Powered by Deep Web Technologies
Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Temporary (mobile) storage testing facilities  

E-Print Network [OSTI]

.8 kV 115 kV CGI bus NWTC wind turbines Alstom 3 MW Siemens 2.3 MW GE 1.5 MW Gamesa 2 MW NREL- standing of how wind turbines react to grid disturbances. To understand the behavior of wind turbines and international levels by wind turbine manufacturers, certification authorities, and utilities. Utility operators

2

File:Temporary storage plan review check list.pdf | Open Energy...  

Open Energy Info (EERE)

storage plan review check list.pdf Jump to: navigation, search File File history File usage File:Temporary storage plan review check list.pdf Size of this preview: 463 599...

3

Permitted Mercury Storage Facility Notifications | Department...  

Broader source: Energy.gov (indexed) [DOE]

Services Waste Management Waste Disposition Long-Term Management and Storage of Elemental Mercury is in the Planning Stages Permitted Mercury Storage Facility...

4

Interim Storage of Plutonium in Existing Facilities  

SciTech Connect (OSTI)

'In this era of nuclear weapons disarmament and nonproliferation treaties, among many problems being faced by the Department of Energy is the safe disposal of plutonium. There is a large stockpile of plutonium at the Rocky Flats Environmental Technology Center and it remains politically and environmentally strategic to relocate the inventory closer to a processing facility. Savannah River Site has been chosen as the final storage location, and the Actinide Packaging and Storage Facility (APSF) is currently under construction for this purpose. With the ability of APSF to receive Rocky Flats material an estimated ten years away, DOE has decided to use the existing reactor building in K-Area of SRS as temporary storage to accelerate the removal of plutonium from Rocky Flats. There are enormous cost savings to the government that serve as incentive to start this removal as soon as possible, and the KAMS project is scheduled to receive the first shipment of plutonium in January 2000. The reactor building in K-Area was chosen for its hardened structure and upgraded seismic qualification, both resulting from an effort to restart the reactor in 1991. The KAMS project has faced unique challenges from Authorization Basis and Safety Analysis perspectives. Although modifying a reactor building from a production facility to a storage shelter is not technically difficult, the nature of plutonium has caused design and safety analysis engineers to make certain that the design of systems, structures and components included will protect the public, SRS workers, and the environment. A basic overview of the KAMS project follows. Plutonium will be measured and loaded into DOT Type-B shipping packages at Rocky Flats. The packages are 35-gallon stainless steel drums with multiple internal containment boundaries. DOE transportation vehicles will be used to ship the drums to the KAMS facility at SRS. They will then be unloaded, stacked and stored in specific locations throughout the reactor building. The storage life is projected to be ten years to allow the preparation of APSF. DOE has stipulated that there be no credible release during storage, since there are no design features in place to mitigate a release of plutonium (i.e. HEPA filters, facility containment boundaries, etc.). This mandate has presented most of the significant challenges to the safety analysis team. The shipping packages are designed to withstand certain accidents and conditions, but in order to take credit for these the storage environment must be strictly controlled. Damages to the packages from exposure to fire, dropping, crushing and other impact accidents have been analyzed, and appropriate preventative design features have been incorporated. Other efforts include the extension of the shipping life (roughly two years) to a suitable storage life of ten years. These issues include the effects of internal pressure increases, seal degradation and the presence of impurities. A process known as the Container Qualification Program has been conducted to address these issues. The KAMS project will be ready to receive the first shipment from Rocky Flats in January 2000. No credible design basis scenarios resulting in the release of plutonium exist. This work has been useful in the effort to provide a safer disposition of plutonium, but also the lessons learned and techniques established by the team will help with the analysis of future facility modifications.'

Woodsmall, T.D.

1999-05-10T23:59:59.000Z

5

Interim Storage Facility decommissioning. Final report  

SciTech Connect (OSTI)

Decontamination and decommissioning of the Interim Storage Facility were completed. Activities included performing a detailed radiation survey of the facility, removing surface and imbedded contamination, excavating and removing the fuel storage cells, restoring the site to natural conditions, and shipping waste to Hanford, Washington, for burial. The project was accomplished on schedule and 30% under budget with no measurable exposure to decommissioning personnel.

Johnson, R.P.; Speed, D.L.

1985-03-15T23:59:59.000Z

6

President Reagan Calls for a National Spent Fuel Storage Facility...  

National Nuclear Security Administration (NNSA)

Spent Fuel Storage Facility Washington, DC The Reagan Administration announces a nuclear energy policy that anticipates the establishment of a facility for the storage of...

7

Site Visit Report, Hanford Waste Encapsulation Storage Facility...  

Energy Savers [EERE]

Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 Site Visit Report, Hanford Waste Encapsulation Storage Facility - January 2011 January 2011 Hanford...

8

Optimal operating strategy for a storage facility  

E-Print Network [OSTI]

In the thesis, I derive the optimal operating strategy to maximize the value of a storage facility by exploiting the properties in the underlying natural gas spot price. To achieve the objective, I investigate the optimal ...

Zhai, Ning

2008-01-01T23:59:59.000Z

9

Waste Encapsulation Storage Facility, January 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

February 11, 2011 February 11, 2011 Site Visit Report Waste Encapsulation Storage Facility, January 2011 INTRODUCTION This report documents the results of a review conducted by the Office of Health, Safety and Security (HSS) of the Waste Encapsulation Storage Facility (WESF) documented safety analysis (DSA) at the Hanford Site. During discussions with the U.S. Department of Energy Richland Operations Office (DOE- RL), the review of WESF was jointly selected by HSS and DOE-RL based on the high hazards of the facility and the need to periodically evaluate the facility and DSA by independent reviewers. SCOPE The scope of the review was to evaluate the WESF safety and support systems in detecting, preventing and mitigating analyzed events as described in the facility's DSA, PRC-EDC-10-45190, 2010, Executive

10

Waste Encapsulation Storage Facility, January 2011  

Broader source: Energy.gov (indexed) [DOE]

February 11, 2011 February 11, 2011 Site Visit Report Waste Encapsulation Storage Facility, January 2011 INTRODUCTION This report documents the results of a review conducted by the Office of Health, Safety and Security (HSS) of the Waste Encapsulation Storage Facility (WESF) documented safety analysis (DSA) at the Hanford Site. During discussions with the U.S. Department of Energy Richland Operations Office (DOE- RL), the review of WESF was jointly selected by HSS and DOE-RL based on the high hazards of the facility and the need to periodically evaluate the facility and DSA by independent reviewers. SCOPE The scope of the review was to evaluate the WESF safety and support systems in detecting, preventing and mitigating analyzed events as described in the facility's DSA, PRC-EDC-10-45190, 2010, Executive

11

Automated Store Management For Drum Storage Facility  

SciTech Connect (OSTI)

This paper describes advanced system technology developed for a new Drum Storage Facility to be operated by Taiwan Power Company (TPC). A logistics management concept is applied for the storage of solid rad-wastes in terms of automated handling, transportation and storing as well as in terms of data management. The individual equipments, such as automated Bridge Cranes, Automatic Guided Vehicles and auxiliary systems are introduced in this paper and the store management process is outlined. The authors report furthermore on challenges during the design and engineering phase and review the project implementation from the equipment supplier's end. (authors)

Koller, W.; Lang, R. [Siempelkamp Nukleartechnik GmbH, Krefeld (Germany)

2008-07-01T23:59:59.000Z

12

Secretary Moniz Tours Kemper Carbon Capture and Storage Facility |  

Broader source: Energy.gov (indexed) [DOE]

Secretary Moniz Tours Kemper Carbon Capture and Storage Facility Secretary Moniz Tours Kemper Carbon Capture and Storage Facility Secretary Moniz Tours Kemper Carbon Capture and Storage Facility Addthis 1 of 5 A group including U.S. Secretary of Energy Ernest J. Moniz and Mississippi Gov. Phil Bryant tours the Kemper carbon capture and storage facility in Liberty, Mississippi, on Friday, Nov. 8. Kemper is the largest carbon capture and storage facility in the United States. | Photo Copyright 2013 Southern Company. 2 of 5 Southern Company CEO Tom Fanning, far right, and Mississippi Power CEO Ed Holland, second from right, greet U.S. Secretary of Energy Ernest J. Moniz, left, as he arrives to tour the Kemper carbon capture and storage facility in Liberty, Mississippi. | Photo Copyright 2013 Southern Company. 3 of 5 Southern Company CEO Tom Fanning, left, and U.S. Secretary of Energy Ernest

13

Hazardous Waste Treatment, Storage and Disposal Facilities (TSDF...  

Open Energy Info (EERE)

Treatment, Storage and Disposal Facilities (TSDF) Guidance Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook:...

14

The necessity for permanence : making a nuclear waste storage facility  

E-Print Network [OSTI]

The United States Department of Energy is proposing to build a nuclear waste storage facility in southern Nevada. This facility will be designed to last 10,000 years. It must prevent the waste from contaminating the ...

Stupay, Robert Irving

1991-01-01T23:59:59.000Z

15

2014 Headquarters Facilities Master Security Plan- Chapter 2, Limited Areas, Vault-Type Rooms and Temporary Limited Areas  

Broader source: Energy.gov [DOE]

2014 Headquarters Facilities Master Security Plan - Chapter 2, Limited Areas, Valut-Type Rooms and Temporary Limited Areas Describes DOE Headquarters procedures for establishing, maintaining, and deactivating Limited Areas and Vault-Type Rooms and protecting the classified information handled within those Areas.

16

Hanford facility dangerous waste permit application, 616 Nonradioactive Dangerous Waste Storage Facility. Revision 2A  

SciTech Connect (OSTI)

This permit application for the 616 Nonradioactive Dangerous Waste Storage Facility consists for 15 chapters. Topics of discussion include the following: facility description and general provisions; waste characteristics; process information; personnel training; reporting and record keeping; and certification.

Bowman, R.C.

1994-04-01T23:59:59.000Z

17

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect (OSTI)

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6.

Laycak, D T

2008-06-16T23:59:59.000Z

18

EA-0820: Construction of Mixed Waste Storage RCRA Facilities, Buildings  

Broader source: Energy.gov (indexed) [DOE]

0: Construction of Mixed Waste Storage RCRA Facilities, 0: Construction of Mixed Waste Storage RCRA Facilities, Buildings 7668 and 7669, Oak Ridge, Tennessee EA-0820: Construction of Mixed Waste Storage RCRA Facilities, Buildings 7668 and 7669, Oak Ridge, Tennessee SUMMARY This EA evaluates the environmental impacts of a proposal to construct and operate two mixed (both radioactive and hazardous) waste storage facilities (Buildings 7668 and 7669) in accordance with Resource Conservation and Recovery Act requirements. Site preparation and construction activities would take place at the U.S. Department of Energy's Oak Ridge National Laboratory in Oak Ridge, Tennessee. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 16, 1994 EA-0820: Finding of No Significant Impact

19

Rules and Regulations for Underground Storage Facilities Used for Petroleum  

Broader source: Energy.gov (indexed) [DOE]

Rules and Regulations for Underground Storage Facilities Used for Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island) Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations apply to underground storage facilities for petroleum and

20

Thermal Storage Applications for Commercial/Industrial Facilities  

E-Print Network [OSTI]

THERMAL STORAGE APPLICATIONS FOR COMMERCIAL/INDUSTRIAL FACILITIES Roger 1. Knipp, PE. Dallas Power & Light Company Dallas, Texas ABSTRACT Texas Utilities Electric Company has been actively encouraging installations of thermal storage... since 1981. Financial incentives and advantageous rates can make thermal storage an attractive cooling concept in Texas Utilities Electric Company service area. Currently, 14 million square feet of commercial building space in Dallas is either...

Knipp, R. L.

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Cool Storage Economic Feasibility Analysis for a Large Industrial Facility  

E-Print Network [OSTI]

The analysis of economic feasibility for adding a cool storage facility to shift electric demand to off-peak hours for a large industrial facility is presented. DOE-2 is used to generate the necessary cooling load profiles for the analysis...

Fazzolari, R.; Mascorro, J. A.; Ballard, R. H.

1988-01-01T23:59:59.000Z

22

President Reagan Calls for a National Spent Fuel Storage Facility |  

National Nuclear Security Administration (NNSA)

Reagan Calls for a National Spent Fuel Storage Facility | Reagan Calls for a National Spent Fuel Storage Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > President Reagan Calls for a National Spent ... President Reagan Calls for a National Spent Fuel Storage Facility October 08, 1981

23

Fuel Storage Facility Final Safety Analysis Report. Revision 1  

SciTech Connect (OSTI)

The Fuel Storage Facility (FSF) is an integral part of the Fast Flux Test Facility. Its purpose is to provide long-term storage (20-year design life) for spent fuel core elements used to provide the fast flux environment in FFTF, and for test fuel pins, components and subassemblies that have been irradiated in the fast flux environment. This Final Safety Analysis Report (FSAR) and its supporting documentation provides a complete description and safety evaluation of the site, the plant design, operations, and potential accidents.

Linderoth, C.E.

1984-03-01T23:59:59.000Z

24

Management of a complex cavern storage facility for natural gas  

SciTech Connect (OSTI)

The Epe cavern storage facility operated by Ruhrgas AG has developed into one of the largest gas cavern storage facilities in the world. Currently, there are 32 caverns and 18 more are planned in the future. Working gas volume will increase from approximately 1.5 {times} 10{sup 9} to 2 {times} 10{sup 9} m{sup 3}. The stratified salt deposit containing the caverns has a surface area of approximately 7 km{sup 2} and is 250 m thick at the edge and 400 m thick in the center. Caverns are leached by a company that uses the recovered brine in the chlorine industry. Cavern dimensions are determined before leaching. The behavior of each cavern, as well as the thermodynamic properties of natural gas must be considered in cavern management. The full-length paper presents the components of a complex management system covering the design, construction, and operation of the Epe gas-storage caverns.

NONE

1998-04-01T23:59:59.000Z

25

Recommendations on the proposed Monitored Retrievable Storage Facility  

SciTech Connect (OSTI)

Following the Department of Energy's announcement in April 1985 that three Tennessee sites were to be considered for the Monitored Retrievable Storage facility, Governor Lamar Alexander initiated a review of the proposal to be coordinated by his Safe Growth Team. Roane County and the City of Oak Ridge, the local governments sharing jurisdiction over DOE's primary and secondary sites, were invited to participate in the state's review of the MRS proposal. Many issues related to the proposed MRS are being considered by the Governor's Safe Growth Team. The primary objective of the Clinch River MRS Task Force has been to determine whether the proposed Monitored Retrievable Storage facility should be accepted by the local governments, and if so, under what conditions. The Clinch River MRS Task Force is organized into an Executive Committee cochaired by the Roane County Executive and Mayor of Oak Ridge and three Study Groups focusing on environmental (including health and safety), socioeconomic, and transportation issues.

Not Available

1985-10-01T23:59:59.000Z

26

Hanford facility dangerous waste permit application, PUREX storage tunnels  

SciTech Connect (OSTI)

The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the US Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needs defined by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the PUREX Storage Tunnels permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents Section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the PUREX Storage Tunnels permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this PUREX Storage Tunnels permit application documentation is current as of April 1997.

Price, S.M.

1997-09-08T23:59:59.000Z

27

Waste Encapsulation and Storage Facility (WESF) Interim Status Closure Plan  

SciTech Connect (OSTI)

This document describes the planned activities and performance standards for closing the Waste Encapsulation and Storage Facility (WESF). WESF is located within the 225B Facility in the 200 East Area on the Hanford Facility. Although this document is prepared based on Title 40 Code of Federal Regulations (CFR), Part 265, Subpart G requirements, closure of the storage unit will comply with Washington Administrative Code (WAC) 173-303-610 regulations pursuant to Section 5.3 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Action Plan (Ecology et al. 1996). Because the intention is to clean close WESF, postclosure activities are not applicable to this interim status closure plan. To clean close the storage unit, it will be demonstrated that dangerous waste has not been left onsite at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or environmentally is impracticable, the interim status closure plan will be modified to address required postclosure activities. WESF stores cesium and strontium encapsulated salts. The encapsulated salts are stored in the pool cells or process cells located within 225B Facility. The dangerous waste is contained within a double containment system to preclude spills to the environment. In the unlikely event that a waste spill does occur outside the capsules, operating methods and administrative controls require that waste spills be cleaned up promptly and completely, and a notation made in the operating record. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

SIMMONS, F.M.

2000-12-01T23:59:59.000Z

28

Assessment of plutonium storage safety issues at Department of Energy facilities  

SciTech Connect (OSTI)

The Department of Energy (DOE) mission for utilization and storage of nuclear materials has recently changed as a result of the end of the ``Cold War`` era. Past and current plutonium storage practices largely reflect a temporary, in-process, or in-use storage condition which must now be changed to accommodate longer-term storage. This report summarizes information concerning current plutonium metal and oxide storage practices which was presented at the Office of Defense programs (DP) workshop in Albuquerque, New Mexico on May 26-27, 1993 and contained in responses to questions by DP-62 from the field organizations.

Not Available

1994-01-01T23:59:59.000Z

29

Avoca, New York Salt Cavern Gas Storage Facility  

SciTech Connect (OSTI)

The first salt cavern natural gas storage facility in the northeastern United States designed to serve the interstate gas market is being developed by J Makowski Associates and partners at Avoca in Steuben County, New York. Multiple caverns will be leached at a depth of about 3800 ft from an approximately 100 ft interval of salt within the F unit of the Syracuse Formation of the Upper Silurian Salina Group. The facility is designed to provide 5 Bcf of working gas capacity and 500 MMcfd of deliverability within an operating cavern pressure range between 760 psi and 2850 psi. Fresh water for leaching will be obtained from the Cohocton River aquifer at a maximum rate of 3 million gallons per day and produced brine will be injected into deep permeable Cambrian age sandstones and dolostones. Gas storage service is anticipated to commence in the Fall of 1997 with 2 Bcf of working gas capacity and the full 5 Bcf or storage service is scheduled to be available in the Fall of 1999.

Morrill, D.C. [J. Makowski and Associates, Boston, MA (United States)

1995-09-01T23:59:59.000Z

30

CMS 3.4 Temporary Changes, 4/10/95 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

experiments. The Facility Representative reviews the status of temporary modifications, distribution of temporary procedure changes, and examines tests or experiments....

31

Viability of Existing INL Facilities for Dry Storage Cask Handling  

SciTech Connect (OSTI)

This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

Randy Bohachek; Charles Park; Bruce Wallace; Phil Winston; Steve Marschman

2013-04-01T23:59:59.000Z

32

Integral Monitored Retrievable Storage (MRS) Facility conceptual design report  

SciTech Connect (OSTI)

In April 1985, the Department of Energy (DOE) selected the Clinch River site as its preferred site for the construction and operation of the monitored retrievable storage (MRS) facility (USDOE, 1985). In support of the DOE MRS conceptual design activity, available data describing the site have been gathered and analyzed. A composite geotechnical description of the Clinch River site has been developed and is presented herein. This report presents Clinch River site description data in the following sections: general site description, surface hydrologic characteristics, groundwater characteristics, geologic characteristics, vibratory ground motion, surface faulting, stability of subsurface materials, slope stability, and references. 48 refs., 35 figs., 6 tabs.

None

1985-09-01T23:59:59.000Z

33

Consolidated Storage Facilities: Camel's Nose or Shared Burden? - 13112  

SciTech Connect (OSTI)

The Blue Ribbon Commission (BRC) made a strong argument why the reformulated nuclear waste program should make prompt efforts to develop one or more consolidated storage facilities (CSFs), and recommended the amendment of NWPA Section 145(b) 2 (linking 'monitored retrievable storage' to repository development) as an essential means to that end. However, other than recommending that the siting of CSFs should be 'consent-based' and that spent nuclear fuel (SNF) at stranded sites should be first-in-line for removal, the Commission made few recommendations regarding how CSF development should proceed. Working with three other key Senators, Jeff Bingaman attempted in the 112. Congress to craft legislation (S. 3469) to put the BRC recommendations into legislative language. The key reason why the Nuclear Waste Administration Act of 2012 did not proceed was the inability of the four senators to agree on whether and how to amend NWPA Section 145(b). A brief review of efforts to site consolidated storage since the Nuclear Waste Policy Amendments Act of 1987 suggests a strong and consistent motivation to shift the burden to someone (anyone) else. This paper argues that modification of NWPA Section 145(b) should be accompanied by guidelines for regional development and operation of CSFs. After review of the BRC recommendations regarding CSFs, and the 'camel's nose' prospects if implementation is not accompanied by further guidelines, the paper outlines a proposal for implementation of CSFs on a regional basis, including priorities for removal from reactor sites and subsequently from CSFs to repositories. Rather than allowing repository siting to be prejudiced by the location of a single remote CSF, the regional approach limits transport for off-site acceptance and storage, increases the efficiency of removal operations, provides a useful basis for compensation to states and communities that accept CSFs, and gives states with shared circumstances a shared stake in storage and disposal in an integrated national program. (authors)

Williams, James M. [Western Interstate Energy Board, 1600 Broadway, Suite 1700, Denver CO 80202 (United States)] [Western Interstate Energy Board, 1600 Broadway, Suite 1700, Denver CO 80202 (United States)

2013-07-01T23:59:59.000Z

34

Recommendations on the proposed Monitored Retrievable Storage Facility  

SciTech Connect (OSTI)

Following the Department of Energy`s announcement in April 1985 that three Tennessee sites were to be considered for the Monitored Retrievable Storage facility, Governor Lamar Alexander initiated a review of the proposal to be coordinated by his Safe Growth Team. Roane County and the City of Oak Ridge, the local governments sharing jurisdiction over DOE`s primary and secondary sites, were invited to participate in the state`s review of the MRS proposal. Many issues related to the proposed MRS are being considered by the Governor`s Safe Growth Team. The primary objective of the Clinch River MRS Task Force has been to determine whether the proposed Monitored Retrievable Storage facility should be accepted by the local governments, and if so, under what conditions. The Clinch River MRS Task Force is organized into an Executive Committee cochaired by the Roane County Executive and Mayor of Oak Ridge and three Study Groups focusing on environmental (including health and safety), socioeconomic, and transportation issues.

Not Available

1985-10-01T23:59:59.000Z

35

Maximizing Gross Margin of a Pumped Storage Hydroelectric Facility Under Uncertainty in Price and Water Inflow.  

E-Print Network [OSTI]

??The operation of a pumped storage hydroelectric facility is subject to uncertainty. This is especially true in today’s energy markets. Published models to achieve optimal… (more)

Ikudo, Akina

2009-01-01T23:59:59.000Z

36

EA-0995: Drum Storage Facility for Interim Storage of Materials Generated by Environmental Restoration Operations, Golden, Colorado  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to construct and operate a drum storage facility at the U.S. Department of Energy's Rocky Flats Environmental Technology Site in Golden,...

37

Independent regulatory examination of radiation situation in the areas of spent nuclear fuel and radioactive wastes storage in the Russian far east  

Science Journals Connector (OSTI)

......submarines performing reception and storage of spent nuclear fuel (SNF...as well as for temporary storage and reloading of SNF after...seaweeds, bottom sediments, seawater, sea fish, mushrooms, local...for LRW treatment, the LRW storage facility, SRW storage facility......

N. K. Shandala; S. M. Kiselev; A. I. Lucyanec; A. V. Titov; V. A. Seregin; D. V. Isaev; S. V. Akhromeev

2011-07-01T23:59:59.000Z

38

Viability of Existing INL Facilities for Dry Storage Cask Handling R1 |  

Broader source: Energy.gov (indexed) [DOE]

Viability of Existing INL Facilities for Dry Storage Cask Handling Viability of Existing INL Facilities for Dry Storage Cask Handling R1 Viability of Existing INL Facilities for Dry Storage Cask Handling R1 While dry storage technologies are some of the safest in the world, the U.S. Department of Energy is planning a confirmatory dry storage project for high burnup fuel. This report evaluates existing capabilities at Idaho National Laboratory (INL) to determine if a practical and cost effective method could be developed for handling and opening full-sized dry storage casks. Existing facilities at the Idaho Nuclear Technology and Engineering Center provide the infrastructure to support handling and examining of casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal

39

Feasibility study: Assess the feasibility of siting a monitored retrievable storage facility. Phase 1  

SciTech Connect (OSTI)

The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction.

King, J.W.

1993-08-01T23:59:59.000Z

40

Measurement of Atmospheric Sea Salt Concentration in the Dry Storage Facility of the Spent Nuclear Fuel  

SciTech Connect (OSTI)

Spent nuclear fuel coming from a Japanese nuclear power plant is stored in the interim storage facility before reprocessing. There are two types of the storage methods which are wet and dry type. In Japan, it is anticipated that the dry storage facility will increase compared with the wet type facility. The dry interim storage facility using the metal cask has been operated in Japan. In another dry storage technology, there is a concrete overpack. Especially in USA, a lot of concrete overpacks are used for the dry interim storage. In Japan, for the concrete cask, the codes of the Japan Society of Mechanical Engineers and the governmental technical guidelines are prepared for the realization of the interim storage as well as the code for the metal cask. But the interim storage using the concrete overpack has not been in progress because the evaluation on the stress corrosion cracking (SCC) of the canister is not sufficient. Japanese interim storage facilities would be constructed near the seashore. The metal casks and concrete overpacks are stored in the storage building in Japan. On the other hand, in USA they are stored outside. It is necessary to remove the decay heat of the spent nuclear fuel in the cask from the storage building. Generally, the heat is removed by natural cooling in the dry storage facility. Air including the sea salt particles goes into the dry storage facility. Concerning the concrete overpack, air goes into the cask body and cools the canister. Air goes along the canister surface and is in contact with the surface directly. In this case, the sea salt in the air attaches to the surface and then there is the concern about the occurrence of the SCC. For the concrete overpack, the canister including the spent fuel is sealed by the welding. The loss of sealability caused by the SCC has to be avoided. To evaluate the SCC for the canister, it is necessary to make clear the amount of the sea salt particles coming into the storage building and the concentration on the canister. In present, the evaluation on that point is not sufficient. In this study, the concentration of the sea salt particles in the air and on the surface of the storage facility are measured inside and outside of the building. For the measurement, two sites of the dry storage facility using the metal cask are chosen. This data is applicable for the evaluation on the SCC of the canister to realize the interim storage using the concrete overpack. (authors)

Masumi Wataru; Hisashi Kato; Satoshi Kudo; Naoko Oshima; Koji Wada [Central Research Institute of Electric Power Industry - CRIEPI (Japan); Hirofumi Narutaki [Electric Power Engineering Systems Co. Ltd. (Japan)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Thermal Storage Materials Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Materials Storage Materials Laboratory may include: * CSP technology developers * Utilities * Certification laboratories * Government agencies * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Thermal Storage Materials Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Thermal Storage Materials Laboratory The Thermal Storage Materials Laboratory at NREL's Energy Systems Integration Facility (ESIF) investigates materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar power (CSP) plants. Research objectives include the discovery and evaluation of

42

Quantification of undersea gas leaks from carbon capture and storage facilities, from pipelines and from methane seeps, by their acoustic emissions  

Science Journals Connector (OSTI)

...Quantification of undersea gas leaks from carbon capture and storage facilities, from...importance of leak detection from carbon capture and storage facilities and the...pipelines or leaks from facilities for carbon capture and storage) have the advantage...

2012-01-01T23:59:59.000Z

43

Think inside the box : an analysis of converting commercial property into self storage facilities  

E-Print Network [OSTI]

The modern self storage facility is a multi-tenant operating business that reflects the needs of residential and commercial customers. The industry has evolved from a transition asset to a property type that adheres to ...

McKinley, Sean Jeffrey

2006-01-01T23:59:59.000Z

44

Benchmarking of MCNP for calculating dose rates at an interim storage facility for nuclear waste  

Science Journals Connector (OSTI)

......an interim storage facility for nuclear waste Burkhard Heuel-Fabianek Ralf...Research Centre Julich, Germany, nuclear waste is stored in drums and other vessels...Research Centre Julich (FZJ) nuclear waste is generated, which has to be......

Burkhard Heuel-Fabianek; Ralf Hille

2005-12-20T23:59:59.000Z

45

Energy Management Using Storage Batteries in Large Commercial Facilities Based on Projection of Power Demand  

Science Journals Connector (OSTI)

This study provides three methods for projection of power demand of large commercial facilities planned for construction, ... the operation algorithm of storage batteries to manage energy and minimize power costs...

Kentaro Kaji; Jing Zhang; Kenji Tanaka

2013-01-01T23:59:59.000Z

46

Temporary Waters  

Science Journals Connector (OSTI)

Temporary waters are lakes, ponds, streams, seeps, microhabitats, and other areas that hold water periodically and then dry. They occur across the globe, at all latitudes, and in all biomes, wherever water can collect long enough for aquatic life to develop. These waters are numerous, mostly small, and easily studied. Their biological communities are diverse, have much among-site variation, often include endemic species, and differ from those in permanent waters, contributing to regional biodiversity. Organisms survive through species-specific behavioral, physiological, and life-history adaptations. Community composition and structure change in response to environmental variations. Temporary waters are highly productive and their food webs are relatively simple. For all of these reasons, temporary waters lend themselves to surveys and experimental manipulations designed to test hypotheses about biological adaptation, population regulation, evolutionary processes, community composition and structure, and ecosystem functioning. In many parts of the world, most temporary waters have been lost. The conservation and restoration of vulnerable temporary waters is a major thrust of applied ecology. Also important are applications of ecological understanding to the control of disease vectors, especially pathogen-transmitting mosquitoes, from temporary water habitats. This article describes temporary waters, examines their biota and adaptations, and summarizes key questions about their ecology.

E.A. Colburn

2008-01-01T23:59:59.000Z

47

Solar Heating Test Design Facility for Bulk PCM Storage  

Science Journals Connector (OSTI)

This experimentation, conducted by the “Centre d’Energétique de l’ENSMP”, was designed to analyze the interest of bulk PCM storage centralized in a real water active solar heating system consisting of a low tempe...

P. Achard; B. Amann; D. Mayer

1984-01-01T23:59:59.000Z

48

Risk-informed separation distances for hydrogen gas storage facilities.  

SciTech Connect (OSTI)

The use of risk information in establishing code and standard requirements enables: (1) An adequate and appropriate level of safety; and (2) Deployment of hydrogen facilities are as safe as gasoline facilities. This effort provides a template for clear and defensible regulations, codes, and standards that can enable international market transformation.

Houf, William G.; Merilo, Erik (SRI); Winters, William Stanley, Jr.; Dedrick, Daniel E.; Groethe, Mark (SRI); LaChance, Jeffrey L.; Ruggles, Adam James; Moen, Christopher D.; Schefer, Robert W.; Keller, Jay O.; Zhang, Yao; Evans, Gregory Herbert

2010-09-01T23:59:59.000Z

49

Federal Facility Compliance Agreement on Storage of Polychlorinated Biphenyls, August 8, 1996  

Broader source: Energy.gov (indexed) [DOE]

Facility Compliance Agreement on Storage of Polychlorinated Biphenyls, August.. Page 1 of 18 Facility Compliance Agreement on Storage of Polychlorinated Biphenyls, August.. Page 1 of 18 EM Home | Regulatory Compliance | Environmental Compliance Agreements Federal Facility Compliance Agreement on Storage of Polychlorinated Biphenyls, August 8, 1996 NOTE: As of December 16, 1996, for the Oak Ridge Reservation this National Agreement was superseded by the Oak Ridge Reservation Polychlorinated Biphenyl Federal Facilities Compliance Agreement (ORR-PCB-FFCA). The ORR-PCB-FFCA will be available soon. Table of Contents I. Introduction II. Definitions III. Covered Materials IV. Statement of Facts & Conclusions of Law V. Compliance Requirements VI. Submittal and Review of Annual Status Report VII. Notification VIII. Dispute Resolution IX. Extensions

50

General Heat Transfer Characterization and Empirical Models of Material Storage Temperatures for the Los Alamos Nuclear Materials Storage Facility  

SciTech Connect (OSTI)

The Los Alamos National Laboratory's Nuclear Materials Storage Facility (NMSF) is being renovated for long-term storage of canisters designed to hold heat-generating nuclear materials. A fully passive cooling scheme, relying on the transfer of heat by conduction, free convection, and radiation has been proposed as a reliable means of maintaining material at acceptable storage temperatures. The storage concept involves placing radioactive materials, with a net heat-generation rate of 10 W to 20 W, inside a set of nested steel canisters. The canisters are, in placed in holding fixtures and positioned vertically within a steel storage pipe. Several hundred drywells are arranged in a linear array within a large bay and dissipate the waste heat to the surrounding air, thus creating a buoyancy driven airflow pattern that draws cool air into the storage facility and exhausts heated air through an outlet stack. In this study, an experimental apparatus was designed to investigate the thermal characteristics of simulated nuclear materials placed inside two nested steel canisters positioned vertically on an aluminum fixture plate and placed inside a section of steel pipe. The heat-generating nuclear materials were simulated with a solid aluminum cylinder containing .an embedded electrical resistance heater. Calibrated type T thermocouples (accurate to ~ O.1 C) were used to monitor temperatures at 20 different locations within the apparatus. The purposes of this study were to observe the heat dissipation characteristics of the proposed `canister/fixture plate storage configuration, to investigate how the storage system responds to changes in various parameters, and to develop and validate empirical correlations to predict material temperatures under various operating conditions

J. D. Bernardin; W. S. Gregory

1998-10-01T23:59:59.000Z

51

Hydrogeologic investigation of petrochemical contamination at a bulk storage facility  

E-Print Network [OSTI]

in 1953 and began receiving petroleum products through a pipeline in 1954. Other industrial facilities which developed in the area include Duke City Distributing, a food distributor; the Texaco Refining and Marketing bulk terminal; General Electric... in 1953 and began receiving petroleum products through a pipeline in 1954. Other industrial facilities which developed in the area include Duke City Distributing, a food distributor; the Texaco Refining and Marketing bulk terminal; General Electric...

Fryar, Dennis Gene

2012-06-07T23:59:59.000Z

52

Cooling Semiconductor Manufacturing Facilities with Chilled Water Storage  

E-Print Network [OSTI]

This paper examines the 5.2 million gallon chilled water storage system installed at TI's Expressway manufacturing complex in Dallas, Texas. During the peak cooling season ending September 30, 1994, it provided 3,750 tons of additional peak cooling...

Fiorino, D. P.

53

Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel  

SciTech Connect (OSTI)

This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

1994-10-01T23:59:59.000Z

54

Waste Encapsulation and Storage Facility (WESF) Dangerous Waste Training Plan (DWTP)  

SciTech Connect (OSTI)

This Waste Encapsulation Storage Facility (WESF) Dangerous Waste Training Plan (DWTP) applies to personnel who perform work at, or in support of WESF. The plan, along with the names of personnel, may be given to a regulatory agency inspector upon request. General workers, subcontractors, or visiting personnel who have not been trained in the management of dangerous wastes must be accompanied by an individual who meets the requirements of this training plan. Dangerous waste management includes handling, treatment, storage, and/or disposal of dangerous and/or mixed waste. Dangerous waste management units covered by this plan include: less-than-90-day accumulation area(s); pool cells 1-8 and 12 storage units; and process cells A-G storage units. This training plan describes general requirements, worker categories, and provides course descriptions for operation of the WESF permitted miscellaneous storage units and the Less-than-90-Day Accumulation Areas.

SIMMONS, F.M.

2000-03-29T23:59:59.000Z

55

3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1  

SciTech Connect (OSTI)

The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

none,

1992-11-01T23:59:59.000Z

56

Structural analyses of the storage container for heavy element facility, building-251  

SciTech Connect (OSTI)

The Heavy Element Facility, Building 251, contains a series of underground storage vaults which are used for long term storage of nuclear materials. A storage rack with shelves is suspended from the top of each storage vault. The stainless steel containers enclosing the nuclear materials are stored on the shelves. A Hazard & Accident assessment analyzed the vulnerability of this storage system to assaults resulting from natural phenomena and accidents within the building. The assessment considered all racks and their containers to be stored underground and secured in their static, long-term configuration. Moving beyond the static, long-term hazard assessment, the structural analyses were performed to evaluate the storage container against a rare, short duration event. An accidental free drop of a container may occur in a combination of two events: a rare, short-duration earthquake concurrent with an operation of raising the storage rack to a maximum height that the crane is capable of. This hypothetical free drop may occur only to the container in the uppermost shelf of the storage rack. The analyses were the structural evaluation of the storage container to determine the material containment integrity of the storage container after the accident. The evaluation was performed simulating a free drop from the storage rack, with a maximum load in the container, striking/an unyielding surface in the worst orientation. The analyses revealed that, in the very unlikely event of a container drop, the integrity of the hermetic seal of the storage container could be compromised due to plastic deformation of the lid and mating flange. Simple engineering and administrative controls can prevent that from occurring.

Ng, D S

1999-01-01T23:59:59.000Z

57

Probabilistic risk analysis for Test Area North Hot Shop Storage Pool Facility  

SciTech Connect (OSTI)

A storage pool facility used for storing spent fuel and radioactive debris from the Three Mile Island (TMI) accident was evaluated to determine the risk associated with its normal operations. Several hazards were identified and examined to determine if any any credible accident scenarios existed. Expected annual occurrence frequencies were calculated for hazards for which accident scenarios were identified through use of fault trees modeling techniques. Fault tree models were developed for two hazards: (1) increased radiation field and (2) spread of contamination. The models incorporated facets of the operations within the facility as well as the facility itself. 6 refs.

Meale, B.M.; Satterwhite, D.G.

1990-01-01T23:59:59.000Z

58

2727-S Nonradioactive Dangerous Waste Storage Facility Closure Plan. Revision 3A  

SciTech Connect (OSTI)

This report contains Sections 4 and 5 of the Nonradioactive Dangerous Waste Storage Facility Closure Plan, which summarizes closure activities for the site. Sampling procedures for the building, concrete and soils are given. Plans for building disposal, equipment decontamination, site restoration, and providing cost estimates are outlined. Section 5 discusses plans to develop a health and safety contingency plan before initiation of sampling activities.

Not Available

1992-10-01T23:59:59.000Z

59

EMSL Research and Capability Development Proposals Facility-Wide Management and Storage for Scientific Data  

E-Print Network [OSTI]

EMSL Research and Capability Development Proposals Facility-Wide Management and Storage become an increasingly important challenge in science. In many small- to medium-scale laboratory and methodologies employed to produce them. These approaches are tractable up to a certain limit--as long

60

SWAMI: An Autonomous Mobile Robot for Inspection of Nuclear Waste Storage Facilities  

E-Print Network [OSTI]

SWAMI: An Autonomous Mobile Robot for Inspection of Nuclear Waste Storage Facilities Ron Fulbright Inspector (SWAMI) is a prototype mobile robot designed to perform autonomous inspection of nuclear waste user interface building tool called UIM/X. Introduction Safe disposal of nuclear waste is a difficult

Stephens, Larry M.

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

EIS-0035: Use of VLCCs and VLCCs as Floating Storage Facilities  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this environmental impact statement to assess the potential environmental and socioeconomic impacts associated with the proposed use of tankers as floating storage facilities. This statement is a draft supplement to the programmatic environmental impact statement for the Strategic Petroleum Reserve.

62

Data Storage and Access Policy for C-CAMP facilities Experimental Data  

E-Print Network [OSTI]

Data Storage and Access Policy for C-CAMP facilities Experimental Data At the conclusion of a project, data given to clients will NOT include raw data files. a) In the case of Genomics, base call) In the case of Proteomics, LC spectra and *.raw files will NOT be provided. Only processed data files (in

Udgaonkar, Jayant B.

63

The 4843 Alkali Metal Storage Facility Closure Plan  

SciTech Connect (OSTI)

The 4843 AMSF has been used primarily to provide a centralized building to receive and store dangerous and mixed alkali metal waste, including sodium and lithium, which has been generated at the Fast Flux Test Facility and at various other Hanford Site operations that used alkali metals. Most of the dangerous and mixed alkali metal waste received consists of retired equipment from liquid sodium processes. The unit continues to store material. In general, only solid alkali metal waste that is water reactive is stored at the 4843 AMSF. The 4843 AMSF will be closed in a manner consistent with Ecology guidelines and regulations (WAC 173-303-610). The general closure procedure is detailed as follows.

Not Available

1991-06-01T23:59:59.000Z

64

EMSL Research and Capability Development Proposals Facility-Wide Management and Storage for Scientific Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility-Wide Management and Storage for Scientific Data Facility-Wide Management and Storage for Scientific Data Project Start Date: Summer 2008 EMSL Lead Investigator Ken Auberry Instrumentation Development Laboratory, EMSL, PNNL As greater numbers of collaborators, journals, and funding agencies require data retention associated with a given project, preservation of experimentally generated results has become an increasingly important challenge in science. In many small- to medium-scale laboratory environments, this task has traditionally been carried out using offline optical media (recordable CDs and DVDs) or externally connected commercial hard drive units. Along with the raw storage issues that must be addressed, additional challenges await in the correlation of stored data to contextual information about the experiments and

65

Conceptual design report: Nuclear materials storage facility renovation. Part 7, Estimate data  

SciTech Connect (OSTI)

The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment III-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VII - Estimate Data, contains the project cost estimate information.

NONE

1995-07-14T23:59:59.000Z

66

Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management  

SciTech Connect (OSTI)

The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

NONE

1995-07-14T23:59:59.000Z

67

Environmental assessment for the construction and operation of waste storage facilities at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky  

SciTech Connect (OSTI)

DOE is proposing to construct and operate 3 waste storage facilities (one 42,000 ft{sup 2} waste storage facility for RCRA waste, one 42,000 ft{sup 2} waste storage facility for toxic waste (TSCA), and one 200,000 ft{sup 2} mixed (hazardous/radioactive) waste storage facility) at Paducah. This environmental assessment compares impacts of this proposed action with those of continuing present practices aof of using alternative locations. It is found that the construction, operation, and ultimate closure of the proposed waste storage facilities would not significantly affect the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

NONE

1994-06-01T23:59:59.000Z

68

Federal Facility Compliance Agreement on Storage of Polychlorinated Biphenyls, August 8, 1996 Summary  

Broader source: Energy.gov (indexed) [DOE]

on Storage of on Storage of Polychlorinated Biphenyls, August 8, 1996 State Washington Agreement Type Federal Facility Compliance Agreement Legal Driver(s) TSCA Scope Summary Address DOE and the NNPP's inability to comply at this time with the regulations in 40 Parties DOE; US EPA; US Naval Nuclear Propulsion Program (NNPP) Date 8/8/1996 SCOPE * Address DOE and the NNPP's inability to comply at this time with the regulations in 40 CFR 761.65(a), which require polychlorinated biphenyls (PCBs) stored for disposal to be removed from storage and disposed of within one year of being placed in storage, and the Department of Transportation (DOT) container specifications in 40 CFR 761.65(c)(6). ESTABLISHING MILESTONES * Annually, starting six months after the effective date of this Agreement, DOE and the

69

Final report : phase I investigation at the former CCC/USDA grain storage facility in Savannah, Missouri.  

SciTech Connect (OSTI)

From approximately 1949 until 1970, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility on federally owned property approximately 0.25 mi northwest of Savannah, Missouri (Figure 1.1). During this time, commercial grain fumigants containing carbon tetrachloride were commonly used by the CCC/USDA and the private grain storage industry to preserve grain in their facilities. In November 1998, carbon tetrachloride was detected in a private well (Morgan) roughly 50 ft south of the former CCC/USDA facility, as a result of state-wide screening of private wells near former CCC/USDA facilities, conducted in Missouri by the U.S. Environmental Protection Agency (EPA 1999). The 1998 and subsequent investigations by the EPA and the Missouri Department of Natural Resources (MoDNR) confirmed the presence of carbon tetrachloride in the Morgan well, as well as in a second well (on property currently owned and occupied by the Missouri Department of Transportation [MoDOT]), described as being approximately 400 ft east of the former CCC/USDA facility. The identified concentrations in these two wells were above the EPA maximum contaminant level (MCL) and the default target level (DTL) values of 5.0 {micro}g/L for carbon tetrachloride in water used for domestic purposes (EPA 1999; MoDNR 2000a,b, 2006). (The DTL is defined in Section 4.) Because the observed contamination in the Morgan and MoDOT wells might be linked to the past use of carbon tetrachloride-based fumigants at its former grain storage facility, the CCC/USDA is conducting an investigation to (1) characterize the source(s), extent, and factors controlling the subsurface distribution and movement of carbon tetrachloride at Savannah and (2) evaluate the potential risks to human health, public welfare, and the environment posed by the contamination. This work is being performed in accord with the Intergovernmental Agreement established between the Farm Service Agency of the USDA and the MoDNR, to address carbon tetrachloride contamination potentially associated with a number of former CCC/USDA grain storage facilities in Missouri. The site characterization at Savannah is being conducted on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. A phased approach is being employed by the CCC/USDA and Argonne, with the approval of the MoDNR, so that information obtained and interpretations developed during each incremental stage of the study can be used most effectively to guide subsequent aspects of the program. This report presents the technical findings of Phase I of Argonne's studies. The Phase I investigation was undertaken in accord with the final site-specific Phase I Work Plan for Savannah (Argonne 2007), as well as with the Master Work Plan (MWPK) for CCC/USDAArgonne operations in the state of Kansas (Argonne 2002), which the MoDNR reviewed and approved (with minor revisions) for temporary use in Missouri to facilitate the start-up of the CCC/USDA's activities at Savannah. (Argonne is developing a similar Master Work Plan for operations in Missouri that is based on the existing MWPK, with the approval of the MoDNR. The Missouri document has not been finalized, however, at this time.) The site-specific Savannah Work Plan (Argonne 2007; approved by the MoDNR [2007a]) (1) summarized the pre-existing knowledge base for the Savannah investigation site compiled by Argonne and (2) described the site-specific technical objectives and the intended scope of work developed for this phase of the investigation. Four primary technical objectives were identified for the Phase I studies, as follows: (1) Update the previous (MoDNR 2000a,b) inventory and status of private wells in the immediate vicinity of the former CCC/USDA grain storage facility, and sample the identified wells for analyses for volatile organic compounds (VOCs) and geochemical constituents. (2) Investigate for possible evidence of a soil source of carbon tetrachloride contamination to groundwater beneath the former CCC/USDA fa

LaFreniere, L. M.; Environmental Science Division

2010-08-05T23:59:59.000Z

70

TEMPORARY SUPPORT HUMAN RESOURCES  

E-Print Network [OSTI]

TEMPORARY SUPPORT HUMAN RESOURCES GUIDELINE Workforce Planning | One Washington Square | San José of the Request for Temporary Support, Workforce Planning will make a determination of the type of temporary

Su, Xiao

71

Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities  

SciTech Connect (OSTI)

In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.

Sasser, K.

1994-06-01T23:59:59.000Z

72

Waste Encapsulation and Storage Facility (WESF) Basis for Interim Operation (BIO)  

SciTech Connect (OSTI)

The Waste Encapsulation and Storage Facility (WESF) is located in the 200 East Area adjacent to B Plant on the Hanford Site north of Richland, Washington. The current WESF mission is to receive and store the cesium and strontium capsules that were manufactured at WESF in a safe manner and in compliance with all applicable rules and regulations. The scope of WESF operations is currently limited to receipt, inspection, decontamination, storage, and surveillance of capsules in addition to facility maintenance activities. The capsules are expected to be stored at WESF until the year 2017, at which time they will have been transferred for ultimate disposition. The WESF facility was designed and constructed to process, encapsulate, and store the extracted long-lived radionuclides, {sup 90}Sr and {sup 137}Cs, from wastes generated during the chemical processing of defense fuel on the Hanford Site thus ensuring isolation of hazardous radioisotopes from the environment. The construction of WESF started in 1971 and was completed in 1973. Some of the {sup 137}Cs capsules were leased by private irradiators or transferred to other programs. All leased capsules have been returned to WESF. Capsules transferred to other programs will not be returned except for the seven powder and pellet Type W overpacks already stored at WESF.

COVEY, L.I.

2000-11-28T23:59:59.000Z

73

Hazard Evaluation for Storage of Spent Nuclear Fuel (SNF) Sludge at the Solid Waste Treatment Facility  

SciTech Connect (OSTI)

As part of the Spent Nuclear Fuel (SNF) storage basin clean-up project, sludge that has accumulated in the K Basins due to corrosion of damaged irradiated N Reactor will be loaded into containers and placed in interim storage. The Hanford Site Treatment Complex (T Plant) has been identified as the location where the sludge will be stored until final disposition of the material occurs. Long term storage of sludge from the K Basin fuel storage facilities requires identification and analysis of potential accidents involving sludge storage in T Plant. This report is prepared as the initial step in the safety assurance process described in DOE Order 5480.23, Nuclear Safety Analysis Reports and HNF-PRO-704, Hazards and Accident Analysis Process. This report documents the evaluation of potential hazards and off-normal events associated with sludge storage activities. This information will be used in subsequent safety analyses, design, and operations procedure development to ensure safe storage. The hazards evaluation for the storage of SNF sludge in T-Plant used the Hazards and Operability Analysis (HazOp) method. The hazard evaluation identified 42 potential hazardous conditions. No hazardous conditions involving hazardous/toxic chemical concerns were identified. Of the 42 items identified in the HazOp study, eight were determined to have potential for onsite worker consequences. No items with potential offsite consequences were identified in the HazOp study. Hazardous conditions with potential onsite worker or offsite consequences are candidates for quantitative consequence analysis. The hazardous conditions with potential onsite worker consequences were grouped into two event categories, Container failure due to overpressure - internal to T Plant, and Spill of multiple containers. The two event categories will be developed into accident scenarios that will be quantitatively analyzed to determine release consequences. A third category, Container failure due to overpressure--external to T Plant, was included for completeness but is not within the scope of the hazards evaluation. Container failures external to T Plant will be addressed as part of the transportation analysis. This document describes the HazOp analysis performed for the activities associated with the storage of SNF sludge in the T Plant.

SCHULTZ, M.V.

2000-08-22T23:59:59.000Z

74

Environmental Assessment for the Ammunition Storage Facility at the Savannah River Site  

Broader source: Energy.gov (indexed) [DOE]

t30. t30. U.S. DEPARTHEHT OF EMERCT , FXNIDIIG OF It0 SIONI~ICAMT. IMPACT -1TIOH STORAGE E'ACXLITX AT THE SAVAxmAa RI-R iIT@ " Afl[EN, 6OtfTE CAROLXNA AGEYCT: U.S. Department of Energy ACTIOR: Finding of No Significant Impact s-r: The Department of Energy (DOE1 hqe prepared an Environmental ~Asscssx~ent (EA), DOE/EA-0820, for the proposed construction and operation of ~rl Ammunition Storage Facility at the Savannah River Site (SRS), Aiken, South Carolina. Based on the analyses in the &A, DOE ha8 determined that the propoeed action ie aot a major Federal action significantly affecting the quality of the human environment, within the meaning of the Natioaal Eavironmcatal Policy Act (NEPA) of 1969. Therefore, the preparatioa of an environruents~,impaCt Statement iS not required

75

Power Hardware-in-the-Loop (PHIL) Testing Facility for Distributed Energy Storage (Poster)  

SciTech Connect (OSTI)

The growing deployment of distributed, variable generation and evolving end-user load profiles presents a unique set of challenges to grid operators responsible for providing reliable and high quality electrical service. Mass deployment of distributed energy storage systems (DESS) has the potential to solve many of the associated integration issues while offering reliability and energy security benefits other solutions cannot. However, tools to develop, optimize, and validate DESS control strategies and hardware are in short supply. To fill this gap, NREL has constructed a power hardware-in-the-loop (PHIL) test facility that connects DESS, grid simulator, and load bank hardware to a distribution feeder simulation.

Neubauer.J.; Lundstrom, B.; Simpson, M.; Pratt, A.

2014-06-01T23:59:59.000Z

76

Stress evaluation of the primary tank of a double-shell underground storage tank facility  

SciTech Connect (OSTI)

A facility called the Multi-Function Waste Tank Facility (MWTF) is being designed at the Department of Energy`s Hanford site. The MWTF is expected to be completed in 1998 and will consist of six underground double-shell waste storage tanks and associated systems. These tanks will provide safe and environmentally acceptable storage capacity to handle waste generated during single-shell and double-shell tank safety mitigation and remediation activities. This paper summarizes the analysis and qualification of the primary tank structure of the MWTF, as performed by ICF Kaiser Hanford during the latter phase of Title 1 (Preliminary) design. Both computer finite element analysis (FEA) and hand calculations methods based on the so-called Tank Seismic Experts Panel (TSEP) Guidelines were used to perform the analysis and evaluation. Based on the evaluations summarized in this paper, it is concluded that the primary tank structure of the MWTF satisfies the project design requirements. In addition, the hand calculations performed using the methodologies provided in the TSEP Guidelines demonstrate that, except for slosh height, the capacities exceed the demand. The design accounts for the adverse effect of the excessive slosh height demand, i.e., inadequate freeboard, by increasing the hydrodynamic wall and roof pressures appropriately, and designing the tank for such increased pressures.

Atalay, M.B. [ICF Kaiser Engineers, Inc., Oakland, CA (United States); Stine, M.D. [ICF Kaiser Hanford Co., Richland, WA (United States); Farnworth, S.K. [Westinghouse Hanford Co., Richland, WA (United States)

1994-12-01T23:59:59.000Z

77

Design report for the interim waste containment facility at the Niagara Falls Storage Site. [Surplus Facilities Management Program  

SciTech Connect (OSTI)

Low-level radioactive residues from pitchblende processing and thorium- and radium-contaminated sand, soil, and building rubble are presently stored at the Niagara Falls Storage Site (NFSS) in Lewiston, New York. These residues and wastes derive from past NFSS operations and from similar operations at other sites in the United States conducted during the 1940s by the Manhattan Engineer District (MED) and subsequently by the Atomic Energy Commission (AEC). The US Department of Energy (DOE), successor to MED/AEC, is conducting remedial action at the NFSS under two programs: on-site work under the Surplus Facilities Managemnt Program and off-site cleanup of vicinity properties under the Formerly Utilized Sites Remedial Action Program. On-site remedial action consists of consolidating the residues and wastes within a designated waste containment area and constructing a waste containment facility to prevent contaminant migration. The service life of the system is 25 to 50 years. Near-term remedial action construction activities will not jeopardize or preclude implementation of any other remedial action alternative at a later date. Should DOE decide to extend the service life of the system, the waste containment area would be upgraded to provide a minimum service life of 200 years. This report describes the design for the containment system. Pertinent information on site geology and hydrology and on regional seismicity and meteorology is also provided. Engineering calculations and validated computer modeling studies based on site-specific and conservative parameters confirm the adequacy of the design for its intended purposes of waste containment and environmental protection.

Not Available

1986-05-01T23:59:59.000Z

78

TEMPERATURE PREDICTION IN 3013 CONTAINERS IN K AREA MATERIAL STORAGE (KAMS) FACILITY USING REGRESSION METHODS  

SciTech Connect (OSTI)

3013 containers are designed in accordance with the DOE-STD-3013-2004. These containers are qualified to store plutonium (Pu) bearing materials such as PuO2 for 50 years. DOT shipping packages such as the 9975 are used to store the 3013 containers in the K-Area Material Storage (KAMS) facility at Savannah River Site (SRS). DOE-STD-3013-2004 requires that a comprehensive surveillance program be set up to ensure that the 3013 container design parameters are not violated during the long term storage. To ensure structural integrity of the 3013 containers, thermal analyses using finite element models were performed to predict the contents and component temperatures for different but well defined parameters such as storage ambient temperature, PuO{sub 2} density, fill heights, weights, and thermal loading. Interpolation is normally used to calculate temperatures if the actual parameter values are different from the analyzed values. A statistical analysis technique using regression methods is proposed to develop simple polynomial relations to predict temperatures for the actual parameter values found in the containers. The analysis shows that regression analysis is a powerful tool to develop simple relations to assess component temperatures.

Gupta, N

2008-04-22T23:59:59.000Z

79

Leak-Path Factor Analysis for the Nuclear Materials Storage Facility  

SciTech Connect (OSTI)

Leak-path factors (LPFs) were calculated for the Nuclear Materials Storage Facility (NMSF) located in the Plutonium Facility, Building 41 at the Los Alamos National Laboratory Technical Area 55. In the unlikely event of an accidental fire powerful enough to fail a container holding actinides, the subsequent release of oxides, modeled as PuO{sub 2} aerosols, from the facility and into the surrounding environment was predicted. A 1-h nondestructive assay (NDA) laboratory fire accident was simulated with the MELCOR severe accident analysis code. Fire-driven air movement along with wind-driven air infiltration transported a portion of these actinides from the building. This fraction is referred to as the leak-path factor. The potential effect of smoke aerosol on the transport of the actinides was investigated to verify the validity of neglecting the smoke as conservative. The input model for the NMSF consisted of a system of control volumes, flow pathways, and surfaces sufficient to model the thermal-hydraulic conditions within the facility and the aerosol transport data necessary to simulate the transport of PuO{sub 2} particles. The thermal-hydraulic, heat-transfer, and aerosol-transport models are solved simultaneously with data being exchanged between models. A MELCOR input model was designed such that it would reproduce the salient features of the fire per the corresponding CFAST calculation. Air infiltration into and out of the facility would be affected strongly by wind-driven differential pressures across the building. Therefore, differential pressures were applied to each side of the building according to guidance found in the ASHRAE handbook using a standard-velocity head equation with a leading multiplier to account for the orientation of the wind with the building. The model for the transport of aerosols considered all applicable transport processes, but the deposition within the building clearly was dominated by gravitational settling.

Shaffer, C.; Leonard, M.

1999-06-13T23:59:59.000Z

80

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect (OSTI)

A shielded storage rack has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the U.S. Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which processes and stores assembled GPHS modules, prior to their installation into RTGs. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (United States))

1993-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect (OSTI)

This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L.

1992-06-01T23:59:59.000Z

82

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect (OSTI)

This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy`s (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE`s Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford`s MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford`s calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L.

1992-06-01T23:59:59.000Z

83

Radioactive waste storage issues  

SciTech Connect (OSTI)

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15T23:59:59.000Z

84

DOE/EA-0820 ENVIRONMENTAL ASSESSMENT Construction of Mixed Waste Storage RCRA Facilities,  

Broader source: Energy.gov (indexed) [DOE]

20 20 ENVIRONMENTAL ASSESSMENT Construction of Mixed Waste Storage RCRA Facilities, Buildings 7668 and 7669 u.s. Department of Energy Oak Ridge National Laboratory Oak Ridge, Tennessee April 1994 ER t>ISTRf8UT!Q~~ Or-~I-:r8 DOCUMENT IS UNLlMIT~ DISCLAIMER This report was .prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial

85

Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility  

SciTech Connect (OSTI)

The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable.

Johnson, D.J.; Brehm, J.R.

1994-01-01T23:59:59.000Z

86

EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression  

Broader source: Energy.gov (indexed) [DOE]

52: Pacific Gas & Electric, Compressed Air Energy Storage 52: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California Summary DOE prepared an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California. Public Comment Opportunities Draft EA: Comment Period Ended 12/31/13. DOE will consider late submissions to the extent practicable. Comments should be marked "PG&E Compressed Air Energy Storage Draft EA

87

Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

88

Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Risks » Storage Environmental Risks » Storage Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Storage Discussion of the potential environmental impacts from storage of depleted UF6 at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts Analyzed in the PEIS The PEIS included an analysis of the potential environmental impacts from continuing to store depleted UF6 cylinders at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts from Continued Storage of UF6 Cylinders Continued storage of the UF6 cylinders would require extending the use of a

89

2014 Headquarters Facilities Master Security Plan - Chapter 2...  

Office of Environmental Management (EM)

2, Limited Areas, Vault-Type Rooms and Temporary Limited Areas 2014 Headquarters Facilities Master Security Plan - Chapter 2, Limited Areas, Vault-Type Rooms and Temporary Limited...

90

Referenced-site environmental document for a Monitored Retrievable Storage facility: backup waste management option for handling 1800 MTU per year  

SciTech Connect (OSTI)

This environmental document includes a discussion of the purpose of a monitored retrievable storage facility, a description of two facility design concepts (sealed storage cask and field drywell), a description of three reference sites (arid, warm-wet, and cold-wet), and a discussion and comparison of the impacts associated with each of the six site/concept combinations. This analysis is based on a 15,000-MTU storage capacity and a throughput rate of up to 1800 MTU per year.

Silviera, D.J.; Aaberg, R.L.; Cushing, C.E.; Marshall, A.; Scott, M.J.; Sewart, G.H.; Strenge, D.L.

1985-06-01T23:59:59.000Z

91

CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL  

SciTech Connect (OSTI)

RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

Farfan, E.; Coleman, R.

2011-03-31T23:59:59.000Z

92

EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression  

Broader source: Energy.gov (indexed) [DOE]

752: Pacific Gas & Electric, Compressed Air Energy Storage 752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California EA-1752: Pacific Gas & Electric, Compressed Air Energy Storage Compression Testing Phase and Temporary Site Facilities, Kings Island, San Joaquin County, California Summary DOE prepared an EA to evaluate the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 for the construction of an advanced compressed air energy storage plant in San Francisco, California. Public Comment Opportunities Draft EA: Comment Period Ends 12/31/13. DOE will consider late submissions to the extent practicable. A notice of availability will be published in The Record (Stockton) and the

93

Final environmental assessment and Finding-of-No-Significant-Impact - drum storage facility for interim storage of materials generated by environmental restoration operations  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-0995, for the construction and operation of a drum storage facility at Rocky Flats Environmental Technology Site, Golden, Colorado. The proposal for construction of the facility was generated in response to current and anticipated future needs for interim storage of waste materials generated by environmental restoration operations. A public meeting was held on July 20, 1994, at which the scope and analyses of the EA were presented. The scope of the EA included evaluation of alternative methods of storage, including no action. A comment period from July 5, 1994 through August 4, 1994, was provided to the public and the State of Colorado to submit written comment on the EA. No written comments were received regarding this proposed action, therefore no comment response is included in the Final EA. Based on the analyses in the EA, DOE has determined that the proposed action would not significantly affect the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an Environmental Impact Statement is not required and the Department is issuing this Finding of No Significant Impact.

Not Available

1994-09-01T23:59:59.000Z

94

Remote-controlled NDA (nondestructive assay) systems for feed and product storage at an automated MOX (mixed oxide) facility  

SciTech Connect (OSTI)

Nondestructive assay (NDA) systems have been developed for use in an automated mixed oxide (MOX) fabrication facility. Unique features have been developed for the NDA systems to accommodate robotic sample handling and remote operation. In addition, the systems have been designed to obtain International Atomic Energy Agency inspection data without the need for an inspector at the facility at the time of the measurements. The equipment is being designed to operate continuously in an unattended mode with data storage for periods of up to one month. The two systems described in this paper include a canister counter for the assay of MOX powder at the input to the facility and a capsule counter for the assay of complete liquid-metal fast breeder reactor fuel assemblies at the output of the plant. The design, performance characteristics, and authentication of the two systems will be described. The data related to reliability, precision, and stability will be presented. 5 refs., 10 figs., 4 tabs.

Menlove, H.O.; Augustson, R.H.; Ohtani, T.; Seya, M.; Takahashi, S.; Abedin-Zadeh, R.; Hassan, B.; Napoli, S.

1989-01-01T23:59:59.000Z

95

Energy Storage Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power conversion equipment for energy storage Power conversion equipment for energy storage * Ultra- and super-capacitor systems * DC systems, such as commercial microgrids Partner with Us Work with NREL experts and take advantage of the state-of-the-art capabilities at the ESIF to make progress on your projects, which may range from fundamental research to applications engineering. Partners at the ESIF's Energy Storage Laboratory

96

Cleaning residual NaK in the fast flux test facility fuel storage cooling system  

SciTech Connect (OSTI)

The Fast Flux Test Facility (FFTF), located on the U.S. Department of Energy's Hanford Reservation, is a liquid metal-cooled test reactor. The FFTF was constructed to support the U.S. Liquid Metal Fast Breeder Reactor Program. The bulk of the alkali metal (sodium and NaK) has been drained and will be stored onsite prior to final disposition. Residual NaK needed to be removed from the pipes, pumps, heat exchangers, tanks, and vessels in the Fuel Storage Facility (FSF) cooling system. The cooling system was drained in 2004 leaving residual NaK in the pipes and equipment. The estimated residual NaK volume was 76 liters in the storage tank, 1.9 liters in the expansion tank, and 19-39 liters in the heat transfer loop. The residual NaK volume in the remainder of the system was expected to be very small, consisting of films, droplets, and very small pools. The NaK in the FSF Cooling System was not radiologically contaminated. The portions of the cooling system to be cleaned were divided into four groups: 1. The storage tank, filter, pump, and associated piping; 2. The heat exchanger, expansion tank, and associated piping; 3. Argon supply piping; 4. In-vessel heat transfer loop. The cleaning was contracted to Creative Engineers, Inc. (CEI) and they used their superheated steam process to clean the cooling system. It has been concluded that during the modification activities (prior to CEI coming onsite) to prepare the NaK Cooling System for cleaning, tank T-914 was pressurized relative to the In-Vessel NaK Cooler and NaK was pushed from the tank back into the Cooler and that on November 6, 2005, when the gas purge through the In-Vessel NaK Cooler was increased from 141.6 slm to 283.2 slm, NaK was forced from the In-Vessel NaK Cooler and it contacted water in the vent line and/or scrubber. The gases from the reaction then traveled back through the vent line coating the internal surface of the vent line with NaK and NaK reaction products. The hot gases also exited the scrubber through the stack and due to the temperature of the gas, the hydrogen auto ignited when it mixed with the oxygen in the air. There was no damage to equipment, no injuries, and no significant release of hazardous material. Even though the FSF Cooling System is the only system at FFTF that contains residual NaK, there are lessons to be learned from this event that can be applied to future residual sodium removal activities. The lessons learned are: - Before cleaning equipment containing residual alkali metal the volume of alkali metal in the equipment should be minimized to the extent practical. As much as possible, reconfirm the amount and location of the alkali metal immediately prior to cleaning, especially if additional evolutions have been performed or significant time has passed. This is especially true for small diameter pipe (<20.3 centimeters diameter) that is being cleaned in place since gas flow is more likely to move the alkali metal. Potential confirmation methods could include visual inspection (difficult in all-metal systems), nondestructive examination (e.g., ultrasonic measurements) and repeating previous evolutions used to drain the system. Also, expect to find alkali metal in places it would not reasonably be expected to be. - Staff with an intimate knowledge of the plant equipment and the bulk alkali metal draining activities is critical to being able to confirm the amount and locations of the alkali metal residuals and to safely clean the residuals. - Minimize the potential for movement of alkali metal during cleaning or limit the distance and locations into which alkali metal can move. - Recognize that when working with alkali metal reactions, occasional pops and bangs are to be anticipated. - Pre-plan emergency responses to unplanned events to assure responses planned for an operating reactor are appropriate for the deactivation phase.

Burke, T.M.; Church, W.R. [Fluor Hanford, PO Box 1000, Richland, Washington, 99352 (United States); Hodgson, K.M. [Fluor Government Group, PO Box 1050, Richland, Washington, 99352 (United States)

2008-01-15T23:59:59.000Z

97

Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)  

SciTech Connect (OSTI)

The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

Burgard, K.C.

1998-04-09T23:59:59.000Z

98

Surveillance Guide - CMS 3.3 CMS 3.4 Temporary Changes  

Broader source: Energy.gov (indexed) [DOE]

TEMPORARY CHANGES TEMPORARY CHANGES 1.0 Objective The objective of this surveillance is to evaluate the effectiveness of the contractor's program for controlling temporary changes to the facility. Such changes include temporary modifications, temporary procedure changes, and tests or experiments. The Facility Representative reviews the status of temporary modifications, distribution of temporary procedure changes, and examines tests or experiments. 2.0 References 2.1 DOE 5700.6C, Quality Assurance 2.2 DOE-STD-1073-93, Guide for Operational Configuration Management 3.0 Requirements Implemented This surveillance is conducted to implement requirements CM-0009 and CM-0011 from the RL S/RID. These requirements are derived from

99

Student Temporary Employment Program | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Our Jobs Opportunities for Students Student Temporary Employment Program Student Temporary Employment Program The Student Temporary Employment Program (STEP) is the perfect...

100

Student Temporary Employment Program | National Nuclear Security...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Apply for Our Jobs How to Apply Student Jobs Student Temporary Employment Program Student Temporary Employment Program Our Student Temporary Employment Program (STEP)...

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

State-of-the-Art Thermal Energy Storage Retrofit at a Large Manufacturing Facility  

E-Print Network [OSTI]

This paper will describe the existing conditions, strategic planning, feasibility study, economic analysis, design, specification, construction, and project management for the 2.9 megawatt “full shift” chilled water thermal energy storage retrofit...

Fiorino, D.

102

Technical Competencies for the Safe Interim Storage and Management of 233U at U.S. Department of Energy Facilities  

SciTech Connect (OSTI)

Uranium-233 (with concomitant {sup 232}U) is a man-made fissile isotope of uranium with unique nuclear characteristics which require high-integrity alpha containment biological shielding, and remote handling. The special handling considerations and the fact that much of the {sup 233}U processing and large-scale handling was performed over a decade ago underscore the importance of identifying the people within the DOE complex who are currently working with or have worked with {sup 233}U. The availability of these key personnel is important in ensuring safe interim storage, management and ultimate disposition of {sup 233}U at DOE facilities. Significant programs are ongoing at several DOE sites with actinides. The properties of these actinide materials require many of the same types of facilities and handling expertise as does {sup 233}U.

Campbell, D.O.; Krichinsky, A.M.; Laughlin, S.S.; Van Essen, D.C.; Yong, L.K.

1999-02-17T23:59:59.000Z

103

EIS-0003: Proton-Proton Storage Accelerator Facility (Isabelle), Brookhaven National Laboratory, Upton, NY  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this EIS to analyze the significant environmental effects associated with construction and operation of the ISABELLE research facility to be built at Brookhaven National Laboratory.

104

Self-degradable Temporary Cementitious  

Broader source: Energy.gov [DOE]

Self-degradable Temporary Cementitious presentation at the April 2013 peer review meeting held in Denver, Colorado.

105

Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT accelerator DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream of high-speed electrons exits the accelerator it is

106

Evaluating the effects of the number of caverns on the performance of underground oil storage facilities  

SciTech Connect (OSTI)

Three dimensional finite element calculations were performed to investigate the effect field size, in terms of the number of caverns, on the performance of SPR oil storage caverns leached in domal salt (interms of surface subsidence, storage losses, and cavern integrity). The calculations were performed for cavern fields containing 1, 7, 19, and an infinite number of caverns. The magnitude and volume of subsidence was significantly affected by increasing the number of caverns (nearly an order of magnitude increase was predicted for each increase in field size), while the extent of subsidence (approximately 2000 m fromthe center of the field) and storage loss were not. Furthermore, the percentage of storage loss volume manifested as surface subsidence increased as the cavern field was enlarged. This was attributed to elasticvolumetric dilatation of overlying strata. The multiple cavern calculations demonstrate that storage losses are greater for caverns farther from the center of the caverns field. Based on an accumulated strain stability criteria, the larger cavern fields are predicted to have a shorter life. This criteria also indicates that caverns on the periphery of a field may show signs of instability before the inner caverns. The West Hackberry site (containing 22 caverns) subsidence data closely agrees with the 19 cavern model subsidence predictions, providing confidence in the calculations. Even a 19 cavern field, substantially large by SPR standards, does not approach the behavior predicted by infinite cavern models (which are frequently used because they are economical). This demonstrates that 3D modeling is required to accurately investigate the performance of a multi-cavern array. Although based on a typical SPR cavern design, the results of this study describe mechanics common to all multi-cavern fields and should, in general, be useful tocavern engineers and architects.

Hoffman, E.L.; Ehgartner, B.L.

1992-01-01T23:59:59.000Z

107

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

108

Machine studies for the development of storage cells at the ANKE facility of COSY  

E-Print Network [OSTI]

We present a measurement of the transverse intensity distributions of the COSY proton beam at the target interaction point at ANKE at the injection energy of 45 MeV, and after acceleration at 2.65 GeV. At 2.65 GeV, the machine acceptance was determined as well. From the intensity distributions the beam size is determined, and together with the measured machine acceptance, the dimensions of a storage cell for the double-polarized experiments with the polarized internal gas target at the ANKE spectrometer are specified. An optimum storage cell for the ANKE experiments should have dimensions of 15mm x 20mm x 390mm (vertical x horizontal x longitudinal), whereby a luminosity of about 2.5*10^29 cm^-2*s^-1 with beams of 10^10 particles stored in COSY could be reached.

K. Grigoryev; F. Rathmann; R. Engels; A. Kacharava; F. Klehr; B. Lorentz; S. Martin; M. Mikirtytchiants; D. Prasuhn; J. Sarkadi; H. Seyfarth; H. J. Stein; H. Ströher; A. Vasilyev

2008-05-14T23:59:59.000Z

109

Temporary Appointments | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Temporary Appointments Temporary Appointments Temporary Appointments A temporary appointment is a non-permanent time limited appointment for a period of 1 year. It can be extended up to the maximum of one year (total 24 months). After the first year, the appointment allows eligibility for health benefits coverage. The employee pays the full cost for the health benefits. Reasons for making a temporary appointment include but are not limited to: short term position (less than 1 year), reorganization, contracting of function, anticipated reduction in funding, or the need to place permanent employees who would otherwise be displaced from other parts of the organization. An agency can not fill a position by temporary appointment if that position has previously been filled by temporary appointment(s) for a period of 2

110

Potential for CO2 storage in depleted fields on the Dutch Continental Shelf–Cost estimate for offshore facilities  

Science Journals Connector (OSTI)

A study was performed on capital and operational costs for offshore injection of CO2 into depleted fields. The main focus was on the design and costs of process requirements for injection, required conservation (hibernation) and modification of existing platforms between end of gas/oil production and start of CO2 injection. Also cost estimates for new platforms are provided. The study is ‘high level’ and generic in nature as no specific target for CO2 storage has been selected. For the purpose of this study a simplified approach is used for determination of the required injection facilities and platform modifications. Nevertheless, the study provides a good indication on the level of expenditures that can be expected.

Floor Jansen; Rob Steinz; Boudewijn van Gelder

2011-01-01T23:59:59.000Z

111

RH-TRU Waste Shipments from Battelle Columbus Laboratories to the Hanford Nuclear Facility for Interim Storage  

SciTech Connect (OSTI)

Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning (D&D) activities for nuclear research buildings and grounds by 2006, as directed by Congress. Most of the resulting waste (approximately 27 cubic meters [m3]) is remote-handled (RH) transuranic (TRU) waste destined for disposal at the Waste Isolation Pilot Plant (WIPP). The BCL, under a contract to the U.S. Department of Energy (DOE) Ohio Field Office, has initiated a plan to ship the TRU waste to the DOE Hanford Nuclear Facility (Hanford) for interim storage pending the authorization of WIPP for the permanent disposal of RH-TRU waste. The first of the BCL RH-TRU waste shipments was successfully completed on December 18, 2002. This BCL shipment of one fully loaded 10-160B Cask was the first shipment of RH-TRU waste in several years. Its successful completion required a complex effort entailing coordination between different contractors and federal agencies to establish necessary supporting agreements. This paper discusses the agreements and funding mechanisms used in support of the BCL shipments of TRU waste to Hanford for interim storage. In addition, this paper presents a summary of the efforts completed to demonstrate the effectiveness of the 10-160B Cask system. Lessons learned during this process are discussed and may be applicable to other TRU waste site shipment plans.

Eide, J.; Baillieul, T. A.; Biedscheid, J.; Forrester, T,; McMillan, B.; Shrader, T.; Richterich, L.

2003-02-26T23:59:59.000Z

112

Sampling and analysis of radioactive liquid wastes and sludges in the Melton Valley and evaporator facility storage tanks at ORNL  

SciTech Connect (OSTI)

The sampling and analysis of the radioactive liquid wastes and sludges in the Melton Valley Storage Tanks (MVSTs), as well as two of the evaporator service facility storage tanks at ORNL, are described. Aqueous samples of the supernatant liquid and composite samples of the sludges were analyzed for major constituents, radionuclides, total organic carbon, and metals listed as hazardous under the Resource Conservation and Recovery Act (RCRA). Liquid samples from five tanks and sludge samples from three tanks were analyzed for organic compounds on the Environmental Protection Agency (EPA) Target Compound List. Estimates were made of the inventory of liquid and sludge phases in the tanks. Descriptions of the sampling and analytical activities and tabulations of the results are included. The report provides data in support of the design of the proposed Waste Handling and Packaging Plant, the Liquid Low-Level Waste Solidification Project, and research and development activities (R D) activities in developing waste management alternatives. 7 refs., 8 figs., 16 tabs.

Sears, M.B.; Botts, J.L.; Ceo, R.N.; Ferrada, J.J.; Griest, W.H.; Keller, J.M.; Schenley, R.L.

1990-09-01T23:59:59.000Z

113

Niagara Falls Storage Site, Annual site environmental report, Lewiston, New York, Calendar year 1986: Surplus Facilities Management Program (SFMP)  

SciTech Connect (OSTI)

During 1986, the environmental monitoring program was continued at the Niagara Falls Storage Site (NFSS), a US Department of Energy (DOE) surplus facility located in Niagara County, New York, presently used for the interim storage of radioactive residues and contaminated soils and rubble. The monitoring program is being conducted by Bechtel National, Inc. The monitoring program at the NFSS measures radon gas concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for the maximally exposed individual. Based on the conservative scenario described in the report, this individual would receive an annual external exposure approximately equivalent to 6% of the DOE radiation protection standard of 100 mrem/yr. By comparison, the incremental dose received from living in a brick house versus a wooden house is 10 mrem/yr above background. The cumulative dose to the population within an 80-km (50-mi) radius of the NFSS that would result from radioactive materials present at the site would be indistinguishable from the dose that the same population would receive from naturally occurring radioactive sources. Results of the 1986 monitoring show that the NFSS is in compliance with the DOE radiation protection standard. 14 refs., 11 figs., 14 tabs.

Not Available

1987-06-01T23:59:59.000Z

114

Conceptual design report: Nuclear materials storage facility renovation. Part 5, Structural/seismic investigation. Section A report, existing conditions calculations/supporting information  

SciTech Connect (OSTI)

The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. Based upon US Department of Energy (DOE) Albuquerque Operations (DOE/Al) Office and LANL projections, storage space limitations/restrictions will begin to affect LANL`s ability to meet its missions between 1998 and 2002.

NONE

1995-07-14T23:59:59.000Z

115

Quantification of undersea gas leaks from carbon capture and storage facilities, from pipelines and from methane seeps, by their acoustic emissions  

Science Journals Connector (OSTI)

...harmonically at a circular frequency omega with an amplitude...pulsations at a frequency omega 0 of a bubble...say, a carbon storage facility, the following...pulsating at its natural frequency omega 0 and initial...pressure changes in response to volume changes...fragments, the energy being manifest at...

2012-01-01T23:59:59.000Z

116

Self-degradable Temporary Cementitious  

Broader source: Energy.gov (indexed) [DOE]

RelevanceImpact of Research Objectives: Using BNL-developed temporary fracture sealing materials, objectives of this project are 1) to develop an advanced...

117

Proceedings of a workshop on uses of depleted uranium in storage, transportation and repository facilities  

SciTech Connect (OSTI)

A workshop on the potential uses of depleted uranium (DU) in the repository was organized to coordinate the planning of future activities. The attendees, the original workshop objective and the agenda are provided in Appendices A, B and C. After some opening remarks and discussions, the objectives of the workshop were revised to: (1) exchange information and views on the status of the Department of Energy (DOE) activities related to repository design and planning; (2) exchange information on DU management and planning; (3) identify potential uses of DU in the storage, transportation, and disposal of high-level waste and spent fuel; and (4) define the future activities that would be needed if potential uses were to be further evaluated and developed. This summary of the workshop is intended to be an integrated resource for planning of any future work related to DU use in the repository. The synopsis of the first day`s presentations is provided in Appendix D. Copies of slides from each presenter are presented in Appendix E.

NONE

1997-12-31T23:59:59.000Z

118

2727-S Nonradioactive Dangerous Waste Storage Facility clean closure evaluation report  

SciTech Connect (OSTI)

This report presents the analytical results of 2727-S NRDWS facility closure verification soil sampling and compares these results to clean closure criteria. The results of this comparison will determine if clean closure of the unit is regulatorily achievable. This report also serves to notify regulators that concentrations of some analytes at the site exceed sitewide background threshold levels (DOE-RL 1993b) and/or the limits of quantitation (LOQ). This report also presents a Model Toxics Control Act Cleanup (MTCA) (WAC 173-340) regulation health-based closure standard under which the unit can clean close in lieu of closure to background levels or LOQ in accordance with WAC 173-303-610. The health-based clean closure standard will be closure to MTCA Method B residential cleanup levels. This report reconciles all analyte concentrations reported above background or LOQ to this health-based cleanup standard. Regulator acceptance of the findings presented in this report will qualify the TSD unit for clean closure in accordance with WAC 173-303-610 without further TSD unit soil sampling, or soil removal and/or decontamination. Nondetected analytes require no further evaluation.

Luke, S.N.

1994-07-14T23:59:59.000Z

119

TEMPORARY FOOD SERVICE WORKER UNIVERSITY HOUSING & DINING SERVICES  

E-Print Network [OSTI]

PART-TIME TEMPORARY FOOD SERVICE WORKER UNIVERSITY HOUSING & DINING SERVICES WAGE $11.08 / HOUR Description The Food Service Worker 2 performs a variety of routine and semiroutine food service activities such as preparing, cooking, and serving simple foods in a volume dining or food service facility. Position Summary

Escher, Christine

120

Modification and expansion of X-7725A Waste Accountability Facility for storage of polychlorinated biphenyl wastes at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio  

SciTech Connect (OSTI)

The US Department of Energy (DOE) must manage wastes containing polychlorinated biphenyls (PCBs) in accordance with Toxic Substances Control Act (TSCA) requirements and as prescribed in a Federal Facilities Compliance Agreement (FFCA) between DOE and the U.S. Environmental Protection Agency (EPA). PCB-containing wastes are currently stored in the PORTS process buildings where they are generated. DOE proposes to modify and expand the Waste Accountability facility (X-7725A) at the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio, to provide a central storage location for these wastes. The proposed action is needed to eliminate the fire and safety hazards presented by the wastes. In this EA, DOE considers four alternatives: (1) no action, which requires storing wastes in limited storage areas in existing facilities; (2) modifying and expanding the X-7725A waste accountability facility; (3) constructing a new PCB waste storage building; and (4) shipping PCB wastes to the K-25 TSCA incinerator. If no action is taken, PCB-contaminated would continue to be stored in Bldgs X-326, X-330, and X-333. As TSCA cleanup activities continue, the quantity of stored waste would increase, which would subsequently cause congestion in the three process buildings and increase fire and safety hazards. The preferred alternative is to modify and expand Bldg. X-7725A to store wastes generated by TSCA compliance activities. Construction, which could begin as early as April 1996, would last approximately five to seven months, with a total peak work force of 70.

NONE

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Cold Vacuum Drying Facility - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disposal Facility U Plant Vitrification Plant Waste Encapsulation and Storage Facility Waste Receiving and Processing Facility Waste Sampling and Characterization Facility Waste...

122

Thermal and flow analysis of the Fluor Daniel, Inc., Nuclear Material Storage Facility renovation design (initial 30% effort of Title 1)  

SciTech Connect (OSTI)

The computational fluid dynamics code CFX4.2 was used to evaluate steady-state thermal-hydraulic conditions in the Fluor Daniel, Inc., Nuclear Material Storage Facility renovation design (initial 30% of Title 1). Thirteen facility cases were evaluated with varying temperature dependence, drywell-array heat-source magnitude and distribution, location of the inlet tower, and no-flow curtains in the drywell-array vault. Four cases of a detailed model of the inlet-tower top fixture were evaluated to show the effect of the canopy-cruciform fixture design on the air pressure and flow distributions.

Steinke, R.G.; Mueller, C.; Knight, T.D.

1998-03-01T23:59:59.000Z

123

U.S. Army Energy and Environmental Requirements and Goals: Opportunities for Fuel Cells and Hydrogen - Facility Locations and Hydrogen Storage/Delivery Logistics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

US Army Corps US Army Corps of Engineers ® Engineer Research and Development Center U.S. Army Energy and Environmental Requirements and Goals: Opportunities for Fuel Cells and Hydrogen Facility Locations and Hydrogen Storage/Delivery Logistics Nicholas M. Josefik 217-373-4436 N-josefik@cecer.army.mil www.dodfuelcell.com Franklin H. Holcomb Project Leader, Fuel Cell Team 27 OCT 08 Distributed Generation H 2 Generation & Storage Material Handling H2 Vehicles 2 US Army Corps of Engineers ® Engineer Research and Development Center Presentation Outline * DoD Energy Use * Federal Facilities Goals and Requirements * Federal Vehicles and Fuel Goals * Opportunities & Conclusions 3 US Army Corps of Engineers ® Engineer Research and Development Center Where Does the Energy Go? * Tactical and Combat Vehicles (Jets,

124

TEMPORARY AGENCY APPOINTMENTS HUMAN RESOURCES GUIDELINE  

E-Print Network [OSTI]

submit the Request for Temporary Support form to Workforce Planning available on the Human Resources web or performance issues should be reported to Workforce Planning. Workforce Planning will contact the temporary of the Request for Temporary Support, Workforce Planning will determine that the services of a temporary agency

Su, Xiao

125

Temporary Sealing of Fractures | Open Energy Information  

Open Energy Info (EERE)

Temporary Sealing of Fractures Temporary Sealing of Fractures Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for Temporary Sealing of Fractures 2 Geothermal ARRA Funded Projects for Temporary Sealing of Fractures Geothermal Lab Call Projects for Temporary Sealing of Fractures Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

126

MRAP MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT  

Office of Legacy Management (LM)

MRAP MRAP MONTICELLO PROJECTS FEDERAL FACILITY AGREEMENT REPORT May/June 2005 Report Period: May 1 -June 30, 2005 DOE Project Coordinator: Art Kleinrath HIGHLIGHTS DOE constmction, as identified in the Millsite Restoration Plan, was substantially completed on June 3. Seeding of disturbed areas was completed on June 15. MSG DOE completed constmction of the permeable reactive treatment cell and initiated operations in June. The cell is an enhancement to the existing pe1meable reactive ban·ier and was designed to alleviate ground water mounding. MVP Approximately one cubic yard of contaminated material was identified in a City of Monticello excavation near the golf course. This material was transferred to the Temporary Storage Facility located at the DOE Monticello Office.

127

DOE-STD-1071-94; DOE Standard Guideline to Good Practices for Material Receipt, Inspection, Handling, Storage, Retrieval, and Issuance at DOE Nuclear Facilities  

Broader source: Energy.gov (indexed) [DOE]

71-94 71-94 June 1994 DOE STANDARD GUIDELINE TO GOOD PRACTICES FOR MATERIAL RECEIPT, INSPECTION, HANDLING, STORAGE, RETRIEVAL, AND ISSUANCE AT DOE NUCLEAR FACILITIES U.S. Department of Energy AREA MNTY Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (615) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 487-4650. Order No. DE94014949 DOE-STD-1071-94 FOREWORD The Guideline to Good Practices for Material Receipt, Inspection, Handling, Storage,

128

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Livestock Manure Storage and Treatment Facilities  

E-Print Network [OSTI]

Improperly managed manure can contaminate both ground and surface water. Storing manure allows producers to spread it when crops can best use the nutrients. This publication explains safe methods of manure storage, as well as specifics about safe...

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.

1997-08-29T23:59:59.000Z

129

Neutron Radiography Facility in a Storage Pond of a Nuclear Power Station Equipped with Antimony-Beryllium Neutron Source  

Science Journals Connector (OSTI)

A neutron radiography facility is described, which has been ... . Some of the control elements contain the neutron absorbing material boron carbide, filled in tubes. Neutron radiography can be applied to detect a...

L. Greim; F. Borchers; M. Greim; G. W. Schumacher; H.-W. Schmitz…

1987-01-01T23:59:59.000Z

130

Assessing the Effectiveness of California's Underground Storage Tank Annual Inspection Rate Requirements  

E-Print Network [OSTI]

Leaks from Underground Storage Tanks by Media Affected Soilfrom Underground Storage Tank Facilities Cities CountiesCities Counties Leaks per Underground Storage Tank Facility

Cutter, W. Bowman

2008-01-01T23:59:59.000Z

131

Evaluation criteria and procedure for nuclear power plant temporary loads/temporary conditions  

SciTech Connect (OSTI)

Operating nuclear power plants frequently encounter temporary loads/temporary conditions in plant normal operation and maintenance (O and M). The most obvious examples are installation of temporary shielding and scaffolding, or removal of certain supports, to facilitate plant refueling and maintenance outage activities. Short-term operability calls such as those due to snubber failures or unanticipated transients also create temporary loads/temporary conditions. These temporary situations often generate loads that are outside the original plant design basis. Consequently, separate evaluations are needed to ensure that plant structures, systems and components (SSCs) maintain their integrity and functionality while these temporary loads are active. Also, the temporary structures and components need to be evaluated to ensure their integrity during the temporary duration of use. Three types of approaches are normally adopted either individually or in combination to perform needed evaluations: relax the design allowables, use a more refined analysis model but retain the design basis acceptance criteria, or offset temporary loads by eliminating or reducing part of the design basis loads based on short duration considerations. This paper reviews temporary loading/temporary condition issues and the current industry criteria and procedures proposed in dealing with these issues. Where appropriate, regulatory positions on temporary loads/temporary conditions are discussed.

Tang, H.T. [Electric Power Research Inst., Palo Alto, CA (United States); Minichiello, J.C. [Commonwealth Edison Co., Downers Grove, IL (United States); Olson, D.E. [Sargent and Lundy, Chicago, IL (United States)

1996-12-01T23:59:59.000Z

132

Corrective Action Management Units and Temporary Units. RCRA Information Brief  

SciTech Connect (OSTI)

On February 16, 1993 the EPA published a final rule that allows either the EPA Regional Administrator or the authorized State to designate areas as corrective action management units (CAMUs) at hazardous waste management facilities for the specific purpose of managing remediation waste that has been generated as part of the facility`s corrective action activities. According to the rule, placement of remediation wastes into or within a CAMU does not constitute land disposal of hazardous waste and is not subject to RCRA land disposal restrictions. In addition, waste disposal units located within CAMUs are not required to be designed in accordance with RCRA minimum technological requirements applicable to land disposal units. This Information Brief explains the advantages of a CAMU designation, defines a Temporary Unit (TU) and explains the advantages of a TU designation. The process for initiating a CAMU or TU designation is described for DOE sites and interim status facilities.

Not Available

1994-03-01T23:59:59.000Z

133

Accident Investigation of the June 17, 2012, Construction Accident- Structural Steel Collapse at The Over pack Storage Expansion #2 at the Naval Reactors Facility at the Idaho National Laboratory, Idaho Falls, Idaho  

Broader source: Energy.gov [DOE]

This report documents the Naval Reactors investigation into the collapse ofa partially-erected spent fuel storage building, Overpack Storage Expansion #2 (OSE2), at the Naval Reactors Facility. The Accident Investigation Board inspected the scene, collected physical and photographic evidence, interviewed involved personnel, and reviewed relevant documents to determine the key causes of the accident. Based on the information gathered during the investigation, the Board identified several engineering and safety deficiencies that need to be addressed to prevent recurrence.

134

Seismic considerations in the evaluation of temporary loads  

SciTech Connect (OSTI)

Temporary loads in nuclear power facilities can result from a number of activities including special one time operating conditions, repair and upgrade conditions, and ALARA requirements for operation, inspection and maintenance. Many times evaluation of these loadings includes their consideration in conjunction with other design basis loadings such as normal loads and extreme event loads including earthquake loadings. At times this combination with design basis extreme loads, such as earthquake, results in predicted structural demands which exceed the design basis capacity. Many times a major contributor to this demand prediction is the earthquake loadings. Discussed in this paper are analytical methods, probabilistic considerations, and earthquake experienced based evaluations which can be applied to reduce the earthquake demand for short term temporary loadings.

Adams, T.M. [Stevenson and Associates, Cleveland, OH (United States); Stevenson, J.D.

1996-12-01T23:59:59.000Z

135

HQFMSP Chapter 2, Limited Areas, Valut-Type Rooms and Temporary Limited  

Broader source: Energy.gov (indexed) [DOE]

2, Limited Areas, Valut-Type Rooms and Temporary 2, Limited Areas, Valut-Type Rooms and Temporary Limited Areas HQFMSP Chapter 2, Limited Areas, Valut-Type Rooms and Temporary Limited Areas October 2013 2013 Headquarters Facilities Master Security Plan - Chapter 2, Limited Areas, Valut-Type Rooms and Temporary Limited Areas This chapter covers the establishment, maintenance, and termination of areas within HQ buildings where classified activities take place. It covers the requirements applicable to each type of security area, including physical protection measures, controls on the use of electronic devices, restrictions on what security activities can take place, and what security equipment must be present. The procedures in this chapter were developed and are maintained jointly by HS-91 and the Office of Information Security

136

Final work plan : phase I investigation of potential contamination at the former CCC/USDA grain storage facility in Montgomery City, Missouri.  

SciTech Connect (OSTI)

From September 1949 until September 1966, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) leased property at the southeastern end of Montgomery City, Missouri, for the operation of a grain storage facility. During this time, commercial grain fumigants containing carbon tetrachloride were commonly used by the CCC/USDA and the private grain storage industry to preserve grain in their facilities. In January 2000, carbon tetrachloride was detected in a soil sample (220 {micro}g/kg) and two soil gas samples (58 {micro}g/m{sup 3} and 550 {micro}g/m{sup 3}) collected at the former CCC/USDA facility, as a result of a pre-CERCLIS site screening investigation (SSI) performed by TN & Associates, Inc., on behalf of the U.S. Environmental Protection Agency (EPA), Region VII (MoDNR 2001). In June 2001, the Missouri Department of Natural Resources (MoDNR) conducted further sampling of the soils and groundwater at the former CCC/USDA facility as part of a preliminary assessment/site inspection (PA/SI). The MoDNR confirmed the presence of carbon tetrachloride (at a maximum identified concentration of 2,810 {micro}g/kg) and chloroform (maximum 82 {micro}g/kg) in the soils and also detected carbon tetrachloride and chloroform (42.2 {micro}g/L and 58.4 {micro}g/L, respectively) in a groundwater sample collected at the former facility (MoDNR 2001). The carbon tetrachloride levels identified in the soils and groundwater are above the default target level (DTL) values established by the MoDNR for this contaminant in soils of all types (79.6 {micro}g/kg) and in groundwater (5.0 {micro}g/L), as outlined in Missouri Risk-Based Corrective Action (MRBCA): Departmental Technical Guidance (MoDNR 2006a). The corresponding MRBCA DTL values for chloroform are 76.6 {micro}g/kg in soils of all types and 80 {micro}g/L in groundwater. Because the observed contamination at Montgomery City might be linked to the past use of carbon tetrachloride-based fumigants at its former grain storage facility, the CCC/USDA will conduct investigations to (1) characterize the source(s), extent, and factors controlling the possible subsurface distribution and movement of carbon tetrachloride at the Montgomery City site and (2) evaluate the health and environmental threats potentially represented by the contamination. This work will be performed in accord with the Intergovernmental Agreement established between the Farm Service Agency of the USDA and the MoDNR, to address carbon tetrachloride contamination potentially associated with a number of former CCC/USDA grain storage facilities in Missouri. The investigations at Montgomery City will be conducted on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by UChicago Argonne, LLC, for the U.S. Department of Energy (DOE). The CCC/USDA has entered into an agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. The site characterization at Montgomery City will take place in phases. This approach is recommended by the CCC/USDA and Argonne, so that information obtained and interpretations developed during each incremental stage of the investigation can be used most effectively to guide subsequent phases of the program. This site-specific Work Plan outlines the specific technical objectives and scope of work proposed for Phase I of the Montgomery City investigation. This Work Plan also includes the community relations plan to be followed throughout the CCC/USDA program at the Montgomery City site. Argonne is developing a Master Work Plan specific to operations in the state of Missouri. In the meantime, Argonne has issued a Provisional Master Work Plan (PMWP; Argonne 2007) that has been reviewed and approved by the MoDNR for current use. The PMWP (Argonne 2007) provides detailed information and guidance on the investigative technologies, analytical methodologies, qua

LaFreniere, L. M.; Environmental Science Division

2010-08-16T23:59:59.000Z

137

Impacts of criticality safety on hot fuel examination facility operations  

SciTech Connect (OSTI)

The Hot Fuel Examination Facility (HFEF) complex comprises four large hot cells. These cells are used to support the nation's nuclear energy program, especially the liquid-metal fast breeder reactor, by providing nondestructive and destructive testing of irradiated reactor fuels and furnishing the hot cell services required for operation of Experimental Breeder Reactor II (EBR-II). Because it is a research rather than a production facility, HFEF assignments are varied and change from time to time to meet the requirements of our experimenters. Such a variety of operations presents many challenges, especially for nuclear criticality safety. The following operations are reviewed to assure that accidental criticality is not possible, and that all rules and regulations are met: transportation, temporary storage, examinations, and disposition.

Garcia, A.S.; Courtney, J.C.; Bacca, J.P.

1985-11-01T23:59:59.000Z

138

Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations  

SciTech Connect (OSTI)

This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

1996-12-01T23:59:59.000Z

139

Functional and operational requirements document : building 1012, Battery and Energy Storage Device Test Facility, Sandia National Laboratories, New Mexico.  

SciTech Connect (OSTI)

This report provides an overview of information, prior studies, and analyses relevant to the development of functional and operational requirements for electrochemical testing of batteries and energy storage devices carried out by Sandia Organization 2546, Advanced Power Sources R&D. Electrochemical operations for this group are scheduled to transition from Sandia Building 894 to a new Building located in Sandia TA-II referred to as Building 1012. This report also provides background on select design considerations and identifies the Safety Goals, Stakeholder Objectives, and Design Objectives required by the Sandia Design Team to develop the Performance Criteria necessary to the design of Building 1012. This document recognizes the Architecture-Engineering (A-E) Team as the primary design entity. Where safety considerations are identified, suggestions are provided to provide context for the corresponding operational requirement(s).

Johns, William H.

2013-11-01T23:59:59.000Z

140

Sandia National Laboratories: Energy Storage Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collaboration On May 28, 2014, in Biofuels, CRF, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Energy Surety, Facilities, Grid Integration,...

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Sandia National Laboratories: solar thermal energy storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thermal energy storage Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities,...

142

Structured Storage in ATLAS Distributed Data Management  

E-Print Network [OSTI]

CHEP'12 Talk Structured Storage - Concepts - Technologies ATLAS DDM Use Cases - Storage facility - Data intensive analytics Operational Experiences - Software - Hardware Conclusions

Lassnig, M; The ATLAS collaboration; Molfetas, A; Beermann, T; Dimitrov, G; Canali, L; Zang, D

2012-01-01T23:59:59.000Z

143

Coordinated control for large-scale EV charging facilities and energy storage devices participating in frequency regulation  

Science Journals Connector (OSTI)

Abstract With the increasing penetration of renewable energy, automatic generation control (AGC) capacity requirements will increase dramatically, becoming a challenging task that must be addressed. The rapid growth of electric vehicles (EVs) provides new approaches for the stable operation of power systems. Vehicle-to-grid (V2G) technology has the potential to provide frequency regulation (FR) services. Fully taking into account the advantages of \\{EVs\\} and battery energy storage stations (BESSs), i.e. rapid response and large instantaneous power, this paper presents a coordinated control strategy for large-scale EVs, \\{BESSs\\} and traditional FR resources involved in AGC. Response priorities and control strategies for the FR resources vary with different operating states. To verify the effectiveness of the proposed control strategy, dynamic simulations for EV/BESS to participate in AGC of a two-area interconnected power system are performed in the Matlab/Simulink program. The simulation results show that the proposed method can not only fully utilize the advantages of EV/BESS, but also achieve the coordination among different FR resources, thus improving the frequency stability and facilitating the integration of renewable energy.

Jin Zhong; Lina He; Canbing Li; Yijia Cao; Jianhui Wang; Baling Fang; Long Zeng; Guoxuan Xiao

2014-01-01T23:59:59.000Z

144

Niagara falls storage site: Annual site environmental report, Lewiston, New York, Calendar Year 1988: Surplus Facilities Management Program (SFMP)  

SciTech Connect (OSTI)

The monitoring program at the Niagara Falls Storage Site (NFSS) measures radon concentrations in air; external gamma radiation levels; and uranium and radium concentrations in surface water, groundwater, and sediment. To verify that the site is in compliance with the DOE radiation protection standard and to assess its potential effect on public health, the radiation dose was calculated for a hypothetical maximally exposed individual. Based on the conservative scenario described in this report, this hypothetical individual receives an annual external exposure approximately equivalent to 6 percent of the DOE radiation protection standard of 100 mrem/yr. This exposure is less than a person receives during two round-trip flights from New York to Los Angeles (because of the greater amounts of cosmic radiation at higher altitudes). The cumulative dose to the population within an 80-km (50-mi) radius of the NFSS that results from radioactive materials present at the site is indistinguishable from the dose that the same population receives from naturally occurring radioactive sources. Results of the 1988 monitoring show that the NFSS is in compliance with applicable DOE radiation protection standards. 17 refs., 31 figs., 20 tabs.

Not Available

1989-04-01T23:59:59.000Z

145

Geological and Geotechnical Site Investigation for the Design of a CO2 Rich Flue Gas Direct Injection and Storage Facility  

SciTech Connect (OSTI)

With international efforts to limit anthropogenic carbon in the atmosphere, various CO{sub 2} sequestration methods have been studied by various facilities worldwide. Basalt rock in general has been referred to as potential host material for mineral carbonation by various authors, without much regard for compositional variations due to depositional environment, subsequent metamorphism, or hydrothermal alteration. Since mineral carbonation relies on the presence of certain magnesium, calcium, or iron silicates, it is necessary to study the texture, mineralogy, petrology, and geochemistry of specific basalts before implying potential for mineral carbonation. The development of a methodology for the characterization of basalts with respect to their susceptibility for mineral carbonation is proposed to be developed as part of this research. The methodology will be developed based on whole rock data, petrography and microprobe analyses for samples from the Caledonia Mine in Michigan, which is the site for a proposed small-scale demonstration project on mineral carbonation in basalt. Samples from the Keweenaw Peninsula will be used to determine general compositional trends using whole rock data and petrography. Basalts in the Keweenaw Peninsula have been subjected to zeolite and prehnite-pumpellyite facies metamorphism with concurrent native copper deposition. Alteration was likely due to the circulation of CO{sub 2}-rich fluids at slightly elevated temperatures and pressures, which is the process that is attempted to be duplicated by mineral carbonation.

Metz, Paul; Bolz, Patricia

2013-03-25T23:59:59.000Z

146

Large-scale Demonstration and Deployment Project for D&D of Fuel Storage Canals and Associated Facilities at INEEL  

SciTech Connect (OSTI)

The Department of Energy (DOE) Office of Science and Technology (OST), Deactivation and Decommissioning Focus Area (DDFA), sponsored a Large Scale Demonstration and Deployment Project (LSDDP) at the Idaho National Engineering and Environmental Laboratory (INEEL) under management of the DOE National Energy Technology Laboratory (NETL). The INEEL LSDDP is one of several LSDDPs sponsored by DOE. The LSDDP process integrates field demonstrations into actual decontamination and decommissioning (D&D) operations by comparing new or improved technologies against existing baseline technologies using a side-by-side comparison. The goals are (a) to identify technologies that are cheaper, safer, faster, and cleaner (produce less waste), and (b) to incorporate those technologies into D&D baseline operations. The INEEL LSDDP reviewed more than 300 technologies, screened 141, and demonstrated 17. These 17 technologies have been deployed a total of 70 times at facilities other than those where the technology was demonstrated, and 10 have become baseline at the INEEL. Fifteen INEEL D&D needs have been modified or removed from the Needs Management System as a direct result of using these new technologies. Conservatively, the ten-year projected cost savings at the INEEL resulting from use of the technologies demonstrated in this INEEL LSDDP exceeds $39 million dollars.

Whitmill, Larry Joseph

2001-12-01T23:59:59.000Z

147

Optimal Pricing Policies for Temporary Storage at Ports  

E-Print Network [OSTI]

Contah~er and Handhng in Ports. Ph.D.thesis, Dept.ofpaper of sponsored Committee Ports andWater- by on ways.Shed Management. Monographs Port Management, on No.7, 1987.

De Castilho, Bernardo; Daganzo, Carlos F.

1991-01-01T23:59:59.000Z

148

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UNM On September 16, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Energy Storage, Facilities, Materials Science, News, News & Events, Partnership, Research...

149

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

More Storage Space, Better Reliability Now at the ARM Data Management More Storage Space, Better Reliability Now at the ARM Data Management Facility Bookmark and Share To support the ever-increasing file storage needs of the ARM Data Management Facility (DMF) and ARM Engineering computers, a Network Appliance (NetApp®) file server with 2.68 terabytes, or 2.95 trillion bytes, of highly-reliable and extremely-fast, usable disk storage joined the DMF servers. The NetApp system performs nearly four times faster than the previous file server and is engineered for a higher degree of reliability-critical improvements needed to maintain uptime for ARM data availability at the DMF. A NetApp server increases ARM storage capacity and keeps the data flowing at the Data Management Facility. A NetApp server increases ARM storage capacity and keeps the data flowing

150

E-Print Network 3.0 - away-from-reactor storage Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

63.01: Storage Facilities DATE: June... 's storage facilities by university departments. REVIEW: This OP will be reviewed in June of every fourth... PROCEDURE The university...

151

Supercomputing | Facilities | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities and Capabilities Facilities and Capabilities Primary Systems Infrastructure High Performance Storage Supercomputing and Computation Home | Science & Discovery | Supercomputing and Computation | Facilities and Capabilities | High Performance Storage SHARE High Performance Storage and Archival Systems To meet the needs of ORNL's diverse computational platforms, a shared parallel file system capable of meeting the performance and scalability require-ments of these platforms has been successfully deployed. This shared file system, based on Lustre, Data Direct Networks (DDN), and Infini-Band technologies, is known as Spider and provides centralized access to petascale datasets from all major on-site computational platforms. Delivering more than 240 GB/s of aggregate performance,

152

U.S. Army Energy and Environmental Requirements and Goals: Opportunities for Fuel Cells and Hydrogen- Facility Locations and Hydrogen Storage/Delivery Logistics  

Broader source: Energy.gov [DOE]

Overview of DoD Energy Use, Federal Facilities Goals and Requirements, Federal Vehicles and Fuel Goals, Opportunities & Conclusions

153

E-Print Network 3.0 - abandons gas storage Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage L... - Million tonnes of oil equivalent 12;Hughes: Alton Underground Natural Gas Storage Facility 2 storage... : Is there a sufficient supply of ... Source: Hughes,...

154

Update Direct-Strike Lightning Environment for Stockpile-to-Target Sequence: Supplement LLNL Subcontract #B568621 Lightning Protection at the Yucca Mountain Waste Storage Facility  

SciTech Connect (OSTI)

The University of Florida has surveyed all relevant publications reporting lightning damage to metals, metals which could be used as components of storage containers for nuclear waste materials. We show that even the most severe lightning could not penetrate the stainless steel thicknesses proposed for nuclear waste storage casks.

Uman, M A

2008-10-09T23:59:59.000Z

155

Addendum to the corrective action plan for Underground Storage Tanks 1219-U, 1222-U, 2082-U, 2068-U at the Rust Garage Facility, Buildings 9720-15 and 9754-1: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID {number_sign}0-010117  

SciTech Connect (OSTI)

This document represents an addendum to the Corrective Action Plan (CAP) for underground storage tanks 1219-U, 2082-U, and 2068-U located at Buildings 9720-15 and 9754-1, Oak Ridge Y-12 Plant, Oak Ridge, TN. The site of the four underground storage tanks is commonly referred to as the Rust Garage Facility. The original CAP was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review in May 1992. During the time period after submission of the original CAP for the Rust Garage Facility, Y-12 Plant Underground Storage Tank (UST) Program personnel continued to evaluate improvements that would optimize resources and expedite the activities schedule presented in the original CAP. Based on these determinations, several revisions to the original corrective action process options for remediation of contaminated soils are proposed. The revised approach will involve excavation of the soils from the impacted areas, on-site thermal desorption of soil contaminants, and final disposition of the treated soils by backfilling into the subject site excavations. Based on evaluation of the corrective actions with regard to groundwater, remediation of groundwater under the Y-12 Plant CERCLA Program is proposed for the facility.

Not Available

1994-01-01T23:59:59.000Z

156

EIA - Natural Gas Storage Data & Analysis  

Gasoline and Diesel Fuel Update (EIA)

Storage Storage Weekly Working Gas in Underground Storage U.S. Natural gas inventories held in underground storage facilities by East, West, and Producing regions (weekly). Underground Storage - All Operators Total storage by base gas and working gas, and storage activity by State (monthly, annual). Underground Storage by Type U.S. storage and storage activity by all operators, salt cavern fields and nonsalt cavern (monthly, annual). Underground Storage Capacity Storage capacity, working gas capacity, and number of active fields for salt caverns, aquifers, and depleted fields by State (monthly, annual). Liquefied Natural Gas Additions to and Withdrawals from Storage By State (annual). Weekly Natural Gas Storage Report Estimates of natural gas in underground storage for the U.S. and three regions of the U.S.

157

NV Energy Electricity Storage Valuation  

SciTech Connect (OSTI)

This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

2013-06-30T23:59:59.000Z

158

Collection and Usage of Reliability Data for Risk Analysis of LNG Storage Tanks  

Science Journals Connector (OSTI)

Because of their inflammable contents LNG storage facilities are considered as installations with...

Dr.Ing. O. Klingmüller

1986-01-01T23:59:59.000Z

159

Cleanup Verification Package for the 118-F-7, 100-F Miscellaneous Hardware Storage Vault  

SciTech Connect (OSTI)

This cleanup verification package documents completion of remedial action for the 118-F-7, 100-F Miscellaneous Hardware Storage Vault. The site consisted of an inactive solid waste storage vault used for temporary storage of slightly contaminated reactor parts that could be recovered and reused for the 100-F Area reactor operations.

M. J. Appel

2006-11-02T23:59:59.000Z

160

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Sandia Capabilities to Support Power Industry On January 8, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

162

Request for closure, underground storage tank 2130-U: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID {number_sign}0-010117  

SciTech Connect (OSTI)

This document presents a summary of the activities and analytical data related to the removal of underground storage tank (UST) 2130-U, previously located at the Oak Ridge Y-12 Plant. Removal of this tank was conducted in accordance with Tennessee Department of Environment and Conservation (TDEC) regulation 1200-1-15 (1992). A completed copy of the State of Tennessee, Division of Underground Storage Tanks, Permanent Closure Report Form is included as Appendix A of this document Based on the information and data presented herein, the Oak Ridge Y-12 Plant requests permanent closure for the tank 2130-U site.

Not Available

1993-12-01T23:59:59.000Z

163

Mobile integrated temporary utility system. Innovative technology summary report  

SciTech Connect (OSTI)

The Mobile Integrated Temporary Utility System (MITUS) integrates portable electrical power along with communications and emergency alarm and lighting capabilities to provide safe, centralized power to work areas that need to be de-energized for decommissioning work. MITUS consists of a portable unit substation; up to twenty portable kiosks that house the power receptacles, communications, and emergency alarm and lighting systems; and a central communications unit. This system makes sequential decommissioning efforts efficient and cost-effective by allowing the integrated system to remain intact while being moved to subsequent work sites. Use of the MITUS also eliminates the need to conduct zero-energy tests and implement associated lock-out/tag-out procedures at partially de-energized facilities. Since the MITUS is a designed system, it can be customized to accommodate unique facility conditions simply by varying kiosks and transformer configurations. The MITUS is an attractive alternate to the use of portable generators with stand-alone communications and emergency system. It is more cost-effective than upgrading or reconfiguring existing power distribution systems.

NONE

1998-12-01T23:59:59.000Z

164

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

15, 2010 [Facility News] 15, 2010 [Facility News] Water Vapor Network at SGP Site Goes Offline Bookmark and Share Each of the 24 solar-powered GPS stations streamed data via a wireless network to the SGP Central Facility for data collection and storage. Each of the 24 solar-powered GPS stations streamed data via a wireless network to the SGP Central Facility for data collection and storage. After nearly eleven years, the Single Frequency GPS Water Vapor Network field campaign at the ARM Southern Great Plains (SGP) site came to a close on July 1, 2010. Installed between 1999 and 2000, this network consisted of 24 GPS stations operating within an 8-kilometer radius around the SGP Central Facility near Lamont, Oklahoma. Developed to function as a single instrument, the network simultaneously measured "slant water vapor" in

165

Sandia National Laboratories: energy storage materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

materials Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities,...

166

Pipelines and Underground Gas Storage (Iowa)  

Broader source: Energy.gov [DOE]

These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of such infrastructure...

167

Radioactive waste management and decommissioning of accelerator facilities  

Science Journals Connector (OSTI)

......the removed radioactive waste shall be treated and processed for either long-term storage or disposal. delayed...facility itself becomes a long-term storage that shall be...dismantling resources, waste storage space or development......

Luisa Ulrici; Matteo Magistris

2009-11-01T23:59:59.000Z

168

SCFA lead lab technical assistance at Oak Ridge Y-12 nationalsecurity complex: Evaluation of treatment and characterizationalternatives of mixed waste soil and debris at disposal area remedialaction DARA solids storage facility (SSF)  

SciTech Connect (OSTI)

On July 17-18, 2002, a technical assistance team from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with the Bechtel Jacobs Company Disposal Area Remedial Action (DARA) environmental project leader to review treatment and characterization options for the baseline for the DARA Solids Storage Facility (SSF). The technical assistance request sought suggestions from SCFA's team of technical experts with experience and expertise in soil treatment and characterization to identify and evaluate (1) alternative treatment technologies for DARA soils and debris, and (2) options for analysis of organic constituents in soil with matrix interference. Based on the recommendations, the site may also require assistance in identifying and evaluating appropriate commercial vendors.

Hazen, Terry

2002-08-26T23:59:59.000Z

169

PUREX facility preclosure work plan  

SciTech Connect (OSTI)

This preclosure work plan presents a description of the PUREX Facility, the history of the waste managed, and addresses transition phase activities that position the PUREX Facility into a safe and environmentally secure configuration. For purposes of this documentation, the PUREX Facility does not include the PUREX Storage Tunnels (DOE/RL-90/24). Information concerning solid waste management units is discussed in the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, Appendix 2D).

Engelmann, R.H.

1997-04-24T23:59:59.000Z

170

340 Facility compliance assessment  

SciTech Connect (OSTI)

This study provides an environmental compliance evaluation of the RLWS and the RPS systems of the 340 Facility. The emphasis of the evaluation centers on compliance with WAC requirements for hazardous and mixed waste facilities, federal regulations, and Westinghouse Hanford Company (WHC) requirements pertinent to the operation of the 340 Facility. The 340 Facility is not covered under either an interim status Part A permit or a RCRA Part B permit. The detailed discussion of compliance deficiencies are summarized in Section 2.0. This includes items of significance that require action to ensure facility compliance with WAC, federal regulations, and WHC requirements. Outstanding issues exist for radioactive airborne effluent sampling and monitoring, radioactive liquid effluent sampling and monitoring, non-radioactive liquid effluent sampling and monitoring, less than 90 day waste storage tanks, and requirements for a permitted facility.

English, S.L. [Pacific Northwest Lab., Richland, WA (United States)

1993-10-01T23:59:59.000Z

171

Facility Type!  

Office of Legacy Management (LM)

ITY: ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR GUN-I OWNED ----- LEEE!? M!s LE!Ps2 -LdJG?- ---L .ANDS ILJILDINGS X2UIPilENT IRE OR RAW HA-I-L :INAL PRODUCT IASTE Z. RESIDUE I I kility l pt I ,-- 7- ,+- &!d,, ' IN&"E~:EW AT SITE -' ---------------- , . Control 0 AEC/tlED managed operations

172

Derr Track Storage Bldg Sigma Alpha  

E-Print Network [OSTI]

!( Derr Track Storage Bldg Japan Center Memorial Bell Tower Solar House Primrose Chancellor & Storage Bio. Sci Avent Ferry Complex Building Sigma Phi Epsilon 7 Welch Pi Kappa Alpha 10 Sigma Alpha Mu 4 and Visitor's Center Thompson Admin II Bostian Library Storage Facility Winston Clark Ricks Robertson Harris

Reeves, Douglas S.

173

Energy Storage | Open Energy Information  

Open Energy Info (EERE)

Storage Storage Jump to: navigation, search TODO: Source information Contents 1 Introduction 2 Benefits 3 Technologies 4 References Introduction Energy storage is a tool that can be used by grid operators to help regulate the electrical grid and help meet demand. In its most basic form, energy storage "stores" excess energy that would otherwise be wasted so that it can be used later when demand is higher. Energy Storage can be used to balance microgrids, perform frequency regulation, and provide more reliable power for high tech industrial facilities.[1] Energy storage will also allow for the expansion of intermittent renewable energy, like wind and solar, to provide electricity around the clock. Some of the major issues concerning energy storage include cost, efficiency, and size.

174

Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage  

Science Journals Connector (OSTI)

......a controllable storage facility for cooling...transferred for long-term storage. The storage...adequately handle waste radiation characteristics...type reactors at long-term storage. | Radiotoxicity...of radioactive waste (radwaste) determines......

B. R. Bergelson; A. S. Gerasimov; G. V. Tikhomirov

2005-12-20T23:59:59.000Z

175

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June 28, 2013 [Facility News] June 28, 2013 [Facility News] What's a Little Helium Among Friends? Bookmark and Share In early June, this 38-cylinder helium storage system arrived at the ARM Southern Great Plains site with nearly 18,000 standard cubic feet of helium left in it-enough to launch about 400 weather balloons. In early June, this 38-cylinder helium storage system arrived at the ARM Southern Great Plains site with nearly 18,000 standard cubic feet of helium left in it-enough to launch about 400 weather balloons. What is white and blue, can hold 55,000 standard cubic feet (scf) of gas, and looks like it could attach to the International Space Station? A helium storage system, of course. This impressive contraption arrived at the ARM Southern Great Plains site in early June, along with 18,000 scf of helium inside-valuable stuff,

176

NREL: Electricity Integration Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities NREL's electricity integration research is conducted in state-of-the-art facilities. These facilities assist industry in the development of power systems and address the operational challenges of full system integration. The Energy Systems Integration Facility can be used to design, test, and analyze components and systems to enable economic, reliable integration of renewable electricity, fuel production, storage, and building efficiency technologies with the U.S. electricity delivery infrastructure. New grid integration capabilities at the National Wind Technology Center will allow testing of many grid integration aspects of multi-megawatt, utility-scale variable renewable generation and storage technologies. The Distributed Energy Resources Test Facility can be used to characterize,

177

Chapter_2_Limited_Areas_Vault-Type_Rooms_and_Temporary_Limited_Areas  

Broader source: Energy.gov (indexed) [DOE]

Limited Areas, VTRs, and Temporary Limited Areas Chapter 2 describes the security procedures adopted by DOE HQ to implement the requirements of the following DOE directives: * DOE Order 473.3, Protection Program Operations * DOE Order 471.6, Change 1, Information Security * DOE Order 475.2A, Identifying Classified Information * Classification Bulletin TNP-32, Classification Guidance for Classified Meeting Locations at DOE/NNSA or DOE/NNSA Contractor Sites or Facilities, dated May 27, 2010 DOE Manual 470.4-2A, Physical Protection, defines seven types of Security Areas that protect DOE employees, facilities, buildings, government property, classified information, nuclear materials and other security interests. Each type of Security Area has its own security

178

Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 1: Sections 1-9  

SciTech Connect (OSTI)

This report documents the methodology, computational framework, and results of facility accident analyses performed for the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. The methodology is in compliance with the most recent guidance from DOE. It considers the spectrum of accident sequences that could occur in activities covered by the WM PEIS and uses a graded approach emphasizing the risk-dominant scenarios to facilitate discrimination among the various WM PEIS alternatives. Although it allows reasonable estimates of the risk impacts associated with each alternative, the main goal of the accident analysis methodology is to allow reliable estimates of the relative risks among the alternatives. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J. [and others

1995-04-01T23:59:59.000Z

179

Energy Storage Laboratory (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

Not Available

2011-10-01T23:59:59.000Z

180

Temporary Anion States of Polyatomic Hydrocarbons KENNETH D. JORDAN'  

E-Print Network [OSTI]

Temporary Anion States of Polyatomic Hydrocarbons KENNETH D. JORDAN' OSpemnenr Of C%sITIkby. M k I. A biographyand photograph of Kenneth D. Jordan appear In previous paper in this issue. far outweighsthat

Simons, Jack

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Statistical mechanics of temporary polymer networks I. The equilibrium theory  

Science Journals Connector (OSTI)

In part I of this work (the present article) the equilibrium state of temporary polymer networks is treated in the framework of thermodynamics and statistical mechanics. The network is described as an open sys...

R. Takserman-Krozer; E. Kröner

182

NETL: Carbon Storage - Geologic Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

183

Innovative Energy Storage Technologies Enabling More Renewable Power |  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage Technologies Enabling More Renewable Energy Storage Technologies Enabling More Renewable Power Innovative Energy Storage Technologies Enabling More Renewable Power November 15, 2011 - 3:45pm Addthis The PNM Prosperity Energy Storage Project is the nation’s first combined solar generation and storage facility to be fully integrated into a utility’s power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM The PNM Prosperity Energy Storage Project is the nation's first combined solar generation and storage facility to be fully integrated into a utility's power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM Dr. Imre Gyuk Dr. Imre Gyuk Energy Storage Program Manager, Office of Electricity Delivery and Energy

184

An Evaluation of Thermal Storage at Two Industrial Plants  

E-Print Network [OSTI]

Thermal storage offers substantial energy cost savings potential in situations with favorable electrical rates and significant cooling demand. Full storage is usually restricted to facilities occupied only part of the day, but two industrial plants...

Brown, M. L.; Gurta, M. E.

185

Dependability of Wind Energy Generators with Short-Term Energy Storage  

Science Journals Connector (OSTI)

...ca-pacity must be enlarged, or storage facili-ties must be added...re-gions where reservoirs for pumped water storage are available, the wind...Examples of possible storage systems are batteries, flywheels, pumped water, compressed air...

BENT SŘRENSEN

1976-11-26T23:59:59.000Z

186

User Facility Training | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

See Also: See Also: Argonne WBT Argonne eJHQ ACIS Training APS Beamline Shielding Argonne National Laboratory User Facility Training Core Courses: These courses require your badge number and APS web password. If you have forgotten your web password, please click here. A temporary password will be sent to your e-mail address on record. Course Name APS 101 Advanced Photon Source User Orientation (2 year retraining) CNM 101 Center for Nanoscale Materials User Orientation (2 year retraining) ESH 100U Argonne National Laboratory User Facility Orientation (2 year retraining) ESH 223 Cybersecurity Annual Education and Awareness (1 year retraining) ESH 738 GERT: General Employee Radiation Training (2 year retraining) Additional Courses Available Remotely: These courses require your badge number and APS web password. If you have forgotten your web password, please click here. A temporary password will be sent to your e-mail address on record.

187

LANSCE | Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Isotope Production Facility (IPF) Lujan Neutron Scattering Center Materials Test Station (MTS) Proton Radiography (pRad) Ultracold Neutrons (UCN) Weapons Neutron Research Facility...

188

Safety Evaluation Report: Development of Improved Composite Pressure Vessels for Hydrogen Storage, Lincoln Composites, Lincoln, NE, May 25, 2010  

SciTech Connect (OSTI)

Lincoln Composites operates a facility for designing, testing, and manufacturing composite pressure vessels. Lincoln Composites also has a U.S. Department of Energy (DOE)-funded project to develop composite tanks for high-pressure hydrogen storage. The initial stage of this project involves testing the permeation of high-pressure hydrogen through polymer liners. The company recently moved and is constructing a dedicated research/testing laboratory at their new location. In the meantime, permeation tests are being performed in a corner of a large manufacturing facility. The safety review team visited the Lincoln Composites site on May 25, 2010. The project team presented an overview of the company and project and took the safety review team on a tour of the facility. The safety review team saw the entire process of winding a carbon fiber/resin tank on a liner, installing the boss and valves, and curing and painting the tank. The review team also saw the new laboratory that is being built for the DOE project and the temporary arrangement for the hydrogen permeation tests.

Fort, III, William C.; Kallman, Richard A.; Maes, Miguel; Skolnik, Edward G.; Weiner, Steven C.

2010-12-22T23:59:59.000Z

189

Energy Storage  

SciTech Connect (OSTI)

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-03T23:59:59.000Z

190

Energy Storage  

ScienceCinema (OSTI)

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-23T23:59:59.000Z

191

RCRA facility assessments  

SciTech Connect (OSTI)

The Hazardous and Solid Waste Amendments of 1984 (HSWA) broadened the authorities of the Resource Conservation and Recovery Act (RCRA) by requiring corrective action for releases of hazardous wastes and hazardous constituents at treatment, storage, and disposal (TSD) facilities. The goal of the corrective action process is to ensure the remediation of hazardous waste and hazardous constituent releases associated with TSD facilities. Under Section 3004(u) of RCRA, operating permits issued to TSD facilities must address corrective actions for all releases of hazardous waste and hazardous constituents from any solid waste management unit (SWMU) regardless of when the waste was placed in such unit. Under RCRA Section 3008(h), the Environmental Protection Agency (EPA) may issue administrative orders to compel corrective action at facilities authorized to operate under RCRA Section 3005(e) (i.e., interim status facilities). The process of implementing the Corrective Action program involves the following, in order of implementation; (1) RCRA Facility Assessment (RFA); (2) RCRA Facility Investigation (RFI); (3) the Corrective Measures Study (CMS); and (4) Corrective Measures Implementation (CMI). The RFA serves to identify and evaluate SWMUs with respect to releases of hazardous wastes and hazardous constituents, and to eliminate from further consideration SWMUs that do not pose a threat to human health or the environment. This Information Brief will discuss issues concerning the RFA process.

NONE

1994-07-01T23:59:59.000Z

192

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

193

Spent fuel storage requirements 1993--2040  

SciTech Connect (OSTI)

Historical inventories of spent fuel are combined with U.S. Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements through the year 2040. The needs are estimated for storage capacity beyond that presently available in the reactor storage pools. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of spent fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. The nuclear utilities provide historical data through December 1992 on the end of reactor life are based on the DOE/Energy Information Administration (EIA) estimates of future nuclear capacity, generation, and spent fuel discharges.

Not Available

1994-09-01T23:59:59.000Z

194

Thermal Storage Systems at IBM Facilities  

E-Print Network [OSTI]

,000 ton hours. Through reduced chiller plant capacity and annual operating cost savings in primarily electric demand charges the payback will be approximately 3 1/2 years. The water is stored in multiple, insulated tanks, located above the ground. A...

Koch, G.

1981-01-01T23:59:59.000Z

195

Waste Encapsulation and Storage Facility - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of heat were removed from the high level waste tanks at Hanford. Called cesium and strontium, these elements had to be taken out of single shell waste tanks to reduce the...

196

Thermal Energy Storage at a Federal Facility  

SciTech Connect (OSTI)

Utility partnership upgrades energy system to help meet the General Services Administration's (GSA) energy-saving goals

Not Available

2000-07-01T23:59:59.000Z

197

Hazardous Liquid Pipelines and Storage Facilities (Iowa)  

Broader source: Energy.gov [DOE]

This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

198

Environmental impacts of proposed Monitored Retrievable Storage  

SciTech Connect (OSTI)

This report describes environmental impacts from a proposed monitored retrievable storage facility for spent fuels to be located in Tennessee. Areas investigated include: water supply, ground water, air quality, solid waste management, and health hazards. (CBS)

Not Available

1985-12-17T23:59:59.000Z

199

Thermal Storage with Conventional Cooling Systems  

E-Print Network [OSTI]

The newly opened Pennsylvania Convention Center in Philadelphia, PA; Exxon's Computer Facility at Florham Park, NJ; The Center Square Building in Philadelphia, are success stories for demand shifting through thermal storage. These buildings employ a...

Kieninger, R. T.

1994-01-01T23:59:59.000Z

200

Site status monitoring report for underground storage tanks 1219-U, 1222-U, 2082-U, and 2068-U at the Rust Garage Facility, Buildings 9720-15 and 9754-1, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID No. 0-010117  

SciTech Connect (OSTI)

The purpose of this document is to provide hydrogeologic, geochemical, and vapor monitoring data required for site status monitoring of underground storage tanks (UST) 1219-U, 1222-U, 2082-U, and 2068-U at the Rust Garage Facility. Comprehensive monitoring was conducted at the site in May 1994 as part of a Monitoring Only program approved by Tennessee Department of Environment and Conservation (TDEC) based on review and approval of Site Ranking. In September 1994, the first semiannual site status monitoring was conducted. This document presents the results of the second semiannual site status monitoring, which was conducted in February 1995. Site status monitoring and preparation of this report have been conducted in accordance with the requirements of the TDEC Rule 1200-1-15, the TDEC UST Reference Handbook, Second Edition, and direction from TDEC. This document is organized into three sections. Section 1 presents introductory information relative to the site including regulatory initiative and a site description. Section 2 includes the results of sampling of monitoring wells GW-508, GW-631, GW-632, and GW-634. Section 3 presents data from vapor monitoring conducted in subsurface utilities present at the site.

NONE

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity With Data for September 2013 | Release Date: November 27, 2013 | Next Release Date: May 29, 2013 Previous Issues Year: September 2013 March 2013 September 2012 March 2012 September 2011 March 2011 September 2010 Go Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an

202

Above Ground Storage Tank (AST) Inspection Form  

E-Print Network [OSTI]

Above Ground Storage Tank (AST) Inspection Form Petroleum Bulk Storage Form Facility Name: ______________________ Tank No:_______________ Date:_____________ Inspection Parameter Result Comments/Corrective Actions 1. Is there leaking in the interstitial space (not DRY)? YES/NO/NA 2. Tank surface shows signs of leakage? YES/NO/NA 3

Pawlowski, Wojtek

203

Primer on lead-acid storage batteries  

SciTech Connect (OSTI)

This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

NONE

1995-09-01T23:59:59.000Z

204

TECHNOLOGY DEVELOPMENT AND DEPLOYMENT OF SYSTEMS FOR THE RETRIEVAL AND PROCESSING OF REMOTE-HANDLED SLUDGE FROM HANFORD K-WEST FUEL STORAGE BASIN  

SciTech Connect (OSTI)

In 2011, significant progress was made in developing and deploying technologies to remove, transport, and interim store remote-handled sludge from the 105-K West Fuel Storage Basin on the Hanford Site in south-central Washington State. The sludge in the 105-K West Basin is an accumulation of degraded spent nuclear fuel and other debris that collected during long-term underwater storage of the spent fuel. In 2010, an innovative, remotely operated retrieval system was used to successfully retrieve over 99.7% of the radioactive sludge from 10 submerged temporary storage containers in the K West Basin. In 2011, a full-scale prototype facility was completed for use in technology development, design qualification testing, and operator training on systems used to retrieve, transport, and store highly radioactive K Basin sludge. In this facility, three separate systems for characterizing, retrieving, pretreating, and processing remote-handled sludge were developed. Two of these systems were successfully deployed in 2011. One of these systems was used to pretreat knockout pot sludge as part of the 105-K West Basin cleanup. Knockout pot sludge contains pieces of degraded uranium fuel ranging in size from 600 {mu}m to 6350 {mu}m mixed with pieces of inert material, such as aluminum wire and graphite, in the same size range. The 2011 pretreatment campaign successfully removed most of the inert material from the sludge stream and significantly reduced the remaining volume of knockout pot product material. Removing the inert material significantly minimized the waste stream and reduced costs by reducing the number of transportation and storage containers. Removing the inert material also improved worker safety by reducing the number of remote-handled shipments. Also in 2011, technology development and final design were completed on the system to remove knockout pot material from the basin and transport the material to an onsite facility for interim storage. This system is scheduled for deployment in 2012. The prototype facility also was used to develop technology for systems to retrieve remote-handled transuranic sludge smaller than 6350 {mu}m being stored in underwater containers. After retrieving the sludge, the system will be used to load and transport the sludge for interim storage. During 2011, full-scale prototype systems were developed and tested to a Technology Readiness Level 6 as defined by U.S. Department of Energy standards. This system is scheduled for deployment in 2013. Operations also are scheduled for completion in 2014.

RAYMOND RE

2011-12-27T23:59:59.000Z

205

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1996-10-24T23:59:59.000Z

206

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1995-11-16T23:59:59.000Z

207

Certified Facilities  

Broader source: Energy.gov [DOE]

Industrial Leaders: The industrial facilities shown below are among the first to earn certification for Superior Energy Performance® (SEP™).

208

Conservation and Management of Vernal Pools/Temporary Wetlands  

E-Print Network [OSTI]

10/18/2011 1 Conservation and Management of Vernal Pools/Temporary Wetlands Katherine E. Edwards astatic waters · Geographically isolated wetlands · Vernal pools · Specifics- Carolina Bays, Karst ponds adjacent water bodies ­ hydrologically connected by groundwater ­ BUT pools DO NOT have continuous surface

Gray, Matthew

209

Dry Cask Storage Study Feb 1989 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dry Cask Storage Study Feb 1989 Dry Cask Storage Study Feb 1989 Dry Cask Storage Study Feb 1989 This report on the use of dry-cask-storage technologies at the sites of civilian nuclear power reactors has been prepared by the U.S. Department of Energy (DOE} in response to the requirements of the Nuclear Waste Policy Amendments Act of 1987 (P.L. 100-203). In particular, Section 5064 of the Amendments Act directs the Secretary of Energy to conduct a study and evaluation of using these technologies for the temporary storage of spent nuclear fuel until such time as a permanent geologic repository has been constructed and licensed by the Nuclear Regulatory Commission (NRC). In conducting this study, the DOE is required to consider such factors as costs, effects on human health and the environment, effects on the costs

210

cryogenic storage  

Science Journals Connector (OSTI)

Storage in which (a) the superconductive property of materials is used to store data and (b) use is made of the phenomenon that superconductivity is destroyed in the presence of a magnetic field, thus enabling...

2001-01-01T23:59:59.000Z

211

Hydrogen Storage  

Broader source: Energy.gov [DOE]

On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE...

212

Method of preparing nuclear wastes for tansportation and interim storage  

DOE Patents [OSTI]

Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.

Bandyopadhyay, Gautam (Naperville, IL); Galvin, Thomas M. (Darien, IL)

1984-01-01T23:59:59.000Z

213

Regulated underground storage tanks  

SciTech Connect (OSTI)

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. (40 CFR 280). The guidance uses tables, flowcharts, and checklists to provide a roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

214

Regulated underground storage tanks  

SciTech Connect (OSTI)

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ``roadmap`` for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

215

1 INTRODUCTION Gas storage caverns were developed mainly for sea-  

E-Print Network [OSTI]

recovery periods. This operation mode also is considered for Compressed Air Storage (CAES) facilities1 INTRODUCTION Gas storage caverns were developed mainly for sea- sonal storage, with one or a few are discussed. In Section 4, the energy bal- ance equation is established and some simplifica- tions allow

Paris-Sud XI, Université de

216

NREL: Energy Storage - Laboratory Capabilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Capabilities Laboratory Capabilities Photo of NREL's Energy Storage Laboratory. NREL's Energy Storage Laboratory. Welcome to our Energy Storage Laboratory at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Much of our testing is conducted at this state-of-the-art laboratory, where researchers use cutting-edge modeling and analysis tools to focus on thermal management systems-from the cell level to the battery pack or ultracapacitor stack-for electric, hybrid electric, and fuel cell vehicles (EVs, HEVs, and FCVs). In 2010, we received $2 million in funding from the U.S. Department of Energy under the American Recovery and Reinvestment Act of 2009 (ARRA) to enhance and upgrade the NREL Battery Thermal and Life Test Facility. The Energy Storage Laboratory houses two unique calorimeters, along with

217

Facility Representative Program: Surveillance Guides  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessment Tools Assessment Tools CRADs Manager's Guide for Safety and Health Walkthroughs Surveillance Guides CMS 3.1 Configuration Management Implementation CMS 3.2 Change Control CMS 3.3 Verification of System Configuration and Operations CMS 3.4 Temporary Changes CPS 8.1 Hoisting and Rigging CPS 8.2 Trenching and Excavation EMS 21.1 Emergency Preparedness ENS 7.1 Definition of Design Requirements ERS 14.1 Satellite Accumulation Ares (RCRA Compliance) ERS 14.2 Emmissions Monitoring ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1 Life Safety FPS 12.2 Fire Protection and Prevention MAS 10.1 Maintenance Activities MAS 10.2 Control of Measuring and Test Equipment MAS 10.3 Seasonal Preparation MSS 1.1 Corrective Action/Issue Management NSS 18.1 Criticality Safety

218

Nuclear materials management storage study  

SciTech Connect (OSTI)

The Office of Weapons and Materials Planning (DP-27) requested the Planning Support Group (PSG) at the Savannah River Site to help coordinate a Departmental complex-wide nuclear materials storage study. This study will support the development of management strategies and plans until Defense Programs` Complex 21 is operational by DOE organizations that have direct interest/concerns about or responsibilities for nuclear material storage. They include the Materials Planning Division (DP-273) of DP-27, the Office of the Deputy Assistant Secretary for Facilities (DP-60), the Office of Weapons Complex Reconfiguration (DP-40), and other program areas, including Environmental Restoration and Waste Management (EM). To facilitate data collection, a questionnaire was developed and issued to nuclear materials custodian sites soliciting information on nuclear materials characteristics, storage plans, issues, etc. Sites were asked to functionally group materials identified in DOE Order 5660.1A (Management of Nuclear Materials) based on common physical and chemical characteristics and common material management strategies and to relate these groupings to Nuclear Materials Management Safeguards and Security (NMMSS) records. A database was constructed using 843 storage records from 70 responding sites. The database and an initial report summarizing storage issues were issued to participating Field Offices and DP-27 for comment. This report presents the background for the Storage Study and an initial, unclassified summary of storage issues and concerns identified by the sites.

Becker, G.W. Jr.

1994-02-01T23:59:59.000Z

219

Gelatin/graphene systems for low cost energy storage  

SciTech Connect (OSTI)

In this work, we introduce the possibility to use a low cost, biodegradable material for temporary energy storage devices. Here, we report the use of biologically derived organic electrodes composed of gelatin ad graphene. The graphene was obtained by mild sonication in a mixture of volatile solvents of natural graphite flakes and subsequent centrifugation. The presence of exfoliated graphene sheets was detected by atomic force microscopy (AFM) and Raman spectroscopy. The homogeneous dispersion in gelatin demonstrates a good compatibility between the gelatin molecules and the graphene particles. The electrical characterization of the resulting nanocomposites suggests the possible applications as materials for transient, low cost energy storage device.

Landi, Giovanni [Faculty of Mathematics and Computer Science, FernUniversität Hagen, 58084 Hagen (Germany); Fedi, Filippo; Sorrentino, Andrea; Iannace, Salvatore [Institute for Composite and Biomedical Materials (IMCB-CNR), Piazzale Enrico Fermi 1, 80055 Portici (Italy); Neitzert, Heinz C. [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy)

2014-05-15T23:59:59.000Z

220

Science Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electron Microscopy Lab Ion Beam Materials Lab Matter-Radiation Interactions in Extremes (MaRIE) Proton Radiography Trident Laser Facility LOOK INTO LANL - highlights...

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Plant experience with temporary reverse osmosis makeup water systems  

SciTech Connect (OSTI)

Pacific Gas and Electric (PG and E) Company's Diablo Canyon Power Plant (DCPP), which is located on California's central coast, has access to three sources of raw water: creek water, well water, and seawater. Creek and well water are DCPP's primary sources of raw water; however, because their supply is limited, these sources are supplemented with seawater. The purpose of this paper is to discuss the temporary, rental, reverse osmosis systems used by PG and E to process DCPP's raw water into water suitable for plant makeup. This paper addresses the following issues: the selection of reverse osmosis over alternative water processing technologies; the decision to use vendor-operated temporary, rental, reverse osmosis equipment versus permanent PG and E-owned and -operated equipment; the performance of DCPP's rental reverse osmosis systems; and, the lessons learned from DCPP's reverse osmosis system rental experience that might be useful to other plants considering renting similar equipment.

Polidoroff, C.

1986-01-01T23:59:59.000Z

222

AN ISSUE OF PERMANENCE: ASSESSING THE EFFECTIVENESS OF TEMPORARY CARBON STORAGE  

E-Print Network [OSTI]

with a `leaky' carbon sequestration reservoir, we argue that this is an issue that applies to just about all that the value of relatively deep ocean carbon sequestration can be nearly equivalent to permanent sequestration gases using carbon sequestration technologies (Herzog et al., 2000; Herzog, 2001) is being proposed

223

An issue of permanence: assessing the effectiveness of temporary carbon storage  

E-Print Network [OSTI]

In this paper, we present a method to quantify the effectiveness of carbon mitigation options taking into account the "permanence" of the emissions reduction. While the issue of permanence is most commonly associated with ...

Herzog, Howard J.

224

Power Electronics Field Test Facility (TPET) The Power Electronics Field Test Facility (TPET) is a unique test facility for field testing of  

E-Print Network [OSTI]

Power Electronics Field Test Facility (TPET) Overview: The Power Electronics Field Test Facility (TPET) is a unique test facility for field testing of power electronics that will be located at the TVA the testing of power electronics and energy storage technology from laboratory development and testing through

225

Temporary Difficulties Beyond Our Control...Please Stand By  

E-Print Network [OSTI]

TEMPORARY DIFFICULTIES BEYOND OUR CONTROL PLEASE STAND BY By Susan M. Garrett Cover by Ann Larimer ? ? ? ? September, 1991. Susan M. Garrett. All rights revert to contributors upon publication. The Quantum Leapflet is an amateur publication... not intended to infringe upon the copyrights owned by Belisarius Productions, Universal Televi sion, or any other original copyright owners of written, movie, television, or visual material. Susan M. Garrett, 14B Terrace Ct., Toms River, NJ 08753. Editorial...

Garrett, Susan M.

1991-01-01T23:59:59.000Z

226

SERAPH facility capabilities  

SciTech Connect (OSTI)

The SERAPH (Solar Energy Research and Applications in Process Heat) facility addresses technical issues concerning solar thermal energy implementation in industry. Work will include computer predictive modeling (refinement and validation), system control and evaluation, and the accumulation of operation and maintenance experience. Procedures will be consistent (to the extent possible) with those of industry. SERAPH has four major components: the solar energy delivery system (SEDS); control and data acquisition (including sequencing and emergency supervision); energy distribution system (EDS); and areas allocated for storage development and load devices.

Castle, J.; Su, W.

1980-06-01T23:59:59.000Z

227

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

228

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

2005-12-22T23:59:59.000Z

229

Temporary Assistant Professor or/Instructor in Statistics The School of Science and Mathematics at Truman State University is seeking applicants for a temporary  

E-Print Network [OSTI]

related field with substantial coursework in statistics by the date of employment Demonstrated potentialTemporary Assistant Professor or/Instructor in Statistics The School of Science and Mathematics at Truman State University is seeking applicants for a temporary position in Statistics to begin August

Gering, Jon C.

230

Mobile Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Facility AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Facilities Pictured here in Gan, the second mobile facility is configured in a standard layout. Pictured here in Gan, the second mobile facility is configured in a standard layout. To explore science questions beyond those addressed by ARM's fixed sites at

231

Site maps and facilities listings  

SciTech Connect (OSTI)

In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used for production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.

Not Available

1993-11-01T23:59:59.000Z

232

FAFCO Ice Storage test report  

SciTech Connect (OSTI)

The Ice Storage Test Facility (ISTF) is designed to test commercial ice storage systems. FAFCO provided a storage tank equipped with coils designed for use with a secondary fluid system. The FAFCO ice storage system was tested over a wide range of operating conditions. Measured system performance during charging showed the ability to freeze the tank fully, storing from 150 to 200 ton-h. However, the charging rate showed significant variations during the latter portion of the charge cycle. During discharge cycles, the storage tank outlet temperature was strongly affected by the discharge rate and tank state of charge. The discharge capacity was dependent upon both the selected discharge rate and maximum allowable tank outlet temperature. Based on these tests, storage tank selection must depend on both charge and discharge conditions. This report describes FAFCO system performance fully under both charging and discharging conditions. While the test results reported here are accurate for the prototype 1990 FAFCO Model 200, currently available FAFCO models incorporate significant design enhancements beyond the Model 200. At least one major modification was instituted as a direct result of the ISTF tests. Such design improvements were one of EPRI`s primary goals in founding the ISTF.

Stovall, T.K.

1993-11-01T23:59:59.000Z

233

PROJECT MANGEMENT PLAN EXAMPLES Facility End State Decisions Examples  

Broader source: Energy.gov (indexed) [DOE]

Facility End State Decisions Examples Facility End State Decisions Examples Example 3 3.0 POST DEACTIVATION END STATE VISION The Heavy Water Facility is scheduled to cease moderator operations and commence final shutdown of moderator processing and processing support systems. The Heavy Water Facility and supporting facilities will be declared excess. Deactivation will place the facilities into a passively safe, minimal cost, long term S&M mode. At the end of the deactivation period, the facilities will be categorized "Radiological" and "Other Industrial Use". The following deactivation end state is envisioned: Moderator Processing and Moderator Storage Buildings The deactivation of the moderator processing and storage buildings will remove the moderator storage drums

234

Argonne Chemical Sciences & Engineering - Facilities - Remote Handling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities * Actinide * Analytical Chemistry * Premium Coal Samples * Electrochemical Analysis * Glovebox * Glassblowing Fundamental Interactions Catalysis & Energy Conversion Electrochemical Energy Storage Nuclear & Environmental Processes National Security Institute for Atom-Efficient Chemical Transformations Center for Electrical Energy Storage: Tailored Interfaces Contact Us CSE Intranet Remote Handling Mockup Facility Remote Handling Mockup Facility Radiochemist Art Guelis observes technician Kevin Quigley preparing to cut open a surrogate uranium target. Argonne designed and built a Remote Handling Mockup Facility to let engineers simulate the handling of radioactive materials in a non-radioactive environment. The ability to carry out the details of an

235

Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

Daniel R. Borneo, PE Daniel R. Borneo, PE Sandia National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)/CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Presentation Outline * DOE(SNL)/CEC Collaboration - Background of DOE(SNL)/CEC Collaboration - FY07 Project Review * Zinc Bromine Battery (ZBB) Demonstration * Palmdale Super capacitor Demonstration * Sacramento Municipal Utility District (SMUD) Regional Transit (RT) Super capacitor demonstration * Beacon Flywheel Energy Storage System (FESS) 3 Background of DOE(SNL)/CEC Collaboration * Memorandum of Understanding Between CEC and DOE (SNL). - In Place since 2004

236

Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

Development Concept Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems Research Program Washington, DC November 2-4, 2010 Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories Full Air Breathing Battery Concept * Concept is to use O 2 and N 2 as the electrodes in a battery * Novel because N 2 is considered inert * Our group routinely reacts N 2 electrochemically

237

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

2002-05-20T23:59:59.000Z

238

Natural gas cavern storage regulation  

SciTech Connect (OSTI)

Investigation of an incident at an LPG storage facility in Texas by U.S. Department of Transportation resulted in recommendation that state regulation of natural gas cavern storage might be improved. Interstate Oil & Gas Compact Commission has established a subcommittee to analyze the benefits and risks associated with natural gas cavern storage, and to draft a regulation model which will suggest engineering and performance specifications. The resulting analysis and regulatory language will be reviewed by I.O.G.C.C., and if approved, distributed to member states (including New York) for consideration. Should the states desire assistance in modifying the language to reflect local variables, such as policy and geology, I.O.G.C.C. may offer assistance. The proposed presentation will review the I.O.G.C.C. product (if published at that date), and discuss implications of its application in New York.

Heneman, H.

1995-09-01T23:59:59.000Z

239

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

2000-11-20T23:59:59.000Z

240

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

2005-12-22T23:59:59.000Z

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

2013-06-21T23:59:59.000Z

242

Carbon Capture, Utilization & Storage | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Carbon Capture, Utilization & Storage Carbon Capture, Utilization & Storage Carbon Capture, Utilization & Storage Lawrence Livermore National Laboratory demonstrated coal gasification in large-scale field experiments at the Rocky Mountain Test Facility (above) near Hanna, Wyoming. Coal gasification and sequestration of the carbon dioxide produced are among the technologies being used in a Texas Clean Energy Project. Lawrence Livermore National Laboratory demonstrated coal gasification in large-scale field experiments at the Rocky Mountain Test Facility (above) near Hanna, Wyoming. Coal gasification and sequestration of the carbon dioxide produced are among the technologies being used in a Texas Clean Energy Project. Carbon capture, utilization and storage (CCUS), also referred to as carbon

243

Demographic responses to fire of Spartina argentinensis in temporary flooded grassland of Argentina  

Science Journals Connector (OSTI)

Population characteristics of Spartina argentinensis after fire were analyzed. Field experiments were done in temporary flooded tall grassland, dominated by S. argentinensis at the Reserva Federico Wildermuth (Ar...

Susana R. Feldman; Juan Pablo Lewis

2007-12-01T23:59:59.000Z

244

Massive Energy Storage in Superconductors (SMES) | U.S. DOE Office...  

Office of Science (SC) Website

Massive Energy Storage in Superconductors (SMES) High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory...

245

Facility effluent monitoring plan for the 325 Facility  

SciTech Connect (OSTI)

The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

NONE

1998-12-31T23:59:59.000Z

246

Basic Energy Sciences User Facilities | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BES User Facilities BES User Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 BES User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page The Basic Energy Sciences program supports the operation of the following national scientific user facilities: Synchrotron Radiation Light Sources National Synchrotron Light Source (NSLS): External link The NSLS at Brookhaven National Laboratory External link , commissioned in 1982, consists of two distinct electron storage rings. The x-ray storage

247

Transuranic waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement  

SciTech Connect (OSTI)

Transuranic waste (TRUW) loads and potential contaminant releases at and en route to treatment, storage, and disposal sites in the US Department of Energy (DOE) complex are important considerations in DOE`s Waste Management Programmatic Environmental Impact Statement (WM PEIS). Waste loads are determined in part by the level of treatment the waste has undergone and the complex-wide configuration of origination, treatment, storage, and disposal sites selected for TRUW management. Other elements that impact waste loads are treatment volumes, waste characteristics, and the unit operation parameters of the treatment technologies. Treatment levels and site configurations have been combined into six TRUW management alternatives for study in the WM PEIS. This supplemental report to the WM PEIS gives the projected waste loads and contaminant release profiles for DOE treatment sites under each of the six TRUW management alternatives. It gives TRUW characteristics and inventories for current DOE generation and storage sites, describes the treatment technologies for three proposed levels of TRUW treatment, and presents the representative unit operation parameters of the treatment technologies. The data presented are primary inputs to developing the costs, health risks, and socioeconomic and environmental impacts of treating, packaging, and shipping TRUW for disposal.

Hong, K.; Kotek, T.; Folga, S.; Koebnick, B.; Wang, Y.; Kaicher, C.

1996-12-01T23:59:59.000Z

248

Gas storage materials, including hydrogen storage materials  

DOE Patents [OSTI]

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

249

Realization of the German Concept for Interim Storage of Spent Nuclear Fuel - Current Situation and Prospects  

SciTech Connect (OSTI)

The German government has determined a phase out of nuclear power. With respect to the management of spent fuel it was decided to terminate transports to reprocessing plants by 2005 and to set up interim storage facilities on power plant sites. This paper gives an overview of the German concept for spent fuel management focused on the new on-site interim storage concept and the applied interim storage facilities. Since the end of the year 1998, the utilities have applied for permission of on-site interim storage in 13 storage facilities and 5 storage areas; one application for the interim storage facility Stade was withdrawn due to the planned final shut down of Stade nuclear power plant in autumn 2003. In 2001 and 2002, 3 on-site storage areas and 2 on-site storage facilities for spent fuel were licensed by the Federal Office for Radiation Protection (BfS). A main task in 2002 and 2003 has been the examination of the safety and security of the planned interim storage facilities and the verification of the licensing prerequisites. In the aftermath of September 11, 2001, BfS has also examined the attack with a big passenger airplane. Up to now, these aircraft crash analyses have been performed for three on-site interim storage facilities; the fundamental results will be presented. It is the objective of BfS to conclude the licensing procedures for the applied on-site interim storage facilities in 2003. With an assumed construction period for the storage buildings of about two years, the on-site interim storage facilities could then be available in the year 2005.

Thomauske, B. R.

2003-02-25T23:59:59.000Z

250

Manhattan Project buildings and facilities at the Hanford Site: A construction history  

SciTech Connect (OSTI)

This document thoroughly examines the role that the Hanford Engineer Works played in the Manhattan project. The historical aspects of the buildings and facilities are characterized. An in depth look at the facilities, including their functions, methods of fabrication and appearance is given for the 100 AREAS, 200 AREAS, 300 AREAS, 500, 800 and 900 AREAS, 600 AREA, 700 AREA, 1100 AREA and temporary construction structures.

Gerber, M.S.

1993-09-01T23:59:59.000Z

251

Joint Center for Energy Storage Research  

SciTech Connect (OSTI)

The Joint Center for Energy Storage Research (JCESR) is a major public-private research partnership that integrates U.S. Department of Energy national laboratories, major research universities and leading industrial companies to overcome critical scientific challenges and technical barriers, leading to the creation of breakthrough energy storage technologies. JCESR, centered at Argonne National Laboratory, outside of Chicago, consolidates decades of basic research experience that forms the foundation of innovative advanced battery technologies. The partnership has access to some of the world's leading battery researchers as well as scientific research facilities that are needed to develop energy storage materials that will revolutionize the way the United States and the world use energy.

Eric Isaacs

2012-11-30T23:59:59.000Z

252

Design review report FFTF interim storage cask  

SciTech Connect (OSTI)

Final Design Review Report for the FFTF Interim Storage Cask. The Interim Storage Cask (ISC) will be used for long term above ground dry storage of FFTF irradiated fuel in Core Component Containers (CCC)s. The CCC has been designed and will house assemblies that have been sodium washed in the IEM Cell. The Solid Waste Cask (SWC) will transfer a full CCC from the IEM Cell to the RSB Cask Loading Station where the ISC will be located to receive it. Once the loaded ISC has been sealed at the RSB Cask Loading Station, it will be transferred by facility crane to the DSWC Transporter. After the ISC has been transferred to the Interim Storage Area (ISA), which is yet to be designed, a mobile crane will be used to place the ISC in its final storage location.

Scott, P.L.

1995-01-03T23:59:59.000Z

253

Long-Term Management and Storage of Elemental Mercury | Department...  

Office of Environmental Management (EM)

Mercury Export Ban Act of 2008 (MEBA) (Public Law No. 110-414) requires the Department of Energy (DOE) to establish a facility for the long-term management and storage of elemental...

254

Environmental impacts of proposed Monitored Retrievable Storage. Final report  

SciTech Connect (OSTI)

This report describes environmental impacts from a proposed monitored retrievable storage facility for spent fuels to be located in Tennessee. Areas investigated include: water supply, ground water, air quality, solid waste management, and health hazards. (CBS)

Not Available

1985-12-17T23:59:59.000Z

255

The Strong Case for Thermal Energy Storage and Utility Incentives  

E-Print Network [OSTI]

construction costs, more stringent regulations, and increasing environmental constraints regarding development of new generating facilities. As the thermal cooling storage technology has matured, more and more utilities are recognizing that widespread use...

McCannon, L. W.

256

Sandia National Laboratories: Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

257

Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

258

Monitored retrievable storage submission to Congress: Volume 3, Monitored retrievable storage program plan. [Contains glossary  

SciTech Connect (OSTI)

This document presents the current DOE program objectives and the strategy for implementing the proposed program for the integral MRS facility. If the MRS proposal is approved by Congress, any needed revisions to the Program Plan will be made available to the Congress, the State of Tennessee, affected Indian tribes, local governments, other federal agencies, and the public. The proposal for constructing an MRS facility must include: the establishment of a federal program for the siting, development, construction, and operation of MRS facilities; a plan for funding the construction and operation of MRS facilities; site-specific designs, specifications, and cost estimates for the first such facility; a plan for integrating MRS facilities with other storage and disposal facilities authorized by the NWPA. 32 refs., 14 figs., 1 tab.

none,

1987-03-01T23:59:59.000Z

259

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

1995-10-13T23:59:59.000Z

260

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

2012-12-04T23:59:59.000Z

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

SJSU HR: revised 01/13/12 Page 1 of 2 TEMPORARY SUPPORT REQUEST  

E-Print Network [OSTI]

SJSU HR: revised 01/13/12 Page 1 of 2 TEMPORARY SUPPORT REQUEST HUMAN RESOURCES Workforce Planning FOR TEMPORARY SUPPORT Complete and submit this form to Workforce Planning (WFP) at classcomp@sjsu.edu or 0046 consultation with Workforce Planning. GENERAL INFORMATION University Division: Academic Affairs Administration

Eirinaki, Magdalini

262

Facility effluent monitoring plan for the 324 Facility  

SciTech Connect (OSTI)

The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

NONE

1994-11-01T23:59:59.000Z

263

Overview of Carbon Storage Research | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Overview of Overview of Carbon Storage Research Overview of Carbon Storage Research The Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from point sources. The Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from point sources. Roughly one third of the United States' carbon emissions come from power plants and other large point sources, such as industrial facilities. The Carbon Storage Program is focused on ensuring the safe and permanent storage and/or utilization of CO2 captured from point sources. This effort is organized into two broad areas: Cooperative Advancement, which involves working with other organizations and governments to advance CCS worldwide, and

264

Bulk Hydrogen Storage - Strategic Directions for Hydrogen Delivery Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Hydrogen Storage Strategic Directions for Hydrogen Delivery Workshop May 7-8, 2003 Crystal City, Virginia Breakout Session - Bulk Hydrogen Storage Main Themes/Caveats Bulk Storage = Anything not on the vehicle 10's of Tons -- End use point 50-100 Tons - Terminals/City Gates 1000's Tons - Between Production Facility and Terminal/City Gate Bulk storage requirements less restrictive and different from on-board storage Uncertainty about evolution of infrastructure requires multiple pathways to be considered Bulk storage is an economic solution to address supply/demand imbalance Breakout Session - Bulk Hydrogen Storage Targets/Objectives Hard to quantify - scenario & end-use dependent Storage Materials (solid state) and container require different targets

265

GRR/Section 19-TX-e - Temporary Surface Water Permit | Open Energy  

Open Energy Info (EERE)

-TX-e - Temporary Surface Water Permit -TX-e - Temporary Surface Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-TX-e - Temporary Surface Water Permit 19-TX-e Temporary Surface Water Permit.pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 11.138 Triggers None specified Click "Edit With Form" above to add content 19-TX-e Temporary Surface Water Permit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Texas, the Texas Commission on Environmental Quality (TCEQ), or in certain instances regional TCEQ offices or local Watermasters, issue

266

STORAGE OF CHILLED NATURAL GAS IN BEDDED SALT STORAGE CAVERNS  

SciTech Connect (OSTI)

This report provides the results of a two-phase study that examines the economic and technical feasibility of converting a conventional natural gas storage facility in bedded salt into a refrigerated natural gas storage facility for the purpose of increasing the working gas capacity of the facility. The conceptual design used to evaluate this conversion is based on the design that was developed for the planned Avoca facility in Steuben County, New York. By decreasing the cavern storage temperature from 43 C to -29 C (110 F to -20 F), the working gas capacity of the facility can be increased by about 70 percent (from 1.2 x 10{sup 8} Nm{sup 3} or 4.4 billion cubic feet (Bcf) to 2.0 x 10{sup 8} Nm{sup 3} or 7.5 Bcf) while maintaining the original design minimum and maximum cavern pressures. In Phase I of the study, laboratory tests were conducted to determine the thermal conductivity of salt at low temperatures. Finite element heat transfer calculations were then made to determine the refrigeration loads required to maintain the caverns at a temperature of -29 C (-20 F). This was followed by a preliminary equipment design and a cost analysis for the converted facility. The capital cost of additional equipment and its installation required for refrigerated storage is estimated to be about $13,310,000 or $160 per thousand Nm{sup 3} ($4.29 per thousand cubic feet (Mcf)) of additional working gas capacity. The additional operating costs include maintenance refrigeration costs to maintain the cavern at -29 C (-20 F) and processing costs to condition the gas during injection and withdrawal. The maintenance refrigeration cost, based on the current energy cost of about $13.65 per megawatt-hour (MW-hr) ($4 per million British thermal units (MMBtu)), is expected to be about $316,000 after the first year and to decrease as the rock surrounding the cavern is cooled. After 10 years, the cost of maintenance refrigeration based on the $13.65 per MW-hr ($4 per MMBtu) energy cost is estimated to be $132,000. The gas processing costs are estimated to be $2.05 per thousand Nm{sup 3} ($0.055 per Mcf) of gas injected into and withdrawn from the facility based on the $13.65 per MW-hr ($4 per MMBtu) energy cost. In Phase II of the study, laboratory tests were conducted to determine mechanical properties of salt at low temperature. This was followed by thermomechanical finite element simulations to evaluate the structural stability of the cavern during refrigerated storage. The high thermal expansion coefficient of salt is expected to result in tensile stresses leading to tensile failure in the roof, walls, and floor of the cavern as it is cooled. Tensile fracturing of the cavern roof may result in loss of containment of the gas and/or loss of integrity of the casing shoe, deeming the conversion of this facility not technically feasible.

JOel D. Dieland; Kirby D. Mellegard

2001-11-01T23:59:59.000Z

267

Southern company energy storage study : a study for the DOE energy storage systems program.  

SciTech Connect (OSTI)

This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

Ellison, James; Bhatnagar, Dhruv; Black, Clifton [Southern Company Services, Inc., Birmingham, AL; Jenkins, Kip [Southern Company Services, Inc., Birmingham, AL

2013-03-01T23:59:59.000Z

268

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

and Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Aquifer Storage of Hot Water from Solar Energy Collectors,"with solar energy systems, aquifer energy storage provides a

Tsang, C.-F.

2011-01-01T23:59:59.000Z

269

Carbon Storage in Basalt  

Science Journals Connector (OSTI)

...immobile and thus the storage more secure, though...continental margins have huge storage capacities adjacent...unlimited supplies of seawater. On the continents...present in the target storage formation can be pumped up and used to dissolve...

Sigurdur R. Gislason; Eric H. Oelkers

2014-04-25T23:59:59.000Z

270

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Gravelwith solar energy systems, aquifer energy storage provides aAquifer Storage of Hot Water from Solar Energy Collectors,"

Tsang, C.-F.

2011-01-01T23:59:59.000Z

271

Seasonal thermal energy storage  

SciTech Connect (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

272

Solar Thermal Energy Storage  

Science Journals Connector (OSTI)

Various types of thermal energy storage systems are introduced and their importance and desired characteristics are outlined. Sensible heat storage, which is one of the most commonly used storage systems in pract...

E. Paykoç; S. Kakaç

1987-01-01T23:59:59.000Z

273

Economic effectiveness of using temporary runners on the turbines of the first line of the Nurek hydroelectric station  

Science Journals Connector (OSTI)

The installation of temporary runners at high-head hydroelectric stations provides: shortening of the station startup...

S. N. Ostroumov; K. A. Lyubitskii; V. F. Ilyushin…

1972-11-01T23:59:59.000Z

274

Temporary Losses of Highway Capacity and Impacts on Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Temporary Losses of Highway Capacity and Impacts on Performance May 2002 Prepared by S. M. Chin O. Franzese D. L. Greene H. L. Hwang Oak Ridge National Laboratory Oak Ridge, Tennessee R. C. Gibson The University of Tennessee Knoxville, Tennessee DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: info@ntis.fedworld.gov

275

A pragmatic approach to temporary payment card numbers  

Science Journals Connector (OSTI)

With the push towards electronic payments that use a smart card and authenticate the cardholder by his or her personal identification number, much fraud has switched to the residual payment methods that just rely on knowing the card number: card-not-present transactions. There are various countermeasures; notably some issuers allocate temporary card numbers (TCNs). The snag is that this is an online solution that requires the cardholder to be identified and authenticated over a separate and direct link between the cardholder and card issuer each time a number is allocated. Some off-line mechanisms have been proposed but those TCNs do not act as the cardholder's identifier. This paper examines a sample of online and off-line TCN mechanisms and then proposes an off-line mechanism that gives a comparable service to the online mechanisms. The cardholder's privacy is protected whilst still allowing proof of payment.

David J. Boyd

2009-01-01T23:59:59.000Z

276

Temporary Emergency Exposure Limits for Chemicals: Methods and Practice  

Broader source: Energy.gov (indexed) [DOE]

DOE-HDBK-1046-2008 August 2008 DOE HANDBOOK TEMPORARY EMERGENCY EXPOSURE LIMITS FOR CHEMICALS: METHODS AND PRACTICE U.S. Department of Energy AREA EMER Washington, D.C. 20585 DOE-HDBK-1046-2008 ii DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1046-2008 iii Available on the Department of Energy Technical Standards Program Web site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-HDBK-1046-2008 iv FOREWORD In 2005, the Office of Emergency Management and Policy (NA-41) within the National Nuclear Security Administration (NNSA), U.S. Department of Energy (DOE), issued DOE O 151.1C, Comprehensive Emergency Management System. This order, and its Guides issued in 2007, reference Acute Exposure Guideline Levels (AEGLs) and Emergency Response Planning

277

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

hydro, compressed air, and battery energy storage are allenergy storage sys tem s suc h as pumped hydro and compressed air.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

278

10 Carbon Capture and Storage in the UK Yasmin E. Bushby Scottish Centre for Carbon Storage, School  

E-Print Network [OSTI]

10 Carbon Capture and Storage in the UK Yasmin E. Bushby ďż˝ Scottish Centre for Carbon Storage fossil fuels which in turn produces approximately one third of total UK CO2 emissions. Carbon Capture stations and industrial facilities. Existing power stations can be retrofitted with carbon capture

279

Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility  

SciTech Connect (OSTI)

The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating text. 38 39 Information provided in this Liquid Effluent Retention Facility and 40 200 Area Effluent Treatment Facility permit application documentation is 41 current as of June 1, 1997.

Coenenberg, J.G.

1997-08-15T23:59:59.000Z

280

Interim Storage of RH-TRU 72B Canisters at the DOE Oak Ridge Reservation  

SciTech Connect (OSTI)

This paper describes an evaluation performed by the Department of Energy (DOE) Oak Ridge Operations (ORO) office for potential interim storage of remote-handled (RH) transuranic (TRU) 72B waste canisters at the Oak Ridge National Laboratory (ORNL). The evaluation included the conceptual design of a devoted canister storage facility and an assessment of the existing RHTRU waste storage facilities for storage of canisters. The concept for the devoted facility used modular concrete silos located on an above-grade storage pad. The assessment of the existing facilities considered the potential methods, facility modifications, and conceptual equipment that might be used for storage of 400 millisievert per hour (mSv/hr) canisters. The results of the evaluation indicated that the initial investment into a devoted facility was relatively high as compared to the certainty that significant storage capacity was necessary prior to the Waste Isolation Pilot Plant (WIPP) accepting RH-TRU waste for disposal. As an alternative, the use of individual concrete overpacks provided an incremental method that could be used with the existing storage facilities and outside storage pads. For the concrete overpack concepts considered, the cylindrical design stored in a vertical orientation was determined to be the most effective.

Forrester, T. W.; Hunt, R. A.; Riner, G. L.

2002-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Facility Interface Capability Assessment (FICA) project report  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for developing the Civilian Radioactive Waste Management System (CRWMS) to accept spent nuclear fuel from commercial facilities. The objective of the Facility Interface Capability Assessment (FICA) project was to assess the capability of each commercial spent nuclear fuel (SNF) storage facility, at which SNF is stored, to handle various SNF shipping casks. The purpose of this report is to present and analyze the results of the facility assessments completed within the FICA project. During Phase 1, the data items required to complete the facility assessments were identified and the database for the project was created. During Phase 2, visits were made to 122 facilities on 76 sites to collect data and information, the database was updated, and assessments of the cask-handling capabilities at each facility were performed. Each assessment of cask-handling capability contains three parts: the current capability of the facility (planning base); the potential enhanced capability if revisions were made to the facility licensing and/or administrative controls; and the potential enhanced capability if limited physical modifications were made to the facility. The main conclusion derived from the planning base assessments is that the current facility capabilities will not allow handling of any of the FICA Casks at 49 of the 122 facilities evaluated. However, consideration of potential revisions and/or modifications showed that all but one of the 49 facilities could be adapted to handle at least one of the FICA Casks. For this to be possible, facility licensing, administrative controls, and/or physical aspects of the facility would need to be modified.

Pope, R.B. [ed.] [Oak Ridge National Lab., TN (United States); MacDonald, R.R. [ed.] [Civilian Radioactive Waste Management System, Vienna, VA (United States); Viebrock, J.M.; Mote, N. [Nuclear Assurance Corp., Norcross, GA (United States)

1995-09-01T23:59:59.000Z

282

SGP Central Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Central Facility Central Facility SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site to gather atmospheric data of unprecedented quality, consistency, and completeness. More than 30 instrument clusters have been placed around the site; the central facility; and the boundary, intermediate, and extended facilities. The locations for the instruments were chosen so that the measurements reflect conditions

283

ARM - SGP Central Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Central Facility Central Facility SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site to gather atmospheric data of unprecedented quality, consistency, and completeness. More than 30 instrument clusters have been placed around the site; the central facility; and the boundary, intermediate, and extended facilities. The locations for the instruments were chosen so that the measurements reflect conditions

284

Energy Secretary Moniz Visits Clean Coal Facility in Mississippi |  

Broader source: Energy.gov (indexed) [DOE]

Secretary Moniz Visits Clean Coal Facility in Mississippi Secretary Moniz Visits Clean Coal Facility in Mississippi Energy Secretary Moniz Visits Clean Coal Facility in Mississippi November 8, 2013 - 3:36pm Addthis On Friday, Nov. 8, 2013, Secretary Moniz and international energy officials toured Kemper, the nation's largest carbon capture and storage facility, in Liberty, Mississippi. On Friday, Nov. 8, 2013, Secretary Moniz and international energy officials toured Kemper, the nation's largest carbon capture and storage facility, in Liberty, Mississippi. Allison Lantero Allison Lantero Public Affairs Specialist, Office of Public Affairs See a photo gallery of the Secretary's visit to Kemper. Liberty, Mississippi, a small town in the eastern county of Kemper, is quietly making energy history. Liberty is the home of the largest carbon capture and storage (CCS) plant

285

Microsoft Word - OE_Energy_Storage_Program_Plan_Feburary_2011v3[2].docx  

Broader source: Energy.gov (indexed) [DOE]

Images-Front cover: 20MW Beacon Power flywheel storage facility; Ameren's 440MW pumped-hydro storage at Taum Sauk, Missouri. Back cover: 8MW SCE / A123 Lithium-ion storage at Tehachapi wind farm; 25MW Primus Power flow battery at Modesto, California; 110MW compressed air energy storage in McIntosh, Alabama. TABLE OF CONTENTS Executive Summary............................................................................................................. 1 1.0 Introduction to the OE Storage Program ...................................................................... 5 1.1. The Grid Energy Storage Value Proposition ..................................................................................... 5 1.2. Grid Energy Storage at DOE .............................................................................................................

286

PASIG_LBNL_Storage.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Supporting DOE Science Supporting DOE Science Jason Hick jhick@lbl.gov NERSC LBNL http://www.nersc.gov/nusers/systems/HPSS/ http://www.nersc.gov/nusers/systems/NGF/ May 12, 2011 * Operated by UC for the DOE * NERSC serves a large population - Approximately 4000 users, 400 projects, 500 codes - Focus on "unique" resources * High-end computing systems * High-end storage systems - Large shared GPFS (a.k.a. NGF) - Large archive (a.k.a. HPSS) * Interface to high speed networking - ESnet soon to be 100Gb (a.k.a. ANI) * Our mission is to accelerate the pace of discovery by providing high performance computing, data, and communication services to the DOE Office of Science community. The Production Facility for DOE Office of Science 2010 storage usage by area of science.

287

The public response to Monitored Retrievable Storage: An interim report  

SciTech Connect (OSTI)

This report describes public opinion concerning the proposed monitored retrievable storage facility to be located in the vicinity of Oak Ridge, Tennessee. The majority of individuals who did express an opinion opposed the facility due to transport/safety concerns and environmental/health concerns. (CBS)

Not Available

1985-10-22T23:59:59.000Z

288

NREL: Energy Systems Integration Facility - Facility Design  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Design Throughout the Energy Systems Integration Facility design process, the National Renewable Energy Laboratory hosted workshops in which stakeholders from across the...

289

FACSIM/MRS (Monitored Retrievable Storage)-2: Storage and shipping model documentation and user's guide  

SciTech Connect (OSTI)

The Pacific Northwest Laboratory (PNL) has developed a stochastic computer model, FACSIM/MRS, to assist in assessing the operational performance of the Monitored Retrievable Storage (MRS) waste-handling facility. This report provides the documentation and user's guide for FACSIM/MRS-2, which is also referred to as the back-end model. The FACSIM/MRS-2 model simulates the MRS storage and shipping operations, which include handling canistered spent fuel and secondary waste in the shielded canyon cells, in onsite yard storage, and in repository shipping cask loading areas.

Huber, H.D.; Chockie, A.D.; Hostick, C.J.; Otis, P.T.; Sovers, R.A.

1987-06-01T23:59:59.000Z

290

Existing Facilities Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Existing Facilities Program Existing Facilities Program Existing Facilities Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Installer/Contractor Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Other Construction Commercial Weatherization Manufacturing Heat Pumps Commercial Lighting Lighting Maximum Rebate Pre-Qualified Measures (General): $30,000 (electric and gas) Electric Efficiency and Energy Storage: 50% of cost or $2 million Natural Gas Efficiency: 50% of cost or $200,000 Demand Response: 75% of cost or $2 million (limit also applies to combined performance based efficiency and demand response measures) Industrial Process Efficiency: 50% of cost or $5 million

291

Plutonium-Uranium Extraction (PUREX) facility preclosure work plan  

SciTech Connect (OSTI)

The dangerous waste permit identification number (WA7890008967)was issued by the U.S. Environmental Protection Agency and the Washington State Department of Ecology. This identification number encompasses a number of treatment, storage, and/or disposal units within the Hanford Facility. One of these treatment, storage, and/or disposal units is the PUREX Facility,currently undergoing a phased closure. The PUREX Facility Preclosure Work Plan submittal differs from closure plans previously submitted by the U.S. Department of Energy, Richland Operations Office to the Washington State Department of Ecology,in that the closure process occurs in three distinct phases as part of the decommissioning process (i.e., transition,surveillance and maintenance, and disposition). Final closure will occur during the disposition phase. This phased decommissioning process is implemented because development of a complete closure plan during the transition phase is impractical and future land use determinations have not been identified. The objective of the transition phase is to place the PUREX Facility in a safe configuration with respect to human health and the environment. Following the transition phase activities, the PUREX Facility will begin the surveillance and maintenance phase of 10 or more years until disposition phase activities commence. The closure plan for the PUREX facility will be prepared during the disposition phase. For purposes of this documentation, the PUREX Facility does not include the PUREX Storage Tunnels. The PUREX Storage Tunnels are an operating storage unit(DOE/RL-94-24).

Bhatia, R.K., Westinghouse Hanford

1996-07-09T23:59:59.000Z

292

Summary Audit Report on Contractor Employee Relocation and Temporary Living Costs, IG-0400  

Broader source: Energy.gov (indexed) [DOE]

DATE: January 27, 1997 DATE: January 27, 1997 REPLY TO ATTN OF: IG-1 SUBJECT: INFORMATION: Summary Audit Report on Contractor Employee Relocation andTemporary Living Costs TO: The Acting Secretary This summary report highlights systemic problems with contractor charges for contractor employee relocation and temporary living costs. Over the past 5 years, the Office of Inspector General issued nine audit reports that identified unreasonable and unallowable charges for employee relocation and temporary living costs by contractors and their subcontractors. We found that contractors were reimbursed for these costs because the Department of Energy (Department) did not use clearly defined contract provisions

293

A geochemical assessment of petroleum from underground oil storage caverns in relation to petroleum from natural reservoirs offshore Norway.  

E-Print Network [OSTI]

??The aim of this study is to compare oils from known biodegraded fields offshore Norway to waxes and oils from an artificial cavern storage facility,… (more)

Řstensen, Marie

2005-01-01T23:59:59.000Z

294

Pumped storage for hydroelectric power. (Latest citations from Fluidex (Fluid Engineering Abstracts) database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the design, development, construction, and characteristics of surface and underground pumped storage for hydroelectric power. Pumped storage projects and facilities worldwide are referenced. There is some consideration of research and experimental results of pumped storage studies, as well as modeling. (Contains a minimum of 198 citations and includes a subject term index and title list.)

Not Available

1993-10-01T23:59:59.000Z

295

Pumped storage for hydroelectric power. (Latest citations from Fluidex data base). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the design, development, construction, and characteristics of surface and underground pumped storage for hydroelectric power. Pumped storage projects and facilities worldwide are referenced. There is some consideration of research and experimental results of pumped storage studies, as well as modeling. (Contains a minimum of 192 citations and includes a subject term index and title list.)

Not Available

1992-09-01T23:59:59.000Z

296

Cold vacuum drying facility 90% design review  

SciTech Connect (OSTI)

This document contains review comment records for the CVDF 90% design review. Spent fuels retrieved from the K Basins will be dried at the CVDF. It has also been recommended that the Multi-Conister Overpacks be welded, inspected, and repaired at the CVD Facility before transport to dry storage.

O`Neill, C.T.

1997-05-02T23:59:59.000Z

297

Storage | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Storage Storage Energy storage isn’t just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more. Energy storage isn't just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more.

298

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

299

NREL: Energy Storage - Working with Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with Us Working with Us Partnering with industry, government, and universities is key to developing affordable energy storage technology and moving it into the marketplace and the U.S. economy. In collaboration with our diverse partners, we use thermal management and modeling and analysis from a vehicle systems perspective to improve energy storage devices. Much of our research is conducted at the state-of-the-art energy storage laboratory, in Golden, Colorado. There are a variety of ways to become involved with NREL's Energy Storage activities: NREL's Partnering Agreements Work collaboratively with NREL through a variety of Technology Partnership Agreements. We can help you select the most appropriate agreement for your research project. Gain access to NREL's expertise and specialized research facilities through

300

Monitored Retrievable Storage Background | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Monitored Retrievable Storage Background Monitored Retrievable Storage Background Monitored Retrievable Storage Background `The U.S. Government is seeking a site for a monitored retrievable storage facility (MRS). Employing proven technologies used in this country and abroad, the MRS will be an Integral part of the Federal system for safe and permanent disposal of the nation's high-level radioactive wastes. The MRS will accept shipments of spent fuel from commercial nuclear power plants, temporarily store the spent fuel above ground, and stage shipments of it to a geologic repository for permanent disposal. The law authorizing the MRS provides an opportunity for a State or an Indian Tribe to volunteer to host the MRS. The law establishes the Office of the Nuclear Waste Negotiator, who Is 10 seek a State or an Indian Tribe

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hydrate Control for Gas Storage Operations  

SciTech Connect (OSTI)

The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

Jeffrey Savidge

2008-10-31T23:59:59.000Z

302

ENVIRONMENTAL ASSESSMENT FOR HAZARDOUS WASTE STAGING FACILITY  

Broader source: Energy.gov (indexed) [DOE]

HAZARDOUS WASTE STAGING FACILITY HAZARDOUS WASTE STAGING FACILITY Project 39GF71024-GPDI21000000 . PANTEX PLANT AMARILLO, TEXAS DOE/EA-0688 JUNE 1993 MASTER DiSTRiBUTiON OF THIS DOCUMENT IS UNLIMITEI) ffrl TABLE OF CONTENTS Section Page 1.0 Need for Action 1 2.0 Description of Proposed Facility Action 3.0 Location of the Action 8 4.0 Alternatives to Proposed Action 9 4.1 No Action 9 4.2 Redesign and Modify Existing staging Facilities 9 4.3 Use Other Existing Space at Pantex Plant 9 4.4 Use Temporary Structures 9 4.5 Stage Waste at Other Sites 10 4.6 Stage Wastes Separately 10 5.0 Environmental Impacts of Proposed Action 10 5.1 Archeology 10 5.2 FloodplainlW etlands 10 5.3 Threatened and Endangered Species 10 5.4 Surrounding La,nd Use 11 5.5 Construction 11 5.6 Air Emissions 11

303

Thermal energy storage  

Science Journals Connector (OSTI)

Various types of thermal stares for solar systems are surveyed which include: long-term water stores for solar systems; ground storage using soil as an interseasonal energy store; ground-water aquifers; pebble or rock bed storage; phase change storage; solar ponds; high temperature storage; and cold stores for solar air conditioning system. The use of mathematical models for analysis of the storage systems is considered

W.E.J. Neal

1981-01-01T23:59:59.000Z

304

4858 recreation facility [n  

Science Journals Connector (OSTI)

plan. recr. (Installation and equipment provided for recreation; ? simply-provided recreation facility , ? well-provided recreation facility ...

2010-01-01T23:59:59.000Z

305

Facilities | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced...

306

Low-energy antiproton physics and the FLAIR facility  

E-Print Network [OSTI]

FLAIR, the Facility for Low-energy Antiproton and Ion Research has been proposed in 2004 as an extension of the planned FAIR facility at Darmstadt, Germany. FLAIR was not included into the Modularized Start Version of FAIR, but the recent installation of the CRYRING storage ring at GSI Darmstadt has opened new perspectives for physics with low-energy antiprotons at FAIR.

Widmann, Eberhard

2015-01-01T23:59:59.000Z

307

Differences Between Monthly and Weekly Working Gas In Storage  

Weekly Natural Gas Storage Report (EIA)

December 19, 2013 December 19, 2013 Note: The weekly storage estimates are based on a survey sample that does not include all companies that operate underground storage facilities. The sample was selected from the list of storage operators to achieve a target standard error of the estimate of working gas in storage which was no greater than 5 percent for each region. Based on a comparison of weekly estimates and monthly data from May 2002 through September 2013, estimated total working gas stocks have exhibited an average absolute error of 16 billion cubic feet, or 0.6 percent. Background The Energy Information Administration (EIA) provides weekly estimates of working gas volumes held in underground storage facilities at the national and regional levels. These are estimated from volume data provided by a

308

Differences Between Monthly and Weekly Working Gas In Storage  

Weekly Natural Gas Storage Report (EIA)

November 7, 2013 November 7, 2013 Note: The weekly storage estimates are based on a survey sample that does not include all companies that operate underground storage facilities. The sample was selected from the list of storage operators to achieve a target standard error of the estimate of working gas in storage which was no greater than 5 percent for each region. Based on a comparison of weekly estimates and monthly data from May 2002 through August 2013, estimated total working gas stocks have exhibited an average absolute error of 16 billion cubic feet, or 0.6 percent. Background The Energy Information Administration (EIA) provides weekly estimates of working gas volumes held in underground storage facilities at the national and regional levels. These are estimated from volume data provided by a

309

Facility Representatives  

Broader source: Energy.gov (indexed) [DOE]

063-2011 063-2011 February 2011 Superseding DOE-STD-1063-2006 April 2006 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2011 ii Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/ DOE-STD-1063-2011 iii FOREWORD 1. This Department of Energy (DOE) standard is approved for use by all DOE/National Nuclear Security Administration (NNSA) Components. 2. The revision to this DOE standard was developed by a working group consisting of headquarters and field participants. Beneficial comments (recommendations,

310

Facility Representatives  

Broader source: Energy.gov (indexed) [DOE]

DOE-STD-1063-2006 April 2006 Superseding DOE-STD-1063-2000 March 2000 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2006 ii Available on the Department of Energy Technical Standards Program web site at http://www.eh.doe.gov/techstds/ DOE-STD-1063-2006 iii FOREWORD 1. This Department of Energy standard is approved for use by all DOE Components. 2. The revision to this DOE standard was developed by a working group consisting of headquarters and field participants. Beneficial comments (recommendations, additions, deletions) and any pertinent data that may improve this document should

311

Research Facility,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collecting and Delivering the Data Collecting and Delivering the Data As a general condition for use of the ARM Climate Research Facility, users are required to include their data in the ARM Data Archive. All data acquired must be of sufficient quality to be useful and must be documented such that users will be able to clearly understand the meaning and organization of the data. Final, quality-assured data sets are stored in the Data Archive and are freely accessible to the general scientific community. Preliminary data may be shared among field campaign participants during and shortly following the campaign. To facilitate sharing of preliminary data, the ARM Data Archive establishes restricted access capability, limited to participants and data managers.

312

Underground Storage Tanks (New Jersey) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State New Jersey Program Type Safety and Operational Guidelines This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and the environment

313

NREL: Energy Storage - Energy Storage Thermal Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Thermal Management Infrared image of rectangular battery cell. Infrared thermal image of a lithium-ion battery cell with poor terminal design. Graph of relative...

314

NREL: Energy Storage - Energy Storage Systems Evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Systems Evaluation Photo of man standing between two vehicles and plugging the vehicle on the right into a charging station. NREL system evaluation has confirmed...

315

NREL: Hydrogen and Fuel Cells Research - Other Research Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Other Research Facilities Other Research Facilities In addition to the laboratories dedicated to hydrogen and fuel cell research, other facilities at NREL provide space for scientists developing hydrogen and fuel cell technologies along with other renewable energy technologies. Distributed Energy Resources Test Facility NREL's Distributed Energy Resources (DER) Test Facility is a working laboratory to test and improve interconnections among renewable energy generation technologies, energy storage systems, and electrical conversion equipment. Research being conducted includes improving the system efficiency of hydrogen production by electrolysis using wind or other renewable energy. This research highlights a promising option for encouraging higher penetrations of renewable energy generation as well as

316

Proposed strontium radiosotope thermoelectric generator fuel encapsulation facility  

SciTech Connect (OSTI)

The proposed Fuel Encapsulation Facility is a fully equipped facility for processing and encapsulating strontium Radioisotope Thermoelectric Generator (RTG) fuel from presently available Waste Encapsulation and Storage Facility (WESF) capsules. The facility location is on the second building level below ground of the Fuels and Materials Examination Facility (FMEF), Cells 142, 143, and 145. Capsules containing strontium fluoride (SrF[sub 2]) would be received from the WESF in Cell 145 and transferred to the three adjacent cells for processing and encapsulation into the final RTG fuel configuration.

Adkins, H.E. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (United States))

1993-01-10T23:59:59.000Z

317

FACILITY SURVEY & TRANSFER Facility Survey & Transfer Overview  

Broader source: Energy.gov (indexed) [DOE]

SURVEY & TRANSFER SURVEY & TRANSFER Facility Survey & Transfer Overview Transfer Activities Checklist Pre-Survey Information Request Survey Report Content Detailed Walkdown Checklist Walkdown Checklist Clipboard Aids S & M Checklist Survey Report Example - Hot Storage Garden Survey Report Example - Tritium System Test Assembly Survey Report Example - Calutron Overview As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning. Requirements and guidance for such transfers are contained in:  DOE Order 430.1B Chg. 2, REAL PROPERTY & ASSET MANAGEMENT  DOE Guide 430.1-5, TRANSITION IMPLEMENTATION GUIDE The transfer process is illustrated in the Transfer Process figure. The purpose here is to provide examples of methods and

318

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly Natural Gas Underground Storage Report," are collected from storage operators on a field-level basis. Operators can report field-level data either on a per reservoir basis or on an aggregated reservoir basis. It is possible that if all operators reported on a per reservoir basis that the demonstrated peak working gas capacity would be larger. Additionally, these data reflect inventory levels as of the last day of the report month, and a facility may have reached a higher inventory on a different day of the report month, which would not be recorded on Form EIA-191M.

319

Working and Net Available Shell Storage Capacity as of March 31, 2011  

Gasoline and Diesel Fuel Update (EIA)

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity Archives With Data for March 2011 | Release Date: May 31, 2011 Working and Net Available Shell Storage Capacity is the U.S. Energy Information Administration's (EIA) report containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an important crude oil market center. Data

320

The Mixed Waste Management Facility monthly report August 1995  

SciTech Connect (OSTI)

The project is concerned with the design of a mixed waste facility to prepare solid and liquid wastes for processing by electrochemical oxidation, molten salt oxidation, wet oxidation, or UV photolysis. The facility will have a receiving and shipping unit, preparation and processing units, off-gas scrubbing, analytical services, water treatment, and transport and storage facilities. This monthly report give task summaries for 25 tasks which are part of the overall design effort.

Streit, R.D.

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Canister storage building trade study. Final report  

SciTech Connect (OSTI)

This study was performed to evaluate the impact of several technical issues related to the usage of the Canister Storage Building (CSB) to safely stage and store N-Reactor spent fuel currently located at K-Basin 100KW and 100KE. Each technical issue formed the basis for an individual trade study used to develop the ROM cost and schedule estimates. The study used concept 2D from the Fluor prepared ``Staging and Storage Facility (SSF) Feasibility Report`` as the basis for development of the individual trade studies.

Swenson, C.E. [Westinghouse Hanford Co., Richland, WA (United States)

1995-05-01T23:59:59.000Z

322

Harrisburg Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Harrisburg Facility Biomass Facility Harrisburg Facility Biomass Facility Jump to: navigation, search Name Harrisburg Facility Biomass Facility Facility Harrisburg Facility Sector Biomass Facility Type Landfill Gas Location Dauphin County, Pennsylvania Coordinates 40.2734277°, -76.7336521° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2734277,"lon":-76.7336521,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

Brookhaven Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Brookhaven Facility Biomass Facility Brookhaven Facility Biomass Facility Jump to: navigation, search Name Brookhaven Facility Biomass Facility Facility Brookhaven Facility Sector Biomass Facility Type Landfill Gas Location Suffolk County, New York Coordinates 40.9848784°, -72.6151169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9848784,"lon":-72.6151169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

324

Irradiated Materials Examination and Testing Facility (IMET) | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irradiated Materials Examination and Testing Facility Irradiated Materials Examination and Testing Facility May 30, 2013 The Irradiated Material Examination and Testing (IMET) Facility was designed and built as a hot cell facility. It is a two-story block and brick structure with a two-story high bay that houses six heavily shielded cells and an array of sixty shielded storage wells. It includes the Specimen Prep Lab (SPL) with its associated laboratory hood and glove boxes, an Operating Area, where the control and monitoring instruments supporting the in-cell test equipment are staged, a utility corridor, a hot equipment storage area, a tank vault room, office space, a trucking area with access to the high bay, and an outside steel building for storage. The tests and examinations are conducted in six examination "hot" cells

325

Underground Natural Gas Storage by Storage Type  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1973-2014 Withdrawals 43,752 63,495 73,368 47,070 52,054 361,393 1973-2014 Salt Cavern Storage Fields Natural Gas in Storage 381,232 399,293 406,677 450,460 510,558 515,041...

326

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Mexico Renewable Energy Storage Task Force On January 28, 2014, in Energy, Energy Storage, Energy Storage Systems, Infrastructure Security, News, News & Events, Partnership,...

327

Onboard Storage Tank Workshop  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) and Sandia National Laboratories co-hosted the Onboard Storage Tank Workshop on April 29th, 2010. Onboard storage tank experts gathered to share lessons learned...

328

Solar Energy Storage  

Science Journals Connector (OSTI)

The intermittent nature of the solar energy supply makes the provision of adequate energy storage essential for the majority of practical applications. Thermal storage is needed for both low-temperature and high-...

Brian Norton BSc; MSc; PhD; F Inst E; C Eng

1992-01-01T23:59:59.000Z

329

Storage of Solar Energy  

Science Journals Connector (OSTI)

Energy storage provides a means for improving the performance and efficiency of a wide range of energy systems. It also plays an important role in energy conservation. Typically, energy storage is used when there...

H. P. Garg

1987-01-01T23:59:59.000Z

330

Chemical Energy Storage  

Science Journals Connector (OSTI)

The oldest and most commonly practiced method to store solar energy is sensible heat storage. The underlying technology is well developed and the basic storage materials, water and rocks, are available ... curren...

H. P. Garg; S. C. Mullick; A. K. Bhargava

1985-01-01T23:59:59.000Z

331

Cool Storage Performance  

E-Print Network [OSTI]

Utilities have promoted the use of electric heat and thermal storage to increase off peak usage of power. High daytime demand charges and enticing discounts for off peak power have been used as economic incentives to promote thermal storage systems...

Eppelheimer, D. M.

1985-01-01T23:59:59.000Z

332

Safe Home Food Storage  

E-Print Network [OSTI]

Proper food storage can preserve food quality and prevent spoilage and food/borne illness. The specifics of pantry, refrigerator and freezer storage are given, along with helpful information on new packaging, label dates, etc. A comprehensive table...

Van Laanen, Peggy

2002-08-22T23:59:59.000Z

333

EA-0942: Return of Isotope Capsules to the Waste Encapsulation and Storage  

Broader source: Energy.gov (indexed) [DOE]

42: Return of Isotope Capsules to the Waste Encapsulation and 42: Return of Isotope Capsules to the Waste Encapsulation and Storage Facility, Hanford Site, Richland, Washington EA-0942: Return of Isotope Capsules to the Waste Encapsulation and Storage Facility, Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts of the proposal for the return of all leased cesium-137 and strontium-90 leased capsules to the U.S. Department of Energy's Waste Encapsulation and Storage Facility on the Hanford Site, to ensure safe management and storage, pending final disposition. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 11, 1994 EA-0942: Finding of No Significant Impact Return of Isotope Capsules to the Waste Encapsulation and Storage Facility, Hanford Site, Richland, Washington

334

Thermochemical Energy Storage  

Broader source: Energy.gov [DOE]

This presentation summarizes the introduction given by Christian Sattler during the Thermochemical Energy Storage Workshop on January 8, 2013.

335

Energy Storage Systems  

SciTech Connect (OSTI)

Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

Conover, David R.

2013-12-01T23:59:59.000Z

336

BNL Gas Storage Achievements, Research Capabilities, Interests...  

Broader source: Energy.gov (indexed) [DOE]

BNL Gas Storage Achievements, Research Capabilities, Interests, and Project Team Metal hydride gas storage Cryogenic gas storage Compressed gas storage Adsorbed gas storage...

337

EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology  

Broader source: Energy.gov (indexed) [DOE]

46: Radioactive Waste Storage at Rocky Flats Environmental 46: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado SUMMARY This EA evaluates the environmental impacts of the proposal to convert buildings at the U.S. Department of Energy Rocky Flats Environmental Technology Site from their former uses to interim waste storage facilities in order to increase storage capacity for low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 9, 1996 EA-1146: Finding of No Significant Impact Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado

338

Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1  

SciTech Connect (OSTI)

This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, administration facility, weigh scale, and various staging/storage areas. These facilities were designed and constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the Idaho National Laboratory (INL) facility for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams.

Simonds, J.

2007-11-06T23:59:59.000Z

339

International Facility Management Association Strategic Facility  

Broader source: Energy.gov (indexed) [DOE]

Facility Management Association Facility Management Association Strategic Facility Planning: A WhIte PAPer Strategic Facility Planning: A White Paper on Strategic Facility Planning © 2009 | International Facility Management Association For additional information, contact: 1 e. Greenway Plaza, Suite 1100 houston, tX 77046-0104 USA P: + 1-713-623-4362 F: + 1-713-623-6124 www.ifma.org taBle OF cOntentS PreFace ......................................................... 2 executive Summary .................................... 3 Overview ....................................................... 4 DeFinitiOn OF Strategic Facility Planning within the Overall cOntext OF Facility Planning ................. 5 SPecializeD analySeS ................................ 9 OrganizatiOnal aPPrOacheS tO SFP ... 10 the SFP PrOceSS .......................................

340

PRODUCTION FACILITY SPILL CONTINGENCY PLAN Operator Name, Address, Phone, Contact Facility Name, Address, Phone, Contact  

E-Print Network [OSTI]

of Oil, Gas and Geothermal Resources 8 Department of Fish and Game (OSPR) 800-852-7550 or 800-OILS-911 9 provide resources and liaison fuctions during oil spills. Page 3 of 9 #12;PRODUCTION FACILITY SPILL the Location and Labeling of: 1 Permanent Tanks 7 Tank & Storage Container Volumes with Contents Storedg 2

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

Analysis > The Basics of Underground Natural Gas Storage Analysis > The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Printer-Friendly Version Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and maintenance costs, deliverability rates, and cycling capability), which govern its suitability to particular applications. Two of the most important characteristics of an underground storage reservoir are its capacity to hold natural gas for future use and the rate at which gas inventory can be withdrawn-its deliverability rate (see Storage Measures, below, for key definitions).

342

Comparative safety analysis of LNG storage tanks  

SciTech Connect (OSTI)

LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

1982-07-01T23:59:59.000Z

343

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January 11, 2011 Facility News ARM Mobile Facility Completes Extended Campaign in the Azores; Next Stop-India Bookmark and Share The ARM Mobile Facility obtained data on Graciosa...

344

Facilities Services Overview & Discussion  

E-Print Network [OSTI]

& Finance Facilities Services Director: Jeff Butler Human Resources Administrative Services Engineering) Environmental Services Morrison (3) Admin Services Evans (1) Human Resources Engineering (4) ·EngineeringFacilities Services Overview & Discussion Jeff Butler Director ­ Facilities Services November 2011

Maxwell, Bruce D.

345

Storage Sub-committee  

Broader source: Energy.gov (indexed) [DOE]

Storage Sub-committee Storage Sub-committee 2012 Work Plan Confidential 1 2012 Storage Subcommittee Work Plan * Report to Congress. (legislative requirement) - Review existing and projected research and funding - Review existing DOE, Arpa-e projects and the OE 5 year plan - Identify gaps and recommend additional topics - Outline distributed (review as group) * Develop and analysis of the need for large scale storage deployment (outline distributed again) * Develop analysis on regulatory issues especially valuation and cost recovery Confidential 2 Large Scale Storage * Problem Statement * Situation Today * Benefits Analysis * Policy Issues * Technology Gaps * Recommendations * Renewables Variability - Reserves and capacity requirements - Financial impacts - IRC Response to FERC NOI and update

346

Summary - WTP Pretreatment Facility  

Broader source: Energy.gov (indexed) [DOE]

Block Block D DOE is Immob site's t facilitie purpos techno Facility to be i The as CTEs, Readin * C * C * W * Tr * U * Pu * W * H * Pl The as require The Ele Site: H roject: W Report Date: M ited States Wast Why DOE Diagram of Cesiu s constructing bilization Plant tank wastes. T es including a P se of this asses ology elements y and determin ncorporated in What th ssessment team along with eac ness Level (TR s Nitric Acid Re s Ion Exchang Waste Feed Eva reated LAW Ev ltrafiltration Pro ulse Jet Mixer Waste Feed Rec LW Lag Storag lant Wash and ssessment team ed maturity prio To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Hanford/ORP Waste Treatme March 2007 Departmen te Treatm E-EM Did This um Nitric Acid R a Waste Treat (WTP) at Hanf The WTP is com Pretreatment F ssment was to s (CTEs) in the

347

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

348

A FAMILY OF TWENTY-AMPERES POWER SUPPLIES FOR MULTI-POLE CORRECTORS FOR ACCELERATORS AND STORAGE RINGS  

E-Print Network [OSTI]

A FAMILY OF TWENTY-AMPERES POWER SUPPLIES FOR MULTI- POLE CORRECTORS FOR ACCELERATORS AND STORAGE of accelerator facilities and storage ring complexes in broad range of output power. Some tasks, e.g. powering-150, correspondingly. The power supplies developed meet the requirements of the up-to-date accelerator facilities

Kozak, Victor R.

349

Chemical Storage-Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage - Storage - Overview Ali T-Raissi, FSEC Hydrogen Storage Workshop Argonne National Laboratory, Argonne, Illinois August 14-15, 2002 Hydrogen Fuel - Attributes * H 2 +½ O 2 → H 2 O (1.23 V) * High gravimetric energy density: 27.1 Ah/g, based on LHV of 119.93 kJ/g * 1 wt % = 189.6 Wh/kg (0.7 V; i.e. η FC = 57%) * Li ion cells: 130-150 Wh/kg Chemical Hydrides - Definition * They are considered secondary storage methods in which the storage medium is expended - primary storage methods include reversible systems (e.g. MHs & C-nanostructures), GH 2 & LH 2 storage Chemical Hydrides - Definition (cont.) * The usual chemical hydride system is reaction of a reactant containing H in the "-1" oxidation state (hydride) with a reactant containing H in the "+1" oxidation

350

NETL: Carbon Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Storage Technologies Carbon Storage (formerly referred to as the "Carbon Sequestration Program") Program Overview For quick navigation of NETL's Carbon Storage Program website, please click on the image. NETL's Carbon Storage Program Fossil fuels are considered the most dependable, cost-effective energy source in the world. The availability of these fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, a balance is needed between energy security and concerns over the impacts of concentrations of greenhouse gases (GHGs) in the atmosphere - particularly carbon dioxide (CO2). NETL's Carbon Storage Program is developing a technology portfolio of safe, cost-effective, commercial-scale CO2 capture, storage, and mitigation

351

Fuel Fabrication Facility  

National Nuclear Security Administration (NNSA)

Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

352

Sandia National Laboratories: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

353

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January 15, 2008 Facility News ARM Mobile Facility Completes Field Campaign in Germany Bookmark and Share Researchers will study severe precipitation events that occurred in...

354

from Isotope Production Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium 2:32 Isotope cancer treatment...

355

Programs & User Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Programs & User Facilities Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy...

356

Facility Data Policy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Data Policy About ESnet Our Mission The Network ESnet History Governance & Policies ESnet Policy Board ESCC Acceptable Use Policy Facility Data Policy Career Opportunities...

357

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

November 15, 2005 Facility News More Server Power Improves Performance at the ARM Data Management Facility Bookmark and Share Recently, several new Sun servers joined the...

358

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

approximately 22,500 square kilometers, or the approximate area of a modern climate model grid cell. Centered around the SGP Central Facility, these extended facilities are...

359

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

From Coastal Clouds to Desert Dust: ARM Mobile Facility Headed to Africa Bookmark and Share ARM operations staff prepare the ARM Mobile Facility in Point Reyes, California, for...

360

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Nuclear Facilities | Department of Energy  

Energy Savers [EERE]

Nuclear Facilities Nuclear Facilities Nuclear Facilities Locator Map Numerical map data points indicate two or more nuclear facilities in the same geographic location. Nuclear...

362

Regulatory, technical pressures prompt more U. S. salt-cavern gas storage  

SciTech Connect (OSTI)

Natural-gas storage in US salt caverns is meeting the need for flexible, high delivery and injection storage following implementation Nov. 1, 1993, of the Federal Energy Regulatory Commission's Order 636. This ruling has opened the US underground natural-gas storage market to more participants and created a demand for a variety of storage previously provided by pipelines as part of their bundled sales services. Many of these new services such as no-notice and supply balancing center on use of high-delivery natural gas storage from salt caverns. Unlike reservoir storage, nothing restricts flow in a cavern. The paper discusses the unique properties of salt that make it ideal for gas storage, choosing a location for the storage facility, cavern depth and shape, cavern size, spacing, pressures, construction, conversion or brine or LPG storage caverns to natural gas, and operation.

Barron, T.F. (PB-KBB Inc., Houston, TX (United States))

1994-09-12T23:59:59.000Z

363

Facility Representative Program: 2003 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Facility Representative Workshop 3 Facility Representative Workshop May 13 - 15, 2003 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 13, 2003 Theme: Program Successes and Challenges 8:00 a.m. John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathleen Carlson Manager, Nevada Site Office 8:30 a.m. Keynote Address Savannah River Site and Facility Reps - A Shared History and Common Future Jeffrey M. Allison Manager, Savannah River Operations Office 9:00 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board

364

NREL: Research Facilities - Test and User Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test and User Facilities Test and User Facilities NREL has test and user facilities available to industry and other organizations for researching, developing, and evaluating renewable energy and energy efficiency technologies. Here you'll find an alphabetical listing and brief descriptions of NREL's test and user facilities. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Advanced Research Turbines At our wind testing facilities, we have turbines available to test new control schemes and equipment for reducing loads on wind turbine components. Learn more about the Advanced Research Turbines on our Wind Research website. Back to Top D Distributed Energy Resources Test Facility This facility was designed to assist the distributed power industry in the

365

Facility Representative Program: 2000 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Facility Representative Workshop 0 Facility Representative Workshop May 16-18, 2000 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Tuesday, May 16, 2000 Theme for Day 1: Sustaining the Success of the Facility Representative Program 8:00 a.m. - Opening Remarks - Joe Arango, Facility Representative Program Manager 8:05 a.m. - Welcome - Kenneth Powers, Deputy Manager Nevada Operations Office 8:15 a.m. - Deputy Secretary Remarks - T. J. Glauthier, Deputy Secretary of Energy 8:30 a.m. - Keynote Address - Jerry Lyle, Assistant Manager for Environmental Management, Idaho Operations Office 9:00 a.m. - Facility Representative of the Year Presentation - Mark B. Whitaker, Departmental Representative 9:30 a.m. - Break 9:50 a.m. - Program Results and Goals - Joe Arango, Facility Representative Program Manager

366

A unit commitment study of the application of energy storage toward the integration of renewable generation  

Science Journals Connector (OSTI)

To examine the potential benefits of energy storage in the electric grid a generalized unit commitment model of thermal generating units and energy storage facilities is developed. Three different storage scenarios were tested—two without limits to total storage assignment and one with a constrained maximum storage portfolio. Given a generation fleet based on the City of Austin’s renewable energy deployment plans results from the unlimited energy storage deployment scenarios studied show that if capital costs are ignored large quantities of seasonal storage are preferred. This operational approach enables storage of plentiful wind generation during winter months that can then be dispatched during high cost peak periods in the summer. These two scenarios yielded $70 million and $94 million in yearly operational cost savings but would cost hundreds of billions to implement. Conversely yearly cost reductions of $40 million can be achieved with one compressed air energy storage facility and a small set of electrochemical storage devices totaling 13?GWh of capacity. Similarly sized storage fleets with capital costs service lifetimes and financing consistent with these operational cost savings can yield significant operational benefit by avoiding dispatch of expensive peaking generators and improving utilization of renewable generation throughout the year. Further study using a modified unit commitment model can help to clarify optimal storage portfolios reveal appropriate market participation approaches and determine the optimal siting of storage within the grid.

Chioke Harris; Jeremy P. Meyers; Michael E. Webber

2012-01-01T23:59:59.000Z

367

Uranium Processing Facility | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About / Transforming Y-12 / Uranium Processing Facility About / Transforming Y-12 / Uranium Processing Facility Uranium Processing Facility UPF will be a state-of-the-art, consolidated facility for enriched uranium operations including assembly, disassembly, dismantlement, quality evaluation, and product certification. An integral part of Y-12's transformation efforts and a key component of the National Nuclear Security Administration's Uranium Center of Excellence, the Uranium Processing Facility is one of two facilities at Y-12 whose joint mission will be to accomplish the storage and processing of all enriched uranium in one much smaller, centralized area. Safety, security and flexibility are key design attributes of the facility, which is in the preliminary design phase of work. UPF will be built to modern standards and engage new technologies through a responsive and agile

368

Preparing Class B and C Waste for Long Term Storage  

SciTech Connect (OSTI)

Commercial Nuclear Generating Stations outside of the Atlantic Compact will lose access to the Barnwell Disposal Facility in July of 2008. Many generators have constructed Interim On-Site Storage Buildings (IOSB) in which to store class B and C waste in the future as other permanent disposal options are developed. Until such time it is important for these generators to ensure class B and C waste generation is minimized and waste generated is packaged to facilitate long term storage. (authors)

Snyder, M.W. [Sacramento Municipal Utility District - Rancho Seco (United States)

2008-07-01T23:59:59.000Z

369

GRR/Section 4-NV-b - Temporary Use of Ground Water for Exploration | Open  

Open Energy Info (EERE)

b - Temporary Use of Ground Water for Exploration b - Temporary Use of Ground Water for Exploration < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-NV-b - Temporary Use of Ground Water for Exploration 04NVBTemporaryUseOfGroundWaterForExploration.pdf Click to View Fullscreen Contact Agencies Nevada Division of Water Resources Regulations & Policies NAC 534.444 Waiver to use water to explore for oil, gas or geothermal resources Triggers None specified Click "Edit With Form" above to add content 04NVBTemporaryUseOfGroundWaterForExploration.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Nevada Division of Water Resources (NDWR) may grant a waiver of the

370

GRR/Section 19-AK-b - Temporary Use of Water Permit | Open Energy  

Open Energy Info (EERE)

9-AK-b - Temporary Use of Water Permit 9-AK-b - Temporary Use of Water Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 19-AK-b - Temporary Use of Water Permit 19AKBTemporaryUseOfWaterPermit.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Mining Land and Water Regulations & Policies Alaska Water Use Act Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 19AKBTemporaryUseOfWaterPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In Alaska, water is declared a public resource belonging to the people of

371

Nevada Test Site Sensor Test Facility  

SciTech Connect (OSTI)

A Sensor Test Facility (STF) was recently established at the Department of Energy`s Nevada Test Site (NTS). It has been used for a series of sensor tests that have demonstrated the usefulness of the testbed. The facility consists of a cut-and-cover bunker complex and the two square mile surrounding area. The STF was developed as a scientific testbed optimized for the development and evaluation of advanced sensor systems, including ground sensor systems designed to identify and detect hardened underground facilities. This was accomplished by identifying a facility in a remote location where seismic, acoustic, and electromagnetic interference would be minimal, establishing a testbed that would be accommodating to field testing, and conducting a thorough geophysical characterization of the area surrounding the facility in order to understand the local geology and its effects on geophysical signals emanating from the facility. The STF is representative of a number of cut-and-cover bunkers around the world that are used for the manufacture and/or storage of weapons of mass destruction. This paper provides a general description of the Nevada Test Site, the Sensor Test Facility, and the Geophysical Site Characterization.

Gomez, B.J.; Boyer, W.B.

1996-12-01T23:59:59.000Z

372

Commissioning for Federal Facilities  

Broader source: Energy.gov [DOE]

Guide describes building commissioning, recommissioning, retrocommissioning, and continuous commissioning for federal facilities.

373

Hanford Site Near-Facility Environmental Monitoring Data Report for Calendar Year 2008  

SciTech Connect (OSTI)

Near-facility environmental monitoring is defined as monitoring near facilities that have the potential to discharge or have discharged, stored, or disposed of radioactive or hazardous materials. Monitoring locations are associated with nuclear facilities such as the Plutonium Finishing Plant, Canister Storage Building, and the K Basins; inactive nuclear facilities such as N Reactor and the Plutonium-Uranium Extraction (PUREX) Facility; and waste storage or disposal facilities such as burial grounds, cribs, ditches, ponds, tank farms, and trenches. Much of the monitoring consists of collecting and analyzing environmental samples and methodically surveying areas near facilities. The program is also designed to evaluate acquired analytical data, determine the effectiveness of facility effluent monitoring and controls, assess the adequacy of containment at waste disposal units, and detect and monitor unusual conditions.

Perkins, Craig J.; Dorsey, Michael C.; Mckinney, Stephen M.; Wilde, Justin W.; Poston, Ted M.

2009-09-15T23:59:59.000Z

374

Facility Representative Program: 2010 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10 Facility Representative Workshop 10 Facility Representative Workshop May 12 - 13, 2010 Las Vegas, NV Facility Rep of the Year Award | Attendees | Summary Report Workshop Agenda and Presentations Day 1: Wednesday, May 12, 2010 8:00 a.m. Opening Remarks James Heffner, Facility Representative Program Manager Earl Hughes, Safety System Oversight Program Manager Office of Nuclear Safety Policy and Assistance Office of Health, Safety and Security 8:15 a.m. Welcome from the Nevada Site Office John Mallin, Deputy Assistant Manager for Site Operations Nevada Site Office 8:30 a.m. Workshop Keynote Address Todd Lapointe Chief of Nuclear Safety Central Technical Authority Staff 9:15 a.m. Facility Representative and Safety System Oversight Award Ceremony James Heffner, Facility Representative Program Manager

375

Facility Representative Program: 2007 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Facility Representative Workshop 7 Facility Representative Workshop May 15 - 17, 2007 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 15, 2007 8:00 a.m. Opening Remarks Joanne Lorence, Facility Representative Program Manager 8:15 a.m. Welcome from the Nevada Site Office Gerald Talbot, Manager, Nevada Site Office 8:30 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:45 a.m. Keynote Address - Safety Oversight Perspective and Expectations Glenn Podonsky, Chief Health, Safety and Security Officer, Office of Health, Safety and Security 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board,

376

Facility Representative Program: 2001 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Facility Representative Workshop 1 Facility Representative Workshop May 15 - 17, 2001 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 15, 2001 Theme: Program Successes and Challenges 8:00 a.m. - Logistics Announcements & Opening Remarks - Joe Arango, Facility Representative Program Manager 8:15 a.m. - Welcome - Debbie Monette, Assistant Manager for National Security, Nevada Operations Office 8:30 a.m. - Keynote Address - Ralph Erickson, National Nuclear Security Administration 9:00 a.m.- DOE Facility Representative of the Year Presentation - Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board 9:30 a.m. - Break 9:50 a.m. - Program Summary - Joe Arango 10:10 a.m. - Management Panel/Questions and Answers

377

Paducah DUF6 Conversion Facility: Record of Decision: As Published in the Federal Register  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

54 54 Federal Register / Vol. 69, No. 143 / Tuesday, July 27, 2004 / Notices accordance with the comprehensive set of DOE requirements and applicable regulatory requirements that have been established to protect public health and the environment. These requirements encompass a wide variety of areas, including radiation protection, facility design criteria, fire protection, emergency preparedness and response, and operational safety requirements. * Cylinder management activities will be conducted in accordance with applicable DOE safety and environmental requirements, including the Cylinder Management Plan. * Temporary impacts on air quality from fugitive dust emissions during reconstruction of cylinder yards or construction of any new facility will be controlled by the best available

378

Meta-heuristics implementation for scheduling of trucks in a cross-docking system with temporary storage  

Science Journals Connector (OSTI)

Cross-docking is an approach in inventory management which can reduce inventories, lead times and customer response time. In this strategy, products and shipments are unloaded from inbound trucks, sorted and categorized based on their characteristics, ... Keywords: Cross-docking, Inbound trucks, Meta-heuristics, Outbound trucks, Scheduling

A. R. Boloori Arabani; S. M. T. Fatemi Ghomi; M. Zandieh

2011-03-01T23:59:59.000Z

379

Energy Storage Systems 2007 Peer Review - International Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

International Energy International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - DOE-CEC Energy Storage Program FY07 Projects - Daniel Borneo, SNL.pdf ESS 2007 Peer Review - Joint NYSERDA-DOE Energy Storage Initiative Projects

380

NETL: Carbon Storage - Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure Infrastructure Carbon Storage Infrastructure The Infrastructure Element of DOE's Carbon Storage Program is focused on research and development (R&D) initiatives to advance geologic CO2 storage toward commercialization. DOE determined early in the program's development that addressing CO2 mitigation on a regional level is the most effective way to address differences in geology, climate, population density, infrastructure, and socioeconomic development. This element includes the following efforts designed to support the development of regional infrastructure for carbon capture and storage (CCS). Click on Image to Navigate Infrastructure Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Regional Carbon Sequestration Partnerships (RCSP) - This

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Sorption Storage Technology Summary  

Broader source: Energy.gov [DOE]

Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011.

382

Storage of solar energy  

Science Journals Connector (OSTI)

A framework is presented for identifying appropriate systems for storage of electrical, mechanical, chemical, and thermal energy in solar energy supply systems. Classification categories include the nature ... su...

Theodore B. Taylor

1979-09-01T23:59:59.000Z

383

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

384

Argonne Chemical Sciences & Engineering -Electrochemical Energy Storage -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Engineering * Members * Contact * Publications * Overview EES Home Electrochemical Energy Storage - Engineering Electrochemical Energy Storage Argonne researcher Panagiotis Prezas examines a lithium-ion battery cell at the Battery Test Facility. Capabilities In support of and as part of the applied research and development (R&D) area, the Argonne's Electrochemical Energy Storage department (EES) has established and employs a variety of engineering R&D capabilities. These capabilities include electrode modeling, engineering, & fabrication; electrode/electrolyte interface modeling; cell modeling & engineering; cell, module, and battery design modeling; and cell, module, and battery cost modeling. Additionally, EES is developing new capabilities in the

385

Fire hazard analysis for the fuel supply shutdown storage buildings  

SciTech Connect (OSTI)

The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

REMAIZE, J.A.

2000-09-27T23:59:59.000Z

386

ASD Facility Hazard Analysis Document - 400-EAA Top of Storage...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Piping Pressure Cabinets Signage NA NA 6 ESH119 NA NA A ASD108400 Diagnostics Racks Electrical Low voltage 120 VAC Breaker in rack Extinguisher 20 feet away 1 310504-00008 6 NA 2...

387

Y-12 uranium storage facility?a Ťdream come true?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Tennessee near Knoxville. The Manhat- tan Project Clinton Engineer Works was advertising in many surrounding states and hiring was still on the rise in Oak Ridge. Shirley,...

388

Underground Natural Gas Working Storage Capacity - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Underground Natural Gas Working Storage Capacity Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Overview Natural gas working storage capacity increased by about 2 percent in the Lower 48 states between November 2011 and November 2012. The U.S. Energy Information Administration (EIA) has two measures of working gas storage capacity, and both increased by similar amounts: Demonstrated maximum volume increased 1.8 percent to 4,265 billion cubic feet (Bcf) Design capacity increased 2.0 percent to 4,575 Bcf Maximum demonstrated working gas volume is an operational measure of the highest level of working gas reported at each storage facility at any time

389

Nuclear Fuels Storage & Transportation Planning Project Documents |  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cycle Technologies » Nuclear Fuels Storage & Fuel Cycle Technologies » Nuclear Fuels Storage & Transportation Planning Project » Nuclear Fuels Storage & Transportation Planning Project Documents Nuclear Fuels Storage & Transportation Planning Project Documents September 30, 2013 Preliminary Evaluation of Removing Used Nuclear Fuel From Shutdown Sites In January 2013, the Department of Energy issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. February 22, 2013 Public Preferences Related to Consent-Based Siting of Radioactive Waste Management Facilities for Storage and Disposal This report provides findings from a set of social science studies

390

July 17 ESTAP Webinar: Resilient Solar-Storage Systems for Homes and  

Broader source: Energy.gov (indexed) [DOE]

July 17 ESTAP Webinar: Resilient Solar-Storage Systems for Homes July 17 ESTAP Webinar: Resilient Solar-Storage Systems for Homes and Commercial Facilities July 17 ESTAP Webinar: Resilient Solar-Storage Systems for Homes and Commercial Facilities July 12, 2013 - 10:40am Addthis On Wednesday, July 17 from 2 - 3 p.m. ET, Clean Energy States Alliance will host a webinar on resilient solar-storage systems for homes and commercial facilities. The webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. This webinar will include basic information on battery-backed PV systems that can continue to operate in islanded mode when the grid is down, supporting critical loads. Speaker Michael Kleinberg of DNV KEMA will discuss existing solutions and opportunities for solar PV systems with

391

A Functional Hybrid Memristor Crossbar-Array/CMOS System for Data Storage and Neuromorphic Applications  

Science Journals Connector (OSTI)

A Functional Hybrid Memristor Crossbar-Array/CMOS System for Data Storage and Neuromorphic Applications ... This work used the Lurie Nanofabrication Facility at the University of Michigan, a member of the National Nanotechnology Infrastructure Network (NNIN) funded by the NSF. ...

Kuk-Hwan Kim; Siddharth Gaba; Dana Wheeler; Jose M. Cruz-Albrecht; Tahir Hussain; Narayan Srinivasa; Wei Lu

2011-12-05T23:59:59.000Z

392

1 BASEMENT STORAGE 3 MICROSCOPE LAB  

E-Print Network [OSTI]

MECHANICAL ROOM 13 SHOWER ROOMSAIR COMPRESSOR 14 NITROGEN STORAGE 15 DIESEL FUEL STORAGE 16 ACID NEUT. TANK 17a ACID STORAGE 17b INERT GAS STORAGE 17c BASE STORAGE 17d SHELVES STORAGE * KNOCK-OUT PANEL

Boonstra, Rudy

393

Qualitative and Quantitative Assessment of Nuclear Materials Contained in High-Activity Waste Arising from the Operations at the 'SHELTER' Facility  

SciTech Connect (OSTI)

As a result of the nuclear accident at the Chernobyl NPP in 1986, the explosion dispeesed nuclear materials contained in the nuclear fuel of the reactor core over the destroyed facilities at Unit No. 4 and over the territory immediately adjacent to the destroyed unit. The debris was buried under the Cascade Wall. Nuclear materials at the SHELTER can be characterized as spent nuclear fuel, fresh fuel assemblies (including fuel assemblies with damaged geometry and integrity, and individual fuel elements), core fragments of the Chernobyl NPP Unit No. 4, finely-dispersed fuel (powder/dust), uranium and plutonium compounds in water solutions, and lava-like nuclear fuel-containing masses. The new safe confinement (NSC) is a facility designed to enclose the Chernobyl NPP Unit No. 4 destroyed by the accident. Construction of the NSC involves excavating operations, which are continuously monitored including for the level of radiation. The findings of such monitoring at the SHELTER site will allow us to characterize the recovered radioactive waste. When a process material categorized as high activity waste (HAW) is detected the following HLW management operations should be involved: HLW collection; HLW fragmentation (if appropriate); loading HAW into the primary package KT-0.2; loading the primary package filled with HAW into the transportation cask KTZV-0.2; and storing the cask in temporary storage facilities for high-level solid waste. The CDAS system is a system of 3He tubes for neutron coincidence counting, and is designed to measure the percentage ratio of specific nuclear materials in a 200-liter drum containing nuclear material intermixed with a matrix. The CDAS consists of panels with helium counter tubes and a polyethylene moderator. The panels are configured to allow one to position a waste-containing drum and a drum manipulator. The system operates on the ‘add a source’ basis using a small Cf-252 source to identify irregularities in the matrix during an assay. The platform with the source is placed under the measurement chamber. The platform with the source material is moved under the measurement chamber. The design allows one to move the platform with the source in and out, thus moving the drum. The CDAS system and radioactive waste containers have been built. For each drum filled with waste two individual measurements (passive/active) will be made. This paper briefly describes the work carried out to assess qualitatively and quantitatively the nuclear materials contained in high-level waste at the SHELTER facility. These efforts substantially increased nuclear safety and security at the facility.

Cherkas, Dmytro

2011-10-01T23:59:59.000Z

394

NETL: Carbon Storage - Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage > Reference Shelf Carbon Storage > Reference Shelf Carbon Storage Reference Shelf Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. RSS Icon Subscribe to the Carbon Storage RSS Feed. Carbon Storage Collage 2012 Carbon Utilization and Storage Atlas IV Carbon Sequestration Project Portfolio DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap Public Outreach and Education for Carbon Storage Projects Carbon Storage Technology Program Plan Carbon Storage Newsletter Archive Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations Carbon Storage Systems and Well Management Activities Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations

395

NREL: Photovoltaics Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities NREL's world-class research facilities provide the venue for innovative advances in photovoltaic technologies and applications. These facilities within the National Center for Photovoltaics (NCPV) serve both multi-use and dedicated-use functions. We encourage our research colleagues in industry, universities, and other laboratories to pursue opportunities in working with our staff in these facilities. Dedicated-Use Facilities Photo of a red-hot coil glowing inside a round machine. Research within these facilities focuses on targeted areas of interest that require specific tools, techniques, or unique capabilities. Our two main dedicated-use facilities are the following: Outdoor Test Facility (OTF) OTF researchers study and evaluate advanced or emerging PV technologies

396

Hydrogen Storage Materials Database Demonstration | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Materials Database Demonstration Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Storage...

397

Solid-state hydrogen storage: Storage capacity, thermodynamics, and kinetics  

Science Journals Connector (OSTI)

Solid-state reversible hydrogen storage systems hold great promise for onboard applications. ... key criteria for a successful solid-state reversible storage material are high storage capacity, suitable thermodyn...

William Osborn; Tippawan Markmaitree; Leon L. Shaw; Ruiming Ren; Jianzhi Hu…

2009-04-01T23:59:59.000Z

398

Large Scale Energy Storage  

Science Journals Connector (OSTI)

This work is mainly an experimental investigation on the storage of solar energy and/or the waste heat of a ... lake or a ground cavity. A model storage unit of (1×2×0.75)m3 size was designed and constructed. The...

F. Çömez; R. Oskay; A. ?. Üçer

1987-01-01T23:59:59.000Z

399

CRAD, Facility Safety- Nuclear Facility Safety Basis  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

400

Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery  

Broader source: Energy.gov (indexed) [DOE]

Grid-Scale Energy Storage Demonstration Using Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) East Penn Manufacturing, through its subsidary Ecoult, has designed and constructed an energy storage facility consisting of an array of UltraBattery modules integrated in a turnkey battery energy storage system. The UltraBattery technology is a significant breakthrough in lead-acid energy storage technology. It is a hybrid device containing both an ultracapacitor and a battery in a common electrolyte, providing significant advantages over traditional energy storage devices. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) More Documents & Publications

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

TEMPORARY CAPTURE OF PLANETESIMALS BY A PLANET FROM THEIR HELIOCENTRIC ORBITS  

SciTech Connect (OSTI)

When planetesimals encounter a planet, they can be temporarily captured by the planet's gravity and orbit about it for an extended period of time before escaping from the planet's vicinity. Such a process may have played an important role in the origin of irregular satellites or the dynamical evolution of short-period comets. Using three-body orbital integration, we study the temporary capture of planetesimals by a planet from their heliocentric eccentric orbits. We examine the dependence of the orbital characteristics during temporary capture as well as the rate of capture on the pre-capture heliocentric orbital parameters. We find that typical orbital size and direction of revolution around the planet change depending on planetesimals' initial eccentricity and energy. When initial eccentricity is so small that Kepler shear dominates the relative velocity between planetesimals and the planet, temporary capture typically occurs in the retrograde direction in the vicinity of the planet's Hill sphere, while large retrograde capture orbits outside the Hill sphere are predominant for large eccentricities. Long prograde capture occurs in a very narrow range of planetesimal eccentricity and energy. We obtain the rate of temporary capture of planetesimals and find that the rate of long capture increases with increasing eccentricity at low and high eccentricities, but decreases with increasing eccentricity in intermediate values of eccentricity. We also examine the dependence of capture rate on the duration of capture and find an approximate power-law dependence.

Suetsugu, Ryo; Ohtsuki, Keiji [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Tanigawa, Takayuki, E-mail: ryo3088@stu.kobe-u.ac.jp [Center for Planetary Science, Kobe University, Kobe 650-0047 (Japan)

2011-12-15T23:59:59.000Z

402

Portals to an Architecture: Design of a temporary structure with paper tube arches Steven J. Preston  

E-Print Network [OSTI]

2011 Keywords: Architecture Structure Engineering Sculpture Sustainability Paper tubes a b s t r a cPortals to an Architecture: Design of a temporary structure with paper tube arches Steven J t Sustainable recyclable paper and composite materials can be ideal choices for the construction of tempo- rary

Bank, Lawrence C.

403

EVALUATION OF THE TEMPORARY TENT COVER TRUSS SYSTEM AP PRIMARY VENT SYSTEM  

SciTech Connect (OSTI)

The purpose of this calculation is to evaluate a temporary ten cover truss system. This system will be used to provide weather protection to the workers during replacement of the filter for the Primary Ventilation System in AP Tank Farm. The truss system has been fabricated utilizing tubes and couplers, which are normally used for scaffoldings.

HAQ MA

2009-12-31T23:59:59.000Z

404

User Facilities | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

USER PORTAL USER PORTAL BTRICBuilding Technologies Research Integration Center CNMSCenter for Nanophase Materials Sciences CSMBCenter for Structural Molecular Biology CFTFCarbon Fiber Technology Facility HFIRHigh Flux Isotope Reactor MDF Manufacturing Demonstration Facility NTRCNational Transportation Research Center OLCFOak Ridge Leadership Computing Facility SNSSpallation Neutron Source Keeping it fresh at the Spallation Neutron Source Nanophase material sciences' nanotech toolbox Home | User Facilities SHARE ORNL User Facilities ORNL is home to a number of highly sophisticated experimental user facilities that provide unmatched capabilities to the broader scientific community, including a growing user community from universities, industry, and other laboratories research institutions, as well as to ORNL

405

Facility Representative Program: Facility Representative Program Sponsors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Representative Program Sponsors Facility Representative Program Sponsors There are 29 Facility Representative Program Sponsors Office Name Title E-Mail Phone ASO Larry Pendexter ES&H Div Dir (Argonne) larry.pendexter@ch.doe.gov 630-252-1485 BHSO Bob Desmarais Operations Management Division Director desmarai@bnl.gov 631-344-5434 CBFO Glenn Gamlin Facility Representative Supervisor glenn.gamlin@wipp.ws 575-234-8136 CBFO Casey Gadbury Operations Manager casey.gadbury@wipp.ws 575-234-7372 FSO Mark Bollinger Deputy Manager Mark.Bollinger@ch.doe.gov 630-840-8130 FSO John Scott FR Team Lead john.scott@ch.doe.gov 630-840-2250 HS-30 James O'Brien Director, Office of Nuclear Safety James.O'Brien@hq.doe.gov 301-903-1408 HS-32 Earl Hughes Facility Representative Program Manager Earl.Hughes@hq.doe.gov 202-586-0065

406

Warehouse and Storage Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Warehouse and Storage Warehouse and Storage Characteristics by Activity... Warehouse and Storage Warehouse and storage buildings are those used to store goods, manufactured products, merchandise, raw materials, or personal belongings. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Warehouse and Storage Buildings... While the idea of a warehouse may bring to mind a large building, in reality most warehouses were relatively small. Forty-four percent were between 1,001 and 5,000 square feet, and seventy percent were less than 10,000 square feet. Many warehouses were newer buildings. Twenty-five percent were built in the 1990s and almost fifty percent were constructed since 1980. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

407

Sandia National Laboratories: evaluate energy storage opportunity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy storage opportunity 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid...

408

Sandia National Laboratories: implement energy storage projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

implement energy storage projects 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety,...

409

Hydrogen Storage Fact Sheet | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Fact Sheet Hydrogen Storage Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen storage. Hydrogen Storage More Documents & Publications...

410

Compressed Air Storage Strategies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Strategies Compressed Air Storage Strategies This tip sheet briefly discusses compressed air storage strategies. COMPRESSED AIR TIP SHEET 9 Compressed Air Storage...

411

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

412

Waste Management Facilities Cost Information Report  

SciTech Connect (OSTI)

The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

Feizollahi, F.; Shropshire, D.

1992-10-01T23:59:59.000Z

413

,"Underground Natural Gas Storage - Storage Fields Other than...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Storage Fields Other than Salt Caverns",8,"Monthly","102014","115...

414

Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building  

SciTech Connect (OSTI)

This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

Lata

1996-09-26T23:59:59.000Z

415

A Semi-Lagrangian Approach for Natural Gas Storage Valuation and Optimal Operation  

E-Print Network [OSTI]

A Semi-Lagrangian Approach for Natural Gas Storage Valuation and Optimal Operation Zhuliang Chen such as fuel and electricity, natural gas prices exhibit seasonality dynamics due to fluctuations in demand [28]. As such, natural gas storage facilities are constructed to provide a cushion for such fluctuations

Forsyth, Peter A.

416

NANO-DEVICES FOR ENHANCED C S SCOOLING, STORAGE AND SENSING  

E-Print Network [OSTI]

Dynamics ­ DOE: Nanofluids for Thermal Energy Storage (SOLAR ENERGY) 2 of 5 MultiMulti--Phase Flows: Nanofluids for Thermal Energy Storage (SOLAR ENERGY) ­ Qatar National Research Foundation (QNRF): Nanofluids. ­ CNT Furnace: Energy Systems Lab. ­ Nano-Manufacturing: Wet Lab. 7 Shared User Facilities­ 7 Shared

Banerjee, Debjyoti

417

NREL: Wind Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that comprises field test sites, test laboratories, industrial high-bay work areas, machine shops, electronics and instrumentation laboratories, and office areas. In addition, there are hundreds of test articles and supporting components such as turbines, meteorological towers, custom test apparatus, test sheds,

418

FACET User Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

AD SLACPortal > Accelerator Research Division > FACET User Facility AD SLACPortal > Accelerator Research Division > FACET User Facility Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES FACET User Facility : FACET An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar FACET User Facility FACET Home About FACET FACET Experimental Facilities FACET Users Research at FACET SAREC Expand SAREC FACET FAQs FACET User Facility Quick Launch FACET Users Home FACET Division ARD Home About FACET FACET News FACET Users FACET Experimental Facilities FACET Research Expand FACET Research FACET Images Expand FACET Images SAREC Expand SAREC FACET Project Site (restricted) FACET FAQs FACET Site TOC All Site Content

419

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 15, 2005 [Facility News] October 15, 2005 [Facility News] Room to Share-New Guest Facility Ready for Users at North Slope of Alaska Bookmark and Share In September, installation was completed on the new Guest Instrument Facility in Barrow to provide additional space and ease crowded conditions. In September, installation was completed on the new Guest Instrument Facility in Barrow to provide additional space and ease crowded conditions. To alleviate crowded conditions at its research facilities on the North Slope of Alaska (NSA) site in Barrow, ARM operations staff recently completed the installation of a new Guest Instrument Facility. Similar to the platform at the Atqasuk site, the facility consists of two insulated shipping containers mounted on pilings, with a mezzanine to accommodate

420

Jupiter Laser Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jupiter Laser Facility The commissioning of the Titan Petawatt-Class laser to LLNL's Jupiter Laser Facility (JLF) has provided a unique platform for the use of petawatt (PW)-class...

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Facilities | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

JLab Buildings Facilities Management & Logistics is responsible for performing or specifying performance of all Jefferson Lab facility maintenance. A D D I T I O N A L L I N K S:...

422

SRS K-AREA MATERIAL STORAGE - EXPANDING CAPABILITIES  

SciTech Connect (OSTI)

In support of the Department of Energy’s continued plans to de-inventory and reduce the footprint of Cold War era weapons’ material production sites, the K-Area Material Storage (KAMS) facility, located in the K-Area Complex (KAC) at the Savannah River Site reservation, has expanded since its startup authorization in 2000 to accommodate DOE’s material consolidation mission. During the facility’s growth and expansion, KAMS will have expanded its authorization capability of material types and storage containers to allow up to 8200 total shipping containers once the current expansion effort completes in 2014. Recognizing the need to safely and cost effectively manage other surplus material across the DOE Complex, KAC is constantly evaluating the storage of different material types within K area. When modifying storage areas in KAC, the Documented Safety Analysis (DSA) must undergo extensive calculations and reviews; however, without an extensive and proven security posture the possibility for expansion would not be possible. The KAC maintains the strictest adherence to safety and security requirements for all the SNM it handles. Disciplined Conduct of Operations and Conduct of Projects are demonstrated throughout this historical overview highlighting various improvements in capability, capacity, demonstrated cost effectiveness and utilization of the KAC as the DOE Center of Excellence for safe and secure storage of surplus SNM.

Koenig, R.

2013-07-02T23:59:59.000Z

423

Long-Term Management and Storage of Elemental Mercury  

Broader source: Energy.gov [DOE]

In addition to banning the export of elemental mercury from the United States as of January 1, 2013, the Mercury Export Ban Act of 2008 (MEBA) required DOE to establish a facility for the long-term management and storage of elemental mercury.

424

The digital preservation facility  

Science Journals Connector (OSTI)

Critical listening should be an essential part of all archiving and restoration facilities quality control. We review the priorities and requirements for listening spaces ranging from the individual collector and small community archives to large?scale facilities. Examples discussed include the Library of Congress Culpepper facility university libraries and commercial facilities. Adapting listening rooms to the requirements of n?channel audio are discussed. Public recommendations of the Sound Preservation Board of the Library of Congress will be reviewed.

2006-01-01T23:59:59.000Z

425

Sandia National Laboratories: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DETL, Energy, Facilities, Materials Science, News, News & Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, Solar Newsletter, Systems Analysis Sandia...

426

ORAU South Campus Facility  

Broader source: Energy.gov [DOE]

This document explains the cleanup activities and any use limitations for the land surrounding the ORAU South Campus Facility.

427

DOE Designated Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Argonne Wakefield Accelerator (AWA) Argonne Tandem Linac Accelerator System (ATLAS) Center for Nanoscale Materials Leadership Computing Facility* Brookhaven National...

428

Ultrafine hydrogen storage powders  

DOE Patents [OSTI]

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

429

NREL: Transportation Research - Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Transportation Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power...

430

Hydrogen Storage Materials Database Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Fuel Cell Technologies Program Source: US DOE 4252011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech...

431

Hydrogen storage gets new hope  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen storage gets new hope Hydrogen storage gets new hope A new method for "recycling" hydrogen-containing fuel materials could open the door to economically viable...

432

Energy Storage | Department of Energy  

Energy Savers [EERE]

Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over...

433

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

434

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

435

Microsoft PowerPoint - DOELM_Mercury_Storage.ppt  

Office of Legacy Management (LM)

Mercury Storage Concept Mercury Storage Concept Pre-Environmental Impact Statement Grand Junction, Colorado, Scoping Meeting Information 2 Mercury Export Ban Act Passed into law in October 2008 Purpose is to prohibit the export of mercury Identifies the Department of Energy (DOE) as the agency to provide long-term storage with collaboration from the Environmental Protection Agency (EPA) Requires: * Guidance on standards and procedures by October 1, 2009 * Facility will be constructed and operated to hazardous waste requirements * A facility be designated by January 1, 2010 * Operations to begin by January 1, 2013 3 Stockpiles of Mercury DOE stores approximately 1,200 metric tons at the Oak Ridge Reservation Department of Defense stores approximately 4,400 metric tons EPA estimates that between 7,500 and 10,000 metric

436

Wheelabrator Bridgeport Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator Bridgeport Biomass Facility Jump to: navigation, search Name Wheelabrator Bridgeport Biomass Facility Facility Wheelabrator Bridgeport Sector Biomass Facility Type...

437

Facility Representative Program: 2004 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Facility Representative Workshop 4 Facility Representative Workshop May 18 - 20, 2004 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 18, 2004 Theme: Program Successes and Challenges 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathy Carlson, Nevada Site Office Manager 8:30 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy Deputy Secretary's Remarks 8:40 a.m. Keynote Address - NNSA Evaluation of Columbia Accident Investigation Board Report Brigadier General Ronald J. Haeckel, Principal Assistant Deputy Administrator for Military Applications, NNSA Other Information: NASAÂ’S Columbia Accident Investigation Board Report

438

Facility Representative Program: 2006 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Facility Representative Workshop 6 Facility Representative Workshop May 16 - 19, 2006 Knoxville, Tennessee Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final To view Pictures, scroll the mouse over the Picture icon To view Presentations, Picture Slideshows and Video, click on the icon Day 1: Tuesday, May 16, 2006 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome from Oak Ridge Office Gerald Boyd, Manager, Oak Ridge Office 8:25 a.m. Welcome from Y-12 Site Office Theodore Sherry, Manager, Y-12 Site Office 8:35 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:40 a.m. Keynote Address - Safety Oversight at Environmental Management Activities Dr. Inés Triay, Chief Operating Officer, Office of Environmental Management

439

NREL: Buildings Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities NREL provides industry, government, and university researchers with access to state-of-the-art and unique equipment for analyzing a wide spectrum of building energy efficiency technologies and innovations. NREL engineers and researchers work closely with industry partners to research and develop advanced technologies. NREL's existing facilities have been used to test and develop many award-winning building technologies and innovations that deliver significant energy savings in buildings, and the new facilities further extend those capabilities. In addition, the NREL campus includes living laboratories, buildings that researchers and other NREL staff use every day. Researchers monitor real-time building performance data in these facilities to study energy use

440

Hydrogen Storage- Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- - Overview George Thomas, Hydrogen Consultant to SNL * and Jay Keller, Hydrogen Program Manager Sandia National Laboratories H 2 Delivery and Infrastructure Workshop May 7-8, 2003 * Most of this presentation has been extracted from George Thomas' invited BES Hydrogen Workshop presentation (May 13-14, 2003) Sandia National Laboratories 4/14/03 2 Sandia National Laboratories From George Thomas, BES workshop 5/13/03 H 2 storage is a critical enabling technology for H 2 use as an energy carrier The low volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen storage systems are inherently more complex than liquid fuels. Storage technologies are needed in all aspects of hydrogen utilization. production distribution utilization

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NETL: Carbon Storage FAQs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Where is CO2 storage happening today? Where is CO2 storage happening today? Sleipner Project (Norway) Sleipner Project (Norway) Carbon dioxide (CO2) storage is currently happening across the United States and around the world. Large, commercial-scale projects, like the Sleipner CO2 Storage Site in Norway, the Weyburn-Midale CO2 Project in Canada, and the In Salah project in Algeria, have been injecting CO2 for many years. Each of these projects stores more than 1 million tons of CO2 per year. Large-scale efforts are currently underway in Africa, China, Australia, and Europe, too. These commercial-scale projects are demonstrating that large volumes of CO2 can be safely and permanently stored. Additionally, a multitude of pilot efforts are underway in different parts of the world to determine suitable locations and technologies for future

442

Carbon Capture and Storage  

Science Journals Connector (OSTI)

The main object of the carbon capture and storage (CCS) technologies is the...2...emissions produced in the combustion of fossil fuels such as coal, oil, or natural gas. CCS involves first the capture of the emit...

Ricardo Guerrero-Lemus; José Manuel Martínez-Duart

2013-01-01T23:59:59.000Z

443

Multiported storage devices  

E-Print Network [OSTI]

In the past decade the demand for systems that can process and deliver massive amounts of storage has increased. Traditionally, large disk farms have been deployed by connecting several disks to a single server. A problem with this configuration...

Grande, Marcus Bryan

2012-06-07T23:59:59.000Z

444

Mass and Lifetime Measurements in Storage Rings  

SciTech Connect (OSTI)

Masses of nuclides covering a large area of the chart of nuclides can be measured in storage rings where many ions circulate at the same time. In this paper the recent progress in the analysis of Schottky mass spectrometry data is presented as well as the technical improvements leading to higher accuracy for isochronous mass measurements with a time-of-flight detector. The high sensitivity of the Schottky method down to single ions allows to measure lifetimes of nuclides by observing mother and daughter nucleus simultaneously. In this way we investigated the decay of bare and H-like 140Pr. As we could show the lifetime can be even shortened compared to those of atomic nuclei despite of a lower number of electrons available for internal conversion or electron capture.All these techniques will be implemented with further improvements at the storage rings of the new FAIR facility at GSI in the future.

Weick, H.; Beckert, K.; Beller, P.; Bosch, F.; Dimopoulou, C.; Kozhuharov, C.; Kurcewicz, J.; Mazzocco, M.; Nociforo, C.; Nolden, F.; Steck, M.; Sun, B.; Winkler, M. [Gesellschaft fuer Schwerionenforschung mbH, 64291 Darmstadt (Germany); Brandau, C.; Chen, L.; Geissel, H.; Knoebel, R.; Litvinov, S. A.; Litvinov, Yu. A.; Scheidenberger, C. [Gesellschaft fuer Schwerionenforschung mbH, 64291 Darmstadt (Germany); II. Phys. Institut, Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany)] (and others)

2007-05-22T23:59:59.000Z

445

Evaluation of Radiation Impacts of Spent Nuclear Fuel Storage (SNFS-2) of Chernobyl NPP - 13495  

SciTech Connect (OSTI)

Radiation effects are estimated for the operation of a new dry storage facility for spent nuclear fuel (SNFS-2) of Chernobyl NPP RBMK reactors. It is shown that radiation exposure during normal operation, design and beyond design basis accidents are minor and meet the criteria for safe use of radiation and nuclear facilities in Ukraine. (authors)

Paskevych, Sergiy; Batiy, Valiriy; Sizov, Andriy [Institute for Safety Problems of Nuclear Power Plants, National Academy of Sciences of Ukraine, 36 a Kirova str. Chornobyl, Kiev region, 07200 (Ukraine)] [Institute for Safety Problems of Nuclear Power Plants, National Academy of Sciences of Ukraine, 36 a Kirova str. Chornobyl, Kiev region, 07200 (Ukraine); Schmieman, Eric [Battelle Memorial Institute, PO Box 999 MSIN K6-90, Richland, WA 99352 (United States)] [Battelle Memorial Institute, PO Box 999 MSIN K6-90, Richland, WA 99352 (United States)

2013-07-01T23:59:59.000Z

446

Facility Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser  

Open Energy Info (EERE)

Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate WindTurbineManufacturer FacilityStatus Coordinates D Metals D Metals D Metals Definition Small Scale Wind Valley City OH MW Northern Power Systems In Service AB Tehachapi Wind Farm AB Tehachapi Wind Farm AB Tehachapi Definition Commercial Scale Wind Coram Energy AB Energy Southern California Edison Co Tehachapi CA MW Vestas In Service AFCEE MMR Turbines AFCEE MMR Turbines AFCEE MMR Turbines Definition Commercial Scale Wind AFCEE Air Force Center for Engineering and the Environment Distributed generation net metered Camp Edwards Sandwich MA MW GE Energy In Service AG Land AG Land AG Land Definition Community Wind AG Land Energy LLC

447

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

March 22, 2007 [Facility News] March 22, 2007 [Facility News] GEWEX News Features Dust Data from ARM Mobile Facility Deployment Bookmark and Share Data from the recent deployment of the ARM Mobile Facility are featured in the February issue of GEWEX News. Data from the recent deployment of the ARM Mobile Facility are featured in the February issue of GEWEX News. The February 2007 issue (Vol. 17, No. 1) of GEWEX News features early results from special observing periods of the African Monsoon Mutidisciplinary Analysis, including data obtained by the ARM Mobile Facility (AMF). The AMF was stationed in the central Sahel from January through December 2006, with the primary facility at the Niamey airport, and an ancillary site in Banizoumbou. The AMF recorded a major dust storm that passed through the area in March, and combined with simultaneous satellite

448

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

February 16, 2005 [Facility News] February 16, 2005 [Facility News] Mobile Facility Arrives Safe and Sound in Point Reyes Bookmark and Share Image - The ARM Mobile Facility in Point Reyes, California Image - The ARM Mobile Facility in Point Reyes, California Safe and sound at Point Reyes, the ARM Mobile Facility instrumentation is set up on the roof of a shelter until a fence is installed to keep out the curious local cattle. On February 9, the ARM Mobile Facility (AMF) withstood an accident on the way to its deployment location at Point Reyes, California. About an hour from its destination, the truck carrying the two AMF shelters packed with instrumentation and associated equipment swerved to avoid another vehicle and slid off the road and down a steep embankment. Emergency personnel soon

449

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

22, 2011 [Facility News] 22, 2011 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of an ARM mobile facility (AMF), the ARM aerial facility (AAF), and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility, with availability as follows: AMF2 available December 2013 AMF1 available March 2015 AAF available between June and October 2013 Fixed sites available FY2013 Priority will be given to proposals that make comprehensive use of the ARM facilities and focus on long-term goals of the DOE Office of Biological and Environmental Research. Successful proposals will be supplied all operational and logistical resources (provided at no cost to the principal

450

The impact of new short season rice varieties on drying and storage of rough rice in Texas  

E-Print Network [OSTI]

-Values are shown below Coefficients) 28 6. The Comparison of Size D stribution of On-farm Drying and Storage Facilities in 1955 and 1965 39 7. The Comparison of Size Distribution of Commercial and Cooperative Drying and Storage Facilities in 1955 and 1965 42..., On-farm and Off-farm, Coast Prairie of Texas, 1955-65 40 5. Comparison of Rice Production and Storage Capacity at State Level, 1955-65 47 6. Comparison of Rice Production and Storage Capacity at Sector Level, 1955-65 51 7. Comparison of Highest...

Bhagia, Gobind Shewakram

2012-06-07T23:59:59.000Z

451

Finding of no significant impact. Consolidation and interim storage of special nuclear material at Rocky Flats Environmental Technology Site  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -- 1060, for the consolidation, processing, and interim storage of Category I and II special nuclear material (SNM) in Building 371 at the Rocky Flats Environmental Technology Site (hereinafter referred to as Rocky Flats or Site), Golden, Colorado. The scope of the EA included alternatives for interim storage including the no action alternative, the construction of a new facility for interim storage at Rocky Flats, and shipment to other DOE facilities for interim storage.

NONE

1995-06-01T23:59:59.000Z

452

CODES | Enabling Co-Design of Exascale Storage Architectures and Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CODES CODES Enabling Co-Design of Exascale Storage Architectures and Science Data Facilities Skip to content Home Team Publications White papers Quick guide Developer access Bug reports Welcome to the CODES project Posted on November 13, 2011 by copej The goal of the CODES project is use highly parallel simulation to explore the design of exascale storage architectures and distributed data-intensive science facilities. Increasingly, science endeavors rely heavily on data management, analysis, and storage as part of the discovery process. To serve large communities of scientists, complex systems and instruments are deployed across multiple institutions to manage and analyze data produced from experiments, observational platforms, and computational simulation. Evaluating designs

453

Criticality Safety Evaluation of Hanford Tank Farms Facility  

SciTech Connect (OSTI)

Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

WEISS, E.V.

2000-12-15T23:59:59.000Z

454

A molecular beam epitaxy facility for in situ neutron scattering  

SciTech Connect (OSTI)

A molecular beam epitaxy (MBE) facility has been built to enable in situ neutron scattering measurements during growth of epitaxial layers. While retaining the full capabilities of a research MBE chamber, this facility has been optimized for polarized neutron reflectometry measurements. Optimization includes a compact lightweight portable design, a neutron window, controllable magnetic field, deposition across a large 76 mm diameter sample with exceptional flux uniformity, and sample temperatures continuously controllable from 38 to 1375 K. A load lock chamber allows for sample insertion, storage of up to 4 samples, and docking with other facilities. The design and performance of this chamber are described here.

Dura, J. A.; LaRock, J. [NIST Center for Neutron Research, 100 Bureau Dr. MS 6102, Gaithersburg, Maryland 20899 6102 (United States)

2009-07-15T23:59:59.000Z

455

NETL: Carbon Storage FAQs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

different options for CO2 storage? different options for CO2 storage? Oil and gas reservoirs, many containing carbon dioxide (CO2), as well as natural deposits of almost pure CO2, can be found in many places in the United States and around the world. These are examples of long-term storage of CO2 by nature, where "long term" means millions of years. Their existence demonstrates that naturally occurring geologic formations and structures of various kinds are capable of securely storing CO2 deep in the subsurface for very long periods of time. Because of the economic importance of oil and gas, scientists and engineers have studied these natural deposits for many decades in order to understand the physical and chemical processes which led to their formation. There are also many decades of engineering experience in subsurface operations similar to those needed for CO2 storage. The most directly applicable experience comes from the oil industry, which, for 40 years, has injected CO2 in depleted oil reservoirs for the recovery of additional product through enhanced oil recovery (EOR). Additional experience comes from natural gas storage operations, which have utilized depleted gas reservoirs, as well as reservoirs containing only water. Scientists and engineers are now combining the knowledge obtained from study of natural deposits with experience from analogous operations as a basis for studying the potential for large-scale storage of CO2 in the deep subsurface.

456

Carbon-based Materials for Energy Storage  

E-Print Network [OSTI]

Architectures for Solar Energy Production, Storage andArchitectures for Solar Energy Production, Storage and

Rice, Lynn Margaret

2012-01-01T23:59:59.000Z

457

The Mixed Waste Management Facility monthly report, March 1995  

SciTech Connect (OSTI)

This document presents details of the monthly activities of Lawrence Livermore National Laboratory in regards to the Mixed Waste Management Facility. Topics discussed include: quality assurance; regulations; program support; public participation; conceptual design; plant start-up; project management; feed preparation; molten salt, electrochemical, and wet oxidation; process transport and storage; and final waste forms.

Streit, R.D.

1995-04-01T23:59:59.000Z

458

224-T Facility - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

T Facility Projects & Facilities 100 Area 118-K-1 Burial Ground 200 Area 209-E Critical Mass Laboratory 222-S Laboratory 224-B Facility 224-T Facility 242-A Evaporator 300 Area 324...

459

Cold Test Facility - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects & Facilities > Cold Test Facility Projects & Facilities 100 Area 118-K-1 Burial Ground 200 Area 209-E Critical Mass Laboratory 222-S Laboratory 224-B Facility 224-T...

460

States want say in nuclear waste storage  

Science Journals Connector (OSTI)

The states have put Congress and the executive branch on notice that they want a very active role in deciding where and how the nation's nuclear wastes will be stored. ... The 19-member State Planning Council on Radioactive Waste Management, appointed by President Carter in February 1980, in its interim report says that it is seeking a middle ground between giving states or Indian tribes a veto over the siting of long-term nuclear waste storage facilities and pre-emptive imposition of federal will. ...

1981-04-06T23:59:59.000Z

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Savannah River Hydrogen Storage Technology  

Broader source: Energy.gov [DOE]

Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

462

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

463

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

464

RMOTCTrainingFacilityNEW.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Field Laboratory with surface outcrops of Cretaceous fluvial and marine units * Gas Processing Facilities * Production Facilities * Tanks & Pipelines * Aquaculture &...

465

Application for a Temporary Water Use Permit for Up to 10 Acre Feet and Up  

Open Energy Info (EERE)

Up to 10 Acre Feet and Up Up to 10 Acre Feet and Up to One Year Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Application for a Temporary Water Use Permit for Up to 10 Acre Feet and Up to One Year Details Activities (0) Areas (0) Regions (0) Abstract: Unavailable Author(s): Unknown Published: TCEQ, Date Unknown Document Number: Unavailable DOI: Unavailable Source: View Original Document Retrieved from "http://en.openei.org/w/index.php?title=Application_for_a_Temporary_Water_Use_Permit_for_Up_to_10_Acre_Feet_and_Up_to_One_Year&oldid=648773" Category: Reference Materials What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

466

Fire Hazards Analysis for the 200 Area Interim Storage Area  

SciTech Connect (OSTI)

This documents the Fire Hazards Analysis (FHA) for the 200 Area Interim Storage Area. The Interim Storage Cask, Rad-Vault, and NAC-1 Cask are analyzed for fire hazards and the 200 Area Interim Storage Area is assessed according to HNF-PRO-350 and the objectives of DOE Order 5480 7A. This FHA addresses the potential fire hazards associated with the Interim Storage Area (ISA) facility in accordance with the requirements of DOE Order 5480 7A. It is intended to assess the risk from fire to ensure there are no undue fire hazards to site personnel and the public and to ensure property damage potential from fire is within acceptable limits. This FHA will be in the form of a graded approach commensurate with the complexity of the structure or area and the associated fire hazards.

JOHNSON, D.M.

2000-01-06T23:59:59.000Z

467

Notice of Weekly Natural Gas Storage Report Changes  

Weekly Natural Gas Storage Report (EIA)

Released: September 23, 2013 Released: September 23, 2013 EIA to Modify Format of the Weekly Natural Gas Storage Report to Better Serve Customers The U.S. Energy Information Administration (EIA) is announcing changes to the format of its Weekly Natural Gas Storage Report (WNGSR) to better serve its customers who make use of automated computer systems to collate information on changes in natural gas storage. Specifically, EIA intends to enhance the WNGSR summary table. In addition to what is currently presented, EIA plans to provide an estimate of the "implied flow" of working natural gas into or out of underground natural gas storage facilities that excludes reportable reclassifications-those totaling 7 billion cubic feet (Bcf) or more-from the weekly "net change" in

468

Compressed Air Energy Storage (CAES) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Compressed Air Energy Storage (CAES) Jump to: navigation, search Contents 1 Introduction 2 Technology Description 3 Plants 4 References Introduction Compressed air energy storage (CAES) is a way to store energy that is generated at night and deliver the energy during the day to meet peak demand. This is performed by compressing air and storing it during periods of excess electricity and expanding the air through a turbine when electricity is needed. Technology Description Diabatic Diabatic compressed air energy storage is what the two existing compressed air energy storage facilities currently employ. This method is

469

FCT Hydrogen Storage: Current Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Storage: Current Technology on Facebook Tweet about FCT Hydrogen Storage: Current Technology on Twitter Bookmark FCT Hydrogen Storage: Current Technology on Google Bookmark FCT Hydrogen Storage: Current Technology on Delicious Rank FCT Hydrogen Storage: Current Technology on Digg Find More places to share FCT Hydrogen Storage: Current Technology on AddThis.com... Home Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen Storage Hydrogen Storage Challenges Status of Hydrogen Storage Technologies DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology

470

DOE Global Energy Storage Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

471

Do Temporary-Help Jobs Improve Labor Market Outcomes for Low-Skilled Workers? Evidence from "Work First"  

E-Print Network [OSTI]

Temporary-help jobs offer rapid entry into paid employment, but they are typically brief and it is unknown whether they foster longer term employment. We utilize the unique structure of Detroit's welfare-to- work program ...

Autor, David H.

472

Report of Survey of Oak Ridge Building 3597 Hot Storage Garden | Department  

Broader source: Energy.gov (indexed) [DOE]

Building 3597 Hot Storage Garden Building 3597 Hot Storage Garden Report of Survey of Oak Ridge Building 3597 Hot Storage Garden The purpose of this document is to report the results of a survey conducted at the Hot Storage Garden facility (identified as "Building" 3597) on the Y-12 Plant property at the Oak Ridge Site. The survey was conducted during the week of 11/15/99. The primary purpose of the survey is to identify facility conditions and to define the characterization, stabilization, and material/waste/equipment removal (if any) requirements that need to be met to transfer responsibility for the facility from the Office of Science (SC) to the Office of Environmental Management (EM). Additionally, estimated post stabilization surveillance and maintenance (S&M) activities and costs are

473

Report of Survey of Oak Ridge Building 3597 Hot Storage Garden | Department  

Broader source: Energy.gov (indexed) [DOE]

Building 3597 Hot Storage Garden Building 3597 Hot Storage Garden Report of Survey of Oak Ridge Building 3597 Hot Storage Garden The purpose of this document is to report the results of a survey conducted at the Hot Storage Garden facility (identified as "Building" 3597) on the Y-12 Plant property at the Oak Ridge Site. The survey was conducted during the week of 11/15/99. The primary purpose of the survey is to identify facility conditions and to define the characterization, stabilization, and material/waste/equipment removal (if any) requirements that need to be met to transfer responsibility for the facility from the Office of Science (SC) to the Office of Environmental Management (EM). Additionally, estimated post stabilization surveillance and maintenance (S&M) activities and costs are

474

EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky  

Broader source: Energy.gov (indexed) [DOE]

59: Uranium Hexafluoride Conversion Facility at the Paducah, 59: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site Summary This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold. This EIS also considers a no action alternative that assumes continued storage of DUF6 at the Paducah site. A

475

Evaluation of temporary non-code repairs in safety class 3 piping systems  

SciTech Connect (OSTI)

Temporary non-ASME Code repairs in safety class 3 pipe and piping components are permissible during plant operation in accordance with Nuclear Regulatory Commission Generic Letter 90-05. However, regulatory acceptance of such repairs requires the licensee to undertake several timely actions. Consistent with the requirements of GL 90-05, this paper presents an overview of the detailed evaluation and relief request process. The technical criteria encompasses both ductile and brittle piping materials. It also lists appropriate evaluation methods that a utility engineer can select to perform a structural integrity assessment for design basis loading conditions to support the use of temporary non-Code repair for degraded piping components. Most use of temporary non-code repairs at a nuclear generating station is in the service water system which is an essential safety related system providing the ultimate heat sink for various plant systems. Depending on the plant siting, the service water system may use fresh water or salt water as the cooling medium. Various degradation mechanisms including general corrosion, erosion/corrosion, pitting, microbiological corrosion, galvanic corrosion, under-deposit corrosion or a combination thereof continually challenge the pressure boundary structural integrity. A good source for description of corrosion degradation in cooling water systems is provided in a cited reference.

Godha, P.C.; Kupinski, M.; Azevedo, N.F. [Northeast Utilities System, Hartford, CT (United States)

1996-12-01T23:59:59.000Z

476

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 31, 2009 [Facility News] July 31, 2009 [Facility News] President of the Regional Government Speaks at Opening Ceremony for Mobile Facility in the Azores Bookmark and Share Highlighting the opening ceremony for the ARM Mobile Facility on Graciosa Island, Carlos CĂ©sar, President of the Regional Government of the Azores, signs a weather balloon while local media record the event. Photo by Mike Alsop. Highlighting the opening ceremony for the ARM Mobile Facility on Graciosa Island, Carlos CĂ©sar, President of the Regional Government of the Azores, signs a weather balloon while local media record the event. Photo by Mike Alsop. On June 30, officials from the Regional Government of the Azores recognized the deployment of the ARM Mobile Facility on Graciosa Island during an official opening ceremony held at the site. Notable among the participants

477

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6, 2012 [Facility News] 6, 2012 [Facility News] News Tips from 2012 EGU General Assembly Bookmark and Share The ARM Facility is attending the 2012 European Geophysical Union General Assembly at the Austria Center in Vienna for the first time. The ARM Facility is attending the 2012 European Geophysical Union General Assembly at the Austria Center in Vienna for the first time. VIENNA - The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is the world's most comprehensive outdoor laboratory and data archive for research related to atmospheric processes that affect Earth's climate. At the European Geophysical Union (EGU) General Assembly 2012 in Vienna, find out how scientists use the ARM Facility to study the interactions between clouds,

478

BNL | Accelerator Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Test Facility Accelerator Test Facility Home Core Capabilities Photoinjector S-Band Linac Laser Systems CO2 Laser Nd:Yag Laser Beamlines Beamline Simulation Data Beamline Parameters Beam Diagnostics Detectors Beam Schedule Operations Resources Fact Sheet (.pdf) Image Library Upgrade Proposal (.pdf) Publications ES&H Experiment Start-up ATF Handbook Laser Safety Collider-Accelerator Dept. C-AD ES&H Resources Staff Users' Place Apply for Access ATF photo ATF photo ATF photo ATF photo ATF photo A user facility for advanced accelerator research The Brookhaven Accelerator Test Facility (ATF) is a proposal driven, steering committee reviewed facility that provides users with high-brightness electron- and laser-beams. The ATF pioneered the concept of a user facility for studying complex properties of modern accelerators and

479

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8, 2011 [Facility News, Publications] 8, 2011 [Facility News, Publications] Journal Special Issue Includes Mobile Facility Data from Germany Bookmark and Share The ARM Mobile Facility operated in Heselbach, Germany, as part of the COPS surface network. The ARM Mobile Facility operated in Heselbach, Germany, as part of the COPS surface network. In 2007, the ARM Mobile Facility participated in one of the most ambitious field studies ever conducted in Europe-the Convective and Orographically Induced Precipitation Study (COPS). Now, 21 papers published in a special issue of the Quarterly Journal of the Royal Meteorological Society demonstrate that the data collected during COPS are providing new insight into: the key chemical and physical processes leading to convection initiation and to the modification of precipitation by orography;

480

WIPP - Public Reading Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Public Reading Facilities/Electronic Reading Facilities The Freedom of Information Act (FOIA) and Electronic FOIA (E-FOIA) require that various specific types of records, as well as various other records, be maintained in public reading facilities. Before you submit a FOIA request, we recommend you contact or visit the appropriate public reading facility to determine if the records you are seeking have already been released. The U.S. Department of Energy (DOE), as well as other related DOE sites, have established home pages on the Internet with links to other web sites. If you determine a specific facility might have records in which you are interested, requests for those records can be made directly to the public reading rooms identified below. Copying of records located in the public reading rooms must be made by the staff of those facilities.

Note: This page contains sample records for the topic "temporary storage facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

15, 2005 [Facility News] 15, 2005 [Facility News] Aging, Overworked Computer Network at SGP Gets Overhauled Bookmark and Share This aerial map of instruments deployed at the SGP Central Facility provides an indication of the computer resources needed to manage data at the site, let alone communicate with other ARM sites. This aerial map of instruments deployed at the SGP Central Facility provides an indication of the computer resources needed to manage data at the site, let alone communicate with other ARM sites. Established as the first ARM research facility in 1992, the Southern Great Plains (SGP) site in Oklahoma is the "old man on the block" when it comes to infrastructure. Though significant improvements have been made to facilities and equipment throughout the years, the computer network at the

482

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 7, 2011 [Facility News] April 7, 2011 [Facility News] Review Panel States ARM Facility "Without Peer" Bookmark and Share Every three years, DOE Office of Science user facilities undergo a review to evaluate their effectiveness in contributing to their respective science areas. The latest ARM Facility review was conducted in mid-February by a six-member review panel led by Minghua Zhang of Stony Brook University. Notably, in a debriefing following the review, the panel stated that ARM was a "world class facility without peer." The panel convened in Ponca City, Oklahoma, near ARM's Southern Great Plains site to conduct their review. Their first agenda item was an SGP site tour, which provided a realtime example of the scope and expertise of site operations and included a demonstration of the site's newly

483

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8, 2010 [Facility News] 8, 2010 [Facility News] Europeans Keen to Hear About Effects of Dust Using Data from Africa Bookmark and Share In 2006, the ARM Mobile Facility joined the AMMA project to obtain data for scientists to study the impact that airborne Saharan dust has on incoming solar radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. In 2006, the ARM Mobile Facility joined the AMMA project to obtain data for scientists to study the impact that airborne Saharan dust has on incoming solar radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. Researcher Xiaohong Liu from Pacific Northwest National Laboratory was

484

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 30, 2008 [Facility News] April 30, 2008 [Facility News] Team Scouts Graciosa Island for 2009 Mobile Facility Deployment Site Bookmark and Share A location near the airport on the northern end of Graciosa Island was identified as an excellent location for operating the ARM Mobile Facility. Image source: Luis Miguens A location near the airport on the northern end of Graciosa Island was identified as an excellent location for operating the ARM Mobile Facility. Image source: Luis Miguens Indications from a scouting trip by the ARM Mobile Facility (AMF) science and operations management team are that an excellent site for the 2009 deployment may have been found. From April 8 through April 16, the team traveled to Graciosa Island in the Azores to scout sites for the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) field

485

Integrated Facilities Disposition Program  

Broader source: Energy.gov (indexed) [DOE]

Facilities Facilities Disposition Program Tank Waste Corporate Board Meeting at ORNL Sharon Robinson Dirk Van Hoesen Robert Jubin Brad Patton July 29, 2009 2 Managed by UT-Battelle for the U.S. Department of Energy The Integrated Facility Disposition Program