multi-planet systems show a more uniform distribution in log-period. In addition, among all planetary systems we find: - There may be an emerging, positive correlation between stellar mass and giant-planet semi-major axis. - Exoplanets more massive than Jupiter have eccentricities broadly distributed across 0 < e < 0.5, while lower-mass exoplanets exhibit a distribution peaked near e = 0.

J. T. Wright; S. Upadhyay; G. W. Marcy; D. A. Fischer; Eric B. Ford; John Asher Johnson

2009-03-02T23:59:59.000Z

210

Making a difference: Ten case studies of DSM/IRP interactive efforts and related advocacy group activities  

SciTech Connect (OSTI)

This report discusses the activities of organizations that seek to promote integrated resource planning and aggressive, cost-effective demand-side management by utilities. The activities of such groups -- here called energy efficiency advocacy groups (EEAGs) -- are examined in ten detailed am studies. Nine of the cases involve some form of interactive effort between investor-owned electric utilities and non-utility to develop policies, plans, or programs cooperatively. Many but not all of the interactive efforts examined are formal collaboratives. In addition, all ten cases include discussion of other EEAG activities, such as coalition-building, research, participation in statewide energy planning, and intervention in regulatory proceedings.

English, M.; Schexnayder, S.; Altman, J. [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center; Schweitzer, M. [Oak Ridge National Lab., TN (United States)

1994-03-01T23:59:59.000Z

211

Ten-year's change in blood pressure levels and prevalence of hypertension in urban and rural Cameroon  

E-Print Network [OSTI]

0 Ten-year's change in blood pressure levels and prevalence of hypertension in urban and rural;1 ABSTRACT Background: Hypertension is becoming increasingly important in sub-Saharan Africa. However the 10-year change in blood pressure levels and prevalence of hypertension in rural and urban Cameroon

Paris-Sud XI, Université de

212

A Ten Step Protocol and Plan for CCS Site Characterization, Based on an Analysis of the Rocky Mountain Region, USA  

SciTech Connect (OSTI)

This report expresses a Ten-Step Protocol for CO2 Storage Site Characterization, the final outcome of an extensive Site Characterization analysis of the Rocky Mountain region, USA. These ten steps include: (1) regional assessment and data gathering; (2) identification and analysis of appropriate local sites for characterization; (3) public engagement; (4) geologic and geophysical analysis of local site(s); (5) stratigraphic well drilling and coring; (6) core analysis and interpretation with other data; (7) database assembly and static model development; (8) storage capacity assessment; (9) simulation and uncertainty assessment; (10) risk assessment. While the results detailed here are primarily germane to the Rocky Mountain region, the intent of this protocol is to be portable or generally applicable for CO2 storage site characterization.

McPherson, Brian; Matthews, Vince

2013-09-15T23:59:59.000Z

213

State geothermal commercialization programs in ten Rocky Mountain states. Semi-annual progress report, July-December 1979  

SciTech Connect (OSTI)

The activities and findings of the ten state teams participating in the Rocky Mountain Basin and Range Regional Hydrothermal Commercialization Program for the period are described. A summary of the state projects, compilation of project accomplishments, summary of findings, and a description of the major conclusions and recommendations are presented. Also included are chapters on the commercialization activities carried out by individual teams in each state: Arizona, Colorado, Idaho, Montana, Nevada, New-Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

Griffith, J.L. (comp.)

1980-08-01T23:59:59.000Z

214

Technical and economic evaluation of ten high temperature, high pressure particulate cleanup systems for pressurized fluidized bed combustion  

SciTech Connect (OSTI)

The objective of this analysis was to provide a technical and economic evaluation of the ten high temperature, high pressure (HTHP) systems for the purpose of prioritizing them according to performance, cost, and general viability of achieving commercial status. The scope primarily included reviewing/normalizing test experience to date, normalizing commercial designs, developing normalized capital and operating costs for each system, performing trade-off studies, and performing an evaluation utilizing in-house and outside inputs. The HTHP particulate cleanup system must be capable of the same stringent operating requirements as a conventional system, except it must do so at HTHP conditions. Utilities will demand nearly the same reliability as found in conventional equipment. Regarding particulate cleanup, the system must meet NSPS requirements at the stack, and also meet turbine inlet requirements. The ten devices evaluated were: Electrostatic Precipitator - Cottrell Environmental Sciences (CES); Ceramic Felt Filter - Acurex Corporation; Ceramic Cross Flow Filter - Westinghouse; Shallow Static Granular Bed Filter - Ducon/Westinghouse; Electrostatic Granular Bed Filter - General Electric (GE); Moving Granular Bed Filter - Combustion Power Company (CPC); Dry Plate Scrubber - Air Pollution Technology (APT); Magnetic Granular Bed Filter - Exxon; Electrocyclone - General Electric; and Acoustic Agglomerator - Aerojet/Pennsylvania State University (PSU). The test data for the ten devices were normalized to standard conditions with a reference inlet particle loading and size distribution. The purpose of system design normalization is to provide, for each of the HTHP concepts, a scaled-up commercial design which reflects a consistent design approach. 104 figures, 136 tables.

Rubow, L.N.; Borden, M.; Buchanan, T.L.; Cramp, J.A.C.; Fischer, W.H.; Klett, M.G.; Maruvada, S.M.; Nelson, E.T.; Weinstein, R.E.; Zaharchuk, R.

1984-07-01T23:59:59.000Z

215

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network [OSTI]

11% oil, 6% coal, and traditional energy. A survey conductedand Renewable Energy Ministry of Coal Ministry of Commerce &in Figure 10, coal represents the largest energy product

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

216

New Mexico Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

41,194 241,137 246,418 243,961 245,678 1997-2013 Lease and Plant Fuel 1967-1998 Lease Fuel 49,655 49,070 47,556 47,696 47,018 1983-2013 Plant Fuel 36,827 35,289 38,331 37,195...

217

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network [OSTI]

5% of its reserve is coking coal used by the steel industry.imports around 70% of coking coal annually. More recently,

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

218

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network [OSTI]

U.S. DOE, 2006, “Buildings Energy Data Book 2006”, Septembersame period (US Buildings Energy Data Book). Over the next

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

219

Refining and End Use Study of Coal Liquids.  

SciTech Connect (OSTI)

Progress in a study to determine the most cost effective and suitable combination of existing petroleum refinery processes needed to make specification transportation fuels or blending stocks, from direct and indirect coal liquefaction product liquids is reported.

NONE

1997-12-31T23:59:59.000Z

220

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network [OSTI]

Activity, 2005-06 8India's GDP, with 54% in 2005-06 (MOSPI, 2007b) and is alsoby Economic Activity, 2005-06 GDP Share AAGR (billion of GDP

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network [OSTI]

an estimated total energy consumption of 19 GWh (0.07PJ),to 28% in 2005. Total energy consumption in 2020 in thecan have similar total energy consumption but produce very

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

222

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network [OSTI]

Efficiency in Electricity Consumption", HWWA Discussionconsumption. Even electricity consumption, which isData Adjustment Electricity consumption from farmers is un-

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

223

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network [OSTI]

8 Table 3. Electric and Diesel Pump Characteristics andhectare by fuel type (electric or diesel pump) in number perTable 3. Electric and Diesel Pump Characteristics and

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

224

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network [OSTI]

10. Final and Primary Energy Consumption in the Industry35 Figure 16. Primary Energy Consumption byby end users while primary energy consumption includes final

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

225

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network [OSTI]

s=retail k=electricity, s=private office k=electricity, s==private office s=gov office s=hotel s=other k=electricity k

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

226

West Virginia Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion CubicCubic39,287Sales

227

Healthcare Energy End-Use Monitoring | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThisThe HawaiiNREL partnered with two

228

New Hampshire Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYear Jan FebYear Jan Feb Mar AprDecade,474

229

New Jersey Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYear Jan FebYearDecadeYear Jan Feb Mar Apr

230

New Mexico Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYear JanDecadeExtensions41 1,039Decade9,290

231

New York Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYearDecadeYear JanDecreases264 21 327Year

232

North Carolina Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecade Year-0 Year-18 2.415 - - -Cubic8Decade1,839

233

North Dakota Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecade Year-0 Year-18Feet) New123DecadeNA 3,540

234

South Carolina Natural Gas Consumption by End Use  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) YearPriceThousandThousand479,741 476,85520 40 6015,008 16,112

235

South Dakota Natural Gas Consumption by End Use  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) YearPriceThousandThousand479,7416.18 5.69per4,175 4,992 7,530

236

Alternative Strategies for Low Pressure End Uses | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed.9-0s) All OtherDepartment ofThis tip sheet outlines

237

Vehicle Technologies Office: Biofuels End-Use Research | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear GuideReport | Departmentand TestingEnergy

238

U.S. Natural Gas Consumption by End Use  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinter 2013-14 WellsDecadeCubic Feet)Gulf of Mexico

239

U.S. Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8,Coal Stocks atYear Jan Feb Mar

240

Energy End-Use Intensities in Commercial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.Wyoming ElectricityCapacity ConductorA.Annual/2

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy End-Use Intensities in Commercial Buildings 1989  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.Wyoming ElectricityCapacity ConductorA.Annual/29

242

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network [OSTI]

Institute, “Curbing Global Energy Demand Growth: The Energyup Assessment of Energy Demand in India Transportationa profound effect on energy demand. Policy analysts wishing

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

243

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network [OSTI]

rural, k=Kerosene m=rural, k=biogas m =urban, k=LPG m=urban,k=LPG k=wood k=kerosene k=biogas k=electricity k=electricity

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

244

Rhode Island Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWest Virginia" "Emission Type",.7Decade,735

245

District of Columbia Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623and Commercial ConsumersYear

246

Energy End-Use Intensities in Commercial Buildings 1989 -- Executive  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional Wholesale

247

Energy End-Use Intensities in Commercial Buildings 1992  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional Wholesaleand

248

Energy Information Administration - Table 2. End Uses of Fuel Consumption,  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003of Energy for allExpenditures1998 and

249

Driving Biofuels End Use: BETO/VTO Collaborations  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA and DOWDepartmentDraft-O-MeterDrewDrivers

250

Engineer End Uses for Maximum Efficiency | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClickDepartment ofFeaturing presentersThis tip

251

Distribution Infrastructure and End Use | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services AuditTransatlanticDirect-Cooled PowerDishwasher:Report

252

Table 5.1 End Uses of Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.13 Offsite-ProducedPer5.1

253

Table 5.2 End Uses of Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.13 Offsite-ProducedPer5.12

254

Table 5.3 End Uses of Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.13

255

U.S. Adjusted Sales of Kerosene by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone: FAX: Last Name: Email:EIA's Today0.5Area: U.S.

256

U.S. Sales of Kerosene by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone: FAX:9,152 8,905 8,967Sep-14Area: U.S. EastArea:

257

Residential Lighting End-Use Consumption | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |Regulation Services System:Affairs,How toDOE partnersAdvance

258

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total Inputs13.1.3.4441. End

259

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total Inputs13.1.3.4441. End2.

260

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total Inputs13.1.3.4441.

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total Inputs13.1.3.4441.4. End

262

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total Inputs13.1.3.4441.4. End1

263

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total Inputs13.1.3.4441.4.

264

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total Inputs13.1.3.4441.4.3 End

265

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total Inputs13.1.3.4441.4.3

266

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total Inputs13.1.3.4441.4.31

267

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total Inputs13.1.3.4441.4.312

268

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total Inputs13.1.3.4441.4.3123

269

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total Inputs13.1.3.4441.4.31234

270

" Row: End Uses within NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total

271

An examination of the financial statements of twenty-five oil companies for a ten-year period  

E-Print Network [OSTI]

for so doing in the ten year period covered by this study. yor the pexiod 1941 1950?cost was the most frequently used method of inventoxy valuation for all inventories other tixan materials and supplies bv the companies selected. Cost or market... cost is involved in inventozy valuations the detezmination of cost presents a problemh Lznyswthods are availabiex bu't only four &Is used in the xeports exasdnedd A tabulation of the extent to which each oi' the four methods is used is presented...

Hatfield, W. C

1952-01-01T23:59:59.000Z

272

A Follow-up Study on the Persistence of Savings from the Retrocommissioning of Ten Buildings on a University Campus: Preliminary Results  

E-Print Network [OSTI]

A study has been initiated to provide follow-up analysis on the persistence of savings achieved from the retrocommissioning of ten buildings on a university campus. The buildings were originally commissioned in 1996, and the energy savings achieved...

Claridge, D. E.; Toole, C.

2007-09-11T23:59:59.000Z

273

A review of 'Paradise Lost: A Poem Written in Ten Books': An Authoritative Text of the 1667 First Edition" edited by John T. Shawcross and Michael Lieb  

E-Print Network [OSTI]

. ?Paradise Lost: A Poem Written in Ten Books?: An Authoritative Text of the 1667 First Edition. Pittsburgh, PA: Duquesne University Press, 2007. xvi + 456 pp. bibl. $68. Review by reuben sanchez, texas a&m university. Michael Lieb and John T. Shawcross..., eds. ?Paradise Lost: A Poem Written in Ten Books?: Essays on the 1667 First Edition. Pittsburgh, PA: Duquesne University Press, 2007. xii + 288 pp. index. append. $60. Review by reuben sanchez, texas a&m university. 40 seventeenth-century news...

Sanchez, Reuben

2009-01-01T23:59:59.000Z

274

A review of 'Paradise Lost: A Poem Written in Ten Books': Essays on the 1667 First Edition" edited by John T. Shawcross and Michael Lieb  

E-Print Network [OSTI]

. ?Paradise Lost: A Poem Written in Ten Books?: An Authoritative Text of the 1667 First Edition. Pittsburgh, PA: Duquesne University Press, 2007. xvi + 456 pp. bibl. $68. Review by reuben sanchez, texas a&m university. Michael Lieb and John T. Shawcross..., eds. ?Paradise Lost: A Poem Written in Ten Books?: Essays on the 1667 First Edition. Pittsburgh, PA: Duquesne University Press, 2007. xii + 288 pp. index. append. $60. Review by reuben sanchez, texas a&m university. 40 seventeenth-century news...

Sanchez, Reuben

2009-01-01T23:59:59.000Z

275

Ten year RPV inspections experiences in a PWR in Spain: Improvements in the inner-radius inspection techniques  

SciTech Connect (OSTI)

The in-service inspection of an RPV, performed in accordance with the scope and requirements of Section 11 of the ASME Code at the end of the ten year interval, is one of the most complicated ISI activities carried out. Special resources and tools are required for successful performance of this type of inspection: (1) preparation and planning; (2) mechanical scanner; (3) data acquisition and analysis system; and (4) ultrasonic techniques. This paper describes the most relevant issues relating to RPV inspection, along with the experience obtained during the inspection of the RPV of a 930 MW Spanish PWR plant in 1992. Special attention is paid to the improvements achieved with respect to inspection of the inner-radius areas of the primary nozzles.

Gonzalez, E.; Willke, A. [Tecnatom, S.A., Madrid (Spain)

1994-12-31T23:59:59.000Z

276

Ten Priceless Images  

E-Print Network [OSTI]

") would sell easily for Rs. 2500/- in Cal­ cutta and we were not interested to cheat him. The Tibetan refugee said "I know that your scholar friends, Indian or American, may pay even Rs. 5000/-. But I want a proper custody for my house­ hold icon which... Handed figure on Lotus Seat would bear out. Vide Plate Six •. TARA Plate Seven depicts three icons of Tara (Dol­ rna), two in brass and one in sacred clay. The brass pieces are 3 inches and 4 inches high and the clay one 2 inches. The clay piece...

Sinha, Nirmal Chandra

1984-01-01T23:59:59.000Z

277

Has SUSY Gone Undetected in 9-jet Events? A Ten-Fold Enhancement in the LHC Signal Efficiency  

E-Print Network [OSTI]

On the heels of the first analysis of LHC data eclipsing the inverse femtobarn integrated luminosity milestone, we undertake a detailed comparison of the most recent experimental results with Monte Carlo simulation of the full "bare-minimally constrained" parameter space of the class of supersymmetric models which go by the name of No-Scale FSU5. We establish the first sparticle exclusion boundaries on these models, finding that the LSP mass should be at least about 92 GeV, with a corresponding boundary gaugino mass M_1/2 above about 485 GeV. In contrast to the higher mass constraints established for the CMSSM, we find the minimum exclusion boundary on the FSU5 gluino and heavy squark masses resides in the range of 658-674 GeV and 854-1088 GeV, respectively, with a minimum light stop squark mass of about 520 GeV. Moreover, we show that elements of the surviving parameter space not only escape the onslaught of LHC data which is currently decimating the standard mSUGRA/CMSSM benchmarks, but are further able to efficiently explain certain tantalizing production excesses over the SM background which have been reported by the CMS collaboration. We also extend this study comparatively to five distinct collider energies and four specific cut methodologies, including a proposed set of selection cuts designed to reveal the natural ultra-high jet multiplicity signal associated with the stable mass hierarchy m_t conservatively of order ten, may be attained by adoption of these cuts, which is sufficient for an immediate and definitive testing of a majority of the model space using only the existing LHC data set. We stress the point that habits established in lower jet multiplicity searches do not necessarily carry over into the ultra-high jet multiplicity search regime.

Tianjun Li; James A. Maxin; Dimitri V. Nanopoulos; Joel W. Walker

2011-08-25T23:59:59.000Z

278

Historical perspective on Caribbean seismic hazard, ten Brink, Bakun, Flores Historical perspective on seismic hazard to Hispaniola and the northeast Caribbean  

E-Print Network [OSTI]

on seismic hazard to Hispaniola and the northeast Caribbean region Uri S. ten Brink1* , William H. Bakun2, magnitude, and distance from the reported damage to the epicenter for Hispaniola and for Puerto Rico and the Virgin Islands. The attenuation relationship for Hispaniola earthquakes and northern Lesser Antilles

ten Brink, Uri S.

279

Ten Years of Measurements of Tropical Upper-Tropospheric Water Vapor by MOZAIC. Part I: Climatology, Variability, Transport, and Relation to  

E-Print Network [OSTI]

the International Satellite Cloud Climatology Project (ISCCP). 1. Introduction Water vapor is the key atmosphericTen Years of Measurements of Tropical Upper-Tropospheric Water Vapor by MOZAIC. Part I: Climatology, Variability, Transport, and Relation to Deep Convection ZHENGZHAO LUO, DIETER KLEY,* AND RICHARD H. JOHNSON

Lombardi, John R.

280

First Annual Conference on Intelligence Analysis Methods and Tools, May 2005 PNNL-SA-44274 Top Ten Needs for Intelligence Analysis Tool Development  

E-Print Network [OSTI]

First Annual Conference on Intelligence Analysis Methods and Tools, May 2005 PNNL-SA-44274 Top Ten Needs for Intelligence Analysis Tool Development Richard V. Badalamente and Frank L. Greitzer Battelle implications for intelligence analysis software tool develop- ment. 1. Introduction and Background Intelligence

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The winning ideas for the Fall 2013 Change the World Challenge cover a variety of innovative devices, processes, and technologies. The ten winning ideas include  

E-Print Network [OSTI]

. Weepri A 3-D printing system with educational lessons that empowers young inventors and tinkerers devices, processes, and technologies. The ten winning ideas include: Logikits Logikits is an easy-to-learn of mental illness; a notification email would be sent to the parents. Deborah Lark '17, Nuclear

Salama, Khaled

282

Ten Year of Manufacturing R&D in PVMaT„Technical Accomplishments, Return on Investments, and Where We Go Next  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an overarchingInformationTHERMOANALYTICALSLAC,Ten

283

Multispectral breast imaging using a ten-wavelength, 64x64 source/detector channels silicon photodiode-based diffuse optical tomography system  

SciTech Connect (OSTI)

We describe a compact diffuse optical tomography system specifically designed for breast imaging. The system consists of 64 silicon photodiode detectors, 64 excitation points, and 10 diode lasers in the near-infrared region, allowing multispectral, three-dimensional optical imaging of breast tissue. We also detail the system performance and optimization through a calibration procedure. The system is evaluated using tissue-like phantom experiments and an in vivo clinic experiment. Quantitative two-dimensional (2D) and three-dimensional (3D) images of absorption and reduced scattering coefficients are obtained from these experiments. The ten-wavelength spectra of the extracted reduced scattering coefficient enable quantitative morphological images to be reconstructed with this system. From the in vivo clinic experiment, functional images including deoxyhemoglobin, oxyhemoglobin, and water concentration are recovered and tumors are detected with correct size and position compared with the mammography.

Li Changqing; Zhao Hongzhi; Anderson, Bonnie; Jiang Huabei [Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611-6131 (United States); Department of Radiology, Oconee Memorial Hospital, Seneca, South Carolina 29672 (United States); Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611-6131 (United States)

2006-03-15T23:59:59.000Z

284

Idaho National Laboratory Ten-year Site Plan (2012 through 2021) -- DOE-NE's National Nuclear Capability -- Developing and Maintaining the INL Infrastructure  

SciTech Connect (OSTI)

To meet long-term objectives to transform the Idaho National Laboratory (INL), we are providing an integrated, long-term vision of infrastructure requirements that support research, development and demonstration (RD&D) goals outlined in the DOE strategic plans, including the NE Roadmap and reports such as Facilities for the Future of Nuclear Energy Research: A Twenty-year Outlook. The goal of the INL Ten-year Site Plan (TYSP) is to clearly link RD&D mission goals and INL core capabilities with infrastructure requirements (single and multi-program), establish the 10-year end-state vision for INL complexes, identify and prioritize infrastructure and capability gaps, as well as the most efficient and economic approaches to closing those gaps.

Cal Ozaki

2010-06-01T23:59:59.000Z

285

Ten Incredibly Dangerous Software Ideas  

E-Print Network [OSTI]

This is a rough draft synopsis of a book presently in preparation. This book provides a systematic critique of the software industry. This critique is accomplished using classical methods in practical design science.

G. A. Maney

2006-07-07T23:59:59.000Z

286

Top Ten Innovations of 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler Tina ButlerToday in EnergyTop 500 Recognizesof » TopTop

287

TEN-YEAR CAPITAL PROGRAM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout »LabSustainabilitySynthetic fuelTPension PlanTEAM

288

Remarks on an attempted axiomatisation of Quantum Mechanics, due to Lucien Hardy, and Ten Theses on Hilbert's Sixth Problem and Quantum Measurement  

E-Print Network [OSTI]

From the standpoint of Hilbert's Sixth Problem, which is the axiomatisation of Physics, the famous paper of Lucien Hardy's, Quantum Theory from Five Reasonable Axioms, is not relevant. The present paper argues that Hardy does not give a physical definition of `limit', and if we assume the usual mathematical definition of limit of a sequence, he fails to define a sequence in physical terms to which the usual definition is applicable. We argue that one should not, in fact, try to define probability in terms of the usual notion of limit of a sequence of results of a measurement because of seemingly insurmountable difficulties in axiomatising the notion of function or sequence in this context. Von Plato's and the authour's work (see http:arxiv.org/abs/quant-ph/0502124 and euclid.unh.edu/~jjohnson/axiomatics.html for larger context and further references) on the definition of physical probability needs to be used in this context. We conclude with ten theses on quantum measurement, from the standpoint of the Hilbert problem.

Joseph F. Johnson

2006-06-15T23:59:59.000Z

289

Massively-parallel electron dynamics calculations in real-time and real-space: Toward applications to nanostructures of more than ten-nanometers in size  

SciTech Connect (OSTI)

A highly efficient program of massively parallel calculations for electron dynamics has been developed in an effort to apply the method to optical response of nanostructures of more than ten-nanometers in size. The approach is based on time-dependent density functional theory calculations in real-time and real-space. The computational code is implemented by using simple algorithms with a finite-difference method in space derivative and Taylor expansion in time-propagation. Since the computational program is free from the algorithms of eigenvalue problems and fast-Fourier-transformation, which are usually implemented in conventional quantum chemistry or band structure calculations, it is highly suitable for massively parallel calculations. Benchmark calculations using the K computer at RIKEN demonstrate that the parallel efficiency of the program is very high on more than 60?000 CPU cores. The method is applied to optical response of arrays of C{sub 60} orderly nanostructures of more than 10 nm in size. The computed absorption spectrum is in good agreement with the experimental observation.

Noda, Masashi; Ishimura, Kazuya; Nobusada, Katsuyuki [Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585 (Japan); Yabana, Kazuhiro; Boku, Taisuke [Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan)

2014-05-15T23:59:59.000Z

290

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network [OSTI]

Gas Sonoma Internal Combustion Engine Internal Combustionwhich report internal combustion (IC) engines as technologygas, internal combustion, or reciprocating engines. 3.9 i

McKone, Thomas E.

2011-01-01T23:59:59.000Z

291

Residential Behavioral Savings: An Analysis of Principal Electricity End Uses in British Columbia  

E-Print Network [OSTI]

HVAC systems and building shells. Demand side management programs have focused their attention on market

Tiedemann, Kenneth Mr.

2013-01-01T23:59:59.000Z

292

ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.2  

E-Print Network [OSTI]

Works Department. General Electric Company Solid Wasteavailable in MSW (General Electric 1975: Determining thein MSW (%) Source: General Electric 1975, Lidstrum 1974,

Authors, Various

2011-01-01T23:59:59.000Z

293

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network [OSTI]

Natural Gas Reciprocating Engine Steam Turbne Cogen Cogengas turbine Steam hlrbine Reciprocating engine WTE Digestergas turbine Steam turbine Reciprocating engines WTE Digester

McKone, Thomas E.

2011-01-01T23:59:59.000Z

294

End-use electrification in the residential sector : a general equilibrium analysis of technology advancements  

E-Print Network [OSTI]

The residential sector in the U.S. is responsible for about 20% of the country's primary energy use (EIA, 2011). Studies estimate that efficiency improvements in this sector can reduce household energy consumption by over ...

Madan, Tanvir Singh

2012-01-01T23:59:59.000Z

295

Letter Report on Testing of Distributed Energy Resource, Microgrid, and End-Use  

E-Print Network [OSTI]

the same support to the grid. Figure 1 indicates that 1 MW of storage (provided by a battery or ramping as an Enabling Technology. Subtask 8.2: Use of Hydrogen for Energy Storage Under this subtask, HNEI evaluated the use of hydrogen as part of an integrated storage system with emphasis on the use of hydrogen

296

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Green Mountain Power Corp","Investor-Owned",2477751,835602,896610,745539,0 2,"Central...

297

Refining and end use study of coal liquids. Quarterly report, January--March 1996  

SciTech Connect (OSTI)

Bechtel, with Southwest Research Institute, Amoco Oil R&D, and the M. W. Kellogg Co. as subcontractors, initiated a study on November 1, 1993, for the US Department of Energy`s (DOE`s) Pittsburgh Energy Technology Center (PETC) to determine the most cost effective and suitable combination of existing petroleum refinery processes needed to make specification transportation fuels or blending stocks, from direct and indirect coal liquefaction product liquids. A key objective is to determine the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g. year 2000, Clean Air Act Amendment (CAAA) standards. An integral part of the above objectives is to test the fuels or blends produced and compare them with established ASTM fuels. The comparison will include engine tests to ascertain compliance of the fuels produced with CAAA and other applicable fuel quality and performance standards. The final part of the project includes a detailed economic evaluation of the cost of processing the coal liquids to their optimum products. The cost analyses is for the incremental processing cost; in other words, the feed is priced at zero dollars. The study reflects costs for operations using state of the art refinery technology; no capital costs for building new refineries is considered. Some modifications to the existing refinery may be required. Economy of scale dictates the minimum amount of feedstock that should be processed. The major efforts conducted during the first quarter of 1996 were in the areas of: DL2 light distillate hydrotreating; and DL2 heave distillate catalytic cracking.

NONE

1996-09-01T23:59:59.000Z

298

Residential Behavioral Savings: An Analysis of Principal Electricity End Uses in British Columbia  

E-Print Network [OSTI]

Center for the Study of Energy Markets. California EnergyThe Economics of Energy Market Transformation Programs,”and J.E. Eto. 1996. Market Barriers to Energy Efficiency: A

Tiedemann, Kenneth Mr.

2013-01-01T23:59:59.000Z

299

Residential Behavioral Savings: An Analysis of Principal Electricity End Uses in British Columbia  

E-Print Network [OSTI]

Fowlie. 2007. Demand-Side Management and Energy Efficiencyand building shells. Demand side management programs have

Tiedemann, Kenneth Mr.

2013-01-01T23:59:59.000Z

300

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network [OSTI]

Natural Gas Kern Natural Gas/Eor Gas Turbine Kern Ag. &enhanced oil recovery (EOR), and NOx and S02 from digesterEnergy Information Agency EOR: enhanced oil recovery EP A:

McKone, Thomas E.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

An evaluation of the potential end uses of a Utah tar sand bitumen. [Tar sand distillate  

SciTech Connect (OSTI)

To date the commercial application of tar sand deposits in the United States has been limited to their use as paving materials for county roads, parking lots, and driveways because the material, as obtained from the quarries, does not meet federal highway specifications. The bitumen in these deposits has also been the subject of upgrading and refining studies to produce transportation fuels, but the results have not been encouraging from an economic standpoint. The conversion of tar sand bitumen to transportation fuels cannot compete with crude oil refining. The purposes of this study were two-fold. The first was to produce vacuum distillation residues and determine if their properties met ASTM asphalt specifications. The second was to determine if the distillates could serve as potential feedstocks for the production of aviation turbine fuels. The bitumen used for this study was the oil produced during an in situ steamflood project at the Northwest Asphalt Ridge (Utah) tar sand deposit. Two distillation residues were produced, one at +316/sup 0/C and one at +399/sup 0/C. However, only the lower boiling residue met ASTM specifications, in this case as an AC-30 asphalt. The original oil sample met specifications as an AC-5 asphalt. These residue samples showed some unique properties in the area of aging; however, these properties need to be investigated further to determine the implications. It was also suggested that the low aging indexes and high flow properties of the asphalts may be beneficial for pavements that require good low-temperature performance. Two distillate samples were produced, one at IBP-316/sup 0/C and one at IBP-399/sup 0/C. The chemical and physical properties of these samples were determined, and it was concluded that both samples appear to be potential feedstocks for the production of aviation turbine fuels. However, hydrogenation studies need to be conducted and the properties of the finished fuels determined to verify the prediction. 14 refs., 12 tabs.

Thomas, K.P.; Harnsberger, P.M.; Guffey, F.D.

1986-09-01T23:59:59.000Z

302

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network [OSTI]

from electricity generation from California power plants. A-electricity generation capacity comes from coal-fired power plants (

McKone, Thomas E.

2011-01-01T23:59:59.000Z

303

Residential Behavioral Savings: An Analysis of Principal Electricity End Uses in British Columbia  

E-Print Network [OSTI]

The study found that refrigerator and freezer temperaturekWh per year), and refrigerator and freezer (1,120 kWh perrefrigeration (refrigerators and freezers) included in the

Tiedemann, Kenneth Mr.

2013-01-01T23:59:59.000Z

304

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network [OSTI]

bed and bubbling bed FBe. b Average of all boiler typesbed and bubbling bed FBe. , Because diesel is a distillate

McKone, Thomas E.

2011-01-01T23:59:59.000Z

305

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network [OSTI]

assessments for the current mix of energy technologies, thenaphthalene. The current mix of energy technologies employedis used to establish the mix of energy technologies that

McKone, Thomas E.

2011-01-01T23:59:59.000Z

306

ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.2  

E-Print Network [OSTI]

Comprehensive Studies of Solid Waste Disposal," Chapter6 ofSystems for Municipal Solid Waste A Technical/EconomicDerivatives from Municipal Solid Waste. In Energy from Solid

Authors, Various

2011-01-01T23:59:59.000Z

307

ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.1  

E-Print Network [OSTI]

RDSF), pyrolysis and incineration. Landfilling is one of theRDSF, pyrolysis and incineration--is more economically

Authors, Various

2011-01-01T23:59:59.000Z

308

ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.2  

E-Print Network [OSTI]

$(Thousands) b Process: Incineration RDSF Generation OilCosts $/ton(2) a Process: Incineration RDSF Generation Oilprocessing tech- niques. Incineration is clearly the most

Authors, Various

2011-01-01T23:59:59.000Z

309

ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.2  

E-Print Network [OSTI]

State Solid Waste Management Board Energy Analysis ofto Solid Waste Utilization as an Energy Source. Gordianto Solid Waste Utilization as an Energy Source. Washington,

Authors, Various

2011-01-01T23:59:59.000Z

310

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network [OSTI]

plants relying on enhanced oil recovery (EOR), and NOx andAgency EOR: enhanced oil recovery EP A: US EnvironmentalGas Steam Turbine/Enhanced Oil Recovery Internal Combustion

McKone, Thomas E.

2011-01-01T23:59:59.000Z

311

Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand  

SciTech Connect (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

2012-06-01T23:59:59.000Z

312

ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.1  

E-Print Network [OSTI]

savings due to energy conservation. This report was done4.50 Foreign LBL 7896 ENERGY CONSERVATION: POLICY ISSUES ANDBarriere to Industrial Energy Conservation 2) The Process of

Authors, Various

2011-01-01T23:59:59.000Z

313

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network [OSTI]

3. Assumptions and conversion factors used to calculate the7human): oral ingestion conversion factor from rat to humanshuman): oral ingestion conversion factor from mouse to human

McKone, Thomas E.

2011-01-01T23:59:59.000Z

314

INTERNATIONAL RESIDENTIAL ENERGY END USE DATA: ANALYSIS OF HISTORICAL AND PRESENT DAY STRUCTURE AND DYNAMICS  

E-Print Network [OSTI]

all fuels except district heating. Only for Germany andSweden, and Germany had district heating. The Swedish/German

Schipper, Lee

2013-01-01T23:59:59.000Z

315

Estimates of Energy Consumption by Building Type and End Use at U.S. Army Installations  

E-Print Network [OSTI]

Irwin Fort Sill Yuma Pg Fort Bliss Fort Sam Houston FortEstimated H V A C EUIs at Fort Bliss Table 5-12. Annual DOE-Estimated Electricity Use at Fort Bliss [GWh/yr] Table 5-24.

Konopacki, S.J.

2010-01-01T23:59:59.000Z

316

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network [OSTI]

and NOx than natural gas combustion, the result is higherturbine Diesel Natural Gas Combustion or gas turbine Steamand gas turbine Nahual Gas Combustion or gas turbine Steam

McKone, Thomas E.

2011-01-01T23:59:59.000Z

317

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network [OSTI]

for urban and rural electricity energy generating powerurban and rural counties, the reduction in energy generationb) Rural power plants PLANTNAME Jackson Valley Energy Lp

McKone, Thomas E.

2011-01-01T23:59:59.000Z

318

Control Limits for Building Energy End Use Based on Engineering Judgment, Frequency Analysis, and Quantile Regression  

SciTech Connect (OSTI)

Approaches are needed to continuously characterize the energy performance of commercial buildings to allow for (1) timely response to excess energy use by building operators; and (2) building occupants to develop energy awareness and to actively engage in reducing energy use. Energy information systems, often involving graphical dashboards, are gaining popularity in presenting energy performance metrics to occupants and operators in a (near) real-time fashion. Such an energy information system, called Building Agent, has been developed at NREL and incorporates a dashboard for public display. Each building is, by virtue of its purpose, location, and construction, unique. Thus, assessing building energy performance is possible only in a relative sense, as comparison of absolute energy use out of context is not meaningful. In some cases, performance can be judged relative to average performance of comparable buildings. However, in cases of high-performance building designs, such as NREL's Research Support Facility (RSF) discussed in this report, relative performance is meaningful only when compared to historical performance of the facility or to a theoretical maximum performance of the facility as estimated through detailed building energy modeling.

Henze, G. P.; Pless, S.; Petersen, A.; Long, N.; Scambos, A. T.

2014-02-01T23:59:59.000Z

319

Distribution Category UC-98 Consumption End-Use A Comparison of Measures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocation oftheAmperometricEnergyDISTRIBUTED

320

Healthcare Energy: Using End-Use Data to Inform Decisions | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThisThe

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary:Principal shaleMajor U.S.6:6.

322

Table C4. Total End-Use Energy Consumption Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary:Principal shaleMajorC3.C4.

323

Table E2. Total End-Use Energy Price Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary5. Energy6.E2.

324

An Assessment of Interval Data and Their Potential Application to Residential Electricity End-Use Modeling  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotalnerrSpring:7)An Assessment

325

Microsoft Word - Major end uses front page v2 2015-03-31.docx  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3 1 Short-TermJuly8 11 1 Market2

326

Microsoft Word - Major end uses front page v2 2015-03-31.docx  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3 1 Short-TermJuly8 11 1

327

Microsoft Word - Major end uses front page v2 2015-03-31.docx  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3 1 Short-TermJuly8 11 14

328

Microsoft Word - Major end uses front page v2 2015-03-31.docx  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3 1 Short-TermJuly8 11 145

329

Microsoft Word - Major end uses front page v2 2015-03-31.docx  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3 1 Short-TermJuly8 11

330

Energy End-Use Intensities in Commercial Buildings 1992 - Index Page  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.Wyoming ElectricityCapacity ConductorA.Annual/292

331

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,442 140,948844Next1 End

332

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,442 140,948844Next1

333

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.49 Next MECS7 End

334

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.49 Next MECS7 End

335

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.49 Next MECS7 End5

336

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.49 Next MECS7

337

Manufacturing Consumption of Energy 1994 - Derived measures of end-use  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2 Macro-Industrial WorkingYear Jan Feb(MECS)

338

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network [OSTI]

Tulare Gas Fueled Reciprocating Cogen Engine Gas TurbineGas Turbine Combined Cycle Steam Turbine Cogen Not Cogen NotGas Kern Natural Gas/Eor Gas Turbine Kern Ag. & Woodwaste

McKone, Thomas E.

2011-01-01T23:59:59.000Z

339

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network [OSTI]

Woodwaste Natural Gas Steam Turbine Cogen Sierra Tulare GasGas Turbine Combined Cycle Steam Turbine Cogen Not Cogen NotNot Cogen Cogen Cogen Kern Steam Turbine Steam Turbne Lassen

McKone, Thomas E.

2011-01-01T23:59:59.000Z

340

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network [OSTI]

of upper end steam (condensing) turbines designed for largesteam turbines used in industry or e backpressure (non-condensing)

McKone, Thomas E.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousand CubicYear Jan Feb92 207After

342

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousand CubicYear Jan Feb92 207AfterArizona"

343

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousand CubicYear Jan Feb92

344

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousand CubicYear Jan Feb92Colorado"

345

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousand CubicYear Jan Feb92Colorado"Connecticut"

346

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousand CubicYear Jan

347

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousand CubicYear JanDistrict of Columbia"

348

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousand CubicYear JanDistrict of

349

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousand CubicYear JanDistrict ofGeorgia"

350

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousand CubicYear JanDistrict ofGeorgia"Hawaii"

351

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousand CubicYear JanDistrict

352

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousand CubicYear JanDistrictIllinois"

353

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousand CubicYear JanDistrictIllinois"Indiana"

354

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousand CubicYear

355

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousand CubicYearKansas"

356

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousand CubicYearKansas"Kentucky"

357

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousand CubicYearKansas"Kentucky"Louisiana"

358

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousand

359

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousandMaryland" ,"Entity","Type of

360

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousandMaryland" ,"Entity","Type

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousandMaryland"

362

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousandMaryland"Minnesota"

363

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998Hampshire"RhodeWestThousandMaryland"Minnesota"Mississippi"

364

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933

365

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana" ,"Entity","Type of Provider","All

366

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana" ,"Entity","Type of Provider","AllNebraska"

367

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana" ,"Entity","Type of

368

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana" ,"Entity","Type ofHampshire"

369

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana" ,"Entity","Type ofHampshire"Jersey"

370

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana" ,"Entity","Type ofHampshire"Jersey"Mexico"

371

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana" ,"Entity","Type

372

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana" ,"Entity","TypeCarolina" ,"Entity","Type

373

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana" ,"Entity","TypeCarolina"

374

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana" ,"Entity","TypeCarolina"Ohio"

375

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana" ,"Entity","TypeCarolina"Ohio"Oklahoma"

376

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana"

377

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana"Pennsylvania" ,"Entity","Type of Provider","All

378

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana"Pennsylvania" ,"Entity","Type of

379

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana"Pennsylvania" ,"Entity","Type ofCarolina"

380

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana"Pennsylvania" ,"Entity","Type

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana"Pennsylvania" ,"Entity","TypeTennessee"

382

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana"Pennsylvania" ,"Entity","TypeTennessee"Texas"

383

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana"Pennsylvania"

384

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana"Pennsylvania"Utah" ,"Entity","Type of

385

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana"Pennsylvania"Utah" ,"Entity","Type ofVermont"

386

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana"Pennsylvania"Utah" ,"Entity","Type

387

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana"Pennsylvania"Utah" ,"Entity","TypeWashington"

388

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana"Pennsylvania"Utah"

389

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana"Pennsylvania"Utah"Wisconsin" ,"Entity","Type of

390

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933Montana"Pennsylvania"Utah"Wisconsin" ,"Entity","Type

391

Energy End-Use Intensities in Commercial Buildings 1989 data -- Publication  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,237 1,471Regional Wholesaleand Tables

392

Energy Information Administration - Energy Efficiency, Table 6b-End Uses of  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003 Detailed200320032003 Detailedenergy

393

Energy Information Administration - Energy Efficiency-Table 6a- End uses of  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003of Energy for all Purposes (Firstfuel

394

Energy Information Administration - Energy Efficiency-Table 6a- End uses of  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003of Energy for all Purposes

395

,"U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per ThousandPriceDryCoalbedCrude OilShale Proved

396

,"U.S. Adjusted Sales of Distillate Fuel Oil by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per ThousandPriceDryCoalbedCrude OilShale

397

,"U.S. Adjusted Sales of Residual Fuel Oil by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars per ThousandPriceDryCoalbedCrude OilShaleResidual Fuel

398

,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars perReserves (Billion Cubic Feet)"+ LeaseDistillate

399

,"U.S. Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"Brunei (Dollars perReserves (BillionCanadaNorwayQatarYemenAnnual

400

,"U.S. Total Sales of Residual Fuel Oil by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: EnergyShale ProvedTexas"BruneiReserves in Nonproducing Reservoirs (MillionNatural GasRefinerSales

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

CBECS 1989 - Energy End-use Intensities in Commercial Buildings -- Detailed  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS98,,,1999,0,0,1e+15,1469,6,01179,"WAT","HY"Tables andA 6 J (MillionCubic35775 84 8711757

402

Service Report Energy Information Administration Office of Energy Markets and End Use  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal1.Report

403

Service Report Enwgy Information Administration Office of Energy Markets and End Use  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data 2010Feet)PercentCoal1.ReportEnwgy

404

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c : U.S.Welcome toTotal Delivered92Changes

405

Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c : U.S.Welcome toTotal

406

U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone: FAX: Last Name: Email:EIA's Today0.5 hoursArea:

407

U.S. Adjusted Sales of Distillate Fuel Oil by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone: FAX: Last Name: Email:EIA's Today0.5

408

U.S. Adjusted Sales of Residual Fuel Oil by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone: FAX: Last Name: Email:EIA's Today0.5Area:

409

U.S. Distillate Fuel Oil and Kerosene Sales by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone: FAX: Last Name:4, 2014 U.S. diesel

410

U.S. Sales of Distillate Fuel Oil by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone: FAX:9,152 8,905 8,967Sep-14Area: U.S. East

411

U.S. Sales of Residual Fuel Oil by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone: FAX:9,152 8,905 8,967Sep-14Area: U.S.

412

Table B19. Energy End Uses, Number of Buildings and Floorspace, 1999  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 " "5. Number of6.9.

413

"Table B25. Energy End Uses, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 103. Relative Standard Errors for7. Average Prices1.5. Energy End

414

,"U.S. Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 103. Relative2.

415

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network [OSTI]

Phase Ii Landfill Gas Sonoma Internal Combustion EngineInternal Combustion Engine Sonoma Landfill Gas Sonoma a)which report internal combustion (IC) engines as technology

McKone, Thomas E.

2011-01-01T23:59:59.000Z

416

INTERNATIONAL RESIDENTIAL ENERGY END USE DATA: ANALYSIS OF HISTORICAL AND PRESENT DAY STRUCTURE AND DYNAMICS  

E-Print Network [OSTI]

cooking tables, only for rice-cookers and microwave ovens.cooking (microwave rice cooker). n) Disposable Income not

Schipper, Lee

2013-01-01T23:59:59.000Z

417

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

NewEnergy, Inc","Investor-Owned",974715,0,653377,321338,0 3,"Unitil Energy Systems","Investor-Owned",778111,491106,231528,55477,0 4,"TransCanada Power Marketing,...

418

ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.2  

E-Print Network [OSTI]

Efficiency** Process Process BTU/Ton of MSW Input* RDSF1 - Col. 2; Col. 4 = Col. 3/11.4 Million BTU/per ton of MSWfor RDSF and 9.1 Million BTU/ton for direct combustion and

Authors, Various

2011-01-01T23:59:59.000Z

419

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network [OSTI]

~Mwe: conversion factor from Btu to MWe-y ( 3.345 x 10- MWe-insulation R-values [fe-hr OF I Btu] for electricity heatedspecific fuel, expressed as Btu/lb coal, Btu/ gal oil, Btu/

McKone, Thomas E.

2011-01-01T23:59:59.000Z

420

Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study  

E-Print Network [OSTI]

location, whether or not cogeneration technologies are used,in rural regions use cogeneration technologies and thisof coal- powered cogeneration plants are not provided by the

McKone, Thomas E.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Problems #3, Math 204, Dr. M. Bohner. Sep 10, 2003. Due Sep 15, 11 am. 12. A tank has ten gallons of water in which two pounds of salt has been dissolved. Brine with  

E-Print Network [OSTI]

Problems #3, Math 204, Dr. M. Bohner. Sep 10, 2003. Due Sep 15, 11 am. 12. A tank has ten gallons through the supplementary homework problems for Chapters 1­2: 1, 3 of Section 1.1; 1 of Section 1.2; 1-8, 14, 15, 17, 19, 21, 25, 26 of Section 1.3; 1, 3, 4, 13­17, 21, 26, 29 of Section 2.1; 1, 4­8, 9, 11

Bohner, Martin

422

AGirenPArTenAriAT despartenariats  

E-Print Network [OSTI]

la gestion des écosystèmes majeurs de la région1 . Le séminaire Les intérieurs du Maroc a par'Institut national de recherche halieutique au Maroc,l'�colenationaled'ingénieursdeTunisoul'Institutnatio- nal

423

An Evolving TEN YEAR ACADEMIC PLAN  

E-Print Network [OSTI]

Atmosphere Oceans Core Groundwater Cryosphere Chemical Processes Chemical/phase reactions Transport phenomena environment, technical facilities and support staff. From this exercise we assembled guidelines to be used Chemical cycles Mappingand Characterization Mapping and measuring Remote sensing and imaging Chemical

424

Ten questions and answers about superconductivity  

E-Print Network [OSTI]

This work answers the basic questions of superconductivity in a question-and-answer format. We extend a basic hypothesis to various superconductors. This hypothesis is that superconductivity requires that the pairing gap locates around the Fermi level. On the basis of this hypothesis our calculations give the so-called three factor theory with which some key problems of the high temperature superconductivity are explained.

Tian De Cao

2012-11-13T23:59:59.000Z

425

Ten Year Site Plans | Department of Energy  

Office of Environmental Management (EM)

actions the programs plans in order to meet stewardship, recapitalization and sustainability goals for their facilities. The Department requires all programs to update their...

426

Ten years of the Chernobyl era  

SciTech Connect (OSTI)

A decade ago reactor number 4 at the Chernobyl nuclear power plant exploded, showering much of eastern Europe with radioactive debris. The Ukranian ambassador to the U.S., who was one of the medical researchers in Kiev and one of the first physicians to treat wounded, looks at the medical aftermath of the accident. He also contemplates what additional technological and political measures need to be taken to contain the lasting danger. 4 refs.

Shcherbak, Y.M.

1996-04-01T23:59:59.000Z

427

Solar Decathlon Turns Ten | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOEEnergy Smooth BromeSoftwareWake of Disasters

428

Co-spatial Long-slit UV/Optical Spectra of Ten Galactic Planetary Nebulae with HST/STIS I. Description of the Observations, Global Emission-line Measurements, and CNO Abundances  

E-Print Network [OSTI]

We present observations and initial analysis from an HST/STIS program to obtain the first co-spatial, UV-optical spectra of ten Galactic planetary nebulae (PNe). Our primary objective was to measure the critical emission lines of carbon and nitrogen with unprecedented S/N and spatial resolution over UV-optical range, with the ultimate goal of quantifying the production of these elements in low- and intermediate-mass stars. Our sample was selected from PNe with a near-solar metallicity, but spanning a broad range in N/O. This study, the first of a series, concentrates on the observations and emission-line measurements obtained by integrating along the entire spatial extent of the slit. We derived ionic and total elemental abundances for the seven PNe with the strongest UV line detections (IC~2165, IC~3568, NGC~2440, NGC~3242, NGC~5315, NGC~5882, and NGC~7662). We compare these new results with other recent studies of the nebulae, and discuss the relative merits of deriving the total elemental abundances of C, ...

Dufour, Reginald J; Shaw, Richard A; Henry, Richard B C; Balick, Bruce; Corradi, Romano L M

2015-01-01T23:59:59.000Z

429

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

of contractors in the HVAC market will certainly have anational version of the HVAC market share decision model,equipment 4.5. HVAC Equipment Market Shares We now define

Johnson, F.X.

2010-01-01T23:59:59.000Z

430

Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results  

E-Print Network [OSTI]

HVAC equipment as constrained by efficiency standards and marketand HVAC equipment as a result of the market; accounts foror HVAC system (by fuel type). New home market shares data

Koomey, Jonathan G.

2010-01-01T23:59:59.000Z

431

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

Imports/Exports Gas Availability Change efficiency choice equation Add technologiestoHVAC model Adjust cost-efficiency parameter Develop HVAC Conversion

Johnson, F.X.

2010-01-01T23:59:59.000Z

432

Large CO2 reductions via offshore wind power matched to inherent storage in energy end-uses  

E-Print Network [OSTI]

of the Middle-Atlantic Bight (MAB) to energy demand in the adjacent states (Massachusetts through North Carolina exceeding the region's current summed demand for 73 GW of electricity, 29 GW of light vehicle fuels (now; Gregory et al., 2004; Thomas et al., 2004] increasingly appear to require a response faster than

Jacobson, Mark

433

Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results  

E-Print Network [OSTI]

LPG Furnace Oil Furnace Electric Heat Pump Gas BoilerOil Boiler Electric Room Heater Gas Room Heater Wood Stove (Electric Heat Pump Gas Boiler Oil Boiler Electric Room Gas

Koomey, Jonathan G.

2010-01-01T23:59:59.000Z

434

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

Conservation and Renewable Energy, Building EquipmentConservation and Renewable Energy, Building EquipmentEnergy Efficiency and Renewable Energy, Building Equipment

Johnson, F.X.

2010-01-01T23:59:59.000Z

435

China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model  

E-Print Network [OSTI]

Qin, H. , , 2007. China Wind Power Report. Beijing: Chinachina/ en/press/reports/wind-power-report.pdf NBS (NationalAIS scenarios CIS AIS Wind power Nuclear power Natural gas

Zhou, Nan

2014-01-01T23:59:59.000Z

436

Power applications of high-temperature superconductivity: Variable speed motors, current switches, and energy storage for end use  

SciTech Connect (OSTI)

The objective of this project is to conduct joint research and development activities related to certain electric power applications of high-temperature superconductivity (HTS). The new superconductors may allow development of an energy-efficient switch to control current to variable speed motors, superconducting magnetic energy storage (SMES) systems, and other power conversion equipment. Motor types that were considered include induction, permanent magnet, and superconducting ac motors. Because it is impractical to experimentally alter certain key design elements in radial-gap motors, experiments were conducted on an axial field superconducting motor prototype using 4 NbTi magnets. Superconducting magnetic energy storage technology with 0.25--5 kWh stored energy was studied as a viable solution to short duration voltage sag problems on the customer side of the electric meter. The technical performance characteristics of the device wee assembled, along with competing technologies such as active power line conditioners with storage, battery-based uninterruptible power supplies, and supercapacitors, and the market potential for SMES was defined. Four reports were prepared summarizing the results of the project.

Hawsey, R.A. [Oak Ridge National Lab., TN (United States); Banerjee, B.B.; Grant, P.M. [Electric Power Research Inst., Palo Alto, CA (United States)

1996-08-01T23:59:59.000Z

437

TECHNOLOGY DATA CHARACTERIZING LIGHTING IN COMMERCIAL BUILDINGS: APPLICATION TO END-USE FORECASTING WITH COMMEND 4.0  

E-Print Network [OSTI]

LBL-34243 UC - 1600 TECHNOLOGY DATA CHARACTERIZING LIGHTING IN COMMERCIAL BUILDINGS: APPLICATION Technologies, and the Office of Environmental Analysis, Office of Policy, Planning, and Analysis of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. #12;Technology Data Characterizing Lighting

438

Energy Conservation: Policy Issues and End-Use Scenarios of Savings Potential -- Part 4, Energy Efficient Recreational Travel  

E-Print Network [OSTI]

arrive by car (Booz, Allen & Hamilton 1974:27). SuchD.C. October. f of Booz, Allen & Hamilton Sensitivity of the

Cornwall, B.

2011-01-01T23:59:59.000Z

439

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

residential home heating equipment, depending on product class and size. Figure E.6b: Electric Heat Pump

Johnson, F.X.

2010-01-01T23:59:59.000Z

440

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

volume) of the equipment (AHAM 1991, ARI1991, G A M A 1992).Energy Factors (SWEFs), (AHAM 1991). b. 1990 RECS (EIAdata for their members (AHAM 1991, ARI1991, G A M A 1992).

Johnson, F.X.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

30% of electricity consumption, 70% of natural gas consumption and 90% of oil consumption in the U by the Electric Power Research Institute (McMenamin et al. 1992). This modeling framework treats space consumption in residences (EIA 1993). This report is primarily methodological in nature, taking the reader

442

Refining and end use study of coal liquids. Second quarter 1995 technical progress report, April--June 1995  

SciTech Connect (OSTI)

Bechtel, with Southwest Research Institute, Amoco Oil R&D, and the M.W. Kellogg Co. as subcontractors, initiated a study on November 1, 1993, for the U.S. Department of Energy`s (DOE`s) Pittsburgh Energy Technology Center (PETC) to determine the most cost effective and suitable combination of existing petroleum refinery processes needed to make specification transportation fuels or blending stocks, from direct and indirect coal liquefaction product liquids. This 47-month study, with an approved budget of $4.4 million dollars, is being performed under DOE Contract Number DE-AC22-93PC91029. A key objective is to determine the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g. year 2000, Clean Air Act Amendment (CAAA) standards. An integral part of the above objectives is to test the fuels or blends produced and compare them with established ASTM fuels. The comparison will include engine tests to ascertain compliance of the fuels produced with CAAA and other applicable fuel quality and performance standards. The final part of the project includes a detailed economic evaluation of the cost of processing the coal liquids to their optimum products.

NONE

1995-12-01T23:59:59.000Z

443

RESIDENTIAL SECTOR END-USE FORECASTING WITH EPRI-REEPS 2.1: SUMMARY INPUT ASSUMPTIONS AND RESULTS  

E-Print Network [OSTI]

-76SF00098. #12;#12;i ABSTRACT This paper describes current and projected future energy use by end energy intensity per household of the residential sector is declining, and the electricity intensity per. Sanstad, and Leslie Shown Energy Analysis Program Energy and Environment Division Ernest Orlando Lawrence

444

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

~ unitary central air and heat pumps — and secondary ~ roomSystem MH SF MF Central Air Heat Pump No Central Air Source:MF SSF LSF North Central Air Heat Pump No Central Air South

Johnson, F.X.

2010-01-01T23:59:59.000Z

445

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

non-central residential home heating equipment (GAMA1992). (AFUE for residential home heating equipment, depending onManufactured Home Room Heating Market Shares". Lawrence

Johnson, F.X.

2010-01-01T23:59:59.000Z

446

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

Efficiency Choice 6.3 New Home HVAC System Choice 6.4. NewJuly. EPRI. 1990. REEPS 2.0 HVAC Model Logic, prepared by1990. Review of Equipment HVAC Choice Parameters. Cambridge

Johnson, F.X.

2010-01-01T23:59:59.000Z

447

China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model  

E-Print Network [OSTI]

Development Plan for Renewable Energy in China. Availabledevelopment-plan-for-renewable-energy.pdf Tu, J. , Jaccard,further expansion of renewable and nuclear power capacity.

Zhou, Nan

2014-01-01T23:59:59.000Z

448

Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results  

E-Print Network [OSTI]

Consumption and Expenditures 1992. Energy Information Administration, U.S.92). April. US DOE. 1995c. Residential Energy ConsumptionConsumption and Expenditures 1993. EIA, Energy Information Administration, U.S.

Koomey, Jonathan G.

2010-01-01T23:59:59.000Z

449

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

room, and electric (air source) heat pump. Gas furnaces weresplit-system air-source electric heat pumps. (5) As of Jan.ground source heat pumps, evaporative cooling, ductiess air

Johnson, F.X.

2010-01-01T23:59:59.000Z

450

Energy Conservation: Policy Issues and End-Use Scenarios of Savings Potential -- Part 4, Energy Efficient Recreational Travel  

E-Print Network [OSTI]

Recreation Planning for Energy Conservation. Ecology, VolumeRecreation Planning for Energy Conservation. Inter- nationalMicrofiche, LBL 7896 ENERGY CONSERVATION: POLICY ISSUES AND

Cornwall, B.

2011-01-01T23:59:59.000Z

451

Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results  

E-Print Network [OSTI]

of electric or gas water heater EFFIC Average householdfreezers, clothes dryers, water heaters, clothes washers,Freezers Refrigerators Water Heaters Dishwashers Clothes

Koomey, Jonathan G.

2010-01-01T23:59:59.000Z

452

How many people actually see the price signal? Quantifying market failures in the end use of energy  

E-Print Network [OSTI]

landlords select the water heaters but their tenants mustin a high efficiency water heater. Another example is in thefamily home select the water heater and pay for the water

Meier, Alan; Eide, Anita

2007-01-01T23:59:59.000Z

453

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

E3c: Gas Boilers Installed Price by Size and Efficiency AFUEE3b: Gas Boiler Installed Price by Efficiency Figure E-3a:E.4c: Oil Boiler Installed Price by Size and Efficiency AFUE

Johnson, F.X.

2010-01-01T23:59:59.000Z

454

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,442 140,948844Next MECS

455

Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,442 140,948844Next

456

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

Research, Inc. July 25. Hanford, James W. , Jonathan G.Francis X . and James W. Hanford. 1992. Memorandum toA : Ritschard, Ron L. , Jim W. Hanford and A. Osman Sezgen.

Johnson, F.X.

2010-01-01T23:59:59.000Z

457

Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results  

E-Print Network [OSTI]

US DOE. 1995a. Annual Energy Outlook 1995, with ProjectionsAdministration (ELA) 1995 Annual Energy Outlook (AEO); 1990of Energy's Annual Energy Outlook ( US DOE 1995a). A l l

Koomey, Jonathan G.

2010-01-01T23:59:59.000Z

458

Engineer End Uses for Maximum Efficiency; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #10 (Fact Sheet)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12, 2004DepartmentWaste Heat Recoveryfor Heavy

459

Alternative Strategies for Low-Pressure End Uses; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #11 (Fact Sheet)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S9-0s)Department of Energy1 *

460

Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results  

E-Print Network [OSTI]

$/household 10e3 Site Energy Prices Electricity ElectricityAverage electricity price Average household disposableAverage price of electricity Average household disposable

Koomey, Jonathan G.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

loans Energy Doctor Energy Audits Incentives to Builders/Developers New building/shell technologies Passive solar

Johnson, F.X.

2010-01-01T23:59:59.000Z

462

Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results  

E-Print Network [OSTI]

Description Prices for oil, gas, electricity, liquidElectric Electric Electric Gas Oil Electric ElectricElectric Gas Electric Gas Oil Electric Electric Gas Oil

Koomey, Jonathan G.

2010-01-01T23:59:59.000Z

463

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network [OSTI]

A H A M . 1991. Room Air Conditioner Data. Association of7. FUTURE WORK 7.1 Room Air Conditioners 7.2. Common heatingShipments of Unitary Air Conditioners and Heat Pumps. Air-

Johnson, F.X.

2010-01-01T23:59:59.000Z

464

MFR PAPER 1032 Tens of thousands of genera of insects  

E-Print Network [OSTI]

\\\\ long each stage take,. but laborator) data from reari ng clo,e1) related fre,h\\\\ ater gerrids ( heng a rca on able perll1d for each lage Hence it \\\\ould require a pen'ld III Lanna ' heng i a rn~lI\\hl'r III

465

Ten Projects Awarded NERSC Allocations under DOE's ALCC Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

support scientific and technological research in bioenergy, energy efficiency, turbomachinery design, fusion energy, high energy physics, materials science, nuclear physics,...

466

2012 -2013 Ten Facts about the Department of Geosciences  

E-Print Network [OSTI]

of the linkage between climate history and human evolution. 3. Institute for Mineral Resources, a global center and mineral resource industries, teaching, research, engineering and environmental fields. 9. External funding instrument, an X-ray diffractometer, to characterize and identify the minerals on Mars as a main route

Holliday, Vance T.

467

May 3, 2010 Ten Facts about the Department of Geosciences  

E-Print Network [OSTI]

. Institute for Mineral Resources, a global center based at the UA, bridges pure and applied research graduates pursue careers in energy and mineral resource industries. 9. External funding from all sources on responsible stewardship and development of mineral resources. 3. COSA (Convergent Orogenic Systems Analysis

Holliday, Vance T.

468

audit office tens: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11 NASA OFFICE OF INSPECTOR GENERAL OFFICE OF AUDITS Geosciences Websites Summary: -0001 October 9, 2014 TO: John Grunsfeld Associate Administrator for Science SUBJECT: The...

469

Development comparisons of ten peanut genotypes in Texas  

E-Print Network [OSTI]

for each phase or stage. Duncan ( 17) and Young et al. (64) developed computer programs to simulate and predict the growth, development, and yield of a peanut plant. The necessary input information includes environmental factors as well as varietal... Peanut development is a continuous process that begins at seed germination and continues throughout the life of the plant. Many fac- tors enhance or retard this development. Some of these factors are controlled by nature; as temperature, rain...

Mosciaro, Aristides Dante

1983-01-01T23:59:59.000Z

470

Ten New Mexico small businesses recognized at Innovation Celebration...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transitions - Bill Watts of Data Center Transitions designed MASS Lift, a novel lifting device that moves large computer server cabinets. However, the lift's motor threatened to...

471

ascending colon ten: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

runs of sequences of geometrically distributed random variables: a probabilistic analysis and a polyomino-like description, we study some asymptotic properties of sequences of...

472

Advancements in FBR shielding - Ten years in Japan  

SciTech Connect (OSTI)

Research and development in the area of fast breeder reactor (FBR) shielding in Japan was fully under way in April 1987 when criticality of the JOYO experimental FBR was first attained. The main activities performed and results obtained during more than 10 yr of FBR shielding research are presented. The paper describes shielding research in Joyo; Monju shielding design and related research; research activities for future FBRs; and evaluation of Monju shielding designs.

Ohtani, Nobuo; Suzuki, Soju

1990-01-01T23:59:59.000Z

473

Compound and Elemental Analysis At Valley Of Ten Thousand Smokes...  

Open Energy Info (EERE)

analytical techniques employed included instrumental neutron activation analysis (INAA), atomic absorption spectroscopy (AAS), direct-current plasma atomic emission spectroscopy...

474

Table of ConTenTs University Calendar..................................... 4  

E-Print Network [OSTI]

Alcohol Policy..................................... 9 Standards of Conduct .......................... 9............................................ 11 University History .................................. 11 University Organization.................................... 19 International education............................. 21 International Commitment

Ronquist, Fredrik

475

Table of ConTenTs University Calendar ......................................4  

E-Print Network [OSTI]

Alcohol Policy ...............................................11 Standards of Conduct..............................................13 University History....................................13 University Organization......................................21 International education..............................23 International Commitment

Hull, Elaine

476

North American Carsharing: A Ten-Year Retrospective  

E-Print Network [OSTI]

136. (10) Katzev, R. Car Sharing: A New Approach to UrbanJ. Burkhardt. TCRP Report 108: Car-Sharing: Where and How ItCustomer Survey Shows Car-Sharing Leads to Car Shedding.

Shaheen, Susan; Cohen, Adam P.; Chung, Melissa

2008-01-01T23:59:59.000Z

477

North American Carsharing: A Ten-Year Retrospective  

E-Print Network [OSTI]

136. (10) Katzev, R. Car Sharing: A New Approach to UrbanJ. Burkhardt. TCRP Report 108: Car-Sharing: Where and How ItCustomer Survey Shows Car-Sharing Leads to Car Shedding.

Shaheen, Susan A; Cohen, Adam; Chung, Melissa

2009-01-01T23:59:59.000Z

478

National service with ten presidents of the United States  

SciTech Connect (OSTI)

This document is a biography of the renowned nuclear chemist, Glenn T. Seaborg. It covers his career over the presidential terms of Franklin Roosevelt through George Bush. It contains many personnel accounts of historic events. Photographs of Seaborg and the various Presidents are presented.

Seaborg, G.T.

1992-10-01T23:59:59.000Z

479

20132014 Career Guide Table of ConTenTs  

E-Print Network [OSTI]

. . . . . . . 7 Senior Year ­ Getting Ready for the Next Step . . . . . . . . 7 Resumes and letters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Resume Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Resume Worksheet . . . . . . . . . . . . . . . . . . . . . . . . . . 12

480

Level dynamics and the ten-fold way  

E-Print Network [OSTI]

We investigate the parameter dynamics of eigenvalues of Hamiltonians ('level dynamics') defined on symmetric spaces relevant for condensed matter and particle physics. In particular we: 1) identify appropriate reduced manifold on which the motion takes place, 2) identify the correct Poisson structure ensuring the Hamiltonian character of the reduced dynamics, 3) determine the canonical measure on the reduced space, 4) calculate the resulting eigenvalue density.

Alan T. Huckleberry; Marek Kus; Patrick Schuetzdeller

2007-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "ten end-use services14" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

And Top Ten Tips for Maintaining Immigration Fitness  

E-Print Network [OSTI]

· "Specialty Occupation" or "Professional" · Employer/employee relationship · Labor Condition Application (LCA is the process for winding up employment? #12;Other Common NIV Options · E-3 for Australians · H-1B1

California at Davis, University of

482

Humanity's Top Ten Problems for next 50 years  

E-Print Network [OSTI]

& Tide -- not enough CHEMICAL · Natural Gas -- sequestration?, cost? · Clean Coal -- sequestration?, cost

McCready, Mark J.

483

COLLOQUIUM: Superconductors for Fusion for Next Ten Years | Princeton  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science,Principles ofPhysicsPhysics Lab

484

Valley Of Ten Thousand Smokes Region Geothermal Area | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401UpsonUtahTechnology

485

Schneider Electric Boasts Ten Facilities Certified to Superior Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systems controller systemsisSchedules Schedules Print Monday,Performance in

486

Ten Years of Development Experience with Advanced Light Truck Diesel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice -Template for a ComprehensiveEngines |

487

Twenty In Ten: Strengthening America's Energy Security | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7DepartmentEnergyDRAFT

488

DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgramofContract at its Hanford Site |forSavannah

489

Valley Of Ten Thousand Smokes Region Geothermal Area | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip:Scale Solar IncVairexValles

490

Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs Actual Data LessonType. Retrieved

491

Ten New Mexico small businesses recognized at Innovation Celebration April  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and How ToMay HanfordOctober Research

492

Ten local businesses to receive Venture Acceleration Fund awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and How ToMay

493

Laser Fusion: The First Ten Years 1962-1972  

SciTech Connect (OSTI)

This account of the beginning of the program on laser fusion at Livermore in 1962, and its subsequent development during the decade ending in 1972, was originally prepared as a contribution to the January 1991 symposium 'Achievements in Physics' honoring Professor Keith Brueckner upon his retirement from the University of San Diego at La Jolla. It is a personal recollection of work at Livermore from my vantage point as its scientific leader, and of events elsewhere that I thought significant. This period was one of rapid growth in which the technology of high-power short-pulse lasers needed to drive the implosion of thermonuclear fuel to the temperature and density needed for ignition was developed, and in which the physics of the interaction of intense light with plasmas was explored both theoretically and experimentally.

Kidder, R E

2006-07-06T23:59:59.000Z

494

A TEN MEGAWATT BOILING HETEROGENEOUS PACKAGE POWER REACTOR. Reactor...  

Office of Scientific and Technical Information (OSTI)

A reactor and associated power plant designed to produce 1.05 Mwh and 3.535 Mwh of steam for heating purposes are described. The total thermal output of the reactor is 10 Mwh....

495

Energy Conservation: Policy Issues and End-Use Scenarios of Savings Potential -- Part 3, Policy Barriers and Investment Decisions in Industry  

E-Print Network [OSTI]

on Nu- clear and Alternative Energy Systems ( CONAES) andCommittee on Nuclear and Alternative Energy Systems (CONAES)on Nu- clear and Alternative Energy Systems (CONAES) and FEA

Benenson, Peter

2011-01-01T23:59:59.000Z

496

Energy Conservation Policy Issues and End-Use Scenarios of Savings Potential--Part 5. Energy Efficient Buildings: The Cause of Litigation Against Energy Conservation Building Codes  

E-Print Network [OSTI]

Impact Evaluation of New York State Energy Code (ASHRAE 90-N.Y. , N.Y. : New York State Energy Research and DevelopmentJ. "New York Puts Together Its Own State Energy Policy and

Benenson, P.

2011-01-01T23:59:59.000Z

497

Energy Conservation Policy Issues and End-Use Scenarios of Savings Potential--Part 5. Energy Efficient Buildings: The Cause of Litigation Against Energy Conservation Building Codes  

E-Print Network [OSTI]

could be persuaded that energy efficient design is a "good"energy savings (Cochran 1978:4). More efficient techniques would include improved conservation methods or passive solar designs.

Benenson, P.

2011-01-01T23:59:59.000Z

498

Energy Conservation Policy Issues and End-Use Scenarios of Savings Potential--Part 5. Energy Efficient Buildings: The Cause of Litigation Against Energy Conservation Building Codes  

E-Print Network [OSTI]

for mortgage payments (Booz-Allen and Hamilton 1977). SuchREFERENCES Booz-Allen and Hamilton, Inc. Methodology to

Benenson, P.

2011-01-01T23:59:59.000Z

499

SUSTAINABLE DEVELOPMENT IN KAZAKHASTAN: USING OIL AND GAS PRODUCTION BY-PRODUCT SULFUR FOR COST-EFFECTIVE SECONDARY END-USE PRODUCTS.  

SciTech Connect (OSTI)

The Republic of Kazakhstan is continuing to develop its extensive petroleum reserves in the Tengiz region of the northeastern part of the Caspian Sea. Large quantities of by-product sulfur are being produced as a result of the removal of hydrogen sulfide from the oil and gas produced in the region. Lack of local markets and economic considerations limit the traditional outlets for by-product sulfur and the buildup of excess sulfur is a becoming a potential economic and environmental liability. Thus, new applications for re-use of by-product sulfur that will benefit regional economies including construction, paving and waste treatment are being developed. One promising application involves the cleanup and treatment of mercury at a Kazakhstan chemical plant. During 19 years of operation at the Pavlodar Khimprom chlor-alkali production facility, over 900 tons of mercury was lost to the soil surrounding and beneath the buildings. The Institute of Metallurgy and Ore Benefication (Almaty) is leading a team to develop and demonstrate a vacuum-assisted thermal process to extract the mercury from the soil and concentrate it as pure, elemental mercury, which will then be treated using the Sulfur Polymer Stabilization/Solidification (SPSS) process. The use of locally produced sulfur will recycle a low-value industrial by-product to treat hazardous waste and render it safe for return to the environment, thereby helping to solve two problems at once. SPSS chemically stabilizes mercury to mercuric sulfide, which has a low vapor pressure and low solubility, and then physically encapsulates the material in a durable, monolithic solid sulfur polymer matrix. Thus, mercury is placed in a solid form very much like stable cinnabar, the form in which it is found in nature. Previous research and development has shown that the process can successfully encapsulate up to 33 wt% mercury in the solid form, while still meeting very strict regulatory standards for leachable mercury (0.025 mg/l in the Toxicity Characteristic Leaching Procedure). The research and development to deploy Kazakhstan recycled sulfur for secondary applications described in this paper is being conducted with support from the International Science and Technology Center (ISTC) and the U.S. Department of Energy Initiatives for Proliferation Prevention (DOE IPP).

KALB, P.D.; VAGIN, S.; BEALL, P.W.; LEVINTOV, B.L.

2004-09-25T23:59:59.000Z

500

Energy Conservation Policy Issues and End-Use Scenarios of Savings Potential--Part 5. Energy Efficient Buildings: The Cause of Litigation Against Energy Conservation Building Codes  

E-Print Network [OSTI]

methods or passive solar designs. C. CASES REVIEWEDmany proposed designs, such as passive solar plans. At the

Benenson, P.

2011-01-01T23:59:59.000Z