National Library of Energy BETA

Sample records for ten end-use services14

  1. End-use taxes: Current EIA practices

    SciTech Connect (OSTI)

    Not Available

    1994-08-17

    There are inconsistencies in the EIA published end-use price data with respect to Federal, state, and local government sales and excise taxes; some publications include end-use taxes and others do not. The reason for including these taxes in end-use energy prices is to provide consistent and accurate information on the total cost of energy purchased by the final consumer. Preliminary estimates are made of the effect on prices (bias) reported in SEPER (State Energy Price and Expenditure Report) resulting from the inconsistent treatment of taxes. EIA has undertaken several actions to enhance the reporting of end-use energy prices.

  2. Preliminary CBECS End-Use Estimates

    U.S. Energy Information Administration (EIA) Indexed Site

    For the past three CBECS (1989, 1992, and 1995), we used a statistically-adjusted engineering (SAE) methodology to estimate end-use consumption. The core of the SAE methodology...

  3. Engineer End Uses for Maximum Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineer End Uses for Maximum Efficiency Engineer End Uses for Maximum Efficiency This tip sheet outlines steps to ensure the efficiency of compressed air end-use applications....

  4. Energy End-Use Intensities in Commercial Buildings 1989 -- Executive...

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Energy End-Use Intensities > Executive Summary Executive Summary Energy End Uses Ranked by Energy Consumption, 1989 Energy End Uses Ranked by Energy Consumption, 1989 Source:...

  5. Biomass Resource Allocation among Competing End Uses

    SciTech Connect (OSTI)

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

  6. Biomass Resource Allocation among Competing End Uses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Resource Allocation among Competing End Uses Emily Newes, Brian Bush, Daniel Inman, Yolanda Lin, Trieu Mai, Andrew Martinez, David Mulcahy, Walter Short, Travis Simpkins, and Caroline Uriarte National Renewable Energy Laboratory Corey Peck Lexidyne, LLC Technical Report NREL/TP-6A20-54217 May 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable

  7. Healthcare Energy End-Use Monitoring

    SciTech Connect (OSTI)

    Sheppy, M.; Pless, S.; Kung, F.

    2014-08-01

    NREL partnered with two hospitals (MGH and SUNY UMU) to collect data on the energy used for multiple thermal and electrical end-use categories, including preheat, heating, and reheat; humidification; service water heating; cooling; fans; pumps; lighting; and select plug and process loads. Additional data from medical office buildings were provided for an analysis focused on plug loads. Facility managers, energy managers, and engineers in the healthcare sector will be able to use these results to more effectively prioritize and refine the scope of investments in new metering and energy audits.

  8. Detailed End Use Load Modeling for Distribution System Analysis

    SciTech Connect (OSTI)

    Schneider, Kevin P.; Fuller, Jason C.

    2010-04-09

    The field of distribution system analysis has made significant advances in the past ten years. It is now standard practice when performing a power flow simulation to use an algorithm that is capable of unbalanced per-phase analysis. Recent work has also focused on examining the need for time-series simulations instead of examining a single time period, i.e., peak loading. One area that still requires a significant amount of work is the proper modeling of end use loads. Currently it is common practice to use a simple load model consisting of a combination of constant power, constant impedance, and constant current elements. While this simple form of end use load modeling is sufficient for a single point in time, the exact model values are difficult to determine and it is inadequate for some time-series simulations. This paper will examine how to improve simple time invariant load models as well as develop multi-state time variant models.

  9. Residential Lighting End-Use Consumption | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources Publications Market Studies Residential Lighting End-Use Consumption Residential Lighting End-Use Consumption The U.S. DOE Residential Lighting ...

  10. Realizing Building End-Use Efficiency with Ermerging Technologies

    Broader source: Energy.gov [DOE]

    Information about the implementation of emerging technologies to maximize end-use efficiency in buildings.

  11. Alternative Strategies for Low Pressure End Uses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Strategies for Low Pressure End Uses Alternative Strategies for Low Pressure End Uses This tip sheet outlines alternative strategies for low-pressure end uses as a pathway to reduced compressed air energy costs. COMPRESSED AIR TIP SHEET #11 PDF icon Alternative Strategies for Low Pressure End Uses (August 2004) More Documents & Publications Eliminate Inappropriate Uses of Compressed Air Compressed Air System Control Strategies Engineer End Uses for Maximum Efficiency

  12. Healthcare Energy End-Use Monitoring | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Healthcare Energy End-Use Monitoring Healthcare Energy End-Use Monitoring NREL partnered with two hospitals (MGH and SUNY UMU) to collect data on the energy used for multiple thermal and electrical end-use categories, including preheat, heating, and reheat; humidification; service water heating; cooling; fans; pumps; lighting; and select plug and process loads. Additional data from medical office buildings were provided for an analysis focused on plug loads. Facility managers, energy managers,

  13. End Use and Fuel Certification | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    End Use and Fuel Certification End Use and Fuel Certification Breakout Session 2: Frontiers and Horizons Session 2-B: End Use and Fuel Certification John Eichberger, Vice President of Government Relations, National Association for Convenience Stores PDF icon b13_eichberger_2-b.pdf More Documents & Publications Biofuels Market Opportunities High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super

  14. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimates The end-use estimates had two main sources: the 1989 Commercial Buildings Energy Consumption Survey (CBECS) and the Facility Energy Decision Screening (FEDS) system....

  15. Energy End-Use Intensities in Commercial Buildings1992 -- Overview...

    U.S. Energy Information Administration (EIA) Indexed Site

    in the way that variables such as building age and employment density could interact with the engineering estimates of end-use consumption. The SAE equations were...

  16. Energy End-Use Intensities in Commercial Buildings 1989

    U.S. Energy Information Administration (EIA) Indexed Site

    1989 Energy End-Use Intensities Overview Full Report Tables National estimates and analysis of energy consumption by fuel (electricity, natural gas, fuel oil, and district...

  17. Energy End-Use Intensities in Commercial Buildings 1995 - Index...

    U.S. Energy Information Administration (EIA) Indexed Site

    End-Use Analyst Contact: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager URL: http:www.eia.govconsumptioncommercialdataarchivecbecscbec-eu1.html separater bar If...

  18. End-Use Sector Flowchart | Department of Energy

    Office of Environmental Management (EM)

    End-Use Sector Flowchart End-Use Sector Flowchart This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors-transportation, industry, commercial and residential-identified in Figure 1. By clicking on any of the boxes with the word "Sector" in the title will reveal the more detailed structure within that sector. PDF icon End-Use Sector Flowchart More Documents & Publications Barriers to Industrial Energy

  19. Table 5.1 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  20. Table 5.2 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    2 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27

  1. Table 5.3 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States 311 - 339 ALL

  2. Table 5.4 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19

  3. Table 5.5 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION

  4. Table 5.6 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733

  5. Table 5.7 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    7 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 845,727 13 22 5,064 18

  6. Table 5.8 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    8 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19 2,134 10 572 Conventional Boiler Use 44 20 4 733 3 72 CHP

  7. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    as buildings of the 1980's. In this section, intensities are based upon the entire building stock, not just those buildings using a particular fuel for a given end use. This...

  8. Vehicle Technologies Office: Biofuels End-Use Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Alternative Fuels » Vehicle Technologies Office: Biofuels End-Use Research Vehicle Technologies Office: Biofuels End-Use Research Biofuels offer Americans viable domestic, environmentally sustainable alternatives to gasoline and diesel. Learn about the basics, benefits, and issues to consider related to biodiesel and ethanol on the Alternative Fuels Data Center. The Vehicle Technologies Office supports research to increase our knowledge of the effects of biofuels on engines and

  9. Distribution Infrastructure and End Use | Department of Energy

    Office of Environmental Management (EM)

    Distribution Infrastructure and End Use Distribution Infrastructure and End Use The expanded Renewable Fuel Standard (RFS2) created under the Energy Independence and Security Act (EISA) of 2007 requires 36 billion gallons of biofuels to be blended into transportation fuel by 2022. Meeting the RFS2 target introduces new challenges for U.S. infrastructure, as modifications will be needed to transport and deliver renewable fuels that are not compatible with existing petroleum infrastructure. The

  10. Refining and End Use Study of Coal Liquids

    SciTech Connect (OSTI)

    1997-10-01

    This report summarizes revisions to the design basis for the linear programing refining model that is being used in the Refining and End Use Study of Coal Liquids. This revision primarily reflects the addition of data for the upgrading of direct coal liquids.

  11. Energy end-use intensities in commercial buildings

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This report examines energy intensities in commercial buildings for nine end uses: space heating, cooling, ventilation, lighting, water heating, cooking, refrigeration, office equipment, and other. The objective of this analysis was to increase understanding of how energy is used in commercial buildings and to identify targets for greater energy efficiency which could moderate future growth in demand. The source of data for the analysis is the 1989 Commercial Buildings Energy Consumption survey (CBECS), which collected detailed data on energy-related characteristics and energy consumption for a nationally representative sample of approximately 6,000 commercial buildings. The analysis used 1989 CBECS data because the 1992 CBECS data were not yet available at the time the study was initiated. The CBECS data were fed into the Facility Energy Decision Screening (FEDS) system, a building energy simulation program developed by the US Department of Energy`s Pacific Northwest Laboratory, to derive engineering estimates of end-use consumption for each building in the sample. The FEDS estimates were then statistically adjusted to match the total energy consumption for each building. This is the Energy Information Administration`s (EIA) first report on energy end-use consumption in commercial buildings. This report is part of an effort to address customer requests for more information on how energy is used in buildings, which was an overall theme of the 1992 user needs study. The end-use data presented in this report were not available for publication in Commercial Buildings Energy Consumption and Expenditures 1989 (DOE/EIA-0318(89), Washington, DC, April 1992). However, subsequent reports on end-use energy consumption will be part of the Commercial Buildings Energy Consumption and Expenditures series, beginning with a 1992 data report to be published in early 1995.

  12. United States Industrial Sector Energy End Use Analysis

    SciTech Connect (OSTI)

    Shehabi, Arman; Morrow, William R.; Masanet, Eric

    2012-05-11

    The United States Department of Energy’s (DOE) Energy Information Administration (EIA) conducts the Manufacturing Energy Consumption Survey (MECS) to provide detailed data on energy consumption in the manufacturing sector. The survey is a sample of approximately 15,000 manufacturing establishments selected from the Economic Census - Manufacturing Sector. MECS provides statistics on the consumption of energy by end uses (e.g., boilers, process, electric drives, etc.) disaggregated by North American Industry Classification System (NAICS) categories. The manufacturing sector (NAICS Sector 31-33) consists of all manufacturing establishments in the 50 States and the District of Columbia. According to the NAICS, the manufacturing sector comprises establishments engaged in the mechanical, physical, or chemical transformation of materials, substances, or components into new products. The establishments are physical facilities such as plants, factories, or mills. For many of the sectors in the MECS datasets, information is missing because the reported energy use is less than 0.5 units or BTUs, or is withheld to avoid disclosing data for individual establishments, or is withheld because the standard error is greater than 50%. We infer what the missing information likely are using several approximations techniques. First, much of the missing data can be easily calculated by adding or subtracting other values reported by MECS. If this is not possible (e.g. two data are missing), we look at historic MECS reports to help identify the breakdown of energy use in the past and assume it remained the same for the current MECS. Lastly, if historic data is also missing, we assume that 3 digit NAICS classifications predict energy use in their 4, 5, or 6 digit NAICS sub-classifications, or vice versa. Along with addressing data gaps, end use energy is disaggregated beyond the specified MECS allocations using additional industry specific energy consumption data. The result is a completed table of energy end use by sector with mechanical drives broken down by pumps, fans, compressed air, and drives.

  13. Driving Biofuels End Use: BETO/VTO Collaborations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Driving Biofuels End Use: BETO/VTO Collaborations BETO FY 2015 Peer Review Kevin Stork EERE Vehicle Technologies Office March 26, 2015 Alexandria, Virginia 2 * Transportation is responsible for 66% of U.S. petroleum usage * 27% of GHG emissions * On-Road vehicles responsible for 85% of transportation petroleum usage Oil Dependency is Dominated by Vehicles * 16.0M LDVs sold in 2014. * 240 million light-duty vehicles on the road in the U.S * 10-15 years for annual sales penetration * 10-15 years

  14. India Energy Outlook: End Use Demand in India to 2020

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

    2009-03-30

    Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries often poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.

  15. End use energy consumption data base: transportation sector

    SciTech Connect (OSTI)

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  16. Healthcare Energy: Using End-Use Data to Inform Decisions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Using End-Use Data to Inform Decisions Healthcare Energy: Using End-Use Data to Inform Decisions The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two hospitals. See below for ideas about how to use end-use data to inform decisions in your facility. The relative magnitude of the energy consumption of different end uses can be a starting point for prioritizing energy investments and action, whether the scope under

  17. Top Ten Innovations of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputing Science Digests 70 Years of Innovations Top Ten Innovations of 2013 Energy Sustainability 50 Years of Space TOP INNOVATIONS OF 2013 Science and technology for...

  18. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  19. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    2 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fuel --

  20. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21

  1. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be conducted in 2010 Table 5.8 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547

  2. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    5 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION

  3. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    6 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fue -- 41 133 23 2,119 8 547 -- Conventional Boiler Use 41 71 17

  4. "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Relative Standard Errors for Table 5.8;" " Unit: Percents." ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for...

  5. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  6. GridLAB-D Technical Support Document: Residential End-Use Module Version 1.0

    SciTech Connect (OSTI)

    Taylor, Zachary T.; Gowri, Krishnan; Katipamula, Srinivas

    2008-07-31

    1.0 Introduction The residential module implements the following end uses and characteristics to simulate the power demand in a single family home: • Water heater • Lights • Dishwasher • Range • Microwave • Refrigerator • Internal gains (plug loads) • House (heating/cooling loads) The house model considers the following four major heat gains/losses that contribute to the building heating/cooling load: 1. Conduction through exterior walls, roof and fenestration (based on envelope UA) 2. Air infiltration (based on specified air change rate) 3. Solar radiation (based on CLTD model and using tmy data) 4. Internal gains from lighting, people, equipment and other end use objects. The Equivalent Thermal Parameter (ETP) approach is used to model the residential loads and energy consumption. The following sections describe the modeling assumptions for each of the above end uses and the details of power demand calculations in the residential module.

  7. ,"New Mexico Sales of Distillate Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales of Distillate Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Sales of Distillate Fuel Oil by End Use",13,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel

  8. ,"Nebraska Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  9. ,"Nevada Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  10. ,"New Hampshire Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  11. ,"New Jersey Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  12. ,"New Mexico Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  13. ,"New York Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  14. ,"North Carolina Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  15. ,"North Dakota Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  16. ,"Oklahoma Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  17. ,"Pennsylvania Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  18. ,"Rhode Island Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  19. ,"South Carolina Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  20. ,"South Dakota Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  1. ,"U.S. Adjusted Sales of Distillate Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Distillate Fuel Oil by End Use",13,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel File

  2. ,"U.S. Adjusted Sales of Residual Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Residual Fuel Oil by End Use",8,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel File

  3. ,"Utah Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  4. ,"West Virginia Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  5. ,"Wisconsin Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  6. ,"Alabama Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  7. ,"Arizona Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  8. ,"Connecticut Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  9. ,"Delaware Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  10. ,"Georgia Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  11. ,"Idaho Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  12. ,"Kansas Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  13. ,"Kentucky Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  14. ,"Louisiana Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  15. ,"Maryland Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  16. ,"Mississippi Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  17. ,"Missouri Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  18. ,"Montana Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  19. End-use Breakdown: The Building Energy Modeling Blog | Department of Energy

    Office of Environmental Management (EM)

    End-use Breakdown: The Building Energy Modeling Blog End-use Breakdown: The Building Energy Modeling Blog RSS Welcome to the Building Technologies Office's Building Energy Modeling blog. February 19, 2016 Trimble's recent acquisition of Sefaira and its pairing with SketchUp is a good sign for the BEM industry. Image credit: Sefaira. DOE. A Good Sign for the Building Energy Modeling Industry If you are a BEM professional, know a BEM professional, or even follow one on LinkedIn or Twitter, you've

  20. Electricity end-use efficiency: Experience with technologies, markets, and policies throughout the world

    SciTech Connect (OSTI)

    Levine, M.D.; Koomey, J.; Price, L.; Geller, H.; Nadel, S.

    1992-03-01

    In its August meeting in Geneva, the Energy and Industry Subcommittee (EIS) of the Policy Response Panel of the Intergovernmental Panel on Climate Change (IPCC) identified a series of reports to be produced. One of these reports was to be a synthesis of available information on global electricity end-use efficiency, with emphasis on developing nations. The report will be reviewed by the IPCC and approved prior to the UN Conference on Environment and Development (UNCED), Brazil, June 1992. A draft outline for the report was submitted for review at the November 1991 meeting of the EIS. This outline, which was accepted by the EIS, identified three main topics to be addressed in the report: status of available technologies for increasing electricity end-use efficiency; review of factors currently limiting application of end-use efficiency technologies; and review of policies available to increase electricity end-use efficiency. The United States delegation to the EIS agreed to make arrangements for the writing of the report.

  1. End-Use Opportunity Analysis from Progress Indicator Results for ASHRAE Standard 90.1-2013

    SciTech Connect (OSTI)

    Hart, Philip R.; Xie, YuLong

    2015-02-05

    This report and an accompanying spreadsheet (PNNL 2014a) compile the end use building simulation results for prototype buildings throughout the United States. The results represent he energy use of each edition of ASHRAE Standard 90.1, Energy Standard for Buildings Except Low-Rise Residential Buildings (ASHRAE 2004, 2007, 2010, 2013). PNNL examined the simulation results to determine how the remaining energy was used.

  2. Table B19. Energy End Uses, Number of Buildings and Floorspace, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Energy End Uses, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,,"Total Floorspace (million square feet)" ,"All Buildings","Energy Used For (more than one may apply)",,,,,"All Buildings","Energy Used For (more than one may apply)" ,,"Space Heating","Cooling","Water Heating","Cooking","Manufact-uring",,"Space

  3. Engineer End Uses for Maximum Efficiency; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #10 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 * August 2004 Industrial Technologies Program Suggested Actions * Review compressed air end uses and determine the required level of air pressure. * Review the compressed air end uses' original confgurations to determine whether manufacturing processes have evolved in such a way that those end uses are no longer necessary or can be reconfgured more effciently. References From Compressed Air Challenge ® (CAC): The Compressed Air System Best Practices Manual, Guidelines for Selecting a

  4. Renewable Electricity Futures Study Volume 3: End-Use Electricity Demand

    Broader source: Energy.gov [DOE]

    This volume details the end-use electricity demand and efficiency assumptions. The projection of electricity demand is an important consideration in determining the extent to which a predominantly renewable electricity future is feasible. Any scenario regarding future electricity use must consider many factors, including technological, sociological, demographic, political, and economic changes (e.g., the introduction of new energy-using devices; gains in energy efficiency and process improvements; changes in energy prices, income, and user behavior; population growth; and the potential for carbon mitigation).

  5. ,"U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2014,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2014,"6/30/1984" ,"Data

  6. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2014,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2014,"6/30/1984" ,"Data

  7. Table 2.3 Manufacturing Energy Consumption for Heat, Power, and Electricity Generation by End Use, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Manufacturing Energy Consumption for Heat, Power, and Electricity Generation by End Use, 2006 End-Use Category Net Electricity 1 Residual Fuel Oil Distillate Fuel Oil LPG 2 and NGL 3 Natural Gas Coal 4 Total 5 Million Kilowatthours Million Barrels Billion Cubic Feet Million Short Tons Indirect End Use (Boiler Fuel) 12,109 21 4 2 2,059 25 – – Conventional Boiler Use 12,109 11 3 2 1,245 6 – – CHP 6 and/or Cogeneration Process – – 10 1 (s) 814 19 – – Direct End Use All Process Uses 657,810

  8. Residential Lighting End-Use Consumption Study: Estimation Framework and Initial Estimates

    SciTech Connect (OSTI)

    Gifford, Will R.; Goldberg, Miriam L.; Tanimoto, Paulo M.; Celnicker, Dane R.; Poplawski, Michael E.

    2012-12-01

    The U.S. DOE Residential Lighting End-Use Consumption Study is an initiative of the U.S. Department of Energy’s (DOE’s) Solid-State Lighting Program that aims to improve the understanding of lighting energy usage in residential dwellings. The study has developed a regional estimation framework within a national sample design that allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3) by location within the home, 4) by certain lamp characteristics, and 5) by certain categorical cross-classifications (e.g., by dwelling type AND lamp type or fixture type AND control type).

  9. The Value of End-Use Energy Efficiency in Mitigation of U.S. Carbon Emissions

    SciTech Connect (OSTI)

    Kyle, G. Page; Smith, Steven J.; Clarke, Leon E.; Kim, Son H.; Wise, Marshall A.

    2007-11-27

    This report documents a scenario analysis exploring the value of advanced technologies in the U.S. buildings, industrial, and transportation sectors in stabilizing atmospheric greenhouse gas concentrations. The analysis was conducted by staff members of Pacific Northwest National Laboratory (PNNL), working at the Joint Global Change Research Institute (JGCRI) in support of the strategic planning process of the U.S. Department of Energy (U.S. DOE) Office of Energy Efficiency and Renewable Energy (EERE). The conceptual framework for the analysis is an integration of detailed buildings, industrial, and transportation modules into MiniCAM, a global integrated assessment model. The analysis is based on three technology scenarios, which differ in their assumed rates of deployment of new or presently available energy-saving technologies in the end-use sectors. These technology scenarios are explored with no carbon policy, and under two CO2 stabilization policies, in which an economic price on carbon is applied such that emissions follow prescribed trajectories leading to long-term stabilization of CO2 at roughly 450 and 550 parts per million by volume (ppmv). The costs of meeting the emissions targets prescribed by these policies are examined, and compared between technology scenarios. Relative to the reference technology scenario, advanced technologies in all three sectors reduce costs by 50% and 85% for the 450 and 550 ppmv policies, respectively. The 450 ppmv policy is more stringent and imposes higher costs than the 550 ppmv policy; as a result, the magnitude of the economic value of energy efficiency is four times greater for the 450 ppmv policy than the 550 ppmv policy. While they substantially reduce the costs of meeting emissions requirements, advanced end-use technologies do not lead to greenhouse gas stabilization without a carbon policy. This is due mostly to the effects of increasing service demands over time, the high consumption of fossil fuels in the electricity sector, and the use of unconventional feedstocks in the liquid fuel refining sector. Of the three end-use sectors, advanced transportation technologies have the greatest potential to reduce costs of meeting carbon policy requirements. Services in the buildings and industrial sectors can often be supplied by technologies that consume low-emissions fuels such as biomass or, in policy cases, electricity. Passenger transportation, in contrast, is especially unresponsive to climate policies, as the fuel costs are small compared to the time value of transportation and vehicle capital and operating costs. Delaying the transition from reference to advanced technologies by 15 years increases the costs of meeting 450 ppmv stabilization emissions requirements by 21%, but the costs are still 39% lower than the costs assuming reference technology. The report provides a detailed description of the end-use technology scenarios and provides a thorough analysis of the results. Assumptions are documented in the Appendix.

  10. Technology data characterizing water heating in commercial buildings: Application to end-use forecasting

    SciTech Connect (OSTI)

    Sezgen, O.; Koomey, J.G.

    1995-12-01

    Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

  11. Ten Year Site Plans | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ten Year Site Plans Ten Year Site Plans A Ten Year Site Plan (TYSP) is the essential planning document linking a site's real property requirements to its mission in support of the Department of Energy's overall strategic plan. It is a comprehensive site-wide plan encompassing the needs of tenant activities. The TYSP is integral to and supports the Department's Planning, Programming, Budgeting, and Evaluation System (PPBES). The TYSP also describes site-specific actions the programs plans in

  12. TenKsolar Inc | Open Energy Information

    Open Energy Info (EERE)

    tenKsolar Inc Place: Bloomington, Minnesota Zip: 55431 Product: Minnesota-based PV module maker. Coordinates: 42.883574, -90.926122 Show Map Loading map......

  13. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons)

  14. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23

  15. Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Office of Energy Efficiency and Renewable Energy (EERE)

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  16. July 11 Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances

    Broader source: Energy.gov [DOE]

    These documents contain the three slide decks presented at the public meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances, held on July 11, 2014 in Washington, DC.

  17. Residential applliance data, assumptions and methodology for end-use forecasting with EPRI-REEPS 2.1

    SciTech Connect (OSTI)

    Hwang, R.J,; Johnson, F.X.; Brown, R.E.; Hanford, J.W.; Kommey, J.G.

    1994-05-01

    This report details the data, assumptions and methodology for end-use forecasting of appliance energy use in the US residential sector. Our analysis uses the modeling framework provided by the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which was developed by the Electric Power Research Institute. In this modeling framework, appliances include essentially all residential end-uses other than space conditioning end-uses. We have defined a distinct appliance model for each end-use based on a common modeling framework provided in the REEPS software. This report details our development of the following appliance models: refrigerator, freezer, dryer, water heater, clothes washer, dishwasher, lighting, cooking and miscellaneous. Taken together, appliances account for approximately 70% of electricity consumption and 30% of natural gas consumption in the US residential sector. Appliances are thus important to those residential sector policies or programs aimed at improving the efficiency of electricity and natural gas consumption. This report is primarily methodological in nature, taking the reader through the entire process of developing the baseline for residential appliance end-uses. Analysis steps documented in this report include: gathering technology and market data for each appliance end-use and specific technologies within those end-uses, developing cost data for the various technologies, and specifying decision models to forecast future purchase decisions by households. Our implementation of the REEPS 2.1 modeling framework draws on the extensive technology, cost and market data assembled by LBL for the purpose of analyzing federal energy conservation standards. The resulting residential appliance forecasting model offers a flexible and accurate tool for analyzing the effect of policies at the national level.

  18. Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study

    SciTech Connect (OSTI)

    McKone, Thomas E.; Lobscheid, A.B.

    2006-06-01

    This study assesses for California how increasing end-use electrical energy efficiency from installing residential insulation impacts exposures and disease burden from power-plant pollutant emissions. Installation of fiberglass attic insulation in the nearly 3 million electricity-heated homes throughout California is used as a case study. The pollutants nitrous oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), fine particulate matter (PM2.5), benzo(a)pyrene, benzene, and naphthalene are selected for the assessment. Exposure is characterized separately for rural and urban environments using the CalTOX model, which is a key input to the US Environmental Protection Agency (EPA) Tool for the Reduction and Assessment of Chemicals and other environmental Impacts (TRACI). The output of CalTOX provides for urban and rural populations emissions-to-intake factors, which are expressed as an individual intake fraction (iFi). The typical iFi from power plant emissions are on the order of 10{sup -13} (g intake per g emitted) in urban and rural regions. The cumulative (rural and urban) product of emissions, population, and iFi is combined with toxic effects factors to determine human damage factors (HDFs). HDF are expressed as disability adjusted life years (DALYs) per kilogram pollutant emitted. The HDF approach is applied to the insulation case study. Upgrading existing residential insulation to US Department of Energy (DOE) recommended levels eliminates over the assmned 50-year lifetime of the insulation an estimated 1000 DALYs from power-plant emissions per million tonne (Mt) of insulation installed, mostly from the elimination of PM2.5 emissions. In comparison, the estimated burden from the manufacture of this insulation in DALYs per Mt is roughly four orders of magnitude lower than that avoided.

  19. Bos ten AG | Open Energy Information

    Open Energy Info (EERE)

    Place: Regensburg-Westenviertel, Germany Zip: 93049 Sector: Solar Product: Partner of Beck Energy in development of a 3.2MW solar PV plant. References: Bos.ten AG1 This article...

  20. Ten Year Site Plans | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Office of Acquisition and Project Management maintains resources to assist sites in developing their TYSP: DOE O 430.1B, Real Property Asset Management (RPAM) FY 2014-2024 Ten ...

  1. Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

  2. Solar Decathlon Turns Ten | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turns Ten Solar Decathlon Turns Ten September 28, 2012 - 2:22pm Addthis For the past 10 years, the Solar Decathlon has educated consumers about affordable clean energy products that save energy and money, and provided hands-on training for jobs in the clean energy economy. | Photo courtesy of Stefano Paltera, U.S. Department of Energy Solar Decathlon. For the past 10 years, the Solar Decathlon has educated consumers about affordable clean energy products that save energy and money, and provided

  3. Table 10.9 Photovoltaic Cell and Module Shipments by Sector and End Use, 1989-2010 (Peak Kilowatts )

    U.S. Energy Information Administration (EIA) Indexed Site

    Photovoltaic Cell and Module Shipments by Sector and End Use, 1989-2010 (Peak Kilowatts 1 ) Year By Sector By End Use Total Residential Commercial 3 Industrial 4 Electric Power 5 Other 6 Grid-Connected 2 Off-Grid 2 Centralized 7 Distributed 8 Domestic 9 Non-Domestic 10 Total Shipments of Photovoltaic Cells and Modules 11<//td> 1989 1,439 6,057 [R] 3,993 785 551 [12] 1,251 [12] 2,620 8,954 12,825 1990 1,701 8,062 [R] 2,817 826 432 [12] 469 [12] 3,097 10,271 13,837 1991 3,624 5,715 [R] 3,947

  4. Residential sector end-use forecasting with EPRI-Reeps 2.1: Summary input assumptions and results

    SciTech Connect (OSTI)

    Koomey, J.G.; Brown, R.E.; Richey, R.

    1995-12-01

    This paper describes current and projected future energy use by end-use and fuel for the U.S. residential sector, and assesses which end-uses are growing most rapidly over time. The inputs to this forecast are based on a multi-year data compilation effort funded by the U.S. Department of Energy. We use the Electric Power Research Institute`s (EPRI`s) REEPS model, as reconfigured to reflect the latest end-use technology data. Residential primary energy use is expected to grow 0.3% per year between 1995 and 2010, while electricity demand is projected to grow at about 0.7% per year over this period. The number of households is expected to grow at about 0.8% per year, which implies that the overall primary energy intensity per household of the residential sector is declining, and the electricity intensity per household is remaining roughly constant over the forecast period. These relatively low growth rates are dependent on the assumed growth rate for miscellaneous electricity, which is the single largest contributor to demand growth in many recent forecasts.

  5. The FY 2008 Budget Request - Twenty in Ten: Strengthening America...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Budget Request - Twenty in Ten: Strengthening America's Energy Security The FY 2008 Budget Request - Twenty in Ten: Strengthening America's Energy Security DOE's Office of Energy...

  6. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    HVAC (e)",280,3,5,417,5,5,6.6 " Facility Lighting",212,"--","--","--","--","--",1.1 " ... HVAC (e)",41,2,3,68,1,"*",6.4 " Facility Lighting",33,"--","--","--","--","--",1.3 " Other ...

  7. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    HVAC (f)",285,4,4,378,5,2 " Facility Lighting",215,"--","--","--","--","--" " Other ... HVAC (f)",38,3,3,57,1,"*" " Facility Lighting",29,"--","--","--","--","--" " Other ...

  8. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    HVAC (f)",236,"Q",4,306,4,3 " Facility Lighting",177,"--","--","--","--","--" " Other ... HVAC (f)",29,"Q",3,45,1,"Q" " Facility Lighting",22,"--","--","--","--","--" " Other ...

  9. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,79355,1,1,392,1,"*","--",5.7 " Facility Lighting","--",61966,"--","--","--","--","--","--...707,"*",1,57,"*","*","--",7.2 " Facility Lighting","--",9494,"--","--","--","--","--","--"...

  10. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ..."--",271,4,6,403,4,4,"--",5.7 " Facility Lighting","--",211,"--","--","--","--","--","--",... *","--",7.2 " Facility Lighting","--",32,"--","--","--","--","--","--",1...

  11. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    HVAC (f)",83480,1,1,367,1,"*" " Facility Lighting",62902,"--","--","--","--","--" " Other ... (f)",11142,"*","*",56,"*","*" " Facility Lighting",8470,"--","--","--","--","--" " Other ...

  12. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...f)","--",265,4,4,378,5,2,"--" " Facility Lighting","--",198,"--","--","--","--","--","--" ...f)","--",34,3,3,57,1,"*","--" " Facility Lighting","--",26,"--","--","--","--","--","--" " ...

  13. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ..."--",77768,1,1,367,1,"*","--" " Facility Lighting","--",58013,"--","--","--","--","--","--...,9988,"*","*",56,"*","*","--" " Facility Lighting","--",7651,"--","--","--","--","--","--" ...

  14. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...","--",222,"Q",4,306,4,3,"--" " Facility Lighting","--",165,"--","--","--","--","--","--" ...","--",26,"Q",3,45,1,"Q","--" " Facility Lighting","--",20,"--","--","--","--","--","--" " ...

  15. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (f)",69090,"*",1,297,1,"*" " Facility Lighting",51946,"--","--","--","--","--" " Other ... (f)",8543,"*",1,43,"*","*" " Facility Lighting",6524,"--","--","--","--","--" " Other ...

  16. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (e)",81980,1,1,406,1,"*",6.6 " Facility Lighting",62019,"--","--","--","--","--",1.1 " ...)",12126,"*",1,66,"*","*",6.4 " Facility Lighting",9668,"--","--","--","--","--",1.3 " ...

  17. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ..."--",262,3,5,417,5,5,"--",6.6 " Facility Lighting","--",196,"--","--","--","--","--","--",..."--",38,2,3,68,1,"*","--",6.4 " Facility Lighting","--",30,"--","--","--","--","--","--",1...

  18. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,76840,1,1,406,1,"*","--",6.6 " Facility Lighting","--",57460,"--","--","--","--","--","--...241,"*",1,66,"*","*","--",6.4 " Facility Lighting","--",8831,"--","--","--","--","--","--"...

  19. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 1, 2, and 4 fuel oils and Nos. 1, 2, and 4" "diesel fuels." " (c) 'Natural Gas' ... gas brokers, marketers," "and any marketing subsidiaries of utilities." " (d) ...

  20. " Row: End Uses;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 1, 2, and 4 fuel oils and Nos. 1, 2, and 4" "diesel fuels." " (c) 'Natural Gas' ... gas brokers, marketers," "and any marketing subsidiaries of utilities." " (d) ...

  1. Table 2.6 Household End Uses: Fuel Types, Appliances, and Electronics, Selected Years, 1978-2009

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Household End Uses: Fuel Types, Appliances, and Electronics, Selected Years, 1978-2009 Appliance Year Change 1978 1979 1980 1981 1982 1984 1987 1990 1993 1997 2001 2005 2009 1980 to 2009 Total Households (millions) 77 78 82 83 84 86 91 94 97 101 107 111 114 32 Percent of Households<//td> Space Heating - Main Fuel 1 Natural Gas 55 55 55 56 57 55 55 55 53 52 55 52 50 -5 Electricity 2 16 17 18 17 16 17 20 23 26 29 29 30 35 17 Liquefied Petroleum Gases 4 5 5 4 5 5 5 5 5 5 5 5 5 0 Distillate

  2. Table 3.6 Consumer Expenditure Estimates for Energy by End-Use Sector, 1970-2010 (Million Dollars )

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumer Expenditure Estimates for Energy by End-Use Sector, 1970-2010 (Million Dollars 1) Year Residential Commercial Industrial Transportation Natural Gas 2 Petroleum Retail Electricity 3 Total 4 Natural Gas 2 Petroleum 5 Retail Electricity 3 Total 6,7 Coal Natural Gas 2 Petroleum 5 Biomass 8 Retail Electricity 3 Total 7,9 Petroleum 5 Total 7,10 1970 5,272 4,186 10,352 20,112 1,844 1,440 7,319 10,678 2,082 2,625 6,069 366 5,624 16,691 35,327 35,379 1971 5,702 4,367 11,589 21,934 2,060 1,574

  3. 2014-04-30 Public Meeting Presentation Slides: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Office of Energy Efficiency and Renewable Energy (EERE)

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  4. 2014-04-30 Public Meeting Agenda: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    This document is the agenda for the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting being held on April 30, 2014.

  5. Agenda for Public Meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    Download the agenda below for the July 11 Public Meeting on the Physical Characterization of Grid-Connected Commercial and  Residential Buildings End-Use Equipment and Appliances.

  6. The use of negotiated agreements to improve efficiency of end-use appliances: First results from the European experience

    SciTech Connect (OSTI)

    Bertoldi, P.; Bowie, R.; Hagen, L.

    1998-07-01

    The European Union is pursuing measures to improve end-use equipment efficiency through a variety of policy instruments, in particular for domestic appliances. One of the most effective methods to achieve market transformation is through minimum efficiency performance standards (MEPS). However, after the difficulties and controversy following the adoption of legislation for MEPS for domestic refrigerators/freezers, a new policy instrument, i.e. negotiated agreements by manufacturers, has been investigated and tested for two type of appliances: domestic washing machines and TVs and VCRs. Based on the positive experience of the above two agreements, other products (e.g. dryers, dishwasher, electric water heaters, etc.) will be the subject of future negotiated agreements. Based on the results of the two negotiated agreements, this paper describes the energy efficiency potential, the procedures, and the advantages and disadvantages of negotiated agreements compared to legislated mandatory for MEPS, as developed in the European context. The paper concludes that negotiated agreements are a viable policy option, which allow flexibility in the implementation of the efficiency targets and therefore the adoption of cost-effective solutions for manufacturers. In addition, negotiated agreements can be implemented more quickly compared to mandatory MEPS and they allow a closer monitoring of the results. The main question asked in the paper is whether the negotiated agreements can deliver the results in the long term compared to what could be achieved through legislation. The European experience indicates that this instrument can deliver the results and that it offer a number of advantages compared to MEPS.

  7. Schneider Electric Boasts Ten Facilities Certified to Superior Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance in North America | Department of Energy Boasts Ten Facilities Certified to Superior Energy Performance in North America Schneider Electric Boasts Ten Facilities Certified to Superior Energy Performance in North America March 23, 2015 - 11:44am Addthis AMO is pleased to announce that Schneider Electric now has ten facilities certified to the Superior Energy Performance® (SEP(tm)) program and to ISO 50001 in the United States, Canada, and Mexico. This is the most SEP

  8. Final Environmental Impact Report: North Brawley Ten Megawatt...

    Open Energy Info (EERE)

    Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility Abstract NA Author County of Imperial Planning Department Published WESTEC SERVICES, INC., 1979...

  9. Water Sampling At Valley Of Ten Thousand Smokes Region Area ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992)...

  10. Ten New Mexico small businesses recognized at Innovation Celebration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NM small businesses recognized at Innovation Celebration Ten New Mexico small businesses recognized at Innovation Celebration April 3 Small businesses participating in projects...

  11. Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith,...

  12. Table 10.7 Solar Thermal Collector Shipments by Market Sector, End Use, and Type, 2001-2009 (Thousand Square Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Solar Thermal Collector Shipments by Market Sector, End Use, and Type, 2001-2009 (Thousand Square Feet) Year and Type By Market Sector By End Use Total Residential Commercial 1 Industrial 2 Electric Power 3 Other 4 Pool Heating Water Heating Space Heating Space Cooling Combined Heating 5 Process Heating Electricity Generation Total Shipments 6<//td> 2001 Total 10,125 1,012 17 1 35 10,797 274 70 0 12 34 2 11,189 Low 7 9,885 987 12 0 34 10,782 42 61 0 0 34 0 10,919 Medium 8 240 24 5 0 1 16

  13. 2014-2023 Ten-Year Site Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Idaho National Laboratory (INL) Ten-Year Site Plan for Fiscal Year 2014 outlines the vision, strategy, and progress toward delivering and sustaining world-leading capabilities needed for the...

  14. Isotopic Analysis At Valley Of Ten Thousand Smokes Region Area...

    Open Energy Info (EERE)

    Date Usefulness not indicated DOE-funding Unknown References T. E. C. Keith, J. M. Thompson, R. A. Hutchinson, L. D. White (1992) Geochemistry Of Waters In The Valley Of Ten...

  15. Ten Projects Awarded NERSC Allocations under DOE's ALCC Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ten Projects Awarded NERSC Allocations under DOE's ALCC Program Ten Projects Awarded NERSC Allocations under DOE's ALCC Program June 24, 2014 43251113992ff3baa1edb NERSC Computer Room. Photo by Roy Kaltschmidt, LBNL Under the Department of Energy's (DOE) ASCR Leadership Computing Challenge (ALCC) program, 10 research teams at national laboratories and universities have been awarded 382.5 million hours of computing time at the National Energy Research Scientific Computing Center (NERSC). The

  16. Development of a ten inch manipulators-based, flexible, broadband

    Office of Scientific and Technical Information (OSTI)

    two-crystal spectrometer (Journal Article) | SciTech Connect Journal Article: Development of a ten inch manipulators-based, flexible, broadband two-crystal spectrometer Citation Details In-Document Search Title: Development of a ten inch manipulators-based, flexible, broadband two-crystal spectrometer We have developed and implemented a broadband X-ray spectrometer with a variable energy range for use at the Atomic Weapons Establishment's Orion Laser. The spectrometer covers an energy

  17. Communication measures to bridge ten millennia. [Contains glossary]

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Communication measures to bridge ten millennia. [Contains glossary] Citation Details In-Document Search Title: Communication measures to bridge ten millennia. [Contains glossary] Ă— You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  18. Ten Years of Development Experience with Advanced Light Truck Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engines | Department of Energy Ten Years of Development Experience with Advanced Light Truck Diesel Engines Ten Years of Development Experience with Advanced Light Truck Diesel Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Cummins Engines PDF icon 2004_deer_stang1.pdf More Documents & Publications The California Demonstration Program for Control of PM from Diesel Backup Generators = Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology on

  19. Washington Closure Hanford: Ten Years of River Corridor Cleanup |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Washington Closure Hanford: Ten Years of River Corridor Cleanup Washington Closure Hanford: Ten Years of River Corridor Cleanup December 17, 2015 - 12:30pm Addthis Contract-Timeline-E1511010_4-B_756px.jpg This timeline shows contractor Washington Closure Hanford's accomplishments over the past 10 years through its River Corridor Closure Contract. Addthis Related Articles EM Update Newsletter Spotlights River Corridor Cleanup at Hanford Site River Corridor Achievements

  20. NSAR Ten Year Renewable Energy Plan - Integration Planning

    Office of Environmental Management (EM)

    OFFICE OF INDIAN ENERGY NSAR Ten Year Renewable Energy Plan - Integration Planning September 2015 1 Overview * Process * 3Ps * 3Cs 2 National Strategy for the Arctic Region (NSAR) - Federal Engagement * Step One - See Russia from your House * The Ten Year Renewable Energy Plan - captures existing energy planning and development activities within the context of renewable energy and energy efficiency - identifies gaps or areas appropriate for federal agency engagement as stated in: * Executive

  1. April 30 Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014. The first document includes the first presentation from the meeting: DOE Vision and Objectives. The second document includes all other presentations from the meeting: Terminology and Definitions; End-User and Grid Services; Physical Characterization Framework; Value, Benefits & Metrics.

  2. 1980 survey and evaluation of utility conservation, load management, and solar end-use projects. Volume 3: utility load management projects. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The results of the 1980 survey of electric utility-sponsored energy conservation, load management, and end-use solar energy conversion projects are described. The work is an expansion of a previous survey and evaluation and has been jointly sponsored by EPRI and DOE through the Oak Ridge National Laboratory. There are three volumes and a summary document. Each volume presents the results of an extensive survey to determine electric utility involvement in customer-side projects related to the particular technology (i.e., conservation, solar, or load management), selected descriptions of utility projects and results, and first-level technical and economic evaluations.

  3. Energy balances in the production and end use of alcohols derived from biomass. A fuels-specific comparative analysis of alternate ethanol production cycles

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    Considerable public interest and debate have been focused on the so-called energy balance issue involved in the conversion of biomass materials into ethanol for fuel use. This report addresses questions of net gains in premium fuels that can be derived from the production and use of ethanol from biomass, and shows that for the US alcohol fuel program, energy balance need not be a concern. Three categories of fuel gain are discussed in the report: (1) Net petroleum gain; (2) Net premium fuel gain (petroleum and natural gas); and (3) Net energy gain (for all fuels). In this study the investment of energy (in the form of premium fuels) in alcohol production includes all investment from cultivating, harvesting, or gathering the feedstock and raw materials, through conversion of the feedstock to alcohol, to the delivery to the end-user. To determine the fuel gains in ethanol production, six cases, encompassing three feedstocks, five process fuels, and three process variations, have been examined. For each case, two end-uses (automotive fuel use and replacement of petrochemical feedstocks) were scrutinized. The end-uses were further divided into three variations in fuel economy and two different routes for production of ethanol from petrochemicals. Energy requirements calculated for the six process cycles accounted for fuels used directly and indirectly in all stages of alcohol production, from agriculture through distribution of product to the end-user. Energy credits were computed for byproducts according to the most appropriate current use.

  4. Ten Los Alamos scientists honored by American Physical Society

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists honored by American Physical Society Ten Los Alamos scientists honored by American Physical Society Tariq Aslam, Steven Batha, Eric Bauer, Hou-Tong Chen, Diego Alejandro Dalvit, Dinh Nguyen, Alan Perelson, Filip Ronning, Alexander Saunders and Glen Wurden were named this week by the national organization. November 12, 2015 Tariq Aslam, Steven Batha, Eric Bauer, Hou-Tong Chen, Diego Alejandro Dalvit, Dinh Nguyen, Alan Perelson, Filip Ronning, Alexander Saunders and Glen Wurden Tariq

  5. Ten New Mexico small businesses recognized at Innovation Celebration April

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 NM small businesses recognized at Innovation Celebration Ten New Mexico small businesses recognized at Innovation Celebration April 3 Small businesses participating in projects using the technical expertise and assistance of Los Alamos and Sandia are being recognized. March 26, 2014 Molly Cernicek of SportXast Molly Cernicek of SportXast Contact Steve Sandoval Communications Office (505) 665-9206 Email "The technical expertise Los Alamos and Sandia principal investigators provide to

  6. COLLOQUIUM: Superconductors for Fusion for Next Ten Years | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab October 1, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Superconductors for Fusion for Next Ten Years Professor David Larbalestier Florida State University - National High Magnetic Field Laboratory Present fusion devices requiring superconductors all use Nb-Ti or Nb3Sn. But conductors for high magnetic field use are undergoing a considerable development at present, especially devices that may be made with the high temperature cuprate superconductors,

  7. Ten-Year Site Plans (TYSP) | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Ten-Year Site Plans (TYSP) | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working

  8. Office of Secure Transportation Ten-Year Site Plan

    National Nuclear Security Administration (NNSA)

    Secure Transportation Ten-Year Site Plan Fiscal Year 2016 OST M 1.02 Prepared by Facilities Management Branch NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process

  9. Table 3.4 Consumer Price Estimates for Energy by End-Use Sector, 1970-2010 (Dollars per Million Btu)

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumer Price Estimates for Energy by End-Use Sector, 1970-2010 (Dollars 1 per Million Btu) Year Residential Commercial Industrial Transportation Natural Gas 2 Petroleum Retail Electricity 3 Total 4 Natural Gas 2 Petroleum 5 Retail Electricity 3 Total 6,7 Coal Natural Gas 2 Petroleum 5 Biomass 8 Retail Electricity 3 Total 7,9 Petroleum 5 Total 7,10 1970 1.06 1.54 6.51 2.10 0.75 0.90 [R] 6.09 1.97 0.45 0.38 0.98 1.59 2.99 0.84 2.31 2.31 1971 1.12 1.59 6.80 2.24 .80 1.02 6.44 2.15 .50 .41 1.05

  10. DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research

    Broader source: Energy.gov [DOE]

    Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy’s University Turbine Systems Research Program have been selected by the U.S. Department of Energy for additional development. Developing gas turbines that run with greater cleanness and efficiency than current models is of great benefit both to the environment and the power industry, but development of such advanced turbine systems requires significant advances in high-temperature materials science, an understanding of combustion phenomena, and development of innovative cooling techniques to maintain integrity of turbine components.

  11. EECBG 11-002 Clarification of Ten Percent Limitation on Use of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11-002 Clarification of Ten Percent Limitation on Use of Funds for Administrative Expenses EECBG 11-002 Clarification of Ten Percent Limitation on Use of Funds for Administrative...

  12. A critical comparison of ten disposable cup LCAs

    SciTech Connect (OSTI)

    Harst, Eugenie van der, E-mail: eugenie.vanderharst@wur.nl [Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, NL-6700 AA Wageningen (Netherlands); Potting, José, E-mail: jose.potting@wur.nl [Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, NL-6700 AA Wageningen (Netherlands) [Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, NL-6700 AA Wageningen (Netherlands); Environmental Strategies Research (fms), KTH Royal Institute of Technology, SE-110 44 Stockholm (Sweden)

    2013-11-15

    Disposable cups can be made from conventional petro-plastics, bioplastics, or paperboard (coated with petro-plastics or bioplastics). This study compared ten life cycle assessment (LCA) studies of disposable cups with the aim to evaluate the robustness of their results. The selected studies have only one impact category in common, namely climate change with global warming potential (GWP) as its category indicator. Quantitative GWP results of the studies were closer examined. GWPs within and across each study show none of the cup materials to be consistently better than the others. Comparison of the absolute GWPs (after correction for the cup volume) also shows no consistent better or worse cup material. An evaluation of the methodological choices and the data sets used in the studies revealed their influence on the GWP. The differences in GWP can be attributed to a multitude of factors, i.e., cup material and weight, production processes, waste processes, allocation options, and data used. These factors basically represent different types of uncertainty. Sensitivity and scenario analyses provided only the influence of one factor at once. A systematic and simultaneous use of sensitivity and scenario analyses could, in a next research, result in more robust outcomes. -- Highlights: • Conflicting results from life cycle assessment (LCA) on disposable cups • GWP results of LCAs did not point to a best or worst cup material. • Differences in GWP results are due to methodological choices and data sets used. • Standardized LCA: transparency of LCA studies, but still different in approaches.

  13. Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Right Now Ten Ways You Can Start to Cut Petroleum Use Right Now to someone by E-mail Share Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on Facebook Tweet about Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on Twitter Bookmark Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on Google Bookmark Alternative Fuels Data Center: Ten Ways You Can Start to Cut Petroleum Use Right Now on

  14. The National Fuel End-Use Efficiency Field Test: Energy Savings and Performance of an Improved Energy Conservation Measure Selection Technique

    SciTech Connect (OSTI)

    Ternes, M.P.

    1991-01-01

    The performance of an advanced residential energy conservation measure (ECM) selection technique was tested in Buffalo, New York, to verify the energy savings and program improvements achieved from use of the technique in conservation programs and provide input into determining whether utility investments in residential gas end-use conservation are cost effective. The technique analyzes a house to identify all ECMs that are cost effective in the building envelope, space-heating system, and water-heating system. The benefit-to-cost ratio (BCR) for each ECM is determined and cost-effective ECMs (BCR > 1.0) are selected once interactions between ECMs are taken into account. Eighty-nine houses with the following characteristics were monitored for the duration of the field test: occupants were low-income, houses were single-family detached houses but not mobile homes, and primary space- and water-heating systems were gas-fired. Forty-five houses received a mix of ECMs as selected by the measure selection technique (audit houses) and 44 served as a control group. Pre-weatherization data were collected from January to April 1988 and post-weatherization data were collected from December 1988 to April 1989. Space- and waterheating gas consumption and indoor temperature were monitored weekly during the two winters. A house energy consumption model and regression analysis were employed to normalize the space-heating energy savings to average outdoor temperature conditions and a 68 F indoor temperature. Space and water-heating energy savings for the audit houses were adjusted by the savings for the control houses. The average savings of 257 therms/year for the audit houses was 17% of the average pre-weatherization house gas consumption and 78% of that predicted. Average space-heating energy savings was 252 therms/year (25% of pre-weatherization space-heating energy consumption and 85% of the predicted value) and average water-heating savings was 5 therms/year (2% of pre-weatherization water-heating energy consumption and 17% of predicted). The overall BCR for the ECMs was 1.24 using the same assumptions followed in the selection technique: no administration cost, residential fuel costs, real discount rate of 0.05, and no fuel escalation. A weatherization program would be cost effective at an administration cost less than $335/house. On average, the indoor temperature increased in the audit houses by 0.5 F following weatherization and decreased in the control houses by 0.1 F. The following conclusions regarding the measure selection technique were drawn from the study: (1) a significant cost-effective level of energy savings resulted, (2) space-heating energy savings and total installation costs were predicted with reasonable accuracy, indicating that the technique's recommendations are justified, (3) effectiveness improved from earlier versions and can continue to be improved, and (4) a wider variety of ECMs were installed compared to most weatherization programs. An additional conclusion of the study was that a significant indoor temperature take-back effect had not occurred.

  15. EECBG 11-002 Clarification of Ten Percent Limitation on Use of Funds for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administrative Expenses | Department of Energy 11-002 Clarification of Ten Percent Limitation on Use of Funds for Administrative Expenses EECBG 11-002 Clarification of Ten Percent Limitation on Use of Funds for Administrative Expenses U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency and Conservation Block Grant Program (EECBG), ten percent limitation, administrative expenses, the Energy Independence and Security Act of 2007. PDF icon

  16. Ten Hundred and One word challenge | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    DOE Announcements » People's Choice Voting for the Ten Hundred and One Word Challenge Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 07.10.13 People's Choice Voting for the Ten Hundred and One Word Challenge Print Text Size: A A A Subscribe FeedbackShare Page The Ten Hundred and One Word Challenge External link invited the 46 Energy Frontier Research Centers

  17. Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sippers List for 2011 | Department of Energy 1: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 Each year, the Environmental Protection Agency (EPA) produces a list of the top ten most fuel efficient vehicles for the model year. In past years, it was the small, lightweight vehicles that achieved the highest ratings. However, in recent years, hybrid vehicle

  18. Energy Department Announces Ten New Projects to Apply High-Performance

    Energy Savers [EERE]

    Computing to Manufacturing Challenges | Department of Energy Ten New Projects to Apply High-Performance Computing to Manufacturing Challenges Energy Department Announces Ten New Projects to Apply High-Performance Computing to Manufacturing Challenges February 17, 2016 - 9:30am Addthis The Energy Department today announced $3 million for ten new projects that will enable private-sector companies to use high-performance computing resources at the department's national laboratories to tackle

  19. Stn1-Ten1 is an Rpa2-Rpa3-like complex at telomeres (Journal...

    Office of Scientific and Technical Information (OSTI)

    In budding yeast, Cdc13, Stn1, and Ten1 form a heterotrimeric complex (CST) that is essential for telomere protection and maintenance. Previous bioinformatics analysis revealed a ...

  20. Stn1-Ten1 is an Rpa2-Rpa3-like complex at telomeres (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Stn1-Ten1 is an Rpa2-Rpa3-like complex at telomeres Citation Details In-Document Search Title: Stn1-Ten1 is an Rpa2-Rpa3-like complex at telomeres In budding yeast, Cdc13, Stn1, and Ten1 form a heterotrimeric complex (CST) that is essential for telomere protection and maintenance. Previous bioinformatics analysis revealed a putative oligonucleotide/oligosaccharide-binding (OB) fold at the N terminus of Stn1 (Stn1N) that shows limited sequence similarity to the OB fold of

  1. Fact #629: June 28, 2010 Top Ten Misconceptions about Fuel Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 9: June 28, 2010 Top Ten Misconceptions about Fuel Economy Fact #629: June 28, 2010 Top Ten Misconceptions about Fuel Economy The Fuel Economy Guide Web site, sponsored by the U. S. Department of Energy and the U.S. Environmental Protection Agency, displays a list of misconceptions about fuel economy. Knowing the facts on fuel economy can help reduce oil consumption and save money at the pump. Top Ten Misconceptions about Fuel Economy Misconception The Facts 1. You have

  2. Fact #775: April 15, 2013 Top Ten Urban Areas for Fuel Wasted due to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Traffic Congestion, 2011 | Department of Energy 5: April 15, 2013 Top Ten Urban Areas for Fuel Wasted due to Traffic Congestion, 2011 Fact #775: April 15, 2013 Top Ten Urban Areas for Fuel Wasted due to Traffic Congestion, 2011 The top ten urban areas across the U.S. accounted for nearly 40% of the total fuel wasted due to traffic congestion in 2011. Highway congestion caused vehicles in the combined urban areas of New York, Los Angeles and Chicago to waste about 600 million gallons of fuel

  3. Fact #831: July 28, 2014 Top Ten States with Diesel Light Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1: July 28, 2014 Top Ten States with Diesel Light Vehicles Fact #831: July 28, 2014 Top Ten States with Diesel Light Vehicles In Wyoming, more than 10% of registered light vehicles are fueled by diesel making their State number one in terms of diesel share. All other States on the top ten list are also western States. The average of all light diesels registered in the U.S. is 2.8%. The data include diesel cars, sport-utility vehicles, vans, and pickups (includes

  4. Ten Projects Selected by DOE to Advance State-of-the-Art Carbon Capture

    Energy Savers [EERE]

    from Coal Power Plants | Department of Energy Ten Projects Selected by DOE to Advance State-of-the-Art Carbon Capture from Coal Power Plants Ten Projects Selected by DOE to Advance State-of-the-Art Carbon Capture from Coal Power Plants July 7, 2010 - 1:00pm Addthis Washington, DC - Ten projects aimed at developing advanced technologies for capturing carbon dioxide (CO2) from coal combustion have been selected by the U.S. Department of Energy (DOE) under its Innovations for Existing Plants

  5. 2014-2023 Ten-Year Site Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4-2023 Ten-Year Site Plan 2014-2023 Ten-Year Site Plan The Idaho National Laboratory (INL) Ten-Year Site Plan for Fiscal Year 2014 outlines the vision, strategy, and progress toward delivering and sustaining world-leading capabilities needed for the core mission of the laboratory - nuclear energy research, development and demonstration (RD&D) and multi-program missions in energy security and national and homeland security. With the largest concentration of operating reactor and fuel cycle

  6. Ten Year of Manufacturing R&D in PVMaT?Technical Accomplishments...

    Office of Scientific and Technical Information (OSTI)

    Ten Years of Manufacturing R&D in PVMaT - Technical Accomplishments, Return on Investment, and Where We Go Next January 2001 * NRELCP-520-28973 C.E. Witt, R.L. Mitchell, M....

  7. EECBG 11-002 Clarification of Ten Percent Limitation on Use of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EECBG PROGRAM NOTICE 11-002 EFFECTIVE DATE: July 28, 2011 SUBJECT: CLARIFICATION OF TEN PERCENT LIMATION ON USE OF FUNDS FOR ADMINISTRATIVE EXPENSES PURPOSE To provide guidance to...

  8. Fact #611: February 22, 2010 Top Ten Best Selling Cars and Light Trucks

    Broader source: Energy.gov [DOE]

    The top ten lists of best selling cars and light trucks in 2009 show that the Toyota Camry was the best selling car, while the Ford F-Series pickup was the best selling light truck. The F-Series...

  9. Fact #770: March 11, 2013 Changes to the Top Ten Vehicles Sold...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and CR-V were not even on the top ten list for the first time in many years, and the Toyota Corolla and Honda Accord were near the bottom of the list. The Ford Escape and the...

  10. Ten Ways to Lower Perceived Risk and Finance Rates within Federal Utility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Service Contracts | Department of Energy Ten Ways to Lower Perceived Risk and Finance Rates within Federal Utility Energy Service Contracts Ten Ways to Lower Perceived Risk and Finance Rates within Federal Utility Energy Service Contracts Federal agencies can use the following 10 methods during project negotiations to lower perceived project risk and finance rates to get the best value from federal utility energy service contracts (UESCs). 1. Remember: Time is Money Money can be saved

  11. NAMII in the Top Ten Innovations to Watch List | Department of Energy

    Office of Environmental Management (EM)

    NAMII in the Top Ten Innovations to Watch List NAMII in the Top Ten Innovations to Watch List October 10, 2013 - 12:04pm Addthis A 3D printer at NAMII's facility in Youngstown, Ohio. Photo credit: National Additive Manufacturing Innovation Institute. A 3D printer at NAMII's facility in Youngstown, Ohio. Photo credit: National Additive Manufacturing Innovation Institute. Additive manufacturing is making a big impression and the National Additive Manufacturing Innovation Institute (NAMII) is right

  12. The FY 2008 Budget Request - Twenty in Ten: Strengthening America's Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Security | Department of Energy 8 Budget Request - Twenty in Ten: Strengthening America's Energy Security The FY 2008 Budget Request - Twenty in Ten: Strengthening America's Energy Security DOE's Office of Energy Efficiency and Renewable Energy's Fiscal Year 2008 budget presentation. PDF icon FY08_budget_request.pdf More Documents & Publications FY 2011 Budget Roll-Out Presentation The FY 2005 Budget Request The FY 2006 Budget Request

  13. Ten Problems

    Office of Scientific and Technical Information (OSTI)

    ... not exceeding 20. Find the minimal polynomial with integer coefficients that it satisfies. ... Using trial and error, it is easy to determine that B 3 is the root of the minimal ...

  14. Office Buildings - End-Use Equipment

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information Administration, 2003 Commercial Buildings Energy Consumption Survey. More computers, dedicated servers, printers, and photocopiers were used in office buildings than in...

  15. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (g)",69090,"*",1,297,1,"*" ," Facility Lighting",51946,"--","--","--","--","--" ," Other ... (g)",6192,"*","*",32,"*","*" ," Facility Lighting",6082,"--","--","--","--","--" ," Other ...

  16. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    HVAC (g)",236,"Q",4,306,4,3 ," Facility Lighting",177,"--","--","--","--","--" ," Other ... (g)",21,"*","Q",33,"*","*" ," Facility Lighting",21,"--","--","--","--","--" ," Other ...

  17. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...)","--",265,4,4,378,5,2,"--" ," Facility Lighting","--",198,"--","--","--","--","--","--" ...--",21,"*","*",30,1,"*","--" ," Facility Lighting","--",18,"--","--","--","--","--","--" ...

  18. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...--",77768,1,1,367,1,"*","--" ," Facility Lighting","--",58013,"--","--","--","--","--","--...6036,"*","*",29,"*","*","--" ," Facility Lighting","--",5291,"--","--","--","--","--","--" ...

  19. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (g)",83480,1,1,367,1,"*" ," Facility Lighting",62902,"--","--","--","--","--" ," Other ... (g)",6217,"*","*",29,"*","*" ," Facility Lighting",5472,"--","--","--","--","--" ," Other ...

  20. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (f)",84678,1,1,392,1,"*",5.7 ," Facility Lighting",66630,"--","--","--","--","--",1 ," ...,5402,"*","*",26,"*","*",2.2 ," Facility Lighting",4785,"--","--","--","--","--",1 ," ...

  1. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...",64945,"*",1,297,1,"*","--" ," Facility Lighting","--",48453,"--","--","--","--","--","--...5949,"*","*",32,"*","*","--" ," Facility Lighting","--",5809,"--","--","--","--","--","--" ...

  2. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (g)",81980,1,1,406,1,"*",6.6 ," Facility Lighting",62019,"--","--","--","--","--",1.1 ," ...5037,"*","*",36,"*","*",11.3 ," Facility Lighting",4826,"--","--","--","--","--",1.3 ," ...

  3. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...79355,1,1,392,1,"*","--",5.7 ," Facility Lighting","--",61966,"--","--","--","--","--","--...,"*","*",26,"*","*","--",2.2 ," Facility Lighting","--",4492,"--","--","--","--","--","--"...

  4. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (g)",280,3,5,417,5,5,6.6 ," Facility Lighting",212,"--","--","--","--","--",1.1 ," ...g)",17,"*","*",37,1,"*",11.3 ," Facility Lighting",16,"--","--","--","--","--",1.3 ," ...

  5. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    (f)",289,4,6,403,4,4,5.7 ," Facility Lighting",227,"--","--","--","--","--",1 ," Other ... (f)",18,1,1,26," *"," *",2.2 ," Facility Lighting",16,"--","--","--","--","--",1 ," Other ...

  6. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,"--",222,"Q",4,306,4,3,"--" ," Facility Lighting","--",165,"--","--","--","--","--","--" ...",20,"*","Q",33,"*","*","--" ," Facility Lighting","--",20,"--","--","--","--","--","--" ...

  7. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...--",271,4,6,403,4,4,"--",5.7 ," Facility Lighting","--",211,"--","--","--","--","--","--",... *"," *","--",2.2 ," Facility Lighting","--",15,"--","--","--","--","--","--",1 ...

  8. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...--",262,3,5,417,5,5,"--",6.6 ," Facility Lighting","--",196,"--","--","--","--","--","--",...6,"*","*",37,1,"*","--",11.3 ," Facility Lighting","--",15,"--","--","--","--","--","--",1...

  9. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    HVAC (g)",285,4,4,378,5,2 ," Facility Lighting",215,"--","--","--","--","--" ," Other ... (g)",21,"*","*",30,1,"*" ," Facility Lighting",19,"--","--","--","--","--" ," Other ...

  10. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...76840,1,1,406,1,"*","--",6.6 ," Facility Lighting","--",57460,"--","--","--","--","--","--..."*","*",36,"*","*","--",11.3 ," Facility Lighting","--",4526,"--","--","--","--","--","--"...

  11. End-Use Taxes: Current EIA Practices

    U.S. Energy Information Administration (EIA) Indexed Site

    However, many States levy taxes on aviation fuel, as shown in Table B3 in Appendix B, based on information obtained from State TaxationRevenue Offices. The use of the national...

  12. Alabama Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    534,779 598,514 666,712 615,407 634,678 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 10,163 10,367 12,389 12,456 10,055 1983-2014 Plant Fuel 6,441 6,939 6,616 6,804 6,462 1983-2014 Pipeline & Distribution Use 22,124 23,091 25,349 22,166 18,688 1997-2014 Volumes Delivered to Consumers 496,051 558,116 622,359 573,981 599,473 640,707 1997-2015 Residential 42,215 36,582 27,580 35,059 38,971 31,794 1967-2015 Commercial 27,071 25,144 21,551 25,324 27,515 24,519 1967-2015 Industrial 144,938

  13. Alaska Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    333,312 335,458 343,110 332,298 327,428 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 211,918 208,531 214,335 219,190 219,451 1983-2014 Plant Fuel 37,316 35,339 37,397 36,638 36,707 1983-2014 Pipeline & Distribution Use 3,284 3,409 3,974 544 309 1997-2014 Volumes Delivered to Consumers 80,794 88,178 87,404 75,926 70,960 70,027 1997-2015 Residential 18,714 20,262 21,380 19,215 17,734 18,468 1967-2015 Commercial 15,920 19,399 19,898 18,694 17,925 19,281 1967-2015 Industrial 6,408 6,769

  14. Arizona Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    330,914 288,802 332,068 332,073 307,946 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 19 17 12 4 3 1983-2014 Pipeline & Distribution Use 15,447 13,158 12,372 12,619 13,484 1997-2014 Volumes Delivered to Consumers 315,448 275,627 319,685 319,450 294,459 336,195 1997-2015 Residential 37,812 38,592 34,974 39,692 32,397 34,215 1967-2015 Commercial 31,945 32,633 31,530 32,890 30,456 30,537 1967-2015 Industrial 19,245 21,724 22,657 22,153 22,489 19,991 1997-2015 Vehicle Fuel 2,015 1,712

  15. Arkansas Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    244,193 271,515 284,076 296,132 282,120 268,453 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 4,091 5,340 6,173 6,599 6,605 6,452 1983-2014 Plant Fuel 489 529 423 622 797 871...

  16. Louisiana Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    17,378 117,825 109,098 112,861 116,396 123,498 2001-2015 Residential 1,292 1,202 1,354 1,531 2,380 3,756 1989-2015 Commercial 1,804 1,902 2,214 2,286 2,789 2,970 1989-2015 Industrial 77,300 80,789 78,022 79,787 81,870 85,489 2001-2015 Vehicle Fuel 5 5 4 5 4 5 2010-2015 Electric Power 36,977 33,927 27,504 29,252 29,353 31,279

  17. Maine Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 2001-2015 Residential 46 45 46 136 232 298 1989-2015 Commercial 409 425 415 569 779 961 1989-2015 Industrial NA NA NA NA NA NA 2001-2015 Vehicle Fuel 0 0 0 0 0 0 2010-2015 Electric Power 1,132 1,839 1,538 2,483 1,813 1,42

  18. Maryland Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    12,233 10,397 9,762 12,704 16,455 18,593 2001-2015 Residential 1,624 1,557 1,518 3,820 6,137 8,243 1989-2015 Commercial 2,900 2,967 2,932 4,663 5,844 6,571 1989-2015 Industrial 1,118 906 1,131 1,242 1,266 1,302 2001-2015 Vehicle Fuel 20 20 19 20 19 20 2010-2015 Electric Power 6,571 4,947 4,162 2,959 3,188 2,45

  19. Massachusetts Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    31,404 31,673 25,692 29,699 31,148 36,395 2001-2015 Residential 2,619 2,442 2,465 5,784 9,387 12,553 1989-2015 Commercial 3,912 3,873 4,066 7,399 9,210 10,044 1989-2015 Industrial 2,219 2,286 2,507 3,055 4,108 4,110 2001-2015 Vehicle Fuel 70 70 67 70 67 70 2010-2015 Electric Power 22,583 23,001 16,586 13,391 8,375 9,618

  20. Michigan Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    39,804 37,730 38,018 55,280 71,432 87,181 2001-2015 Residential 5,722 6,026 6,164 16,846 29,138 36,400 1989-2015 Commercial 5,155 5,500 5,306 9,388 13,375 18,235 1989-2015 Industrial 11,349 11,437 11,698 13,570 14,366 15,847 2001-2015 Vehicle Fuel 34 34 33 34 33 34 2010-2015 Electric Power 17,544 14,732 14,817 15,441 14,519 16,664

  1. Minnesota Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    22,461 22,087 22,872 27,097 35,845 NA 2001-2015 Residential 2,322 2,587 2,362 5,207 10,741 18,067 1989-2015 Commercial 2,540 2,910 2,786 5,206 8,381 12,550 1989-2015 Industrial 10,321 10,272 11,305 13,280 13,605 NA 2001-2015 Vehicle Fuel 4 4 4 4 4 4 2010-2015 Electric Power 7,274 6,314 6,416 3,400 3,113 5,725

  2. Mississippi Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    45,832 43,363 NA 37,302 NA 40,203 2001-2015 Residential 466 428 512 796 NA 2,377 1989-2015 Commercial 785 889 NA 1,277 NA 1,725 1989-2015 Industrial 9,730 9,838 9,911 11,304 10,334 10,524 2001-2015 Vehicle Fuel 2 2 2 2 2 2 2010-2015 Electric Power 34,848 32,206 26,810 23,923 25,741 25,574

  3. Montana Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    ,334 NA 3,662 4,787 7,811 9,316 2001-2015 Residential 381 377 494 1,042 2,634 3,260 1989-2015 Commercial 597 584 689 1,158 2,508 3,107 1989-2015 Industrial 1,438 NA 1,709 1,873 2,004 2,173 2001-2015 Vehicle Fuel 0 0 0 0 0 0 2010-2015 Electric Power 918 803 770 714 666 777

  4. Nebraska Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    10,715 9,420 8,366 9,672 13,194 16,498 2001-2015 Residential 790 684 667 1,053 2,858 5,497 1989-2015 Commercial 1,223 1,010 932 1,558 2,619 3,974 1989-2015 Industrial 7,440 6,832 6,257 7,056 7,553 6,885 2001-2015 Vehicle Fuel 5 5 5 5 5 5 2010-2015 Electric Power 1,257 890 505 W 160 137

  5. Nevada Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    24,653 NA NA 22,739 NA 30,673 2001-2015 Residential 1,108 1,176 1,215 1,440 4,172 7,264 1989-2015 Commercial 1,598 1,709 1,662 1,970 3,091 4,015 1989-2015 Industrial 1,165 NA NA 1,182 NA 1,200 2001-2015 Vehicle Fuel 60 60 58 60 58 60 2010-2015 Electric Power 20,722 22,904 20,109 18,088 15,282 18,13

  6. Colorado Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    8,936 19,060 19,128 22,856 40,791 49,929 2001-2015 Residential 2,725 2,476 3,036 5,976 16,679 23,229 1989-2015 Commercial 1,568 1,456 1,694 2,859 6,789 9,397 1989-2015 Industrial 4,997 4,987 4,790 5,823 7,640 8,931 2001-2015 Vehicle Fuel 27 27 26 27 26 27 2010-2015 Electric Power 9,620 10,114 9,582 8,172 9,658 8,346

  7. Florida Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    124,560 126,037 118,468 114,127 106,003 105,637 2001-2015 Residential 833 634 632 1,081 1,216 1,440 1989-2015 Commercial 4,734 4,651 4,441 5,003 5,214 5,660 1989-2015 Industrial 7,672 7,362 7,385 7,997 7,774 8,933 2001-2015 Vehicle Fuel 18 18 17 18 17 18 2010-2015 Electric Power 111,305 113,372 105,993 100,028 91,782 89,5

  8. Georgia Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    58,820 54,742 49,172 52,445 55,858 56,505 2001-2015 Residential 3,662 3,731 3,794 5,873 10,248 11,943 1989-2015 Commercial 2,164 2,274 2,417 3,159 4,695 5,185 1989-2015 Industrial 12,955 12,710 12,244 13,714 13,291 13,391 2001-2015 Vehicle Fuel 99 99 96 99 96 99 2010-2015 Electric Power 39,940 35,927 30,621 29,598 27,527 25,8

  9. Hawaii Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    243 240 233 240 228 251 2001-2015 Residential 45 43 41 44 44 47 1989-2015 Commercial 159 156 153 152 148 167 1989-2015 Industrial 38 41 37 43 36 36 2001-2015 Vehicle Fuel 1 1 1 1 1 1 2010-2015 Electric Power -- -- -- -- -- --

  10. Idaho Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    6,426 NA 6,838 NA NA 13,715 2001-2015 Residential 464 359 638 995 3,624 4,740 1989-2015 Commercial 625 583 694 1,066 2,068 2,719 1989-2015 Industrial 2,094 NA 2,564 NA NA 3,403 2001-2015 Vehicle Fuel 13 13 13 13 13 13 2010-2015 Electric Power 3,230 3,645 2,930 2,500 2,240 2,840

  11. Illinois Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    5,724 42,537 43,969 57,973 NA 107,844 2001-2015 Residential 7,939 7,946 8,021 18,056 35,960 50,744 1989-2015 Commercial 7,162 7,573 7,821 12,312 NA 24,179 1989-2015 Industrial 19,474 19,033 19,312 21,016 24,322 25,140 2001-2015 Vehicle Fuel 29 29 28 29 28 29 2010-2015 Electric Power 11,120 7,957 8,788 6,560 7,008 7,753

  12. Indiana Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    3,339 43,297 39,873 48,080 59,575 72,031 2001-2015 Residential 2,234 2,242 2,432 5,799 11,746 16,881 1989-2015 Commercial 2,324 2,749 2,784 4,720 6,409 8,381 1989-2015 Industrial 28,293 28,167 26,713 28,848 29,980 33,462 2001-2015 Vehicle Fuel 2 2 2 2 2 2 2010-2015 Electric Power 10,486 10,138 7,942 8,711 11,439 13,305

  13. Iowa Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    19,248 18,504 17,814 21,170 NA 32,191 2001-2015 Residential 1,171 1,036 1,260 2,268 5,686 8,921 1989-2015 Commercial 1,567 1,468 1,716 3,156 NA 6,246 1989-2015 Industrial 13,445 13,635 13,086 14,826 14,751 15,399 2001-2015 Vehicle Fuel 2 2 1 2 1 2 2010-2015 Electric Power 3,063 2,364 1,750 918 530 1,623

  14. Kansas Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    7,191 NA 11,628 12,195 NA 24,751 2001-2015 Residential 1,147 1,061 1,075 1,701 NA 8,698 1989-2015 Commercial 1,492 NA 1,164 1,755 2,731 4,161 1989-2015 Industrial 11,127 9,693 7,725 8,738 8,919 11,086 2001-2015 Vehicle Fuel 1 1 1 1 1 1 2010-2015 Electric Power 3,425 2,353 1,662 W W 804

  15. Kentucky Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    6,787 15,592 15,333 18,190 21,975 22,413 2001-2015 Residential 858 849 845 1,565 3,977 5,585 1989-2015 Commercial 1,139 1,152 1,154 1,709 2,925 3,570 1989-2015 Industrial 8,478 8,791 8,464 8,840 9,759 9,943 2001-2015 Vehicle Fuel 2 2 2 2 2 2 2010-2015 Electric Power 6,310 4,798 4,867 6,074 5,312 3,312

  16. Massachusetts Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    432,297 449,194 416,350 421,001 418,526 1997-2014 Pipeline & Distribution Use 3,827 4,657 3,712 2,759 6,258 1997-2014 Volumes Delivered to Consumers 428,471 444,537 412,637 418,241 412,268 434,781 1997-2015 Residential 125,602 129,217 115,310 116,867 126,902 125,463 1967-2015 Commercial 72,053 81,068 73,040 99,781 105,801 105,809 1967-2015 Industrial 44,239 47,590 43,928 46,677 45,581 46,186 1997-2015 Vehicle Fuel 735 760 761 699 820 831 1988-2015 Electric Power 185,842 185,903 179,598

  17. Michigan Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    46,748 776,466 790,642 814,635 850,974 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 6,626 5,857 7,428 7,248 5,948 1983-2014 Plant Fuel 1,684 1,303 1,174 1,071 1,152 1983-2014 Pipeline & Distribution Use 24,904 23,537 20,496 18,713 19,347 1997-2014 Volumes Delivered to Consumers 713,533 745,769 761,544 787,603 824,527 NA 1997-2015 Residential 304,330 318,004 276,778 334,211 354,713 319,680 1967-2015 Commercial 152,350 163,567 144,609 171,519 186,413 172,156 1967-2015 Industrial 143,351

  18. Minnesota Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    422,968 420,770 422,263 467,874 473,310 1997-2014 Pipeline & Distribution Use 15,465 15,223 12,842 11,626 12,657 1997-2014 Volumes Delivered to Consumers 407,503 405,547 409,421 456,247 460,653 NA 1997-2015 Residential 122,993 125,160 109,103 139,897 146,647 119,119 1967-2015 Commercial 89,963 94,360 83,174 105,937 110,905 93,865 1967-2015 Industrial 158,457 157,776 159,947 160,732 173,556 NA 1997-2015 Vehicle Fuel 14 7 7 41 49 32 1988-2015 Electric Power 36,076 28,244 57,190 49,640 29,496

  19. Mississippi Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    438,733 433,538 494,016 420,594 412,979 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 10,388 2,107 3,667 2,663 1,487 1983-2014 Plant Fuel 1,155 1,042 1,111 1,103 1,310 1983-2014 Pipeline & Distribution Use 28,117 28,828 48,497 23,667 19,787 1997-2014 Volumes Delivered to Consumers 399,073 401,561 440,741 393,161 390,396 NA 1997-2015 Residential 27,152 24,303 19,572 25,185 28,358 NA 1967-2015 Commercial 21,179 20,247 17,834 19,483 22,195 NA 1967-2015 Industrial 115,489 112,959 111,995

  20. Missouri Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    280,181 272,583 255,875 276,967 296,605 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 0 0 0 0 * 1984-2014 Pipeline & Distribution Use 5,820 7,049 4,973 5,626 6,184 1997-2014 Volumes Delivered to Consumers 274,361 265,534 250,902 271,341 290,421 271,116 1997-2015 Residential 107,389 102,545 83,106 106,446 115,512 102,814 1967-2015 Commercial 61,194 62,304 54,736 64,522 72,919 65,595 1967-2015 Industrial 65,554 63,053 62,516 63,212 67,115 65,349 1997-2015 Vehicle Fuel 7 6 6 42 49 31

  1. Montana Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    72,025 78,217 73,399 79,670 78,010 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 3,265 2,613 3,845 3,845 1,793 1983-2014 Plant Fuel 800 604 612 645 657 1983-2014 Pipeline & Distribution Use 7,442 6,888 6,979 6,769 4,126 1997-2014 Volumes Delivered to Consumers 60,517 68,113 61,963 68,410 71,435 NA 1997-2015 Residential 20,875 21,710 19,069 20,813 21,379 18,772 1967-2015 Commercial 20,459 22,336 19,205 20,971 21,549 NA 1967-2015 Industrial 18,478 19,386 18,319 19,352 22,084 NA 1997-2015

  2. Nebraska Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    168,944 171,777 158,757 173,376 172,749 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 331 287 194 194 62 1983-2014 Plant Fuel 0 0 0 0 0 1983-2014 Pipeline & Distribution Use 7,329 9,270 7,602 6,949 7,066 1997-2014 Volumes Delivered to Consumers 161,284 162,219 150,961 166,233 165,620 149,107 1997-2015 Residential 40,132 39,717 31,286 41,229 42,147 33,830 1967-2015 Commercial 31,993 32,115 26,503 32,214 32,407 28,474 1967-2015 Industrial 85,180 86,128 85,439 88,140 86,878 82,326

  3. Nevada Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    59,251 249,971 273,502 272,965 252,097 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 4 3 4 3 3 1988-2014 Pipeline & Distribution Use 2,992 4,161 6,256 4,954 4,912 1997-2014 Volumes Delivered to Consumers 256,256 245,807 267,242 268,008 247,182 NA 1997-2015 Residential 39,379 40,595 37,071 41,664 35,135 36,592 1967-2015 Commercial 29,475 30,763 28,991 31,211 29,105 29,614 1967-2015 Industrial 10,728 11,080 11,299 13,209 14,324 NA 1997-2015 Vehicle Fuel 837 591 589 597 701 682 1988-2015

  4. Ohio Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    784,293 823,548 842,959 912,403 1,000,231 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 773 781 836 1,079 4,247 1983-2014 Plant Fuel 0 0 127 202 468 1983-2014 Pipeline & Distribution Use 15,816 14,258 9,559 10,035 12,661 1997-2014 Volumes Delivered to Consumers 767,704 808,509 832,437 901,087 982,855 949,865 1997-2015 Residential 283,703 286,132 250,871 297,361 320,568 289,683 1967-2015 Commercial 156,407 161,408 145,482 168,233 183,105 169,515 1967-2015 Industrial 269,287 268,034

  5. Oklahoma Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    675,727 655,919 691,661 658,569 640,607 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 39,489 40,819 43,727 45,581 50,621 1983-2014 Plant Fuel 23,238 24,938 27,809 32,119 36,231 1983-2014 Pipeline & Distribution Use 30,611 30,948 32,838 41,813 45,391 1997-2014 Volumes Delivered to Consumers 582,389 559,215 587,287 539,056 508,363 544,200 1997-2015 Residential 65,429 61,387 49,052 66,108 69,050 59,675 1967-2015 Commercial 41,822 40,393 36,106 44,238 46,986 42,383 1967-2015 Industrial

  6. Oregon Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    239,325 199,419 215,830 240,418 220,076 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 31 39 44 44 25 1983-2014 Pipeline & Distribution Use 6,394 5,044 4,554 4,098 3,686 1997-2014 Volumes Delivered to Consumers 232,900 194,336 211,232 236,276 216,365 233,523 1997-2015 Residential 40,821 46,604 43,333 46,254 41,185 37,930 1967-2015 Commercial 27,246 30,359 28,805 30,566 28,377 26,502 1967-2015 Industrial 55,822 56,977 57,506 57,372 56,522 54,931 1997-2015 Vehicle Fuel 183 144 144 154 181

  7. Pennsylvania Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    879,365 965,742 1,037,979 1,121,696 1,203,418 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 19,805 46,784 79,783 115,630 112,847 1983-2014 Plant Fuel 881 963 2,529 9,200 11,602 1983-2014 Pipeline & Distribution Use 47,470 51,220 37,176 37,825 36,323 1997-2014 Volumes Delivered to Consumers 811,209 866,775 918,490 959,041 1,042,647 1,078,193 1997-2015 Residential 223,642 219,446 197,313 231,861 254,816 242,098 1967-2015 Commercial 141,699 141,173 126,936 149,114 159,636 156,887

  8. Tennessee Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    257,443 264,231 277,127 279,441 303,996 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 214 231 335 335 142 1983-2014 Plant Fuel 148 145 150 142 128 1983-2014 Pipeline & Distribution Use 10,081 11,655 9,880 6,660 5,913 1997-2014 Volumes Delivered to Consumers 247,000 252,200 266,762 272,304 297,814 306,194 1997-2015 Residential 74,316 67,190 53,810 71,241 78,385 67,951 1967-2015 Commercial 56,194 52,156 44,928 53,888 57,427 53,995 1967-2015 Industrial 94,320 106,522 105,046 110,475

  9. Texas Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    3,574,398 3,693,905 3,850,331 4,021,851 4,088,445 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 157,751 147,268 163,325 198,208 213,481 1983-2014 Plant Fuel 151,818 155,358 171,359 178,682 184,723 1983-2014 Pipeline & Distribution Use 79,817 85,549 138,429 294,316 274,451 1997-2014 Volumes Delivered to Consumers 3,185,011 3,305,730 3,377,217 3,350,645 3,415,789 3,589,916 1997-2015 Residential 226,445 199,958 169,980 207,148 234,520 199,288 1967-2015 Commercial 188,796 184,475 161,273

  10. Utah Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    219,213 222,227 223,039 247,285 242,457 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 22,022 23,209 28,165 28,165 25,336 1983-2014 Plant Fuel 1,616 3,063 3,031 5,996 4,782 1983-2014 Pipeline & Distribution Use 10,347 11,374 12,902 13,441 14,061 1997-2014 Volumes Delivered to Consumers 185,228 184,581 178,941 199,684 198,278 187,452 1997-2015 Residential 66,087 70,076 59,801 70,491 62,458 58,177 1967-2015 Commercial 38,461 40,444 35,363 41,398 38,156 35,552 1967-2015 Industrial 32,079

  11. Vermont Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    8,443 8,611 8,191 9,602 10,678 1997-2014 Pipeline & Distribution Use 16 53 114 89 124 1997-2014 Volumes Delivered to Consumers 8,428 8,558 8,077 9,512 10,554 NA 1997-2015 Residential 3,078 3,214 3,012 3,415 3,826 3,754 1980-2015 Commercial 2,384 2,479 2,314 4,748 4,830 NA 1980-2015 Industrial 2,909 2,812 2,711 1,303 1,858 NA 1997-2015 Vehicle Fuel 1 3 3 3 3 3 1997-2015 Electric Power 55 49 38 44 36 19

  12. Virginia Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    375,421 373,444 410,106 418,506 419,615 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 6,121 7,206 8,408 8,408 7,252 1983-2014 Pipeline & Distribution Use 10,091 13,957 9,443 8,475 7,424 1997-2014 Volumes Delivered to Consumers 359,208 352,281 392,255 401,623 404,939 NA 1997-2015 Residential 88,157 79,301 70,438 85,702 92,817 83,512 1967-2015 Commercial 68,911 64,282 60,217 68,126 72,164 67,597 1967-2015 Industrial 62,243 66,147 71,486 75,998 81,040 NA 1997-2015 Vehicle Fuel 142 267 266

  13. Washington Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    285,726 264,589 264,540 318,292 307,021 1997-2014 Lease and Plant Fuel 1967-1992 Pipeline & Distribution Use 7,587 6,644 9,184 10,144 8,933 1997-2014 Volumes Delivered to Consumers 278,139 257,945 255,356 308,148 298,088 NA 1997-2015 Residential 75,554 85,393 79,892 83,365 78,750 71,818 1967-2015 Commercial 51,335 56,487 53,420 55,805 54,457 49,906 1967-2015 Industrial 71,280 76,289 78,196 80,889 79,439 NA 1997-2015 Vehicle Fuel 436 510 512 418 491 524 1988-2015 Electric Power 79,535 39,265

  14. Alabama Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    56,930 54,897 50,117 49,292 50,501 54,716 2001-2015 Residential 702 694 671 934 2,031 3,411 1989-2015 Commercial 1,088 1,131 1,174 1,513 2,317 2,366 1989-2015 Industrial 15,749 15,311 14,897 15,292 15,100 15,670 2001-2015 Vehicle Fuel 19 19 18 19 18 19 2010-2015 Electric Power 39,373 37,742 33,356 31,534 31,034 33,249

  15. Alaska Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    3,931 3,785 4,473 5,317 6,929 7,958 2001-2015 Residential 493 527 1,033 1,422 2,306 2,670 1989-2015 Commercial 713 766 1,253 1,451 2,103 2,558 1989-2015 Industrial 359 375 323 348 354 393 2001-2015 Vehicle Fuel 1 1 1 1 1 1 2010-2015 Electric Power 2,365 2,116 1,863 2,096 2,164 2,336

  16. Arizona Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    38,296 42,499 35,461 29,557 25,804 30,415 2001-2015 Residential 1,056 971 1,072 1,334 3,107 6,609 1989-2015 Commercial 1,758 1,654 1,714 1,918 3,014 4,130 1989-2015 Industrial 1,468 1,457 1,417 1,572 1,844 1,988 2001-2015 Vehicle Fuel 173 173 167 173 167 173 2010-2015 Electric Power 33,842 38,244 31,091 24,561 17,672 17,515

  17. Arkansas Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    22,018 21,854 17,958 14,702 18,552 22,561 2001-2015 Residential 557 514 546 731 2,155 3,933 1989-2015 Commercial 2,308 2,444 2,571 3,048 3,863 4,724 1989-2015 Industrial 6,345 6,370 6,286 6,790 7,098 7,148 2001-2015 Vehicle Fuel 3 3 3 3 3 3 2010-2015 Electric Power 12,805 12,523 8,552 4,130 5,434 6,754

  18. California Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    92,918 199,015 189,292 186,757 195,837 235,282 2001-2015 Residential 19,107 17,560 17,188 19,412 44,802 73,730 1989-2015 Commercial 15,962 16,537 15,250 16,321 26,389 29,820 1989-2015 Industrial 70,121 71,776 66,196 64,699 63,799 67,213 2001-2015 Vehicle Fuel 1,408 1,408 1,363 1,408 1,363 1,408 2010-2015 Electric Power 86,319 91,733 89,295 84,917 59,484 63,111

  19. Tennessee Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    19,267 17,907 18,246 18,807 24,268 29,015 2001-2015 Residential 1,032 1,028 1,163 1,982 4,847 7,765 1989-2015 Commercial 2,060 2,125 2,259 3,080 4,707 5,273 1989-2015 Industrial 8,573 8,743 8,683 9,162 9,248 9,813 2001-2015 Vehicle Fuel 9 9 8 9 8 9 2010-2015 Electric Power 7,594 6,002 6,133 4,574 5,458 6,1

  20. Texas Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    329,042 332,621 291,178 276,726 267,183 307,656 2001-2015 Residential 6,189 4,587 5,116 5,934 9,793 24,772 1989-2015 Commercial 10,630 9,295 9,558 10,313 12,553 17,584 1989-2015 Industrial 130,522 132,785 125,076 128,958 134,340 141,897 2001-2015 Vehicle Fuel 300 300 290 300 290 300 2010-2015 Electric Power 181,401 185,654 151,139 131,222 110,207 123,103

  1. Ohio Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    50,025 48,583 46,019 55,863 74,007 88,545 2001-2015 Residential 5,084 4,792 4,741 12,359 22,384 31,154 1989-2015 Commercial 4,753 4,790 4,535 9,220 12,881 16,455 1989-2015 Industrial 19,742 19,354 18,786 20,416 22,796 23,708 2001-2015 Vehicle Fuel 30 30 29 30 29 30 2010-2015 Electric Power 20,417 19,618 17,928 13,838 15,918 17,199

  2. Oklahoma Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    45,577 43,618 38,010 34,185 42,019 50,354 2001-2015 Residential 1,271 1,095 1,169 1,308 2,614 6,999 1989-2015 Commercial 1,553 1,502 1,509 1,638 2,339 4,093 1989-2015 Industrial 12,322 13,036 15,155 14,917 16,551 16,204 2001-2015 Vehicle Fuel 34 34 33 34 33 34 2010-2015 Electric Power 30,396 27,950 20,143 16,289 20,482 23,024

  3. Oregon Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    17,872 17,582 18,287 18,493 25,529 28,283 2001-2015 Residential 860 841 1,217 1,804 5,854 7,090 1989-2015 Commercial 968 948 1,217 1,552 3,444 4,307 1989-2015 Industrial 4,016 4,163 4,085 4,375 4,834 5,261 2001-2015 Vehicle Fuel 15 15 15 15 15 15 2010-2015 Electric Power 12,013 11,616 11,754 10,746 11,382 11,609

  4. Pennsylvania Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    74,666 73,764 67,203 78,980 87,069 96,515 2001-2015 Residential 4,230 4,143 4,892 11,789 18,582 24,976 1989-2015 Commercial 4,493 4,751 5,319 10,093 13,175 15,188 1989-2015 Industrial 17,977 17,360 17,224 18,923 19,211 20,699 2001-2015 Vehicle Fuel 31 31 30 31 30 31 2010-2015 Electric Power 47,934 47,480 39,738 38,145 36,071 35,62

  5. Wyoming Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    4,559 4,334 4,513 4,917 7,317 9,112 2001-2015 Residential 250 205 313 415 1,468 2,262 1989-2015 Commercial 401 283 478 537 1,585 2,273 1989-2015 Industrial 3,906 3,844 3,720 3,963 4,262 4,575 2001-2015 Vehicle Fuel 2 2 2 2 2 2 2010-2015 Electric Power W W W W W W

  6. California Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    2,273,128 2,153,186 2,403,494 2,415,571 2,344,977 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 64,931 44,379 51,154 49,846 54,288 1983-2014 Plant Fuel 2,370 2,253 2,417 2,834 2,361 1983-2014 Pipeline & Distribution Use 9,741 10,276 12,906 10,471 22,897 1997-2014 Volumes Delivered to Consumers 2,196,086 2,096,279 2,337,017 2,352,421 2,265,431 2,257,216 1997-2015 Residential 494,890 512,565 477,931 481,773 397,489 404,869 1967-2015 Commercial 247,997 246,141 253,148 254,845 237,675

  7. Colorado Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    501,350 466,680 443,750 467,798 480,747 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 66,083 78,800 76,462 71,105 74,402 1983-2014 Plant Fuel 25,090 28,265 29,383 25,806 30,873 1983-2014 Pipeline & Distribution Use 14,095 13,952 10,797 9,107 8,451 1997-2014 Volumes Delivered to Consumers 396,083 345,663 327,108 361,779 367,021 NA 1997-2015 Residential 131,224 130,116 115,695 134,936 132,106 125,433 1967-2015 Commercial 57,658 55,843 51,795 58,787 58,008 NA 1967-2015 Industrial 114,295

  8. Connecticut Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    199,426 230,036 229,156 234,475 235,205 1997-2014 Pipeline & Distribution Use 6,739 6,302 4,747 4,381 4,698 1997-2014 Volumes Delivered to Consumers 192,687 223,734 224,409 230,094 230,507 250,527 1997-2015 Residential 42,729 44,719 41,050 46,802 51,193 51,857 1967-2015 Commercial 40,656 44,832 42,346 46,418 51,221 53,378 1967-2015 Industrial 24,117 26,258 26,932 29,965 28,371 25,943 1997-2015 Vehicle Fuel 41 27 27 46 54 44 1988-2015 Electric Power 85,144 107,897 114,054 106,863 99,668

  9. Delaware Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    54,825 79,715 101,676 95,978 100,776 1997-2014 Lease and Plant Fuel 1967-1992 Pipeline & Distribution Use 140 464 1,045 970 1,040 1997-2014 Volumes Delivered to Consumers 54,685 79,251 100,630 95,008 99,736 99,543 1997-2015 Residential 10,126 10,030 8,564 10,197 11,316 10,501 1967-2015 Commercial 12,193 10,478 10,034 11,170 11,882 11,189 1967-2015 Industrial 7,983 19,760 28,737 32,154 31,004 33,127 1997-2015 Vehicle Fuel 1 1 1 1 1 1 1988-2015 Electric Power 24,383 38,984 53,295 41,487 45,534

  10. Florida Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    1,158,452 1,217,689 1,328,463 1,225,676 1,231,957 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 4,512 4,896 6,080 5,609 6,551 1983-2014 Plant Fuel 0 0 0 0 272 1983-2014 Pipeline & Distribution Use 22,798 13,546 16,359 12,494 3,468 1997-2014 Volumes Delivered to Consumers 1,131,142 1,199,247 1,306,024 1,207,573 1,221,666 NA 1997-2015 Residential 18,744 16,400 14,366 15,321 16,652 14,777 1967-2015 Commercial 54,065 53,532 54,659 59,971 62,646 NA 1967-2015 Industrial 76,522 85,444 98,144

  11. Georgia Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    530,030 522,897 615,771 625,283 652,230 1997-2014 Pipeline & Distribution Use 8,473 10,432 10,509 7,973 6,977 1997-2014 Volumes Delivered to Consumers 521,557 512,466 605,262 617,310 645,253 683,796 1997-2015 Residential 138,671 113,335 97,664 121,629 134,438 117,523 1967-2015 Commercial 60,153 56,602 51,918 57,195 59,039 53,581 1967-2015 Industrial 146,737 144,940 146,481 157,982 160,821 157,407 1997-2015 Vehicle Fuel 915 1,097 1,104 998 1,171 1,194 1988-2015 Electric Power 175,082 196,492

  12. Hawaii Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    2,627 2,619 2,689 2,855 2,928 1997-2014 Pipeline & Distribution Use 2 2 3 1 1 2004-2014 Volumes Delivered to Consumers 2,625 2,616 2,687 2,853 2,927 2,929 1997-2015 Residential 509 486 481 582 583 572 1980-2015 Commercial 1,777 1,768 1,850 1,873 1,931 1,908 1980-2015 Industrial 339 362 355 388 401 442 1997-2015 Vehicle Fuel 0 0 0 10 12 7 1997-2015 Electric Power -- -- -- -- -- --

  13. Idaho Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    83,326 82,544 89,004 104,783 91,514 1997-2014 Lease and Plant Fuel 1967-1992 Pipeline & Distribution Use 7,679 5,201 5,730 5,940 3,867 1997-2014 Volumes Delivered to Consumers 75,647 77,343 83,274 98,843 87,647 NA 1997-2015 Residential 23,975 26,666 23,924 27,370 24,616 22,963 1967-2015 Commercial 15,033 16,855 15,838 18,485 16,963 16,171 1967-2015 Industrial 24,195 25,392 29,781 27,996 28,046 NA 1997-2015 Vehicle Fuel 69 131 132 133 156 152 1988-2015 Electric Power 12,375 8,299 13,599

  14. Illinois Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    966,678 986,867 940,367 1,056,826 1,092,999 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 50 101 122 122 70 1983-2014 Plant Fuel 4,559 4,917 4,896 4,917 288 1983-2014 Pipeline & Distribution Use 19,864 21,831 24,738 26,936 30,263 1997-2014 Volumes Delivered to Consumers 942,205 960,018 910,611 1,024,851 1,062,377 NA 1997-2015 Residential 416,570 418,143 360,891 452,602 479,465 399,446 1967-2015 Commercial 198,036 215,605 188,099 230,820 246,273 NA 1967-2015 Industrial 281,406 278,498

  15. Indiana Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    573,866 630,669 649,921 672,751 710,838 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 283 433 506 506 177 1983-2014 Pipeline & Distribution Use 8,679 10,259 7,206 7,428 7,025 1997-2014 Volumes Delivered to Consumers 564,904 619,977 642,209 664,817 703,637 712,946 1997-2015 Residential 138,415 132,094 115,522 144,496 156,639 133,876 1967-2015 Commercial 75,883 75,995 66,663 82,596 90,915 78,491 1967-2015 Industrial 289,314 326,573 344,678 356,690 375,647 373,191 1997-2015 Vehicle Fuel

  16. Iowa Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    311,075 306,909 295,183 326,140 330,433 1997-2014 Pipeline & Distribution Use 11,042 10,811 10,145 11,398 12,650 1997-2014 Volumes Delivered to Consumers 300,033 296,098 285,038 314,742 317,784 NA 1997-2015 Residential 68,376 67,097 55,855 72,519 76,574 62,032 1967-2015 Commercial 51,674 51,875 43,767 56,592 57,438 NA 1967-2015 Industrial 167,423 167,233 168,907 173,545 172,718 174,199 1997-2015 Vehicle Fuel 0 0 0 15 18 11 1988-2015 Electric Power 12,560 9,893 16,509 13,702 11,035 17,518

  17. Kansas Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    75,184 279,724 262,316 283,177 285,969 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 13,461 12,781 17,017 17,110 14,851 1983-2014 Plant Fuel 2,102 2,246 2,268 2,189 1,983 1983-2014 Pipeline & Distribution Use 24,305 23,225 19,842 22,586 22,588 1997-2014 Volumes Delivered to Consumers 235,316 241,473 223,188 241,292 246,547 NA 1997-2015 Residential 67,117 65,491 50,489 68,036 71,126 NA 1967-2015 Commercial 31,799 32,117 25,452 33,198 36,512 NA 1967-2015 Industrial 108,484 113,356

  18. Kentucky Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    32,099 223,034 225,924 229,983 254,244 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 5,626 5,925 6,095 6,095 4,388 1983-2014 Plant Fuel 772 278 641 280 278 1983-2014 Pipeline & Distribution Use 13,708 12,451 8,604 7,157 8,426 1997-2014 Volumes Delivered to Consumers 211,993 204,380 210,584 216,451 241,151 249,968 1997-2015 Residential 54,391 50,696 43,065 54,208 57,589 47,712 1967-2015 Commercial 36,818 34,592 30,771 37,422 40,033 34,308 1967-2015 Industrial 101,497 103,517 105,554

  19. Louisiana Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    1,354,641 1,420,264 1,482,343 1,396,261 1,460,031 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 59,336 80,983 54,463 57,549 58,034 1983-2014 Plant Fuel 40,814 42,633 42,123 34,179 30,527 1983-2014 Pipeline & Distribution Use 46,892 51,897 49,235 36,737 45,762 1997-2014 Volumes Delivered to Consumers 1,207,599 1,244,752 1,336,521 1,267,795 1,325,708 1,361,733 1997-2015 Residential 45,516 39,412 31,834 38,820 44,392 36,580 1967-2015 Commercial 27,009 25,925 26,294 28,875 31,209 30,656

  20. Maine Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    7,575 71,690 68,266 64,091 60,661 1997-2014 Pipeline & Distribution Use 1,753 2,399 762 844 1,300 1997-2014 Volumes Delivered to Consumers 75,821 69,291 67,504 63,247 59,362 NA 1997-2015 Residential 1,234 1,409 1,487 1,889 2,357 2,605 1967-2015 Commercial 5,830 6,593 7,313 8,146 9,030 9,795 1967-2015 Industrial 28,365 27,734 30,248 32,308 24,121 NA 1997-2015 Vehicle Fuel 1 1 1 * 1 1 1997-2015 Electric Power 40,392 33,555 28,456 20,904 23,853 17,447

  1. Maryland Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    212,020 193,986 208,946 197,356 207,527 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 0 0 0 0 1 1983-2014 Pipeline & Distribution Use 6,332 6,065 7,397 4,125 6,327 1997-2014 Volumes Delivered to Consumers 205,688 187,921 201,550 193,232 201,199 205,407 1997-2015 Residential 83,830 77,838 70,346 83,341 90,542 81,592 1967-2015 Commercial 67,555 67,505 64,146 71,145 74,843 69,307 1967-2015 Industrial 23,371 21,220 17,626 13,989 14,734 14,635 1997-2015 Vehicle Fuel 203 222 221 201 236 240

  2. Utah Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    11,359 11,750 10,440 10,855 20,739 27,782 2001-2015 Residential 1,623 1,545 1,320 2,002 8,290 12,265 1989-2015 Commercial 1,168 1,157 1,170 1,474 4,732 6,881 1989-2015 Industrial 2,777 2,788 2,757 2,969 3,120 3,612 2001-2015 Vehicle Fuel 22 22 22 22 22 22 2010-2015 Electric Power 5,768 6,238 5,171 4,387 4,575 5,002

  3. Vermont Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    NA 544 566 NA 1,024 1,168 2001-2015 Residential 87 73 79 164 288 393 1989-2015 Commercial NA 318 336 522 557 586 1989-2015 Industrial NA 153 150 NA 178 188 2001-2015 Vehicle Fuel 0 0 0 0 0 0 2010-2015 Electric Power 0 0 1 0 1

  4. Virginia Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    40,769 37,648 33,817 27,516 36,489 44,149 2001-2015 Residential 1,491 1,442 1,913 3,395 6,309 7,966 1989-2015 Commercial 2,656 2,587 3,658 4,647 6,019 6,065 1989-2015 Industrial 7,530 7,435 6,116 7,701 7,582 7,259 2001-2015 Vehicle Fuel 21 21 20 21 20 21 2010-2015 Electric Power 29,071 26,163 22,109 11,752 16,558 22,839

  5. Connecticut Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    27,870 20,353 15,426 14,745 16,786 17,440 2001-2015 Residential 8,998 4,902 2,172 1,368 1,120 997 1989-2015 Commercial 7,504 4,556 2,676 2,295 2,379 2,512 1989-2015 Industrial...

  6. ,"Texas Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcustxm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  7. ,"Maine Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusmem.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  8. ,"Indiana Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusinm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  9. ,"Ohio Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusohm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  10. ,"Michigan Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusmim.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  11. ,"Massachusetts Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusmam.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  12. ,"Vermont Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusvtm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  13. ,"Alaska Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusakm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  14. ,"Washington Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcuswam.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  15. ,"Arkansas Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusarm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  16. ,"Colorado Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcuscom.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  17. ,"Virginia Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusvam.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  18. ,"California Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcuscam.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  19. ,"Wyoming Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcuswym.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  20. ,"Iowa Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusiam.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  1. ,"Oregon Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusorm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  2. ,"Florida Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusflm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  3. ,"Minnesota Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusmnm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  4. ,"Illinois Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcusilm.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  5. ,"Hawaii Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcushim.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  6. Wisconsin Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    372,898 393,734 402,656 442,544 462,627 1997-2014 Pipeline & Distribution Use 2,973 2,606 1,780 2,803 3,629 1997-2014 Volumes Delivered to Consumers 369,924 391,128 400,876 439,741 458,999 454,450 1997-2015 Residential 123,618 129,445 112,554 142,985 150,409 126,685 1967-2015 Commercial 82,204 87,040 76,949 99,434 107,003 90,195 1967-2015 Industrial 121,408 126,856 124,338 136,034 141,661 136,264 1997-2015 Vehicle Fuel 56 60 59 100 117 96 1988-2015 Electric Power 42,639 47,727 86,975 61,188

  7. Wyoming Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    50,106 156,455 153,333 149,820 135,678 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 34,459 39,114 33,826 32,004 21,811 1983-2014 Plant Fuel 27,104 28,582 29,157 27,935 25,782 1983-2014 Pipeline & Distribution Use 20,807 17,898 16,660 15,283 14,990 1997-2014 Volumes Delivered to Consumers 67,736 70,862 73,690 74,597 73,096 72,765 1997-2015 Residential 12,915 13,283 11,502 13,640 13,269 11,942 1967-2015 Commercial 11,153 11,680 10,482 12,013 12,188 12,498 1967-2015 Industrial 43,059

  8. ,"Tennessee Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...575,20337,5751,4289,10219,,77 37605,31833,12804,8138,10610,,281 37636,37778,15336,9595,11144,,1704 37667,37692,15713,10236,11487,,256 37695,27915,10227,7187,10262,,239 ...

  9. Missouri Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    1,873 1,770 3,351 8,236 1989-2015 Commercial 1,960 2,021 2,299 2,254 3,585 5,631 1989-2015 Industrial 4,605 4,716 4,376 4,527 4,939 5,585 2001-2015 Vehicle Fuel 4 4 4 4 4 4...

  10. Washington Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    1,649 2,519 4,019 9,599 1989-2015 Commercial 2,287 1,996 1,902 2,709 3,462 5,744 1989-2015 Industrial 5,770 5,477 5,625 5,921 6,680 NA 2001-2015 Vehicle Fuel 38 42 42 40 42 40...

  11. Wisconsin Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    22,344 25,107 23,388 23,582 29,271 38,844 2001-2015 Residential 2,478 2,475 2,308 2,498 6,080 11,070 1989-2015 Commercial 2,842 2,782 2,964 2,867 4,985 7,776 1989-2015 Industrial...

  12. Delaware Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8,917 8,330 7,939 2001-2015 Residential 703 270 181 163 166 157 1989-2015 Commercial 735 403 410 375 409 432 1989-2015 Industrial 3,037 2,819 2,561 2,669 2,636 2,448 2001-2015...

  13. Ten Things You Didn't Know About the Electron Racetrack at Brookhaven

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory | Department of Energy Ten Things You Didn't Know About the Electron Racetrack at Brookhaven National Laboratory Ten Things You Didn't Know About the Electron Racetrack at Brookhaven National Laboratory February 6, 2015 - 11:20am Addthis 1 of 10 The National Synchrotron Light Source II (NSLS-II) is essentially a stadium-sized microscope. It produces some of the brightest X-rays in the world -- 10 million times brighter than the X-rays found in a doctor's office. Image:

  14. Fact #696: October 10, 2011 Top Ten "Real World" Fuel Economy Leaders |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6: October 10, 2011 Top Ten "Real World" Fuel Economy Leaders Fact #696: October 10, 2011 Top Ten "Real World" Fuel Economy Leaders The Environmental Protection Agency (EPA) fuel economy ratings on the window stickers of new cars are based on strict test cycles conducted in a controlled laboratory setting. These official EPA estimates do not reflect all the varied conditions encountered in real world driving such as congestion, terrain, weather,

  15. Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 8: May 21, 2012 Average Trip Length is Less Than Ten Miles Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles The average trip length (one-way) is 9.7 miles according to the 2009 Nationwide Personal Transportation Survey. Trip lengths vary by the purpose of the trip. Shopping and family/personal business are the shortest trips, on average. One-way trips to/from work average 12.2 miles. Trip Length by Purpose, 2009 Graphic showing trip length by purpose,

  16. Fact #781: May 27, 2013 Top Ten Natural Gas Producing Countries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1: May 27, 2013 Top Ten Natural Gas Producing Countries Fact #781: May 27, 2013 Top Ten Natural Gas Producing Countries In 2011, Russia and the United States were by far the top natural gas producing countries, with more than four times that of Iran, the third largest producer of natural gas. Although Russia and the United States produced nearly the same amount of natural gas, Russia has far greater conventional natural gas reserves than the United States based on 2011

  17. Ten years of ASC systems has the hardware stayed on the curve? (Conference)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Conference: Ten years of ASC systems has the hardware stayed on the curve? Citation Details In-Document Search Title: Ten years of ASC systems has the hardware stayed on the curve? No abstract prepared. Authors: Tomkins, James Lee Publication Date: 2006-02-01 OSTI Identifier: 915580 Report Number(s): SAND2006-1241C TRN: US200816%%5 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the DOE ASC PI meeting

  18. The Top Ten Things I Learned at the Ambassador Retreat | Department of

    Energy Savers [EERE]

    Energy The Top Ten Things I Learned at the Ambassador Retreat The Top Ten Things I Learned at the Ambassador Retreat September 4, 2014 - 1:36pm Addthis Britt Ide President, Ide Law & Strategy, PLLC, C3E Ambassador Editor's Note: This blog is cross-posted from the Clean Energy, Education, Empowerment (C3E) online network, www.c3enet.org. Learn more about C3E here. I am delighted to be serving as a C3E Ambassador. The retreat in July was my first and I learned a ton and deeply enjoyed

  19. Ten Things You Didn't Know About the Electron Racetrack at Brookhaven

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory | Department of Energy Ten Things You Didn't Know About the Electron Racetrack at Brookhaven National Laboratory Ten Things You Didn't Know About the Electron Racetrack at Brookhaven National Laboratory Addthis 1 of 10 The National Synchrotron Light Source II (NSLS-II) is essentially a stadium-sized microscope. It produces some of the brightest X-rays in the world -- 10 million times brighter than the X-rays found in a doctor's office. Image: Photo Courtesy of Brookhaven

  20. Design and performance of a 30 KV electron gun with ten independent cathodes & a magnetic lens.

    SciTech Connect (OSTI)

    Rudys, Joseph Matthew; Reed, Kim Warren

    2006-08-01

    Measurements on a 30 kV electron gun with ten independent cathodes, operating in a 6.5 Tesla (T) magnetic field are presented. An earlier paper covered the design of this electron gun [1]. Experimental results are compared to model predictions. Beam current is compared to theoretical space charge limited flow.

  1. Macrophyte mapping in ten lakes of South Carolina with multispectral SPOT HRV data

    SciTech Connect (OSTI)

    Mackey, H.E. Jr.

    1989-01-01

    Fall and spring multispectral SPOT HRV data for 1987 and 1988 were used to evaluate the macrophyte distributions in ten freshwater reservoirs of South Carolina. The types of macrophyte and wetland communities present along the shoreline of the lakes varied depending on the age, water level fluctuations, water quality, and basin morphology. Seasonal satellite data were important for evaluation of the extent of persistent versus non-persistent macrophyte communities in the lakes. This paper contains only the view graphs of this process.

  2. Idaho National Laboratory 2013-2022 Ten-Year Site Plan

    SciTech Connect (OSTI)

    Calvin Ozaki; Sheryl L. Morton; Elizabeth A. Connell; William T. Buyers; Craig L. Jacobson; Charles T. Mullen; Christopher P. Ischay; Ernest L. Fossum; Robert D. Logan

    2011-06-01

    The Idaho National Laboratory (INL) Ten-Year Site Plan (TYSP) describes the strategy for accomplishing the long-term objective of transforming the laboratory to meet Department of Energy (DOE) national nuclear research and development (R&D) goals, as outlined in DOE strategic plans. The plan links R&D mission goals and INL core capabilities with infrastructure requirements (single- and multi-program), establishs the 10-year end-state vision for INL complexes, and identifies and prioritizes infrastructure needs and capability gaps. The TYSP serves as the basis for documenting and justifying infrastructure investments proposed as part of the FY 2013 budget formulation process.

  3. The FY 2008 Budget Request - Twenty in Ten: Strengthening America's Energy Security

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Budget Request Twenty in Ten: Strengthening America's Energy Security Alexander Karsner Assistant Secretary Office of Energy Efficiency and Renewable Energy February 2007 2 President's State of the Union Address "Tonight, I ask Congress to join me in pursuing a great goal. Let us build on the work we've done and reduce gasoline usage in the United States by 20 percent in the next 10 years." Strengthening America's Energy Security 3 The President's "20 in 10" Goal *

  4. Novel Insights into the Diversity of Catabolic Metabolism from Ten Haloarchaeal Genomes

    SciTech Connect (OSTI)

    Anderson, Iain; Scheuner, Carmen; Goker, Markus; Mavromatis, Kostas; Hooper, Sean D.; Porat, Iris; Klenk, Hans-Peter; Ivanova, Natalia; Kyrpides, Nikos

    2011-05-03

    The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis. We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles were isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses. These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment.

  5. Development of an ELISA microarray assay for the sensitive and simultaneous detection of ten biodefense toxins.

    SciTech Connect (OSTI)

    Jenko, Kathryn; Zhang, Yanfeng; Kostenko, Yulia; Fan, Yongfeng; Garcia-Rodriguez, Consuelo; Lou, Jianlong; Marks, James D.; Varnum, Susan M.

    2014-10-21

    Plant and microbial toxins are considered bioterrorism threat agents because of their extreme toxicity and/or ease of availability. Additionally, some of these toxins are increasingly responsible for accidental food poisonings. The current study utilized an ELISA-based protein antibody microarray for the multiplexed detection of ten biothreat toxins, botulinum neurotoxins (BoNT) A, B, C, D, E, F, ricin, shiga toxins 1 and 2 (Stx), and staphylococcus enterotoxin B (SEB), in buffer and complex biological matrices. The multiplexed assay displayed a sensitivity of 1.3 pg/mL (BoNT/A, BoNT/B, SEB, Stx-1 and Stx-2), 3.3 pg/mL (BoNT/C, BoNT/E, BoNT/F) and 8.2 pg/mL (BoNT/D, ricin). All assays demonstrated high accuracy (75-120 percent recovery) and reproducibility (most coefficients of variation < 20%). Quantification curves for the ten toxins were also evaluated in clinical samples (serum, plasma, nasal fluid, saliva, stool, and urine) and environmental samples (apple juice, milk and baby food) with overall minimal matrix effects. The multiplex assays were highly specific, with little crossreactivity observed between the selected toxin antibodies. The results demonstrate a multiplex microarray that improves current immunoassay sensitivity for biological warfare agents in buffer, clinical, and environmental samples.

  6. Idaho National Laboratory 2015-2023 Ten-Year Site Plan

    SciTech Connect (OSTI)

    Sheryl Morton; Elizabeth Connell; Bill Buyers; John Reisenauer; Rob Logan; Chris Ischay; Ernest Fossum; Paul Contreras; Joel Zarret; Steve Hill; Jon Tillo

    2013-09-01

    This Idaho National Laboratory (INL) Ten-Year Site Plan (TYSP) describes the strategy for accomplishing the long-term objective of sustaining the INL infrastructure to meet the Department of Energy Office of Nuclear Energy (DOE-NE) mission: to promote nuclear power as a resource capable of making major contributions in meeting the nation’s energy supply, environmental and energy security needs. This TYSP provides the strategy for INL to accomplish its mission by: (1) linking R&D mission goals to core capabilities and infrastructure requirements; (2) establishing a ten-year end-state vision for INL facility complexes; (3) identifying and prioritizing infrastructure needs and capability gaps; (4) establishing maintenance and repair strategies that allow for sustainment of mission-critical (MC) facilities; and (5) applying sustainability principles to each decision and action. The TYSP serves as the infrastructure-planning baseline for INL; and, though budget formulation documents are informed by the TYSP, it is not itself a budget document.

  7. Fact #779: May 13, 2013 EPA's Top Ten Rated Vehicles List for Model Year 2013 is All Electric

    Broader source: Energy.gov [DOE]

    The 2013 model year marks the first time when the Environmental Protection Agency's (EPA's) top ten most fuel efficient vehicles list is comprised entirely of electric vehicles. Electric vehicles...

  8. Fact #770: March 11, 2013 Changes to the Top Ten Vehicles Sold over the Last Five Years

    Broader source: Energy.gov [DOE]

    When reviewing the top ten vehicles sold in calendar years 2008 through 2012, the year 2011 stands out. Likely due to Japan's tsunami/earthquake and Thailand's flood, both of which disrupted the...

  9. Cracked lifting lug welds on ten-ton UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Dorning, R.E.

    1991-12-31

    Ten-ton, Type 48X, UF{sub 6} cylinders are used at the Portsmouth Gaseous Diffusion Plant to withdraw enriched uranium hexafluoride from the cascade, transfer enriched uranium hexafluoride to customer cylinders, and feed enriched product to the cascade. To accomplish these activities, the cylinders are lifted by cranes and straddle carriers which engage the cylinder lifting lugs. In August of 1988, weld cracks on two lifting lugs were discovered during preparation to lift a cylinder. The cylinder was rejected and tagged out, and an investigating committee formed to determine the cause of cracking and recommend remedial actions. Further investigation revealed the problem may be general to this class of cylinder in this use cycle. This paper discusses the actions taken at the Portsmouth site to deal with the cracked lifting lug weld problem. The actions include inspection activities, interim corrective actions, metallurgical evaluation of cracked welds, weld repairs, and current monitoring/inspection program.

  10. Idaho National Laboratory Ten-Year Site Plan Project Description Document

    SciTech Connect (OSTI)

    Not Listed

    2012-03-01

    This document describes the currently active and proposed infrastructure projects listed in Appendix B of the Idaho National Laboratory 2013-2022 Ten Year Site Plan (DOE/ID-11449). It was produced in accordance with Contract Data Requirements List I.06. The projects delineated in this document support infrastructure needs at INL's Research and Education Campus, Materials and Fuels Complex, Advanced Test Reactor Complex and the greater site-wide area. The projects provide critical infrastructure needed to meet current and future INL opereational and research needs. Execution of these projects will restore, rebuild, and revitalize INL's physical infrastructure; enhance program execution, and make a significant contribution toward reducing complex-wide deferred maintenance.

  11. Evaluation of tools for renewable energy policy analysis: The ten federal region model

    SciTech Connect (OSTI)

    Engle, J.

    1994-04-01

    The Energy Policy Act of 1992 establishes a program to support development of renewable energy technologies including a production incentive to public power utilities. Because there is a wide range of possible policy actions that could be taken to increase electric market share for renewables, modeling tools are needed to help make informed decisions regarding future policy. Previous energy modeling tools did not contain the region or infrastructure focus necessary to examine renewable technologies. As a result, the Department of Energy Office of Utility Technologies (OUT) supported the development of tools for renewable energy policy analysis. Three models were developed: The Renewable Energy Penetration (REP) model, which is a spreadsheet model for determining first-order estimates of policy effects for each of the ten federal regions; the Ten Federal Region Model (TFRM), which employs utility capacity expansion and dispatching decision; and the Region Electric Policy Analysis Model (REPAM), which was constructed to allow detailed insight into interactions between policy and technology within an individual region. These Models were developed to provide a suite of fast, personal-computer based policy analysis tools; as one moves from the REP model to the TFRM to the REPAM the level of detail (and complexity) increases. In 1993 a panel was formed to identify model strengths, weaknesses (including any potential biases) and to suggest potential improvements. The panel met in January 1994 to discuss model simulations and to deliberate regarding evaluation outcomes. This report is largely a result of this meeting. This report is organized as follows. It provides a description of the TFRM and summarizes the panel`s findings. Individual chapters examine various aspects of the model: demand and load, capacity expansion, dispatching and production costing, reliability, renewables, storage, financial and regulatory concerns, and environmental effects.

  12. A Ten Step Protocol and Plan for CCS Site Characterization, Based on an Analysis of the Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    McPherson, Brian; Matthews, Vince

    2013-09-15

    This report expresses a Ten-Step Protocol for CO2 Storage Site Characterization, the final outcome of an extensive Site Characterization analysis of the Rocky Mountain region, USA. These ten steps include: (1) regional assessment and data gathering; (2) identification and analysis of appropriate local sites for characterization; (3) public engagement; (4) geologic and geophysical analysis of local site(s); (5) stratigraphic well drilling and coring; (6) core analysis and interpretation with other data; (7) database assembly and static model development; (8) storage capacity assessment; (9) simulation and uncertainty assessment; (10) risk assessment. While the results detailed here are primarily germane to the Rocky Mountain region, the intent of this protocol is to be portable or generally applicable for CO2 storage site characterization.

  13. State geothermal commercialization programs in ten Rocky Mountain states. Semi-annual progress report, July-December 1979

    SciTech Connect (OSTI)

    Griffith, J.L.

    1980-08-01

    The activities and findings of the ten state teams participating in the Rocky Mountain Basin and Range Regional Hydrothermal Commercialization Program for the period are described. A summary of the state projects, compilation of project accomplishments, summary of findings, and a description of the major conclusions and recommendations are presented. Also included are chapters on the commercialization activities carried out by individual teams in each state: Arizona, Colorado, Idaho, Montana, Nevada, New-Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

  14. Energy End-Use Intensities in Commercial Buildings1995 -- Overview...

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Commercial Buildings Energy Consumption Survey (CBECS) and (2) building energy simulations provided by the Facility Energy Decision Screening (FEDS) system. The...

  15. Energy End-Use Intensities in Commercial Buildings1995 -- Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    model using survey data from the 1995 commercial buildings energy consumption survey and building energy simulations provided by the Facility Energy Decision Screening system....

  16. CBECS 1989 - Energy End-use Intensities in Commercial Buildings...

    U.S. Energy Information Administration (EIA) Indexed Site

    the sampling error is nonzero and unknown for the particular sample chosen, the sample design permits sampling errors to be estimated. Due to the complexity of the sample design,...

  17. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Intensities The purpose of this section is to provide information on how energy was used for space conditioning--heating, cooling, and ventilation--in commercial...

  18. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Active Solar: As an energy source, energy from the sun collected and stored using mechanical pumps or fans to circulate heat-laden fluids or air between solar collectors and the...

  19. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Energy Use in Commercial Buildings The purpose of this section is to provide an overview of how energy was used in commercial buildings. Focusing on 1989 buildings, the section...

  20. End-Use Sector Flowcharts, Energy Intensity Indicators

    Broader source: Energy.gov (indexed) [DOE]

    Economy Transportation Sector Commercial Sector Residential Sector Electric Power Sector Industrial Sector Manufacturing NAICS 311-339 Food, Beverages, & Tobacco NAICS 311/312 Textile Mills and Products NAICS 313/314 Apparel & Leather Products NAICS 315/316 Wood Products NAICS 321 Paper NAICS 322 Printing & Related Support NAICS 323 Petroleum & Coal Products NAICS 324 Chemicals NAICS 325 Plastics & Rubber Products NAICS 326 Nonmetallic Mineral Products NAICS 327 Primary

  1. Energy End-Use Intensities in Commercial Buildings 1989 data...

    U.S. Energy Information Administration (EIA) Indexed Site

    Buildings Energy Consumption Survey. Divider Bar To View andor Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties,...

  2. Energy End-Use Intensities in Commercial Buildings 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey. divider line To View andor Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties,...

  3. U.S. Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions,

  4. New Mexico Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    09,709 554,352 574,557 608,490 621,430 669,923 1984-2014 Residential 55 46 37 27 72 53 1984-2014 Commercial 11,030 9,435 9,609 9,145 9,112 12,114 1984-2014 Industrial 33,804 24,429 27,110 31,316 32,029 32,917 1984-2014 Oil Company 9,871 1,705 2,127 5,857 11,218 27,016 1984-2014 Farm 11,278 14,821 10,955 12,816 15,784 11,752 1984-2014 Electric Power 4,321 4,000 1,689 5,155 4,816 3,826 1984-2014 Railroad 245 1,780 1,707 19,123 38,543 45,446 1984-2014 Vessel Bunkering 0 0 0 0 0 0 1984-2014

  5. Alabama Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    987,571 1,038,133 1,094,359 1,132,711 1,047,981 1,027,777 1984-2014 Residential 3,971 4,895 432 750 639 722 1984-2014 Commercial 39,802 46,009 48,475 46,654 30,536 27,874 1984-2014 Industrial 90,659 77,542 81,120 120,347 77,119 65,322 1984-2014 Oil Company 0 328 1,035 2,640 2,929 2,985 1984-2014 Farm 17,882 19,881 24,518 24,503 24,651 20,459 1984-2014 Electric Power 8,276 10,372 22,490 9,375 6,514 10,071 1984-2014 Railroad 44,546 42,465 97,177 125,439 63,570 56,873 1984-2014 Vessel Bunkering

  6. Texas Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    ,329,790 5,693,270 6,373,078 6,688,629 6,914,481 7,837,118 1984-2014 Residential 67 28 127 102 16 59 1984-2014 Commercial 136,419 100,886 184,312 173,303 142,268 132,601 1984-2014 Industrial 189,981 197,024 233,292 241,601 240,179 270,760 1984-2014 Oil Company 210,865 316,523 541,640 736,186 679,737 886,957 1984-2014 Farm 201,769 207,183 243,170 216,915 190,572 222,849 1984-2014 Electric Power 19,495 15,646 23,156 20,022 20,706 24,700 1984-2014 Railroad 429,026 467,128 498,006 483,096 504,823

  7. Biogas end-use in the European community

    SciTech Connect (OSTI)

    Constant, M.; Naveau, H.; Nyns, E.J. ); Ferrero, G.L.

    1989-01-01

    In Europe over the past few years the generation of biogas for energy and environmental purposes has been gaining in importance. Industrial wastewaters, cattle manure, sewage sludges, urban wastes, crop residues, algae and aquatic biomass are all typical of the materials being utilized. In contrast to the extensive inventory of biomethanation processes which has been carried out within the EEC, until recently a detailed, up-to-date investigation of the end-sues of biogas had not been undertaken. To supply the necessary information, the Commission of the European Communities and the Belgian Science Policy Office jointly entrusted a study to the Unit of Bioengineering at the Catholic University of Louvain, Belgium. This book is record of the study and has the following key features: it gives a broad overview of the ongoing use of biogas in Europe; it summarizes available data on storage, purification and engines using biogas; it draws several conclusions concerning the technical and economic viability of the processes; it discusses the problems of using biogas; and it outlines recommendations and future R and D and demonstration projects in the field.

  8. 1999 Commercial Buildings Characteristics--End-Use Equipment

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800. Energy Information Administration Commercial Buildings Energy Consumption Survey Cooling Equipment Packaged air conditioning units were the predominant type of cooling...

  9. End-use Breakdown: The Building Energy Modeling Blog

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling Blog en EnergyPlus Logo Debuts on Revit Toolbar http:energy.goveerebuildingsarticlesenergyplus-logo-debuts-revit-toolbar

  10. Distribution Category UC-98 Consumption End-Use A Comparison...

    U.S. Energy Information Administration (EIA) Indexed Site

    buildings) as well as a list of large buildings in each metropolitan area. MECS is based upon a comprehensive list of manufactures that is maintained by the Census Bureau for...

  11. Energy End-Use Intensities in Commercial Buildings

    Gasoline and Diesel Fuel Update (EIA)

    and stored using mechanical pumps or fans to circulate heat-laden fluids or air between solar collectors and the building. Examples include the use of solar collectors for water...

  12. Florida Sales of Distillate Fuel Oil by End Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    840,100 2,027,012 1,914,621 1,918,039 2,023,650 2,038,923 1984-2014 Residential 1,551 1,820 1,085 572 451 728 1984-2014 Commercial 126,292 113,313 100,791 104,860 113,873 110,082 1984-2014 Industrial 36,512 43,088 35,652 32,087 31,458 42,894 1984-2014 Oil Company 236 2,255 4,038 4,359 4,427 3,802 1984-2014 Farm 86,642 204,866 109,177 103,325 122,563 98,418 1984-2014 Electric Power 31,161 43,675 35,577 16,137 16,244 12,182 1984-2014 Railroad 33,651 42,353 46,461 66,711 93,844 92,435 1984-2014

  13. Energy Information Administration - Table 2. End Uses of Fuel...

    Gasoline and Diesel Fuel Update (EIA)

    -- -- -- Net Electricity 74 79 76 Residual Fuel Oil 19 * 11 Natural Gas 369 329 272 Machine Drive -- -- -- Net Electricity 68 86 77 Notes 1. The North American Industry...

  14. West Virginia Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    33 5,114 4,922 4,914 6,180 6,835 2001-2015 Residential 419 244 339 387 1,242 2,132 1989-2015 Commercial 796 981 876 1,107 1,547 1,923 1989-2015 Industrial 1,903 1,746 1,834 1,677...

  15. New Hampshire Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    NA NA NA NA NA NA 2001-2015 Residential 146 147 148 242 657 854 1989-2015 Commercial 221 226 232 377 823 1,017 1989-2015 Industrial NA NA NA NA NA NA 2001-2015 Vehicle Fuel 6 6 6 6 6 6 2010-2015 Electric Power 4,211 4,622 3,922 3,375 3,795 2,706

  16. New Jersey Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    47,857 46,260 NA NA 56,469 63,409 2001-2015 Residential 5,478 4,422 4,498 9,214 16,149 22,163 1989-2015 Commercial 7,486 8,431 NA NA 11,186 13,623 1989-2015 Industrial 4,256 4,032 4,128 4,370 4,611 4,249 2001-2015 Vehicle Fuel 19 19 19 19 19 19 2010-2015 Electric Power 30,618 29,355 29,675 24,677 24,504 23,354

  17. District of Columbia Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    984 1,037 1,072 1,740 2,437 2,907 2001-2015 Residential 242 240 253 520 911 1,335 1989-2015 Commercial 657 711 736 1,135 1,443 1,487 1989-2015 Industrial 0 0 0 0 0 0 2001-2015 Vehicle Fuel 86 86 83 86 83 86 2010-2015 Electric Power -- -- -- -- -- --

  18. New Hampshire Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    0,378 69,978 72,032 54,028 57,017 1997-2014 Pipeline & Distribution Use 247 202 27 67 81 1997-2014 Volumes Delivered to Consumers 60,131 69,776 72,004 53,961 56,936 NA 1997-2015 Residential 6,738 6,955 6,422 7,185 7,755 7,587 1980-2015 Commercial 8,406 8,890 8,130 9,204 9,412 9,327 1980-2015 Industrial 6,022 7,083 7,007 7,866 8,456 NA 1997-2015 Vehicle Fuel 28 37 37 62 73 60 1988-2015 Electric Power 38,937 46,812 50,408 29,644 31,240 42,67

  19. New Jersey Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    54,458 660,743 652,060 682,247 762,200 1997-2014 Pipeline & Distribution Use 5,359 5,655 4,603 5,559 5,070 1997-2014 Volumes Delivered to Consumers 649,099 655,088 647,457 676,688 757,130 NA 1997-2015 Residential 219,141 213,630 191,371 226,195 247,742 237,164 1967-2015 Commercial 181,480 191,808 174,641 171,797 202,201 NA 1967-2015 Industrial 49,269 49,865 54,785 61,468 61,494 NA 1997-2015 Vehicle Fuel 150 191 191 195 229 222 1988-2015 Electric Power 199,059 199,594 226,469 217,032 245,464

  20. New Mexico Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    41,137 246,418 243,961 245,502 246,178 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 49,070 47,556 47,696 47,018 49,406 1983-2014 Plant Fuel 35,289 38,331 37,195 33,121 35,269 1983-2014 Pipeline & Distribution Use 8,597 7,067 7,467 8,782 8,561 1997-2014 Volumes Delivered to Consumers 148,181 153,464 151,602 156,581 152,942 NA 1997-2015 Residential 35,253 34,299 32,515 36,024 32,370 34,036 1967-2015 Commercial 25,155 25,035 24,898 26,790 25,688 26,262 1967-2015 Industrial 16,779 20,500

  1. New York Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    1,198,127 1,217,324 1,223,036 1,273,263 1,345,315 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 573 498 423 375 541 1983-2014 Pipeline & Distribution Use 15,122 18,836 17,610 16,819 24,923 1997-2014 Volumes Delivered to Consumers 1,182,432 1,197,990 1,205,004 1,256,070 1,319,852 1,322,592 1997-2015 Residential 390,491 393,825 357,709 416,357 458,313 450,815 1967-2015 Commercial 287,389 291,118 270,232 300,776 320,168 309,481 1967-2015 Industrial 75,475 75,162 74,133 79,776 84,255

  2. North Carolina Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    304,148 307,804 363,945 440,175 453,212 1997-2014 Pipeline & Distribution Use 7,978 7,322 5,436 4,029 3,877 1997-2014 Volumes Delivered to Consumers 296,169 300,481 358,510 436,146 449,335 NA 1997-2015 Residential 74,520 61,644 56,511 69,654 75,178 NA 1967-2015 Commercial 56,225 49,898 48,951 55,271 59,945 NA 1967-2015 Industrial 92,321 99,110 102,151 109,662 107,904 105,096 1997-2015 Vehicle Fuel 32 30 30 71 83 62 1988-2015 Electric Power 73,072 89,799 150,866 201,489 206,226 268,925

  3. North Dakota Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    66,395 72,463 72,740 81,593 83,330 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 3,753 3,200 4,595 6,486 8,683 1983-2014 Plant Fuel 4,294 5,473 5,887 6,707 5,736 1983-2014 Pipeline & Distribution Use 13,745 13,575 15,619 14,931 14,604 1997-2014 Volumes Delivered to Consumers 44,603 50,214 46,639 53,469 54,307 55,321 1997-2015 Residential 10,536 10,937 9,594 12,085 12,505 10,606 1967-2015 Commercial 10,302 10,973 10,364 13,236 13,999 12,334 1967-2015 Industrial 23,762 28,303 26,680

  4. Rhode Island Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    94,110 100,455 95,476 85,537 88,673 1997-2014 Lease and Plant Fuel 1967-1992 Pipeline & Distribution Use 1,468 1,003 1,023 1,087 2,824 1997-2014 Volumes Delivered to Consumers 92,642 99,452 94,452 84,450 85,849 90,207 1997-2015 Residential 16,942 16,864 15,883 18,221 19,724 19,522 1967-2015 Commercial 10,458 10,843 10,090 11,633 13,178 11,734 1967-2015 Industrial 8,033 7,462 7,841 8,161 8,008 8,751 1997-2015 Vehicle Fuel 87 85 85 73 86 89 1988-2015 Electric Power 57,122 64,198 60,553 46,362

  5. South Carolina Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    220,235 229,497 244,850 232,297 231,863 1997-2014 Pipeline & Distribution Use 3,452 3,408 3,416 2,529 2,409 1997-2014 Volumes Delivered to Consumers 216,783 226,089 241,434 229,768 229,454 NA 1997-2015 Residential 32,430 26,851 22,834 28,642 31,862 27,171 1967-2015 Commercial 24,119 22,113 21,416 23,862 25,380 NA 1967-2015 Industrial 73,397 76,973 81,165 83,730 83,330 NA 1997-2015 Vehicle Fuel 7 9 9 18 21 16 1988-2015 Electric Power 86,830 100,144 116,010 93,516 88,861 135,239

  6. South Dakota Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    72,563 73,605 70,238 81,986 79,964 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 562 594 866 916 827 1983-2014 Plant Fuel 0 0 0 2012-2014 Pipeline & Distribution Use 5,806 6,692 6,402 6,888 5,221 1997-2014 Volumes Delivered to Consumers 66,195 66,320 62,969 74,182 73,917 73,755 1997-2015 Residential 12,815 12,961 10,742 13,920 14,213 11,638 1967-2015 Commercial 11,025 11,101 9,330 12,151 12,310 10,497 1967-2015 Industrial 40,755 40,668 40,432 44,039 44,205 44,683 1997-2015 Vehicle Fuel

  7. West Virginia Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    13,179 115,361 129,753 142,082 150,766 1997-2014 Lease and Plant Fuel 1967-1998 Lease Fuel 11,348 15,571 21,569 28,682 27,853 1983-2014 Plant Fuel 810 1,153 1,812 3,429 6,776 1983-2014 Pipeline & Distribution Use 21,589 21,447 31,913 29,578 29,160 1997-2014 Volumes Delivered to Consumers 79,432 77,189 74,459 80,393 86,978 NA 1997-2015 Residential 27,021 25,073 22,538 26,514 28,257 24,975 1967-2015 Commercial 24,907 24,094 22,634 24,252 24,101 22,584 1967-2015 Industrial 26,023 25,443 26,926

  8. U.S. Adjusted Sales of Kerosene by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  9. New Mexico Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    11,371 12,236 10,219 10,795 14,369 19,223 2001-2015 Residential 830 864 854 1,282 3,863 6,379 1989-2015 Commercial 1,029 1,121 1,106 1,689 3,294 4,321 1989-2015 Industrial 1,382 1,437 1,348 1,479 1,616 1,575 2001-2015 Vehicle Fuel 16 16 15 16 15 16 2010-2015 Electric Power 8,114 8,798 6,895 6,330 5,581 6,933

  10. North Dakota Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    2,929 3,396 3,600 4,063 5,168 5,845 2001-2015 Residential 170 147 200 513 1,069 1,713 1989-2015 Commercial 308 294 321 667 1,214 1,808 1989-2015 Industrial 1,954 2,463 2,646 2,883 2,885 2,324 2001-2015 Vehicle Fuel 0 0 0 0 0 0 2010-2015 Electric Power 497 492 433 W W W

  11. Rhode Island Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    8,254 8,371 4,837 6,216 7,643 6,847 2001-2015 Residential 430 397 385 1,038 1,591 1,903 1989-2015 Commercial 258 249 244 624 1,007 1,106 1989-2015 Industrial 658 681 694 683 704 750 2001-2015 Vehicle Fuel 7 7 7 7 7 7 2010-2015 Electric Power 6,902 7,037 3,507 3,864 4,334 3,08

  12. South Dakota Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    5,249 5,045 4,529 4,893 6,660 8,123 2001-2015 Residential 188 221 226 473 1,162 1,996 1989-2015 Commercial 304 314 315 571 1,127 1,564 1989-2015 Industrial 3,541 3,566 3,469 3,452 3,849 3,907 2001-2015 Vehicle Fuel 0 0 0 0 0 0 2010-2015 Electric Power 1,216 943 519 396 521 6

  13. U.S. Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2010 2011 2012 2013 2014 2015 View History Total Consumption 24,086,797 24,477,425 25,538,487 26,155,071 26,698,068 27,472,867 1949-2015 Lease and Plant Fuel 1,285,627 1,322,588 1,396,273 1,483,085 1,500,181 1,580,997 1930-2015 Lease Fuel 916,797 938,340 987,957 1,068,289 1,074,943 1983-2014 Plant Fuel 368,830 384,248 408,316 414,796

  14. ,"U.S. Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    9,"Monthly","122015","1151973" ,"Release Date:","2292016" ,"Next Release Date:","3312016" ,"Excel File Name:","ngconssumdcunusm.xls" ,"Available from Web Page:","http:...

  15. District of Columbia Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    33,251 32,862 28,561 32,743 34,057 1997-2014 Pipeline & Distribution Use 213 1,703 1,068 1,434 1,305 1997-2014 Volumes Delivered to Consumers 33,038 31,159 27,493 31,309 32,751 29,157 1997-2015 Residential 13,608 12,386 11,260 13,214 14,242 12,371 1980-2015 Commercial 18,547 16,892 15,363 17,234 17,498 15,793 1980-2015 Industrial 0 0 0 0 0 0 1997-2015 Vehicle Fuel 883 879 870 861 1,011 993 1988-2015 Electric Power -- 1,003 W -- -- --

  16. Gulf of Mexico Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 2012 2013 2014 View History Total Consumption 103,976 108,490 101,217 93,985 95,207 93,855 1999-2014 Lease Fuel 103,976 108,490 101,217 93,985 95,207 93,855 1999-2014 Plant Fuel 0 2014-2014

  17. U.S. Sales of Kerosene by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  18. Louisiana Sales of Distillate Fuel Oil by End Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    514,474 1,744,771 1,873,769 1,488,986 1,405,392 1,375,580 1984-2014 Residential 1,036 140 34 53 84 89 1984-2014 Commercial 59,689 38,695 39,659 36,840 17,590 21,197 1984-2014 Industrial 21,826 26,063 20,770 33,052 31,744 33,670 1984-2014 Oil Company 243,789 319,394 364,261 245,303 183,801 178,810 1984-2014 Farm 42,624 44,027 49,985 48,462 40,785 46,134 1984-2014 Electric Power 4,321 4,775 5,464 2,733 4,610 4,826 1984-2014 Railroad 18,345 25,425 32,515 28,110 39,578 45,790 1984-2014 Vessel

  19. Mississippi Sales of Distillate Fuel Oil by End Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    835,855 800,065 771,577 830,756 806,396 819,763 1984-2014 Residential 5 5 4 7 7 8 1984-2014 Commercial 26,641 23,713 26,383 26,386 24,019 28,803 1984-2014 Industrial 21,853 18,362 15,450 20,153 21,186 19,595 1984-2014 Oil Company 3,955 4,262 4,058 6,226 7,450 6,419 1984-2014 Farm 41,080 57,087 52,559 81,878 84,753 79,443 1984-2014 Electric Power 3,796 3,393 2,019 1,674 2,223 1,921 1984-2014 Railroad 24,727 17,936 37,741 29,848 32,550 35,578 1984-2014 Vessel Bunkering 141,302 93,384 58,285 58,505

  20. ,"U.S. Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","ngconssumdcunusa.xls" ,"Available from Web Page:","http:www.eia.govdnavng...

  1. North Carolina Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    5,890 38,346 37,432 NA 35,659 35,342 2001-2015 Residential 1,407 1,195 1,090 NA 1,121 2,814 1989-2015 Commercial 2,524 2,945 2,535 NA 3,004 4,282 1989-2015 Industrial 8,131 7,793...

  2. New York Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    20,336 33,321 1989-2015 Commercial 12,774 14,178 14,539 13,736 18,646 24,042 1989-2015 Industrial 5,333 5,249 5,770 5,562 6,203 6,620 2001-2015 Vehicle Fuel 305 331 331 320...

  3. End-Use Intensity in Commercial Buildings 1992 (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    3 9 21 5 64 1 9 Food Service . . . . . . . . . . . . . . 307 43 53 9 37 28 116 17 1 5 Health Care . . . . . . . . . . . . . . . 403 88 32 11 128 52 30 6 15 41 Lodging . . . . . ....

  4. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    lighting intensities per lighted square foot-hour (Figure 23). * Food service and health care buildings had the highest water-heating intensities per square foot--more than...

  5. South Carolina Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    22,960 23,408 22,304 20,308 22,863 25,776 2001-2015 Residential 490 496 521 542 1,020 2,345 1989-2015 Commercial 1,307 1,324 1,399 1,380 1,827 2,136 1989-2015 Industrial 6,645...

  6. Energy End-Use Intensities in Commercial Buildings 1992 - Index...

    U.S. Energy Information Administration (EIA) Indexed Site

    Author Contact: Joelle.Michaels@eia.doe.gov Joelle Michaels CBECS Survey Manager URL: http:www.eia.govconsumptioncommercialdataarchivecbecscbecs1d.html separater bar...

  7. Hydrogen Pathways: Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Pathways Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios T. Ramsden, M. Ruth, V. Diakov National Renewable Energy Laboratory M. Laffen, T.A. Timbario Alliance Technical Services, Inc. Technical Report NREL/TP-6A10-60528 March 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable

  8. Ten polymorphic DNA loci, including five in the rat MHC (RT1) region, form a single linkage group on rat chromosome 20

    SciTech Connect (OSTI)

    Remmers, E.F.; Du, Y.; Zha, H.; Goldmuntz, E.A.; Wilder, R.L.

    1995-03-01

    We have described ten markers for polymorphic loci on rat chromosome 20, including five in the rat MHC (RT1) region. These markers formed a single linkage group spanning a recombination distance of 0.40. The markers identified five expressed gene loci - RT1.N1 (thymus leukemia antigen 1), Tnfa (tumor necrosis factor {alpha}), Hspa1 (heat shock protein 70), Ggt1 ({gamma} glutamyl-transferase 1), and Prkacn2 (protein kinase C catalytic subunit binding inhibitor 2), two loci with sequences that are related to expressed genes - RT1.Aw2 (sequence related to a non-RT1A class I {alpha} chain) and Mt21 (sequence related to metallothionein 2), and three anonymous loci - D20Arb548, D20Arb234, and D20Arb249. These polymorphic markers should facilitate mapping studies and genetic monitoring of inbred rat strains. 18 refs., 2 figs., 3 tabs.

  9. Idaho National Laboratory Ten-year Site Plan (2012 through 2021) -- DOE-NE's National Nuclear Capability -- Developing and Maintaining the INL Infrastructure

    SciTech Connect (OSTI)

    Cal Ozaki

    2010-06-01

    To meet long-term objectives to transform the Idaho National Laboratory (INL), we are providing an integrated, long-term vision of infrastructure requirements that support research, development and demonstration (RD&D) goals outlined in the DOE strategic plans, including the NE Roadmap and reports such as Facilities for the Future of Nuclear Energy Research: A Twenty-year Outlook. The goal of the INL Ten-year Site Plan (TYSP) is to clearly link RD&D mission goals and INL core capabilities with infrastructure requirements (single and multi-program), establish the 10-year end-state vision for INL complexes, identify and prioritize infrastructure and capability gaps, as well as the most efficient and economic approaches to closing those gaps.

  10. Grids: The Top Ten Questions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schopf, Jennifer M.; Nitzberg, Bill

    2002-01-01

    The design and implementation of a national computing system and data grid has become a reachable goal from both the computer science and computational science point of view. A distributed infrastructure capable of sophisticated computational functions can bring many benefits to scientific work, but poses many challenges, both technical and socio-political. Technical challenges include having basic software tools, higher-level services, functioning and pervasive security, and standards, while socio-political issues include building a user community, adding incentives for sites to be part of a user-centric environment, and educating funding sources about the needs of this community. This paper details the areasmore » relating to Grid research that we feel still need to be addressed to fully leverage the advantages of the Grid.« less

  11. Approaching Conformality with Ten Flavors

    SciTech Connect (OSTI)

    Appelquist, Thomas; Brower, Richard C.; Buchoff, Michael I.; Cheng, Michael; Cohen, Saul D.; Fleming, George T.; Kiskis, Joe; Lin, Meifeng; Na, Heechang; Neil, Ethan T.; Osborn, James C.

    2012-04-01

    We present first results for lattice simulations, on a single volume, of the low-lying spectrum of an SU(3) Yang-Mills gauge theory with N{sub f} = 10 light fermions in the fundamental representation. Fits to the fermion mass dependence of various observables are found to be globally consistent with the hypothesis that this theory is within or just outside the strongly-coupled edge of the conformal window, with mass anomalous dimension {gamma}* {approx} 1 over the range of scales simulated. We stress that we cannot rule out the possibility of spontaneous chiral-symmetry breaking at scales well below our infrared cutoff. We discuss important systematic effects, including finite-volume corrections, and consider directions for future improvement.

  12. Massively-parallel electron dynamics calculations in real-time and real-space: Toward applications to nanostructures of more than ten-nanometers in size

    SciTech Connect (OSTI)

    Noda, Masashi; Ishimura, Kazuya; Nobusada, Katsuyuki; Yabana, Kazuhiro; Boku, Taisuke

    2014-05-15

    A highly efficient program of massively parallel calculations for electron dynamics has been developed in an effort to apply the method to optical response of nanostructures of more than ten-nanometers in size. The approach is based on time-dependent density functional theory calculations in real-time and real-space. The computational code is implemented by using simple algorithms with a finite-difference method in space derivative and Taylor expansion in time-propagation. Since the computational program is free from the algorithms of eigenvalue problems and fast-Fourier-transformation, which are usually implemented in conventional quantum chemistry or band structure calculations, it is highly suitable for massively parallel calculations. Benchmark calculations using the K computer at RIKEN demonstrate that the parallel efficiency of the program is very high on more than 60 000 CPU cores. The method is applied to optical response of arrays of C{sub 60} orderly nanostructures of more than 10 nm in size. The computed absorption spectrum is in good agreement with the experimental observation.

  13. Human dose assessment for the radionuclides {sup 90}Sr and {sup 90}Y at TA-35 SWMU 35-003 (r) and Ten Site Canyon

    SciTech Connect (OSTI)

    Jarmer, D.; Lyman, J.

    1997-07-01

    This report gives an estimate of the radiological dose to an individual living on or working at a site contaminated with strontium-90 ({sup 90}Sr) and yttrium-90 ({sup 90}Y). The site consists of a small receiving canyon that drains into Ten-Site Canyon at the eastern end of Los Alamos National Laboratory`s technical area 35 (TA-35). Between 1951 and 1963 a wastewater treatment facility located at TA-35 discharged water containing {sup 90}Sr and {sup 90}Y to this receiving canyon. The authors used the RESRAD computer code to calculate the dose to an on-site individual, based on two exposure scenarios: (1) a person working at the site for eight hours a day, five days a week, for twenty-five years and (2) a farmer living at the site twenty four hours a day, seven days a week, for thirty years. The exposure pathways considered were direct exposure to external radiation; inhalation of contaminated dusts; and ingestion of plants, water, and soil. The authors found that the maximum estimated dose rates were 1 and 21 mrem y{sup {minus}1} for the worker and farmer scenarios respectively. The authors have concluded that the value for the worker scenario is well below the DOE dose limit of 100 mrem y{sup {minus}1} but the farmer is overexposed.

  14. ,"U.S. Total Sales of Residual Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    to Oil Company Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to Electric Utility Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to...

  15. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    SciTech Connect (OSTI)

    Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  16. Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand

    SciTech Connect (OSTI)

    Hostick, Donna; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  17. End-use load control for power system dynamic stability enhancement

    SciTech Connect (OSTI)

    Dagle, J.E.; Winiarski, D.W.; Donnelly, M.K.

    1997-02-01

    Faced with the prospect of increasing utilization of the transmission and distribution infrastructure without significant upgrade, the domestic electric power utility industry is investing heavily in technologies to improve network dynamic performance through a program loosely referred to as Flexible AC Transmission System (FACTS). Devices exploiting recent advances in power electronics are being installed in the power system to offset the need to construct new transmission lines. These devices collectively represent investment potential of several billion dollars over the next decade. A similar development, designed to curtail the peak loads and thus defer new transmission, distribution, and generation investment, falls under a category of technologies referred to as demand side management (DSM). A subset of broader conservation measures, DSM acts directly on the load to reduce peak consumption. DSM techniques include direct load control, in which a utility has the ability to curtail specific loads as conditions warrant. A novel approach has been conceived by Pacific Northwest National Laboratory (PNNL) to combine the objectives of FACTS and the technologies inherent in DSM to provide a distributed power system dynamic controller. This technology has the potential to dramatically offset major investments in FACTS devices by using direct load control to achieve dynamic stability objectives. The potential value of distributed versus centralized grid modulation has been examined by simulating the western power grid under extreme loading conditions. In these simulations, a scenario is analyzed in which active grid stabilization enables power imports into the southern California region to be increased several hundred megawatts beyond present limitations. Modeling results show distributed load control is up to 30 percent more effective than traditional centralized control schemes in achieving grid stability.

  18. Refining and end use of coal liquids. Quarterly report, January--March 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    A key objective is to determine the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g. year 2000, Clean Air Act Amendment (CAAA) standards. An intregral part of the above objectives is to test the fuels or blends produced and compare them with established ASTM fuels. The comparison will include engine tests to ascertain compliance of the fuels produced with CAAA and other applicable fuel quality and performance standards. The final part of the project includes a detailed economic evaluation of the cost of processing the coal liquids to their optimum products. The cost analyses is for the incremental processing cost; in other words, the feed is priced at zero dollars. The study reflects costs for operations using state of the art refinery technology; no capital costs for building new refineries is considered. Some modifications to the existing refinery may be required. Economy of scale dictates the minimum amount of feedstock that should be processed. To enhance management of the study, the work has been divided into two parts, the Basic Program and Option 1. The objectives of the Basic Program are to: characterize the coal liquids; develop, an optimized refinery configuration for processing indirect and direct coal liquids; and develop a LP refinery model with the Process Industry Modeling System (PICS) software. The objectives of Option 1 are to: confirm the validity of the optimization work of the Basic Program; produce large quantities of liquid transportation fuel blending stocks; conduct engine emission tests; and determine the value and the processing costs of the coal liquids. The major efforts conducted during the first quarter of 1994 were in the areas of: subcontract preparation and negotiation; and linear programming modeling.

  19. Assessment of U.S. Electric End-Use Energy Efficiency Potential

    SciTech Connect (OSTI)

    Gellings, Clark W.; Wikler, Greg; Ghosh, Debyani

    2006-11-15

    Demand-side management holds significant potential to reduce growth in U.S. energy consumption and peak demand, and in a cost-effective manner. But significant policy interventions will be required to achieve these benefits. (author)

  20. "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    HVAC (g)",2,19,14,3,15,23 ," Facility Lighting",2,0,0,0,0,0 ," Other Facility ... HVAC (g)",9,67,47,17,46,54 ," Facility Lighting",6,0,0,0,0,0 ," Other Facility ...

  1. Understanding Superconducting Magnetic Energy Storage (SMES) technology, applications, and economics, for end-use workshop

    SciTech Connect (OSTI)

    Ferraro, R.J.; McConnell, B.W.

    1993-06-01

    The overall objective of this project was to determine the state-of-the-art and to what extent existing SMES is a viable option in meeting the needs of utilities and their customers for improving electric service power quality. By defining and analyzing SMES electrical/mechanical performance characteristics, and comparing SMES application benefits with competitive stored energy systems, industry will be able to determine SMES unique applications and potential market penetration. Building on this information base, it would also be possible to evaluate the impact of high temperature superconductors (77 K and 20-35 K) on SMES technology applications. The authors of this report constructed a network of industry contacts and research consultants that were used to collect, update, and analyze ongoing SMES R&D and marketing activities in industries, utilities, and equipment manufacturers. These key resources were utilized to assemble performance characteristics on existing SMES, battery, capacitor, flywheel, and high temperature superconductor (HTS) stored energy technologies. From this information, preliminary stored energy system comparisons were accomplished. In this way, the electric load needs would be readily comparable to the potential solutions and applications offered by each aforementioned energy storage technology.

  2. Energy balances in the production and end-use of methanol derived from coal

    SciTech Connect (OSTI)

    1980-12-10

    Analysis is performed for three combinations of fuels, specifically: net petroleum gain (petroleum only); net premium fuel gain (natural gas and petroleum); and net energy gain (includes all fuels; does not include free energy from sun). The base case selected for evaluation was that of an energy-efficient coal-to-methanol plant located in Montana/Wyoming and using the Lurgi conversion process. The following variations of the base coal-methanol case are also analyzed: gasoline from coal with methanol as an intermediate step (Mobil-M); and methanol from coal (Texaco gasification process). For each process, computations are made for the product methanol as a replacement for unleaded gasoline in a conventional spark ignition engine and as a chemical feedstock. For the purpose of the energy analysis, computations are made for three situations regarding mileage of methanol/ gasoline compared to that of regular unleaded gasoline: mileage of the two fuels equal, mileage 4 percent better with gasohol, and mileage 4 percent worse with gasohol. The standard methodology described for the base case applies to all of the variations.

  3. End Uses Mechanical Properties Settled By The Modified Sintering Conditions Of The Metal Injection Molding Process

    SciTech Connect (OSTI)

    Marray, Tarek [Laboratoire Materiaux, ECAM, 40 montee Saint Barthelemy, 69321, Lyon, Cedex 05 (France); Arts et Metiers ParisTech, MecaSurf Laboratory (EA 4496), 2, Cours des Arts et Metiers, 13617 Aix en Provence (France); Jaccquet, Philippe; Moinard-Checot, Delphine [Laboratoire Materiaux, ECAM, 40 montee Saint Barthelemy, 69321, Lyon, Cedex 05 (France); Arts et Metiers ParisTech, LaBoMaP, Rue Porte de Paris, 71250 CLUNY (France); Fabre, Agnes; Barrallier, Laurent [Arts et Metiers ParisTech, MecaSurf Laboratory (EA 4496), 2, Cours des Arts et Metiers, 13617 Aix en Provence (France)

    2011-01-17

    Most common mechanical applications require parts with specific properties as hard faced features. It is well known that treating parts under suitable atmospheres may improve hardness and strength yield of steels. Heat treatment process and more particularly thermo-chemical diffusion processes (such as carburizing or its variation: carbonitriding) can be performed to reach the industrial hardness profile requirements. In this work, a low-alloyed steel feedstock based on water soluble binder system is submitted to the MIM process steps (including injection molding, debinding and sintering). As-sintered parts are then treated under a low pressure carbonitriding treatment. This contribution focuses on preliminary results such as microstructural analyses and mechanical properties which are established at each stage of the process to determine and monitor changes.

  4. U.S. Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    54,100,092 56,093,645 57,082,558 57,020,840 58,107,155 60,827,930 1984-2014 Residential 4,103,881 3,930,517 3,625,747 3,473,310 3,536,111 3,802,848 1984-2014 Commercial 2,785,246 2,738,304 2,715,335 2,557,543 2,471,897 2,543,778 1984-2014 Industrial 2,159,428 2,045,164 2,179,953 2,325,503 2,271,056 2,417,898 1984-2014 Oil Company 760,877 951,322 1,381,127 1,710,513 1,751,162 2,105,058 1984-2014 Farm 2,660,024 2,928,175 2,942,436 3,031,878 3,026,611 3,209,391 1984-2014 Electric Power 581,386

  5. "Table B25. Energy End Uses, Floorspace for Non-Mall Buildings...

    U.S. Energy Information Administration (EIA) Indexed Site

    may apply)" ,,"Space Heating","Cooling","Water Heating","Cooking","Manu- facturing" "All ...5378,4653,4631,1926,"Q" "District Chilled Water ......",2853,2734,2853,2655,1274,"Q" ...

  6. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Golden Valley Elec Assn Inc","Cooperative",1253161,286768,133156,833237,0 2,"Chugach Electric Assn Inc","Cooperative",1162364,534522,573447,54395,0 3,"Anchorage Municipal Light and Power","Public",1047470,139733,907737,0,0

  7. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Arizona Public Service Co","Investor-owned",28087605,13290096,12594486,2203023,0 2,"Salt River Project","Public",27127199,12581984,10940149,3605066,0 3,"Tucson Electric Power

  8. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    California" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Pacific Gas & Electric Co","Investor-owned",76390000,30552342,36055810,9781848,0 2,"Southern California Edison Co","Investor-owned",74480098,29742778,36850508,7826556,60256 3,"Los Angeles Department of Water &

  9. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Co of Colorado","Investor-owned",28861229,9266046,12881189,6652330,61664 2,"City of Colorado Springs - (CO)","Public",4553294,1461825,1106926,1984543,0 3,"Intermountain Rural Elec

  10. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Delmarva Power","Investor-owned",3647192,2744059,880296,22837,0 2,"Delaware Electric Cooperative","Cooperative",1262619,1033946,228673,0,0 3,"City of Dover - (DE)","Public",708294,201140,226520,280634,0 4,"Constellation

  11. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Florida Power & Light Co","Investor-owned",103058588,54074164,45932938,2963404,88082 2,"Duke Energy Florida, Inc","Investor-owned",36615990,18507962,14901674,3206354,0 3,"Tampa Electric Co","Investor-owned",18417662,8469567,7921282,2026813,0

  12. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Georgia Power Co","Investor-owned",81178648,25478655,32457010,23086501,156482 2,"Jackson Electric Member Corp - (GA)","Cooperative",4924212,2809034,1445094,670084,0 3,"Cobb Electric Membership

  13. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Hawaiian Electric Co Inc","Investor-owned",6858536,1667309,2341257,2849970,0 2,"Maui Electric Co Ltd","Investor-owned",1134873,387909,379461,367503,0 3,"Hawaii Electric Light Co

  14. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Idaho Power Co","Investor-owned",13971178,5167474,3820824,4982880,0 2,"PacifiCorp","Investor-owned",3621646,718090,440163,2463393,0 3,"Avista Corp","Investor-owned",3236645,1205385,1012843,1018417,0 4,"City of Idaho Falls -

  15. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Constellation NewEnergy, Inc","Investor-owned",19729300,869767,12641305,5509689,708539 2,"Commonwealth Edison Co","Investor-owned",18295340,9548453,7883890,862997,0 3,"Homefield

  16. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Indiana Inc","Investor-owned",28003070,9183527,8450462,10369081,0 2,"Northern Indiana Pub Serv Co","Investor-owned",16798335,3444738,3992698,9339677,21222 3,"Indiana Michigan Power

  17. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"MidAmerican Energy Co","Investor-owned",20217549,5829442,5195709,9192398,0 2,"Interstate Power and Light Co","Investor-owned",14586595,3939183,3951419,6695993,0 3,"Board of Water Electric &

  18. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "megawatthours" ,"Entity","Type of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Westar Energy Inc","Investor-owned",9826375,3409863,4433462,1983050,0 2,"Kansas Gas & Electric Co","Investor-owned",9669223,3113287,3132064,3423872,0 3,"Kansas City Power & Light

  19. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Kentucky Utilities Co","Investor-owned",18527337,6194856,5489716,6842765,0 2,"Louisville Gas & Electric Co","Investor-owned",11698975,4164049,4834960,2699966,0 3,"Kenergy Corp","Cooperative",9761288,743715,326221,8691352,0

  20. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Entergy Louisiana LLC","Investor-owned",32220423,8819573,6688333,16712517,0 2,"Entergy Gulf States - LA LLC","Investor-owned",19663315,5206322,5435688,9021305,0 3,"Cleco Power

  1. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Baltimore Gas & Electric Co","Investor-owned",11968295,8967015,2846423,154857,0 2,"WGL Energy Services, Inc.","Investor-owned",7553788,1092845,6460943,0,0 3,"Potomac Electric Power

  2. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"DTE Electric Company","Investor-owned",42272312,15273084,16715877,10283351,0 2,"Consumers Energy Co","Investor-owned",32556015,12792609,11117015,8646391,0 3,"First Energy Solutions

  3. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-owned",30950305,8933573,13704440,8293190,19102 2,"ALLETE, Inc.","Investor-owned",9284816,1086481,1324342,6873993,0 3,"Otter Tail Power

  4. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Entergy Mississippi Inc","Investor-owned",13118968,5629032,5224792,2265144,0 2,"Mississippi Power Co","Investor-owned",9731505,2087704,2905087,4738714,0 3,"Tennessee Valley Authority","Federal",4549938,0,0,4549938,0

  5. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Union Electric Co - (MO)","Investor-owned",37030285,13561749,14737190,8709141,22205 2,"Kansas City Power & Light Co","Investor-owned",8562163,2598738,4458883,1504542,0 3,"KCP&L Greater Missouri Operations

  6. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Omaha Public Power District","Public",10801979,3629597,3574255,3598127,0 2,"Lincoln Electric System","Public",3236591,1217375,1517814,501402,0 3,"Nebraska Public Power District","Public",3216813,845775,1109885,1261153,0

  7. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Total sales, top five providers" "Nevada" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Nevada Power Co","Investor-owned",21184405,9012407,4576328,7587394,8276 2,"Sierra Pacific Power Co","Investor-owned",8151543,2369781,2963657,2818105,0 3,"Shell Energy North America (US),

  8. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Co of NH","Investor-Owned",3772359,2488177,1149989,134193,0 2,"Constellation NewEnergy, Inc","Investor-Owned",978706,0,577347,401359,0 3,"Integrys Energy Services, Inc.","Investor-Owned",789158,3122,786036,0,0

  9. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Elec & Gas Co","Investor-owned",19192403,11493325,6936055,763023,0 2,"Jersey Central Power & Lt Co","Investor-owned",9947655,7417321,2298350,231984,0 3,"Direct Energy Business Marketing,

  10. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"City of Farmington - (NM)","Public",1096394,281379,426457,388558,0 2,"Lea County Electric Coop, Inc","Cooperative",802924,83420,400831,318673,0 " ","Total sales, top five providers",,17659537,5444921,7581145,4633471,0 "

  11. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Carolinas, LLC","Investor-owned",55301813,20601105,22341733,12351570,7405 2,"Duke Energy Progress - (NC)","Investor-owned",36886571,15249396,13425824,8211351,0 3,"Virginia Electric & Power

  12. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-owned",2301544,827062,1138952,335530,0 2,"Montana-Dakota Utilities Co","Investor-owned",1949522,786334,994607,168581,0 3,"Otter Tail Power

  13. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"First Energy Solutions Corp.","Investor-owned",49437270,14024133,21080138,14272628,60371 2,"Ohio Power Co","Investor-owned",19142615,10834999,3492174,4815442,0 3,"DPL Energy

  14. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Oklahoma Gas & Electric Co","Investor-owned",24203012,8668433,9357636,6176943,0 2,"Public Service Co of Oklahoma","Investor-owned",17681663,6289643,6309019,5083001,0 3,"Oklahoma Electric Coop

  15. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Portland General Electric Co","Investor-owned",17808023,7701768,6816977,3281460,7818 2,"PacifiCorp","Investor-owned",13089576,5534975,5115094,2424852,14655 3,"City of Eugene - (OR)","Public",2404522,980515,873103,550904,0

  16. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"South Carolina Electric&Gas Company","Investor-owned",21371090,7571438,7799857,5999795,0 2,"Duke Energy Carolinas, LLC","Investor-owned",20566058,6313640,5619965,8632453,0 3,"South Carolina Public Service

  17. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-owned",2040726,725505,980503,334718,0 2,"NorthWestern Energy - (SD)","Investor-owned",1564096,579570,690191,294335,0 3,"Black Hills Power

  18. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"City of Memphis - (TN)","Public",13926088,5245511,4652594,4026201,1782 2,"Nashville Electric Service","Public",11703738,4668568,6044539,990631,0 3,"Tennessee Valley Authority","Federal",5904077,0,0,5904077,0 4,"City of

  19. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Reliant Energy Retail Services","Investor-owned",39511303,17784060,3813963,17913280,0 2,"TXU Energy Retail Co LP","Investor-owned",37916867,22545174,5383121,9988572,0 3,"City of San Antonio -

  20. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"PacifiCorp","Investor-Owned",24510395,6976758,8556034,8923492,54111 2,"Provo City Corp","Public",788727,242592,410382,135753,0 3,"City of St George","Public",619529,278940,67594,272995,0 4,"Moon Lake Electric Assn

  1. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Green Mountain Power Corp","Investor-owned",4295605,1556518,1560705,1178382,0 2,"Vermont Electric Cooperative, Inc","Cooperative",442890,222441,119722,100727,0 3,"City of Burlington Electric -

  2. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Virginia Electric & Power Co","Investor-owned",74469354,28802062,39078780,6393908,194604 2,"Appalachian Power Co","Investor-owned",15783445,6297314,4011928,5474203,0 3,"Rappahannock Electric

  3. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Puget Sound Energy Inc","Investor-owned",21208609,10769101,9205670,1229556,4282 2,"City of Seattle - (WA)","Public",9457191,3137668,5261681,1057188,654 3,"Bonneville Power Administration","Federal",7222335,0,833256,6389079,0

  4. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Appalachian Power Co","Investor-owned",14186224,5616869,3650678,4918677,0 2,"Monongahela Power Co","Investor-owned",10812645,3604310,2752010,4452343,3982 3,"The Potomac Edison

  5. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Wisconsin Electric Power Co","Investor-owned",24144805,7974652,8872580,7297573,0 2,"Wisconsin Public Service Corp","Investor-owned",10541535,2795812,3922944,3822779,0 3,"Wisconsin Power & Light

  6. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"PacifiCorp","Investor-owned",9553734,1092932,1538409,6922393,0 2,"Powder River Energy Corp","Cooperative",2633437,215755,912786,1504896,0 3,"Cheyenne Light Fuel & Power Co","Investor-owned",1100543,269296,549520,281727,0

  7. Table 3. Top five retailers of electricity, with end use sectors, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Florida Power & Light Co","Investor-owned",103058588,54074164,45932938,2963404,88082 2,"Georgia Power Co","Investor-owned",81178648,25478655,32457010,23086501,156482 3,"Pacific Gas & Electric

  8. U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  9. U.S. Adjusted Sales of Distillate Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  10. U.S. Adjusted Sales of Residual Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  11. U.S. Distillate Fuel Oil and Kerosene Sales by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  12. Control Limits for Building Energy End Use Based on Engineering Judgment, Frequency Analysis, and Quantile Regression

    SciTech Connect (OSTI)

    Henze, G. P.; Pless, S.; Petersen, A.; Long, N.; Scambos, A. T.

    2014-02-01

    Approaches are needed to continuously characterize the energy performance of commercial buildings to allow for (1) timely response to excess energy use by building operators; and (2) building occupants to develop energy awareness and to actively engage in reducing energy use. Energy information systems, often involving graphical dashboards, are gaining popularity in presenting energy performance metrics to occupants and operators in a (near) real-time fashion. Such an energy information system, called Building Agent, has been developed at NREL and incorporates a dashboard for public display. Each building is, by virtue of its purpose, location, and construction, unique. Thus, assessing building energy performance is possible only in a relative sense, as comparison of absolute energy use out of context is not meaningful. In some cases, performance can be judged relative to average performance of comparable buildings. However, in cases of high-performance building designs, such as NREL's Research Support Facility (RSF) discussed in this report, relative performance is meaningful only when compared to historical performance of the facility or to a theoretical maximum performance of the facility as estimated through detailed building energy modeling.

  13. U.S. Sales of Residual Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama

  14. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Wheeler Elec Member Corp","Cooperative",1562763,588686,292390,681687,0 5,"Baldwin County El Member Corp","Cooperative",1271089,833798,437291,0,0 " ","Total sales, top five...

  15. Microsoft Word - Major end uses front page v2 2015-03-31.docx

    U.S. Energy Information Administration (EIA) Indexed Site

    ... and manufacturer information. - Provide a relative ... and clothes dryers in 2015 * ENERGY STAR continues to ... (HHV) of the fuel. **Electricity consumption is for ...

  16. Microsoft Word - Major end uses front page v2 2015-03-31.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 APPENDIX C EIA - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case Presented to: U.S. Energy Information Administration Prepared by: Navigant Consulting, Inc. 1200 19th Street, NW, Suite 700 Washington, D.C. 20036 And SAIC 8301 Greensboro Drive McLean, VA 22102 December 19, 2012 Confidential and Proprietary, ©2012 Navigant Consulting, Inc. Do not distribute or copy Final DISCLAIMER This presentation was prepared as an account of work sponsored by

  17. Microsoft Word - Major end uses front page v2 2015-03-31.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 APPENDIX D EIA - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case Presented to: U.S. Energy Information Administration Prepared by: Navigant Consulting, Inc. 1200 19th Street, NW, Suite 700 Washington, D.C. 20036 And SAIC 8301 Greensboro Drive McLean, VA 22102 December 19, 2012 Confidential and Proprietary, ©2012 Navigant Consulting, Inc. Do not distribute or copy Advanced Case Final DISCLAIMER This presentation was prepared as an account of work

  18. "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 5.2;" " Unit: Percents." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal"...

  19. "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b...

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Relative Standard Errors for Table 5.6;" " Unit: Percents." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG...

  20. "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 5.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG...

  1. Microsoft Word - Major end uses front page v2 2015-03-31.docx

    U.S. Energy Information Administration (EIA) Indexed Site

    ... For this analysis, the efficiency is 98% to account for IR losses and fan inefficiency. * Installation time and costs are estimated to be minimal. 112 Commercial Electric ...

  2. Microsoft Word - Major end uses front page v2 2015-03-31.docx

    U.S. Energy Information Administration (EIA) Indexed Site

    ... time and costs are estimated to be minimal. 112 Commercial Electric Resistance ... time and costs are estimated to be minimal. 112 Commercial Electric Resistance ...

  3. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    3,"WGL Energy Services, Inc.","Investor-owned",1270636,59707,1210929,0,0 4,"Direct Energy Business Marketing, LLC","Investor-owned",1208043,0,839195,220720,148128 5,"Direct Energy ...

  4. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"NextEra Energy Power Marketing","Investor-owned",19844...

  5. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    NewEnergy, Inc","Investor-owned",469721,0,296950,149198,23573 4,"TransCanada Power Marketing, Ltd.","Investor-owned",301970,0,0,301970,0 5,"Direct Energy Business ...

  6. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    NewEnergy, Inc","Investor-owned",3073373,0,2140922,923167,9284 5,"TransCanada Power Marketing, Ltd.","Investor-owned",2374650,0,0,2374650,0 " ","Total sales, top five ...

  7. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    4,"Niagara Mohawk Power Corp.","Investor-owned",13152596,8914956,3220135,1017505,0 5,"Direct Energy Business Marketing, LLC","Investor-owned",8604263,0,4198880,4405383,0 " ...

  8. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    3,"United Illuminating Co","Investor-owned",1771412,1179978,547455,43979,0 4,"TransCanada Power Marketing, Ltd.","Investor-owned",1347975,0,0,1347975,0 5,"Direct Energy ...

  9. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    3,"PECO Energy Co","Investor-owned",11394476,8577010,2270505,546961,0 4,"Talen Energy Marketing, LLC","Investor-owned",10381698,1509992,5324011,3260638,287057 5,"PPL ...

  10. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy LLC - (MT)","Investor-owned",5974533,2398528,3120726,455279,0 2,"Talen Energy Marketing, LLC","Investor-owned",2202299,0,131400,2070899,0 3,"Flathead Electric ...

  11. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Coop Corp","Cooperative",1904813,1241089,190612,473112,0 " ","Total sales, top five providers",,32825557,11112603,8604957,13107894,103 " ","Percent of total state...

  12. Estimates of U.S. Commercial Building Electricity Intensity Trends: Issues Related to End-Use and Supply Surveys

    SciTech Connect (OSTI)

    Belzer, David B.

    2004-09-04

    This report examines measurement issues related to the amount of electricity used by the commercial sector in the U.S. and the implications for historical trends of commercial building electricity intensity (kWh/sq. ft. of floor space). The report compares two (Energy Information Administration) sources of data related to commercial buildings: the Commercial Building Energy Consumption Survey (CBECS) and the reporting by utilities of sales to commercial customers (survey Form-861). Over past two decades these sources suggest significantly different trend rates of growth of electricity intensity, with the supply (utility)-based estimate growing much faster than that based only upon the CBECS. The report undertakes various data adjustments in an attempt to rationalize the differences between these two sources. These adjustments deal with: 1) periodic reclassifications of industrial vs. commercial electricity usage at the state level and 2) the amount of electricity used by non-enclosed equipment (non-building use) that is classified as commercial electricity sales. In part, after applying these adjustments, there is a good correspondence between the two sources over the the past four CBECS (beginning with 1992). However, as yet, there is no satisfactory explanation of the differences between the two sources for longer periods that include the 1980s.

  13. Alternative Strategies for Low-Pressure End Uses; Industrial Technologies Program (ITP) Compressed Air Tip Sheet #11 (Fact Sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 * August 2004 Industrial Technologies Program Suggested Actions * Review the compressed air applications to determine which ones are valid high-pressure and which ones can operate at lower pressures. The ones that can operate at low pressure could be supported with alternative methods. * Consider a professional compressed air system evaluation. Such an exam could determine what applications could be served more effciently and which appropriate alternative applications could replace them.

  14. Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances

    Broader source: Energy.gov [DOE]

    BTO held a public meeting to solicit comments from the public on a draft framework. View the agenda, presentations, and summary notes.

  15. Power applications of high-temperature superconductivity: Variable speed motors, current switches, and energy storage for end use

    SciTech Connect (OSTI)

    Hawsey, R.A. [Oak Ridge National Lab., TN (United States); Banerjee, B.B.; Grant, P.M. [Electric Power Research Inst., Palo Alto, CA (United States)

    1996-08-01

    The objective of this project is to conduct joint research and development activities related to certain electric power applications of high-temperature superconductivity (HTS). The new superconductors may allow development of an energy-efficient switch to control current to variable speed motors, superconducting magnetic energy storage (SMES) systems, and other power conversion equipment. Motor types that were considered include induction, permanent magnet, and superconducting ac motors. Because it is impractical to experimentally alter certain key design elements in radial-gap motors, experiments were conducted on an axial field superconducting motor prototype using 4 NbTi magnets. Superconducting magnetic energy storage technology with 0.25--5 kWh stored energy was studied as a viable solution to short duration voltage sag problems on the customer side of the electric meter. The technical performance characteristics of the device wee assembled, along with competing technologies such as active power line conditioners with storage, battery-based uninterruptible power supplies, and supercapacitors, and the market potential for SMES was defined. Four reports were prepared summarizing the results of the project.

  16. Deburring and surface finishing: The past ten years and projections for the next ten years

    SciTech Connect (OSTI)

    Gillespie, L.K.

    1990-09-01

    The 1970s were a decade of significant growth in deburring and surface finishing. In the 1980s progress was made in robotic finishing, burr formation models, surface finish measurement, new processes, equipment and tooling. The centers of burr and surface related research changed. The decade of the 1990s will bring greater competition, environmental restrictions, more processes, more automation, and better characterization and simulation of processes.

  17. Ten Los Alamos scientists honored by American Physical Society

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    co-inventing the ghost fluid method, mapped weighted essentially non-oscillatory schemes, Runge-Kutta-Legendre time integration, and applications of level set methods. Nominated...

  18. National service with ten presidents of the United States

    SciTech Connect (OSTI)

    Seaborg, G.T.

    1992-10-01

    This document is a biography of the renowned nuclear chemist, Glenn T. Seaborg. It covers his career over the presidential terms of Franklin Roosevelt through George Bush. It contains many personnel accounts of historic events. Photographs of Seaborg and the various Presidents are presented.

  19. Concurrence' Lawrence Livermore National Laboratory FY2015 Ten...

    National Nuclear Security Administration (NNSA)

    update. Section 6: Real Property Asset Management LLNL is supporting the DOE enterprise strategic infrastructure planning process through the Laboratory Operations Board. The...

  20. Ten Years of Development Experience with Advanced Light Truck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications The California Demonstration Program for Control of PM from Diesel Backup Generators Demonstrated Petroleum Reduction Using Oil Bypass Filter ...

  1. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Inc",630 8,"John W Turk Jr Power Plant","Coal","Southwestern Electric Power Co",609 9,"Harry L. Oswald","Natural gas","Arkansas Electric Coop Corp",548 10,"Flint ...

  2. Compound and Elemental Analysis At Valley Of Ten Thousand Smokes...

    Open Energy Info (EERE)

    identification was also undertaken for selected samples using standard X-ray powder diffraction (XRD) techniques at the University of Alaska Fairbanks. Since the VTTS fossil...

  3. Valley Of Ten Thousand Smokes Region Geothermal Area | Open Energy...

    Open Energy Info (EERE)

    Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure...

  4. Valley Of Ten Thousand Smokes Region Geothermal Area | Open Energy...

    Open Energy Info (EERE)

    Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With...

  5. Office of Secure Transportation Ten-Year Site Plan

    National Nuclear Security Administration (NNSA)

    ... occupancy sensors, light-emitting diode (LED) fixtures, and photovoltaic parking lights ... 6.6.2 Installation of occupancy sensors, LED fixtures, and photovoltaic parking lights ...

  6. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    California" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Dynegy Moss Landing Power Plant","Natural gas","Dynegy -Moss Landing LLC",2529 2,"Diablo Canyon","Nuclear","Pacific Gas & Electric Co",2240 3,"AES Alamitos LLC","Natural gas","AES Alamitos LLC",1997 4,"Castaic","Pumped Storage","Los Angeles

  7. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Hay Road","Natural gas","Calpine Mid-Atlantic Generation LLC",1136 2,"Edge Moor","Natural gas","Calpine Mid-Atlantic Generation LLC",725 3,"Indian River Generating Station","Coal","Indian River Operations Inc",591.4 4,"Delaware City Plant","Other

  8. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Braidwood Generation Station","Nuclear","Exelon Nuclear",2330 2,"Byron Generating Station","Nuclear","Exelon Nuclear",2300 3,"LaSalle Generating Station","Nuclear","Exelon Nuclear",2277 4,"Quad Cities Generating Station","Nuclear","Exelon

  9. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"William F Wyman","Petroleum","FPL Energy Wyman LLC",821.6 2,"Westbrook Energy Center Power Plant","Natural gas","Westbrook Energy Center",506 3,"Maine Independence Station","Natural gas","Casco Bay Energy Co LLC",490 4,"Verso Paper","Natural

  10. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Chalk Point LLC","Petroleum","NRG Chalk Point LLC",2248 2,"Calvert Cliffs Nuclear Power Plant","Nuclear","Calvert Cliffs Nuclear PP LLC",1716 3,"Morgantown Generating Plant","Coal","GenOn Mid-Atlantic LLC",1423 4,"Brandon Shores","Coal","Raven

  11. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Monroe (MI)","Coal","DTE Electric Company",2944 2,"Donald C Cook","Nuclear","Indiana Michigan Power Co",2069 3,"Ludington","Pumped storage","Consumers Energy Co",1872 4,"Midland Cogeneration Venture","Natural gas","Midland Cogeneration

  12. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Labadie","Coal","Union Electric Co - (MO)",2374 2,"Iatan","Coal","Kansas City Power & Light Co",1593.8 3,"Callaway","Nuclear","Union Electric Co - (MO)",1194 4,"Rush Island","Coal","Union Electric Co - (MO)",1182 5,"New

  13. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Colstrip","Coal","PPL Montana LLC",2094 2,"Noxon Rapids","Hydroelectric","Avista Corp",580.5 3,"Libby","Hydroelectric","USACE Northwestern Division",525 4,"Hungry Horse","Hydroelectric","U S Bureau of Reclamation",428

  14. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Gerald Gentleman","Coal","Nebraska Public Power District",1365 2,"Nebraska City","Coal","Omaha Public Power District",1339.3 3,"Cooper Nuclear Station","Nuclear","Nebraska Public Power District",766 4,"North Omaha","Coal","Omaha Public Power

  15. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"PSEG Salem Generating Station","Nuclear","PSEG Nuclear LLC",2370.4 2,"PSEG Linden Generating Station","Natural gas","PSEG Fossil LLC",1572 3,"Bergen Generating Station","Natural gas","PSEG Fossil LLC",1208 4,"PSEG Hope Creek Generating

  16. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"San Juan","Coal","Public Service Co of NM",1684 2,"Four Corners","Coal","Arizona Public Service Co",1540 3,"Luna Energy Facility","Natural gas","Public Service Co of NM",559 4,"Hobbs Generating Station","Natural gas","CAMS NM LLC",530.4

  17. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Coal Creek","Coal","Great River Energy",1141.9 2,"Antelope Valley","Coal","Basin Electric Power Coop",900 3,"Milton R Young","Coal","Minnkota Power Coop, Inc",684 4,"Leland Olds","Coal","Basin Electric Power Coop",667

  18. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Northeastern","Coal","Public Service Co of Oklahoma",1815 2,"Redbud Power Plant","Natural gas","Oklahoma Gas & Electric Co",1752.4 3,"Muskogee","Coal","Oklahoma Gas & Electric Co",1505.5 4,"Seminole (OK)","Natural gas","Oklahoma Gas &

  19. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Oregon" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"John Day","Hydroelectric","USACE Northwestern Division",2160 2,"The Dalles","Hydroelectric","USACE Northwestern Division",1822.7 3,"Bonneville","Hydroelectric","USACE Northwestern Division",1153.9 4,"McNary","Hydroelectric","USACE Northwestern

  20. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"PPL Susquehanna","Nuclear","PPL Susquehanna LLC",2520 2,"FirstEnergy Bruce Mansfield","Coal","FirstEnergy Generation Corp",2510 3,"Limerick","Nuclear","Exelon Nuclear",2296 4,"Peach Bottom","Nuclear","Exelon Nuclear",2250.8 5,"Homer

  1. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Rhode Island" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Entergy Rhode Island State Energy LP","Natural gas","Entergy RISE",538 2,"Manchester Street","Natural gas","Dominion Energy New England, LLC",447 3,"Tiverton Power Plant","Natural gas","Tiverton Power LLC",250 4,"Ocean State Power","Natural

  2. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Oconee","Nuclear","Duke Energy Carolinas, LLC",2554 2,"Cross","Coal","South Carolina Public Service Authority",2350 3,"Catawba","Nuclear","Duke Energy Carolinas, LLC",2290.2 4,"Bad Creek","Pumped Storage","Duke Energy Carolinas, LLC",1360

  3. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"W A Parish","Coal","NRG Texas Power LLC",3675 2,"South Texas Project","Nuclear","STP Nuclear Operating Co",2560 3,"Martin Lake","Coal","Luminant Generation Company LLC",2410 4,"Comanche Peak","Nuclear","Luminant Generation Company LLC",2400

  4. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Vermont Yankee","Nuclear","Entergy Nuclear Vermont Yankee",619.4 2,"Kingdom Community Wind","Wind","Green Mountain Power Corp",65 3,"J C McNeil","Wood","City of Burlington Electric - (VT)",52 4,"Bellows Falls","Hydroelectric","TransCanada Hydro

  5. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 2,"Chief Joseph","Hydroelectric","USACE Northwestern Division",2456.2 3,"Transalta Centralia Generation","Coal","TransAlta Centralia Gen LLC",1340 4,"Rocky

  6. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"John E Amos","Coal","Appalachian Power Co",2900 2,"FirstEnergy Harrison Power Station","Coal","Allegheny Energy Supply Co LLC",1954 3,"Mt Storm","Coal","Virginia Electric & Power Co",1640 4,"Mitchell (WV)","Coal","Kentucky Power

  7. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Jim Bridger","Coal","PacifiCorp",2111 2,"Laramie River Station","Coal","Basin Electric Power Coop",1710 3,"Dave Johnston","Coal","PacifiCorp",760 4,"Naughton","Coal","PacifiCorp",687 5,"Dry Fork Station","Coal","Basin

  8. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Grand Coulee","Hydroelectric","U S Bureau of Reclamation",7079 2,"Palo Verde","Nuclear","Arizona Public Service Co",3937 3,"Martin","Natural gas","Florida Power & Light Co",3695 4,"W A Parish","Coal","NRG Texas Power LLC",3675

  9. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Beluga","Natural gas","Chugach Electric Assn Inc",344.4 2,"George M Sullivan Generation Plant 2","Natural gas","Anchorage Municipal Light and Power",248.1 3,"Southcentral Power Project","Natural gas","Chugach Electric Assn Inc",169.7 4,"North

  10. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Palo Verde","Nuclear","Arizona Public Service Co",3937 2,"Navajo","Coal","Salt River Project",2250 3,"Springerville","Coal","Tucson Electric Power Co",1614.1 4,"Glen Canyon Dam","Hydroelectric","U S Bureau of Reclamation",1312

  11. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Comanche (CO)","Coal","Public Service Co of Colorado",1410 2,"Craig (CO)","Coal","Tri-State G & T Assn, Inc",1304 3,"Fort St Vrain","Natural gas","Public Service Co of Colorado",969 4,"Rawhide","Natural gas","Platte River Power

  12. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Millstone","Nuclear","Dominion Nuclear Conn Inc",2102.5 2,"Middletown","Petroleum","Middletown Power LLC",770.2 3,"Lake Road Generating Plant","Natural gas","Lake Road Generating Co LP",757.3 4,"Kleen Energy Systems Project","Natural

  13. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"US GSA Heating and Transmission","Natural gas","US GSA Heating and Transmission",9

  14. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Martin","Natural gas","Florida Power & Light Co",3695 2,"West County Energy Center","Natural gas","Florida Power & Light Co",3669 3,"Turkey Point","Nuclear","Florida Power & Light Co",3552 4,"Manatee","Petroleum","Florida Power &

  15. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Scherer","Coal","Georgia Power Co",3406.7 2,"Bowen","Coal","Georgia Power Co",3202 3,"Jack McDonough","Natural gas","Georgia Power Co",2578 4,"Vogtle","Nuclear","Georgia Power Co",2302 5,"Wansley","Coal","Georgia Power

  16. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Brownlee","Hydroelectric","Idaho Power Co",744 2,"Dworshak","Hydroelectric","USACE Northwestern Division",400 3,"Langley Gulch Power Plant","Natural gas","Idaho Power Co",298.7 4,"Cabinet Gorge","Hydroelectric","Avista Corp",254.6

  17. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Gibson","Coal","Duke Energy Indiana Inc",3132 2,"Rockport","Coal","Indiana Michigan Power Co",2600 3,"R M Schahfer","Coal","Northern Indiana Pub Serv Co",1780 4,"AES Petersburg","Coal","Indianapolis Power & Light Co",1709.5 5,"Clifty

  18. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Walter Scott Jr Energy Center","Coal","MidAmerican Energy Co",1635.5 2,"George Neal North","Coal","MidAmerican Energy Co",909.9 3,"Louisa","Coal","MidAmerican Energy Co",746.2 4,"Ottumwa","Coal","Interstate Power and Light Co",718.4

  19. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Jeffrey Energy Center","Coal","Westar Energy Inc",2155 2,"La Cygne","Coal","Kansas City Power & Light Co",1415.3 3,"Wolf Creek Generating Station","Nuclear","Wolf Creek Nuclear Optg Corp",1175 4,"Gordon Evans Energy Center","Natural gas","Kansas

  20. Table 2. Ten largest plants by generation capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Paradise","Coal","Tennessee Valley Authority",2201 2,"Trimble County","Coal","Louisville Gas & Electric Co",2185 3,"Ghent","Coal","Kentucky Utilities Co",1932 4,"E W Brown","Natural gas","Kentucky Utilities Co",1496 5,"Mill Creek