Sample records for temperature water vapor

  1. Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from such as cloud mask, atmos- pheric profiles, aerosol properties, total precipitable water, and cloud properties vapor amount, aerosol particles, and the subsequently formed clouds [9]. Barnes et al. [2] provide

  2. Temperature and water vapor pressure effects on the friction coefficient of hydrogenated diamondlike carbon films.

    SciTech Connect (OSTI)

    Dickrell, P. L.; Sawyer, W. G.; Eryilmaz, O. L.; Erdemir, A.; Energy Technology; Univ. of Florida

    2009-07-01T23:59:59.000Z

    Microtribological measurements of a hydrogenated diamondlike carbon film in controlled gaseous environments show that water vapor plays a significant role in the friction coefficient. These experiments reveal an initial high friction transient behavior that does not reoccur even after extended periods of exposure to low partial pressures of H{sub 2}O and O{sub 2}. Experiments varying both water vapor pressure and sample temperature show trends of a decreasing friction coefficient as a function of both the decreasing water vapor pressure and the increasing substrate temperature. Theses trends are examined with regard to first order gas-surface interactions. Model fits give activation energies on the order of 40 kJ/mol, which is consistent with water vapor desorption.

  3. The role of water vapor and solar radiation in determining temperature changes and trends measured at Armagh, 18812000

    E-Print Network [OSTI]

    The role of water vapor and solar radiation in determining temperature changes and trends measured in atmospheric circulation, are discussed. Citation: Stanhill, G. (2011), The role of water vapor and solar radiation in determining temperature changes and trends measured at Armagh, 1881­2000, J. Geophys. Res., 116

  4. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    SciTech Connect (OSTI)

    Westwater, Edgeworth

    2011-05-06T23:59:59.000Z

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of this contract, we participated in another ARM-sponsored experiment at the NSA during February-March 2007. This experiment is called the Radiative Heating in Underexplored Bands Campaign (RHUBC) and the GSR was operated successfully for the duration of the campaign. One of the principal goals of the experiment was to provide retrievals of water vapor during PWV amounts less than 2 mm and to compare GSR data with ARM radiometers and radiosondes. A secondary goal was to compare the radiometric response of the microwave and millimeter wavelength radiometers to water and ice clouds. In this final report, we will include the separate progress reports for each of the three years of the project and follow with a section on major accomplishments of the project.

  5. The Effects of Water Vapor and Hydrogen on the High-Temperature Oxidation of Alloys

    SciTech Connect (OSTI)

    Mu, N.; Jung, K.; Yanar, N. M.; Pettit, F. S; Holcomb, G. R.; Howard, B. H.; Meier, G. H.

    2013-06-01T23:59:59.000Z

    Essentially all alloys and coatings that are resistant to corrosion at high temperature require the formation of a protective (slowly-growing and adherent) oxide layer by a process known as selective oxidation. The fundamental understanding of this process has been developed over the years for exposure in pure oxygen or air. However, the atmospheres in most applications contain significant amounts of water vapor which can greatly modify the behavior of protective oxides. The development of oxy-fuel combustion systems in which fossil fuels are burned in a mixture of recirculated flue gas and oxygen, rather than in air, has caused renewed interest in the effects of water vapor and steam on alloy oxidation. The focus of this paper is on the ways the presence of water vapor can directly alter the selective oxidation process. The paper begins with a brief review of the fundamentals of selective oxidation followed by a description of recent experimental results regarding the effect of water vapor on the oxidation of a variety of chromia-forming alloys (Fe- and Ni-base) in the temperature range 600 to 700 °C. The atmospheres include air, air-H{sub 2}O, Ar-H{sub 2}O and Ar-H{sub 2}O-O{sub 2}. Then the behavior of alumina-forming alloys in H{sub 2}O-containing atmospheres is briefly described. As hydrogen is produced during oxidation of alloys in H{sub 2}O, it can be released back into the gas phase or injected into the metal (where it can diffuse through to the other side). Experiments in which hydrogen concentrations have been measured on both sides of thin specimens during oxidation by H{sub 2}O on only one side are described. Finally, it is attempted to catalogue the various experimental observations under a few general principles.

  6. Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor

    SciTech Connect (OSTI)

    Liu, Jonathan T.C.; Rieker, Gregory B.; Jeffries, Jay B.; Gruber, Mark R.; Carter, Campbell D.; Mathur, Tarun; Hanson, Ronald K

    2005-11-01T23:59:59.000Z

    Tunable diode laser absorption measurements of gas temperature and water concentration were made at the exit of a model scramjet combustor fueled on JP-7. Multiplexed, fiber-coupled, near-infrared distributed feedback lasers were used to probe three water vapor absorption features in the 1.34-1.47 {mu}m spectral region (2v1and v1+ v3overtone bands). Ratio thermometry was performed using direct-absorption wavelength scans of isolated features at a 4-kHz repetition rate, as well as 2f wavelength modulation scans at a 2-kHz scan rate. Large signal-to-noise ratios demonstrate the ability of the optimally engineered optical hardware to reject beam steering and vibration noise. Successful measurements were made at full combustion conditions for a variety of fuel/air equivalence ratios and at eight vertical positions in the duct to investigate spatial uniformity. The use of three water vapor absorption features allowed for preliminary estimates of temperature distributions along the line of sight. The improved signal quality afforded by 2f measurements, in the case of weak absorption, demonstrates the utility of a scanned wavelength modulation strategy in such situations.

  7. Water vapor and temperature inversions near the 0 deg C level over the tropical western Pacific. Master's thesis

    SciTech Connect (OSTI)

    Hart, K.A.

    1994-01-01T23:59:59.000Z

    During the Intensive Observation Period (IOP), several periods of water vapor and temperature inversions near the 0 deg C level were observed. Satellite and radiosonde data from TOGA COARE are used to document the large-scale conditions and thermodynamic and kinematic structures present during three extended periods in which moisture and temperature inversions near the freezing level were very pronounced. Observations from each case are synthesized into schematics which represent typical structures of the inversion phenomena. Frequency distributions of the inversion phenomena along with climatological humidity and temperature profiles are calculated for the four-month IOP.

  8. ARM - Water Vapor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmr DocumentationProductsaodsasheniraodAlaskaVisiting theWater Vapor

  9. Tropospheric water vapor and climate sensitivity

    SciTech Connect (OSTI)

    Schneider, E.K.; Kirtman, B.P.; Lindzen, R.S. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)] [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)

    1999-06-01T23:59:59.000Z

    Estimates are made of the effect of changes in tropospheric water vapor on the climate sensitivity to doubled carbon dioxide (CO{sub 2}) using a coarse resolution atmospheric general circulation model coupled to a slab mixed layer ocean. The sensitivity of the model to doubled CO{sub 2} is found as the difference between the equilibrium responses for control and doubled CO{sub 2} cases. Clouds are specified to isolate the water vapor feedback. Experiments in which the water vapor distribution is specified rather than internally calculated are used to find the contribution of water vapor in various layers and latitude belts to the sensitivity. The contribution of water vapor in layers of equal mass to the climate sensitivity varies by about a factor of 2 with height, with the largest contribution coming from layers between 450 and 750 mb, and the smallest from layers above 230 mb. The positive feedback on the global mean surface temperature response to doubled CO{sub 2} from water vapor above 750 mb is about 2.6 times as large as that from water vapor below 750 mb. The feedback on global mean surface temperature due to water vapor in the extratropical free troposphere is about 50% larger than the feedback due to the lower-latitude free troposphere water vapor. Several important sources of nonlinearity of the radiative heating rates were identified in the process of constructing the specified cloud and water vapor fields. These are (1) the interaction of clouds and solar radiation, which produces much more reflection of solar radiation for time mean clouds than for the instantaneous clouds; (2) the correlation of clouds and water vapor, which produces less downward longwave radiation at the ground for correlated clouds and water vapor than when these fields are independent; and (3) the interaction of water vapor with long wave radiation, which produces less downward longwave radiation at the ground of the average over instantaneous water vapor distributions than of the time mean water vapor distribution.

  10. ARM Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)Productssondeadjustsondeadjust DocumentationARM Participation in SuomiNet The ARM62ARM Water Vapor IOP

  11. Water Vapor Experiment Concludes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition3 Water Vapor Experiment Concludes The

  12. Improved Retrievals of Temperature and Water Vapor Profiles Using a Twelve-Channel Microwave Radiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348 270 300 219 255Retrievals of Temperature and Water

  13. Interaction of wide-band-gap single crystals with 248-nm excimer laser radiation. XI. The effect of water vapor and temperature on laser desorption

    E-Print Network [OSTI]

    Dickinson, J. Thomas

    . Significantly, introducing water vapor lowers the particle velocities and thus the effective surface temperature systems, simultaneous electronic excitation and exposure to aggressive chemicals can acceler- ate etching-induced neutral particle desorption and surface erosion on single- crystal sodium chloride in the presence of low

  14. Hydrogen Ingress in Steels During High-Temperature Oxidation in Water Vapor

    SciTech Connect (OSTI)

    Brady, Michael P [ORNL; Fayek, Mostafa [ORNL; Keiser, James R [ORNL; Meyer III, Harry M [ORNL; More, Karren Leslie [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Wesolowski, David J [ORNL; Cole, David R [ORNL

    2011-01-01T23:59:59.000Z

    It is well established that hydrogen derived from water vapour can penetrate oxidizing alloys with detrimental effect. However, the complexities of tracking hydrogen in these materials have prevented the direct profiling of hydrogen ingress needed to understand these phenomena. Here we report hydrogen profiles in industrially-relevant alumina- and chromia- forming steels correlated with the local oxide-metal nano/microstructure by use of SIMS D2O tracer studies and experimental protocols to optimize D retention. The D profiles unexpectedly varied markedly among the alloys examined, which indicates mechanistic complexity but also the potential to mitigate detrimental water vapour effects by manipulation of alloy chemistry.

  15. Hydrogen Cars and Water Vapor

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    misidentified as "zero-emissions vehicles." Fuel cell vehicles emit water vapor. A global fleet could have, with discernible effects on people and ecosystems. The broad environmental effects of fuel cell vehicles. This cycle is currently under way with hydrogen fuel cells. As fuel cell cars are suggested as a solution

  16. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cadeddu, Maria

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  17. Temperature dependent vapor pressures of chlorinated catechols, syringols, and syringaldehydes

    SciTech Connect (OSTI)

    Lei, Y.D.; Shiu, W.Y.; Boocock, D.G.B. [Univ. of Toronto, Ontario (Canada). Dept. of Chemical Engineering and Applied Chemistry] [Univ. of Toronto, Ontario (Canada). Dept. of Chemical Engineering and Applied Chemistry; Wania, F. [WECC Wania Environmental Chemists Corp., Toronto, Ontario (Canada)] [WECC Wania Environmental Chemists Corp., Toronto, Ontario (Canada)

    1999-03-01T23:59:59.000Z

    The vapor pressures of nine chlorinated catechols, syringols, and syringaldehydes were determined as a function of temperature with a gas chromatographic retention time technique. The vapor pressures at 298.15 K were in the range of 0.02--1 Pa, and the enthalpies of vaporization, between 68 and 82 kJ/mol. The validity of the technique was established by a calibration involving four chlorinated phenols with well-known vapor pressures. Using these data and previously reported solubility data, Henry`s law constants for these substances and some chlorinated guaiacols and veratrols were estimated. The vapor pressure of these substances tends to decrease with increasing polarity and an increasing number of chlorine atoms. Henry`s law constants decrease sharply with increasing polarity, suggesting that methylation can result in a significant increase in a chemical`s potential for volatilization from water.

  18. Optical monitor for water vapor concentration

    DOE Patents [OSTI]

    Kebabian, Paul (Acton, MA)

    1998-01-01T23:59:59.000Z

    A system for measuring and monitoring water vapor concentration in a sample uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to a water vapor absorption line. In a preferred embodiment, the argon line is split by a magnetic field parallel to the direction of light propagation from the lamp into sets of components of downshifted and upshifted frequencies of approximately 1575 Gauss. The downshifted components are centered on a water vapor absorption line and are thus readily absorbed by water vapor in the sample; the upshifted components are moved away from that absorption line and are minimally absorbed. A polarization modulator alternately selects the upshifted components or downshifted components and passes the selected components to the sample. After transmission through the sample, the transmitted intensity of a component of the argon line varies as a result of absorption by the water vapor. The system then determines the concentration of water vapor in the sample based on differences in the transmitted intensity between the two sets of components. In alternative embodiments alternate selection of sets of components is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to the emitting plasma.

  19. Isothermal vapor-liquid equilibria for methanol + ethanol + water, methanol + water, and ethanol + water

    SciTech Connect (OSTI)

    Kurihara, Kiyofumi; Takeda, Kouichi; Kojima, Kazuo [Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry; Minoura, Tsuyoshi [Mitui Engineering and Shipbuilding Co., Ltd., Tokyo (Japan)

    1995-05-01T23:59:59.000Z

    Isothermal vapor-liquid equilibria were measured for the ternary system methanol + ethanol + water and its constituent binary systems of methanol + water and ethanol + water at 323.15, 328.15, and 333.15 K. The apparatus that was used made it possible to control the measured temperature and total pressure by computer. The experimental binary data were correlated by the NRTL equation. The ternary system was predicted using the binary NRTL parameters with good accuracy.

  20. Millimeter-wave Radiometer for High Sensitivity Water Vapor Profiling in Arid Regions

    SciTech Connect (OSTI)

    Pazmany, Andrew

    2006-11-09T23:59:59.000Z

    Abstract - ProSensing Inc. has developed a G-band (183 GHz) water Vapor Radiometer (GVR) for long-term, unattended measurements of low concentrations of atmospheric water vapor and liquid water. Precipitable water vapor and liquid water path are estimated from zenith brightness temperatures measured from four double-sideband receiver channels, centered at 183.31 1, 3 and 7, and 14 GHz. A prototype ground-based version of the instrument was deployed at the DOE ARM program?s North Slope of Alaska site near Barrow AK in April 2005, where it collected data continuously for one year. A compact, airborne version of this instrument, packaged to operate from a standard 2-D PMS probe canister, has been tested on the ground and is scheduled for test flights in the summer of 2006. This paper presents design details, laboratory test results and examples of retrieved precipitable water vapor and liquid water path from measured brightness temperature data.

  1. Water vapor and the dynamics of climate changes

    E-Print Network [OSTI]

    Schneider, Tapio; Levine, Xavier

    2009-01-01T23:59:59.000Z

    Water vapor is not only Earth's dominant greenhouse gas. Through the release of latent heat when it condenses, it also plays an active role in dynamic processes that shape the global circulation of the atmosphere and thus climate. Here we present an overview of how latent heat release affects atmosphere dynamics in a broad range of climates, ranging from extremely cold to extremely warm. Contrary to widely held beliefs, atmospheric circulation statistics can change non-monotonically with global-mean surface temperature, in part because of dynamic effects of water vapor. For example, the strengths of the tropical Hadley circulation and of zonally asymmetric tropical circulations, as well as the kinetic energy of extratropical baroclinic eddies, can be lower than they presently are both in much warmer climates and in much colder climates. We discuss how latent heat release is implicated in such circulation changes, particularly through its effect on the atmospheric static stability, and we illustrate the circul...

  2. Effect of atmospheric water vapor on modification of stable isotopes in near-surface snow on ice sheets

    E-Print Network [OSTI]

    Walden, Von P.

    temperature and the abundance of heavy isotopes of water found in water vapor and precipitation as functionsEffect of atmospheric water vapor on modification of stable isotopes in near-surface snow on ice fractionation model is developed to investigate postdepositional modification of stable isotopes of water

  3. Phase effects for electrons in liquid water and water vapor

    SciTech Connect (OSTI)

    Turner, J.E.; Paretzke, H.G.; Wright, H.A.; Hamm, R.N.; Ritchie, R.H.

    1988-01-01T23:59:59.000Z

    The objective of these studies is to compare transport, energy loss, and other phenomena for electrons in water in the liquid and vapor phases. Understanding the differences and similarities is an interesting physics problem in its own right. It is also important for applying the relatively large body of experimental data available for the vapor to the liquid, which is of greater relevance in radiobiology. This paper presents a summary of results from a series of collaborative studies carried out by the authors at Oak Ridge National Laboratory (ORNL) and the Gesellschaft fuer Strahlen- und Umweltforschung (GSF). 14 figs.

  4. Isotopic composition of stratospheric water vapor: Measurements and photochemistry

    E-Print Network [OSTI]

    of magnitude between the surface and the tropopause, and isotopically heavy water is pref- erentially removedIsotopic composition of stratospheric water vapor: Measurements and photochemistry David G. Johnson composition of stratospheric water vapor that result from methane oxidation and reactions with O( ¢¡ ). We

  5. An optical water vapor sensor for unmanned aerial vehicles

    SciTech Connect (OSTI)

    Timothy A. Berkoff; Paul L. Kebabian; Robert A. McClatchy; Charles E. Kolb; Andrew Freedman

    1998-12-01T23:59:59.000Z

    The water vapor sensor developed by Aerodyne Research, based on the optical absorption of light at {approximately}935 nm, has been successfully demonstrated on board the Pacific Northwest National Laboratory's Gulfstream-1 research aircraft during the Department of Energy's ARM Intensive Operations Period in August 1998. Data taken during this field campaign show excellent agreement with a chilled mirror and Lyman-alpha hygrometers and measurements confirm the ability to measure rapid, absolute water vapor fluctuations with a high degree of instrument stability and accuracy, with a noise level as low 10 ppmv (1 Hz measurement bandwidth). The construction of this small, lightweight sensor contains several unique elements which result in several significant advantages when compared to other techniques. First, the low power consumption Argon discharge lamp provides an optical beam at a fixed wavelength without a need for temperature or precision current control. The multi-pass absorption cell developed for this instrument provides a compact, low cost method that can survive deployment in the field. Fiber-optic cables, which are used to convey to light between the absorption cell, light source, and detection modules enable remote placement of the absorption cell from the opto-electronics module. Finally, the sensor does not use any moving parts which removes a significant source of potential malfunction. The result is an instrument which maintained its calibration throughout the field measurement campaign, and was not affected by high vibration and large uncontrolled temperature excursions. We believe that the development of an accurate, fast response water vapor monitor described in this report will open up new avenues of aerial-vehicle-based atmospheric research which have been relatively unexplored due to the lack of suitable low-cost, light-weight instrumentation.

  6. Water, Vapor, and Salt Dynamics in a Hot Repository

    SciTech Connect (OSTI)

    Bahrami, Davood; Danko, George [Department of Mining Engineering, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV, 89557 (United States); Walton, John [Department of Civil Engineering, University of Texas at El Paso, 500 W. University, El Paso, TX, 79968 (United States)

    2007-07-01T23:59:59.000Z

    The purpose of this paper is to report the results of a new model study examining the high temperature nuclear waste disposal concept at Yucca Mountain using MULTIFLUX, an integrated in-drift- and mountain-scale thermal-hydrologic model. The results show that a large amount of vapor flow into the drift is expected during the period of above-boiling temperatures. This phenomenon makes the emplacement drift a water/moisture attractor during the above-boiling temperature operation. The evaporation of the percolation water into the drift gives rise to salt accumulation in the rock wall, especially in the crown of the drift for about 1500 years in the example. The deposited salts over the drift footprint, almost entirely present in the fractures, may enter the drift either by rock fall or by water drippage. During the high temperature operation mode, the barometric pressure variation creates fluctuating relative humidity in the emplacement drift with a time period of approximately 10 days. Potentially wet and dry conditions and condensation on salt-laden drift wall sections may adversely affect the storage environment. Salt accumulations during the above-boiling temperature operation must be sufficiently addressed to fully understand the waste package environment during the thermal period. Until the questions are resolved, a below-boiling repository design is favored where the Alloy-22 will be less susceptible to localized corrosion. (authors)

  7. The Water Vapor Abundance in Orion KL Outflows

    E-Print Network [OSTI]

    J. Cernicharo; J. R. Goicoechea; F. Daniel; M. R. Lerate; M. J. Barlow; B. M. Swinyard; E. van Dishoeck; T. L. Lim; S. Viti; J. Yates

    2006-08-16T23:59:59.000Z

    We present the detection and modeling of more than 70 far-IR pure rotational lines of water vapor, including the 18O and 17O isotopologues, towards Orion KL. Observations were performed with the Long Wavelength Spectrometer Fabry-Perot (LWS/FP; R~6800-9700) on board the Infrared Space Observatory (ISO) between ~43 and ~197 um. The water line profiles evolve from P-Cygni type profiles (even for the H2O18 lines) to pure emission at wavelengths above ~100 um. We find that most of the water emission/absorption arises from an extended flow of gas expanding at 25+-5 kms^-1. Non-local radiative transfer models show that much of the water excitation and line profile formation is driven by the dust continuum emission. The derived beam averaged water abundance is 2-3x10^-5. The inferred gas temperature Tk=80-100 K suggests that: (i) water could have been formed in the "plateau" by gas phase neutral-neutral reactions with activation barriers if the gas was previously heated (e.g. by shocks) to >500 K and/or (ii) H2O formation in the outflow is dominated by in-situ evaporation of grain water-ice mantles and/or (iii) H2O was formed in the innermost and warmer regions (e.g. the hot core) and was swept up in ~1000 yr, the dynamical timescale of the outflow.

  8. Forced Dispersion of Liquefied Natural Gas Vapor Clouds with Water Spray Curtain Application

    E-Print Network [OSTI]

    Rana, Morshed A.

    2011-02-22T23:59:59.000Z

    .............................................................................................................................. 211 xv LIST OF FIGURES Page Fig. 1. Densities of methane (vapor) and air at different temperatures. .......................... 2 Fig. 2. Temperature and specific gravity of methane, air and methane-air mixture at atmospheric... on methane concentration downwind of the LNG pool ..................................................................................................... 37 Fig. 10. Methane concentrations downwind of the LNG pool, with and without water spray...

  9. Vapor-liquid equilibrium of water-acetone-air at ambient temperatures and pressures. An analysis of different VLE-fitting methods

    SciTech Connect (OSTI)

    Lichtenbelt, J.H.; Schram, B.J.

    1985-04-01T23:59:59.000Z

    The availability of accurate equilibrium data is of high importance in chemical engineering practice both for design and research purposes. It appeared that for the gas absorption system water-acetone-air in the range of special interest for absorption and desorption operations, neither literature data nor calculations following UNIFAC gave a sufficient accuracy. An experimental program was set up to determine equilibrium data with an accuracy within 2% for low acetone concentrations (up to 7 wt % gas phase) at ambient temperature (16-30/sup 0/C) and atmospheric pressure (740-860 mmHg). From experiments the activity coefficient at infinite dilution of acetone ..gamma.. is found to be 6.79 (0.01) at 20/sup 0/C and 7.28 (0.01) at 25/sup 0/C, while the total error in ..gamma.. is 1.5%. The equilibrium constant can be calculated from ..gamma.. and shows the same error. The experimental data-fitting with procedures of Margules (two parameters) and Van Laar were successful, but NRTL, Wilson, and UNIQUAC failed, probably because of the small concentration range used.

  10. VAPORIZATION OF TUNGSTEN-METAL IN STEAM AT HIGH TEMPERATURES.

    SciTech Connect (OSTI)

    GREENE,G.A.; FINFROCK,C.C.

    2000-10-01T23:59:59.000Z

    The vaporization of tungsten from the APT spallation target dominates the radiological source term for unmitigated target overheating accidents. Chemical reactions of tungsten with steam which persist to tungsten temperatures as low as 800 C result in the formation of a hydrated tungsten-oxide which has a high vapor pressure and is readily convected in a flowing atmosphere. This low-temperature vaporization reaction essentially removes the oxide film that forms on the tungsten-metal surface as soon as it forms, leaving behind a fresh metallic surface for continued oxidation and vaporization. Experiments were conducted to measure the oxidative vaporization rates of tungsten in steam as part of the effort to quantify the MT radiological source term for severe target accidents. Tests were conducted with tungsten rods (1/8 inch diameter, six inches long) heated to temperatures from approximately 700 C to 1350 C in flowing steam which was superheated to 140 C. A total of 19 experiments was conducted. Fifteen tests were conducted by RF induction heating of single tungsten rods held vertical in a quartz glass retort. Four tests were conducted in a vertically-mounted tube furnace for the low temperature range of the test series. The aerosol which was generated and transported downstream from the tungsten rods was collected by passing the discharged steam through a condenser. This procedure insured total collection of the steam along with the aerosol from the vaporization of the rods. The results of these experiments revealed a threshold temperature for tungsten vaporization in steam. For the two tests at the lowest temperatures which were tested, approximately 700 C, the tungsten rods were observed to oxidize without vaporization. The remainder of the tests was conducted over the temperature range of 800 C to 1350 C. In these tests, the rods were found to have lost weight due to vaporization of the tungsten and the missing weight was collected in the downstream condensate system. The aerosol formed a fine white smoke of tungsten-oxide which was visible to the eye as it condensed in the laminar boundary layer of steam which flowed along the surface of the rod. The aerosol continued to flow as a smoke tube downstream of the rod, flowing coaxially along the centerline axis of the quartz glass tube and depositing by impaction along the outside of a bend and at sudden area contractions in the piping. The vaporization rate data from the 17 experiments which exceeded the vaporization threshold temperature are shown in Figure 5 in the form of vaporization rates (g/cm{sup 2} s) vs. inverse temperature (K{sup {minus}1}). Two correlations to the present data are presented and compared to a published correlation by Kilpatrick and Lott. The differences are discussed.

  11. Cold Water Vapor in the Barnard 5 Molecular Cloud

    E-Print Network [OSTI]

    Wirström, E S; Persson, C M; Buckle, J V; Cordiner, M A; Takakuwa, S

    2014-01-01T23:59:59.000Z

    After more than 30 years of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds, however, there is only one region where cold (~10 K) water vapor has been detected - L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work -- likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H2O (J = 1_10 - 1_01) at 556.9360 GHz toward two positions in the cold molecular cloud Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  12. Raman lidar profiling of water vapor and aerosols over the ARM SGP Site

    SciTech Connect (OSTI)

    Ferrare, R.A.

    2000-01-09T23:59:59.000Z

    The authors have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. The Raman lidar sytem is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols. These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. The authors have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

  13. RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE.

    SciTech Connect (OSTI)

    FERRARE,R.A.

    2000-01-09T23:59:59.000Z

    We have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. This Raman lidar system is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols (Goldsmith et al., 1998). These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. We have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES) (Feltz et al., 1998; Turner et al., 1999). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

  14. Measurements of water vapor adsorption on the Geysers rocks

    SciTech Connect (OSTI)

    Gruszkiewicz, Miroslaw S.; Horita, Juske; Simonson, John M.; Mesmer, Robert E.

    1996-01-24T23:59:59.000Z

    The ORNL high temperature isopiestic apparatus was adapted for adsorption measurements. The quantity of water retained by rock samples taken from three different wells of The Geysers was measured at 150 °C and at 200 °C as a function of pressure in the range 0.00 ? p/p0 ? 0.98, where p0 is the saturated water vapor pressure. The rocks were crushed and sieved into three fractions of different grain sizes (with different specific surface areas). Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and extent of the hysteresis. Additionally, BET surface area analyses were performed by Porous Materials Inc. on the same rock samples using nitrogen or krypton adsorption measurements at 77 K. Specific surface areas and pore volumes were determined. These parameters are important in estimating water retention capability of a porous material. The same laboratory also determined the densities of the samples by helium pycnometry. Their results were then compared with our own density values obtained by measuring the effect of buoyancy in compressed argon. One of the goals of this project is to determine the dependence of the water retention capacity of the rocks as a function of temperature. The results show a significant dependence of the adsorption and desorption isotherms on the grain size of the sample. The increase in the amount of water retained with temperature observed previously (Shang et al., 1994a, 1994b, 1995) between 90 and 130°C for various reservoir rocks from The Geysers may be due to the contribution of slow chemical adsorption and may be dependent on the time allowed for equilibration. In contrast with the results of Shang et al. (1994a, 1994b, 1995), some closed and nearly closed hysteresis loops on the water adsorption/desorption isotherms (with closing points at p/p0 ? 0.6) were obtained in this study. In these cases the effects of activated processes were not present, and no increase in water adsorption with temperature was observed

  15. Summary Weusedthreemethodstomeasureboundarylayer conductance to heat transfer (gbH) and water vapor transfer

    E-Print Network [OSTI]

    Martin, Timothy

    Summary Weusedthreemethodstomeasureboundarylayer conductance to heat transfer (gbH) and water vapor of transpiration). The boundary layer conductance to heat transfer is small enough that leaf temperature can become diffusion, the boundary layer around a leaf also provides resistance to the transfer of heat between a leaf

  16. The Impact of Thermal Conductivity and Diffusion Rates on Water Vapor Transport through Gas Diffusion Layers

    E-Print Network [OSTI]

    Burlatsky, S F; Gummallaa, M; Condita, D; Liua, F

    2013-01-01T23:59:59.000Z

    Water management in a hydrogen polymer electrolyte membrane (PEM) fuel cell is critical for performance. The impact of thermal conductivity and water vapor diffusion coefficients in a gas diffusion layer (GDL) has been studied by a mathematical model. The fraction of product water that is removed in the vapour phase through the GDL as a function of GDL properties and operating conditions has been calculated and discussed. Furthermore, the current model enables identification of conditions when condensation occurs in each GDL component and calculation of temperature gradient across the interface between different layers, providing insight into the overall mechanism of water transport in a given cell design. Water transport mode and condensation conditions in the GDL components depend on the combination of water vapor diffusion coefficients and thermal conductivities of the GDL components. Different types of GDL and water removal scenarios have been identified and related to experimentally-determined GDL proper...

  17. VAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE FROM

    E-Print Network [OSTI]

    (for water: the SPC-, SPC/E-, and TIP4P-potential models; for carbon dioxide: the EPM2 potential model dioxide are calculated. For water, the SPC- and TIP4P-models give superior results for the vapor pressure when compared to the SPC/E-model. The vapor liquid equilibrium of the binary mixture carbon dioxide

  18. Experimental Study of Water Vapor Adsorption on Geothermal

    E-Print Network [OSTI]

    Stanford University

    Geothermal Program under Department of Energy Grant No. DE-FG07-90IDI2934,and by the Department of PetroleumSGP-TR-148 Experimental Study of Water Vapor Adsorption on Geothermal Reservoir Rocks Shubo Shang Engineering, Stanford University Stanford Geothermal Program Interdisciplinary Research in Engineering

  19. Fatigue Resistance of Asphalt Mixtures Affected by Water Vapor Movement

    E-Print Network [OSTI]

    Tong, Yunwei

    2013-11-08T23:59:59.000Z

    This dissertation has two key objectives: the first objective is to develop a method of predicting and quantifying the amount of water that can enter into a pavement system by vapor transport; the second objective is to identify to which extent...

  20. High-resolution terahertz atmospheric water vapor continuum measurements

    E-Print Network [OSTI]

    Massachusetts at Lowell, University of

    High-resolution terahertz atmospheric water vapor continuum measurements David M. Slocum,* Thomas M such as pollution monitoring and the detection of energetic chemicals using remote sensing over long path lengths through the atmosphere. Although there has been much attention to atmospheric effects over narrow

  1. Balance of atmospheric water vapor over the Gulf of Mexico

    E-Print Network [OSTI]

    Hughes, Ralph Morgan

    1967-01-01T23:59:59.000Z

    / / / / I / o. i + B CAP C BBJ V S TPA PZA EHA Fig. 5. Vertical distribution of the average water-vapor flux normal to the perimeter of the Gulf of Nexico during Oct-Kov-Dec 1959. Plus values are inflow in kgm/sec-mb-. m. -o-I Pi C4 I / ~-o, i...BALANCE OF ATMOSPHERIC HATER VAPOR OVER THE GULF OF MEXICO A Thesis By RALPH MORGAN HUGHES Captain, USAF Submitted to the Graduate College of the Texas A&M University in partial fulf-'llment of the rec;uirements for the degree of MASTER...

  2. E-Print Network 3.0 - airs water vapor Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    water vapor Search Powered by Explorit Topic List Advanced Search Sample search results for: airs water vapor Page: << < 1 2 3 4 5 > >> 1 A laboratory experiment from the Little...

  3. Correlation for the Vapor Pressure of Heavy Water From the Triple Point to the Critical Point

    E-Print Network [OSTI]

    Magee, Joseph W.

    Correlation for the Vapor Pressure of Heavy Water From the Triple Point to the Critical Point Allan the vapor pressure of heavy water (D2O) from its triple point to its critical point. This work takes Institute of Physics. Key words: D2O; heavy water; ITS-90; vapor pressure. Contents 1. Introduction

  4. ARM - Field Campaign - Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX) govCampaignsVerification ofgovCampaignsWater

  5. ESA DUE GlobVapour water vapor products: Validation

    SciTech Connect (OSTI)

    Schneider, Nadine; Schroeder, Marc; Stengel, Martin [Deutscher Wetterdienst (DWD), KU22, Frankfurter Str. 135, 63067 Offenbach a. M (Germany); Lindstrot, Ramus; Preusker, Rene [Freie Universitaet Berlin (FUB), Carl-Heinrich-Becker-Weg 6-10, 12165 Berlin (Germany); Collaboration: ESA DUE GlobVapour Consortium

    2013-05-10T23:59:59.000Z

    The main objective of the European Space Agency (ESA) Data User Element (DUE) GlobVapour project was the development of multi-annual global water vapor data sets. Since water vapour is a key climate variable it is important to have a good understanding of its behavior in the climate system. The ESA DUE GlobVapour project provides water vapor data, including error estimates, based on carefully calibrated and inter-calibrated satellite radiances in response to user requirements for long time series satellite observations. ESA DUE GlobVapour total columnar water vapor (TCWV) products derived from GOME/SCIA/GOME-2 (1996-2008) and SSM/I+MERIS (2003-2008) have been validated for the mentioned period, using satellite-based (AIRS, ATOVS) and ground-based measurements (radiosondes and microwave radiometer). The validation results are discussed in the following. The technical specifications on bias (1 kg/m{sup 2} for SSMI+MERIS and 2 kg/m{sup 2} for GOME/SCIA/GOME-2) are generally met. For more information, documents and data download follow the link: www.globvapour.info.

  6. Energy and water vapor transport across a simplified cloud-clear air interface

    E-Print Network [OSTI]

    Gallana, Luca; De Santi, Francesca; Iovieno, Michele; Tordella, Daniela

    2015-01-01T23:59:59.000Z

    We consider a simplified physics of the could interface where condensation, evaporation and radiation are neglected and momentum, thermal energy and water vapor transport is represented in terms of the Boussinesq model coupled to a passive scalar transport equation for the vapor. The interface is modeled as a layer separating two isotropic turbulent regions with different kinetic energy and vapor concentration. In particular, we focus on the small scale part of the inertial range as well as on the dissipative range of scales which are important to the micro-physics of warm clouds. We have numerically investigated stably stratified interfaces by locally perturbing at an initial instant the standard temperature lapse rate at the cloud interface and then observing the temporal evolution of the system. When the buoyancy term becomes of the same order of the inertial one, we observe a spatial redistribution of the kinetic energy which produce a concomitant pit of kinetic energy within the mixing layer. In this sit...

  7. Response of water vapor to interannual variations of SST: Results from NCAR Community Climate Model (CCM2)

    SciTech Connect (OSTI)

    Sun, De-Zheng [National Center For Atmospheric Research, Boulder, CO (United States)

    1997-11-01T23:59:59.000Z

    This paper very briefly documents the response of water vapor to interannual changes in sea surface temperature (SST) in two of the most frequently used climate models: the National Center for Atmospheric Research (NCAR) community climate model (CCM2) and the GFDL spectral model (R30). The corresponding results from radiosonde data are also presented for reference. A simple linear regression model is used to quantify the response of water vapor to changes in SST in the two simulations. Except for the negative response of water vapor over Australia, CCM2 simulates the major characteristics in the horizontal structure of the water vapor response shown in the radiosonde data. The negative response of water over Australia is also not well simulated by GFDL R30. In addition, GFDL R30 significantly underestimates the positive response over the Indian Ocean. The horizontal contrasts between the negative response over the western Pacific and the positive response over the central and eastern Pacific in the model simulations are larger than in the radiosonde data. The negative response in the subtropical region in CCM2 is more pronounced than in R30. Averaged over the tropics, CCM2 has a larger water vapor response in both the boundary layer and the upper troposphere than R30. The correlations between variations of water vapor in the upper troposphere and those at the surface level are also stronger in CCM2 than in R30. 2 refs., 5 figs.

  8. Vapor-liquid equilibria of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems

    SciTech Connect (OSTI)

    Mun, S.Y.; Lee, H.

    1999-12-01T23:59:59.000Z

    Vapor-liquid equilibrium data of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems were measured at 60, 160, 300, and 760 mmHg at temperatures ranging from 315 to 488 K. The apparatus used in this work is a modified still especially designed for the measurement of low-pressure VLE, in which both liquid and vapor are continuously recirculated. For the analysis of salt-containing solutions, a method incorporating refractometry and gravimetry was used. From the experimental measurements, the effect of lithium bromide on the VLE behavior of water + 1,3-propanediol was investigated. The experimental data of the salt-free system were successfully correlated using the Wilson, NRTL, and UNIQUAC models. In addition, the extended UNIQUAC model of Sander et al. was applied to the VLE calculation of salt-containing mixtures.

  9. A study of the minimum meniscus radius as a function of vapor temperature using heat pipes

    E-Print Network [OSTI]

    Sonnier, Ronald James

    1973-01-01T23:59:59.000Z

    /sec 2 latent heat of vaporization, BTU/lb m wick permeability, ft 2 length, ft molecular weight, ibm water parameter, hf pfof/uf fgff f pressure, lbf/ft 2 desorption pressure, lbf/ft 2 saturation pressure, lbf/ft 2 heat transfer rate, BTU... into Cosgrove's equation, assuming the temperature is uni- form inside the heat pipe, replacing the sum of the section lengths by the total length of the heat pipe, and combining the fluid prop- erties into one var1able there is obtained N = hf pfof/uf...

  10. Calculation of the Dimer Equilibrium Constant of Heavy Water Saturated Vapor

    E-Print Network [OSTI]

    Bulavin, L A; Makhlaichuk, V N

    2015-01-01T23:59:59.000Z

    Water is the most common substance on Earth.The discovery of heavy water and its further study have shown that the change of hydrogen for deuterium leads to the significant differences in their properties.The triple point temperature of heavy water is higher,at the same time the critical temperature is lower.Experimental values of the second virial coefficient of the EOS for the vapor of normal and heavy water differ at all temperatures.This fact can influence the values of the dimerization constant for the heavy water vapor.The equilibrium properties of the dimerization process are described with the methods of chemical thermodynamics.The chemical potentials for monomers (m) and dimers (d)are the functions of their concentrations.The interactions of monomer-dimer and dimer-dimer types are taken into account within the solution of equation for chemical potentials.The obtained expression for the dimerization constant contains the contributions of these types.The averaged potentials are modeled by the Sutherlan...

  11. Final Report for ARM Project Measuring 4-D Water Vapor Fields with GPS

    SciTech Connect (OSTI)

    Braun, John

    2006-02-06T23:59:59.000Z

    Water vapor is a primary element in the Earth’s climate system. Atmospheric water vapor is central to cloud processes, radiation transfer, and the hydrological cycle. Using funding from Department of Energy (DOE) grant DE-FG03-02ER63327, the University Corporation for Atmospheric Research (UCAR) developed new observational techniques to measure atmospheric water vapor and applied these techniques to measure four dimensional water vapor fields throughout the United States Southern Great Plains region. This report summarizes the development of a new observation from ground based Global Positioning System (GPS) stations called Slant Water Vapor (SW) and it’s utilization in retrieving four dimensional water vapor fields. The SW observation represents the integrated amount of water vapor between a GPS station and a transmitting satellite. SW observations provide improved temporal and spatial sampling of the atmosphere when compared to column-integrated quantities such as preciptitable water vapor (PW). Under funding from the DOE Atmospheric Radiation Measurement (ARM) program, GPS networks in the Southern Great Plains (SGP) region were deployed to retrieve SW to improve the characterization of water vapor throughout the region. These observations were used to estimate four dimensional water vapor fields using tomographic approaches and through assimilation into the MM5 numerical weather model.

  12. In-reactor oxidation of zircaloy-4 under low water vapor pressures

    SciTech Connect (OSTI)

    Walter G. Luscher; David J. Senor; Keven K. Clayton; Glen R. Longhurst

    2015-01-01T23:59:59.000Z

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330 and 370 C). Data from these tests will be used to support the fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr- 4 over the specified range of test conditions. Comparisons between in- and ex-reactor test results were performed to evaluate the influence of irradiation.

  13. Moisture burst structure in satellite water vapor imagery

    E-Print Network [OSTI]

    Ulsh, David Joel

    1988-01-01T23:59:59.000Z

    The moisture burst is a tropical synoptic-scale weather event that typically originates along the ITCZ and has been defined previously in window-channel infrared imagery. This research uses 6. 7-micrometer water vapor absorption band imagery to composite 35... moisture burst events during the North Pacific cool season of 1983-1984. Composite maps are constructed at four times, each 24 h apart, during the life cycle of the moisture burst. A comparative baseline is provided by an additional composite of 35 dates...

  14. enhanced) in water vapor. The distribution of water ice throughout the solar nebula may

    E-Print Network [OSTI]

    Utrecht, Universiteit

    enhanced) in water vapor. The distribution of water ice throughout the solar nebula may have varied Solar System (Univ. of Arizona Press, Tucson, AZ, 1988), p. 348. The time scale for settling of solids that are a few hundred times greater than that of the canonical solar nebula (14). Turbulent

  15. Short-range precipitation forecasts using assimilation of simulated satellite water vapor profiles and column cloud liquid water amounts

    SciTech Connect (OSTI)

    Wu, X.; Diak, G.R.; Hayden, C.M.; Young, J.A. [Univ. of Wisconsin, Madison, WI (United States)] [Univ. of Wisconsin, Madison, WI (United States)

    1995-02-01T23:59:59.000Z

    These observing system simulation experiments investigate the assimilation of satellite-observed water vapor and cloud liquid water data in the initialization of a limited-area primitive equations model with the goal of improving short-range precipitation forecasts. The assimilation procedure presented includes two aspects: specification of an initial cloud liquid water vertical distribution and diabatic initialization. The satellite data is simulated for the next generation of polar-orbiting satellite instruments, the Advanced Microwave Sounding Unit (AMSU) and the High-Resolution Infrared Sounder (HIRS), which are scheduled to be launched on the NOAA-K satellite in the mid-1990s. Based on cloud-top height and total column cloud liquid water amounts simulated for satellite data a diagnostic method is used to specify an initial cloud water vertical distribution and to modify the initial moisture distribution in cloudy areas. Using a diabatic initialization procedure, the associated latent heating profiles are directly assimilated into the numerical model. The initial heating is estimated by time averaging the latent heat release from convective and large-scale condensation during the early forecast stage after insertion of satellite-observed temperature, water vapor, and cloud water formation.

  16. Low temperature chemical vapor deposition of Co thin films from Co2(CO)8

    E-Print Network [OSTI]

    Wang, Gwo-Ching

    Low temperature chemical vapor deposition of Co thin films from Co2(CO)8 D.-X. Yea,*, S. Pimanpanga chemical vapor deposition with a metallorganic Co2(CO)8 precursor. After Ar sputtering of the surface, Co2(CO)8, has been extensively used in cobalt CVD and is attractive, since Co is in its elemental

  17. Chem. Mater. 1995, 7, 2269-2272 2269 Water Vapor Adsorption on Chemically Treated

    E-Print Network [OSTI]

    Cal, Mark P.

    Chem. Mater. 1995, 7, 2269-2272 2269 Water Vapor Adsorption on Chemically Treated Activated Carbon August 25, 1995@ Water vapor adsorption on activated carbon cloth (ACCBO)which has been oxidized% Cl), and ACCBO (4% N), exhibits sigmoidal isotherms with hysteresis loops of varying magnitudes

  18. Isobaric vapor-liquid equilibria for methanol + ethanol + water and the three constituent binary systems

    SciTech Connect (OSTI)

    Kurihara, Kiyofumi; Nakamichi, Mikiyoshi; Kojima, Kazuo (Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry)

    1993-07-01T23:59:59.000Z

    Vapor-liquid equilibrium data for methanol + ethanol + water and its three constituent binary systems methanol + ethanol, ethanol + water, and methanol + water were measured at 101.3 kPa using a liquid-vapor ebullition-type equilibrium still. The experimental binary data were correlated by the NRTL equation. The ternary system methanol + ethanol + water was predicted by means of the binary NRTL parameters with good accuracy.

  19. ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 24, NO. 3, 2007, 509526 Variational Assimilation of GPS Precipitable Water Vapor and

    E-Print Network [OSTI]

    Precipitable Water Vapor and Hourly Rainfall Observations for a Meso- Scale Heavy Precipitation Event During Atmospheric water vapor plays a significant role in numerical weather predictions (NWP) of heavy rain- fall of the precipitable water vapor (PWV) from delayed signals transmitted by GPS satellites, which can be assimilated

  20. A three-beam water vapor sensor system for combustion diagnostics using a 1390 nm tunable diode laser

    SciTech Connect (OSTI)

    Wang, L.G. [Coll. of William and Mary, Williamsburg, VA (United States). Dept. of Physics; Vay, S. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center

    1995-12-31T23:59:59.000Z

    H{sub 2}O(v) is an important species in combustion and hypersonic flow measurements because it is a primary combustion product. Measurements of water vapor can be used to determine performance parameters, such as extent and efficiency of combustion in propulsion and aerodynamics facilities. Water vapor concentration measurement in these high-temperature hypervelocity combustion conditions requires very high sensitivity and fast time response. A three-beam diode laser H{sub 2}O(v) measurement system for nonintrusive combustion diagnostics has been developed at NASA Langley Research Center and successfully tested and installed at GASL NASA HYPULSE facility for routine operation. The system was built using both direct laser absorption spectroscopy and frequency modulation laser spectroscopy. The output beam from a distributed feedback (DFB) InGaAsP diode laser (emitting around 1.39 {micro}m) is split into three equal-powered equal-distanced parallel beams with separation of 9 mm. With three beams, the authors are able to obtain water vapor number densities at three locations. Frequency modulation spectroscopy technique is used to achieve high detection sensitivity. The diode laser is modulated at radio frequency (RF), while the wavelength of the diode laser is tuned to scan over a strong water vapor absorption line. The detected RF signal is then demodulated at the fundamental frequency of the modulation (one-F demodulation). A working model and a computer software code have been developed for data process and data analysis. Water vapor number density measurements are achieved with consideration of temperature dependence. Experimental results and data analysis will be presented.

  1. Latitudinal survey of middle atmospheric water vapor revealed by shipboard microwave spectroscopy. Master's thesis

    SciTech Connect (OSTI)

    Schrader, M.L.

    1994-05-01T23:59:59.000Z

    Water vapor is one of the most important greenhouse gases and is an important tracer of atmospheric motions in the middle atmosphere. It also plays an important role in the chemistry of the middle atmosphere and through its photodissociation by solar radiation, it is the major source of hydrogen escaping to space. Ground-based microwave measurements conducted in the 1980s have provided a fair understanding of the seasonal variation of mesospheric water vapor in the northern hemisphere mid-latitudes, but the global distribution of water vapor in the middle atmosphere is only beginning to be revealed by space-based measurements.

  2. Glenwood Springs Vapor Caves Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    poi":true,"imageoverlays":,"markercluster":false,"searchmarkers":"","locations": The following error has been detected in your syntax: * Display map Temperature No Data Listed...

  3. Liquid-phase and vapor-phase dehydration of organic/water solutions

    DOE Patents [OSTI]

    Huang, Yu (Palo Alto, CA); Ly, Jennifer (San Jose, CA); Aldajani, Tiem (San Jose, CA); Baker, Richard W. (Palo Alto, CA)

    2011-08-23T23:59:59.000Z

    Processes for dehydrating an organic/water solution by pervaporation or vapor separation using fluorinated membranes. The processes are particularly useful for treating mixtures containing light organic components, such as ethanol, isopropanol or acetic acid.

  4. An Analysis of Cloud Cover and Water Vapor for the ALMA Project

    E-Print Network [OSTI]

    (Chile), Chalviri (Bolivia) and Five Sites in Argentina using Satellite Data and a Verification and water vapor at Chajnantor (Chile), Chalviri (Bolivia) and four sites in Argentina. Since time

  5. Influence of gas composition on wafer temperature in a tungsten chemical vapor deposition reactor: Experimental measurements, model

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Influence of gas composition on wafer temperature in a tungsten chemical vapor deposition reactor-wafer, lamp-heated chemical vapor deposition system were used to study the wafer temperature response to gas composition. A physically based simulation procedure for the process gas and wafer temperature was developed

  6. Models of the atmospheric water vapor budget for the Texas HIPLEX area: by Steven Francis Williams.

    E-Print Network [OSTI]

    Williams, Steven Francis

    1979-01-01T23:59:59.000Z

    co:erage cf. convective activ' ty, Thus, the em&unt of convection seems to be more important than the type oz pr"se. . ce of convective activi!y. An increased tran:port of water vapor near ti e surface is -hown to be an important factor... of watc-. z vapor tnrough each later, l boundary shown in Fig. 1 can be comput d by substituting Eqs. (16) ? (19), reaper tively, into Eq. (14) . Th ' net transport of water vapor 'nt the volume through la+eral oouccdaries or t?:e net horizontal tran:;port...

  7. Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water

    SciTech Connect (OSTI)

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria, E-mail: Valeria.Molinero@utah.edu [Department of Chemistry, The University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 (United States)

    2014-11-14T23:59:59.000Z

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T{sub B}{sup max} is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T{sub B}{sup max} for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  8. A model of vapor-liquid equilibria for acid gas-alkanolamine-water systems

    SciTech Connect (OSTI)

    Austgen, D.M. Jr.

    1989-01-01T23:59:59.000Z

    A physico-chemical model was developed for representing liquid phase chemical equilibria and vapor-liquid (phase) equilibria of H{sub 2}SCO{sub 2}-alkanolamine-water systems. The equilibrium composition of the liquid phase is determined by minimization of the Gibbs free energy. Activity coefficients are represented with the Electrolyte-NRTL equation treating both long-range electrostatic interactions and short-range binary interactions between liquid phase species. Vapor phase fugacity coefficients are calculated using the Redlich-Kwong-Soave Equation of State. Adjustable parameters of the model, binary interaction parameters and carbamate stability constants, were fitted on published binary system alkanolamine-water and ternary system (H{sub 2}S-alkanolamine-water, CO{sub 2}-alkanolamine-water) VLE data. The Data Regression System of ASPEN PLUS, based upon the Maximum Likelihood Principle, was used to estimate adjustable parameters. Ternary system measurements used in parameter estimation ranged in temperature from 25 to 120{degree}C in alkanolamine concentration from 1 to 5 M, in acid gas loading from 0 to 1.5 moles per mole alkanolamine, and in acid gas partial pressure from 0.1 to 1,000 kPa. Maximum likelihood estimates of ternary system H{sub 2} or CO{sub 2} equilibrium partial pressures and liquid phase concentrations were found to be in good agreement with measurements for aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), diglycolamine (DGA), and methyldiethanolamine (MDEA) indicating that the model successfully represents ternary system data. The model was extended to represent CO{sub 2} solubility in aqueous mixtures of MDEA with MEA or DEA. The solubility was measured at 40 and 80{degree}C over a wide range of CO{sub 2} partial pressures. These measurements were used to estimate additional binary parameters of the mixed solvent systems.

  9. Development of a Water Based, Critical Flow, Non-Vapor Compression cooling Cycle

    SciTech Connect (OSTI)

    Hosni, Mohammad H.

    2014-03-30T23:59:59.000Z

    Expansion of a high-pressure liquid refrigerant through the use of a thermostatic expansion valve or other device is commonplace in vapor-compression cycles to regulate the quality and flow rate of the refrigerant entering the evaporator. In vapor-compression systems, as the condensed refrigerant undergoes this expansion, its pressure and temperature drop, and part of the liquid evaporates. We (researchers at Kansas State University) are developing a cooling cycle that instead pumps a high-pressure refrigerant through a supersonic converging-diverging nozzle. As the liquid refrigerant passes through the nozzle, its velocity reaches supersonic (or critical-flow) conditions, substantially decreasing the refrigerant’s pressure. This sharp pressure change vaporizes some of the refrigerant and absorbs heat from the surrounding conditions during this phase change. Due to the design of the nozzle, a shockwave trips the supersonic two-phase refrigerant back to the starting conditions, condensing the remaining vapor. The critical-flow refrigeration cycle would provide space cooling, similar to a chiller, by running a secondary fluid such as water or glycol over one or more nozzles. Rather than utilizing a compressor to raise the pressure of the refrigerant, as in a vapor-cycle system, the critical-flow cycle utilizes a high-pressure pump to drive refrigerant liquid through the cooling cycle. Additionally, the design of the nozzle can be tailored for a given refrigerant, such that environmentally benign substances can act as the working fluid. This refrigeration cycle is still in early-stage development with prototype development several years away. The complex multi-phase flow at supersonic conditions presents numerous challenges to fully understanding and modeling the cycle. With the support of DOE and venture-capital investors, initial research was conducted at PAX Streamline, and later, at Caitin. We (researchers at Kansas State University) have continued development of the cycle and have gained an in-depth understanding of the governing fundamental knowledge, based on the laws of physics and thermodynamics and verified with our testing results. Through this research, we are identifying optimal working fluid and operating conditions to eventually demonstrate the core technology for space cooling or other applications.

  10. Final Scientific/Technical Report. A closed path methane and water vapor gas analyzer

    SciTech Connect (OSTI)

    Liukang, Xu; Dayle, McDermitt; Tyler, Anderson; Brad, Riensche; Anatoly, Komissarov; Julie, Howe

    2012-05-01T23:59:59.000Z

    Robust, economical, low-power and reliable closed-path methane (CH4), carbon dioxide (CO2), and water vapor (H2O) analyzers suitable for long-term measurements are not readily available commercially. Such analyzers are essential for quantifying the amount of CH4 and CO2 released from various ecosystems (wetlands, rice paddies, forests, etc.) and other surface contexts (e.g. landfills, animal husbandry lots, etc.), and for understanding the dynamics of the atmospheric CH4 and CO2 budget and their impact on climate change and global warming. The purpose of this project is to develop a closed-path methane, carbon dioxide gas and water vapor analyzer capable of long-term measurements in remote areas for global climate change and environmental research. The analyzer will be capable of being deployed over a wide range of ecosystems to understand methane and carbon dioxide exchange between the atmosphere and the surface. Measurements of methane and carbon dioxide exchange need to be made all year-round with limited maintenance requirements. During this Phase II effort, we successfully completed the design of the electronics, optical bench, trace gas detection method and mechanical infrastructure. We are using the technologies of two vertical cavity surface emitting lasers, a multiple-pass Herriott optical cell, wavelength modulation spectroscopy and direct absorption to measure methane, carbon dioxide, and water vapor. We also have designed the instrument application software, Field Programmable Gate Array (FPGA), along with partial completion of the embedded software. The optical bench has been tested in a lab setting with very good results. Major sources of optical noise have been identified and through design, the optical noise floor is approaching -60dB. Both laser modules can be temperature controlled to help maximize the stability of the analyzer. Additionally, a piezo electric transducer has been utilized to randomize the noise introduced from potential etalons. It is expected that all original specifications contained within the initial proposal will be met. We are currently in the beginning stages of assembling the first generation prototypes and finalizing the remaining design elements. The first prototypes will initially be tested in our environmental calibration chamber in which specific gas concentrations, temperature and humidity levels can be controlled. Once operation in this controlled setting is verified, the prototypes will be deployed at LI-COR�¢����s Experimental Research Station (LERS). Deployment at the LERS site will test the instrument�¢����s robustness in a real-world situation.

  11. Moisture effects in low-slope roofs: Drying rates after water addition with various vapor retarders

    SciTech Connect (OSTI)

    Pedersen, C.R. [Technical Univ. of Denmark, Lyngby (Denmark); Petrie, T.W. [Marquette Univ., Milwaukee, WI (United States). Dept. of Mechanical Engineering; Courville, G.E.; Desjarlais, A.O.; Childs, P.W.; Wilkes, K.E. [Oak Ridge National Lab., TN (United States)

    1992-10-01T23:59:59.000Z

    Tests have been conducted in the Large Scale Climate Simulator (LSCS) of the US. Building Envelope Research Center at the Oak Ridge National Laboratory (ORNL) to investigate downward drying rates of various unvented, low-slope roof systems. A secondary objective was to study heat flow patterns so as to understand how to control latent heat effects on impermeable heat flux transducers. Nine test sections were tested simultaneously. The sections had a p deck above fibrous-glass insulation and were examples of cold-deck systems. These five sections had various vapor retarder systems on a gypsum board ceiling below the insulation. The other four sections had a lightweight insulating concrete deck below expanded polystyrene insulation and the same vapor retarder systems, and were examples of warm-deck systems. The cold-deck systems had materials that were relatively permeable to water vapor, while the materials in the warm-deck systems were less permeable. All test sections were topped by an impermeable roofing membrane. The test sections were instrumented with thermocouples between all layers and with small heat flux transducers at the bottom and top of the fibrous-glass insulation and in the middle of the expanded polystyrene insulation. Two different kinds of moisture probes were used to qualitatively monitor the movement of the moisture. The heat flux measurements showed that heat conduction dominates the system using impermeable insulation materials, with only a slight increase due to increased thermal conductivity of wet expanded polystyrene. There was significant transfer of latent heat in the test sections with permeable insulation, causing the peak heat fluxes to increase by as much as a factor of two. With temperatures imposed that are typical of summer days, latent heat transfer associated with condensation and evaporation of moisture in the test sections was measured to be as important as the heat transfer by conduction.

  12. Glass softening, crystallization, and vaporization of nano-aggregates of Amorphous Solid Water: Fast Scanning Calorimetry studies

    E-Print Network [OSTI]

    Deepanjan Bhattacharya; Liam OReilly; Vlad Sadtchenko

    2014-10-31T23:59:59.000Z

    Fast scanning calorimetry (FSC) was employed to investigate glass softening dynamics in amorphous solid water (ASW) nano-aggregates with thicknesses ranging from 2 to 20 nm. ASW nano-aggregates were prepared by vapor-deposition on the surface of a tungsten filament near 141 K and then heated at a rate of 100 kK/s. The resulting thermogram complex endo- and exothermal features were analyzed using a simple model. The results of the analysis show that glass softening of ASW nano-aggregates takes place at 160 K and vaporization of ASW nano-aggregates can take place at temperatures as low as 185 K. The results of these studies are discussed in conjunction with results of past studies of glass softening dynamics in water in various confining geometries.

  13. Semi-insulating crystalline silicon formed by oxygen doping during low-temperature chemical vapor deposition

    E-Print Network [OSTI]

    Semi-insulating crystalline silicon formed by oxygen doping during low-temperature chemical vapor) In this letter we demonstrate the use of oxygen as a dopant in silicon to create semi-insulating, crystalline of the films exhibit classical characteristics of space-charge-limited current associated with insulators

  14. Oxidation of Slurry Aluminide Coatings on Cast Stainless Steel Alloy CF8C-Plus at 800oC in Water Vapor

    SciTech Connect (OSTI)

    Haynes, James A [ORNL; Armstrong, Beth L [ORNL; Dryepondt, Sebastien N [ORNL; Kumar, Deepak [ORNL; Zhang, Ying [Tennessee Technological University

    2013-01-01T23:59:59.000Z

    A new, cast austenitic stainless steel, CF8C-Plus, has been developed for a wide range of high temperature applications, including diesel exhaust components, turbine casings and turbocharger housings. CF8C-Plus offers significant improvements in creep rupture life and creep rupture strength over standard CF8C steel. However, at higher temperatures and in more aggressive environments, such as those containing significant water vapor, an oxidation-resistant protective coating will be necessary. The oxidation behavior of alloys CF8C and CF8C-Plus with various aluminide coatings were compared at 800oC in air plus 10 vol% water vapor. Due to their affordability, slurry aluminides were the primary coating system of interest, although chemical vapor deposition (CVD) and pack cementation coatings were also compared. Additionally, a preliminary study of the low cycle fatigue behavior of aluminized CF8C-Plus was conducted at 800oC. Each type of coating provided substantial improvements in oxidation behavior, with simple slurry aluminides showing very good oxidation resistance after 4,000 h testing in water vapor. Preliminary low cycle fatigue results indicated that thicker aluminide coatings degraded high temperature fatigue properties of CF8C-Plus, whereas thinner coatings did not. Results suggest that appropriately designed slurry aluminide coatings are a viable option for economical, long-term oxidation protection of austenitic stainless steels in water vapor.

  15. GEOSTAR-II: A PROTOTYPE WATER VAPOR IMAGER/SOUNDER FOR THE PATH Todd Gaier1

    E-Print Network [OSTI]

    Ruf, Christopher

    GEOSTAR-II: A PROTOTYPE WATER VAPOR IMAGER/SOUNDER FOR THE PATH MISSION Todd Gaier1 , Bjorn Lambrigtsen1 , Pekka Kangaslahti1 , Boon Lim1 , Alan Tanner1 , Dennis Harding1 , Heather Owen1 , Mary Soria1 GHz water line. The preferred concept to meet this requirement is an interferometric imager

  16. High-Temperature Water Splitting | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Temperature Water Splitting High-Temperature Water Splitting High-temperature water splitting (a "thermochemical" process) is a long-term technology in the early stages of...

  17. MWRRET Value-Added Product: The Retrieval of Liquid Water Path and Precipitable Water Vapor from Microwave Radiometer (MWR) Data Sets (Revision 2)

    SciTech Connect (OSTI)

    Gaustad, KL; Turner, DD; McFarlane, SA

    2011-07-25T23:59:59.000Z

    This report provides a short description of the Atmospheric Radiation Measurement (ARM) Climate Research Facility microwave radiometer (MWR) Retrieval (MWRRET) value-added product (VAP) algorithm. This algorithm utilizes a complementary physical retrieval method and applies brightness temperature offsets to reduce spurious liquid water path (LWP) bias in clear skies resulting in significantly improved precipitable water vapor (PWV) and LWP retrievals. We present a general overview of the technique, input parameters, output products, and describe data quality checks. A more complete discussion of the theory and results is given in Turner et al. (2007b).

  18. PROGRESS REPORT OF FY 2004 ACTIVITIES: IMPROVED WATER VAPOR AND CLOUD RETRIEVALS AT THE NSA/AAO

    SciTech Connect (OSTI)

    E. R. Westwater; V. V. Leuskiy; M. Klein; A. J. Gasiewski; and J. A. Shaw

    2004-11-01T23:59:59.000Z

    The basic goals of the research are to develop and test algorithms and deploy instruments that improve measurements of water vapor, cloud liquid, and cloud coverage, with a focus on the Arctic conditions of cold temperatures and low concentrations of water vapor. The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement Program. Although several technologies have been investigated to measure these column amounts, microwave radiometers (MWR) have been used operationally by the ARM program for passive retrievals of these quantities: precipitable water vapor (PWV) and integrated water liquid (IWL). The technology of PWV and IWL retrievals has advanced steadily since the basic 2-channel MWR was first deployed at ARM CART sites Important advances are the development and refinement of the tipcal calibration method [1,2], and improvement of forward model radiative transfer algorithms [3,4]. However, the concern still remains that current instruments deployed by ARM may be inadequate to measure low amounts of PWV and IWL. In the case of water vapor, this is especially important because of the possibility of scaling and/or quality control of radiosondes by the water amount. Extremely dry conditions, with PWV less than 3 mm, commonly occur in Polar Regions during the winter months. Accurate measurements of the PWV during such dry conditions are needed to improve our understanding of the regional radiation energy budgets. The results of a 1999 experiment conducted at the ARM North Slope of Alaska/Adjacent Arctic Ocean (NSA/AAO) site during March of 1999 [5] have shown that the strength associated with the 183 GHz water vapor absorption line makes radiometry in this frequency regime suitable for measuring low amounts of PWV. As a portion of our research, we conducted another millimeter wave radiometric experiment at the NSA/AAO in March-April 2004. This experiment relied heavily on our experiences of the 1999 experiment. Particular attention was paid to issues of radiometric calibration and radiosonde intercomparisons. Our theoretical and experimental work also supplements efforts by industry (F. Solheim, Private Communication) to develop sub-millimeter radiometers for ARM deployment. In addition to quantitative improvement of water vapor measurements at cold temperature, the impact of adding millimeter-wave window channels to improve the sensitivity to arctic clouds was studied. We also deployed an Infrared Cloud Imager (ICI) during this experiment, both for measuring continuous day-night statistics of the study of cloud coverage and identifying conditions suitable for tipcal analysis. This system provided the first capability of determining spatial cloud statistics continuously in both day and night at the NSA site and has been used to demonstrate that biases exist in inferring cloud statistics from either zenith-pointing active sensors (lidars or radars) or sky imagers that rely on scattered sunlight in daytime and star maps at night [6].

  19. Materials, methods and devices to detect and quantify water vapor concentrations in an atmosphere

    DOE Patents [OSTI]

    Allendorf, Mark D; Robinson, Alex L

    2014-12-09T23:59:59.000Z

    We have demonstrated that a surface acoustic wave (SAW) sensor coated with a nanoporous framework material (NFM) film can perform ultrasensitive water vapor detection at concentrations in air from 0.05 to 12,000 ppmv at 1 atmosphere pressure. The method is extendable to other MEMS-based sensors, such as microcantilevers, or to quartz crystal microbalance sensors. We identify a specific NFM that provides high sensitivity and selectivity to water vapor. However, our approach is generalizable to detection of other species using NFM to provide sensitivity and selectivity.

  20. Growth of Large-Area Aligned Molybdenum Nanowires by High Temperature Chemical Vapor Deposition: Synthesis, Growth Mechanism, and Device Application

    E-Print Network [OSTI]

    Wang, Zhong L.

    , thermogravimetry, and differential scanning calorimetry analysis, as well as structure analysis by electron on the decomposition of MoO2 vapors through condensation of its vapor at high substrate temperatures. The aligned nanowires with H2 gas.6d-f However, the reduction process degrades the crystal- linity of the nanowires

  1. A logical extension of the ASTM Standard E96 to determine the dependence of water vapor transmission on relative humidity

    SciTech Connect (OSTI)

    Lackey, J.C.; Marchand, R.G.; Kumaran, M.K. [National Research Council of Canada, Ottawa, Ontario (Canada). Inst. for Research in Construction

    1997-11-01T23:59:59.000Z

    It is well known that the water vapor transmission properties of hygroscopic building materials depend on the local relative humidities(rh). Traditionally, the ASTM Standard E96 specifies only two conditions of rh. The dry cup method in the standard corresponds to a mean rh of 25% and the wet cup to 75%. This information is not enough to describe the behavior of the material through the entire range of rh. European Standards have already proposed an extension of the existing standard to address this issue. ASTM standard should follow this change. A logical extension of the E96 standard to include the effect of rh on water vapor transmission properties has been proposed and is being discussed by one of the C16 Committee Task Groups. This paper presents the application of the proposed extension to several common building materials. The details include the operating principles of a constant temperature-rh chamber and the effects on the test results, of the vapor resistance offered by still air inside the cup, the surface resistances and buoyancy. The experimental data were used to critically assess the above effects. The data as well as the analyses of the data are expected to provide guidance to refine the existing ASTM Standard.

  2. A NORMETEX MODEL 15 M3/HR WATER VAPOR PUMPING TEST

    SciTech Connect (OSTI)

    Klein, J.; Fowley, M.; Steeper, T.

    2010-12-20T23:59:59.000Z

    Tests were performed using a Model 15 m{sup 3}/hr Normetex vacuum pump to determine if pump performance degraded after pumping a humid gas stream. An air feed stream containing 30% water vapor was introduced into the pump for 365 hours with the outlet pressure of the pump near the condensation conditions of the water. Performance of the pump was tested before and after the water vapor pumping test and indicated no loss in performance of the pump. The pump also appeared to tolerate small amounts of condensed water of short duration without increased noise, vibration, or other adverse indications. The Normetex pump was backed by a dual-head diaphragm pump which was affected by the condensation of water and produced some drift in operating conditions during the test.

  3. FIRST DETECTION OF WATER VAPOR IN A PRE-STELLAR CORE

    SciTech Connect (OSTI)

    Caselli, Paola; Douglas, Thomas [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Keto, Eric [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bergin, Edwin A. [Department of Astronomy, The University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Tafalla, Mario [Observatorio Astronomico Nacional (IGN), Calle Alfonso XII, 3, E-28014 Madrid (Spain); Aikawa, Yuri [Department of Earth and Planetary Sciences, Kobe University, Nada, 657-8501 Kobe (Japan); Pagani, Laurent [LERMA and UMR 8112 du CNRS, Observatoire de Paris, 61 Av. de l'Observatoire, F-75014 Paris (France); Yildiz, Umut A.; Kristensen, Lars E.; Van Dishoeck, Ewine F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Van der Tak, Floris F. S. [SRON Netherlands Institute for Space Research, P.O. Box 800, 9700 AV, Groningen (Netherlands); Walmsley, C. Malcolm; Codella, Claudio [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Nisini, Brunella, E-mail: p.caselli@leeds.ac.uk [INAF-Osservatorio Astronomico di Roma, I-00040 Monte Porzio Catone (Italy)

    2012-11-10T23:59:59.000Z

    Water is a crucial molecule in molecular astrophysics as it controls much of the gas/grain chemistry, including the formation and evolution of more complex organic molecules in ices. Pre-stellar cores provide the original reservoir of material from which future planetary systems are built, but few observational constraints exist on the formation of water and its partitioning between gas and ice in the densest cores. Thanks to the high sensitivity of the Herschel Space Observatory, we report on the first detection of water vapor at high spectral resolution toward a dense cloud on the verge of star formation, the pre-stellar core L1544. The line shows an inverse P-Cygni profile, characteristic of gravitational contraction. To reproduce the observations, water vapor has to be present in the cold and dense central few thousand AU of L1544, where species heavier than helium are expected to freeze out onto dust grains, and the ortho:para H{sub 2} ratio has to be around 1:1 or larger. The observed amount of water vapor within the core (about 1.5 Multiplication-Sign 10{sup -6} M{sub Sun }) can be maintained by far-UV photons locally produced by the impact of galactic cosmic rays with H{sub 2} molecules. Such FUV photons irradiate the icy mantles, liberating water vapor in the core center. Our Herschel data, combined with radiative transfer and chemical/dynamical models, shed light on the interplay between gas and solids in dense interstellar clouds and provide the first measurement of the water vapor abundance profile across the parent cloud of a future solar-type star and its potential planetary system.

  4. Time domain measurement of the THz refractivity of water vapor

    E-Print Network [OSTI]

    Oklahoma State University

    region," Metrologia 18(2), 49­52 (1982). 7. R. J. Hill and R. S. Lawrence, "Refractive index of water

  5. Fresh Water Increased temperature means higher proportion of water

    E-Print Network [OSTI]

    Houston, Paul L.

    Fresh Water Increased temperature means higher proportion of water falling on surface higher evaporation higher rainfall greater intensity of floods and droughts. Water use has grown four on How much storage compared to average flow Demand as percentage of supply How much ground water is used

  6. IUPAC critical evaluation of the rotationalvibrational spectra of water vapor. Part I--Energy levels and transition wavenumbers

    E-Print Network [OSTI]

    Chance, Kelly

    Keywords: Water vapor Transition wavenumbers Atmospheric physics Energy levels MARVEL Information systemIUPAC critical evaluation of the rotational­vibrational spectra of water vapor. Part I--Energy levels and transition wavenumbers for H2 17 O and H2 18 O Jonathan Tennyson a,Ă, Peter F. Bernath b

  7. Orbital apocenter is not a sufficient condition for HST/STIS detection of Europa's water vapor aurora

    E-Print Network [OSTI]

    Nimmo, Francis

    aurora Lorenz Rotha,b,1 , Kurt D. Retherforda , Joachim Saurc , Darrell F. Strobeld,e , Paul D. Feldmane that the discovery of a water vapor aurora in Decem- ber 2012 by local hydrogen (H) and oxygen (O) emissions by our 2014 STIS observations. Europa | Hubble Space Telescope | aurora | water vapor plumes | Jupiter

  8. Water vapor on supergiants. The 12 micron TEXES spectra of mu Cephei

    E-Print Network [OSTI]

    N. Ryde; M. J. Richter; G. M. Harper; K. Eriksson; D. L. Lambert

    2006-03-15T23:59:59.000Z

    Several recent papers have argued for warm, semi-detached, molecular layers surrounding red giant and supergiant stars, a concept known as a MOLsphere. Spectroscopic and interferometric analyses have often corroborated this general picture. Here, we present high-resolution spectroscopic data of pure rotational lines of water vapor at 12 microns for the supergiant mu Cephei. This star has often been used to test the concept of molecular layers around supergiants. Given the prediction of an isothermal, optically thick water-vapor layer in Local Thermodynamic Equilibrium around the star (MOLsphere), we expected the 12 micron lines to be in emission or at least in absorption but filled in by emission from the molecular layer around the star. Our data, however, show the contrary; we find definite absorption. Thus, our data do not easily fit into the suggested isothermal MOLsphere scenario. The 12 micron lines, therefore, put new, strong constraints on the MOLsphere concept and on the nature of water seen in signatures across the spectra of early M supergiants. We also find that the absorption is even stronger than that calculated from a standard, spherically symmetric model photosphere without any surrounding layers. A cool model photosphere, representing cool outer layers is, however, able to reproduce the lines, but this model does not account for water vapor emission at 6 microns. Thus, a unified model for water vapor on mu Cephei appears to be lacking. It does seem necessary to model the underlying photospheres of these supergiants in their whole complexity. The strong water vapor lines clearly reveal inadequacies of classical model atmospheres.

  9. investigating the source, transport, and isotope fractionation of water vapor in the atmospheric boundary layer

    E-Print Network [OSTI]

    Minnesota, University of

    investigating the source, transport, and isotope fractionation of water vapor in the atmospheric-portable mixing ratio generator and Rayleigh distillation device, Agricultural and Forest Meteorology, 150, 1607 ratio generator. Incom- ing dry air passes through a molecular sieve and then a stainless steel frit (a

  10. Water Vapor and Mechanical Work: A Comparison of Carnot and Steam Cycles OLIVIER PAULUIS

    E-Print Network [OSTI]

    Pauluis, Olivier M.

    by the corresponding Carnot cycle. The Carnot and steam cycles can be combined into a mixed cycle that is forcedWater Vapor and Mechanical Work: A Comparison of Carnot and Steam Cycles OLIVIER PAULUIS Center in the atmosphere is discussed here by comparing two idealized heat engines: the Carnot cycle and the steam cycle

  11. Water Vapor Radiometry : Outline of Goals and Tasks for the Spring Semester 2001

    E-Print Network [OSTI]

    Backer, Don

    that can accu­ rately measure the spectrum of the water vapor emis­ sion. The current receivers follow, as in a conventional re­ ceiver, the correlation receiver splits the rf signal into two with a splitter that follows the feed horn. Both branches are mixed with a carefully controlled ther­ mal load. A 180 ffi phase shift

  12. 2.1 RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE

    E-Print Network [OSTI]

    with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors with the use of narrowband (~0.4 nm bandpass) filters, reduces the background skylight and, therefore

  13. IUPAC critical evaluation of the rotationalvibrational spectra of water vapor, Part III: Energy levels and transition

    E-Print Network [OSTI]

    Chance, Kelly

    rotational­ vibrational line positions, transition intensities, and energy levels, with associated critically. These transitions give rise to 18 486 validated energy levels, of which 10 446 and 8040 belong to o-H2 16 O and p-H2IUPAC critical evaluation of the rotational­vibrational spectra of water vapor, Part III: Energy

  14. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06T23:59:59.000Z

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  15. Water vapor variability in the tropics and its links to dynamics and precipitation

    E-Print Network [OSTI]

    Allan, Richard P.

    dioxide doubling [e.g., Intergovernmental Panel on Climate Change (IPCC), 2001]. This uncertainty stems P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia Richard P. Allan to understanding feedbacks and processes operating within the climate system. Column-integrated water vapor (CWV

  16. Measurement of Water Vapor Concentration using Tunable Diode Laser Absorption Spectroscopy

    E-Print Network [OSTI]

    Barrett, Alexander B.

    2010-07-14T23:59:59.000Z

    Tunable diode laser spectroscopy and the Beer-Lambert relation has been used to measure the absorption of water vapor both in an absorption cell and in a shock tube. The purpose of this thesis is to develop a laser diagnostic capable of determining...

  17. A Fixed Point Charge Model for Water Optimized to the Vapor-Liquid Coexistence Properties

    E-Print Network [OSTI]

    the temperature range of the liquid. Results were compared to the SPC, SPC/E, and MSPC/E models, vapor pressures, critical parameters, and the second virial coefficient. It is inferior to the SPC interactions. Models of this type include the Bernal-Fowler1 , ST22 , TIPS23 , TIP4P4 , SPC5 , SPC/E6

  18. Validation of TES Temperature and Water Vapor Retrievals with ARM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II FieldVacancy-InducedCloud PropertiesObservations

  19. Light storage in a room temperature atomic vapor based on coherent population oscillations

    E-Print Network [OSTI]

    M. -A. Maynard; F. Bretenaker; F. Goldfarb

    2014-10-21T23:59:59.000Z

    We report the experimental observation of Coherent Population Oscillation (CPO) based light storage in an atomic vapor cell at room temperature. Using the ultranarrow CPO between the ground levels of a $\\Lambda$ system selected by polarization in metastable $^4$He, such a light storage is experimentally shown to be phase preserving. As it does not involve any atomic coherences it has the advantage of being robust to dephasing effects such as small magnetic field inhomogeneities. The storage time is limited by the population lifetime of the ground states of the $\\Lambda$ system.

  20. Remote sensing of total integrated water vapor, wind speed, and cloud liquid water over the ocean using the Special Sensor Microwave/Imager (SSM/I)

    E-Print Network [OSTI]

    Manning, Norman Willis William

    2012-06-07T23:59:59.000Z

    A modified D-matrix retrieval method is the basis of the refined total integrated water vapor (TIWV), total integrated cloud liquid water (CLW), and surface wind speed (WS) retrieval methods that are developed. The 85 GHZ polarization difference...

  1. The effect of time and temperature on the storage of passive organic vapor dosimeters contaminated with 1,2-dichloroethane

    E-Print Network [OSTI]

    Williams, Robert Vincent

    1980-01-01T23:59:59.000Z

    Contaminated With '1, 2-Dichloroethane. (December 1980) Robert Vincent Williams, B. S. , Stetson University Chairman of Advisory Comnittee: Mr. Charles L. Gi imore The effect of time and temperature on the storage of 1, 2-dichloro- ethane (common name...--ethylene chloride) collected on passive organic vapor dosimeters was investigated. Passive organic vapor dosimeters manufactured by the 3M Company, the Walden Division of Abcor, Inc. , and the E. I. duPont de Nemours Company were statically exposed to ethylene...

  2. High temperature hot water systems: A primer

    SciTech Connect (OSTI)

    Govan, F.A. [NMD and Associates, Cincinnati, OH (United States)

    1998-01-01T23:59:59.000Z

    The fundamental principles of high temperature water (HTW) system technology and its advantages for thermal energy distribution are presented. Misconceptions of this technology are also addressed. The paper describes design principles, applications, HTW properties, HTW system advantages, selecting the engineer, load diversification, design temperatures, system pressurization, pump considerations, constant vs. VS pumps, HTW generator types, and burners and controls.

  3. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    SciTech Connect (OSTI)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01T23:59:59.000Z

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  4. Growth of crystalline X-Sic on Si at reduced temperatures by chemical vapor deposition from `silacycllobutane

    E-Print Network [OSTI]

    Steckl, Andrew J.

    , and TPS resulted in single crystal layer" on Si ( 111) only up to a thickness of 2000 h;. Highly orientedGrowth of crystalline X-Sic on Si at reduced temperatures by chemical vapor deposition from grown by SCB at a temperature of 800 "C. The progress of SiC/Si heterojunction devices has been C3HsSiH2

  5. Orographic Precipitation and Water Vapor Fractionation over the Southern Andes RONALD B. SMITH AND JASON P. EVANS

    E-Print Network [OSTI]

    Evans, Jason

    Orographic Precipitation and Water Vapor Fractionation over the Southern Andes RONALD B. SMITH (Smith and Barstad 2004) to predict the patterns of orographic pre- Corresponding author address: Ronald B. Smith, Depa

  6. Warm Springs Water District District Heating Low Temperature...

    Open Energy Info (EERE)

    Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal...

  7. Effect of calcium nitrate on the vapor-liquid equilibria of ethanol + water and 2-propanol + water

    SciTech Connect (OSTI)

    Polka, H.M.; Gmehling, J. (Univ. of Oldenburg (Germany). Chair of Industrial Chemistry)

    1994-07-01T23:59:59.000Z

    The effect of calcium nitrate on the vapor-liquid equilibria of ethanol + water and 2-propanol + water was studied using a Swietoslawski ebulliometer. The measurements were performed for two constant salt molalities (1 and 2 mol[center dot]kg[sup [minus]1]) under isobaric conditions at 50.66 kPa. Strong salting-out of the alcohol was observed in all cases, leading to a complete elimination of the azeotropic point at relatively low salt concentrations. The results were correlated using an extension of the NRTL equation for mixed solvent electrolyte systems proposed by Mock, Evans, and Chen.

  8. Analysis and forecast improvements from simulated satellite water vapor profiles and rainfall using a global data assimilation system

    SciTech Connect (OSTI)

    Nehrkorn, T.; Hoffman, R.N.; Louis, J.F.; Isaacs, R.G.; Moncet, J.L. (Atmospheric and Environmental Research, Inc., Cambridge, MA (United States))

    1993-10-01T23:59:59.000Z

    The potential improvements of analyses and forecasts from the use of satellite-observed rainfall and water vapor measurements from the Defense Meteorological Satellite Program Sensor Microwave (SSM) T-1 and T-2 instruments are investigated in a series of observing system simulation experiments using the Air Force Phillips Laboratory (formerly Air Force Geophysics Laboratory) data assimilation system. Simulated SSM radiances are used directly in a radiance retrieval step following the conventional optimum interpolation analysis. Simulated rainfall rates in the tropics are used in a moist initialization procedure to improve the initial specification of divergence, moisture, and temperature. Results show improved analyses and forecasts of relative humidity and winds compared to the control experiment in the tropics and the Southern Hemisphere. Forecast improvements are generally restricted to the first 1-3 days of the forecast. 27 refs., 11 figs.

  9. Oxidation of zirconium alloys in 2.5 kPa water vapor for tritium readiness.

    SciTech Connect (OSTI)

    Mills, Bernice E.

    2007-11-01T23:59:59.000Z

    A more reactive liner material is needed for use as liner and cruciform material in tritium producing burnable absorber rods (TPBAR) in commercial light water nuclear reactors (CLWR). The function of these components is to convert any water that is released from the Li-6 enriched lithium aluminate breeder material to oxide and hydrogen that can be gettered, thus minimizing the permeation of tritium into the reactor coolant. Fourteen zirconium alloys were exposed to 2.5 kPa water vapor in a helium stream at 300 C over a period of up to 35 days. Experimental alloys with aluminum, yttrium, vanadium, titanium, and scandium, some of which also included ternaries with nickel, were included along with a high nitrogen impurity alloy and the commercial alloy Zircaloy-2. They displayed a reactivity range of almost 500, with Zircaloy-2 being the least reactive.

  10. Trace water vapor determination in nitrogen and corrosive gases using infrared spectroscopy

    SciTech Connect (OSTI)

    Espinoza, L.H.; Niemczyk, T.M. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemistry; Stallard, B.R.; Garcia, M.J. [Sandia National Labs., Albuquerque, NM (United States)

    1997-06-01T23:59:59.000Z

    The generation of particles in gas handling systems as a result of corrosion is a major concern in the microelectronics industry. The corrosion can be caused by the presence of trace quantities of water in corrosive gases such as HCl or HBr. FTIR spectroscopy has been shown to be a method that can be made compatible with corrosive gases and is capable of detecting low ppb levels of water vapor. In this report, the application of FTIR spectroscopy combined with classical least squares multivariate calibration to detect trace H{sub 2}O in N{sub 2}, HCl and HBr is discussed. Chapter 2 discusses the gas handling system and instrumentation required to handle corrosive gases. A method of generating a background spectrum useful to the measurements discussed in this report, as well as in other application areas such as gas phase environmental monitoring, is discussed in Chapter 3. Experimental results obtained with the first system are presented in Chapter 4. Those results made it possible to optimize the design options for the construction of a dedicate system for low ppb water vapor determination. These designs options are discussed in Chapter 5. An FTIR prototype accessory was built. In addition, a commercially available evacuable FTIR system was obtained for evaluation. Test results obtained with both systems are discussed in Chapter 6. Experiments dealing with the interaction between H{sub 2}O-HCl and potential improvements to the detection system are discussed in Chapter 7.

  11. Role of oxygen vacancies in water vapor chemisorption and CO oxidation on titania

    SciTech Connect (OSTI)

    Sengupta, G.; Chatterjee, R.N.; Maity, G.C. (Project and Development India Ltd. Sindri, Dhanbad, Bihar (India)); Satyanarayna, C.V.V. (RSIC, Bombay (India). Indian Inst. of Tech. Powai)

    1995-03-01T23:59:59.000Z

    Titanium dioxide is widely used as support for various important catalysts. Although nonstoichiometric titania behaves as an n-type semiconductor, the nature of the defect sites is not yet fully understood. In the present investigation the water vapor adsorption and carbon monoxide oxidation on TiO[sub 2] is explained considering oxygen vacancies as the major defect. It is also shown that incorporation of an Al[sup 3+] ion in TiO[sub 2] reduces the concentration of oxygen ion vacancies and inhibits the transformation of anatase to rutile.

  12. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Richard A. Ferrare; David D. Turner

    2011-09-01T23:59:59.000Z

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  13. Method of condensing vaporized water in situ to treat tar sands formations

    DOE Patents [OSTI]

    Hsu, Chia-Fu (Rijswijk, NL)

    2010-03-16T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. Heat may be allowed to transfer from the heaters to at least a first portion of the formation. Conditions may be controlled in the formation so that water vaporized by the heaters in the first portion is selectively condensed in a second portion of the formation. At least some of the fluids may be produced from the formation.

  14. High temperature hot water distribution system study

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The existing High Temperature Hot Water (HTHW) Distribution System has been plagued with design and construction deficiencies since startup of the HTHW system, in October 1988. In October 1989, after one year of service, these deficiencies were outlined in a technical evaluation. The deficiencies included flooded manholes, sump pumps not hooked up, leaking valves, contaminated HTHW water, and no cathodic protection system. This feasibility study of the High Temperature Hot Water (HTHW) Distribution System was performed under Contract No. DACA0l-94-D-0033, Delivery Order 0013, Modification 1, issued to EMC Engineers, Inc. (EMC), by the Norfolk District Corps of Engineers, on 25 April 1996. The purpose of this study was to determine the existing conditions of the High Temperature Hot Water Distribution System, manholes, and areas of containment system degradation. The study focused on two areas of concern, as follows: * Determine existing conditions and areas of containment system degradation (leaks) in the underground carrier pipes and protective conduit. * Document the condition of underground steel and concrete manholes. To document the leaks, a site survey was performed, using state-of-the-art infrared leak detection equipment and tracer gas leak detection equipment. To document the condition of the manholes, color photographs were taken of the insides of 125 manholes, and notes were made on the condition of these manholes.

  15. Electrical, optical, and material characterizations of blue InGaN light emitting diodes submitted to reverse-bias stress in water vapor condition

    SciTech Connect (OSTI)

    Chen, Hsiang, E-mail: hchen@ncnu.edu.tw; Chu, Yu-Cheng; Chen, Yun-Ti; Chen, Chian-You [Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, No. 1, University Road, Puli, Nantou County 54561, Taiwan (China); Shei, Shih-Chang [Department of Electrical Engineering, National University of Tainan, No.33, Sec. 2, Shulin St., West Central Dist., Tainan City 70005, Taiwan (China)

    2014-09-07T23:59:59.000Z

    In this paper, we investigate degradation of InGaN/GaN light emitting diodes (LEDs) under reverse-bias operations in water vapor and dry air. To examine failure origins, electrical characterizations including current-voltage, breakdown current profiles, optical measurement, and multiple material analyses were performed. Our findings indicate that the diffusion of indium atoms in water vapor can expedite degradation. Investigation of reverse-bias stress can help provide insight into the effects of water vapor on LEDs.

  16. Comparison of Atmospheric Water Vapor in Observational and Model Data Sets

    SciTech Connect (OSTI)

    Boyle, J.S.

    2000-03-01T23:59:59.000Z

    The global water vapor distribution for five observational based data sets and three GCM integrations are compared. The variables considered are the mean and standard deviation values of the precipitable water for the entire atmospheric column and the 500 to 300 hPa layer for January and July. The observationally based sets are the radiosonde data of Ross and Elliott, the ERA and NCEP reanalyses, and the NVAP blend of sonde and satellite data. The three GCM simulations all use the NCAR CCM3 as the atmospheric model. They include: a AMIP type simulation using observed SSTs for the period 1979 to 1993, the NCAR CSM 300 year coupled ocean--atmosphere integration, and a CSM integration with a 1% CO2 increase per year. The observational data exhibit some serious inconsistencies. There are geographical patterns of differences related to interannual variations and national instrument biases. It is clear that the proper characterization of water vapor is somewhat uncertain. Some conclusions about these data appear to be robust even given the discrepancies. The ERA data are too dry especially in the upper levels. The observational data evince much better agreement in the data rich Northern Hemisphere compared to the Southern. Distinct biases are quite pronounced over the Southern Ocean. The mean values and particularly the standard deviations of the three reanalyses are very dependent upon the GCM used as the assimilation vehicle for the analyses. This is made clear by the much enhanced tropical variability in the NCEP/DOE/ AMIP reanalyses compared the initial NCEP/NCAR Reanalysis. The NCAR CCM3 shows consistent evidence of a dry bias. The 1% CO2 experiment shows a very similar pattern of disagreement with the sonde data as the other integrations, once account is taken of the warming trend. No new modes of difference are evident in the 1% CO2 experiment. All the CCM3 runs indicated too much Tropical variability especially in the western Tropical Pacific and Southeast Asia. A EOF analysis of the interannual variations of the zonally averaged precipitable water and the 500 to 300 hPa layer reveals fundamental differences in the structure of the variations. The impact of ENSO and variations of the ITCZ have only a low level of correspondence between the observed data, much less the simulations. It is apparent that an adequate characterization of the climatology of the global water vapor distribution is not yet at hand.

  17. Variation in rectal temperature, respiratory rate, and pulse rate of cattle as related to variations in solar radiation, air temperature, wind velocity, and vapor pressure

    E-Print Network [OSTI]

    Quazi, Mohammad Fazlur Rahim

    1955-01-01T23:59:59.000Z

    VARIATION IN RECTAL TEMPERATURE, RESPIRATORY RATE, AND PULSE RATE GF CATTLE AS RELATED TO VARIATIONS IN SOLAR RADIATION, AIR TEMPERATURE, WIND VELOCITY, AND VAPOR PRESSURE A Dissertation By Mohammad Fazlur Rahim Quazi Approved as to style... Dissertation By Mohammad Fazlur Rahim tyiazi Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 1955 Major Subject: Genetics ? ?4...

  18. High-temperature stress measurement on chemical-vapor-deposited tungsten silicide and tungsten films

    SciTech Connect (OSTI)

    Shioya, Y.; Ikegami, K.; Maeda, M.; Yanagida, K.

    1987-01-15T23:59:59.000Z

    Stresses in chemical-vapor-deposited tungsten silicide and tungsten films at high temperatures were measured. Tungsten silicide films were formed from WF/sub 6/ and SiH/sub 4/ or Si/sub 2/H/sub 6/. Tungsten films were formed from WF/sub 6/ and H/sub 2/. The stress in tungsten silicide films is tensile and in the order of 10/sup 9/--10/sup 10/ dynes/cm/sup 2/. For a composition ratio of Si/Wless than or equal to2.6, the stress of a film of more than 1000 A has a maximum at about 500 /sup 0/C. On the other hand, for a composition Si/W>2.9, the stress has no maximum. The maximum of the stress is caused by crystallization of the film. The stress has two components. One component is related to the difference of the thermal expansion coefficients between the film and the Si substrate. Another is related to the film crystallization. It was found that the stress concentrates in the portion of the film nearest the substrate. The stress in tungsten films also reaches a maximum at 550 /sup 0/C, similar to the tungsten silicide films. However, the cause of this behavior is not clear.

  19. Intraparticle heat and mass transfer characteristics of silica-gel/water vapor adsorption

    SciTech Connect (OSTI)

    Yamamoto, Eri; Watanabe, Fujio; Hasatani, Masanobu

    1999-07-01T23:59:59.000Z

    Recently, highly efficient energy utilization systems which extensively employ adsorption phenomena such as pressure swing adsorption, heat storage, adsorption heat pump, etc. are being regarded as one of the countermeasures for environmental issues such as green house effect and ozone layer destruction. An Adsorption Heat Pump (AHP) has been investigated as one of the important techniques via which cold heat energy is obtained from waste thermal energy below 373K without using electricity and CFCs. An AHP normally consists of an adsorber and an evaporator/condenser and cold heat energy is generated by latent heat of evaporation during adsorption process. For realizing the AHP technology, it has been pointed out that the development of an adsorber with optimum heat and mass transfer characteristics is essentially important. In this study, experimental studies were carried out which was based on the data of temperature inside the adsorbent particle and adsorptivity profiles at the adsorption/desorption process by volumetric method. To clarify adsorption mechanism relatively large silica-gel particle (7 mm f) was used. Temperature distribution in the particle is determined at the center, at one half radius in the radial direction and at the surface by using very thin (30 mm f) thermocouples. The temperatures at these points simultaneously increase/decrease as soon as the adsorption/desorption started, reached their respective maximum/minimum values and then return to initial temperature. The temperature profiles for the adsorption process show that the temperature at the surface is initially slightly higher than the other two points. All three points reached their respective maximum temperature at the same time with the temperature at the center point the highest and at the surface the lowest. The temperature profiles during the desorptive process are almost exactly the opposite to that of the adsorption process. This shows that the adsorption phenomena can take place not only at the surface but inside the adsorbent particle, implying that intraparticle vapor diffusion has a great influence on adsorptivity.

  20. Low temperature atmospheric pressure chemical vapor deposition of group 14 oxide films

    SciTech Connect (OSTI)

    Hoffman, D.M. [Houston Univ., TX (United States); Atagi, L.M. [Houston Univ., TX (United States)]|[Los Alamos National Lab., NM (United States); Chu, Wei-Kan; Liu, Jia-Rui; Zheng, Zongshuang [Houston Univ., TX (United States); Rubiano, R.R. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Springer, R.W.; Smith, D.C. [Los Alamos National Lab., NM (United States)

    1994-06-01T23:59:59.000Z

    Depositions of high quality SiO{sub 2} and SnO{sub 2} films from the reaction of homoleptic amido precursors M(NMe{sub 2})4 (M = Si,Sn) and oxygen were carried out in an atmospheric pressure chemical vapor deposition r. The films were deposited on silicon, glass and quartz substrates at temperatures of 250 to 450C. The silicon dioxide films are stoichiometric (O/Si = 2.0) with less than 0.2 atom % C and 0.3 atom % N and have hydrogen contents of 9 {plus_minus} 5 atom %. They are deposited with growth rates from 380 to 900 {angstrom}/min. The refractive indexes of the SiO{sub 2} films are 1.46, and infrared spectra show a possible Si-OH peak at 950 cm{sup {minus}1}. X-Ray diffraction studies reveal that the SiO{sub 2} film deposited at 350C is amorphous. The tin oxide films are stoichiometric (O/Sn = 2.0) and contain less than 0.8 atom % carbon, and 0.3 atom % N. No hydrogen was detected by elastic recoil spectroscopy. The band gap for the SnO{sub 2} films, as estimated from transmission spectra, is 3.9 eV. The resistivities of the tin oxide films are in the range 10{sup {minus}2} to 10{sup {minus}3} {Omega}cm and do not vary significantly with deposition temperature. The tin oxide film deposited at 350C is cassitterite with some (101) orientation.

  1. Effect of Mo Dispersion Size and Water Vapor on Oxidation of Two-Phase Directionally Solidified NiAl-9Mo In-Situ Composites

    SciTech Connect (OSTI)

    Brady, Michael P [ORNL] [ORNL; Bei, Hongbin [ORNL] [ORNL; Meisner, Roberta Ann [ORNL] [ORNL; Lance, Michael J [ORNL] [ORNL; Tortorelli, Peter F [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Oxidation of two-phase NiAl-9Mo eutectics with 3 different growth rates/2nd phase Mo dispersion sizes were investigated at 900 C in air and air with 10% water vapor. Good oxidation resistance via alumina formation was observed in dry air, with Mo volatilization loss minimized by fine submicron Mo dispersions. However, extensive Mo volatilization and in-place internal oxidation of prior Mo phase regions was observed in wet air oxidation. Ramifications of this phenomenon for the development of multi-phase high-temperature alloys are discussed

  2. Effects of Storage Container Color and Shading on Water Temperature

    E-Print Network [OSTI]

    Clayton, James Brent

    2012-07-16T23:59:59.000Z

    RWH systems has become a concern. Water temperature is a parameter of water quality and storage container color and shading affect this temperature. Four different colors and three different shadings were applied to twelve rainwater storage barrels...

  3. A comparison of water vapor quantities from model short-range forecasts and ARM observations

    SciTech Connect (OSTI)

    Hnilo, J J

    2006-03-17T23:59:59.000Z

    Model evolution and improvement is complicated by the lack of high quality observational data. To address a major limitation of these measurements the Atmospheric Radiation Measurement (ARM) program was formed. For the second quarter ARM metric we will make use of new water vapor data that has become available, and called the 'Merged-sounding' value added product (referred to as OBS, within the text) at three sites: the North Slope of Alaska (NSA), Darwin Australia (DAR) and the Southern Great Plains (SGP) and compare these observations to model forecast data. Two time periods will be analyzed March 2000 for the SGP and October 2004 for both DAR and NSA. The merged-sounding data have been interpolated to 37 pressure levels (e.g., from 1000hPa to 100hPa at 25hPa increments) and time averaged to 3 hourly data for direct comparison to our model output.

  4. The Effect of Water Vapor on Cr Depletion in Advanced Recuperator Alloys

    SciTech Connect (OSTI)

    Pint, Bruce A [ORNL

    2005-01-01T23:59:59.000Z

    Durable alloy foils are needed for gas turbine recuperators operating at 650--700 C. It has been established that water vapor in the exhaust gas causes more rapid consumption of Cr in austenitic stainless steels leading to a reduction in operating lifetime of these thin-walled components. Laboratory testing at 650--800 C of commercial and model alloys is being used to develop a better understanding of the long-term rate of Cr consumption in these environments. Results are presented for commercial alloys 709, 120 and 625. After 10,000h exposures at 650 C and 700 C in humid air, grain boundary Cr depletion was observed near the surface of all these materials. In the Fe-base alloys, 709 and 120, this depletion led to localized Fe-rich nodule formation. This information then can be used to develop low-cost alternatives to currently available candidate materials.

  5. Treatment of Produced Water Using a Surfactant Modified Zeolite/Vapor Phase Bioreactor System

    SciTech Connect (OSTI)

    Lynn E. Katz; Kerry A. Kinney; Robert S. Bowman; Enid J. Sullivan; Soondong Kwon; Elaine B. Darby; Li-Jung Chen; Craig R. Altare

    2006-01-31T23:59:59.000Z

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. Produced waters typically contain a high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component as well as chemicals added during the oil-production process. It has been estimated that a total of 14 billion barrels of produced water were generated in 2002 from onshore operations (Veil, 2004). Although much of this produced water is disposed via reinjection, environmental and cost considerations can make surface discharge of this water a more practical means of disposal. In addition, reinjection is not always a feasible option because of geographic, economic, or regulatory considerations. In these situations, it may be desirable, and often necessary from a regulatory viewpoint, to treat produced water before discharge. It may also be feasible to treat waters that slightly exceed regulatory limits for re-use in arid or drought-prone areas, rather than losing them to reinjection. A previous project conducted under DOE Contract DE-AC26-99BC15221 demonstrated that surfactant modified zeolite (SMZ) represents a potential treatment technology for produced water containing BTEX. Laboratory and field experiments suggest that: (1) sorption of benzene, toluene, ethylbenzene and xylenes (BTEX) to SMZ follows linear isotherms in which sorption increases with increasing solute hydrophobicity; (2) the presence of high salt concentrations substantially increases the capacity of the SMZ for BTEX; (3) competitive sorption among the BTEX compounds is negligible; and, (4) complete recovery of the SMZ sorption capacity for BTEX can be achieved by air sparging the SMZ. This report summarizes research for a follow on project to optimize the regeneration process for multiple sorption/regeneration cycles, and to develop and incorporate a vapor phase bioreactor (VPB) system for treatment of the off-gas generated during air sparging. To this end, we conducted batch and column laboratory SMZ and VPB experiments with synthetic and actual produced waters. Based on the results of the laboratory testing, a pilot scale study was designed and conducted to evaluate the combined SMZ/VPB process. An economic and regulatory feasibility analysis was also completed as part of the current study to assess the viability of the process for various water re-use options.

  6. Ten Years of Measurements of Tropical Upper-Tropospheric Water Vapor by MOZAIC. Part I: Climatology, Variability, Transport, and Relation to

    E-Print Network [OSTI]

    Lombardi, John R.

    the International Satellite Cloud Climatology Project (ISCCP). 1. Introduction Water vapor is the key atmosphericTen Years of Measurements of Tropical Upper-Tropospheric Water Vapor by MOZAIC. Part I: Climatology, Variability, Transport, and Relation to Deep Convection ZHENGZHAO LUO, DIETER KLEY,* AND RICHARD H. JOHNSON

  7. The influence of midlatitude and tropical overturning circulation on the isotopic composition of atmospheric water vapor and

    E-Print Network [OSTI]

    Noone, David

    coordinates. In this depiction, poleward transport of air and water vapor is non-diffusive, in a way for an open distillation. Model experiments that simulate a wide range of circulation strengths show to the polar region exceeds the rate at which surface sources replenish the poleward moving air stream. Across

  8. Isothermal vapor-liquid equilibria for water + 2-aminoethanol + dimethyl sulfoxide and its constituent three binary systems

    SciTech Connect (OSTI)

    Tochigi, Katsumi; Akimoto, Kentarou; Ochi, Kenji [Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry] [Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry; Liu, Fangyhi; Kawase, Yasuhito [Nippon Refine Co., Ltd., Tokyo (Japan)] [Nippon Refine Co., Ltd., Tokyo (Japan)

    1999-05-01T23:59:59.000Z

    Isothermal vapor-liquid equilibria were measured for the ternary system water + 2-aminoethanol + dimethyl sulfoxide and its three constituent binary mixtures at 363.15 K. The apparatus used was a modified Rogalski-Malanoski equilibrium still. The experimental binary data were correlated by the NRTL equation. The ternary system was predicted using the binary NRTL parameters with good accuracy.

  9. TREATMENT OF PRODUCED WATERS USING A SURFACTANT MODIFIED ZEOLITE/VAPOR PHASE BIOREATOR SYSTEM

    SciTech Connect (OSTI)

    LYNN E. KATZ; KERRY A. KINNEY; R.S. BOWMAN; E.J. SULLIVAN

    2003-10-01T23:59:59.000Z

    Co-produced water from the oil and gas industry is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some of them must be treated to remove organic constituents before the water is discharged. An efficient, cost-effective treatment technology is needed to remove these constituents. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. Our previous DOE research work (DE-AC26-99BC15221) demonstrated that SMZ could successfully remove BTEX compounds from the produced water. In addition, SMZ could be regenerated through a simple air sparging process. The primary goal of this project is to develop a robust SMZ/VPB treatment system to efficiently remove the organic constituents from produced water in a cost-effective manner. This report summarizes work of this project from March 2003 through September 2003. We have continued our investigation of SMZ regeneration from our previous DOE project. Ten saturation/stripping cycles have been completed for SMZ columns saturated with BTEX compounds. The results suggest that BTEX sorption capacity is not lost after ten saturation/regeneration cycles. The composition of produced water from a site operated by Crystal Solutions Ltd. in Wyoming has been characterized and was used to identify key semi-volatile components. Isotherms with selected semi-volatile components have been initiated and preliminary results have been obtained. The experimental vapor phase bioreactors for this project have been designed and assembled to treat the off-gas from the SMZ regeneration process. These columns will be used both in the laboratory and in the proposed field testing to be conducted next year. Innocula for the columns that degrade all of the BTEX columns have been developed.

  10. Diode laser measurement of H?O, CO?, and temperature in gas turbine exhaust through the application of wavelength modulation spectroscopy

    E-Print Network [OSTI]

    Leon, Marco E.

    2007-01-01T23:59:59.000Z

    Absorption-Measurements of Water-Vapor Concentration, Temperature, and Line-Shape Parameters Using a Tunable Ingaasp

  11. Two Stage Vapor Compression Heat Pump with Solution Circuits: Catering to Simultaneous Chilling and Water Heating Needs

    E-Print Network [OSTI]

    Rane, M. V.; Radermacher, R.

    results indicate that the two stage VCHSC can achiev~ cooling coefficient of performances as high as 1.04 while pumping heat through a lift of 194?F (10S0C). Comparison is made with a system consisting of a vapor compressor chiller and a gas fired... conditioning and hot water for various uses will be assessed. comparison is made with a system consisting of a vapor compressor chiller and a gas fired furnace (option 2). The basis for comparison being: a) the total primary energy usage, b) the cost...

  12. Charge transfer effects of ions at the liquid water/vapor interface

    SciTech Connect (OSTI)

    Soniat, Marielle; Rick, Steven W., E-mail: srick@uno.edu [Department of Chemistry, University of New Orleans, New Orleans, Louisiana 70148 (United States)

    2014-05-14T23:59:59.000Z

    Charge transfer (CT), the movement of small amounts of electron density between non-bonded pairs, has been suggested as a driving force for a variety of physical processes. Herein, we examine the effect of CT on ion adsorption to the water liquid-vapor interface. Using a CT force field for molecular dynamics, we construct a potential of mean force (PMF) for Na{sup +}, K{sup +}, Cl{sup ?}, and I{sup ?}. The PMFs were produced with respect to an average interface and an instantaneous interface. An analysis of the PMF relative to the instantaneous surface reveals that the area in which the anions experience a free energy minimum is quite narrow, and the cations feel a steeply repulsive free energy near the interface. CT is seen to have only minor effects on the overall free energy profiles. However, the long-ranged effects of ions are highlighted by the CT model. Due to CT, the water molecules at the surface become charged, even when the ion is over 15 Ĺ away from the surface.

  13. Low temperature junction growth using hot-wire chemical vapor deposition

    DOE Patents [OSTI]

    Wang, Qi; Page, Matthew; Iwaniczko, Eugene; Wang, Tihu; Yan, Yanfa

    2014-02-04T23:59:59.000Z

    A system and a process for forming a semi-conductor device, and solar cells (10) formed thereby. The process includes preparing a substrate (12) for deposition of a junction layer (14); forming the junction layer (14) on the substrate (12) using hot wire chemical vapor deposition; and, finishing the semi-conductor device.

  14. Numerical modeling of water injection into vapor-dominated geothermal reservoirs

    E-Print Network [OSTI]

    Pruess, Karsten

    2008-01-01T23:59:59.000Z

    Renewable Energy, Office of Geothermal Technologies, of theTransport in Fractured Geothermal Reservoirs, Geothermics,Depletion of Vapor-Dominated Geothermal Reservoirs, Lawrence

  15. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    SciTech Connect (OSTI)

    Taylor, Robin [SAIC] [SAIC; Davenport, Roger [SAIC] [SAIC; Talbot, Jan [UCSD] [UCSD; Herz, Richard [UCSD] [UCSD; Genders, David [Electrosynthesis Co.] [Electrosynthesis Co.; Symons, Peter [Electrosynthesis Co.] [Electrosynthesis Co.; Brown, Lloyd [TChemE] [TChemE

    2014-04-25T23:59:59.000Z

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are proposed for future activities. Electrolysis membranes that permit higher temperatures and lower voltages are attainable. The oxygen half cycle will need further development and improvement.

  16. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    SciTech Connect (OSTI)

    Mark D. McKay

    2011-02-01T23:59:59.000Z

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratory’s Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  17. Corrosion of aluminum-uranium alloys in water vapor at 200 C

    SciTech Connect (OSTI)

    Lam, P.S.; Sindelar, R.L.; Barrett, K.Y.

    1999-07-01T23:59:59.000Z

    Specimens of aluminum-uranium alloys at 10 and 18 wt.% uranium were exposed to a saturated water vapor condition at 200 C up to about 12 weeks and compared to previous results for aluminum 1100. The aluminum-uranium materials exhibited a range of initial corrosion rates and approached similar rates with the formation of a passive film of boehmite (Al{sub 2}O{sub 3}{center{underscore}dot}H{sub 2}O). The initial corrosion rates of the aluminum-uranium materials were one to four times higher than that for aluminum 1100. It is postulated that a micro-galvanic coupling between the large UAl{sub 4} particles and the aluminum matrix has caused this difference. Sectioning the exposed specimens shows different characteristics of the oxide layers. In the oxide on the aluminum-10% uranium alloy (Al-10%U), small uranium aluminide particles can be seen in a boehmite matrix and do not seem to be corroded. The oxide film on the aluminum-18% uranium alloy (Al-18%U) appears to have two distinct oxide layers. The outer layer has mass aggregates in a boehmite matrix, while the inner layer contains UAl{sub 4} particles as in the case of Al-10%U.

  18. Corrosion of Aluminum-Uranium Alloys in Water Vapor at 200\\260C

    SciTech Connect (OSTI)

    Lam, P.S.

    1998-11-25T23:59:59.000Z

    Coupons of aluminum-uranium alloys at 10 and 18 weight percent were exposed to a saturated water vapor condition at 200 degrees C up to about 1500 hours and compared to previous results for aluminum 1100. The aluminum-uranium materials exhibited a range of initial corrosion rates and approached similar rates with the formation of a passive film of boehmite (Al2O3oH2O). The cast and extruded 10 percent uranium, having a primary aluminum-eutectic microstructure, was more corrosion resistant than the 18% cast and extruded. The initial corrosion rates of the aluminum-uranium materials were one to four times higher than that for aluminum 1100. It is postulated that a micro-galvanic coupling between the large UAl4 particles and the aluminum matrix has caused the variation. Sectioning the exposed specimens shows different characteristics of the oxide layers. In the case of the cast and extruded Al-10 percent U alloy, small uranium aluminide particles can be seen in the boehmite matrix and do not seem to be corroded. The oxide film of the Al-18 percent U alloy appears to have two distinct oxide layers. The outer layer has mass aggregates formed in the aluminum oxide matrix, while the inner layer contains UAl4 particles as in the case of Al-10 percent U

  19. 3708 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 11, NOVEMBER 2009 Retrieval of Atmospheric Water Vapor Density With

    E-Print Network [OSTI]

    Reising, Steven C.

    3708 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 11, NOVEMBER 2009 Retrieval, remote sensing, water vapor. Manuscript received November 1, 2008; revised May 2, 2009 and August 8, 2009 the latent heat of vaporization is a principal mechanism for the transport of energy from the equatorial

  20. Method and apparatus for simulating atomospheric absorption of solar energy due to water vapor and CO.sub.2

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Denver, CO)

    1995-01-01T23:59:59.000Z

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth's surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO.sub.2 and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO.sub.2 and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO.sub.2 and moisture.

  1. Method and apparatus for simulating atmospheric absorption of solar energy due to water vapor and CO{sub 2}

    DOE Patents [OSTI]

    Sopori, B.L.

    1995-06-20T23:59:59.000Z

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth`s surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO{sub 2} and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO{sub 2} and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO{sub 2} and moisture. 8 figs.

  2. Isotope and Temperature Effects in Liquid Water Probed by Soft...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of temperature and isotope substitution (replacing the hydrogen with deuterium to make "heavy" water). Their findings shed new light on the unique microscopic and macroscopic...

  3. Carbon promoted water electrolysis to produce hydrogen at room temperature.

    E-Print Network [OSTI]

    Ranganathan, Sukanya.

    2007-01-01T23:59:59.000Z

    ??The objective of the work was to conduct water electrolysis at room temperature with reduced energy costs for hydrogen production. The electrochemical gasification of carbons… (more)

  4. Isobaric vapor-liquid equilibria of the water + 1-propanol system at 30, 60, and 100 kPa

    SciTech Connect (OSTI)

    Gabaldon, C.; Marzal, P.; Monton, J.B.; Rodrigo, M.A. [Univ. de Valencia (Spain). Dept. de Ingenieria Quimica] [Univ. de Valencia (Spain). Dept. de Ingenieria Quimica

    1996-09-01T23:59:59.000Z

    Isobaric vapor-liquid equilibria for the water + 1-propanol system are reported at 30, 60, and 100 kPa. The results were found to be thermodynamically consistent according to Van Ness-Byer-Gibbs, Kojima, and Wisniak methods. The system shows a minimum boiling azeotrope, and the azeotropic composition is scarcely shifted with pressure. Results were compared with literature values. The data were correlated with Margules, Van Laar, Wilson, NRTL, and UNIQUAC liquid-phase activity coefficient models.

  5. Measurements of heat and mass transfer coefficients during absorption of water vapor by lithium bromide and (Li,K,Na)NO sub 3 mixtures

    SciTech Connect (OSTI)

    Zaltash, A.; Ally, M.R.; Linkous, R.L.; Klatt, L.N.

    1991-01-01T23:59:59.000Z

    A knowledge of heat and mass transfer coefficients in heat pump fluids, plays an important role in the design of absorption machines. Heat and mass transfer coefficients as well as subcooling are measured for absorption of water vapor in (Li, K, Na)No{sub 3} and Lithium Bromide (LiBr) mixtures.The rate of absorption of water vapor is obtained from the difference in concentration of mixtures between inlet and outlet streams across the absorber. In situ concentrations of aqueous salt mixtures over temperature ranges between 80 to 135 {degrees}C were calculated from density measurements. This technique of measurement is a reliable and convenient but not a very accurate ({plus minus}0.8 wt% salt) method of measuring the in situ salt concentration. Results show that the subcooling at the absorber exit is not only a property of the fluid, but depends strongly on the process conditions. The subcooling in LiBr mixtures without additive is shown to vary between 2.2 and 24.3 {degrees}C and the film heat transfer coefficient between 1365.2 and 801.1 W/m{sup 2}.K respectively, depending upon process conditions. These empirical results will prove to be of value to heat pump manufacturers because they have a strong bearing on costs and performance. Heat and mass transfer coefficients in aqueous salt solutions ate presented as a function of dimensionless numbers. 12 refs., 3 figs., 4 tabs.

  6. The Effect of High Temperature Annealing on the Grain Characteristics of a Thin Chemical Vapor Deposition Silicon Carbide Layer.

    SciTech Connect (OSTI)

    Isabella J van Rooyen; Philippus M van Rooyen; Mary Lou Dunzik-Gougar

    2013-08-01T23:59:59.000Z

    The unique combination of thermo-mechanical and physiochemical properties of silicon carbide (SiC) provides interest and opportunity for its use in nuclear applications. One of the applications of SiC is as a very thin layer in the TRi-ISOtropic (TRISO) coated fuel particles for high temperature gas reactors (HTGRs). This SiC layer, produced by chemical vapor deposition (CVD), is designed to withstand the pressures of fission and transmutation product gases in a high temperature, radiation environment. Various researchers have demonstrated that macroscopic properties can be affected by changes in the distribution of grain boundary plane orientations and misorientations [1 - 3]. Additionally, various researchers have attributed the release behavior of Ag through the SiC layer as a grain boundary diffusion phenomenon [4 - 6]; further highlighting the importance of understanding the actual grain characteristics of the SiC layer. Both historic HTGR fission product release studies and recent experiments at Idaho National Laboratory (INL) [7] have shown that the release of Ag-110m is strongly temperature dependent. Although the maximum normal operating fuel temperature of a HTGR design is in the range of 1000-1250°C, the temperature may reach 1600°C under postulated accident conditions. The aim of this specific study is therefore to determine the magnitude of temperature dependence on SiC grain characteristics, expanding upon initial studies by Van Rooyen et al, [8; 9].

  7. PHYSICAL REVIEW E 85, 061201 (2012) Temperature-difference-driven mass transfer through the vapor from a cold to a warm liquid

    E-Print Network [OSTI]

    Struchtrup, Henning

    .1103/PhysRevE.85.061201 PACS number(s): 05.70.Np, 05.70.Ln, 64.70.fm I. INTRODUCTION ConditionsPHYSICAL REVIEW E 85, 061201 (2012) Temperature-difference-driven mass transfer through the vapor. The interfacial jumps allow unexpected transport phenomena, such as the inverted temperature profile [Pao, Phys

  8. Plasma Kinetics in Electrical Discharge in Mixture of Air, Water and Ethanol Vapors for Hydrogen Enriched Syngas Production

    E-Print Network [OSTI]

    Shchedrin, A I; Ryabtsev, A V; Chernyak, V Ya; Yukhymenko, V V; Olszewski, S V; Naumov, V V; Prysiazhnevych, I V; Solomenko, E V; Demchina, V P; Kudryavtsev, V S

    2008-01-01T23:59:59.000Z

    The complex theoretical and experimental investigation of plasma kinetics of the electric discharge in the mixture of air and ethanol-water vapors is carried out. The discharge was burning in the cavity, formed by air jets pumping between electrodes, placed in aqueous ethanol solution. It is found out that the hydrogen yield from the discharge is maximal in the case when ethanol and water in the solution are in equal amounts. It is shown that the hydrogen production increases with the discharge power and reaches the saturation at high value. The concentrations of the main stable gas-phase components, measured experimentally and calculated numerically, agree well in the most cases.

  9. STATE OF CALIFORNIA SUPPLY WATER TEMPERATURE RESET CONTROLS ACCEPTANCE

    E-Print Network [OSTI]

    STATE OF CALIFORNIA SUPPLY WATER TEMPERATURE RESET CONTROLS ACCEPTANCE CEC-MECH-9A (Revised 08/09) CALIFORNIA ENERGY COMMISSION CERTIFICATE OF ACCEPTANCE MECH-9A NA7.5.8 Supply Water Temperature Reset, under the laws of the State of California, the information provided on this form is true and correct

  10. Low temperature barrier wellbores formed using water flushing

    DOE Patents [OSTI]

    McKinzie, II; John, Billy [Houston, TX; Keltner, Thomas Joseph [Spring, TX

    2009-03-10T23:59:59.000Z

    A method of forming an opening for a low temperature well is described. The method includes drilling an opening in a formation. Water is introduced into the opening to displace drilling fluid or indigenous gas in the formation adjacent to a portion of the opening. Water is produced from the opening. A low temperature fluid is applied to the opening.

  11. Water injection as a means for reducing non-condensible andcorrosive gases in steam produced from vapor-dominated reservoirs

    SciTech Connect (OSTI)

    Pruess, Karsten; Spycher, Nicolas; Kneafsey, Timothy J.

    2007-01-08T23:59:59.000Z

    Large-scale water injection at The Geysers, California, hasgenerated substantial benefits in terms of sustaining reservoir pressuresand production rates, as well as improving steam composition by reducingthe content of non-condensible gases (NCGs). Two effects have beenrecognized and discussed in the literature as contributing to improvedsteam composition, (1) boiling of injectate provides a source of "clean"steam to production wells, and (2) pressurization effects induced byboiling of injected water reduce upflow of native steam with large NCGconcentrations from depth. In this paper we focus on a possibleadditional effect that could reduce NCGs in produced steam by dissolutionin a condensed aqueous phase.Boiling of injectate causes pressurizationeffects that will fairly rapidly migrate outward, away from the injectionpoint. Pressure increases will cause an increase in the saturation ofcondensed phase due to vapor adsorption on mineral surfaces, andcapillary condensation in small pores. NCGs will dissolve in theadditional condensed phase which, depending upon their solubility, mayreduce NCG concentrations in residual steam.We have analyzed thepartitioning of HCl between vapor and aqueous phases, and have performednumerical simulations of injection into superheated vapor zones. Oursimulations provide evidence that dissolution in the condensed phase canindeed reduce NCG concentrations in produced steam.

  12. Numerical Simulation of Hydrodynamics of a Heavy Liquid Drop Covered by Vapor Film in a Water Pool

    SciTech Connect (OSTI)

    Ma, W.M.; Yang, Z.L.; Giri, A.; Sehgal, B.R. [Royal Institute of Technology (KTH), Drottning Kristinas vaeg 33 A, 100 44, Stockholm (Sweden)

    2002-07-01T23:59:59.000Z

    A numerical study on the hydrodynamics of a droplet covered by vapor film in water pool is carried out. Two level set functions are used as to implicitly capture the interfaces among three immiscible fluids (melt-drop, vapor and coolant). This approach leaves only one set of conservation equations for the three phases. A high-order Navier-Stokes solver, called Cubic-Interpolated Pseudo-Particle (CIP) algorithm, is employed in combination with level set approach, which allows large density ratios (up to 1000), surface tension and jump in viscosity. By this calculation, the hydrodynamic behavior of a melt droplet falling into a volatile coolant is simulated, which is of great significance to reveal the mechanism of steam explosion during a hypothetical severe reactor accident. (authors)

  13. Isobaric vapor-liquid equilibria of the water + 2-propanol system at 30, 60, and 100 kPa

    SciTech Connect (OSTI)

    Marzal, P.; Monton, J.B.; Rodrigo, M.A. [Univ. de Valencia (Spain). Departamento de Ingenieria Quimica] [Univ. de Valencia (Spain). Departamento de Ingenieria Quimica

    1996-05-01T23:59:59.000Z

    Distillation is perhaps the separation process most widely used in the chemical processing industry. The correct design of distillation columns requires the availability of accurate and, if possible, thermodynamically consistent vapor-liquid equilibria (VLE) data. The present work is part of a project studying the effect of pressure on the behavior of the azeotropic point in mixtures in which at least one component is an alcohol. Isobaric vapor-liquid equilibria were obtained for the water + 2-propanol system at 30, 60, and 100 kPa. The activity coefficients were found to be thermodynamically consistent by the methods of Van Ness-Byer-Gibbs, Kojima, and Wisniak. The data were correlated with five liquid phase activity coefficient models (Margules, Van Laar, Wilson, NRTL, and UNIQUAC).

  14. Record water temperatures in Chesapeake Bay The temperature of water in the Chesapeake Bay changes with the season warmer in summer and colder in

    E-Print Network [OSTI]

    for this year. The heavy BLACK line is the average of all water termperaturesRecord water temperatures in Chesapeake Bay The temperature of water. We all remember cold winters (or the last warm winter) and the Bay water

  15. Vapor spill monitoring method

    DOE Patents [OSTI]

    Bianchini, Gregory M. (Livermore, CA); McRae, Thomas G. (Livermore, CA)

    1985-01-01T23:59:59.000Z

    Method for continuous sampling of liquified natural gas effluent from a spill pipe, vaporizing the cold liquified natural gas, and feeding the vaporized gas into an infrared detector to measure the gas composition. The apparatus utilizes a probe having an inner channel for receiving samples of liquified natural gas and a surrounding water jacket through which warm water is flowed to flash vaporize the liquified natural gas.

  16. Water adsorption at high temperature on core samples from The Geysers geothermal field

    SciTech Connect (OSTI)

    Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

    1998-06-01T23:59:59.000Z

    The quantity of water retained by rock samples taken from three wells located in The Geysers geothermal field, California, was measured at 150, 200, and 250 C as a function of steam pressure in the range 0.00 {le} p/p{sub 0} {le} 0.98, where p{sub 0} is the saturated water vapor pressure. Both adsorption and desorption runs were made in order to investigate the extent of the hysteresis. Additionally, low temperature gas adsorption analyses were made on the same rock samples. Mercury intrusion porosimetry was also used to obtain similar information extending to very large pores (macropores). A qualitative correlation was found between the surface properties obtained from nitrogen adsorption and the mineralogical and petrological characteristics of the solids. However, there was no direct correlation between BET specific surface areas and the capacity of the rocks for water adsorption at high temperatures. The hysteresis decreased significantly at 250 C. The results indicate that multilayer adsorption, rather than capillary condensation, is the dominant water storage mechanism at high temperatures.

  17. Water adsorption at high temperature on core samples from The Geysers geothermal field

    SciTech Connect (OSTI)

    Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

    1998-06-01T23:59:59.000Z

    The quantity of water retained by rock samples taken from three wells located in The Geysers geothermal reservoir, California, was measured at 150, 200, and 250 C as a function of pressure in the range 0.00 {le} p/p{sub 0} {le} 0.98, where p{sub 0} is the saturated water vapor pressure. Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and the extent of the hysteresis. Additionally, low temperature gas adsorption analyses were performed on the same rock samples. Nitrogen or krypton adsorption and desorption isotherms at 77 K were used to obtain BET specific surface areas, pore volumes and their distributions with respect to pore sizes. Mercury intrusion porosimetry was also used to obtain similar information extending to very large pores (macropores). A qualitative correlation was found between the surface properties obtained from nitrogen adsorption and the mineralogical and petrological characteristics of the solids. However, there is in general no proportionality between BET specific surface areas and the capacity of the rocks for water adsorption at high temperatures. The results indicate that multilayer adsorption rather than capillary condensation is the dominant water storage mechanism at high temperatures.

  18. Perspectives on Temperature in the Pacific Northwest's Fresh Waters

    SciTech Connect (OSTI)

    Coutant, C.C.

    1999-06-01T23:59:59.000Z

    This report provides a perspective on environmental water temperatures in the Pacific Northwest as they relate to the establishment of water temperature standards by the state and their review by the US Environmental Protection Agency. It is a companion to other detailed reviews of the literature on thermal effects on organisms important to the region. Many factors, both natural and anthropogenic, affect water temperatures in the region. Different environmental zones have characteristic temperatures and mechanisms that affect them. There are specific biotic adaptations to environmental temperatures. Life-cycle strategies of salmonids, in particular, are attuned to annual temperature patterns. Physiological and behavioral requirements on key species form the basis of present water temperature criteria, but may need to be augmented with more concern for environmental settings. There are many issues in the setting of standards, and these are discussed. There are also issues in compliance. Alternative temperature-regulating mechanisms are discussed, as are examples of actions to control water temperatures in the environment. Standards-setting is a social process for which this report should provide background and outline options, alternatives, limitations, and other points for discussion by those in the region.

  19. Thermodynamic Models for Vapor-Liquid Equilibria of Nitrogen+Oxygen+Carbon Dioxide at Low Temperatures

    E-Print Network [OSTI]

    Vrabec, J; Buchhauser, U; Meyer-Pittroff, R; Hasse, H

    2009-01-01T23:59:59.000Z

    For the design and optimization of CO2 recovery from alcoholic fermentation processes by distillation, models for vapor-liquid equilibria (VLE) are needed. Two such thermodynamic models, the Peng-Robinson equation of state (EOS) and a model based on Henry's law constants, are proposed for the ternary mixture N2+O2+CO2. Pure substance parameters of the Peng-Robinson EOS are taken from the literature, whereas the binary parameters of the Van der Waals one-fluid mixing rule are adjusted to experimental binary VLE data. The Peng-Robinson EOS describes both binary and ternary experimental data well, except at high pressures approaching the critical region. A molecular model is validated by simulation using binary and ternary experimental VLE data. On the basis of this model, the Henry's law constants of N2 and O2 in CO2 are predicted by molecular simulation. An easy-to-use thermodynamic model, based on those Henry's law constants, is developed to reliably describe the VLE in the CO2-rich region.

  20. Collaborative Research: The Influence of Cloud Microphysics and Radiation on the Response of Water Vapor and Clouds to Climate Change

    SciTech Connect (OSTI)

    Dr. Kerry Emanuel; Michael J. Iacono

    2011-06-28T23:59:59.000Z

    Uncertainties in representing the atmospheric water cycle are major obstacles to an accurate prediction of future climate. This project focused on addressing some of these uncertainties by implementing new physics for convection and radiation into the NCAR climate model. To better understand and eventually better represent these processes, we modified CAM3.5 to use the convection and cloud schemes developed by the Massachusetts Institute of Technology (MIT) and the RRTMG rapid radiation code for global models developed by Atmospheric and Environmental Research, Inc. (AER). The impact of the new physics on the CAM3.5 simulation of convection on diurnal and intra-seasonal scales, intra-seasonal oscillations and the distribution of water vapor has been investigated. The effect of the MIT and AER physics also has been tested in the Weather Research and Forecasting (WRF) regional forecast model. It has been found that the application of the AER radiation and MIT convection produces significant improvements in the modeled diurnal cycle of convection, especially over land, in the NCAR climate model. However, both the standard CAM3.5 (hereinafter STD) and the modified CAM3.5 with the new physics (hereinafter MOD) are still unable to capture the proper spectrum and propagating characteristics of the intra-seasonal oscillations (ISOs). The new physics methods modify, but do not substantially improve, the distribution of upper tropospheric water vapor relative to satellite measurements.

  1. Temperatures, heat flow, and water chemistry from drill holes...

    Open Energy Info (EERE)

    Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

  2. The Influence of Cloud Microphysics and Radiation on the Response of Water Vapor and Clouds to Climate Change

    SciTech Connect (OSTI)

    Emanuel, Kerry; Iacono, Michael J.

    2010-11-11T23:59:59.000Z

    Uncertainties in representing the atmospheric water cycle are major obstacles to the accurate prediction of future climate. This project focused on addressing some of these uncertainties by implementing new physics for convection and radiation into the NCAR Community Atmosphere Model (CAM). To better understand and eventually better represent these processes in this major national climate model, we modified CAM3.5 to use the convection and cloud schemes developed by the Massachusetts Institute of Technology (MIT) and the RRTMG rapid radiation code for global climate models developed by Atmospheric and Environmental Research, Inc. (AER). The impact of the new physics on the CAM3.5 simulation of convection on diurnal and intra-seasonal scales, on intra-seasonal oscillations and on the distribution of water vapor has been investigated. In addition, the MIT and AER physics packages have been incorporated and tested in combination within the Weather Research and Forecasting (WRF) regional forecast model for the purpose of evaluating and improving convective and radiative processes on time scales appropriate to weather simulations. It has been found that the application of the AER radiation and MIT convection produces significant improvements in the modeled diurnal cycle of convection, especially over land, in the NCAR climate model. However, both the standard CAM3.5 and the modified CAM3.5 with the new physics are unable to capture the proper spectrum and propagating characteristics of dynamical intra-seasonal oscillations such as the Madden-Julian Oscillation. In addition, it has been shown that the new physics methods modify, but do not substantially improve, the distribution of upper tropospheric water vapor in CAM as established through the comparison of modeled and observed satellite radiances. This suggests that continuing regional discrepancies in water vapor amounts in the climate model may not be solely related to convective or radiative processes. The major results of this project have been described in more detail in a journal article titled â??The Impacts of AER Radiation and MIT Convection on the Water Cycle Simulated by CAM3.5â?ť that will be submitted for publication during Fall 2010.

  3. Water Recycling removal using temperature-sensitive hydronen

    SciTech Connect (OSTI)

    Rana B. Gupta

    2002-10-30T23:59:59.000Z

    The overall objective of this project was to study the proposed Water Recycling/Removal Using Temperature-Sensitive Hydrogels. The main element of this technology is the design of a suitable hydrogel that can perform needed water separation for pulp and paper industry. The specific topics studied are to answer following questions: (a) Can water be removed using hydrogel from large molecules such as lignin? (b) Can the rate of separation be made faster? (c) What are the molecular interactions with hydrogel surface? (d) Can a hydrogel be designed for a high ionic strength and high temperature? Summary of the specific results are given.

  4. Water heat pipe frozen startup and shutdown transients with internal temperature, pressure and visual observations

    E-Print Network [OSTI]

    Reinarts, Thomas Raymond

    1989-01-01T23:59:59.000Z

    with Internal Temperature, Pressure and Visual Observations. IDecember 1989) Thomas Raymond Reinarts, B. S. , Texas A8M University Chair of Advisory Committee: Dr. Frederick Best In a set of transient heat pipe experiments vapor space and wick... LIST OF TABLES Page Table 1. Outer Aluminum Wall Temperatures Observed and Predicted 79 Table 2. Summary of Measured Dryout, Rewet and Melting Front 126 Velocities LIST OF FIGURES Figure 1. Typical Heat Pipe Diagram Figure 2. Curvature of Vapor...

  5. DOE/SC-ARM/TR-122 G-Band Vapor Radiometer Precipitable Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)38232 Revision2 G-Band Vapor

  6. DOE/SC-ARM/TR-128 Tower Water-Vapor Mixing Ratio Value-Added

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)38232 Revision2 G-Band Vapor48

  7. Isothermal vapor-liquid equilibrium of 1,2-dibromoethane + tetrachlorolmethane at temperatures between 283. 15 and 323. 15 K

    SciTech Connect (OSTI)

    Perez, P.; Valero, J.; Gracia, M. (Univ. de Zaragoza (Spain). Dept. de Quimica Organica-Quimica Fisica)

    1994-10-01T23:59:59.000Z

    Vapor pressures of 1, 2-dibromoethane + tetrachlormethane, at 5 K interval between 283.15 and 323.15 K, were measured by a static method. Activity coefficients and excess molar Gibbs free energies G[sup E] were calculated by Barker's method. Reduction of the vapor pressure results is well represented by the Redlich-Kister, Wilson, and NRTL correlations.

  8. IMPACT OF WATER TEMPERATURE ON ZEBRA MUSSEL MORTALITY

    SciTech Connect (OSTI)

    Daniel P. Molloy

    2002-08-07T23:59:59.000Z

    These tests conducted this past quarter have indicated that the bacterium Pseudomonas fluorescens strain CL0145A is effective at killing zebra mussels at water temperatures ranging from 7 to 23 C. Percent kill will likely be somewhat lower at very low temperatures, e.g., 7 C, but even at such low temperatures high mussel kill can still be achieved (>70% kill). This is significant because the development of a zebra mussel control method that is efficacious in such a wide range of temperatures broadens its usefulness as a potential commercial product.

  9. To estimate vapor pressure easily

    SciTech Connect (OSTI)

    Yaws, C.L.; Yang, H.C. (Lamar Univ., Beaumont, TX (USA))

    1989-10-01T23:59:59.000Z

    Vapor pressures as functions of temperature for approximately 700 major organic chemical compounds are given. The tabulation also gives the temperature range for which the data are applicable. Minimum and maximum temperatures are denoted by TMIN and TMAX. The Antoine equation that correlates vapor pressure as a function of temperature is described. A representative comparison of calculated and actual data values for vapor pressure is shown for ethyl alcohol. The coefficient tabulation is based on both literature (experimental data) and estimated values.

  10. Design of a high temperature hot water central heating system

    SciTech Connect (OSTI)

    Beaumont, E.L.; Johnson, R.C.; Weaver, J.M.

    1981-11-01T23:59:59.000Z

    The paper reviews the conceptual design of a central heating system at Los Alamos Scientific Laboratory. The resource considered for this heating system design was hot dry rock geothermal energy. Design criteria were developed to ensure reliability of energy supply, to provide flexibility for adaptation to multiple energy resources, to make optimum use of existing equipment and to minimize reinvestment cost. A variable temperature peaking high temperature water system was selected for this purpose.

  11. The Vaporization Enthalpies and Vapor Pressures of Some Primary Amines of Pharmaceutical Importance by Correlation Gas

    E-Print Network [OSTI]

    Chickos, James S.

    by Correlation Gas Chromatography Chase Gobble, Nigam Rath, and James Chickos* Department of Chemistry Information ABSTRACT: Vapor pressures, vaporization, and sublimation enthalpies of several pharmaceuticals and boiling temperatures when available. Sublimation enthalpies and vapor pressures are also evaluated for 1

  12. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 102, NO. D24, PAGES 29,737-29,745, DECEMBER 26, 1997 Atmospheric aerosol and water vapor characteristics over north

    E-Print Network [OSTI]

    Atmospheric aerosol and water vapor characteristics over north central Canada during BOREAS B. L. Markham, J typically0.09 and 0.34 cm, respectively.Size distributionsderivedfrom solar almucantarmeasurementsshowtheHughesSTXCorporation,Greenbelt,Maryland. 2Formerlyat HSTX/GSFC-NASA,Greenbelt,Maryland. Copyright1997by the American

  13. Ocean Water Vapor and Cloud Burden Trends Derived from the Topex Microwave Radiometer

    E-Print Network [OSTI]

    Ruf, Christopher

    algorithm is a log-linear regression algorithm with coefficients that are stratified by wind speed and water. TMR OBSERVATIONS The TMR flew in a 10-day non-sun-synchronous exact repeat orbit with an inclination

  14. Recovery of Water from Boiler Flue Gas

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

    2008-09-30T23:59:59.000Z

    This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

  15. Predicting CO2-water interfacial tension under pressure and temperature conditions of geologic CO2 storage

    E-Print Network [OSTI]

    Nielsen, L.C.

    2013-01-01T23:59:59.000Z

    liquid/vapor interface of SPC/E water. J. Phys. Chem. 100,dioxide mixtures described by the SPC/E and EPM2 models. (and water oxygen is denoted by O SPC/E and O TIP for SPC/E (

  16. Distribution of Soil Temperature Regimes and Climate Change in the Mojave Desert Region

    E-Print Network [OSTI]

    Bai, Yanying

    2009-01-01T23:59:59.000Z

    precipitation, and water vapor on diurnal temperature range.Idaho, United States. Water Resour. Res. 37: 2843-2846.and J. Bouma. 1994. Modelling water and chemical fluxes as

  17. Technologies for Upgrading Light Water Reactor Outlet Temperature

    SciTech Connect (OSTI)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    2013-07-01T23:59:59.000Z

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

  18. Isobaric vapor-liquid equilibria for binary and ternary systems composed of water, 1-propanol, and 2-propanol at 100 kPa

    SciTech Connect (OSTI)

    Gabaldon, C.; Marzal, P.; Monton, J.B.; Rodrigo, M.A. [Univ. de Valencia (Spain). Dept. de Ingenieria Quimica] [Univ. de Valencia (Spain). Dept. de Ingenieria Quimica

    1996-11-01T23:59:59.000Z

    Isobaric vapor-liquid equilibria data were obtained for the 2-propanol + 1-propanol binary system and the water + 1-propanol + 2-propanol ternary system at 100 kPa. The data were found to be thermodynamically consistent according to the Van Ness-Byer-Gibbs method for the binary system and according to the McDermott-Ellis method for the ternary one. The binary system is well represented by assuming ideal behavior. The binary interaction parameters obtained from this and previous work are used to predict the vapor-liquid equilibrium for the ternary system using the UNIQUAC, NRTL, and Wilson models. The ternary system is well predicted from binary data.

  19. Vaporization of zinc from scrap

    SciTech Connect (OSTI)

    Ozturk, B.; Fruehan, R.J. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1996-12-31T23:59:59.000Z

    The rate of zinc vaporization from galvanized scrap was measured using a thermogravimetric apparatus along with chemical analysis. It is found that the rate of zinc vaporization is very fast in nitrogen and carbon monoxide atmospheres at temperatures higher than 950 C. At lower temperature rate decreases with decreasing temperature and is controlled by the gas phase mass transport. The simultaneous oxidation and vaporization of zinc occurs when the samples were heated in carbon dioxide and air. The current experimental results indicate that almost all of the zinc from scrap vaporizes during the heating process in a very short period of time after the temperature reaches above 850 C.

  20. Extremely Luminous Water Vapor Emission from a Type 2 Quasar at Redshift z = 0.66

    E-Print Network [OSTI]

    Richard Barvainis; Robert Antonucci

    2005-06-10T23:59:59.000Z

    A search for water masers in 47 Sloan Digital Sky Survey Type 2 quasars using the Green Bank Telescope has yielded a detection at a redshift of z = 0.660. This maser is more than an order of magnitude higher in redshift than any previously known and, with a total isotropic luminosity of 23,000 L_sun, also the most powerful. The presence and detectability of water masers in quasars at z ~ 0.3-0.8 may provide a better understanding of quasar molecular tori and disks, as well as fundamental quasar and galaxy properties such as black hole masses. Water masers at cosmologically interesting distances may also eventually provide, via direct distance determinations, a new cosmological observable for testing the reality and properties of dark energy, currently inferred primarily through Type 1a supernova measurements.

  1. Wavelength-modulation laser hygrometer for ultrasensitive detection of water vapor in

    E-Print Network [OSTI]

    - bines wavelength-modulation absorption spectros- copy WMS 12­16 that uses near-infrared InGaAsP diode is measured by use of a near-infrared diode laser and wavelength-modulation absorption spectroscopy. Humidity in the spectral regions of strongest water absorption. Sensitive single-mode cavity ring-down techniques based

  2. Design manual for high temperature hot water and steam systems

    SciTech Connect (OSTI)

    Cofield, R.E. Jr.

    1984-01-01T23:59:59.000Z

    The author presents aspects of high temperature hot water and steam generating systems. It covers all the calculations that must be made for sizing and then selecting the equipment that will make up an energy system. The author provides essential information on loan analysis, types of fuel, storage requirements, handling facilities, waste disposal, HVAC needs, and back-up systems. Also included are the calculations needed for determining the size of compressors, air pollution devices, fans, filters, and other supplementary equipment.

  3. Measurements of the Infrared SpectraLines of Water Vapor at Atmospheric Temperatures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImportsBG4,Measurements of NO 2

  4. Warm water vapor envelope in the supergiants alf Ori and alf Her and its effects on the apparent size from the near-infrared to the mid-infrared

    E-Print Network [OSTI]

    Keiichi Ohnaka

    2004-06-02T23:59:59.000Z

    We present a possible interpretation for the increase of the angular diameter of the supergiants alf Ori (M1-2 Ia-Ibe) and alf Her (M5 Ib-II) from the K band to the 11 micron region and the high-resolution 11 micron spectra without any salient spectral features revealed by Weiner et al. (2003). The angular diameters as well as the high-resolution spectra of alf Ori and alf Her obtained in the 11 micron region can be reproduced by a warm water vapor envelope, whose presence in alf Ori was revealed by Tsuji (2000) based on the reanalysis of the near-infrared data obtained with the Stratoscope II. While prominent absorption due to H2O can be expected from such a dense, warm water vapor envelope, the absorption lines can be filled in by emission from the extended part of the envelope. This effect leads to a significant weakening of the H2O lines in the 11 micron region, and makes the observed spectra appear to be rather featureless and continuum-like. However, the emission due to H2O lines from the extended envelope leads to an increase of the apparent size in this spectral region. The observed angular diameter and the high resolution spectra of alf Ori and alf Her in the 11 micron region can be best interpreted by the water vapor envelope extending to 1.4--1.5 Rstar, with a temperature of about 2000 K and a column density of H2O of the order of 10^20 cm^-2.

  5. Pitting resistance of Alloy 800 as a function of temperature and prefilming in high temperature water

    SciTech Connect (OSTI)

    Stellwag, B. [Siemens Power Generation, Erlangen (Germany)

    1995-12-31T23:59:59.000Z

    The pitting behavior of Alloy 800 was investigated as a function of temperature and prefilming in high temperature water. The pitting behavior was characterized in terms of the pitting potential and the pit density. The pitting potential decreases with increasing temperature and chloride activity. Prefilming of test coupons over a time period between 100 and 5,000 hours in ammoniated water at 300 C has no apparent influence on the pitting potential at room temperature, 180 C and 300 C. However, the number of pits in prefilmed coupons is much higher than in coupons covered with an air passive layer. The effect of prefilming on pit nucleation was investigated in more detail with regard to a model and test methods developed by Bianchi and co-workers. Density of pits in prefilmed coupons is at least one order of magnitude higher than in air passive coupons. Maximum pit density was measured after a prefilming period of 1 00 hours. The effect is discussed in terms of Bianchi`s model and in terms of features of passive films. It is outlined that the initially amorphous metastable passive film on Alloy 800 becomes crystalline at increased temperatures. Crystallization induces lattice defects, such as dislocations and grain boundaries, in the passive film. The film grows and slowly transforms into a thick oxide layer. The transformation process is associated with enhanced susceptibility to pit nucleation.

  6. Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols at the US Southern Great Plains Climate Study Site

    SciTech Connect (OSTI)

    Goldsmith, J.E.M.; Blair, F.H.; Bisson, S.E.

    1997-12-31T23:59:59.000Z

    There are clearly identified scientific requirements for continuous profiling of atmospheric water vapor at the Department of Energy, Atmospheric Radiation Measurement program, Southern Great Plains CART (Cloud and Radiation Testbed) site in northern Oklahoma. Research conducted at several laboratories has demonstrated the suitability of Raman lidar for providing measurements that are an excellent match to those requirements. We have developed and installed a ruggedized Raman lidar system that resides permanently at the CART site, and that is computer automated to eliminate the requirements for operator interaction. In addition to the design goal of profiling water vapor through most of the troposphere during nighttime and through the boundary layer during daytime, the lidar provides quantitative characterizations of aerosols and clouds, including depolarization measurements for particle phase studies.

  7. Synthesis of SiO{sub 2}/?-SiC/graphite hybrid composite by low temperature hot filament chemical vapor deposition

    SciTech Connect (OSTI)

    Zhang, Zhikun; Bi, Kaifeng; Liu, Yanhong; Qin, Fuwen; Liu, Hongzhu [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Bian, Jiming, E-mail: jmbian@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China) [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Zhang, Dong [New Energy Source Research Center of Shenyang Institute of Engineering, Shengyang 110136 (China)] [New Energy Source Research Center of Shenyang Institute of Engineering, Shengyang 110136 (China); Miao, Lihua [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China) [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Department of Computer and Mathematical Basic Teaching, Shenyang Medical College, Shenyan 110034 (China)

    2013-11-18T23:59:59.000Z

    ?-SiC thin films were synthesized directly on graphite by hot filament chemical vapor deposition at low temperature. SiH{sub 4} diluted in hydrogen was employed as the silicon source, while graphite was functioned as both substrate and carbon source for the as-grown ?-SiC films. X-ray diffraction and Fourier transform infrared analysis indicate that SiO{sub 2}/?-SiC/graphite hybrid composite was formed after post annealing treatment, and its crystalline quality can be remarkably improved under optimized annealing conditions. The possible growth mechanism was proposed based on in situ etching of graphite by reactive hydrogen radicals at the atomic level.

  8. Properties of zinc selenide grown by chemical vapor transport and its application to room-temperature radiation detection

    SciTech Connect (OSTI)

    Brunett, B.A.; Toney, J.E.; Schlesinger, T.E. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Yoon, H.; Goorsky, M.S. [Univ. of California, Los Angeles, CA (United States). Dept. of Materials Science and Engineering; Schieber, M.; James, R.B. [Sandia National Labs., Livermore, CA (United States); Rudolph, P. [Inst. fuer KrystallZuechtung, Berlin (Germany)

    1998-12-31T23:59:59.000Z

    The authors have characterized ZnSe material grown by chemical vapor transport in iodine using triple-axis X-ray diffraction (TAD), photo-induced current transient spectroscopy (PICTS), photoluminescence (PL), current-voltage measurements and gamma-ray spectroscopy. The material was found to have inadequate carrier transport for nuclear spectrometer use, but there was a discernible difference in performance between crystals which could be correlated with crystallinity as determined by the TAD rocking curves.

  9. Water mist injection in oil shale retorting

    DOE Patents [OSTI]

    Galloway, T.R.; Lyczkowski, R.W.; Burnham, A.K.

    1980-07-30T23:59:59.000Z

    Water mist is utilized to control the maximum temperature in an oil shale retort during processing. A mist of water droplets is generated and entrained in the combustion supporting gas flowing into the retort in order to distribute the liquid water droplets throughout the retort. The water droplets are vaporized in the retort in order to provide an efficient coolant for temperature control.

  10. New Polymeric Proton Conductors for Water-free and High-temperature...

    Broader source: Energy.gov (indexed) [DOE]

    New Polymeric Proton Conductors for Water-free and High-temperature Fuel Cells New Polymeric Proton Conductors for Water-free and High-temperature Fuel Cells Presentation on New...

  11. New Polymeric Proton Conductors for Water-free and High-temperature...

    Broader source: Energy.gov (indexed) [DOE]

    for water-free and high temperature operation. - Measure conductivity, mechanicalthermal properties of Nafion and Polyether polyelectrolytes doped with imidazoles....

  12. Diagnosis of Solar Water Heaters Using Solar Storage Tank Surface Temperature Data: Preprint

    SciTech Connect (OSTI)

    Burch, J.; Magnuson, L.; Barker, G.; Bullwinkel, M.

    2009-04-01T23:59:59.000Z

    Study of solar water heaters by using surface temperature data of solar storage tanks to diagnose proper operations.

  13. Improving Managed Environmental Water Use: Shasta River Flow and Temperature Modeling

    E-Print Network [OSTI]

    Lund, Jay R.

    i Improving Managed Environmental Water Use: Shasta River Flow and Temperature Modeling By SARAH and perhaps reduce some water management conflicts. Additional research for managing environmental water use manage water supplies and demands to increase water use efficiency through conservation, water markets

  14. On the Diurnal Cycle of Deep Convection, High-Level Cloud, and Upper Troposphere Water Vapor in the Multiscale Modeling Framework

    SciTech Connect (OSTI)

    Zhang, Yunyan; Klein, Stephen A.; Liu, Chuntao; Tian, Baijun; Marchand, Roger T.; Haynes, J. M.; McCoy, Renata; Zhang, Yuying; Ackerman, Thomas P.

    2008-08-22T23:59:59.000Z

    The Multiscale Modeling Framework (MMF), also called ‘‘superparameterization’’, embeds a cloud-resolving model (CRM) at each grid column of a general circulation model to replace traditional parameterizations of moist convection and large-scale condensation. This study evaluates the diurnal cycle of deep convection, high-level clouds, and upper troposphere water vapor by applying an infrared (IR) brightness temperature (Tb) and a precipitation radar (PR) simulator to the CRM column data. Simulator results are then compared with IR radiances from geostationary satellites and PR reflectivities from the Tropical Rainfall Measuring Mission (TRMM). While the actual surface precipitation rate in the MMF has a reasonable diurnal phase and amplitude when compared with TRMM observations, the IR simulator results indicate an inconsistency in the diurnal anomalies of high-level clouds between the model and the geostationary satellite data. Primarily because of its excessive high-level clouds, the MMF overestimates the simulated precipitation index (PI) and fails to reproduce the observed diurnal cycle phase relationships among PI, high-level clouds, and upper troposphere relative humidity. The PR simulator results show that over the tropical oceans, the occurrence fraction of reflectivity in excess of 20 dBZ is almost 1 order of magnitude larger than the TRMM data especially at altitudes above 6 km. Both results suggest that the MMF oceanic convection is overactive and possible reasons for this bias are discussed. However, the joint distribution of simulated IR Tb and PR reflectivity indicates that the most intense deep convection is found more often over tropical land than ocean, in agreement with previous observational studies.

  15. High temperature mass spectrometric investigation of the equilibrium vapor composition over three-component mixtures of CsI, NaI, and DyI/sub 3/

    SciTech Connect (OSTI)

    Kaposi, O.; Szilagyi, J.; Lelik, L.

    1984-10-01T23:59:59.000Z

    The molar composition of the saturated vapor phase over ternary iodides of CsI, NaI, and DyI/sub 3/ at 860 to 1060 K was investigated by means of a mass spectrometer equipped with a Knudsen cell evaporator system. Fragmentation patterns and appearance potentials for the most intense ions were determined. Besides the previously detected fragments in the equilibrium vapor above the two-component systems, fragment ions from the complex molecules NaCsDyI/sub 5/, Na/sub 2/CsDyI/sub 6/, NaCs/sub 2/DyI/sub 6/, and Na/sub 3/Cs/sub 2/DyI/sub 8/ were found. Ion current vs temperature data yielded heats of sublimation: ..delta..H/sub s/ (NaCsDyI/sub 5/)/sub 960K/ = 320 +/- 13 kJ/mol; ..delta..H/sub s/ (Na/sub 2/CsDyI/sub 6/)/sub 960K/ = 325 +/- 11 kJ/mol; ..delta..H/sub s/ (NaCs/sub 2/DyI/sub 6/)/sub 960K/ = 348 +/- 15 kJ/mol; and ..delta..H/sub s/ (Na/sub 3/Cs/sub 2/DyI/sub 8/)/sub 960K/ = 366 +/- 17 kJ/mol. From the various high-temperature equilibrium reactions, one may calculate the following heats of formation: ..delta..H/sub f/ (NaCsDyI/sub 5/)/sub g/ = -863 +/- 23 kJ/mol; ..delta..H/sub f/ (Na/sub 2/CsDyI/sub 6/)/sub g/ = -1170 +/- 31 kJ/mol; ..delta..H/sub f/ (NaCs/sub 2/DyI/sub 6/)/sub g/ = -1235 +/- 33 kJ/mol; and ..delta..H/sub f/ (Na/sub 3/Cs/sub 2/DyI/sub 8/) = -1806 +/- 17 kJ/mol.

  16. The effect of water content, cooling rate, and growth temperature on the freezing temperature of 4 Tillandsia species

    E-Print Network [OSTI]

    Hagar, Christopher Flint

    1990-01-01T23:59:59.000Z

    the exotherm initiation temperatures (EIT) of leaf sections. The effect of 2 growth temperatures (5 and 25oC) on the absolute water content and EIT of T. recurvata and T. usneoides was also determined. All p * * pt T. mb'1 ', f o t ld temperatures at 80... used to detect ice formation in plant tissues by exotherm detection. An electronic device is used to measure the heat released (exotherm) when water freezes. From this information, the freezing and supercooling temperatures of plant tissues can...

  17. Effects of pressure, temperature, and hydrogen during graphene growth on SiC(0001) using propane-hydrogen chemical vapor deposition

    SciTech Connect (OSTI)

    Michon, A.; Vezian, S.; Roudon, E.; Lefebvre, D.; Portail, M. [CNRS-CRHEA, Rue Bernard Gregory, 06560 Valbonne (France)] [CNRS-CRHEA, Rue Bernard Gregory, 06560 Valbonne (France); Zielinski, M.; Chassagne, T. [NOVASiC, Savoie Technolac, Arche Bat 4, BP267, 73375 Le Bourget du Lac (France)] [NOVASiC, Savoie Technolac, Arche Bat 4, BP267, 73375 Le Bourget du Lac (France)

    2013-05-28T23:59:59.000Z

    Graphene growth from a propane flow in a hydrogen environment (propane-hydrogen chemical vapor deposition (CVD)) on SiC differentiates from other growth methods in that it offers the possibility to obtain various graphene structures on the Si-face depending on growth conditions. The different structures include the (6{radical}3 Multiplication-Sign 6{radical}3)-R30 Degree-Sign reconstruction of the graphene/SiC interface, which is commonly observed on the Si-face, but also the rotational disorder which is generally observed on the C-face. In this work, growth mechanisms leading to the formation of the different structures are studied and discussed. For that purpose, we have grown graphene on SiC(0001) (Si-face) using propane-hydrogen CVD at various pressure and temperature and studied these samples extensively by means of low energy electron diffraction and atomic force microscopy. Pressure and temperature conditions leading to the formation of the different structures are identified and plotted in a pressure-temperature diagram. This diagram, together with other characterizations (X-ray photoemission and scanning tunneling microscopy), is the basis of further discussions on the carbon supply mechanisms and on the kinetics effects. The entire work underlines the important role of hydrogen during growth and its effects on the final graphene structure.

  18. Numerical Analysis of Water Temperature Distribution in the Tank of ASHPWH it ha Cylindrical Condenser

    E-Print Network [OSTI]

    Wang, D.; Shan, S.; Wang, R.

    2006-01-01T23:59:59.000Z

    Air source heat pump water heaters (ASHPWH) are becoming increasingly popular for saving energy, protecting the environment and security purposes. The water temperature distribution in the tank is an important parameter for an ASHPWH. This paper...

  19. High temperature electrochemical corrosion rate probes for combustion environments

    SciTech Connect (OSTI)

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, Margaret; Eden, David A. (Intercorr International Inc.); Kane, Russell D. (Intercorr International Inc.); Eden, Dawn C. (Intercorr International Inc.)

    2004-01-01T23:59:59.000Z

    Electrochemical corrosion rate probes have been constructed and tested along with mass loss coupons in an air plus water vapor and a N2/O2/CO2 plus water vapor environment. Temperatures ranged from 200? to 700?C. Results show that electrochemical corrosion rates for ash-covered mild steel are a function of time, temperature and process environment. Correlation between the electrochemical and mass loss corrosion rates was poor.

  20. Room temperature "super-cooling" of water by interaction with hydrophobic groups in a lipidic gel

    E-Print Network [OSTI]

    water, reflecting greater occupancy of higher energy vibrational states. In pure water, hydrogen bonding state between 250K and 240K. (Tiny droplets of water have been shown to spontaneously freeze at aboutRoom temperature "super-cooling" of water by interaction with hydrophobic groups in a lipidic gel F

  1. Collective Hydrogen Bond Reorganization in Water Studied with Temperature-Dependent Ultrafast Infrared Spectroscopy

    E-Print Network [OSTI]

    Nicodemus, Rebecca A.

    We use temperature-dependent ultrafast infrared spectroscopy of dilute HOD in H2O to study the picosecond reorganization of the hydrogen bond network of liquid water. Temperature-dependent two-dimensional infrared (2D IR), ...

  2. New Polymeric Proton Conductors for Water-free and High-temperature Fuel Cells

    Broader source: Energy.gov [DOE]

    Presentation on New Polymeric Proton Conductors for Water-free and High-temperature Fuel Cells to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  3. A Phase Diagram of Low Temperature Epitaxial Silicon Grown by Hot-wire Chemical Vapor Deposition for Photovoltaic Devices

    E-Print Network [OSTI]

    Atwater, Harry

    for Photovoltaic Devices Christine Esber Richardson, Brendan M. Kayes, Matthew J. Dicken, and Harry A. Atwater-grained templates is one strategy for the fast, low- temperature growth of large-grained films with hydrogen). Figure 1: Schematic of proposed photovoltaic device incorporating epitaxial Si growth on a large

  4. Gasoline vapor recovery

    SciTech Connect (OSTI)

    Lievens, G.; Tiberi, T.P.

    1993-06-22T23:59:59.000Z

    In a gasoline distribution network wherein gasoline is drawn from a gasoline storage tank and pumped into individual vehicles and wherein the gasoline storage tank is refilled periodically from a gasoline tanker truck, a method of recovering liquid gasoline from gasoline vapor that collects in the headspace of the gasoline storage tank as the liquid gasoline is drawn therefrom, said method comprising the steps of: (a) providing a source of inert gas; (b) introducing inert gas into the gasoline storage tank as liquid gasoline is drawn therefrom so that liquid gasoline drawn from the tank is displaced by inert gas and gasoline vapor mixes with the inert gas in the headspace of the tank; (c) collecting the inert gas/gasoline vapor mixture from the headspace of the gasoline storage tank as the tank is refilled from a gasoline tanker truck; (d) cooling the inert gas/gasoline vapor mixture to a temperature sufficient to condense the gasoline vapor in the mixture to liquid gasoline but not sufficient to liquify the inert gas in the mixture; (e) separating the condensed liquid gasoline from the inert gas; and delivering the condensed liquid gasoline to a remote location for subsequent use.

  5. GROUND WATER USE FOR COOLING: ASSOCIATED AQUIFER TEMPERATURE CHANGES

    E-Print Network [OSTI]

    Lippmann, Marcelo J.

    2012-01-01T23:59:59.000Z

    steam-electric power plants, large voluMes of surface waters are used for cooling the planes condensers

  6. Influence of Sea Surface Temperature on Humidity and Temperature in the Outflow of Tropical Deep Convection

    E-Print Network [OSTI]

    Johnson, Richard H.

    -Service Aircraft (MOZAIC) project are analyzed in the vicinity of deep convective outflow to study the variationsInfluence of Sea Surface Temperature on Humidity and Temperature in the Outflow of Tropical Deep upper-tropospheric temperature and humidity by the Mea- surement of Ozone and Water Vapor by Airbus In

  7. Experimental Analysis of Water Based Drilling Fluid Aging Processes at High Temperature and High Pressure Conditions

    E-Print Network [OSTI]

    Zigmond, Brandon

    2012-10-19T23:59:59.000Z

    ! ! EXPERIMENTAL ANALYSIS OF WATER BASED DRILLING FLUID AGING PROCESSES AT HIGH TEMPERATURE AND HIGH PRESSURE CONDITIONS A Thesis by BRANDON SCOTT ZIGMOND Submitted to the Office of Graduate Studies of Texas A&M University... Temperature and High Pressure Conditions Copyright 2012 Brandon Scott Zigmond ! ! EXPERIMENTAL ANALYSIS OF WATER BASED DRILLING FLUID AGING PROCESSES AT HIGH TEMPERATURE AND HIGH PRESSURE CONDITIONS A Thesis by BRANDON SCOTT ZIGMOND Submitted...

  8. Review of High Temperature Water and Steam Cooled Reactor Concepts

    SciTech Connect (OSTI)

    Oka, Yoshiaki [Nuclear Engineering Research Laboratory, The University of Tokyo, 3-1, Hongo 7-Chome, Bunkyo-ku (Japan)

    2002-07-01T23:59:59.000Z

    This review summarizes design concepts of supercritical-pressure water cooled reactors (SCR), nuclear superheaters and steam cooled fast reactors from 1950's to the present time. It includes water moderated supercritical steam cooled reactor, SCOTT-R and SC-PWR of Westinghouse, heavy water moderated light water cooled SCR of GE, SCLWR and SCFR of the University of Tokyo, B-500SKDI of Kurchatov Institute, CANDU -X of AECL, nuclear superheaters of GE, subcritical-pressure steam cooled FBR of KFK and B and W, Supercritical-pressure steam cooled FBR of B and W, subcritical-pressure steam cooled high converter by Edlund and Schultz and subcritical-pressure water-steam cooled FBR by Alekseev. This paper is prepared based on the previous review of SCR2000 symposium, and some author's comments are added. (author)

  9. Water transport inside a single-walled carbon nanotube driven by temperature gradient

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Water transport inside a single-walled carbon nanotube driven by temperature gradient J. Shiomi mass transport of a water cluster inside a single-walled carbon nanotube (SWNT) with the diameter of about 1.4 nm. The influence of the non-equilibrium thermal environment on the confined water cluster has

  10. Vapor canister heater for evaporative emissions systems

    SciTech Connect (OSTI)

    Bishop, R.P.; Berg, P.G.

    1987-01-01T23:59:59.000Z

    Automotive evaporative emissions systems use a charcoal canister to store evaporative hydrocarobn emissions. These stored vapors are later purged and burned during engine operation. Under certain conditions the engine cannot completely purge the canister of the stored fuel vapors, which results in a decreased vapor storage capacity in the canister. A self-regulating PTC (Positive Temperature Coefficient) heater has been developed to warm the purge air as it enters the canister, in order to provide thermal energy for increased release of the vapors from charcoal sites. This paper describes the construction and operation of the vapor canister heater as it relates to improved evaporative emission system performance.

  11. NMR Studies on the Temperature-Dependent Dynamics of Confined Water

    E-Print Network [OSTI]

    Matthias Sattig; Stefan Reutter; Franz Fujara; Mayke Werner; Gerd Buntkowsky; Michael Vogel

    2014-07-16T23:59:59.000Z

    We use $^2$H NMR to study the rotational motion of supercooled water in silica pores of various diameters, specifically, in the MCM-41 materials C10, C12, and C14. Combination of spin-lattice relaxation, line-shape, and stimulated-echo analyses allows us to determine correlation times in very broad time and temperature ranges. For the studied pore diameters, 2.1-2.9 nm, we find two crossovers in the temperature-dependent correlation times of liquid water upon cooling. At 220-230 K, a first kink in the temperature dependence is accompanied by a solidification of a fraction of the confined water, implying that the observed crossover is due to a change from bulk-like to interface-dominated water dynamics, rather than to a liquid-liquid phase transition. Moreover, the results provide evidence that $\\alpha$ process-like dynamics is probed above the crossover temperature, whereas $\\beta$ process-like dynamics is observed below. At 180-190 K, we find a second change of the temperature dependence, which resembles that reported for the $\\beta$ process of supercooled liquids during the glass transition, suggesting a value of $T_g\\!\\approx\\!185$ K for interface-affected liquid water. In the high-temperature range, $T\\!>\\!225$ K, the temperature dependence of water reorientation is weaker in the smaller C10 pores than in the larger C12 and C14 pores, where it is more bulk-like, indicating a significant effect of the silica confinement on the $\\alpha$ process of water in the former 2.1 nm confinement. By contrast, the temperature dependence of water reorientation is largely independent of the confinement size and described by an Arrhenius law with an activation energy of $E_a\\!\\approx\\!0.5\\ $eV in the low-temperature range, $T\\!water.

  12. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOE Patents [OSTI]

    Riley, B.; Szreders, B.E.

    1988-04-26T23:59:59.000Z

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  13. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOE Patents [OSTI]

    Brian, Riley (Willimantic, CT); Szreders, Bernard E. (Oakdale, CT)

    1989-01-01T23:59:59.000Z

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  14. THERMODYNAMIC CONSIDERATIONS FOR THERMAL WATER SPLITTING PROCESSES AND HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect (OSTI)

    J. E. O'Brien

    2008-11-01T23:59:59.000Z

    A general thermodynamic analysis of hydrogen production based on thermal water splitting processes is presented. Results of the analysis show that the overall efficiency of any thermal water splitting process operating between two temperature limits is proportional to the Carnot efficiency. Implications of thermodynamic efficiency limits and the impacts of loss mechanisms and operating conditions are discussed as they pertain specifically to hydrogen production based on high-temperature electrolysis. Overall system performance predictions are also presented for high-temperature electrolysis plants powered by three different advanced nuclear reactor types, over their respective operating temperature ranges.

  15. Ground-water temperature fluctuations at Lyons Ferry Fish Hatchery, Washington

    SciTech Connect (OSTI)

    Oberlander, P.L.; Myers, D.A.

    1987-06-01T23:59:59.000Z

    The well field serving the Lyons Ferry Fish Hatchery has experienced reduced water temperatures following continued, periodic withdrawal of large volumes of water. In January 1985, the well field temperature was 49/sup 0/F, which is less than the optimal 52/sup 0/F for raising salmon and steelhead trout. The aquifer supplying the hatchery is in hydraulic and thermal connection with the Snake River and a flooded embayment of the Palouse River. Ground-water temperatures in the well field cycle on an annual basis in response to changes in surface water temperature and pumping rate. Numerical simulation of the well field, using a simplified mixing cell model, demonstrates the coupling of well field hydraulics and aquifer thermal response. Alternative pumping schedules indicate that it is feasible to adjust ground-water pumping to effectively store heat in the aquifer during the summer months when surface water temperatures are elevated. Sensitivity analysis of this model indicated that the primary controls of the system's thermal response are the volume of the aquifer assumed to contribute to the well field and temperature of the overlying surface water body.

  16. EFFECTS OF INCREASED WATER TEMPERATURE ON DAPHNIA PULEX

    E-Print Network [OSTI]

    et al.2). Cladocerans may be thermally affected by a thermal nuclear power plant where, along. Study methods simulated prolonged exposure to constant high tempera· tures in thermal discharges by industrial and power plants may increase the temperature of certain areas of the river (bays and eddies

  17. The Progress on Low-Cost, High-Quality, High-Temperature Superconducting Tapes Deposited by the Combustion Chemical Vapor Deposition Process

    SciTech Connect (OSTI)

    Shoup, S.S.; White, M.K.; Krebs, S.L.; Darnell, N.; King, A.C.; Mattox, D.S.; Campbell, I.H.; Marken, K.R.; Hong, S.; Czabaj, B.; Paranthaman, M.; Christen, H.M.; Zhai, H.-Y. Specht, E.

    2008-06-24T23:59:59.000Z

    The innovative Combustion Chemical Vapor Deposition (CCVD) process is a non-vacuum technique that is being investigated to enable next generation products in several application areas including high-temperature superconductors (HTS). In combination with the Rolling Assisted Biaxially Textured Substrate (RABiTS) technology, the CCVD process has significant promise to provide low-cost, high-quality lengths of YBCO coated conductor. Over 100 meter lengths of both Ni and Ni-W (3 at. Wt.%) substrates with a surface roughness of 12-18 nm were produced. The CCVD technology has been used to deposit both buffer layer coatings as well as YBCO superconducting layers. Buffer layer architecture of strontium titanate (SrTiO{sub 3}) and ceria (CeO{sub 2}) have been deposited by CCVD on textured nickel substrates and optimized to appropriate thicknesses and microstructures to provide templates for growing PLD YBCO with a J{sub c} of 1.1 MA/cm{sup 2} at 77 K and self-field. The CCVD buffer layers have been scaled to meter plus lengths with good epitaxial uniformity along the length. A short sample cut from one of the lengths enabled high critical current density PLD YBCO. Films of CCVD YBCO superconductors have been grown on single crystal substrates with critical current densities over 1 MA/cm{sup 2}. In addition, superconducting YBCO films with an I{sub c} of 60 A/cm-width (J{sub c} = 1.5 MA/cm{sup 2}) were grown on ORNL RABiTS (CeO{sub 2}/YSZ/Y{sub 2}O{sub 3}/Ni/Ni-3W) using CCVD process.

  18. Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating System

    E-Print Network [OSTI]

    Wu, Z.; Li, D.

    2006-01-01T23:59:59.000Z

    The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but also makes people feel more...

  19. RESEARCH ARTICLE Statistics of the surface temperature field of an air/water interface

    E-Print Network [OSTI]

    Saylor, John R.

    is the coefficient of thermal expansion, m is the kinematic viscosity, a is the thermal diffusivity, DTRESEARCH ARTICLE Statistics of the surface temperature field of an air/water interface under air

  20. Temperature effects on oil-water relative permeabilities for unconsolidated sands

    SciTech Connect (OSTI)

    Sufi, A.H.

    1983-03-01T23:59:59.000Z

    This study presents an experimental investigation of temperature effects on relative permeabilities of oil- water systems in unconsolidated sands. The fluids used in this study were refined mineral oil and distilled water. A rate sensitivity study was done on residual oil saturation and oil and water relative permeabilities. The temperature sensitivity study of relative permeabilities was conducted in 2 parts. The first was to investigate changes in residual oil saturation with temperature where the cores were 100% saturated with oil at the start of the waterflood. The second part continued the floods for a longer time until the water-cut was virtually 100%. Under these conditions, little change in residual oil saturation was observed with temperature. A study on viscous instabilities also was performed. This verified the existence of viscous fingers during waterflooding. It also was observed that tubing volume after the core could cause fingering, resulting in lower apparent breakthrough oil recoveries.

  1. Hydrogen Bond Rearrangements in Water Probed with Temperature-Dependent 2D IR

    E-Print Network [OSTI]

    Nicodemus, Rebecca A.

    We use temperature-dependent two-dimensional infrared spectroscopy (2D IR) of dilute HOD in H2O to investigate hydrogen bond rearrangements in water. The OD stretching frequency is sensitive to its environment, and loss ...

  2. Energy Savings with High Temperature Water Generation Systems

    E-Print Network [OSTI]

    Manicke, A. C.

    1982-01-01T23:59:59.000Z

    fuel costs ency but as shown the steam system requires from steam systems are wasting a lot of ener~y and 18.1 to 44.8 more energy at the boiler than HTW dollars. I since the losses are realized in getting the steam to the user. To further compare....21 4 12.00 2.0 85 630 545 7.41 6 14.00 2.5 98 703 605 7.17 8 17.50 2.5 115 763 648 6.63 10 18.00 2.5 136 822 686 6.04 Assumptions: a. Heating medium temperature: 400 0 F c. Average pipe/conduit buried depth 4ft. b. Average soil temperature: 52...

  3. Temperature effects on oil-water relative permeabilities for unconsolidated sands

    SciTech Connect (OSTI)

    Sufi, A.H.

    1982-01-01T23:59:59.000Z

    This study presents an experimental investigation of temperature effects on relative permeabilities of oil-water systems in unconsolidated sands. The fluids used in this study were refined mineral oil and distilled water. A rate sensitivity study was done on residual oil saturation (S/sub or/) and oil and water relative permeabilities. The temperature sensitivity study of relative permeabilities was conducted in two parts. The first was to investigate changes in S/sub or/ with temperature where the cores were 100% saturated with oil at the start of the waterflood. Runs were terminated when the water-cut exceeded 99.8%. For these experiments, S/sub or/ decreased from 0.31 at 70/sup 0/F to 0.09 at 250/sup 0/F. The second part continued the floods for a longer time until the water-cut was virtually 100%. Under these conditions, little change in S/sub or/ was observed with temperature; (0.11 at 70/sup 0/F and 0.085 at 186/sup 0/F). Temperature effects on irreducible water saturations were studied. A small increase in irreducibile water saturation was observed upon increasing the temperature. However, the same magnitude of change was observed by changing the flowrate. Upon increasing the oil flowrate, immediate water production was observed from the core indicating a change in the capillary end effect. By comparing the change in irreducible water saturation with rate and temperature, it was determined that the change was caused mainly by a change in the viscous force across the core. A study on viscous instabilities was also performed. This verified the existence of viscous fingers during waterflooding. It was also observed that tubing volume after the core could cause fingering, resulting in lower apparent breakthrough oil recoveries.

  4. Skin temperature of the sea as determined by radiometer

    E-Print Network [OSTI]

    Boudreau, Robert Donald

    2012-06-07T23:59:59.000Z

    ) Differences Temperature Vapor Press Skin Skin Bkt Skin Bkt -Bkt -Air -Air -Air -Air 120100 120200 120400 120500 1 20600 1 20700 1 20800 1 20900 1 21000 130100 130200 130300 130400 130500 130600 130700 130800 131000 131100 . 6235 . 6732.... FORTRAN program. 57 6. Stepwise analysis of error in radiation temperature of the sea. 65 LIST OF FIGURES Number Page 1. Tracks of Cruise 62 -H-10 along which radiation data were obtained, 2. Comparison of i. nfrared emissivities of water vapor. 14...

  5. MEMS Lubrication by In-Situ Tribochemical Reactions From the Vapor Phase.

    SciTech Connect (OSTI)

    Dugger, Michael T.; Asay, David B.; Kim, Seong H.

    2008-01-01T23:59:59.000Z

    Vapor Phase Lubrication (VPL) of silicon surfaces with pentanol has been demonstrated. Two potential show stoppers with respect to application of this approach to real MEMS devices have been investigated. Water vapor was found to reduce the effectiveness of VPL with alcohol for a given alcohol concentration, but the basic reaction mechanism observed in water-free environments is still active, and devices operated much longer in mixed alcohol and water vapor environments than with chemisorbed monolayer lubricants alone. Complex MEMS gear trains were successfully lubricated with alcohol vapors, resulting in a factor of 104 improvement in operating life without failure. Complex devices could be made to fail if operated at much higher frequencies than previously used, and there is some evidence that the observed failure is due to accumulation of reaction products at deeply buried interfaces. However, if hypothetical reaction mechanisms involving heated surfaces are valid, then the failures observed at high frequency may not be relevant to operation at normal frequencies. Therefore, this work demonstrates that VPL is a viable approach for complex MEMS devices in conventional packages. Further study of the VPL reaction mechanisms are recommended so that the vapor composition may be optimized for low friction and for different substrate materials with potential application to conventionally fabricated, metal alloy parts in weapons systems. Reaction kinetics should be studied to define effective lubrication regimes as a function of the partial pressure of the vapor phase constituent, interfacial shear rate, substrate composition, and temperature.

  6. Fuel vapor control device

    SciTech Connect (OSTI)

    Ota, I.; Nishimura, Y.; Nishio, S.; Yogo, K.

    1987-10-20T23:59:59.000Z

    A fuel vapor control device is described having a valve opening and closing a passage connecting a carburetor and a charcoal canister according to a predetermined temperature. A first coil spring formed by a ''shape memory effect'' alloy is provided to urge the valve to open the passage when the temperature is high. A second coil spring urges the valve to close the passage. A solenoid is provided to urge an armature against the valve to close the passage against the force of the first coil spring when the engine is running. The solenoid heats the first coil spring to generate a spring force therein when the engine is running. When the engine is turned off, the solenoid is deactivated, and the force of the first spring overcomes the force of the second spring to open the passage until such time as the temperature of the first spring drops below the predetermined temperature.

  7. Control of flow through a vapor generator

    DOE Patents [OSTI]

    Radcliff, Thomas D.

    2005-11-08T23:59:59.000Z

    In a Rankine cycle system wherein a vapor generator receives heat from exhaust gases, provision is made to avoid overheating of the refrigerant during ORC system shut down while at the same time preventing condensation of those gases within the vapor generator when its temperature drops below a threshold temperature by diverting the flow of hot gases to ambient and to thereby draw ambient air through the vapor generator in the process. In one embodiment, a bistable ejector is adjustable between one position, in which the hot gases flow through the vapor generator, to another position wherein the gases are diverted away from the vapor generator. Another embodiment provides for a fixed valve ejector with a bias towards discharging to ambient, but with a fan on the downstream side of said vapor generator for overcoming this bias.

  8. EFFECTS OF WATER AND TEMPERATURE John R. Jones, Merrill R. Kaufmann, and E. Arlo Richardson

    E-Print Network [OSTI]

    EFFECTS OF WATER AND TEMPERATURE John R. Jones, Merrill R. Kaufmann, and E. Arlo Richardson not tolerate sustained high temperatures, or semiarid or even dry, subhumid conditions. Much can be inferred streams in relatively hot deserts. This indicates intolerance of high temper- ature effects-either direct

  9. NOAA Technical Memorandum ERL GLERL-94 LAKE ERIE WATER TEMPERATURE DATA

    E-Print Network [OSTI]

    extends about 1.25 miles offshore from the Chestnut Street plant; the intake depth is 27-30' below temperature data are from Erie, Pennsylvania's Chestnut Street plant. The plant superintendent, Mr. John the peninsula that forms the bay. Water temperatures are taken in the plant six times a week (never on Sunday

  10. Pitting resistance of alloy 800 as a function of temperature and prefilming in high-temperature water

    SciTech Connect (OSTI)

    Stellwag, B. [Siemens Power Generation, Erlangen (Germany)

    1997-02-01T23:59:59.000Z

    Pitting behavior of alloy 800 was investigated as a function of temperature and prefilming in high-temperature water. The behavior was characterized in terms of pitting potential (U{sub p}) and pit density (n{sub p}). U{sub p} decreased with increasing temperature and chloride activity. Prefilming of test coupons over a period between 100 h and 5,000 h in ammoniated water at 300 C had no apparent influence on U{sub p} at room temperature, 180 C, and 300 C. However, the number of pits in prefilmed coupons was much higher than in coupons covered with an air passive layer. The effect of prefilming on pit nucleation was investigated in detail with regard to a model and test methods developed by Bianchi, et al. Density of pits in prefilmed coupons was at least 1 order of magnitude higher than in air passive coupons. Maximum pit density was measured after a prefilming period of 100 h. The effect was discussed in terms of Bianchi`s model and in terms of features of passive films. The initially amorphous metastable passive film on alloy 800 became crystalline at increased temperatures. Crystallization induced lattice defects, such as dislocations and grain boundaries, in the passive film. The film grew and slowly transformed into a thick oxide layer. The transformation process was associated with enhanced susceptibility to pit nucleation.

  11. Vapor spill pipe monitor

    DOE Patents [OSTI]

    Bianchini, G.M.; McRae, T.G.

    1983-06-23T23:59:59.000Z

    The invention is a method and apparatus for continually monitoring the composition of liquefied natural gas flowing from a spill pipe during a spill test by continually removing a sample of the LNG by means of a probe, gasifying the LNG in the probe, and sending the vaporized LNG to a remote ir gas detector for analysis. The probe comprises three spaced concentric tubes surrounded by a water jacket which communicates with a flow channel defined between the inner and middle, and middle and outer tubes. The inner tube is connected to a pump for providing suction, and the probe is positioned in the LNG flow below the spill pipe with the tip oriented partly downward so that LNG is continuously drawn into the inner tube through a small orifice. The probe is made of a high thermal conductivity metal. Hot water is flowed through the water jacket and through the flow channel between the three tubes to provide the necessary heat transfer to flash vaporize the LNG passing through the inner channel of the probe. The gasified LNG is transported through a connected hose or tubing extending from the probe to a remote ir sensor which measures the gas composition.

  12. A Low-order Model of Water Vapor, Clouds, and Thermal Emission for Tidally Locked Terrestrial Planets

    E-Print Network [OSTI]

    Yang, Jun

    2014-01-01T23:59:59.000Z

    In the spirit of minimal modeling of complex systems, we develop an idealized two-column model to investigate the climate of tidally locked terrestrial planets with Earth-like atmospheres in the habitable zone of M-dwarf stars. The model is able to approximate the fundamental features of the climate obtained from three-dimensional (3D) atmospheric general circulation model (GCM) simulations. One important reason for the two-column model's success is that it reproduces the high cloud albedo of the GCM simulations, which reduces the planet's temperature and delays the onset of a runaway greenhouse state. The two-column model also clearly illustrates a secondary mechanism for determining the climate: the nightside acts as a ``radiator fin'' through which infrared energy can be lost to space easily. This radiator fin is maintained by a temperature inversion and dry air on the nightside, and plays a similar role to the subtropics on modern Earth. Since 1D radiative-convective models cannot capture the effects of t...

  13. VAPORIZATION THERMODYNAMICS OF KCl. COMBINING VAPOR PRESSURE AND GRAVIMETRIC DATA

    E-Print Network [OSTI]

    Rudnyi, Evgenii B.

    .B. Department of Chemistry, Moscow State University, Moscow, 119899, Russia Bonnell D.W., Hastie J.W. National temperature chemistry situations, vapor pressures are typically less than 100 kPa. The molar volume is p = 101325 Pa). The subscript trs denotes that the changeisfor a transition, typically sublimation

  14. Rapid Migration of Radionuclides Leaked from High-Level Water Tanks; A Study of Salinity Gradients, Wetted Path Geometry and Water Vapor Transport

    SciTech Connect (OSTI)

    Anderson l. Ward; Glendon W. Gee; John S. Selker; Clay Cooper

    2002-04-24T23:59:59.000Z

    The basis of this study was the hypothesis that the physical and chemical properties of hypersaline tank waste could lead to wetting from instability and fingered flow following a tank leak. Thus, the goal of this project was to develop an understanding of the impacts of the properties of hypersaline fluids on transport through the unsaturated zone beneath Hanford's Tank Farms. There were three specific objectives (i) to develop an improved conceptualization of hypersaline fluid transport in laboratory (ii) to identify the degree to which field conditions mimic the flow processes observed in the laboratory and (iii) to provide a validation data set to establish the degree to which the conceptual models, embodied in a numerical simulator, could explain the observed field behavior. As hypothesized, high ionic strength solutions entering homogeneous pre-wetted porous media formed unstable wetting fronts atypical of low ionic strength infiltration. In the field, this mechanism could for ce flow in vertical flow paths, 5-15 cm in width, bypassing much of the media and leading to waste penetration to greater depths than would be predicted by current conceptual models. Preferential flow may lead to highly accelerated transport through large homogeneous units, and must be included in any conservative analysis of tank waste losses through coarse-textured units. However, numerical description of fingered flow using current techniques has been unreliable, thereby precluding tank-scale 3-D simulation of these processes. A new approach based on nonzero, hysteretic contract angles and fluid-dependent liquid entry has been developed for the continuum scale modeling of fingered flow. This approach has been coupled with and adaptive-grid finite-difference solver to permit the prediction of finger formation and persistence form sub centimeter scales to the filed scale using both scalar and vector processors. Although laboratory experiments demonstrated that elevated surface tens ion of imbibing solutions can enhance vertical fingered flow, this phenomenon was not observed in the field. Field tests showed that the fingered flow behavior was overwhelmed by the variability in texture resulting from differences in the depositional environment. Field plumes were characterized by lateral spreading with an average width to depth aspect ratio of 4. For both vertical fingers and lateral flow, the high ionic strength contributed to the vapor phase dilution of the waste, which increased waste volume and pushed the wetting from well beyond what would have occurred if the volume of material had remained unchanged from that initially released into the system. It was also observed that following significant vapor-phase dilution of this waste simulants that streams of colloids were ejected from the sediment surfaces. It was shown that due to the high-sodium content of the tank wastes the colloids were deflocculated below a critical salt concentration in Hanford sediments. Th e released colloids, which at the site would be expected to carry the bulk of the sorbed heavy metals and radioisotopes, were mobile though coarse Hanford sediments, but clogged finer layers. The developments resulting from this study are already being applied at Hanford in the nonisothermal prediction of the hypersaline, high pH waste migration in tank farms and in the development of inverse methods for history matching under DOE's Groundwater/Vadose Zone Integration Project at Hanford.

  15. Rapid Migration of Radionuclides Leaked from High-Level Water Tanks: A Study of Salinity Gradients, Wetted Path Geometry and Water Vapor Transport

    SciTech Connect (OSTI)

    Anderson L. Ward; Glendon W. Gee; John S. Selker; Caly Cooper

    2002-04-24T23:59:59.000Z

    The basis of this study was the hypothesis that the physical and chemical properties of hypersaline tank waste could lead to wetting from instability and fingered flow following a tank leak. Thus, the goal of this project was to develop an understanding of the impacts of the properties of hypersaline fluids on transport through the unsaturated zone beneath Hanford's Tank Farms. There were three specific objectives (i) to develop an improved conceptualization of hypersaline fluid transport in laboratory (ii) to identify the degree to which field conditions mimic the flow processes observed in the laboratory and (iii) to provide a validation data set to establish the degree to which the conceptual models, embodied in a numerical simulator, could explain the observed field behavior. As hypothesized, high ionic strength solutions entering homogeneous pre-wetted porous media formed unstable wetting fronts a typical of low ionic strength infiltration. In the field, this mechanism could force flow in vertical flow paths, 5-15 cm in width, bypassing much of the media and leading to waste penetration to greater depths than would be predicted by current conceptual models. Preferential flow may lead to highly accelerated transport through large homogeneous units, and must be included in any conservative analysis of tank waste losses through coarse-textured units. However, numerical description of fingered flow using current techniques has been unreliable, thereby precluding tank-scale 3-D simulation of these processes. A new approach based on nonzero, hysteretic contact angles and fluid-dependent liquid entry has been developed for the continuum scale modeling of fingered flow. This approach has been coupled with and adaptive-grid finite-difference solver to permit the prediction of finger formation and persistence form sub centimeter scales to the filed scale using both scalar and vector processors. Although laboratory experiments demonstrated that elevated surface tension of imbibing solutions can enhance vertical fingered flow, this phenomenon was not observed in the field. Field tests of showed that the fingered flow behavior was overwhelmed by the variability in texture resulting from differences in the depositional environment. Field plumes were characterized by lateral spreading with an average width to depth aspect ratio of 4. For both vertical fingers and lateral flow, the high ionic strength contributed to the vapor phase dilution of the waste, which increased waste volume and pushed the wetting from well beyond what would have occurred if the volume of material had remained unchanged from that initially released into the system. It was also observed that following significant vapor-phase dilution of the waste simulants that streams of colloids were ejected from the sediment surfaces. It was shown that due to the high-sodium content of the tank wastes the colloids were deflocculated below a critical salt concentration in Hanford sediment s. The released colloids, which at the site would be expected to carry the bulk of the sorbed heavy metals and radioisotopes, were mobile though coarse Hanford sediments, but clogged finer layers. The developments resulting from this study are already being applied at Hanford in the nonisothermal prediction of the hypersaline, high pH waste migration in tank farms and in the development of inverse methods for history matching under DOE's Groundwater/Vadose Zone Integration Project at Hanford.

  16. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26T23:59:59.000Z

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  17. Increasing gas hydrate formation temperature for desalination of high salinity produced water with secondary guests

    SciTech Connect (OSTI)

    Cha, Jong-Ho [ORISE; Seol, Yongkoo [U.S. DOE

    2013-01-01T23:59:59.000Z

    We suggest a new gas hydrate-based desalination process using water-immiscible hydrate formers; cyclopentane (CP) and cyclohexane (CH) as secondary hydrate guests to alleviate temperature requirements for hydrate formation. The hydrate formation reactions were carried out in an isobaric condition of 3.1 MPa to find the upper temperature limit of CO2 hydrate formation. Simulated produced water (8.95 wt % salinity) mixed with the hydrate formers shows an increased upper temperature limit from ?2 °C for simple CO2 hydrate to 16 and 7 °C for double (CO2 + CP) and (CO2 + CH) hydrates, respectively. The resulting conversion rate to double hydrate turned out to be similar to that with simple CO2 hydrate at the upper temperature limit. Hydrate formation rates (Rf) for the double hydrates with CP and CH are shown to be 22 and 16 times higher, respectively, than that of the simple CO2 hydrate at the upper temperature limit. Such mild hydrate formation temperature and fast formation kinetics indicate increased energy efficiency of the double hydrate system for the desalination process. Dissociated water from the hydrates shows greater than 90% salt removal efficiency for the hydrates with the secondary guests, which is also improved from about 70% salt removal efficiency for the simple hydrates.

  18. Chemical vapor deposition of antimicrobial polymer coatings

    E-Print Network [OSTI]

    Martin, Tyler Philip, 1977-

    2007-01-01T23:59:59.000Z

    There is large and growing interest in making a wide variety of materials and surfaces antimicrobial. Initiated chemical vapor deposition (iCVD), a solventless low-temperature process, is used to form thin films of polymers ...

  19. Calibration factor of track etch detectors at different temperatures of water

    E-Print Network [OSTI]

    Yasmeen, Nuzhat

    1997-01-01T23:59:59.000Z

    with the increase of integrated radon exposures in water. The CR-39 etch detector is observed to be more sensitive to alpha particles than LR 115 Type 2 film. The exposure period ranged from 1 to 10 days. The linearity test was done at room temperature. The actual...

  20. Covariation of coastal water temperature and microbial pollution at interannual to tidal periods

    E-Print Network [OSTI]

    Winant, Clinton D.

    Covariation of coastal water temperature and microbial pollution at interannual to tidal periods, California, USA Daniel B. Lluch-Cota Centro de Investigaciones Biologicas del Noroeste, La Paz, Mexico-period cooling are coincident with elevated levels of microbial pollution in the surf zone. This relationship can

  1. Global relationships of total alkalinity with salinity and temperature in surface waters of the world's oceans

    E-Print Network [OSTI]

    Global relationships of total alkalinity with salinity and temperature in surface waters, R. A. Feely, and R. M. Key (2006), Global relationships of total alkalinity with salinity 35)2 + d (SST Ă? 20) + e (SST Ă? 20)2 fits surface total alkalinity (AT) data for each of five

  2. Temperature (oC)! Height(km)!

    E-Print Network [OSTI]

    and forecasting ! ·Temperature decreases in altitude + water vapor > instabilities can develop ·Well mixed + O2 + M = O3 + M to proceed. It is M here that transfers the excess energy to the surrounding created and transported to high latitudes PSCs form in cold, dark, polar lower stratosphere PSCs process

  3. Liquid-liquid equilibria of fuel oxygenate + water + hydrocarbon mixtures. 3: Effect of temperature

    SciTech Connect (OSTI)

    Wagner, G. [Universitaet Karlsruhe (Germany). Institut fuer Thermische Verfahrenstechnik; Sandler, S.I. [Univ. of Delaware, Newark, DE (United States). Center for Molecular and Engineering Thermodynamics

    1995-09-01T23:59:59.000Z

    The authors have measured the ternary liquid-liquid equilibria of water + ethanol mixtures with, separately, 2,2,4-trimethylpentane and toluene at 5 and 40 C, water + tert-amyl alcohol (TAOH) mixtures with, separately, toluene and hexane at 5 and 40 C, and of water + TAOH + pentane mixtures at 5 C. The ethanol-containing systems exhibit type 1 liquid-liquid phase behavior, and the TAOH-containing systems exhibit type 2 behavior. These data, together with the data they have previously reported at 25 C, provide information on how the liquid-liquid equilibria of these systems change as a function of temperature. While the addition of ethanol is found to increase the solubility of hydrocarbons in the aqueous phase, the concentration of the hydrocarbon in the water-rich phase decreases with increasing temperature. With the exception of hydrocarbon in the water-rich phase, the experimental data could be correlated quite well with either the UNIQUAC or NRTL models. For most of the systems considered here the predictions of the phase behavior with the liquid-liquid UNIFAC group-contribution model are only qualitatively correct. However, the liquid-liquid UNIFAC model erroneously predicts type 2 phase behavior to occur for water + ethanol + 2,2,4-trimethylpentane system at 5 C.

  4. Improved temperature regulation of process water systems for the APS storage ring.

    SciTech Connect (OSTI)

    Putnam, C.; Dortwegt, R.

    2002-10-10T23:59:59.000Z

    Beam stability and operational reliability of critical mechanical systems are key performance issues for synchrotron accelerators such as the Advanced Photon Source (APS). Stability is influenced by temperature fluctuations of the process water (PW) used for cooling and/or temperature conditioning storage ring (SR) components such as vacuum chambers, magnets, absorbers, etc. Operational reliability is crucial in maintaining facility beam operations and remaining within downtime ''budgets.'' Water systems for the APS storage ring were originally provided with a distributive control system (DCS) capable of regulation to {+-}1.0 F, as specified by facility design requirements. After several years of operation, a particular mode of component mortality indicated a need for upgrade of the temperature control system. The upgrade that was implemented was chosen for both improved component reliability and temperature stability (now on the order of {+-}0.2 F for copper components and {+-}0.05 F for aluminum components). The design employs a network of programmable logic controllers (PLCs) for temperature control that functions under supervision of the existing DCS. The human-machine interface (HMI) of the PLC system employs RSView32 software. The PLC system also interfaces with the EPICS accelerator control system to provide monitoring of temperature control parameters. Eventual supervision of the PLC system by EPICS is possible with this design.

  5. Supraoptimal root-zone temperature effects on water use of three Cercis spp

    E-Print Network [OSTI]

    Lawrence, Beth Jez

    1993-01-01T23:59:59.000Z

    OF SCIENCE August 1993 Major Subject: Horticulture SUPRAOPTIMAL ROOT-ZONE TEMPERATURE EFFECTS ON WATER USE OF THREE CERCIS SPP. A Thesis BETH JEZ LAWRENCE Approved as to style and content by: yneM. Z i e (C irof Co tt ) Malcolm Drew (Member) J s L..., flowering, and fruiting. When a plant is subjected to supraoptimal root- zone temperature conditions, these responses are typically deleterious (Gur et al. , 1976b; Gur et al, 1976c; Martin et al. , 1989; Nightingale and Blake, 1935; Wong et al. , 1971...

  6. LNG fire and vapor control system technologies

    SciTech Connect (OSTI)

    Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

    1982-06-01T23:59:59.000Z

    This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

  7. Stress corrosion cracking behavior of Alloy 600 in high temperature water

    SciTech Connect (OSTI)

    Webb, G.L.; Burke, M.G.

    1995-07-01T23:59:59.000Z

    SCC susceptibility of Alloy 600 in deaerated water at 360 C (statically loaded U-bend specimens) is dependent on microstructure and whether the material was cold-worked and annealed (CWA) or hot-worked and annealed (HWA). All cracking was intergranular, and materials lacking grain boundary carbides were most susceptible to SCC initiation. CWA tubing materials are more susceptible to SCC initiation than HWA ring-rolled forging materials with similar microstructures (optical metallography). In CWA tubing materials, one crack dominated and grew to a visible size. HWA materials with a low hot-working finishing temperature (<925 C) and final anneals at 1010-1065 C developed both large cracks (similar to those in CWA materials) and small intergranular microcracks detectable only by destructive metallography. HWA materials with a high hot-working finishing temperature (>980 C) and a high-temperature final anneal (>1040 C), with grain boundaries that are fully decorated, developed only microcracks in all specimens. These materials did not develop large, visually detectable cracks, even after more than 300 weeks exposure. A low-temperature thermal treatment (610 C for 7h), which reduces or eliminates SCC in Alloy 600, did not eliminate microcrack formation in high temperature processed HWA materials. Conventional metallographic and analytical electron microscopy (AEM) were done on selected materials to identify the factors responsible for the observed differences in cracking behavior. Major difference between high-temperature HWA and low-temperature HWA and CWA materials was that the high temperature processing and final annealing produced predominantly ``semi-continuous`` dendritic M{sub 7}C{sub 3} carbides along grain boundaries with a minimal amount of intragranular carbides. Lower temperature processing produced intragranular M7C3 carbides, with less intergranular carbides.

  8. Investigation of Temperature-Driven Water Transport in Polymer Electrolyte Fuel Cell: Phase-Change-Induced Flow

    E-Print Network [OSTI]

    Mench, Matthew M.

    Investigation of Temperature-Driven Water Transport in Polymer Electrolyte Fuel Cell: Phase cell membranes, a net flux of water was found to flow from the hot to the cold side of the full, 2008. Published January 8, 2009. Proper water management is critical to achieve high performance

  9. The interaction of flow, heat transfer, and free interfaces in an electron-beam vaporization system for metals

    SciTech Connect (OSTI)

    Westerberg, K.W. [Aspen Technology, Inc., Cambridge, MA (United States); McClelland, M.A. [Lawrence Livermore National Lab., CA (United States); Finlayson, B.A. [Univ. of Washington, Seattle, WA (United States)

    1994-11-01T23:59:59.000Z

    A numerical analysis is made of the liquid flow and energy transport in a system to vaporize metals. The energy from an electron beam heats metal confined in a water-cooled crucible. Metal vaporizes from a hot pool of circulating liquid which is surrounded by a shell of its own solid. Flow in the pool is strongly driven by temperature-induced buoyancy and capillary forces and is located in the transition region between laminar and turbulent flow. At high vaporization rates, the thrust of the departing vapor forms a trench at the beam impact site. A modified finite element method is used to calculate the flow and temperature fields coupled with the interface locations. The mesh is structured with spines that stretch and pivot as the interfaces move. The discretized equations are arranged in an {open_quotes}arrow{close_quotes} matrix and solved using the Newton-Raphson method. The electron-beam power and width are varied for cases involving the high-rate vaporization of aluminum. Attention is focused on the interaction of vaporization, liquid flow, and heat transport in the trench area.

  10. Desalination Using Vapor-Compression Distillation

    E-Print Network [OSTI]

    Lubis, Mirna R.

    2010-07-14T23:59:59.000Z

    and MSF, this research investigates a high-efficiency mechanical vapor-compression distillation system that employs an improved water flow arrangement. The incoming salt concentration was 0.15% salt for brackish water and 3.5% salt for seawater, whereas...

  11. Influence of annual windbreak on the water relations, growth and yield of cotton and peanuts

    E-Print Network [OSTI]

    Waweru, Francis Mbote

    2012-06-07T23:59:59.000Z

    in monitoring of microclimate. Instrument Parameter and Units Manufacturer and Model Anemometer windspeed (ms ~) R. M. Young Gi11 3-cup anemom- eter Model 12102 Pyranometer Temperature Sensor Humidity Sensor Datalogger solar radiation ! Langleys... in turbulence or vertical air movement . Water vapor tr ansfer, heat and gaseous exchanges are affected by both the horizontal and vertical movement of the air. Since wi ndbreaks reduce wi ndspeed and turbulence, the rate of removal of water vapor and heat...

  12. Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater

    SciTech Connect (OSTI)

    David Yuill

    2008-06-30T23:59:59.000Z

    The following document is the final report for DE-FC26-05NT42327: Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater. This work was carried out under a cooperative agreement from the Department of Energy's National Energy Technology Laboratory, with additional funding from Keltech, Inc. The objective of the project was to improve the temperature control performance of an electric tankless water heater (TWH). The reason for doing this is to minimize or eliminate one of the barriers to wider adoption of the TWH. TWH use less energy than typical (storage) water heaters because of the elimination of standby losses, so wider adoption will lead to reduced energy consumption. The project was carried out by Building Solutions, Inc. (BSI), a small business based in Omaha, Nebraska. BSI partnered with Keltech, Inc., a manufacturer of electric tankless water heaters based in Delton, Michigan. Additional work was carried out by the University of Nebraska and Mike Coward. A background study revealed several advantages and disadvantages to TWH. Besides using less energy than storage heaters, TWH provide an endless supply of hot water, have a longer life, use less floor space, can be used at point-of-use, and are suitable as boosters to enable alternative water heating technologies, such as solar or heat-pump water heaters. Their disadvantages are their higher cost, large instantaneous power requirement, and poor temperature control. A test method was developed to quantify performance under a representative range of disturbances to flow rate and inlet temperature. A device capable of conducting this test was designed and built. Some heaters currently on the market were tested, and were found to perform quite poorly. A new controller was designed using model predictive control (MPC). This control method required an accurate dynamic model to be created and required significant tuning to the controller before good control was achieved. The MPC design was then implemented on a prototype heater that was being developed simultaneously with the controller development. (The prototype's geometry and components are based on a currently marketed heater, but several improvements have been made.) The MPC's temperature control performance was a vast improvement over the existing controller. With a benchmark for superior control performance established, five additional control methods were tested. One problem with MPC control is that it was found to be extremely difficult to implement in a TWH, so that it is unlikely to be widely adopted by manufacturers. Therefore the five additional control methods were selected based on their simplicity; each could be implemented by a typical manufacturer. It was found that one of these methods performed as well as MPC, or even better under many circumstances. This method uses a Feedback-Compensated Feed-Forward algorithm that was developed for this project. Due to its simplicity and excellent performance this method was selected as the controller of choice. A final higher-capacity prototype heater that uses Feedback-Compensated Feed-Forward control was constructed. This prototype has many improvements over the currently marketed heaters: (1) excellent control; (2) a modular design that allows for different capacity heaters to be built easily; (3) built-in fault detection and diagnosis; (4) a secondary remote user-interface; and (5) a TRIAC switching algorithm that will minimize 'flicker factor'. The design and engineering of this prototype unit will allow it to be built without an increase in cost, compared with the currently marketed heater. A design rendering of the new product is shown below. It will be launched with a new marketing campaign by Keltech in early 2009.

  13. Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance

    SciTech Connect (OSTI)

    Mamone, Salvatore, E-mail: s.mamone@soton.ac.uk; Concistrč, Maria; Carignani, Elisa; Meier, Benno; Krachmalnicoff, Andrea; Johannessen, Ole G.; Denning, Mark; Carravetta, Marina; Whitby, Richard J.; Levitt, Malcolm H., E-mail: mhl@soton.ac.uk [School of Chemistry, University of Southampton, Southampton SO17 1BJ (United Kingdom); Lei, Xuegong; Li, Yongjun [Department of Chemistry, Columbia University, New York, New York 10027 (United States)] [Department of Chemistry, Columbia University, New York, New York 10027 (United States); Goh, Kelvin; Horsewill, Anthony J. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)] [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2014-05-21T23:59:59.000Z

    The water-endofullerene H{sub 2}O@C{sub 60} provides a unique chemical system in which freely rotating water molecules are confined inside homogeneous and symmetrical carbon cages. The spin conversion between the ortho and para species of the endohedral H{sub 2}O was studied in the solid phase by low-temperature nuclear magnetic resonance. The experimental data are consistent with a second-order kinetics, indicating a bimolecular spin conversion process. Numerical simulations suggest the simultaneous presence of a spin diffusion process allowing neighbouring ortho and para molecules to exchange their angular momenta. Cross-polarization experiments found no evidence that the spin conversion of the endohedral H{sub 2}O molecules is catalysed by {sup 13}C nuclei present in the cages.

  14. Water stress, temperature, and light effects on isoprene emission and photosynthesis of Kudzu leaves

    SciTech Connect (OSTI)

    Sharkey, T.D.; Loreto, F. (Univ. of Wisconsin, Madison (United States))

    1993-05-01T23:59:59.000Z

    Kudzu (Pueraia lobata (Willd) Ohwi.) emits isoprene, a hydrocarbon which can significantly affect atmospheric chemistry. Isoprene emission under standard conditions of 1000 [mu]mol photons[center dot]M[sup [minus]2][center dot]S[sup [minus]1] and 30[degrees]C developed only after the leaf bad reached full expansion and was not maximal until up to two weeks past the point of full expansion of the leaf. Isoprene emission from kudzu was stimulated by increases in temperature and photon flux density (up to 3000 [mu]mol photons[center dot]m[sup [minus]2][center dot]s[sup [minus]1]). For unstressed plants, 20 % of the carbon fixed in photosynthesis was reemitted as isoprene at 1000 [mu]mol photons[center dot]m[sup [minus]2][center dot]S[sup [minus]1]. Following the relief of water stress, photosynthesis recovered to the prestress rate but isoprene emission increased up to five times the prestress rate. At 1000 [mu]mol photons[center dot]M[sup [minus]2][center dot]S[sup [minus]1] and 35[degrees]C, 67% of the carbon fixed in photosynthesis was reemitted as isoprene eight days after water stress. For some leaves the rate of isoprene emission exceeded 500 nmol[center dot]M[sup [minus]2][center dot]S[sup [minus]1], substantially higher than ever reported before. Leaves of plants grown at less than 20[degrees]C did not make isoprene until an inductive treatment was given. Withholding water from plants or keeping leaves at 30[degrees]C induced isoprene emission. The observation of rapid and dramatic changes in the rate of isoprene emission from leaves in response to water stress and temperature may indicate that isoprene emission improves the ability of plants to cope with these conditions. With the new information on temperature and water stress effects on isoprene emission we speculate on possible reasons for isoprene emission from plants.

  15. Meteorological Tables for Determination of Precipitable Water, Temperatures and Pressures Aloft for a Saturated Pseudoadiabatic Atmosphere -- in the Metric System

    E-Print Network [OSTI]

    Eihle, W. O.; Powers, R. J.; Clark, R.A.

    TR-16 1968 Meteorological Tables for Determination of Precipitable Water, Temperatures and Pressures Aloft for a Saturated Pseudoadiabatic Atmosphere?in the Metric System W.O. Eihle R.J. Powers R.A. Clark...

  16. Method and apparatus to measure vapor pressure in a flow system

    DOE Patents [OSTI]

    Grossman, Mark W. (Belmont, MA); Biblarz, Oscar (Swampscott, MA)

    1991-01-01T23:59:59.000Z

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process.

  17. The effect of water temperature on the adsorption equilibrium of dissolved organic matter and atrazine on granular activated carbon

    SciTech Connect (OSTI)

    Bernd Schreiber; Viktor Schmalz; Thomas Brinkmann; Eckhard Worch [Dresden University of Technology, Dresden (Germany). Institute of Water Chemistry

    2007-09-15T23:59:59.000Z

    The influence of water temperature on the adsorption of natural dissolved organic matter (DOM) on activated carbon has not been investigated intensively yet. In this study, batch experiments with granular activated carbon (GAC) F300, from bituminous coal, have been carried out at three temperatures (5, 20, 35{sup o} C) using a humic acid model water and different types of surface water (lake, river, canal). Furthermore, the adsorption of an anthropogenic contaminant, atrazine, was quantified in the absence and presence of DOM. The results indicate a significant influence of water temperature on the adsorption equilibrium of DOM and atrazine. Contrary to expectations, DOM and atrazine adsorption in surface water tends to be increased with increasing water temperature, whereas the extent of this effect is dependent on the type and concentration of DOM. Furthermore, the temperature effect on atrazine adsorption is controlled by competition of DOM and atrazine on adsorption sites. Some assumptions are proposed and discussed for explaining the temperature effects observed in the batch studies. 39 refs., 4 figs., 2 tabs.

  18. E-Print Network 3.0 - acid vapor pressures Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Ecology 22 3b. Thermodynamics of moist air Water phase, water latent heat of vaporization Lv Summary: 3b. Thermodynamics of moist air Water phase, water latent...

  19. Method for controlling corrosion in thermal vapor injection gases

    DOE Patents [OSTI]

    Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

    1981-01-01T23:59:59.000Z

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  20. Wick for metal vapor laser

    DOE Patents [OSTI]

    Duncan, David B. (Livermore, CA)

    1992-01-01T23:59:59.000Z

    An improved wick for a metal vapor laser is made of a refractory metal cylinder, preferably molybdenum or tungsten for a copper laser, which provides the wicking surface. Alternately, the inside surface of the ceramic laser tube can be metalized to form the wicking surface. Capillary action is enhanced by using wire screen, porous foam metal, or grooved surfaces. Graphite or carbon, in the form of chunks, strips, fibers or particles, is placed on the inside surface of the wick to reduce water, reduce metal oxides and form metal carbides.

  1. Temperature and Pressure Dependence of the AMOEBA Water Model Pengyu Ren and Jay W. Ponder*

    E-Print Network [OSTI]

    Ponder, Jay

    for density, heat of vaporization, radial distribution functions, magnetic shielding, self-diffusion is closely related to the tetrahedral hydrogen-bonding network in the bulk. Explicit dipole polarization and internal geometry in the liquid play vital roles in determining the self- diffusion and dielectric

  2. Method for the generation of variable density metal vapors which bypasses the liquidus phase

    DOE Patents [OSTI]

    Kunnmann, Walter (Stony Brook, NY); Larese, John Z. (Rocky Point, NY)

    2001-01-01T23:59:59.000Z

    The present invention provides a method for producing a metal vapor that includes the steps of combining a metal and graphite in a vessel to form a mixture; heating the mixture to a first temperature in an argon gas atmosphere to form a metal carbide; maintaining the first temperature for a period of time; heating the metal carbide to a second temperature to form a metal vapor; withdrawing the metal vapor and the argon gas from the vessel; and separating the metal vapor from the argon gas. Metal vapors made using this method can be used to produce uniform powders of the metal oxide that have narrow size distribution and high purity.

  3. Reduced pressure and temperature reclamation of water using the GE Integrated Water-waste Management System for potential space flight application

    E-Print Network [OSTI]

    Chowdhury, Hasan Imtiaz

    1989-01-01T23:59:59.000Z

    SYSTEM FOR POTENTIAL SPACE FLIGHT APPLICATION A Thesis by HASAN IMTIAZ CHOWDHURY Approved as to style and content by: G. P. Peterson (Chair of Committee) T. D. Rogers (Member) R. D. pence (Member) W. Bradley (Head of Department) December... 1989 ABSTRACT Reduced Pressure and Temperature Reclamation of Water Using the GE Integrated Water-waste Management System for Potential Space Flight Application. (December 1989) Hasan Imtiaz Chowdhury, B. S. , Prairie View AlkM University Chair...

  4. Characterization and biodegradation of water-soluble biomarkers and organic carbon extracted from low temperature chars

    SciTech Connect (OSTI)

    Norwood, Matt J.; Louchouarn, Patrick; Kuo, Li-Jung; Harvey, Omar

    2013-03-16T23:59:59.000Z

    This study demonstrates that wildfires/biomass combustion may be an important source of labile pyrogenic water-soluble organic matter (Py-WSOM) to aquatic systems. Spectroscopic analysis (of the solid char and Py-WSOM) with Fourier transform infrared spectroscopy (FTIR) indicated that the Py-WSOM extracted from two low temperature chars (one wood, one grass) was dominated by polar moieties (-OH and C-O) derived from depolymerization and fragmentation of lignocellulose. Incubation experiments under aerobic conditions with unsterilized river water suggested that Py-WSOM and associated biomarkers may have turnover rates on the order of weeks to months, consistent with mixing and transport conditions of riverine systems. For example, pyrogenic dissolved organic carbon (Py-DOC) had a half-life of 30-40 days. Turnover rate for the combustion biomarkers was shorter, with levoglucosan and free lignin phenols having a half-life around 3-4 days and polymeric lignin components 13-14 days. The latter observations contradict earlier studies on the biodegradation of dissolved lignin and point to the need for re-assessment of lignin degradation kinetics in well-mixed riverine systems, particularly when such lignin components are derived from thermally altered plant material that may exist in a form more labile than that in highly processed riverine DOM.

  5. Apparatus and method to control atmospheric water vapor composition and concentration during dynamic cooling of biological tissues in conjunction with laser irradiations

    DOE Patents [OSTI]

    Nelson, J. Stuart (Laguna Niguel, CA); Anvari, Bahman (Houston, TX); Tanenbaum, B. Samuel (Irvine, CA); Milner, Thomas E. (Austin, TX)

    1999-01-01T23:59:59.000Z

    Cryogen spray cooling of skin surface with millisecond cryogen spurts is an effective method for establishing a controlled temperature distribution in tissue and protecting the epidermis from nonspecific thermal injury during laser mediated dermatological procedures. Control of humidity level, spraying distance and cryogen boiling point is material to the resulting surface temperature. Decreasing the ambient humidity level results in less ice formation on the skin surface without altering the surface temperature during the cryogen spurt. For a particular delivery nozzle, increasing the spraying distance to 85 millimeters lowers the surface temperature. The methodology comprises establishing a controlled humidity level in the theater of operation of the irradiation site of the biological tissues before and/or during the cryogenic spray cooling of the biological tissue. At cold temperatures calibration was achieved by mounting a thermistor on a thermoelectric cooler. The thermal electric cooler was cooled from from 20.degree. C. to about -20.degree. C. while measuring its infrared emission.

  6. DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT CHAMOUN MARWAN to improve industrial energy efficiency, the development of a high temperature heat pump using water vapor as refrigerant is investigated. Technical problems restraining the feasibility of this industrial heat pump

  7. Copper vapor laser modular packaging assembly

    DOE Patents [OSTI]

    Alger, Terry W. (Tracy, CA); Ault, Earl R. (Dublin, CA); Moses, Edward I. (Castro Valley, CA)

    1992-01-01T23:59:59.000Z

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

  8. Analysis of electron-beam vaporization of refractory metals

    SciTech Connect (OSTI)

    Kheshgi, H.S.; Gresho, P.M.

    1986-09-01T23:59:59.000Z

    An electron beam is focussed onto a small area on the surface of a refractory metal to locally raise the temperature and vaporize metal. At high vaporization rates the hot area is on the surface of a churning liquid-metal pool contained in a solid-metal skull which sits in a cooled crucible. Inner workings of the process are revealed by analysis of momentum, energy, and mass transfer. At the surface high temperature causes high vaporization rate and high vapor thrust, depressing the vapor/liquid surface. In the liquid pool surface-tension gradients and thermal buoyancy drive a (typically) chaotic flow. In the solid skull thermal conductivity and contact resistance regulate the rate of heat transfer from pool to crucible. Analyses of these phenomena together reveal process performance sensitivities - e.g., to depression size or to magnitude of surface-tension gradients. 12 refs., 3 figs.

  9. Initiated chemical vapor deposition of functional polyacrylic thin films

    E-Print Network [OSTI]

    Mao, Yu, 1975-

    2005-01-01T23:59:59.000Z

    Initiated chemical vapor deposition (iCVD) was explored as a novel method for synthesis of functional polyacrylic thin films. The process introduces a peroxide initiator, which can be decomposed at low temperatures (<200?C) ...

  10. Liquid-liquid equilibria of water + methanol + 1-octanol and water + ethanol + 1-octanol at various temperatures

    SciTech Connect (OSTI)

    Arce, A.; Blanco, A.; Souza, P.; Vidal, I. (Univ. of Santiago de Compostela (Spain). Dept. of Chemical Engineering)

    1994-04-01T23:59:59.000Z

    This study is part of a wider program of research on the recovery of light alcohols from dilute aqueous solutions using high molecular weight solvents. The authors report liquid-liquid equilibrium data and binodal curves for the systems water + methanol + 1-octanol and water + ethanol + 1-octanol at 25, 35, and 45 C. The data were fitted to the NRTL and UNIQUAC equations.

  11. HIGH TEMPERATURE CONDUCTIVITY PROBE FOR MONITORING CONTAMINATION LEVELS IN POWER PLANT BOILER WATER.

    E-Print Network [OSTI]

    Hipple, Sarah

    2008-01-01T23:59:59.000Z

    ??A high temperature/high pressure flow through probe was designed to measure high temperature electrical conductivity of aqueous (aq) dilute electrolyte solutions, an application which can… (more)

  12. E-Print Network 3.0 - atomic vapor deposited Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S. S. - School of Nuclear Engineering, Purdue University Collection: Plasma Physics and Fusion 8 Influence of substrate temperature on the stability of glasses prepared by vapor...

  13. E-Print Network 3.0 - alkali vapor species Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume 4, novembre 1994 Summary: 60 specines aged at elevated temperatures in alkali-metal vapors have shown that such treatmerlt... -T superconductivity in C specimens annealed...

  14. Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels, Phase 2: Evaluations of Field Samples and Laboratory Blends

    SciTech Connect (OSTI)

    Gardiner, D. P.; Bardon, M. F.; LaViolette, M.

    2010-04-01T23:59:59.000Z

    Study to measure the flammability of gasoline/ethanol fuel vapors at low ambient temperatures and develop a mathematical model to predict temperatures at which flammable vapors were likely to form.

  15. Will heat from the pipeline affect groundwater and surface water? Response by Professor James Goeke The temperature of a pipeline buried 4 feet would

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    1 Water Will heat from the pipeline affect groundwater and surface water? Response by Professor James Goeke ­ The temperature of a pipeline buried 4 feet would probably affect surface water. In some places the pipeline might be quite near the water table and in others it could be 50-100 feet

  16. The Coordinated Control of a Central Air Conditioning System Based on Variable Chilled Water Temperature and Variable Chilled Water Flow

    E-Print Network [OSTI]

    Liu, J.; Mai, Y.; Liu, X.

    2006-01-01T23:59:59.000Z

    At present, regulation of water flow by means of pump frequency conversion is one of the major methods for power-saving in central air conditioning systems. In this article, optimization regulation for central air conditioning system on the basis...

  17. Proposal for the Purchase, Without a Call for Tenders, of a Medium-Temperature Hot Water Boiler for the 300 GeV Accelerator

    E-Print Network [OSTI]

    1976-01-01T23:59:59.000Z

    Proposal for the Purchase, Without a Call for Tenders, of a Medium-Temperature Hot Water Boiler for the 300 GeV Accelerator

  18. Electrolyte vapor condenser

    DOE Patents [OSTI]

    Sederquist, R.A.; Szydlowski, D.F.; Sawyer, R.D.

    1983-02-08T23:59:59.000Z

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well. 3 figs.

  19. Electrolyte vapor condenser

    DOE Patents [OSTI]

    Sederquist, Richard A. (Newington, CT); Szydlowski, Donald F. (East Hartford, CT); Sawyer, Richard D. (Canton, CT)

    1983-01-01T23:59:59.000Z

    A system is disclosed for removing electrolyte from a fuel cell gas stream. The gas stream containing electrolyte vapor is supercooled utilizing conventional heat exchangers and the thus supercooled gas stream is passed over high surface area passive condensers. The condensed electrolyte is then drained from the condenser and the remainder of the gas stream passed on. The system is particularly useful for electrolytes such as phosphoric acid and molten carbonate, but can be used for other electrolyte cells and simple vapor separation as well.

  20. Membrane augmented distillation to separate solvents from water

    DOE Patents [OSTI]

    Huang, Yu; Baker, Richard W.; Daniels, Rami; Aldajani, Tiem; Ly, Jennifer H.; Alvarez, Franklin R.; Vane, Leland M.

    2012-09-11T23:59:59.000Z

    Processes for removing water from organic solvents, such as ethanol. The processes include distillation to form a rectified overhead vapor, compression of the rectified vapor, and treatment of the compressed vapor by two sequential membrane separation steps.

  1. Water-vapor effect on the electrical conductivity of a single-walled carbon nanotube mat A. Zahab,* L. Spina, and P. Poncharal

    E-Print Network [OSTI]

    Demouchy, Sylvie

    of physico-chemical adsorption of gases in nanotubes have been reported.11­14 One of the most excit- ing was then carefully out- gassed by heating the sample up to 220 °C at a constant rate of about 3 °C/mn. The sample lower than 0.1 °C during water injection and pumping cycle was negli- gible when compared

  2. Method of physical vapor deposition of metal oxides on semiconductors

    DOE Patents [OSTI]

    Norton, David P. (Knoxville, TN)

    2001-01-01T23:59:59.000Z

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  3. Minimization of steam requirements and enhancement of water-gas shift reaction with warm gas temperature CO2 removal

    DOE Patents [OSTI]

    Siriwardane, Ranjani V; Fisher, II, James C

    2013-12-31T23:59:59.000Z

    The disclosure utilizes a hydroxide sorbent for humidification and CO.sub.2 removal from a gaseous stream comprised of CO and CO.sub.2 prior to entry into a water-gas-shift reactor, in order to decrease CO.sub.2 concentration and increase H.sub.2O concentration and shift the water-gas shift reaction toward the forward reaction products CO.sub.2 and H.sub.2. The hydroxide sorbent may be utilized for absorbtion of CO.sub.2 exiting the water-gas shift reactor, producing an enriched H.sub.2 stream. The disclosure further provides for regeneration of the hydroxide sorbent at temperature approximating water-gas shift conditions, and for utilizing H.sub.2O product liberated as a result of the CO.sub.2 absorption.

  4. Monitoring of Precipitable Water Vapor and Cloud Liquid Path from Scanning Microwave Radiometers During the 2003 Cloudiness Inter-Comparison Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModification andinterface of water.OrganicNov 4 5

  5. Organic vapor jet printing system

    DOE Patents [OSTI]

    Forrest, Stephen R

    2012-10-23T23:59:59.000Z

    An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

  6. High temperature hot water distribution system study, Directorate of Public Works, Fort Drum, New York; executive summary. Final report

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The existing High Temperature Hot Water (HTHW) Distribution System has been plagued with design and construction deficiencies since startup of the HTHW system, in October 1988. In October 1989, after one year of service, these deficiencies were outlined in a technical evaluation. The deficiencies included flooded manholes, sump pumps not hooked up, leaking valves, contaminated HTHW water, and no cathodic protection system. This feasibility study of the High Temperature Hot Water (HTHW) Distribution System was performed under Contract No. DACA01-94-D-0033, Delivery Order 0013, Modification 1, issued to EMC Engineers, Inc. (EMC), by the Norfolk District Corps of Engineers, on 25 April 1996. The purpose of this study was to determine the existing conditions of the High Temperature Hot Water Distribution System, manholes, and areas of containment system degradation. The study focused on two areas of concern, as follows: (1) Determine existing conditions and areas of containment system degradation (leaks) in the underground carrier pipes and protective conduit. (2) Document the condition of underground steel and concrete manholes. To document the leaks, a site survey was performed, using state-of-the-art infrared leak detection equipment and tracer gas leak detection equipment. To document the condition of the manholes, color photographs were taken of the insides of 125 manholes, and notes were made on the condition of these manholes.

  7. Density Profiles of Liquid/Vapor Interfaces Away from Their Critical Point

    E-Print Network [OSTI]

    Wei Bu; Doseok Kim; David Vaknin

    2014-04-28T23:59:59.000Z

    We examine the applicability of various model profiles for the liquid/vapor interface by X-ray reflectivities on water and ethanol and their mixtures at room temperature. Analysis of the X-ray reflecivities using various density profiles shows an error-function like profile is the most adequate within experimental error. Our finding, together with recent observations from simulation studies on liquid surfaces, strongly suggest that the capillary-wave dynamics shapes the interfacial density profile in terms of the error function.

  8. Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid-Vapor Pressure Isotope Effects

    E-Print Network [OSTI]

    Chickos, James S.

    * Department of Chemistry and Biochemistry, University of MissourisSt. Louis, St. Louis, Missouri 63121 Liquid vapor pressure isotope effects have generally been observed, pD > pH.12 Vapor pressure and sublimation

  9. A correlation of water solubility in jet fuels with API gravity: aniline point percent aromatics, and temperature.

    E-Print Network [OSTI]

    Byington, Alonzo

    1964-01-01T23:59:59.000Z

    TEMPERATURE ( P) Pi8ure 8 70 80 160 140 SOLUBILITY OF WATER IN JET FUELS CONCLUSION 120 100 e 80 M O 60 40 20 20 40 60 TENPERATURE ('F) Figure 9 80 100 120 22 The best equation found by the regression analysis process is: ln Sol ~ 141.... 55208 - 3804. 1721 x 10 5(AG) + 2581. 6616 x 10 (AG) + 9243. 1234 x 10 (ARO) + 7004. 9175(1/T) - 3468 F 0411 x 10 (1/T)2 where: ln ~ logarithm to base "e" (natural logarithm) Sol = water solubility, mg/liter AG = aniline-gravity constant (product...

  10. Vapor-phase heat-transport system

    SciTech Connect (OSTI)

    Hedstrom, J.C.

    1983-01-01T23:59:59.000Z

    A vapor-phase heat-transport system is being tested in one of the passive test cells at Los Alamos. The system consists of one selective-surface collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by gravity or with a pump. Results from several operating configurations are presented, together with a comparison with other passive systems. A new self-pumping concept is presented.

  11. Modeling of LNG Pool Spreading and Vaporization

    E-Print Network [OSTI]

    Basha, Omar 1988-

    2012-11-20T23:59:59.000Z

    ..................................................................................... 15 Figure 5: 90 mol% Methane 10mol% Ethane mixture VLE phase envelope .................. 18 Figure 6: Boiling temperature and vapor composition of 90 mol% methane 10mol% ethane mixture... process of natural gas allows a 600 fold reduction in the volume of the gas being transported at ambient pressure. The resulting liquid which is mainly composed of methane presents some hazardous properties linked to its flammable nature and its...

  12. Melt and vapor characteristics in an electron beam evaporator

    SciTech Connect (OSTI)

    Blumenfeld, L.; Fleche, J.L.; Gonella, C. [DCC/DPE/SPEA Centre d`Etudes de Saclay, Gif-sur-Yvette (France)

    1994-12-31T23:59:59.000Z

    We compare the free surface temperatures T{sub s}, calculated by two methods, in cerium or copper evaporation experiments. The first method considers properties of the melt: by an empirical law we take into account turbulent thermal convection, instabilities and craterization of the free surface. The second method considers the vapor flow expansion and connects T{sub s} to the measured terminal parallel temperature and the terminal mean parallel velocity of the vapor jet, by Direct Simulation Monte Carlo calculations including an atom-atom inelastic collision algorithm. The agreement between the two approaches is better for cerium than for copper in the high craterization case. The analysis, from the point of view of the properties of the melt, of the terminal parameters of the vapor jet for the high beam powers shows that T{sub s} and the Knudsen number at the vapor source reach a threshold when the beam power increases.

  13. Leaf water potential in Pinus taeda L. as related to fluctuating soil water and atmospheric conditions

    E-Print Network [OSTI]

    Ellison, Stanley Lee

    1969-01-01T23:59:59.000Z

    growing on Bienville loamy fine sand near Rusk, Texas. The average available water storage capacity was 9. 50 inches in the 8-foot profile. Siruiltaneous measurements of leaf water potential and environmental variables were made weekly at two hour... pressure 2 deficit, temperature, and wind (R 0. 78). A regression equation relating total daily water stress to only vapor pressure deficit and soil water content in the 0- to 4-foot soil layer was also signifi- 2= cant (R = 0. 76). The total daily...

  14. hal-00133055,version1-29Mar2007 Nuclear spin interferences in bulk water at room temperature.

    E-Print Network [OSTI]

    Boyer, Edmond

    hal-00133055,version1-29Mar2007 Nuclear spin interferences in bulk water at room temperature. J in NMR pacs 03.67.-a: Quantum information pacs 67.57.Lm: Spin dynamics Abstract Nuclear spin interference in a static mag- netic field B0 4.7 T. For a homogeneity of B0 of the order of B0/B0 = 2 · 10-8 , the nuclear

  15. Stratified vapor generator

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Hassani, Vahab (Golden, CO)

    2008-05-20T23:59:59.000Z

    A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

  16. Water Adsorption on a-Fe2O3(0001) at Near Ambient Conditions

    SciTech Connect (OSTI)

    Yamamoto, Susumu

    2011-08-19T23:59:59.000Z

    We have investigated hydroxylation and water adsorption on {alpha}-Fe{sub 2}O{sub 3}(0001) at water vapor pressures up to 2 Torr and temperatures ranging from 277 to 647 K (relative humidity (RH) {le} 34%) using ambient-pressure X-ray photoelectron spectroscopy (XPS). Hydroxylation occurs at the very low RH of 1 x 10{sup -7} % and precedes the adsorption of molecular water. With increasing RH, the OH coverage increases up to one monolayer (ML) without any distinct threshold pressure. Depth profiling measurements showed that hydroxylation occurs only at the topmost surface under our experimental conditions. The onset of molecular water adsorption varies from {approx}2 x 10{sup -5} to {approx} 4 x 10{sup -2} % RH depending on sample temperature and water vapor pressure. The coverage of water reaches 1 ML at {approx}15% RH and increases to 1.5 ML at 34% RH.

  17. Research and Development of High Temperature Light Water Cooled Reactor Operating at Supercritical-Pressure in Japan

    SciTech Connect (OSTI)

    Yoshiaki Oka [Nuclear Engineering Research Laboratory, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 112-0006 (Japan); Katsumi Yamada [Isogo Nuclear Engineering Center, Toshiba Corporation, 8, Shinsugita-cho, Isogo-ku, Yokohama, 235-8523 (Japan)

    2004-07-01T23:59:59.000Z

    This paper summarizes the status and future plans of research and development of the high temperature light water cooled reactor operating at supercritical-pressure in Japan. It includes; the concept development; material for the fuel cladding; water chemistry under supercritical pressure; thermal hydraulics of supercritical fluid; and the conceptual design of core and plant system. Elements of concept development of the once-through coolant cycle reactor are described, which consists of fuel, core, reactor and plant system, stability and safety. Material studies include corrosion tests with supercritical water loops and simulated irradiation tests using a high-energy transmission electron microscope. Possibilities of oxide dispersion strengthening steels for the cladding material are studied. The water chemistry research includes radiolysis and kinetics of supercritical pressure water, influence of radiolysis and radiation damage on corrosion and behavior on the interface between water and material. The thermal hydraulic research includes heat transfer tests of single tube, single rod and three-rod bundles with a supercritical Freon loop and numerical simulations. The conceptual designs include core design with a three-dimensional core simulator and sub-channel analysis, and balance of plant. (authors)

  18. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    SciTech Connect (OSTI)

    Eric M. Suuberg; Vahur Oja

    1997-07-01T23:59:59.000Z

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  19. Vaporization of synthetic fuels. Final report. [Thesis

    SciTech Connect (OSTI)

    Sirignano, W.A.; Yao, S.C.; Tong, A.Y.; Talley, D.

    1983-01-01T23:59:59.000Z

    The problem of transient droplet vaporization in a hot convective environment is examined. The main objective of the present study is to develop an algorithm for the droplet vaporization which is simple enough to be feasibly incorporated into a complete spray combustion analysis and yet will also account for the important physics such as liquid-phase internal circulation, unsteady droplet heating and axisymmetric gas-phase convection. A simplified liquid-phase model has been obtained based on the assumption of the existence of a Hill's spherical vortex inside the droplet together with some approximations made in the governing diffusion equation. The use of the simplified model in a spray situation has also been examined. It has been found that droplet heating and vaporization are essentially unsteady and droplet temperature is nonuniform for a significant portion of its lifetime. It has also been found that the droplet vaporization characteristic can be quite sensitive to the particular liquid-phase and gas-phase models. The results of the various models are compared with the existing experimental data. Due to large scattering in the experimental measurements, particularly the droplet diameter, no definite conclusion can be drawn based on the experimental data. Finally, certain research problems which are related to the present study are suggested for future studies.

  20. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas

    SciTech Connect (OSTI)

    Hanrahan, Timothy P.; Geist, David R.; Arntzen, Evan V.; Abernethy, Cary S.

    2004-09-24T23:59:59.000Z

    The development of the Snake River hydroelectric system has affected fall chinook salmon smolts by shifting their migration timing to a period when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations to improve water temperature and flow conditions during the juvenile chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by PNNL that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall chinook salmon spawning areas. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The hydrologic regime during the 2002?2003 sampling period exhibited one of the lowest, most stable daily discharge patterns of any of the previous 12 water years. The vertical hydraulic gradients (VHG) between the river and the riverbed suggested the potential for predominantly small magnitude vertical exchange. The VHG also showed little relationship to changes in river discharge at most sites. Despite the relatively small vertical hydraulic gradients at most sites, the results from the numerical modeling of riverbed pore water velocity and hyporheic zone temperatures suggested that there was significant vertical hydrologic exchange during all time periods. The combined results of temperature monitoring and numerical modeling indicate that only two sites were significantly affected by short-term (hourly to daily) large magnitude changes in discharge. Although the two sites exhibited acute flux reversals between river water and hyporheic water resulting from short-term large magnitude changes in discharge, these flux reversals had minimal effect on emergence timing estimates. Indeed, the emergence timing estimates at all sites was largely unaffected by the changes in river stage resulting from hydropower operations at Hells Canyon Dam. Our results indicate that the range of emergence timing estimates due to differences among the eggs from different females can be as large as or larger than the emergence timing estimates due to site differences (i.e., bed temperatures within and among sites). We conclude that during the 2002-2003 fall chinook salmon incubation period, hydropower operations of Hells Canyon Dam had an insignificant effect on fry emergence timing at the study sites. It appears that short-term (i.e., hourly to daily) manipulations of discharge from the Hells Canyon Complex during the incubation period would not substantially alter egg pocket incubation temperatures, and thus would not affect fry emergence timing at the study sites. However, the use of hydropower operational manipulations at the Hells Canyon Complex to accelerate egg incubation and fry emergence should not be ruled out on the basis of only one water year's worth of study. Further investigation of the incubation environment of Snake River fall chinook salmon is warranted based on the complexity of hyporheic zone characteristics and the variability of surface/subsurface interactions among dry, normal, and wet water years.

  1. Proceedings ASCE EWRI World Water and Environmental Resources Congress 2005 May 15-19, 2005 Modeling and evaluating temperature dynamics in wastewater treatment plants

    E-Print Network [OSTI]

    Wells, Scott A.

    Modeling and evaluating temperature dynamics in wastewater treatment plants Scott A. Wells1 , Dmitriy into receiving waters, there is much interest in providing a model of temperature dynamics in wastewater using detailed temperature data from a Washington County, Oregon, USA wastewater treatment facility

  2. In-Pile SCC Growth Behavior of Type 304 Stainless Steel in High Temperature Water at JMTR

    SciTech Connect (OSTI)

    Yoshiyuki Kaji; Hirokazu Ugachi; Takashi Tsukada; Yoshinori Matsui; Masao Ohmi [Japan Atomic Energy Agency (Japan); Nobuaki Nagata; Koji Dozaki; Hideki Takiguchi [Japan Atomic Power Company (Japan)

    2006-07-01T23:59:59.000Z

    Irradiation assisted stress corrosion cracking (IASCC) is one of the critical concerns when stainless steel components have been in service in light water reactors (LWRs) for a long period. In general, IASCC can be reproduced on the materials irradiated over a certain threshold fluence level of fast neutron by the post-irradiation examinations (PIEs). It is, however, considered that the reproduced IASCC by PIEs must be carefully compared with the actual IASCC in nuclear power plants, because the actual IASCC occurs in the core under simultaneous effects of radiation, stress and high temperature water environment. In the research field of IASCC, mainly PIEs for irradiated materials have been carried out, because there are many difficulties on SCC tests under neutron irradiation. Hence as a part of the key techniques for in-pile SCC tests, we have embarked on a development of the test technique to obtain information concerning effects of applied stress level, water chemistry, irradiation conditions, etc. A high temperature water loop facility was installed at the Japan Materials Testing Reactor (JMTR) to carry out the in-pile IASCC testing under a framework of cooperative research program between JAERI and the JAPC. In-pile IASCC growth tests have been successfully carried out using the compact tension (CT) type specimens of type 304 stainless steel that had been pre-irradiated up to a neutron fluence level around 1 x 10{sup 25} n/m{sup 2} before the in-pile testing since 2004. The tests were carried out in pure water simulated boiling water reactor (BWR) coolant condition. In the paper, results of the in-pile SCC growth tests will be discussed comparing with the result obtained by PIEs from a viewpoint of the synergistic effects on IASCC. (authors)

  3. Glycol-Water Interactions and co-existing phases and Temperature Dependent Solubility. An Example Of Carbon-Hydrogen Chemistry In Water

    E-Print Network [OSTI]

    Fredrick Michael

    2010-10-26T23:59:59.000Z

    Recently there has been great interest in Glycol-Water chemistry and solubility and temperature dependent phase dynamics. The Glycol-Water biochemistry of interactions is present in plant biology and chemistry, is of great interest to chemical engineers and biochemists as it is a paradigm of Carbon-Hydrogen Water organic chemistry. There is an interest moreover in formulating a simpler theory and computation model for the Glycol-Water interaction and phase dynamics, that is not fully quantum mechanical yet has the high accuracy available from a fully quantum mechanical theory of phase transitions of fluids and Fermi systems. Along these lines of research interest we have derived a Lennard-Jones -like theory of interacting molecules-Water in a dissolved adducts of Glycol-Water system interacting by Hydrogen bonds whose validity is supported at the scale of interactions by other independent molecular dynamics investigations that utilize force fields dependent on their experimental fittings to the Lennard-Jones potential and where we have relaxed or generalized the potential to arbitrary and possibly fractional powers. The theory then is a semi-classical theory as the repulsion of particles is incorporated in the Lennard-Jones -like potential's energy required to bring two molecules together, a repulsion of sorts. We derive distributions for the molecular species that are exactly solved, and are derived from maximum entropy, here the semi-classical analogue of the Hamiltonian superposition of quantum phase theory of fluids. We also derive the similar statistics from the microscopic SDEs stochastic differential dynamics equations, verifying the macroscopic state function entropic-thermodynamic derivation.

  4. Effects of Micro/Nano-Scale Surface Characteristics on the Leidenfrost Point Temperature of Water

    E-Print Network [OSTI]

    Hu, Lin-Wen

    In recent film boiling heat transfer studies with nanofluids, it was reported that deposition of nanoparticles on a surface significantly increases the nominal minimum heat flux (MHF) or Leidenfrost Point (LFP) temperature, ...

  5. Understanding the operation and use of high temperature electrochemical corrosion rate probes

    SciTech Connect (OSTI)

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.; Cayard, Michael S. (InterCorr International Inc.); Eden, David A. (InterCorr International Inc.)

    2004-01-01T23:59:59.000Z

    Electrochemical corrosion rate probes were constructed and tested along with mass loss coupons in a N2/O2/CO2 plus water vapor environment. Temperatures ranged from 450 to 600 C. Corrosion rates for ash-covered mild steel, 304L SS, and 316L SS probes using electrochemical techniques were a function of time, temperature, and process environment. Correlation between electrochemical and mass loss corrosion rates was good.

  6. Estimation of interstitial water in porous medium by capillary pressure measurements at various temperatures

    E-Print Network [OSTI]

    Gupta, Mahesh Chander

    1968-01-01T23:59:59.000Z

    water to remove the salt. Ten pore volumes of distilled water were flushed through each core and diaphragm. They were then dried in the oven overnight and oooled. Finally they were saturated with kerosene. Run V was made at 75 F with the cores... saturated with kerosene. In this run kerosene was the wetting fluid instead of brine. A standard Du Nouy Tensiometer was used to measure surface tension of the brine solution at 75'F, 150'F and 200'F. Surface tension of kerosene, and brine solution...

  7. Recombination time of an RF discharge plasma in the presence of water molecules

    SciTech Connect (OSTI)

    Protasevich, E.T.

    1986-05-01T23:59:59.000Z

    The authors show that the introduction of water vapor into an electrodeless rf discharge noticeably reduces the excitation temperature and substantially increases the recombination time of the plasma. An attempt is made to explain the physical processes associated with these phenomena.

  8. Infrared imaging of the surface temperature field of water during film spreading

    E-Print Network [OSTI]

    Saylor, John R.

    which exists at a perfectly clean gas/liquid interface is considered to be shear- free. Films be significantly affected by the presence of a film.3­7 Such studies are typically conducted in a water tank where in the area of oil slicks and their dispersal,10 the transport of surfactants within the lung,11

  9. The influence of temperature on the estimation of interstitial water by capillary pressure measurements

    E-Print Network [OSTI]

    Shah, Narendra

    1967-01-01T23:59:59.000Z

    riietting Phase 91. turation ? nercent 18 13 12 u 0 10 a 9 o a 4 6 u '/ j h'[ '' ll j Captllary Pressure Curve at Temperature - 130oF (Porous Diaphradm Vethod) Core hto. 1033 ts 0 10 ?0 30 40 ! 0 60 '/0 80 90 100 leettfn3 'Phrase...

  10. Ultimate lower lethal temperature of red drum Sciaenops Ocellatus as a function of water hardness and salinity

    E-Print Network [OSTI]

    Procarione, Lynne S

    1986-01-01T23:59:59.000Z

    S UE PR OCAR ION E Approved as to style and content by: William H. Neill ( Chair of Committee) Edwin H. Robinson (Member ) ff y D. Hart ( Member) Dav id . Schmidly (Head o Department) Dec ember 1 986 ABSTRACT Ult' t L L th l t p t f R D D ~p... in water as cold as 2 C in both Texas (Simmons and Breuer 1962) and Florida (Springer 1960). In contr ol led experiments, Miranda and Sonski (in pr ess) found the median lower-lethal temperatur e for 25- and 15-C-acclimated red drum in freshwater...

  11. Accident Performance of Light Water Reactor Cladding Materials

    SciTech Connect (OSTI)

    Nelson, Andrew T. [Los Alamos National Laboratory

    2012-07-24T23:59:59.000Z

    During a loss of coolant accident as experienced at Fukushima, inadequate cooling of the reactor core forces component temperatures ever higher where they must withstand aggressive chemical environments. Conventional zirconium cladding alloys will readily oxidize in the presence of water vapor at elevated temperatures, rapidly degrading and likely failing. A cladding breach removes the critical barrier between actinides and fission products and the coolant, greatly increasing the probability of the release of radioactivity in the event of a containment failure. These factors have driven renewed international interest in both study and improvement of the materials used in commercial light water reactors. Characterization of a candidate cladding alloy or oxidation mitigation technique requires understanding of both the oxidation kinetics and hydrogen production as a function of temperature and atmosphere conditions. Researchers in the MST division supported by the DOE-NE Fuel Cycle Research and Development program are working to evaluate and quantify these parameters across a wide range of proposed cladding materials. The primary instrument employed is a simultaneous thermal analyzer (STA) equipped with a specialized water vapor furnace capable of maintaining temperatures above 1200 C in a range of atmospheres and water vapor contents. The STA utilizes thermogravimetric analysis and a coupled mass spectrometer to measure in situ oxidation and hydrogen production of candidate materials. This capability is unprecedented in study of materials under consideration for reactor cladding use, and is currently being expanded to investigate proposed coating techniques as well as the effect of coating defects on corrosion resistance.

  12. ARM - Field Campaign - Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric OpticalExperiment (VORTEX) govCampaignsVerification

  13. JOURNAL of GEOPHYSICAL RESEARCH, YOLo 90, NO. C3, PAGES 4907-4910, MAY 20, 1985 The Effect of Water Temperature and Synoptic Winds on the

    E-Print Network [OSTI]

    Pielke, Roger A.

    Temperature and Synoptic Winds on the Development of Surface Flows Over Narrow, Elongated Water Bodies M surfacetemperature and of the large-scalesynoptic winds on the devel- opment of surfaceflows over the water created by damming of a river). In these locations, a daytime induced breeze, including its interaction

  14. A model of vapor-liquid equilibria in acid gas: Aqueous alkanolamine systems using the electrolyte-NRTL equation

    SciTech Connect (OSTI)

    Austgen, D.M.; Rochelle, G.T. (Univ. of Texas at Austin, TX (US)); (Peng, X. (Sinopen Beijing Design Institute (US)); Chen, C.C. (Aspen Technology, Inc. TX (US)))

    1988-01-01T23:59:59.000Z

    In this paper a thermodynamically-consistent model is developed for representing vapor-liquid equilibria in the acid gas (H/sub 2/S, CO/sub 2/)-alkanolamine-water system. The model accounts for chemical equilibria in a rigorous manner. Activity coefficients are represented with the Electrolyte-NRTL equation, treating both long-range ion-ion interactions and short-range interactions between all true liquid phase species. Both water and alkanolamine are treated as solvents. Adjustable parameters of the Electrolyte-NRTL equation, representing short-range binary interactions, are fitted primarily on binary and ternary system VLE data. Calculated vapor pressures of H/sub 2/S or CO/sub 2/ over aqueous solutions of monoethanolamine or diethanolamine generally agree with published experimental data within 10 percent over the temperature range 25-120{sup 0}C. No more than two additional parameters are adjusted on quartenary system VLE data to provide a good representation of H/sub 2/S and CO/sub 2/ vapor pressures over the same alkanolamine solutions.

  15. Low-temperature geothermal water in Utah: A compilation of data for thermal wells and springs through 1993

    SciTech Connect (OSTI)

    Blackett, R.E.

    1994-07-01T23:59:59.000Z

    The Geothermal Division of DOE initiated the Low-Temperature Geothermal Resources and Technology Transfer Program, following a special appropriation by Congress in 1991, to encourage wider use of lower-temperature geothermal resources through direct-use, geothermal heat-pump, and binary-cycle power conversion technologies. The Oregon Institute of Technology (OIT), the University of Utah Research Institute (UURI), and the Idaho Water Resources Research Institute organized the federally-funded program and enlisted the help of ten western states to carry out phase one. This first phase involves updating the inventory of thermal wells and springs with the help of the participating state agencies. The state resource teams inventory thermal wells and springs, and compile relevant information on each sources. OIT and UURI cooperatively administer the program. OIT provides overall contract management while UURI provides technical direction to the state teams. Phase one of the program focuses on replacing part of GEOTHERM by building a new database of low- and moderate-temperature geothermal systems for use on personal computers. For Utah, this involved (1) identifying sources of geothermal date, (2) designing a database structure, (3) entering the new date; (4) checking for errors, inconsistencies, and duplicate records; (5) organizing the data into reporting formats; and (6) generating a map (1:750,000 scale) of Utah showing the locations and record identification numbers of thermal wells and springs.

  16. Passive vapor extraction feasibility study

    SciTech Connect (OSTI)

    Rohay, V.J.

    1994-06-30T23:59:59.000Z

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft{sup 3}/min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft{sup 3}/min air flow rates, passive vapor extraction is more cost effective below 100 ppm.

  17. Chemical vapor deposition of epitaxial silicon

    DOE Patents [OSTI]

    Berkman, Samuel (Florham Park, NJ)

    1984-01-01T23:59:59.000Z

    A single chamber continuous chemical vapor deposition (CVD) reactor is described for depositing continuously on flat substrates, for example, epitaxial layers of semiconductor materials. The single chamber reactor is formed into three separate zones by baffles or tubes carrying chemical source material and a carrier gas in one gas stream and hydrogen gas in the other stream without interaction while the wafers are heated to deposition temperature. Diffusion of the two gas streams on heated wafers effects the epitaxial deposition in the intermediate zone and the wafers are cooled in the final zone by coolant gases. A CVD reactor for batch processing is also described embodying the deposition principles of the continuous reactor.

  18. Method and apparatus to measure vapor pressure in a flow system

    DOE Patents [OSTI]

    Grossman, M.W.; Biblarz, O.

    1991-10-15T23:59:59.000Z

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process. 2 figures.

  19. Tank Vapor Characterization Project: Annual status report for FY 1996

    SciTech Connect (OSTI)

    Silvers, K.L.; Fruchter, J.S.; Huckaby, J.L.; Almeida, T.L.; Evans, J.C. Jr.; Pool, K.H.; Simonen, C.A.; Thornton, B.M.

    1997-01-01T23:59:59.000Z

    In Fiscal Year 1996, staff at the Vapor Analytical Laboratory at Pacific Northwest National Laboratory performed work in support of characterizing the vapor composition of the headspaces of radioactive waste tanks at the Hanford Site. Work performed included support for technical issues and sampling methodologies, upgrades for analytical equipment, analytical method development, preparation of unexposed samples, analyses of tank headspaces samples, preparation of data reports, and operation of the tank vapor database. Progress made in FY 1996 included completion and issuance of 50 analytical data reports. A sampling system comparison study was initiated and completed during the fiscal year. The comparison study involved the vapor sampling system (VSS), a truck-based system, and the in situ vapor sampling system (ISVS), a cart-based system. Samples collected during the study were characterized for inorganic, permanent gases, total non-methane organic compounds and organic speciation by SUMMA{trademark} and TST methods. The study showed comparable sampling results between the systems resulting in the program switching from the VSS to the less expensive ISVS methodology in late May 1996. A temporal study was initiated in January 1996 in order to understand the influences seasonal temperatures changes have on the vapors in the headspace of Hanford waste tanks. A holding time study was initiated in the fourth quarter of FY 1996. Samples were collected from tank S-102 and rushed to the laboratory for time zero analysis. Additional samples will be analyzed at 1, 2, 4, 8, 16, and 32 weeks.

  20. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    SciTech Connect (OSTI)

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-10-14T23:59:59.000Z

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  1. Zinc Treatment Effects on Corrosion Behavior of 304 Stainless Steel in High Temperature, Hydrogenated Water

    SciTech Connect (OSTI)

    S.E. Ziemniak; M. Hanson

    2001-03-20T23:59:59.000Z

    Trace levels of soluble zinc(II) ions (30 ppb) maintained in mildly alkaline, hydrogenated water at 260 C were found to lower the corrosion rate of austenitic stainless steel (UNS S30400) by about a factor of five, relative to a non-zinc baseline test after 10,000 hr. Characterizations of the corrosion oxide layer via grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy in combination with argon ion milling and target factor analysis, confirmed the presence of two spinel oxide phases and minor amounts of recrystallized nickel. Based on the distribution of the three oxidized alloying constituents (Fe, Cr, Ni) with respect to depth and oxidation state, it was concluded that: (a) corrosion occurs in a non-selective manner, but approximately 30% of the oxidized iron is released to the water, and (b) the two spinel oxides exist as a ferrite-based outer layer (Ni{sub 0.1}Zn{sub 0.6}Fe{sub 0.3})(Fe{sub 0.95}Cr{sub 0.05}){sub 2}O{sub 4} on top of a chromite-based inner layer (Ni{sub 0.1}Zn{sub 0.2}Fe{sub 0.7})(Fe{sub 0.4}Cr{sub 0.6}){sub 2}O{sub 4}. These results suggest that immiscibility in the Fe{sub 3}O{sub 4}-ZnFe{sub 2}O{sub 4} binary may play a role in controlling the zinc content of the outer layer. On the other hand, the lower corrosion rate caused by zinc additions is believed to be a consequence of corrosion oxide film stabilization due to the substitution reaction equilibrium: z Zn{sup 2+}(aq) + FeCr{sub 2}O{sub 4}(s) {approx} z Fe{sup 2+}(aq) + (Zn{sub z}Fe{sub 1-z})Cr{sub 2}O{sub 4}(s). The liquid-solid distribution coefficient for the reaction, defined by the ratio of total zinc to iron ion concentrations in solution divided by the Zn(II)/Fe(II) ratio in the solid, z/(1-z), was found to be 0.184. This interpretation is consistent with the benefits of zinc treatment being concentration dependent.

  2. Treatment methods for breaking certain oil and water emulsions

    DOE Patents [OSTI]

    Sealock, Jr., L. John (W. Richland, WA); Baker, Eddie G. (Richland, WA); Elliott, Douglas C. (Richland, WA)

    1992-01-01T23:59:59.000Z

    Disclosed are treatment methods for breaking emulsions of petroleum oil and salt water, fatty oil and water, and those resulting from liquefication of organic material. The emulsions are broken by heating to a predetermined temperature at or above about 200.degree. C. and pressurizing to a predetermined pressure above the vapor pressure of water at the predetermined temperature to produce a heated and pressurized fluid. The heated and pressurized fluid is contained in a single vessel at the predetermined temperature and pressure for a predetermined period of time to effectively separate the emulsion into substantially distinct first and second phases, the first phase comprising primarily the petroleum oil, the second phase comprising primarily the water. The first and second phases are separately withdrawn from the vessel at a withdraw temperature between about 200.degree. C. and 374.degree. C. and a withdraw pressure above the vapor pressure of water at the withdraw temperature. Where solids are present in the certain emulsions, the above described treatment may also effectively separate the certain emulsion into a substantially distinct third phase comprising primarily the solids.

  3. Concept Paper for Real-Time Temperature and Water QualityManagement for San Joaquin River Riparian Habitat Restoration

    SciTech Connect (OSTI)

    Quinn, Nigel W.T.

    2004-12-20T23:59:59.000Z

    The San Joaquin River Riparian Habitat Restoration Program (SJRRP) has recognized the potential importance of real-time monitoring and management to the success of the San Joaquin River (SJR) restoration endeavor. The first step to realizing making real-time management a reality on the middle San Joaquin River between Friant Dam and the Merced River will be the installation and operation of a network of permanent telemetered gauging stations that will allow optimization of reservoir releases made specifically for fish water temperature management. Given the limited reservoir storage volume available to the SJJRP, this functionality will allow the development of an adaptive management program, similar in concept to the VAMP though with different objectives. The virtue of this approach is that as management of the middle SJR becomes more routine, additional sensors can be added to the sensor network, initially deployed, to continue to improve conditions for anadromous fish.

  4. Tritiated Water Interaction with Stainless Steel

    SciTech Connect (OSTI)

    Glen R. Longhurst

    2007-05-01T23:59:59.000Z

    Experiments conducted to study tritium permeation of stainless steel at ambient and elevated temperatures revealed that HT converts relatively quickly to HTO. Further, the HTO partial pressure contributes essentially equally with elemental tritium gas in driving permeation through the stainless steel. Such permeation appears to be due to dissociation of the water molecule on the hot stainless steel surface. There is an equilibrium concentration of HTO vapor above adsorbed gas on the walls of the experimental apparatus evident from freezing transients. The uptake process of tritium from the carrier gas involves both surface adsorption and isotopic exchange with surface bound water.

  5. Materials for the scavanging of hydrogen at high temperatures

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA); Phillip, Bradley L. (Shaker Heights, OH)

    1997-01-01T23:59:59.000Z

    A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compositions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100.degree. C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

  6. Materials for the scavanging of hydrogen at high temperatures

    DOE Patents [OSTI]

    Shepodd, Timothy J. (330 Thrasher Ave., Livermore, Alameda County, CA 94550); Phillip, Bradley L. (20976 Fairmount Blvd., Shaker Heights, Cuyahoga County, OH 44120)

    1997-01-01T23:59:59.000Z

    A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compostions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

  7. Portable vapor diffusion coefficient meter

    DOE Patents [OSTI]

    Ho, Clifford K. (Albuquerque, NM)

    2007-06-12T23:59:59.000Z

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  8. Plant water use in a greenhouse: theory and measurements

    E-Print Network [OSTI]

    Shaer, Yacoub Adib

    1981-01-01T23:59:59.000Z

    temperature, and the storage tank temperature if applicable. The external transport coefficient for water vapor between crop and air was considered constant in the SG79 model, equivalent to a -1 resistance of 250 s m . The leaf resistance is made to vary... with the predicted water use by the SG79 model. A description of this test follows. The Lysimeters Four lysimeters of about 0. 02 m , made from plastic pots were 2 installed in the turf growing in the test greenhouse and were weighed every two hours during...

  9. Corrosion Behavior of 304 Stainless Steel in High Temperature, Hydrogenated Water

    SciTech Connect (OSTI)

    S.E. Ziemniak; M. Hanson

    2001-05-04T23:59:59.000Z

    The corrosion behavior of an austenitic stainless steel (UNS S30400) has been characterized in a 10,000 hour test conducted in hydrogenated, ammoniated water at 260 C. The corrosion kinetics were observed to follow a parabolic rate dependency, the parabolic rate constant being determined by chemical descaling to be 1.16 mg dm{sup -2} hr{sup -1/2}. X-ray photoelectron spectroscopy, in combination with argon ion milling and target factor analysis, was applied to provide an independent estimate of the rate constant that agreed with the gravimetric result. Based on the distribution of the three oxidized alloying constituents (Fe, Cr, Ni) with respect to depth and elemental state, it was found that: (a) corrosion occurs in a non-selective manner, and (b) the corrosion film consists of two spinel oxide layers--a ferrite-based outer layer (Ni{sub 0.2}Fe{sub 0.8})(Fe{sub 0.95}Cr{sub 0.05}){sub 2}O{sub 4} on top of a chromite-based inner layer (Ni{sub 0.2}Fe{sub 0.8})(Cr{sub 0.7}Fe{sub 0.3}){sub 2}O{sub 4}. These compositions agree closely with the solvi phases created by immiscibility in the Fe{sub 3}O{sub 4}-FeCr{sub 2}O{sub 4} binary, implying that immiscibility plays an important role in the phase separation process.

  10. Vapor deposition of hardened niobium

    DOE Patents [OSTI]

    Blocher, Jr., John M. (Columbus, OH); Veigel, Neil D. (Columbus, OH); Landrigan, Richard B. (Columbus, OH)

    1983-04-19T23:59:59.000Z

    A method of coating ceramic nuclear fuel particles containing a major amount of an actinide ceramic in which the particles are placed in a fluidized bed maintained at ca. 800.degree. to ca. 900.degree. C., and niobium pentachloride vapor and carbon tetrachloride vapor are led into the bed, whereby niobium metal is deposited on the particles and carbon is deposited interstitially within the niobium. Coating apparatus used in the method is also disclosed.

  11. Vapor-liquid equilibria for methanol + tetraethylene glycol dimethyl ether

    SciTech Connect (OSTI)

    Esteve, X.; Chaudhari, S.K.; Coronas, A. [Univ. Rovira i Virgili, Tarragona (Spain). Dept. of Electrical and Mechanical Engineering

    1995-11-01T23:59:59.000Z

    Vapor-liquid equilibrium (P-T-x) for the methanol + tetraethylene glycol dimethyl ether binary system were obtained by the static method in the range of temperatures from 293.15 to 423.15 K at 10 K intervals. The modified vapor pressure apparatus used is described. The Kuczynsky method was used to calculate the liquid and vapor composition and the activity coefficients of methanol from the initial composition of the sample and the measured pressure and temperature. The results were correlated by the NRTL and UNIQUAC temperature dependent activity coefficient models. This system shows nearly ideal behavior at 323.15 K, but positive deviations from ideality at lower temperatures and negative deviations at higher temperatures are observed. The activity coefficients become more negative with the increase in temperature and mole fraction of methanol. The excess molar enthalpy using the Gibss-Helmholtz equation and the NRTL and UNIQUAC parameters were calculated at 303.15 K and compared with experimental data. This binary system shows promise as a working pair for high-temperature heat pump applications.

  12. Optimization of multi-pressure himidification-dehumidification desalination using thermal vapor compression and hybridization

    E-Print Network [OSTI]

    Mistry, Karan Hemant

    Humidification-dehumidification (HD or HDH) desalination, and specifically HD driven by a thermal vapor compressor (TVC), is a thermal desalination method that has the potential to produce potable water efficiently in order ...

  13. Application of Computational Fluid Dynamics in the Forced Dispersion Modeling of LNG Vapor Clouds

    E-Print Network [OSTI]

    Kim, Byung-Kyu

    2013-05-31T23:59:59.000Z

    The safety and security of liquefied natural gas (LNG) facilities has prompted the need for continued study of LNG mitigation systems. Water spray systems are widely recognized as an effective measure for dispersing LNG vapor clouds. Currently...

  14. Heat pump augmented radiator for low-temperature space applications

    SciTech Connect (OSTI)

    Olszewski, M.; Rockenfeller, U.

    1988-01-01T23:59:59.000Z

    Closed-cycle, space-based heat rejection systems depend solely on radiation to achieve their heat dissipation function. Since the payload heat rejection temperature is typically 50 K above that of the radiation sink in near earth orbit, the size and mass of these systems can be appreciable. Size (and potentially mass) reductions are achievable by increasing the rejection temperature via a heat pump. Two heat pump concept were examined to determine if radiator area reductions could be realized without increasing the mass of the heat rejection system. The first was a conventional, electrically-driven vapor compression system. The second is an innovative concept using a solid-vapor adsorption system driven by reject heat from the prime power system. The mass and radiator area of the heat pumpradiator systems were compared to that of a radiator only system to determine the merit of the heat pump concepts. Results for the compressor system indicated that the mass minimum occured at a temperature lift of about 50 K and radiator area reductions of 35% were realized. With a radiator specific mass of 10 kgm/sup 2/, the heat pump system is 15% higher than the radiator only baseline system. The complex compound chemisorption systems showed more promising results. Using water vapor as the working fluid in a single stage heat amplifier resulted in optimal temperature lifts exceeding 150 K. This resulted in a radiator area reduction of 83% with a mass reduction of 64%. 7 refs., 9 figs.

  15. Control of Vapor Dispersion and Pool Fire of Liquefied Natural Gas (LNG) with Expansion Foam

    E-Print Network [OSTI]

    Yun, Geun Woong

    2011-10-21T23:59:59.000Z

    , this study aimed to obtain key parameters, such as the temperature changes of methane and foam and the extent reduction of vapor concentration. This study also focused on identifying the effectiveness of foam and thermal exclusion zone by investigating...

  16. Final report on the project entitled "The Effects of Disturbance & Climate on Carbon Storage & the Exchanges of CO2 Water Vapor & Energy Exchange of Evergreen Coniferous Forests in the Pacific Northwest: Integration of Eddy Flux, Plant and Soil Measurements at a Cluster of Supersites"

    SciTech Connect (OSTI)

    Beverly E. Law (PI), Christoph K. Thomas (CoI)

    2011-09-20T23:59:59.000Z

    This is the final technical report containing a summary of all findings with regard to the following objectives of the project: (1) To quantify and understand the effects of wildfire on carbon storage and the exchanges of energy, CO2, and water vapor in a chronosequence of ponderosa pine (disturbance gradient); (2) To investigate the effects of seasonal and interannual variation in climate on carbon storage and the exchanges of energy, CO2, and water vapor in mature conifer forests in two climate zones: mesic 40-yr old Douglas-fir and semi-arid 60-yr old ponderosa pine (climate gradient); (3) To reduce uncertainty in estimates of CO2 feedbacks to the atmosphere by providing an improved model formulation for existing biosphere-atmosphere models; and (4) To provide high quality data for AmeriFlux and the NACP on micrometeorology, meteorology, and biology of these systems. Objective (1): A study integrating satellite remote sensing, AmeriFlux data, and field surveys in a simulation modeling framework estimated that the pyrogenic carbon emissions, tree mortality, and net carbon exchange associated with four large wildfires that burned ~50,000 hectares in 2002-2003 were equivalent to 2.4% of Oregon statewide anthropogenic carbon emissions over the same two-year period. Most emissions were from the combustion of the forest floor and understory vegetation, and only about 1% of live tree mass was combusted on average. Objective (2): A study of multi-year flux records across a chronosequence of ponderosa pine forests yielded that the net carbon uptake is over three times greater at a mature pine forest compared with young pine. The larger leaf area and wetter and cooler soils of the mature forest mainly caused this effect. A study analyzing seven years of carbon and water dynamics showed that interannual and seasonal variability of net carbon exchange was primarily related to variability in growing season length, which was a linear function of plant-available soil moisture in spring and early summer. A multi-year drought (2001-2003) led to a significant reduction of net ecosystem exchange due to carry-over effects in soil moisture and carbohydrate reserves in plant-tissue. In the same forest, the interannual variability in the rate carbon is lost from the soil and forest floor is considerable and related to the variability in tree growth as much as it is to variability in soil climatic conditions. Objective (3): Flux data from the mature ponderosa pine site support a physical basis for filtering nighttime data with friction velocity above the canopy. An analysis of wind fields and heat transport in the subcanopy at the mesic 40-year old Douglas site yielded that the non-linear structure and behavior of spatial temperature gradients and the flow field require enhanced sensor networks to estimate advective fluxes in the subcanopy of forest to close the surface energy balance in forests. Reliable estimates for flux uncertainties are needed to improve model validation and data assimilation in process-based carbon models, inverse modeling studies and model-data synthesis, where the uncertainties may be as important as the fluxes themselves. An analysis of the time scale dependence of the random and flux sampling error yielded that the additional flux obtained by increasing the perturbation timescale beyond about 10 minutes is dominated by random sampling error, and therefore little confidence can be placed in its value. Artificial correlation between gross ecosystem productivity (GEP) and ecosystem respiration (Re) is a consequence of flux partitioning of eddy covariance flux data when GEP is computed as the difference between NEE and computed daytime Re (e.g. using nighttime Re extrapolated into daytime using soil or air temperatures). Tower-data must be adequately spatially averaged before comparison to gridded model output as the time variability of both is inherently different. The eddy-covariance data collected at the mature ponderosa pine site and the mesic Douglas fir site were used to develop and evaluate a new method to extra

  17. The development of a passive dosimeter for airborne aniline vapors

    E-Print Network [OSTI]

    Campbell, James Evan

    1977-01-01T23:59:59.000Z

    passive sampl1ng dosimeter was designed to measure concen- trat1ons of aniline vapor in air. Diffus1on tubes of 1. 5, 3. 0 and 4. 5 cm lengths were tested under controlled conditions of relative humid1ty, air temperature and vapor concentrations. A... of Measured vs Calculated Concentrations APPENDIX D-Student-t Test on Slopes of Measured vs Calculated Data . APPENDIX E-Statistical Analysis of Four Hour Time- Weighted Average Study on 3. 0 cm Dosimeter VITA ~pa e 42 45 48 59 62 63 65 70 73...

  18. Monitoring of vapor phase polycyclic aromatic hydrocarbons

    DOE Patents [OSTI]

    Vo-Dinh, Tuan; Hajaligol, Mohammad R.

    2004-06-01T23:59:59.000Z

    An apparatus for monitoring vapor phase polycyclic aromatic hydrocarbons in a high-temperature environment has an excitation source producing electromagnetic radiation, an optical path having an optical probe optically communicating the electromagnetic radiation received at a proximal end to a distal end, a spectrometer or polychromator, a detector, and a positioner coupled to the first optical path. The positioner can slidably move the distal end of the optical probe to maintain the distal end position with respect to an area of a material undergoing combustion. The emitted wavelength can be directed to a detector in a single optical probe 180.degree. backscattered configuration, in a dual optical probe 180.degree. backscattered configuration or in a dual optical probe 90.degree. side scattered configuration. The apparatus can be used to monitor an emitted wavelength of energy from a polycyclic aromatic hydrocarbon as it fluoresces in a high temperature environment.

  19. Production of higher quality bio-oils by in-line esterification of pyrolysis vapor

    DOE Patents [OSTI]

    Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

    2014-12-02T23:59:59.000Z

    The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

  20. Dealing with big circulation flow, small temperature difference based on verified dynamic model simulations of a hot water district heating system

    E-Print Network [OSTI]

    Zhong, L.

    2014-01-01T23:59:59.000Z

    DEALING WITH “BIG CIRCULATION FLOW RATE, SMALL TEMPERATURE DIFFERENCE” BASED ON VERIFIED DYNAMIC MODEL SIMULATIONS OF A HOT WATER DISTRICT HEATING SYSTEM Li Lian Zhong, Senior Sales Consultant, Danfoss Automatic Controls Management (Shanghai...) Co.,Ltd, Anshan, China ABSTRACT Dynamic models of an indirect hot water district heating system were developed based on the first principle of thermodynamics. The ideal model was verified by using measured operational data. The ideal...

  1. Concept Paper for Real-Time Temperature and Water Quality Management for San Joaquin River Riparian Habitat Restoration

    E-Print Network [OSTI]

    Quinn, Nigel W.T.

    2004-01-01T23:59:59.000Z

    Report. Real-time Water Quality Management for SJR RiparianReal-time Water Quality Management for SJR Riparian HabitatPaper Real-time Water Quality Management for SJR Riparian

  2. Evaluation and prevention of explosions in soil vapor extraction systems

    SciTech Connect (OSTI)

    Hower, J.W. [Radian Corp., El Segundo, CA (United States)

    1995-12-31T23:59:59.000Z

    Due to the widespread and long term use of petroleum derived fuels and solvents, many areas have subsurface soils contaminated with petroleum derivatives. This contamination can migrate to groundwater, which is frequently used to supply drinking water needs. A common method of cleaning up that contamination is soil vapor extraction (SVE). SVE is a technique where several extraction wells are installed in the contaminated area, with screens in the appropriate vertical locations. The soil vapors re extracted form the wells using a positive displacement blower. To prevent this subsurface contamination from becoming air pollution, the extracted vapors are then sent to some hydrocarbon removal device, such as a carbon adsorption system or a thermal oxidizer. The data used in this investigation were collected as part of a Radian Corporation project for a client. The site is a former petroleum refinery, and the hydrocarbons are primarily gasoline and diesel.

  3. Development of a standard for calculation and measurement of the moderator temperature coefficient of reactivity in water-moderated power reactors

    SciTech Connect (OSTI)

    Mosteller, R.D. [Los Alamos National Lab., NM (United States); Hall, R.A. [Virginia Power, Glen Allen, VA (United States). Innsbrook Technical Center; Apperson, C.E. Jr. [Westinghouse Safety Management Solutions, Inc., Aiken, SC (United States); Lancaster, D.B. [TRW Environmental Safety Systems, Inc., Vienna, VA (United States); Young, E.H. [Commonwealth Edison Co., Downers Grove, IL (United States); Gavin, P.H. [ABB Combustion Engineering, Windsor, CT (United States); Robertson, S.T. [Framatome/COGEMA Fuels, Lynchburg, VA (United States)

    1998-12-01T23:59:59.000Z

    The contents of ANS 19.11, the standard for ``Calculation and Measurement of the Moderator Temperature Coefficient of Reactivity in Water-Moderated Power Reactors,`` are described. The standard addresses the calculation of the moderator temperature coefficient (MTC) both at standby conditions and at power. In addition, it describes several methods for the measurement of the at-power MTC and assesses their relative advantages and disadvantages. Finally, it specifies a minimum set of documentation requirements for compliance with the standard.

  4. Vapor-liquid equilibria in the system NH{sub 3} + H{sub 2}O + LiBr. 2: Data correlation

    SciTech Connect (OSTI)

    Peters, R.; Korinth, C.; Keller, J.U. [Univ. of Siegen (Germany). Institute Fluid- and Thermodynamics

    1995-07-01T23:59:59.000Z

    The systems ammonia + water (NH{sub 3} + H{sub 2}O) and water + lithium bromide (H{sub 2}O + LiBr) provide two working pairs most often used today in air-conditioning systems and systems for reusing industrial waste heat, such as absorption heat pumps and heat transformers. A quasi-chemical reaction model has been developed to correlate vapor-liquid equilibrium data for the system ammonia (NH{sub 3}) + water (H{sub 2}O) + lithium bromide (LiBr) in the temperature range form 303.15 to 473.15 K and at pressures up to 2.0 MPa. this model assumes the formation of ion clusters, i.e., Li{sup +} and Br{sup {minus}} ions surrounded by ammonia and water molecules. Further, ammonia nd water molecules are assumed to form a second species of complexes. The activities of the various components in the liquid phase are modeled by the NRTL equation. The vapor phase, assumed to consist of ammonia and water only, is modeled by the equation of state of Ishikawa, Chung, and Lu.

  5. Structure Sensitivity of the Low-temperature Water-gas Shift Reaction on Cu–CeO2 catalysts

    SciTech Connect (OSTI)

    Si, R.; Zhang, L.; Raitano, J.; Yi, N.; Chan, S.-W.; Flytzani-Stephanopoulos, M.

    2012-01-17T23:59:59.000Z

    We have investigated the structure sensitivity of the water-gas shift (WGS) reaction on Cu-CeO{sub 2} catalysts prepared at the nanoscale by different techniques. On the surface of ceria, different CuO{sub x} structures exist. We show here that only the strongly bound Cu-[O{sub x}]-Ce species, probably associated with the surface oxygen vacancies of ceria, are active for catalyzing the low-temperature WGS reaction. Weakly bound CuO{sub x} clusters and CuO nanoparticles are spectator species in the reaction. Isolated Cu{sup 2+} ions doping the ceria surface are not active themselves, but they are important in that they create oxygen vacancies and can be used as a reservoir of copper to replenish surface Cu removed by leaching or sintering. Accordingly, synthesis techniques such as coprecipitation that allow for extensive solubility of Cu in ceria should be preferred over impregnation, deposition-precipitation, ion exchange or another two-step method whereby the copper precursor is added to already made ceria nanocrystals. For the synthesis of different structures, we have used two methods: a homogeneous coprecipitation (CP), involving hexamethylenetetramine as the precipitating agent and the pH buffer; and a deposition-precipitation (DP) technique. In the latter case, the ceria supports were first synthesized at the nanoscale with different shapes (rods, cubes) to investigate any potential shape effect on the reaction. Cu-CeO{sub 2} catalysts with different copper contents up to ca. 20 at.% were prepared. An indirect shape effect of CeO{sub 2}, manifested by the propensity to form oxygen vacancies and strongly bind copper in the active form, was established; i.e. the water-gas shift reaction is not structure-sensitive. The apparent activation energy of the reaction on all samples was similar, 50 {+-} 10 kJ/mol, in a product-free (2% CO-10% H{sub 2}O) gas mixture.

  6. Vapor etching of nuclear tracks in dielectric materials

    DOE Patents [OSTI]

    Musket, Ronald G. (Danville, CA); Porter, John D. (Berkeley, CA); Yoshiyama, James M. (Fremont, CA); Contolini, Robert J. (Lake Oswego, OR)

    2000-01-01T23:59:59.000Z

    A process involving vapor etching of nuclear tracks in dielectric materials for creating high aspect ratio (i.e., length much greater than diameter), isolated cylindrical holes in dielectric materials that have been exposed to high-energy atomic particles. The process includes cleaning the surface of the tracked material and exposing the cleaned surface to a vapor of a suitable etchant. Independent control of the temperatures of the vapor and the tracked materials provide the means to vary separately the etch rates for the latent track region and the non-tracked material. As a rule, the tracked regions etch at a greater rate than the non-tracked regions. In addition, the vapor-etched holes can be enlarged and smoothed by subsequent dipping in a liquid etchant. The 20-1000 nm diameter holes resulting from the vapor etching process can be useful as molds for electroplating nanometer-sized filaments, etching gate cavities for deposition of nano-cones, developing high-aspect ratio holes in trackable resists, and as filters for a variety of molecular-sized particles in virtually any liquid or gas by selecting the dielectric material that is compatible with the liquid or gas of interest.

  7. Vapor deposition of thin films

    DOE Patents [OSTI]

    Smith, David C. (Los Alamos, NM); Pattillo, Stevan G. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Sattelberger, Alfred P. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  8. Water Management in A PEMFC: Water Transport Mechanism and Material

    E-Print Network [OSTI]

    Kandlikar, Satish

    Water Management in A PEMFC: Water Transport Mechanism and Material Degradation in Gas Diffusion on the water management of the PEMFC, namely the transport of product water (both liquid and vapor its water management performance and func- tion as indicators of the degradation of GDL material

  9. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA)

    1986-01-01T23:59:59.000Z

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  10. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA); Zymboly, Gregory E. (Penn Hills Township, Allegheny County, PA)

    1985-01-01T23:59:59.000Z

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  11. Protective interlayer for high temperature solid electrolyte electrochemical cells

    DOE Patents [OSTI]

    Isenberg, Arnold O. (Forest Hills Boro, PA); Ruka, Roswell J. (Churchill Boro, PA)

    1987-01-01T23:59:59.000Z

    A high temperature, solid electrolyte electrochemical cell is made, having a first and second electrode with solid electrolyte between them, where the electrolyte is formed by hot chemical vapor deposition, where a solid, interlayer material, which is electrically conductive, oxygen permeable, and protective of electrode material from hot metal halide vapor attack, is placed between the first electrode and the electrolyte, to protect the first electrode from the hot metal halide vapors during vapor deposition.

  12. Drilling Addendum to Resource Assessment of Low- and Moderate-Temperature Geothermal Waters in Calistoga, Napa County, California

    SciTech Connect (OSTI)

    Taylor, Gary C.; Bacon, C. Forrest; Chapman, Rodger H.; Chase, Gordon W.; Majmundar, Hasmukhrai H.

    1981-05-01T23:59:59.000Z

    This addendum report presents the results of the California Division of Mines and Geology (CDMG) drilling program at Calistoga, California, which was the final geothermal-resource assessment investigation performed under terms of the second year contract (1979-80) between the U.S. Department of Energy (DOE) and the CDMG under the State Coupled Program. This report is intended to supplement information presented in CDMG's technical report for the project year, ''Resource Assessment of Low- and Moderate-Temperature Geothermal Waters in Calistoga, Napa County, California''. During the investigative phase of the CDMG's Geothermal Project, over 200 well-driller's reports were obtained from the Department of Water Resources (DWR). It was hoped that the interpretation and correlation of these logs would reveal the subsurface geology of the Upper Napa Valley and also provide a check for the various geophysical surveys that were performed in the course of the study. However, these DWR driller logs proved to be inadequate due to the brief, non-technical, and erroneous descriptions contained on the logs. As a result of the lack of useable drill-hole data, and because information was desired from,deeper horizons, it became evident that drilling some exploratory holes would be necessary in order to obtain physical evidence of the stratigraphy and aquifers in the immediate Calistoga area. Pursuant to this objective, a total of twelve sites were selected--four under jurisdiction of Napa County and eight under jurisdiction of the City of Calistoga. A moratorium is currently in existence within Napa County on most geothermal drilling, and environmental and time constraints precluded CDMG from obtaining the necessary site permits within the county. However, a variance was applied for and obtained from the City of Calistoga to allow CDMG to drill within the city limits. With this areal constraint and also funding limits in mind, six drilling sites were selected on the basis of (1) proximity to areas where geophysical surveys had been performed, (2) accessibility of the site for drill rig setup, and (3) favorability for obtaining the maximum information possible concerning the geology and the resources. Necessary landowner permission and permits were secured for these sites, and actual drilling began on December 17, 1980. Drilling was terminated on February 4, 1981, with the completion of three holes that ranged in depth from 205 to 885 feet. Use of a relatively new drilling technique called the Dual Tube Method enabled the collection of precise subsurface data of a level of detail never before obtained in the Calistoga area. As a result, a totally new and unexpected picture of the geothermal reservoir conditions there has been obtained, and is outlined in this addendum report.

  13. Vapor phase modifiers for oxidative coupling

    DOE Patents [OSTI]

    Warren, Barbara K. (Charleston, WV)

    1991-01-01T23:59:59.000Z

    Volatilized metal compounds retard vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

  14. Chemical vapor deposition of group IIIB metals

    DOE Patents [OSTI]

    Erbil, A.

    1989-11-21T23:59:59.000Z

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

  15. Vapor-liquid equilibrium of the Mg(NO/sub 3/)/sub 2/-HNO/sub 3/-H/sub 2/O system

    SciTech Connect (OSTI)

    Thompson, B.E.; Derby, J.J.; Stalzer, E.H.

    1983-06-01T23:59:59.000Z

    The vapor-liquid equilibrium of the Mg(NO/sub 3/)/sub 2/-HNO/sub 3/-H/sub 2/O system in concentrations of 0 to 70 wt % Mg(NO/sub 3/)/sub 2/ and 0 to 75 wt % HNO/sub 3/ at atmospheric pressure was correlated by two approaches. One was based on a dissociation equilibrium expression in which the activities of the reacting species (HNO/sub 3/, NO/sub 3//sup -/, and H/sup +/) were approximated with mole fractions. The activity coefficients of the undissociated HNO/sub 3/ and H/sub 2/O were correlated as functions of the concentrations of magnesium nitrate and nitric acid by second-order polynomials. The average absolute difference between predicted and experimental values was 8% for the mole fraction of acid in the vapor and 8/sup 0/K for the bubble-point temperature. The second approach was to correlate the mean ionic rational activity coefficient of water with a form of the excess Gibbs energy composed of two terms. One term, a function of the ionic strength, accounts for the coulombic (ionic) interactions; the other term accounts for the non-coulombic (molecular) interactions. The average absolute difference between predicted and experimental values was 9% for the mole fraction of acid in the vapor, and 10/sup 0/K for the bubble-point temperature.

  16. Effects of Ce, Y and Mo Addition on the Stress Accelerated Oxidation of Austenitic Stainless Steel in Oxygenated High Temperature Water

    SciTech Connect (OSTI)

    Shengchun Wang; Nobuaki Kawaguchi; Tetsuo Shoji [Fracture Research Institute, Graduate School of Engineering, Tohoku University, Aramaki Aoba 01, Aoba-ku, Sendai 980-8579 (Japan)

    2004-07-01T23:59:59.000Z

    Based upon the recent progress in mechanistic understanding of intergranular stress corrosion cracking (IGSCC) of austenitic stainless steels in high temperature water in light water reactor (LWR), the effects of Ce, Y, and Mo addition on oxidation kinetics under a tensile stress condition was investigated. Minor impurity of P was also studied. A kind of circumferentially notched tensile specimen was prepared to simulate the crack tip stress field. The notched specimens of different materials studied were applied with an almost constant load in simulated boiling water reactor (BWR) water. The oxidation was examined by the specimen cross section. It was shown that these elements have quite clear effects on the metal oxidation and alloying element distribution in the oxide layer. (authors)

  17. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas, 2002-2003 Final Report.

    SciTech Connect (OSTI)

    Hanrahan, T.; Geist, D.; Arntzen, C. (Pacific Northwest National Laboratory)

    2004-09-01T23:59:59.000Z

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002-2003 water year. The project was initiated in the context of examining the potential for improving juvenile Snake River fall Chinook salmon survival by modifying the discharge operations of Hells Canyon Dam. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project at index sites throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The HCR extends from Hells Canyon Dam (river kilometer [rkm] 399) downstream to the upper end of Lower Granite Reservoir near rkm 240. We randomly selected 14 fall Chinook salmon spawning locations as study sites, which represents 25% of the most used spawning areas throughout the HCR. Interactions between river water and pore water within the riverbed (i.e., hyporheic zone) at each site were quantified through the use of self-contained temperature and water level data loggers suspended inside of piezometers. Surrounding the piezometer cluster at each site were 3 artificial egg pockets. In mid-November 2002, early-eyed stage fall Chinook salmon eggs were placed inside of perforated polyvinyl chloride (PVC) tubes, along with a temperature data logger, and buried within the egg pockets. Fall Chinook salmon eggs were also incubated in the laboratory for the purpose of developing growth curves that could be used as indicators of emergence timing. The effects of discharge on vertical hydrologic exchange between the river and riverbed were inferred from measured temperature gradients between the river and riverbed, and the application of a numerical model. The hydrologic regime during the 2002-2003 sampling period exhibited one of the lowest, most stable daily discharge patterns of any of the previous 12 water years. The vertical hydraulic gradients (VHG) between the river and the riverbed suggested the potential for predominantly small magnitude vertical exchange. The VHG also showed little relationship to changes in river discharge at most sites. Despite the relatively small vertical hydraulic gradients at most sites, results from the numerical modeling of riverbed pore water velocity and hyporheic zone temperatures suggested that there was significant vertical hydrologic exchange during all time periods. The combined results of temperature monitoring and numerical modeling indicate that only 2 of 14 sites were significantly affected by short-term (hourly to daily) large magnitude changes in discharge. Although the two sites exhibited acute flux reversals between river water and hyporheic water resulting from short-term large magnitude

  18. Substrate effect on CdTe layers grown by metalorganic vapor phase N. V. Sochinskiia),b)

    E-Print Network [OSTI]

    Viña, Luis

    Substrate effect on CdTe layers grown by metalorganic vapor phase epitaxy N. V. Sochinskiia for publication 30 December 1996 CdTe layers were grown by metalorganic vapor phase epitaxy MOVPE on different substrates like sapphire, GaAs, and CdTe wafers. The growth was carried out at the temperature 340 °C

  19. Vapor-liquid equilibria of hydrocarbons and fuel oxygenates. 2

    SciTech Connect (OSTI)

    Bennett, A.; Lamm, S.; Orbey, H.; Sandler, S.I. (Univ. of Delaware, Newark (United States))

    1993-04-01T23:59:59.000Z

    Vapor-liquid equilibrium data for methyl tert-butyl ether (MTBE) + 1-heptene, MTBE + four-component gasoline prototype, ethanol + four-component gasoline prototype, and separately MTBE and ethanol with the Auto/Oil Air Quality Improvement Research Gasoline Blend A are reported. Small additions of MTBE have a very small effect on the total equilibrium pressure of this gasoline blend, and at most temperatures will decrease this pressure. In contrast, small additions of ethanol to this gasoline blend result in a significant increase in the equilibrium pressure at all temperatures. Analysis shows that the vapor-liquid equilibrium data for the MTBE-containing systems are easily correlated using a modified Peng-Robinson equation of state with conventional van der Waals one-fluid mixing rules. Data for mixtures containing ethanol cannot be accurately correlated in this way.

  20. Limited Energy Engineering Analysis (EEAP) study of summer boiler at high temperature hot water plants, Fort Leonard Wood, Missouri. Final report

    SciTech Connect (OSTI)

    NONE

    1993-09-02T23:59:59.000Z

    This report is a study of the existing High Temperature Hot Water Distribution Systems at Fort Leonard Wood, Missouri. There are two systems with central boilers located in Buildings 1021 and 2369. The study focuses on the operation of the boilers during the summer months which is required to provide domestic hot water and sanitizing steam to various buildings. Because the boilers are operating under a reduced load condition, it may be cost effective in terms of energy conservation to implement one of the following energy conservation opportunities (ECO`s).

  1. Method of and apparatus for measuring vapor density

    DOE Patents [OSTI]

    Nelson, L.D.; Cerni, T.A.

    1989-10-17T23:59:59.000Z

    Apparatus and method are disclosed which determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavelength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to an equation given in the patent where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4) + K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation. 11 figs.

  2. Method of and apparatus for measuring vapor density

    DOE Patents [OSTI]

    Nelson, Loren D. (Morrison, CO); Cerni, Todd A. (Littleton, CO)

    1989-01-01T23:59:59.000Z

    Apparatus and method determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavlength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to: ##EQU1## where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4)+K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation.

  3. Fire flood method for recovering petroleum from oil reservoirs of low permeability and temperature

    DOE Patents [OSTI]

    1984-08-14T23:59:59.000Z

    The present invention is directed to a method of enhanced oil recovery by fire flooding petroleum reservoirs characterized by a temperature of less than the critical temperature of carbon dioxide, a pore pressure greater than the saturated vapor pressure of carbon dioxide at said temperature (87.7.degree. F. at 1070 psia), and a permeability in the range of about 20 to 100 millidarcies. The in situ combustion of petroleum in the reservoir is provided by injecting into the reservoir a combustion supporting medium consisting essentially of oxygen, ozone, or a combination thereof. The heat of combustion and the products of this combustion which consist essentially of gaseous carbon dioxide and water vapor sufficiently decrease the viscosity of oil adjacent to fire front to form an oil bank which moves through the reservoir towards a recovery well ahead of the fire front. The gaseous carbon dioxide and the water vapor are driven into the reservoir ahead of the fire front by pressure at the injection well. As the gaseous carbon dioxide cools to less than about 88.degree. F. it is converted to liquid which is dissolved in the oil bank for further increasing the mobility thereof. By using essentially pure oxygen, ozone, or a combination thereof as the combustion supporting medium in these reservoirs the permeability requirements of the reservoirs are significantly decreased since the liquid carbon dioxide requires substantially less voidage volume than that required for gaseous combustion products.

  4. Fire flood method for recovering petroleum from oil reservoirs of low permeability and temperature

    SciTech Connect (OSTI)

    Kamath, K.

    1984-08-14T23:59:59.000Z

    The present invention is directed to a method of enhanced oil recovery by fire flooding petroleum reservoirs characterized by a temperature of less than the critical temperature of carbon dioxide, a pore pressure greater than the saturated vapor pressure of carbon dioxide at said temperature (87.7/sup 0/ F. at 1070 psia), and a permeability in the range of about 20 to 100 millidarcies. The in situ combustion of petroleum in the reservoir is provided by injecting into the reservoir a combustion supporting medium consisting essentially of oxygen, ozone, or a combination thereof. The heat of combustion and the products of this combustion which consist essentially of gaseous carbon dioxide and water vapor sufficiently decrease the viscosity of oil adjacent to fire front to form an oil bank which moves through the reservoir towards a recovery well ahead of the fire front. The gaseous carbon dioxide and the water vapor are driven into the reservoir ahead of the fire front by pressure at the injection well. As the gaseous carbon dioxide cools to less than about 88/sup 0/ F. it is converted to liquid which is dissolved in the oil bank for further increasing the mobility thereof. By using essentially pure oxygen, ozone, or a combination thereof as the combustion supporting medium in these reservoirs the permeability requirements of the reservoirs are significantly decreased since the liquid carbon dioxide requires substantially less voidage volume than that required for gaseous combustion products.

  5. Fire flood method for recovering petroleum from oil reservoirs of low permeability and temperature

    SciTech Connect (OSTI)

    Kamath, K.

    1983-05-03T23:59:59.000Z

    The present invention is directed to a method of enhanced oil recovery by fire flooding petroleum reservoirs characterized by a temperature of less than the critical temperature of carbon dioxide, a pore pressure greater than the saturated vapor pressure of carbon dioxide at said temperature (87.7/sup 0/F at 1070 psia), and a permeability in the range of about 20 to 100 millidarcies. The in situ combustion of petroleum in the reservoir is provided by injecting into the reservoir a combustion supporting medium consisting essentially of oxygen, ozone, or a combination thereof. The heat of combustion and the products of this combustion which consist essentially of gaseous carbon dioxide and water vapor sufficiently decrease the viscosity of oil adjacent to fire front to form an oil bank which moves through the reservoir towards a recovery well ahead of the fire front. The gaseous carbon dioxide and the water vapor are driven into the reservoir ahead of the fire front by pressure at the injection well. As the gaseous carbon dioxide cools to less than about 88/sup 0/F it is converted to liquid which is dissolved in the oil bank for further increasing the mobility thereof. By using essentially pure oxygen, ozone, or a combination thereof as the combustion supporting medium in these reservoirs the permeability requirements of the reservoirs are significantly decreased since the liquid carbon dioxide requires substantially less voidage volume than that required for gaseous combustion products. 1 table.

  6. Effects of storage temperature and duration on release of antimony and bisphenol A from polyethylene terephthalate drinking water

    E-Print Network [OSTI]

    Ma, Lena

    polyethylene terephthalate drinking water bottles of China Ying-Ying Fan a , Jian-Lun Zheng a , Jing-Hua Ren Accepted 9 May 2014 Available online xxx Keywords: Polyethylene terephthalate Antimony Bisphenol A Release of antimony (Sb) and bisphenol A (BPA) from 16 brands of polyethylene terephthalate (PET) drinking water

  7. An Assessment of Microwave Absorption Models and Retrievals of Cloud Liquid Water Using Clear-Sky Data

    SciTech Connect (OSTI)

    Marchand, Roger T.; Ackerman, Thomas P.; Westwater, Ed R.; Clough, Shepard A.; Cady-Pereira, Karen; Liljegren, James C.

    2003-12-19T23:59:59.000Z

    Passive microwave radiometers have a long history in the remote sensing of atmospheric liquid and water vapor. Retrievals of these quantities are sensitive to variations in pressure and temperature of the liquid and water vapor. Rather than use a statistical or climatological approach to account for the natural variability in atmospheric pressure and temperature, additional information on the atmospheric profile at the time of the radiometer measurements can be directly incorporated into the retrieval process. Such an approach has been referred to in the literature as a “physical-iterative” solution. This paper presents an assessment of the accuracy of the column liquid water path that can be expected using such an iterative technique as a result of uncertainties in the microwave emissions from oxygen and water vapor. It is shown that the retrieval accuracy is influenced by the accuracy of the instrument measurements and the quality of the atmospheric profiles of temperature and pressure, as one would expect. But also critical is the uncertainty in the absorption coefficients used in the underlying microwave radiative transfer model. The uncertainty in the absorption coefficients is particularly problematic in that it may well bias the liquid water retrieval. The differences between 3 absorption models examined in this paper are equivalent to a bias of 15 to 30 g/m2, depending on the total column water vapor. An examination of typical liquid water paths from the Southern Great Plains region of the United States shows that errors of this magnitude have significant implications for shortwave radiation and retrievals of cloud effective particle size.

  8. Vapor explosion in the RIA-ST-4 experiment. [BWR

    SciTech Connect (OSTI)

    El-Genk, M.S.

    1980-01-01T23:59:59.000Z

    A concern in assuring the safety of commercial light water reactors (LWRs) is whether core overheating, during which molten fuel is produced, can lead to massive vaporization of the coolant and shock pressurization of the system due to an energetic molten fuel-coolant interaction (MFCI). The RIA-ST-4 experiment was one of four scoping tests in the Reactivity Initiated Accident (RIA) Test Series which is being conducted in the Power Burst Facility (PBF) to define an energy deposition failure threshold and to determine modes and consequences of fuel rod failure during a postulated boiling water reactor (BWR) control rod drop accident.

  9. Temperature dependence of the vapour tension of methyl-substituted phenol derivatives

    SciTech Connect (OSTI)

    S.G. Gagarin [Institute of Mineral Fuels (Russian Federation)

    2007-05-15T23:59:59.000Z

    Notable among the coking products of coal are phenol and its derivatives, derived for the coal tar and water layer above ht tar. Given that phenol an its derivatives are mainly extracted from coal tar fractions by rectification, information on how the vapor tension of the individual components depends on the temperature is of great importance. For phenol and various substituted alkylphenols there are tabular data. In the pre-computer era these data were sufficient for the separation of phenol mixtures. However, the development and introduction of information technology in the coal industry and in the design process demands the mathematical description of the physicochemical processes of coking products. The temperature dependence of the saturated vapor pressure for organic compounds is commonly described by the Antoine equation.

  10. Sustaining dry surfaces under water

    E-Print Network [OSTI]

    Paul R. Jones; Xiuqing Hao; Eduardo R. Cruz-Chu; Konrad Rykaczewski; Krishanu Nandy; Thomas M. Schutzius; Kripa K. Varanasi; Constantine M. Megaridis; Jens H. Walther; Petros Koumoutsakos; Horacio D. Espinosa; Neelesh A. Patankar

    2014-09-29T23:59:59.000Z

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

  11. An investigation of the displacement of oil by a miscible slug followed by water

    E-Print Network [OSTI]

    Startzman, Richard Albert

    1962-01-01T23:59:59.000Z

    analysis of this sand is represented in Table I. For the sake of uniformity in packing and the assurance of a water-wet matrix the sand was packed under water with continuous percussion blows applied along the lengths of the cores. By knowing the core... (46' SPI) commercial grade hav4ng a viscosity of i. 27 cp. at a temperature of 78'F. The water was ordinary tap ~ster. The LPG was a 60-40 mixture of butane and propane having a vapor pressure of 83 psi. The LPG was contained in a five gallon...

  12. Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from High Ethanol Content Fuels

    SciTech Connect (OSTI)

    Gardiner, D.; Bardon, M.; Pucher, G.

    2008-10-01T23:59:59.000Z

    Study determined the flammability of fuel tank headspace vapors as a function of ambient temperature for seven E85 fuel blends, two types of gasoline, and denatured ethanol at a low tank fill level.

  13. “Multi-temperature” method for high-pressure sorption measurements on moist shales

    SciTech Connect (OSTI)

    Gasparik, Matus; Ghanizadeh, Amin; Gensterblum, Yves; Krooss, Bernhard M. [Energy and Mineral Resources Group (EMR), Institute of Geology and Geochemistry of Petroleum and Coal, Lochnerstr. 4-20, RWTH Aachen University, 52056 Aachen (Germany)] [Energy and Mineral Resources Group (EMR), Institute of Geology and Geochemistry of Petroleum and Coal, Lochnerstr. 4-20, RWTH Aachen University, 52056 Aachen (Germany)

    2013-08-15T23:59:59.000Z

    A simple and effective experimental approach has been developed and tested to study the temperature dependence of high-pressure methane sorption in moist organic-rich shales. This method, denoted as “multi-temperature” (short “multi-T”) method, enables measuring multiple isotherms at varying temperatures in a single run. The measurement of individual sorption isotherms at different temperatures takes place in a closed system ensuring that the moisture content remains constant. The multi-T method was successfully tested for methane sorption on an organic-rich shale sample. Excess sorption isotherms for methane were measured at pressures of up to 25 MPa and at temperatures of 318.1 K, 338.1 K, and 348.1 K on dry and moisture-equilibrated samples. The measured isotherms were parameterized with a 3-parameter Langmuir-based excess sorption function, from which thermodynamic sorption parameters (enthalpy and entropy of adsorption) were obtained. Using these, we show that by taking explicitly into account water vapor as molecular species in the gas phase with temperature-dependent water vapor pressure during the experiment, more meaningful results are obtained with respect to thermodynamical considerations. The proposed method can be applied to any adsorbent system (coals, shales, industrial adsorbents) and any supercritical gas (e.g., CH{sub 4}, CO{sub 2}) and is particularly suitable for sorption measurements using the manometric (volumetric) method.

  14. Assessment of radionuclide vapor-phase transport in unsaturated tuff

    SciTech Connect (OSTI)

    Smith, D.M.; Updegraff, C.D.; Bonano, E.J.; Randall, J.D.

    1986-11-01T23:59:59.000Z

    This report describes bounding calculations performed to investigate the possibility of radionuclide migration in a vapor phase associated with the emplacement of high-level waste canister in unsaturated tuff formations. Two potential radionuclide transport mechanisms in the vapor phase were examined: aerosol migration and convection/diffusion of volatile species. The former may have significant impact on the release of radionuclides to the accessible environment as the concentration in the aerosols will be equal to that in the ground water. A conservative analysis of air diffusion in a stagnant liquid film indicated that for all expected repository conditions, aerosol formation is not possible. The migration of volatile species was examined both in the vicinity of a waste canister and outside the thermally disturbed zone. Two-dimensional (radial) and three-dimensional (radial-vertical) coupled heat transfer-gas flow-liquid flow simulations were performed using the TOUGH computer code. The gas flow rate relative to the liquid flow rate predicted from the simulations allowed calculations of mobility ratios due to convection which led to the conclusion that, except for the immediate region near the canister, transport in the liquid phase will be dominant for radionuclides heavier than radon. Near the waste canister, iodine transport may also be important in the vapor phase. Bounding calculations for vertical mobility ratios were carried out as a function of saturation. These calculations are conservative and agree well with the two-dimensional simulations. Based on this analysis, it is clear that vapor-phase transport will not be important for radionuclides such as cesium and heavier species. Vapor transport for iodine may play a role in the overall release scenario depending on the particular repository conditions.

  15. Water Evaporation: A Transition Path Sampling Study

    E-Print Network [OSTI]

    Patrick Varilly; David Chandler

    2012-10-11T23:59:59.000Z

    We use transition path sampling to study evaporation in the SPC/E model of liquid water. Based on thousands of evaporation trajectories, we characterize the members of the transition state ensemble (TSE), which exhibit a liquid-vapor interface with predominantly negative mean curvature at the site of evaporation. We also find that after evaporation is complete, the distributions of translational and angular momenta of the evaporated water are Maxwellian with a temperature equal to that of the liquid. To characterize the evaporation trajectories in their entirety, we find that it suffices to project them onto just two coordinates: the distance of the evaporating molecule to the instantaneous liquid-vapor interface, and the velocity of the water along the average interface normal. In this projected space, we find that the TSE is well-captured by a simple model of ballistic escape from a deep potential well, with no additional barrier to evaporation beyond the cohesive strength of the liquid. Equivalently, they are consistent with a near-unity probability for a water molecule impinging upon a liquid droplet to condense. These results agree with previous simulations and with some, but not all, recent experiments.

  16. Overview of chemical vapor infiltration

    SciTech Connect (OSTI)

    Besmann, T.M.; Stinton, D.P.; Lowden, R.A.

    1993-06-01T23:59:59.000Z

    Chemical vapor infiltration (CVI) is developing into a commercially important method for the fabrication of continuous filament ceramic composites. Current efforts are focused on the development of an improved understanding of the various processes in CVI and its modeling. New approaches to CVI are being explored, including pressure pulse infiltration and microwave heating. Material development is also proceeding with emphasis on improving the oxidation resistance of the interfacial layer between the fiber and matrix. This paper briefly reviews these subjects, indicating the current state of the science and technology.

  17. Testing the Adequacy of Simple Water Models at the Opposite Ends of the Phase Diagram

    SciTech Connect (OSTI)

    Baranayai, A. [Eotvos University, Budapest, Hungary; Bartok, A. [Eotvos University, Budapest, Hungary; Chialvo, Ariel A [ORNL

    2007-01-01T23:59:59.000Z

    The transferability of a few simple rigid non-polarizable water models were tested by Gibbs Ensemble Monte Carlo simulations to predict their vapor-liquid phase equilibria, and by isothermal-isobaric (Parrinello-Rahman) Monte Carlo simulations of the 13 known crystalline phases of ice. The temperature dependence of the corresponding second virial coefficients was also determined and then used to test the internal consistency of the simulated vapor-phase densities. The model predictions appear satisfactory for liquid water for ambient conditions, but they fail to mimic accurately the properties of the ice polymorphs and the orthobaric vapor phase. The major shortcomings of the models were in the overestimation by a factor of two ({approx}4-6 kJ/mol) of the internal energy difference between the high-pressure ice phases and the hexagonal phase. This unacceptable discrepancy is caused by the parameterization to reproduce the density of liquid water at ambient conditions, that accounts for the significant polarization effects in the condensed phases in terms of augmented dipole moments, with the consequent detrimental effect on the estimations of the vapor-phase properties.

  18. Vapor phase modifiers for oxidative coupling

    DOE Patents [OSTI]

    Warren, B.K.

    1991-12-17T23:59:59.000Z

    Volatilized metal compounds are described which are capable of retarding vapor phase alkane conversion reactions in oxidative coupling processes that convert lower alkanes to higher hydrocarbons.

  19. A simple grand canonical approach to compute the vapor pressure of bulk and finite size systems

    SciTech Connect (OSTI)

    Factorovich, Matías H.; Scherlis, Damián A. [Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA (Argentina)] [Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Buenos Aires C1428EHA (Argentina); Molinero, Valeria [Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 (United States)] [Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850 (United States)

    2014-02-14T23:59:59.000Z

    In this article we introduce a simple grand canonical screening (GCS) approach to accurately compute vapor pressures from molecular dynamics or Monte Carlo simulations. This procedure entails a screening of chemical potentials using a conventional grand canonical scheme, and therefore it is straightforward to implement for any kind of interface. The scheme is validated against data obtained from Gibbs ensemble simulations for water and argon. Then, it is applied to obtain the vapor pressure of the coarse-grained mW water model, and it is shown that the computed value is in excellent accord with the one formally deduced using statistical thermodynamics arguments. Finally, this methodology is used to calculate the vapor pressure of a water nanodroplet of 94 molecules. Interestingly, the result is in perfect agreement with the one predicted by the Kelvin equation for a homogeneous droplet of that size.

  20. Near real time vapor detection and enhancement using aerosol adsorption

    SciTech Connect (OSTI)

    Novick, Vincent J.; Johnson, Stanley A.

    1997-12-01T23:59:59.000Z

    A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

  1. Near real time vapor detection and enhancement using aerosol adsorption

    DOE Patents [OSTI]

    Novick, V.J.; Johnson, S.A.

    1999-08-03T23:59:59.000Z

    A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

  2. Near real time vapor detection and enhancement using aerosol adsorption

    DOE Patents [OSTI]

    Novick, Vincent J. (Downers Grove, IL); Johnson, Stanley A. (Countryside, IL)

    1999-01-01T23:59:59.000Z

    A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

  3. Self-tuning method for monitoring the density of a gas vapor component using a tunable laser

    DOE Patents [OSTI]

    Hagans, Karla (Livermore, CA); Berzins, Leon (Livermore, CA); Galkowski, Joseph (Livermore, CA); Seng, Rita (Tracy, CA)

    1996-01-01T23:59:59.000Z

    The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer's law.

  4. Self-tuning method for monitoring the density of a gas vapor component using a tunable laser

    DOE Patents [OSTI]

    Hagans, K.; Berzins, L.; Galkowski, J.; Seng, R.

    1996-08-27T23:59:59.000Z

    The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer`s law. 6 figs.

  5. An experimental investigaion of seawater/basalt interactions: the role of water/rock ratios and temperature gradients

    E-Print Network [OSTI]

    Archer, Paul Lawrence

    1978-01-01T23:59:59.000Z

    of the quench pH data as a function of temperature in temperature-gradient experiments 38 40 LIST OF PLATES Plate Page Ia Ib I la IIb IIIa IIIb IVa Ivb Va Vb VIa Large euhedral anhydrite crystals surrounded by honeycomb-shaped smectite. Run... circulation. Metabasalts ranging from zeolite to amphibolite facies, with greenstones dominating, have been dredged from the ocean floor (Aumento et al. 1971; Miyashi ro et al. 1971; Melson and van Andel, 1966; Shi do et al. , 1974; Bonatti et al. ; 1975...

  6. Environmental Tradeoffs in a Desert City: An Investigation of Water Use, Energy Consumption, and Local Air Temperature in Phoenix, AZ

    E-Print Network [OSTI]

    Hall, Sharon J.

    Environmental Tradeoffs in a Desert City: An Investigation of Water Use, Energy Consumption Area This study examined 16 Census Block Groups (2000) within the City of Phoenix to investigate are critical for long-term urban planning. Figure 2: Study Area: 16 Census Block Groups within City of Phoenix

  7. Temperature of Multibubble Sonoluminescence in Water Yuri T. Didenko, William B. McNamara III, and Kenneth S. Suslick*

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    likely due to its own fluorescence. Carbon tetrachloride does not change the intensity of water sonoluminescence but does exhibit C2 emission. This indicates that the dissociation of carbon tetrachloride inside and other incipient emitting species produced during sonolysis. Small concentrations of carbon disulfide do

  8. Features of temperature control of fuel element cladding for pressurized water nuclear reactor “WWER-1000” while simulating reactor accidents

    SciTech Connect (OSTI)

    Zaytsev, P. A.; Priymak, S. V.; Usachev, V. B.; Oleynikov, P. P.; Soldatkin, D. M. [Scientific Research Institute, Scientific Industrial Association LUCH, Podolsk (Russian Federation)] [Scientific Research Institute, Scientific Industrial Association LUCH, Podolsk (Russian Federation)

    2013-09-11T23:59:59.000Z

    During the experiments simulating NPR (nuclear power reactor) accidents with a coolant loss fuel elements behavior in a steam-hydrogen medium was studied at the temperature changed with the rate from 1 to 100K/s within the range of 300÷1500 °C. Indications of the thermocouples fixed on the cladding notably differ from real values of the cladding temperatures in the area of measuring junction due to thermal resistance influence of the transition zones “cladding-junction” and “junction-coolant”. The estimating method of a measurement error was considered which can provide adequate accounting of the influence factors. The method is based on thermal probing of a thermocouple by electric current flashing through thermoelements under the coolant presence or absence, a response time registration and processing, calculation of thermal inertia value for a thermocouple junction. A formula was derived for calculation of methodical error under stationary mode and within the stage of linear increase in temperature, which will determine the conditions for the cladding depressurization. Some variants of the formula application were considered, and the values of methodical errors were established which reached ?5% of maximum value by the final moment of the stage of linear increase in the temperature.

  9. Strength and ductility of room-dry and water-saturated igneous rocks at low pressures and temperatures to partial melting. Final report

    SciTech Connect (OSTI)

    Friedman, M.; Handin, J.; Higgs, N.G.; Lantz, J.R.; Bauer, S.J.

    1980-11-01T23:59:59.000Z

    Rock types that are likely candidates for drilling were tested. Reported herein are the short-time ultimate strengths and ductilities determined at temperatures of 25/sup 0/ to 1050/sup 0/C and a strain rate of 10/sup -4/s/sup -1/ of (a) room-dry Mt. Hood Andesite, Cuerbio Basalt, and Charcoal (St. Cloud Gray) Granodiorite at confining pressures of 0, 50, and 100 MPa, (b) water-saturated specimens of the same three rocks at zero effective pressure (both pore and confining pressures of 50 MPa), and (c) room-dry Newberry Rhyolite Obsidian at 0 and 50 MPa. These strengths are then compared with the stresses developed at the wall of a borehole in an elastic medium at the appropriate temperatures and mean pressures to assess the problem of borehole stability. (MHR)

  10. A study of the mixed association of cholesterol with methyl cholate by vapor pressure osmometry

    E-Print Network [OSTI]

    Foster, Bruce William

    1981-01-01T23:59:59.000Z

    out on a Knauer Vapor Pressure Osmometer equipped w1th the Knauer Universal Temperature Measuring Apparatus (a sensitive Wheatstone bridge with a 10-turn helical potentiometer) and a chart recorder. A thorough discussion of some of the experimental... at the desired temperature. Two themistors are mounted in the chamber and are coupled to the Wheatstone bridge. Using syr1nges, a drop of pure solvent is placed on one themistor and a drop of solution on the other. Because of the lowering of solvent vapor...

  11. Direct vapor/solid synthesis of mercuric iodide using compounds of mercury and iodine

    SciTech Connect (OSTI)

    Skinner, Nathan L. (Carpinteria, CA)

    1990-01-01T23:59:59.000Z

    A process is disclosed for producing high purity mercuric iodide by passing a gaseous source of a mercuric compound through a particulate bed of a low vapor pressure iodide compound which is maintained at an elevated temperature which is the lower of either: (a) just below the melting or volatilization temperature of the iodide compound (which ever is lower); or (b) just below the volatilization point of the other reaction product formed during the reaction; to cause the mercuric compound to react with the iodide compound to form mercuric iodide which then passes as a vapor out of the bed into a cooler condensation region.

  12. Quantitative organic vapor-particle sampler

    DOE Patents [OSTI]

    Gundel, Lara (Berkeley, CA); Daisey, Joan M. (Walnut Creek, CA); Stevens, Robert K. (Cary, NC)

    1998-01-01T23:59:59.000Z

    A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.

  13. Thermophilic Biotrickling Filtration of Ethanol Vapors

    E-Print Network [OSTI]

    Thermophilic Biotrickling Filtration of Ethanol Vapors H U U B H . J . C O X , T H O M A S S E X of ethanol vapors in biotrickling filters for air pollution control was investigated. Two reactors were adaptation phase, the removal of ethanol was similar in both reactors. At a bed contact time of 57 s

  14. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOE Patents [OSTI]

    Britten, Jerald A. (Oakley, CA)

    1997-01-01T23:59:59.000Z

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for 1) cleaning, developing or etching, 2) rinsing, and 3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material.

  15. Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor

    DOE Patents [OSTI]

    Britten, J.A.

    1997-08-26T23:59:59.000Z

    A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for (1) cleaning, developing or etching, (2) rinsing, and (3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material. 5 figs.

  16. VAPOR PRESSURE ISOTOPE EFFECTS IN THE MEASUREMENT OF ENVIRONMENTAL TRITIUM SAMPLES.

    SciTech Connect (OSTI)

    Kuhne, W.

    2012-12-03T23:59:59.000Z

    Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The magnitude of the vapor pressure isotope effect is characterized as functions of the amount of water distilled from the sample aliquot and the heat settings for the distillation process. The tritium concentration in the distillate is higher than the tritium concentration in the sample early in the distillation process, it then sharply decreases due to the vapor pressure isotope effect and becomes lower than the tritium concentration in the sample, until the high tritium concentration retained in the boiling flask is evaporated at the end of the process. At that time, the tritium concentration in the distillate again overestimates the sample tritium concentration. The vapor pressure isotope effect is more pronounced the slower the evaporation and distillation process is conducted; a lower heat setting during the evaporation of the sample results in a larger bias in the tritium measurement. The experimental setup used and the fact that the current study allowed for an investigation of the relative change in vapor pressure isotope effect in the course of the distillation process distinguish it from and extend previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.034 {+-} 0.033, 1.052 {+-} 0.025, and 1.066 {+-} 0.037, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples, this implies that the tritium concentration could be underestimated by 3 - 6%.

  17. HANFORD CHEMICAL VAPORS WORKER CONCERNS & EXPOSURE EVALUATION

    SciTech Connect (OSTI)

    ANDERSON, T.J.

    2006-12-20T23:59:59.000Z

    Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank headspaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns. risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits-(OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors.

  18. Large Scale Ice Water Path and 3-D Ice Water Content

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Liu, Guosheng

    Cloud ice water concentration is one of the most important, yet poorly observed, cloud properties. Developing physical parameterizations used in general circulation models through single-column modeling is one of the key foci of the ARM program. In addition to the vertical profiles of temperature, water vapor and condensed water at the model grids, large-scale horizontal advective tendencies of these variables are also required as forcing terms in the single-column models. Observed horizontal advection of condensed water has not been available because the radar/lidar/radiometer observations at the ARM site are single-point measurement, therefore, do not provide horizontal distribution of condensed water. The intention of this product is to provide large-scale distribution of cloud ice water by merging available surface and satellite measurements. The satellite cloud ice water algorithm uses ARM ground-based measurements as baseline, produces datasets for 3-D cloud ice water distributions in a 10 deg x 10 deg area near ARM site. The approach of the study is to expand a (surface) point measurement to an (satellite) areal measurement. That is, this study takes the advantage of the high quality cloud measurements at the point of ARM site. We use the cloud characteristics derived from the point measurement to guide/constrain satellite retrieval, then use the satellite algorithm to derive the cloud ice water distributions within an area, i.e., 10 deg x 10 deg centered at ARM site.

  19. Helium adsorption in silica aerogel near the liquid-vapor critical point

    E-Print Network [OSTI]

    Tobias Herman; James Day; John Beamish

    2005-05-18T23:59:59.000Z

    We have investigated the adsorption and desorption of helium near its liquid-vapor critical point in silica aerogels with porosities between 95% and 98%. We used a capacitive measurement technique which allowed us to probe the helium density inside the aerogel directly, even though the samples were surrounded by bulk helium. The aerogel's very low thermal conductivity resulted in long equilibration times so we monitored the pressure and the helium density, both inside the aerogel and in the surrounding bulk, and waited at each point until all had stabilized. Our measurements were made at temperatures far from the critical point, where a well defined liquid-vapor interface exists, and at temperatures up to the bulk critical point. Hysteresis between adsorption and desorption isotherms persisted to temperatures close to the liquid-vapor critical point and there was no sign of an equilibrium liquid-vapor transition once the hysteresis disappeared. Many features of our isotherms can be described in terms of capillary condensation, although this picture becomes less applicable as the liquid-vapor critical point is approached and it is unclear how it can be applied to aerogels, whose tenuous structure includes a wide range of length scales.

  20. Helium Adsorption in Silica Aerogel near the Liquid-Vapor Critical Point

    E-Print Network [OSTI]

    Tobias Herman; James Day; John Beamish

    2008-01-01T23:59:59.000Z

    We have investigated the adsorption and desorption of helium near its liquid-vapor critical point in silica aerogels with porosities between 95 % and 98%. We used a capacitive measurement technique which allowed us to probe the helium density inside the aerogel directly, even though the samples were surrounded by bulk helium. The aerogel’s very low thermal conductivity resulted in long equilibration times so we monitored the pressure and the helium density, both inside the aerogel and in the surrounding bulk, and waited at each point until all had stabilized. Our measurements were made at temperatures far from the critical point, where a well defined liquid-vapor interface exists, and at temperatures up to the bulk critical point. Hysteresis between adsorption and desorption isotherms persisted to temperatures close to the liquid-vapor critical point and there was no sign of an equilibrium liquid-vapor transition once the hysteresis disappeared. Many features of our isotherms can be described in terms of capillary condensation, although this picture becomes less applicable as the liquid-vapor critical point is approached and it is unclear how it can be applied to aerogels, whose tenuous structure includes a wide range of length scales. I.

  1. Quantitative Infrared Intensity Studies of Vapor-PhaseGlyoxal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Intensity Studies of Vapor-Phase Glyoxal,Methylglyoxal, and 2,3-Butanedione (Diacetyl) with Quantitative Infrared Intensity Studies of Vapor-Phase Glyoxal,Methylglyoxal,...

  2. Absolute integrated intensities of vapor-phase hydrogen peroxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Absolute integrated intensities of vapor-phase hydrogen peroxide (H202) in the mid-infrared at atmospheric pressure. Absolute integrated intensities of vapor-phase hydrogen...

  3. Method and apparatus for enhanced heat recovery from steam generators and water heaters

    DOE Patents [OSTI]

    Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin

    2006-06-27T23:59:59.000Z

    A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.

  4. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1987-07-14T23:59:59.000Z

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique. 7 figs.

  5. Io - Are vapor explosions responsible for the 5-micron outbursts

    SciTech Connect (OSTI)

    Sinton, W.M.

    1980-01-01T23:59:59.000Z

    It is proposed that a vapor explosion of a submerged pool of liquid sulfur will remove the crust overlying an area of about 50-km diam. Thermal radiation from the exposed liquid sulfur pool with a surface temperature of 600 K is then presumed to be responsible for the 5-micron outbursts that have been observed. The explosive volcanoes are expected to leave black sulfur calderas, which are, indeed, found on the surface. The 5-micron outburst observed by Sinton (1980), on June 11, 1979 (UT), is identified with a new caldera found on Voyager 2 photographs but which had not been present on Voyager 1 pictures.

  6. Chemical Vapor Deposited Zinc Sulfide. SPIE Press Monograph

    SciTech Connect (OSTI)

    McCloy, John S.; Tustison, Randal W.

    2013-04-22T23:59:59.000Z

    Zinc sulfide has shown unequaled utility for infrared windows that require a combination of long-wavelength infrared transparency, mechanical durability, and elevated-temperature performance. This book reviews the physical properties of chemical vapor deposited ZnS and their relationship to the CVD process that produced them. An in-depth look at the material microstructure is included, along with a discussion of the material's optical properties. Finally, because the CVD process itself is central to the development of this material, a brief history is presented.

  7. Unusual thermopower of inhomogeneous graphene grown by chemical vapor deposition

    SciTech Connect (OSTI)

    Nam, Youngwoo, E-mail: youngwoo.nam@chalmers.se [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of); Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Sun, Jie; Lindvall, Niclas; Yurgens, August [Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Jae Yang, Seung; Rae Park, Chong [Department of Materials Science and Engineering, Seoul National University, Seoul 151-747 (Korea, Republic of); Woo Park, Yung [Department of Physics and Astronomy, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2014-01-13T23:59:59.000Z

    We report on thermopower (TEP) and resistance measurements of inhomogeneous graphene grown by chemical vapor deposition (CVD). Unlike the conventional resistance of pristine graphene, the gate-dependent TEP shows a large electron-hole asymmetry. This can be accounted for by inhomogeneity of the CVD-graphene where individual graphene regions contribute with different TEPs. At the high magnetic field and low temperature, the TEP has large fluctuations near the Dirac point associated with the disorder in the CVD-graphene. TEP measurements reveal additional characteristics of CVD-graphene, which are difficult to obtain from the measurement of resistance alone.

  8. Vapor deposition of platinum alloyed nickel aluminide coatings Z. Yu , K.P. Dharmasena, D.D. Hass, H.N.G. Wadley

    E-Print Network [OSTI]

    Wadley, Haydn

    Vapor deposition of platinum alloyed nickel aluminide coatings Z. Yu , K.P. Dharmasena, D.D. Hass at high temperature. It requires the chemical vapor deposition of aluminum on a nickel rich superalloy substrate that has been pre-coated with several microns of electrodeposited platinum. Here, we show

  9. Diatomaceous earth and activated bauxite used as granular sorbents for the removal of sodium chloride vapor from hot flue gas

    SciTech Connect (OSTI)

    Lee, S.H.D.; Swift, W.M.; Johnson, I.

    1980-01-01T23:59:59.000Z

    Diatomaceous earth and activated bauxite were tested as granular sorbents for use as filter media in granular-bed filters for the removal of gaseous alkali metal compounds from the hot (800/sup 0/C) flue gas of PFBC. Tests were performed at atmospheric pressure, using NaCl vapor transported in relatively dry simulated flue gas of PFBC. Either a fixed-bed combustor or a high-temperature sorption test rig was used. The effects of sorbent bed temperature, superficial gas velocity, gas hourly space velocity, and NaCl-vapor concentration in flue gas on the sorption behavior of these two sorbents and their ultimate sorption capacities were determined. Both diatomaceous earth and activated bauxite were found to be very effective in removing NaCl vapor from flue gas. Preliminary cost evaluations showed that they are economically attractive as granular sorbents for cleaning alkali vapor from simulated flue gas.

  10. Paradigm or Paradox: Can we Attribute Species Changes to Global Climate Change in Light of Decreasing Water Temperatures in Central California?

    E-Print Network [OSTI]

    Breaker, Laurence; Cailliet, Gregor; Launer, Andrea; Wadsworth, Tom

    2012-01-01T23:59:59.000Z

    California and Adjacent Waters. University of Californiamarmoratus) in California waters as assessed in 2005. ReportMonitoring MPAs in Deep Water off Central California: 2007

  11. Cobalt Ultrathin Film Catalyzed Ethanol Chemical Vapor Deposition of Single-Walled Carbon Nanotubes

    E-Print Network [OSTI]

    Hone, James

    Cobalt Ultrathin Film Catalyzed Ethanol Chemical Vapor Deposition of Single-Walled Carbon Nanotubes (SWNTs) using a cobalt ultrathin film (1 nm) as the catalyst and ethanol as carbon feedstock flow during the growth. The trace amount of self-contained water (0.2-5 wt %) in ethanol may act

  12. Chemical vapor deposition of functionalized isobenzofuran polymers

    E-Print Network [OSTI]

    Olsson, Ylva Kristina

    2007-01-01T23:59:59.000Z

    This thesis develops a platform for deposition of polymer thin films that can be further tailored by chemical surface modification. First, we explore chemical vapor deposition of functionalized isobenzofuran films using ...

  13. Robust Numerical Simulation of Porosity Evolution in Chemical Vapor Infiltration III: Three Space

    E-Print Network [OSTI]

    Jin, Shi

    is an important technol- ogy to fabricate ceramic matrix composites (CMC's). In this paper, a three) is an important and widely used tech- nology for fabricating fiber reinforced ceramic matrix composite (CMC temperature. A vapor precursor of the matrix ma- terial, such as the methyltrichlorosilane (MTS), diffuses

  14. X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalate

    E-Print Network [OSTI]

    Byer, Robert L.

    X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalate an effect of a partially reversible x-ray-induced increase of diffuse x-ray scattering in both congruent been attributed to x-ray-induced decay of the ferroelectric phase at room temperature. The x-ray

  15. A survey of potential low-cost concentrator concepts for use in low-temperature water detoxification

    SciTech Connect (OSTI)

    Wendelin, T.

    1991-12-01T23:59:59.000Z

    Several different concentrator concepts have been considered for use in the detoxification of chemically contaminated water. The reactions of interest are predominantly photocatalytic in nature and are driven by low concentrations (between 1 and 50 suns) of UV radiation in the 300- to 385-nm wavelength range. Optical performance characteristics of these concentrators are thus somewhat different compared to concentrators developed for industrial process heat and electrical energy production. Relaxed optical tolerances might lead to reductions in concentrator cost that, when integrated into overall field system cost, could make the solar-driven process competitive with current UV lamp technology. Aspects of the concentrator system that might realize cost reductions include the concentrating element, the support structure, the tracking and drive system, the manufacturing processes, and the installation procedures. Several ideals have been resurrected from earlier research in the Solar Thermal Program where the need for more stringent optical performance requirements led to a decline or even an end to further investigation. In light of this new application, the most promising of these ideas are presented, including a description and a discussion of the cost and performance trade-offs. In addition, the results of recent investigate research on several of these concepts will be presented. The concepts include a low-cost parabolic trough, the inflatable line-focus concentrator, and the holographic concentrator. 16 refs., 5 figs.

  16. Impact of Pacific and Atlantic sea surface temperatures on interannual and decadal variations of GRACE land water storage in tropical South America

    E-Print Network [OSTI]

    de Linage, Caroline; Kim, Hyungjun; Famiglietti, James S; Yu, Jin-Yi

    2013-01-01T23:59:59.000Z

    stress, i.e. , the ground water storage [Toomey et al. ,and longer time scales, as ground water storage multidecadal

  17. Modeled Interactive Effects of Precipitation, temperature, and [CO2] on Ecosystem Carbon and Water Dynamics in Different Climatic Zones

    SciTech Connect (OSTI)

    Luo, Yiqi [University of Oklahoma; Gerten, Dieter [Potsdam Institute for Climate Impact Research, Potsdam, Germany; Le Maire, Guerric [Laboratoire des Sciences du Climat et de l'Environement, France; Parton, William [University of Colorado, Fort Collins; Weng, Ensheng [University of Oklahoma, Norman; Zhou, Xuhuui [University of Oklahoma; Keough, Cindy [University of Colorado, Fort Collins; Beier, Claus [Riso National Laboratory, Roskilde, Denmark; Ciais, Philippe [Laboratoire des Sciences du Climat et de l'Environement, France; Cramer, Wolfgang [Potsdam Institute for Climate Impact Research, Potsdam, Germany; Dukes, Jeff [University of Massachusetts, Boston; Emmett, Bridget [Centre for Ecology and Hydrology, Bangor, Gwynedd, United Kingdom; Hanson, Paul J [ORNL; Knapp, Alan [Colorado State University, Fort Collins; Linder, Sune [Swedish University of Agricultural Sciences, Upsalla, Sweden; Nepstad, Daniel [Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA; Rustad, Lindsey [USDA Forest Service

    2008-01-01T23:59:59.000Z

    Interactive effects of multiple global change factors on ecosystem processes are complex. It is relatively expensive to explore those interactions in manipulative experiments. We conducted a modeling analysis to identify potentially important interactions and to stimulate hypothesis formulation for experimental research. Four models were used to quantify interactive effects of climate warming (T), altered precipitation amounts [doubled (DP) and halved (HP)] and seasonality (SP, moving precipitation in July and August to January and February to create summer drought), and elevated [CO2] (C) on net primary production (NPP), heterotrophic respiration (Rh), net ecosystem production (NEP), transpiration, and runoff.We examined those responses in seven ecosystems, including forests, grasslands, and heathlands in different climate zones. The modeling analysis showed that none of the threeway interactions among T, C, and altered precipitation was substantial for either carbon or water processes, nor consistent among the seven ecosystems. However, two-way interactive effects on NPP, Rh, and NEP were generally positive (i.e. amplification of one factor s effect by the other factor) between T and C or between T and DP. A negative interaction (i.e. depression of one factor s effect by the other factor) occurred for simulated NPP between T and HP. The interactive effects on runoff were positive between T and HP. Four pairs of two-way interactive effects on plant transpiration were positive and two pairs negative. In addition, wet sites generally had smaller relative changes in NPP, Rh, runoff, and transpiration but larger absolute changes in NEP than dry sites in response to the treatments. The modeling results suggest new hypotheses to be tested in multifactor global change experiments. Likewise, more experimental evidence is needed for the further improvement of ecosystem models in order to adequately simulate complex interactive processes.

  18. FORMATION OF COSMIC CRYSTALS IN HIGHLY SUPERSATURATED SILICATE VAPOR PRODUCED BY PLANETESIMAL BOW SHOCKS

    SciTech Connect (OSTI)

    Miura, H.; Yamada, J.; Tsukamoto, K.; Nozawa, J. [Department of Earth Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Tanaka, K. K.; Yamamoto, T. [Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819 (Japan); Nakamoto, T., E-mail: miurah@m.tohoku.ac.j [Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan)

    2010-08-10T23:59:59.000Z

    Several lines of evidence suggest that fine silicate crystals observed in primitive meteorite and interplanetary dust particles (IDPs) nucleated in a supersaturated silicate vapor followed by crystalline growth. We investigated evaporation of {mu}m-sized silicate particles heated by a bow shock produced by a planetesimal orbiting in the gas in the early solar nebula and condensation of crystalline silicate from the vapor thus produced. Our numerical simulation of shock-wave heating showed that these {mu}m-sized particles evaporate almost completely when the bow shock is strong enough to cause melting of chondrule precursor dust particles. We found that the silicate vapor cools very rapidly with expansion into the ambient unshocked nebular region; for instance, the cooling rate is estimated to be as high as 2000 K s{sup -1} for a vapor heated by a bow shock associated with a planetesimal of radius 1 km. The rapid cooling of the vapor leads to nonequilibrium gas-phase condensation of dust at temperatures much lower than those expected from the equilibrium condensation. It was found that the condensation temperatures are lower by a few hundred K or more than the equilibrium temperatures. This explains the results of the recent experimental studies of condensation from a silicate vapor that condensation in such large supercooling reproduces morphologies similar to those of silicate crystals found in meteorites. Our results strongly suggest that the planetesimal bow shock is one of the plausible sites for formation of not only chondrules but also other cosmic crystals in the early solar system.

  19. A Novel Absorption Cycle for Combined Water Heating, Dehumidification, and Evaporative Cooling

    SciTech Connect (OSTI)

    CHUGH, Devesh [University of Florida, Gainesville; Gluesenkamp, Kyle R [ORNL; Abdelaziz, Omar [ORNL; Moghaddam, Saeed [University of Florida, Gainesville

    2014-01-01T23:59:59.000Z

    In this study, development of a novel system for combined water heating, dehumidification, and space evaporative cooling is discussed. Ambient water vapor is used as a working fluid in an open system. First, water vapor is absorbed from an air stream into an absorbent solution. The latent heat of absorption is transferred into the process water that cools the absorber. The solution is then regenerated in the desorber, where it is heated by a heating fluid. The water vapor generated in the desorber is condensed and its heat of phase change is transferred to the process water in the condenser. The condensed water can then be used in an evaporative cooling process to cool the dehumidified air exiting the absorber, or it can be drained if primarily dehumidification is desired. Essentially, this open absorption cycle collects space heat and transfers it to process water. This technology is enabled by a membrane-based absorption/desorption process in which the absorbent is constrained by hydrophobic vapor-permeable membranes. Constraining the absorbent film has enabled fabrication of the absorber and desorber in a plate-and-frame configuration. An air stream can flow against the membrane at high speed without entraining the absorbent, which is a challenge in conventional dehumidifiers. Furthermore, the absorption and desorption rates of an absorbent constrained by a membrane are greatly enhanced. Isfahani and Moghaddam (Int. J. Heat Mass Transfer, 2013) demonstrated absorption rates of up to 0.008 kg/m2s in a membrane-based absorber and Isfahani et al. (Int. J. Multiphase Flow, 2013) have reported a desorption rate of 0.01 kg/m2s in a membrane-based desorber. The membrane-based architecture also enables economical small-scale systems, novel cycle configurations, and high efficiencies. The absorber, solution heat exchanger, and desorber are fabricated on a single metal sheet. In addition to the open arrangement and membrane-based architecture, another novel feature of the cycle is recovery of the solution heat energy exiting the desorber by process water (a process-solution heat exchanger ) rather than the absorber exiting solution (the conventional solution heat exchanger ). This approach has enabled heating the process water from an inlet temperature of 15 C to 57 C (conforming to the DOE water heater test standard) and interfacing the process water with absorbent on the opposite side of a single metal sheet encompassing the absorber, process-solution heat exchanger, and desorber. The system under development has a 3.2 kW water heating capacity and a target thermal coefficient of performance (COP) of 1.6.

  20. Influence of Specimen Size on the SCC Growth Rate of Ni-Alloys Exposed to High Temperature Water

    SciTech Connect (OSTI)

    E Richey; D Morton; W Moshier

    2005-10-19T23:59:59.000Z

    Tests were conducted on a single heat of Alloy 600 using compact tension specimens ranging from 50.80 mm (2 inches) in gross thickness (2T) to 10.16 mm (0.4 inches, 0.4T) in gross thickness. Results indicated that at stress intensity factor (K) levels above 55 MPa{radical}m, the growth rate is affected by specimen size in deaerated primary water. The growth rate can be significantly faster in 0.4T and 0.6T (15.24 mm = 0.6 inches in gross thickness) specimens at these elevated K levels compared to 2T specimens. Stress corrosion crack (SCC) growth rates > 6 x 10{sup -7} mm/s were observed at 338 C and 40 cc/kg H{sub 2} in 0.6T and 0.4T specimens at these elevated K levels, although the fracture mode was not significantly affected by the specimen size. The SCC growth rate of 2T specimens under comparable test conditions was {approx}6 x 10{sup -8} mm/s. All of the specimens examined that were tested at K > 55 MPa{radical}m exhibited intergranular failure, although ductile dimples and cracked grains were observed in the 0.4T specimens loaded to the elevated K levels. The effect of specimen size on the crack growth behavior indicated by electric potential drop (EPD) monitoring at K > 55 MPa{radical}m was also reviewed. EPD indicated steady state crack growth during the tests conducted on 1T (25.4 mm = 1.0 inches in gross thickness) and 2T specimens. Steady state crack growth was not indicated by EPD for the 0.4T and 0.6T specimens loaded at K > 55 MPa{radical}m. EPD indicated large jumps in the crack length at discrete points. Initially, it was believed that these large, rapid increases in the crack length corresponded to ductile tearing of uncracked ligaments in the crack wake as the SCC crack advanced. However, examination of the fracture surfaces did not reveal any evidence of isolated regions of ductile tearing in the crack wake. The large increases in the EPD signal were due to strain bursts. These results highlight the need to base SCC growth rates on destructive examination of the specimen.

  1. Solar-induced chemical vapor deposition of diamond-type carbon films

    DOE Patents [OSTI]

    Pitts, J.R.; Tracy, C.E.; King, D.E.; Stanley, J.T.

    1994-09-13T23:59:59.000Z

    An improved chemical vapor deposition method for depositing transparent continuous coatings of sp[sup 3]-bonded diamond-type carbon films, comprises: (a) providing a volatile hydrocarbon gas/H[sub 2] reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and (b) directing a concentrated solar flux of from about 40 to about 60 watts/cm[sup 2] through said reactant mixture to produce substrate temperatures of about 750 C to about 950 C to activate deposition of the film on said substrate. 11 figs.

  2. Solar-induced chemical vapor deposition of diamond-type carbon films

    DOE Patents [OSTI]

    Pitts, J. Roland (Lakewood, CO); Tracy, C. Edwin (Golden, CO); King, David E. (Lakewood, CO); Stanley, James T. (Beaverton, OR)

    1994-01-01T23:59:59.000Z

    An improved chemical vapor deposition method for depositing transparent continuous coatings of sp.sup.3 -bonded diamond-type carbon films, comprising: a) providing a volatile hydrocarbon gas/H.sub.2 reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and b) directing a concentrated solar flux of from about 40 to about 60 watts/cm.sup.2 through said reactant mixture to produce substrate temperatures of about 750.degree. C. to about 950.degree. C. to activate deposition of the film on said substrate.

  3. Vapor Pressures and Vaporization, Sublimation, and Fusion Enthalpies of Some Fatty Acids

    E-Print Network [OSTI]

    Chickos, James S.

    Vapor Pressures and Vaporization, Sublimation, and Fusion Enthalpies of Some Fatty Acids Joe A. Wilson and James S. Chickos* Department of Chemistry and Biochemistry, University of MissouriSt. Louis, St. Louis, Missouri 63121, United States *S Supporting Information ABSTRACT: Sublimation enthalpies

  4. Vapor Pressures and Vaporization Enthalpies of a Series of Dialkyl Phthalates by Correlation Gas Chromatography

    E-Print Network [OSTI]

    Chickos, James S.

    Chromatography Chase Gobble and James Chickos* Department of Chemistry and Biochemistry University of Missouri-St. Louis, St. Louis Missouri 63121, United States Sergey P. Verevkin Department of Physical Chemistry: Experimental vapor pressures, vaporization, fusion and sublimation enthalpies of a number of dialkyl

  5. Testing of Crystallization Temperature of a New Working Fluid for Absorption Heat Pump Systems

    SciTech Connect (OSTI)

    Wang, Kai [ORNL] [ORNL; Kisari, Padmaja [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Vineyard, Edward Allan [ORNL] [ORNL

    2010-01-01T23:59:59.000Z

    Lithium bromide/water (LiBr/water) absorption systems are potential candidates for absorption heat pump water heating applications since they have been widely commercialized for cooling applications. One drawback to LiBr/water absorption water heater systems is that they are unable to operate at typical water heating temperatures due to solution crystallization hazards. Binary or ternary mixtures, serving as working fluids, were reported (Ally, 1988; Herold et al., 1991; Iyoki and Uemura, 1981; Yasuhide Nemoto et al., 2010; Zogg et al., 2005) to help improve the absorption performance or avoid crystallization of absorption heat pump systems. A recent development (De Lucas et al., 2007) investigated the use of a ternary mixture of aqueous mixture of lithium bromide and sodium formate (CHO2Na). The new working fluid composition maintains a ratio of LiBr/CHO2Na of 2 by weight. This new working fluid is a potential competitor to aqueous LiBr solution in absorption system due to higher water vapor absorption rates and lower generation temperature needed (De Lucas et al., 2004). There exists data on equilibrium performance and other physical properties of this new working fluid. However, there is no available data on crystallization behavior. Crystallization temperature is crucial for the design of absorption heat pump water heater in order to avoid crystallization hazards during operation. We have therefore conducted a systematic study to explore the crystallization temperature of LiBr/CHO2Na water solution and compared it against aqueous LiBr solutions. These results were then used to evaluate the feasibility of using the new working fluid in water heating applications showing limited potential.

  6. Materials for the scavenging of hydrogen at high temperatures

    DOE Patents [OSTI]

    Shepodd, T.J.; Phillip, B.L.

    1997-12-30T23:59:59.000Z

    A hydrogen getter composition is described comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compositions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100 C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluoropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases. 7 figs.

  7. Materials for the scavenging of hydrogen at high temperatures

    DOE Patents [OSTI]

    Shepodd, T.J.; Phillip, B.L.

    1997-04-29T23:59:59.000Z

    A hydrogen getter composition is described comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compositions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluoropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases. 7 figs.

  8. Water Formation in the Early Universe

    E-Print Network [OSTI]

    Bialy, Shmuel; Loeb, Abraham

    2015-01-01T23:59:59.000Z

    We demonstrate that high abundances of water vapor could have existed in extremely low metallicity ($10^{-3}$ solar) partially shielded gas, during the epoch of first metal enrichment of the interstellar medium of galaxies at high redshifts.

  9. Vapor Barriers or Vapor Diffusion Retarders | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-Type WaterTravel TravelUpcomingUsefulAbout

  10. Preconcentrator with high volume chiller for high vapor pressure particle detection

    SciTech Connect (OSTI)

    Linker, Kevin L

    2013-10-22T23:59:59.000Z

    Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.

  11. Vapor scavenging by atmospheric aerosol particles

    SciTech Connect (OSTI)

    Andrews, E.

    1996-05-01T23:59:59.000Z

    Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

  12. CHEMISTRY OF IMPACT-GENERATED SILICATE MELT-VAPOR DEBRIS DISKS

    SciTech Connect (OSTI)

    Visscher, Channon [Department of Space Studies, Southwest Research Institute, Boulder, CO 80302 (United States); Fegley, Bruce Jr. [Planetary Chemistry Laboratory, Department of Earth and Planetary Sciences and McDonnell Center for Space Sciences, Washington University in St. Louis, St. Louis, MO 63130 (United States)

    2013-04-10T23:59:59.000Z

    In the giant impact theory for lunar origin, the Moon forms from material ejected by the impact into an Earth-orbiting disk. Here we report the initial results from a silicate melt-vapor equilibrium chemistry model for such impact-generated planetary debris disks. In order to simulate the chemical behavior of a two-phase (melt+vapor) disk, we calculate the temperature-dependent pressure and chemical composition of vapor in equilibrium with molten silicate from 2000 to 4000 K. We consider the elements O, Na, K, Fe, Si, Mg, Ca, Al, Ti, and Zn for a range of bulk silicate compositions (Earth, Moon, Mars, eucrite parent body, angrites, and ureilites). In general, the disk atmosphere is dominated by Na, Zn, and O{sub 2} at lower temperatures (<3000 K) and SiO, O{sub 2}, and O at higher temperatures. The high-temperature chemistry is consistent for any silicate melt composition, and we thus expect abundant SiO, O{sub 2}, and O to be a common feature of hot, impact-generated debris disks. In addition, the saturated silicate vapor is highly oxidizing, with oxygen fugacity (f{sub O{sub 2}}) values (and hence H{sub 2}O/H{sub 2} and CO{sub 2}/CO ratios) several orders of magnitude higher than those in a solar-composition gas. High f{sub O{sub 2}} values in the disk atmosphere are found for any silicate composition because oxygen is the most abundant element in rock. We thus expect high oxygen fugacity to be a ubiquitous feature of any silicate melt-vapor disk produced via collisions between rocky planets.

  13. Infrared study on room-temperature atomic layer deposition of HfO{sub 2} using tetrakis(ethylmethylamino)hafnium and remote plasma-excited oxidizing agents

    SciTech Connect (OSTI)

    Kanomata, Kensaku [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan and Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Ohba, Hisashi; Pungboon Pansila, P.; Ahmmad, Bashir; Kubota, Shigeru; Hirahara, Kazuhiro; Hirose, Fumihiko, E-mail: fhirose@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan)

    2015-01-01T23:59:59.000Z

    Room-temperature atomic layer deposition (ALD) of HfO{sub 2} was examined using tetrakis (ethylmethylamino)hafnium (TEMAH) and remote plasma-excited water and oxygen. A growth rate of 0.26?nm/cycle at room temperature was achieved, and the TEMAH adsorption and its oxidization on HfO{sub 2} were investigated by multiple internal reflection infrared absorption spectroscopy. It was observed that saturated adsorption of TEMAH occurs at exposures of ?1?×?10{sup 5}?L (1 L?=?1?×?10{sup ?6} Torr s) at room temperature, and the use of remote plasma-excited water and oxygen vapor is effective in oxidizing the TEMAH molecules on the HfO{sub 2} surface, to produce OH sites. The infrared study suggested that Hf–OH plays a role as an adsorption site for TEMAH. The reaction mechanism of room temperature HfO{sub 2} ALD is discussed in this paper.

  14. Temperature control method for series-connected reactors

    SciTech Connect (OSTI)

    Abrams, L.M.

    1984-07-03T23:59:59.000Z

    A method is claimed for controlling the temperature and composition of a vapor feedstream into a second reactor connected in series flow arrangement with a first reactor. The effluent stream from the first reactor containing vapor and liquid fractions is first cooled against a vapor stream and then further cooled against a suitable external fluid, then is phase separated to provide vapor and liquid fractions. The separated vapor fraction is reheated against the first reactor effluent stream and passed at an intermediate temperature into the second reactor. The first reactor is preferably an ebullated bed type catalytic reactor and the second reactor is preferably a fixed bed type catalytic reactor which is operated at an inlet temperature 20/sup 0/-200/sup 0/ F. lower than the first reactor effluent stream temperature. If desired, the effluent stream from the first reactor can be initially phase separated into vapor and liquid factions, and the vapor fraction only passed to the first heat exchange step for cooling to a first lower temperature.

  15. Tank 241-C-101 vapor sampling and analysis tank characterization report

    SciTech Connect (OSTI)

    Huckaby, J.L.

    1995-05-31T23:59:59.000Z

    Tank C-101 headspace gas and vapor samples were collected and analyzed to help determine the potential risks of fugitive emissions to tank farm workers. Gas and vapor samples from the Tank C-101 headspace were collected on July 7, 1994 using the in situ sampling (ISS) method, and again on September 1, 1994 using the more robust vapor sampling system (VSS). Gas and vapor concentrations in Tank C-101 are influenced by its connections to other tanks and its ventilation pathways. At issue is whether the organic vapors in Tank C-101 are from the waste in that tank, or from Tanks C-102 or C-103. Tank C-103 is on the Organic Watch List; the other two are not. Air from the Tank C-101 headspace was withdrawn via a 7.9-m long heated sampling probe mounted in riser 8, and transferred via heated tubing to the VSS sampling manifold. The tank headspace temperature was determined to be 34.0 C, and all heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 39 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks provided by the laboratories.

  16. Pitting Corrosion in CVD SiC at 300?C in Deoxygenated High-Purity Water

    SciTech Connect (OSTI)

    Henager, Charles H.; Schemer-Kohrn, Alan L.; Pitman, Stan G.; Senor, David J.; Geelhood, Ken J.; Painter, Chad L.

    2008-08-15T23:59:59.000Z

    SiC is a candidate for nuclear applications at elevated temperatures but has not been fully studied under typical light-water reactor operating conditions, such as moderate temperatures and high pressures. Coupons of high-purity chemical vapor deposited SiC were exposed to deoxygenated, pressurized water at 573K and 100 Bar for up to 4000 hours. Ceramographic examination of the exposed SiC surfaces revealed both embryonic and large, d > 300 µm, pits on the surface. The pits were characterized using scanning electron microscopy for structure and chemistry analysis. Pit densities were also determined by standard counting methods. The chemical analysis revealed that the pits are associated with the formation of silica and subsequent loss of Si, which is expected due to several suggested reactions between SiC and water.

  17. Water Vapor Turbulence Statistics in the Convective Boundary...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This study presented the first long-term data set of variance and skewness turbulent statistic profiles in the CBL, spanning a range of seasons and environmental conditions. These...

  18. EXAMINING THE SPECTROSCOPY OF WATER VAPOR IN THE ATMOSPHERE

    E-Print Network [OSTI]

    Petta, Jason

    Compare to relative humidity probe Describes VCSEL accuracy #12;FLOW DILUTION SYSTEM Critical Orifice

  19. Desalination of water by vapor transport through hydrophobic nanopores

    E-Print Network [OSTI]

    Lee, Jongho, Ph. D. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Although Reverse osmosis (RO) is the state-of-the-art desalination technology, it still suffers from persistent drawbacks including low permeate flux, low selectivity for non-ionic species, and lack of resistance to chlorine. ...

  20. ARM - Field Campaign - ARM-FIRE Water Vapor Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010September 30,JuneMayIIIgovCampaignsARM West

  1. ARM - Field Campaign - Arctic Winter Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010SeptemberInfraredgovCampaignsAircraft

  2. ARM - Field Campaign - Fall 1997 Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud ODgovCampaignsFIRE-ArcticShortwave IOP ARM DataUAV

  3. ARM - Field Campaign - Single Frequency GPS Water Vapor Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops Atmospheric Optical Depth (AOD)govCampaignsReplicatorgovCampaignsSingle Column

  4. Overview of the ARM/FIRE Water Vapor Experiment (AFWEX)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002Optics GroupPlanning Workshop Overview ofOverview of the

  5. High Temperature Membrane Working Group, Minutes of Meeting on...

    Broader source: Energy.gov (indexed) [DOE]

    Multi-Year RD&D Plan 2010 membrane technical target (see Table 3.4.12) of an inlet water vapor partial pressure of 1.5 kPa The 2010 target listed below raises the question as...

  6. Vapor characterization of Tank 241-C-103

    SciTech Connect (OSTI)

    Huckaby, J.L. [Westinghouse Hanford Co., Richland, WA (United States); Story, M.S. [Northwest Instrument Systems, Inc. Richland, WA (United States)

    1994-06-01T23:59:59.000Z

    The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from the most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program.

  7. Method and Apparatus for Concentrating Vapors for Analysis

    DOE Patents [OSTI]

    Grate, Jay W. (West Richland, WA); Baldwin, David L. (Kennewick, WA); Anheier, Jr., Norman C. (Richland, WA)

    2008-10-07T23:59:59.000Z

    An apparatus and method are disclosed for pre-concentrating gaseous vapors for analysis. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable. Vapors sorbed and concentrated within the bed of the apparatus can be thermally desorbed achieving at least partial separation of vapor mixtures. The apparatus is suitable, e.g., for preconcentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than for direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications.

  8. Thermal electric vapor trap arrangement and method

    DOE Patents [OSTI]

    Alger, T.

    1988-03-15T23:59:59.000Z

    A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself. 4 figs.

  9. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, Jr., Edward P. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  10. Integration of Global Positioning System and Scanning Water Vapor Radiometers for Precipitable Water Vapor and Cloud Liquid Path Estimates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land SurfaceVirus-Infected Macaques

  11. Vapor intrusion modeling : limitations, improvements, and value of information analyses

    E-Print Network [OSTI]

    Friscia, Jessica M. (Jessica Marie)

    2014-01-01T23:59:59.000Z

    Vapor intrusion is the migration of volatile organic compounds (VOCs) from a subsurface source into the indoor air of an overlying building. Vapor intrusion models, including the Johnson and Ettinger (J&E) model, can be ...

  12. Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01T23:59:59.000Z

    In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

  13. Reductive Dehalogenation of Trichloroethene Vapors in an

    E-Print Network [OSTI]

    to treat trichloroethene (TCE) from waste gases generated by soil vapor extraction or dual-phase extraction through the recirculating liquid as a source of hydrogen, the electron donor for Dehalococcoides strains (DPE) (4). However, these techniques result in a waste gas stream that needs further treatment. Several

  14. Advancing Explosives Detection Capabilities: Vapor Detection

    ScienceCinema (OSTI)

    Atkinson, David

    2014-07-24T23:59:59.000Z

    A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.

  15. Chemical vapor deposition of mullite coatings

    DOE Patents [OSTI]

    Sarin, Vinod (Lexington, MA); Mulpuri, Rao (Boston, MA)

    1998-01-01T23:59:59.000Z

    This invention is directed to the creation of crystalline mullite coatings having uniform microstructure by chemical vapor deposition (CVD). The process comprises the steps of establishing a flow of reactants which will yield mullite in a CVD reactor, and depositing a crystalline coating from the reactant flow. The process will yield crystalline coatings which are dense and of uniform thickness.

  16. ASHRAE Transactions: Research 3 A steady-state simulation model for a water-to-water

    E-Print Network [OSTI]

    ASHRAE Transactions: Research 3 ABSTRACT A steady-state simulation model for a water Reciprocating vapor compression heat pumps and chill- ers have been the target of a number of simulation models

  17. Industrial Heat Pumps Using Solid/Vapor Working Fluids

    E-Print Network [OSTI]

    Rockenfeller, U.

    INDUSTRIAL HEAT PUMPS USING SOLID/VAPOR WORKING FLUIDS Uwe Rockenfeller, Desert Research Institute, Boulder City, Nevada ABSTRACT Industrial heat pumps have the potential to reduce the operating costs of chemical and heat treating processes... with vapor re-compression recovery systems. The state-of-the-art heat pump equipment employing liquid/vapor working fluids fulfills the requirements only in some applications. The employment of solid/vapor complex compounds leads to 'nore cost effective...

  18. Strain relaxation in graphene grown by chemical vapor deposition

    SciTech Connect (OSTI)

    Troppenz, Gerald V., E-mail: gerald.troppenz@helmholtz-berlin.de; Gluba, Marc A.; Kraft, Marco; Rappich, Jörg; Nickel, Norbert H. [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institut für Silizium Photovoltaik, Kekuléstr. 5, D-12489 Berlin (Germany)

    2013-12-07T23:59:59.000Z

    The growth of single layer graphene by chemical vapor deposition on polycrystalline Cu substrates induces large internal biaxial compressive strain due to thermal expansion mismatch. Raman backscattering spectroscopy and atomic force microscopy were used to study the strain relaxation during and after the transfer process from Cu foil to SiO{sub 2}. Interestingly, the growth of graphene results in a pronounced ripple structure on the Cu substrate that is indicative of strain relaxation of about 0.76% during the cooling from the growth temperature. Removing graphene from the Cu substrates and transferring it to SiO{sub 2} results in a shift of the 2D phonon line by 27?cm{sup ?1} to lower frequencies. This translates into additional strain relaxation. The influence of the processing steps, used etching solution and solvents on strain, is investigated.

  19. Field emission properties of chemical vapor deposited individual graphene

    SciTech Connect (OSTI)

    Zamri Yusop, Mohd [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan); Department of Materials, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan); Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan); Yaakob, Yazid; Takahashi, Chisato; Tanemura, Masaki [Department of Frontier Materials, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, 466-8555 Nagoya (Japan)

    2014-03-03T23:59:59.000Z

    Here, we report field emission (FE) properties of a chemical vapor deposited individual graphene investigated by in-situ transmission electron microscopy. Free-standing bilayer graphene is mounted on a cathode microprobe and FE processes are investigated varying the vacuum gap of cathode and anode. The threshold field for 10?nA current were found to be 515, 610, and 870?V/?m for vacuum gap of 400, 300, and 200?nm, respectively. It is observed that the structural stability of a high quality bilayer graphene is considerably stable during emission process. By contacting the nanoprobe with graphene and applying a bias voltage, structural deformation and buckling are observed with significant rise in temperature owing to Joule heating effect. The finding can be significant for practical application of graphene related materials in emitter based devices as well as understanding the contact resistance influence and heating effect.

  20. Modeling engine oil vaporization and transport of the oil vapor in the piston ring pack on internal combustion engines

    E-Print Network [OSTI]

    Cho, Yeunwoo, 1973-

    2004-01-01T23:59:59.000Z

    A model was developed to study engine oil vaporization and oil vapor transport in the piston ring pack of internal combustion engines. With the assumption that the multi-grade oil can be modeled as a compound of several ...

  1. Effect of temperature on the release of intentionally and non-intentionally added substances from polyethylene terephthalate (PET) bottles into water

    E-Print Network [OSTI]

    Short, Daniel

    polyethylene terephthalate (PET) bottles into water: Chemical analysis and potential toxicity Cristina Bach a used for the bottling of drinking water is polyethylene terephthalate (PET). Since migra- tion can

  2. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31T23:59:59.000Z

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  3. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31T23:59:59.000Z

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  4. Apparatus and method for photochemical vapor deposition

    DOE Patents [OSTI]

    Jackson, Scott C. (Wilmington, DE); Rocheleau, Richard E. (Wilmington, DE)

    1987-03-31T23:59:59.000Z

    A photochemical vapor deposition apparatus includes a reactor housing having a window in one wall above a reaction chamber in the housing. A transparent curtain divides the reaction chamber into a reaction zone and a flush zone. At least one substrate is mounted in the reaction zone in light communication with the window so that ultraviolet radiation may penetrate through the window into the reaction zone. The window is kept clear by a gas flowing through the flush zone.

  5. DuPont Chemical Vapor Technical Report

    SciTech Connect (OSTI)

    MOORE, T.L.

    2003-10-03T23:59:59.000Z

    DuPont Safety Resources was tasked with reviewing the current chemical vapor control practices and providing preventive recommendations on best commercial techniques to control worker exposures. The increased focus of the tank closure project to meet the 2024 Tri-Party Agreement (TPA) milestones has surfaced concerns among some CH2MHill employees and other interested parties. CH2MHill is committed to providing a safe working environment for employees and desires to safely manage the tank farm operations using appropriate control measures. To address worker concerns, CH2MHill has chartered a ''Chemical Vapors Project'' to integrate the activities of multiple CH2MHill project teams, and solicit the expertise of external resources, including an independent Industrial Hygiene expert panel, a communications consultant, and DuPont Safety Resources. Over a three-month time period, DuPont worked with CH2MHill ESH&Q, Industrial Hygiene, Engineering, and the independent expert panel to perform the assessment. The process included overview presentations, formal interviews, informal discussions, documentation review, and literature review. DuPont Safety Resources concluded that it is highly unlikely that workers in the tank farms are exposed to chemicals above established standards. Additionally, the conventional and radiological chemistry is understood, the inherent chemical hazards are known, and the risk associated with chemical vapor exposure is properly managed. The assessment highlighted management's commitment to addressing chemical vapor hazards and controlling the associated risks. Additionally, we found the Industrial Hygiene staff to be technically competent and well motivated. The tank characterization data resides in a comprehensive database containing the tank chemical compositions and relevant airborne concentrations.

  6. Greenland temperature, climate change, and human society during the last 11,600 years

    E-Print Network [OSTI]

    Kobashi, Takuro

    2007-01-01T23:59:59.000Z

    temperature reconstruction from water isotopes in ice cores.temperature reconstruction from water isotopes in ice cores,Finkel, Changes in deep-water formation during the Younger

  7. Combined rankine and vapor compression cycles

    DOE Patents [OSTI]

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19T23:59:59.000Z

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  8. The aging of tungsten filaments and its effect on wire surface kinetics in hot-wire chemical vapor deposition

    E-Print Network [OSTI]

    Atwater, Harry

    desorption kinetics. In particular, the Si signal exhibits a high temperature activation energy consistent vapor deposition growth have been measured by quadrupole mass spectrometry. New wires produce Si with previous measurements; the activation energy for the SiH3 signal suggests its formation is catalyzed. Aged

  9. Observation of photoluminescence from Al1 xInxN heteroepitaxial films grown by metalorganic vapor phase epitaxy

    E-Print Network [OSTI]

    Wetzel, Christian M.

    Observation of photoluminescence from Al1 xInxN heteroepitaxial films grown by metalorganic vapor have observed photoluminescence of Al1 xInxN films. The films were grown on GaN by atmospheric pressure-temperature deposited AlN buffer layer. Photoluminescence, absorption, and x-ray diffraction measurements have shown

  10. Tribology Letters Vol. 10, No. 3, 2001 179 Activation of the SiC surface for vapor phase lubrication

    E-Print Network [OSTI]

    Gellman, Andrew J.

    above 500 C [2,3,11,12]. Since liquid lubricants cannot withstand such extreme conditions, a number deposition 1. Introduction The lubrication of ceramic surfaces working at extremely high temperatures has lubrication by Fe chemical vapor deposition from Fe(CO)5 Daxing Ren, Dougyong Sung and Andrew J. Gellman

  11. Evaluation of Catalysts from Different Origin for Vapor Phase Upgrading in Biomass Pyrolysis

    SciTech Connect (OSTI)

    Zhang, X.; Mukarakate, C.; Zheng, Z.; Nimlos, M.

    2012-01-01T23:59:59.000Z

    Liquid fuels and chemicals from biomass resources arouse much interests in research and development. Fast pyrolysis of biomass has the potential to effectively change solid biomass materials into liquid products. However, bio-oil from traditional pyrolysis processes is difficult to apply in industry, because of its complicated composition, high oxygen content, low stability, etc. Upgrading or refining of the bio-oil should be performed for industrial application of biomass pyrolysis. Often, the process would be done in a separate reactor downstream of the pyrolysis process. In this paper, a laboratory scale micro test facility was constructed, wherein the pyrolysis of pine and catalytic upgrading of the resulting vapors were closely coupled in one reactor. The composition of vapor effluent was monitored with a molecular beam mass spectrometer (MBMS) for the online evaluation of the catalyst performance. Catalysts from different origin were tested and compared for the effectiveness of pyrolysis vapor upgrading, namely commercial zeolites, Ni based steam reforming catalyst, CaO, MgO, and several laboratory-made catalysts. The reaction temperature for catalytic upgrading varied between 400 and 600 centigrade, and the gaseous residence time ranged from 0.1 second to above 2 second, to simulate the conditions in industrial application. It is revealed that some catalysts are active in transform most of primary biomass pyrolysis vapors into hydrocarbons, resulting in nonoxygenated products, which is beneficial for downstream utilization. Others are not as effective, results in minor improvement compared with blank test results.

  12. Ceramic-metallic coatings by electron beam physical vapor deposition (EB-PVD) process

    SciTech Connect (OSTI)

    Wolfe, D.E.; Singh, J. [Pennsylvania State Univ., State College, PA (United States)

    1995-12-31T23:59:59.000Z

    Electron Beam Physical Vapor Deposition (EB-PVD) process is considered to be a technology that has overcome some of the difficulties or problems associated with the chemical vapor deposition (CVD), physical vapor deposition (PVD) and metal spray processes. The EB-PVD process offers many desirable characteristics such as relatively high deposition rates (up to 100-150 {mu}m/minute with an evaporation rate {approx}10-15 Kg/hour,) dense coatings, precise compositional control, columnar and poly-crystalline microstructure, low contamination, and high thermal efficiency. Various metallic and ceramic coatings (oxides, carbides, nitrides) can be deposited at relatively low temperatures. Even elements with low vapor pressure such as molybdenum, tungsten, and carbon are readily evaporated by this process. In addition, EB-PVD is capable of producing multi-layered laminated metallic/ceramic coatings on large components by changing the EB-PVD processing conditions such as ingot composition, part manipulation, and electron beam energy. Attachment of an ion assisted beam source to the EB-PVD offers additional benefits such as dense coatings with improved adhesion. In addition, textured coatings can be obtained that are desirable in many applications such as cutting tools. This laboratory has started a new thrust in the coating area by the EB-PVD process. The microstructure of thermal barrier ceramic coatings (i.e., yttria stabilized zirconia) developed by the EB-PVD process will be presented.

  13. Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010

    SciTech Connect (OSTI)

    Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Phillips, Nathan RJ; Hughes, James S.; Fischer, Eric S.; Ploskey, Gene R.

    2011-10-01T23:59:59.000Z

    This report presents the results of an evaluation of juvenile Chinook salmonid (Oncorhynchus tshawytscha) behavior in the immediate forebay of the Water Temperature Control (WTC) tower at Cougar Dam in 2010. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers. The overall goal of the study was to characterize juvenile salmonid behavior and movement patterns in the immediate forebay of the WTC tower for fisheries resource managers to use to make decisions on bioengineering designs for long-term structures and/or operations to facilitate safe downstream passage for juvenile salmonids. We collected acoustic imaging (Dual-Frequency Identification Sonar; DIDSON) data from February 1, 2010 through January 31, 2011 to evaluate juvenile salmonid behavior year-round in the immediate forebay surface layer of the WTC tower (within 20 m, depth 0-5 m). From October 28, 2010 through January 31, 2011 a BlueView acoustic camera was also deployed in an attempt to determine its usefulness for future studies as well as augment the DIDSON data. For the DIDSON data, we processed a total of 35 separate 24-h periods systematically covering every other week in the 12-month study. Two different 24-hour periods were processed for the BlueView data for the feasibility study. Juvenile salmonids were present in the immediate forebay of the WTC tower throughout 2010. The juvenile salmonid abundance index was low in the spring (<200 fish per sample-day), began increasing in late April and peaked in mid-May. Fish abundance index began decreasing in early June and remained low in the summer months. Fish abundance increased again in the fall, starting in October, and peaked on November 8-9. A second peak occurred on December 22. Afterwards, abundance was low for the rest of the study (through January 2011). Average fish length for juvenile salmonids during early spring 2010 was 214 {+-} 86 mm (standard deviation). From May through early November, average fish length remained relatively consistent (132 {+-} 39 mm), after which average lengths increased to 294 {+-} 145 mm for mid-November though early December. Fish behavior analysis indicates milling in front of the intake tower was the most common behavior observed throughout the study period (>50% of total fish events). The next most common movement patterns were fish traversing along the front of the tower, east-to-west and west-to-east. The proportion of fish events seen moving into (forebay to tower) or out of (tower to forebay) the tower was generally low throughout the spring, summer, and early fall for both directions combined. From mid-December 2010 through the end of the study, the combined proportions of fish moving into and out of the tower were higher than previous months of this study. Schooling behavior was most distinct in the spring from late April through mid-June. Schooling events were present in 30 - 96% of the fish events during that period, with a peak in mid-May. Schooling events were also present in the summer, but at lower numbers. Diel distributions for schooling fish during spring, fall, and winter months indicate schooling was concentrated during daylight hours. No schooling was observed at night. Predator activity was observed during late spring, when fish abundance and schooling were highest for the year, and again in the fall months when fish events increased from a summer low. No predator activity was observed in the summer, and little activity occurred during the winter months. For the two days of BlueView data analyzed for vertical distribution in the forebay, a majority of fish (>50%) were present in the middle of the water column (10 - 20 m deep). Between 20 and 41 % of total fish abundance were found in the bottom of the water column (20 - 30 m deep). Few fish were observed in the top 10 m of the water column.

  14. Water dimer equilibrium constant calculation: A quantum formulation including metastable states

    SciTech Connect (OSTI)

    Leforestier, Claude, E-mail: claude.leforestier@univ-montp2.fr [Institut Charles Gerhardt, CNRS 5253, CC 15.01, Université Montpellier II-CNRS, 34095 Montpellier Cedex 05 (France)] [Institut Charles Gerhardt, CNRS 5253, CC 15.01, Université Montpellier II-CNRS, 34095 Montpellier Cedex 05 (France)

    2014-02-21T23:59:59.000Z

    We present a full quantum evaluation of the water second virial coefficient B(T) based on the Takahashi-Imada second order approximation. As the associated trace Tr[e{sup ??H{sub A}{sub B}}?e{sup ??H{sub A}{sub B}{sup o}}] is performed in the coordinate representation, it does also include contribution from the whole continuum, i.e., resonances and collision pairs of monomers. This approach is compared to a Path Integral Monte Carlo evaluation of this coefficient by Schenter [J. Chem. Phys. 117, 6573 (2002)] for the TIP4P potential and shown to give extremely close results in the low temperature range (250–450 K) reported. Using a recent ab initio flexible potential for the water dimer, this new formulation leads to very good agreement with experimental values over the whole range of temperatures available. The virial coefficient is then used in the well known relation K{sub p}(T) = ?(B(T) ? b{sub M})/RT where the excluded volume b{sub M} is assimilated to the second virial coefficient of pure water monomer vapor and approximated from the inner repulsive part of the interaction potential. This definition, which renders b{sub M} temperature dependent, allows us to retrieve the 38?cm{sup 3}?mol{sup ?1} value commonly used, at room temperature. The resulting values for K{sub p}(T) are in agreement with available experimental data obtained from infrared absorption spectra of water vapor.

  15. Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol

    SciTech Connect (OSTI)

    Gardiner, D. P.; Bardon, M. F.; Clark, W.

    2011-07-01T23:59:59.000Z

    This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

  16. Development of chemical vapor composites, CVC materials. Final report

    SciTech Connect (OSTI)

    NONE

    1998-10-05T23:59:59.000Z

    Industry has a critical need for high-temperature operable ceramic composites that are strong, non-brittle, light weight, and corrosion resistant. Improvements in energy efficiency, reduced emissions and increased productivity can be achieved in many industrial processes with ceramic composites if the reaction temperature and pressure are increased. Ceramic composites offer the potential to meet these material requirements in a variety of industrial applications. However, their use is often restricted by high cost. The Chemical Vapor composite, CVC, process can reduce the high costs and multiple fabrication steps presently required for ceramic fabrication. CVC deposition has the potential to eliminate many difficult processing problems and greatly increase fabrication rates for composites. With CVC, the manufacturing process can control the composites` density, microstructure and composition during growth. The CVC process: can grow or deposit material 100 times faster than conventional techniques; does not require an expensive woven preform to infiltrate; can use high modulus fibers that cannot be woven into a preform; can deposit composites to tolerances of less than 0.025 mm on one surface without further machining.

  17. Ch.9 Water Resources ! Hydrologic cycle

    E-Print Network [OSTI]

    Pan, Feifei

    Energy Balance G Ts Td H LE Q t = Rn - LE - H - G where Q/t is the heat storage change of soil column in the liquid or solid phase at or near the land surface becomes water vapor. Water Bare soil Vegetated of the water molecules to a solid surface (e.g., soil or glass). #12;A simple soil-water-balance equation

  18. Simulation of natural corrosion by vapor hydration test: seven-year results

    SciTech Connect (OSTI)

    Luo, J.S.; Ebert, W.L.; Mazer, J.J.; Bates, J.K.

    1996-12-31T23:59:59.000Z

    We have investigated the alteration behavior of synthetic basalt and SRL 165 borosilicate waste glasses that had been reacted in water vapor at 70 {degrees}C for time periods up to seven years. The nature and extent of corrosion of glasses have been determined by characterizing the reacted glass surface with optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDS). Alteration in 70 {degrees}C laboratory tests was compared to that which occurs at 150-200 {degrees}C and also with Hawaiian basaltic glasses of 480 to 750 year old subaerially altered in nature. Synthetic basalt and waste glasses, both containing about 50 percent wt SiO{sub 2} were found to react with water vapor to form an amorphous hydrated gel that contained small amounts of clay, nearly identical to palagonite layers formed on naturally altered basaltic glass. This result implies that the corrosion reaction in nature can be simulated with a vapor hydration test. These tests also provide a means for measuring the corrosion kinetics, which are difficult to determine by studying natural samples because alteration layers have often spelled off the samples and we have only limited knowledge of the conditions under which alteration occurred.

  19. Method and apparatus for concentrating vapors for analysis

    DOE Patents [OSTI]

    Grate, Jay W. (West Richland, WA); Baldwin, David L. (Kennewick, WA); Anheier, Jr., Norman C. (Richland, WA)

    2012-06-05T23:59:59.000Z

    A pre-concentration device and a method are disclosed for concentrating gaseous vapors for analysis. Vapors sorbed and concentrated within the bed of the pre-concentration device are thermally desorbed, achieving at least partial separation of the vapor mixtures. The pre-concentration device is suitable, e.g., for pre-concentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable.

  20. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Wylie, Allan H. (Idaho Falls, ID)

    1996-01-01T23:59:59.000Z

    A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

  1. Storing images in warm atomic vapor

    E-Print Network [OSTI]

    M. Shuker; O. Firstenberg; R. Pugatch; A. Ron; N. Davidson

    2008-06-17T23:59:59.000Z

    Reversible and coherent storage of light in atomic medium is a key-stone of future quantum information applications. In this work, arbitrary two-dimensional images are slowed and stored in warm atomic vapor for up to 30 $\\mu$s, utilizing electromagnetically induced transparency. Both the intensity and the phase patterns of the optical field are maintained. The main limitation on the storage resolution and duration is found to be the diffusion of atoms. A techniqueanalogous to phase-shift lithography is employed to diminish the effect of diffusion on the visibility of the reconstructed image.

  2. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, J.M.; Wylie, A.H.

    1996-01-09T23:59:59.000Z

    A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

  3. Mercury Vapor (Kooten, 1987) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonald isMelletteEnclosed andEnergySolar SystemsVapor

  4. Review of enhanced vapor diffusion in porous media

    SciTech Connect (OSTI)

    Webb, S.W.; Ho, C.K.

    1998-08-01T23:59:59.000Z

    Vapor diffusion in porous media in the presence of its own liquid has often been treated similar to gas diffusion. The gas diffusion rate in porous media is much lower than in free space due to the presence of the porous medium and any liquid present. However, enhanced vapor diffusion has also been postulated such that the diffusion rate may approach free-space values. Existing data and models for enhanced vapor diffusion, including those in TOUGH2, are reviewed in this paper.

  5. Recovery of benzene in an organic vapor monitor

    E-Print Network [OSTI]

    Krenek, Gregory Joel

    1980-01-01T23:59:59.000Z

    solid adsorbents available (silica gel, activated alumina, etc. ), activated charcoal is most frequently utilized. Activated charcoal has retentivity for sorbed vapors several times that of silica gel and it displays a selectivity for organic vapors... (diffusion rate) of the vapor molecules to the sur- face of the adsorbent. The adsorption process determine how effective the adsorbent collects and holds the contam- inant on the surface of the activated charcoal. Recovery of the contaminant from...

  6. Vaporizer design criteria for ethanol fueled internal combustion engines

    E-Print Network [OSTI]

    Ariyaratne, Arachchi Rallage

    2012-06-07T23:59:59.000Z

    . Stout (Member) L r x ge Edwa d A. Hiler (Head of Department) May 1985 ABSTRACT Vaporizer Design Criteria For Ethanol Fueled Internal Combustion Engines. (May 1985) Arachchi Rallage Ariyaratne, B. S. , University of Sri Lanka Chairman... VAPORIZATION LENGTH WITH UNIFORM HEAT FLUX 8 POLYNOMIAL FUNCTIONS FOR EVALUATING PARAMETERS C VARIATION OF HEAT FLUX AND AVERAGE SURFACE TEMPARATURE D PROGRAM FOR PREDICTING VAPORIZATION LENGTH 73 75 78 80 VITA 87 LIST OF TABLES TABLE Page 1...

  7. Mercury Vapor At Lassen Volcanic National Park Area (Varekamp...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lassen Volcanic National Park Area (Varekamp & Buseck, 1983) Exploration...

  8. Speeding up solar disinfection : effects of hydrogen peroxide, temperature, and copper plus ascorbate on the photoinactivation of E. coli in Charles River water

    E-Print Network [OSTI]

    Fisher, Michael Benjamin, 1979-

    2004-01-01T23:59:59.000Z

    Sunlight efficiently disinfects drinking water in plastic bottles over two days, but simple additives may show promise for reducing this time to several hours. This study found that adding up to 500 [micro]M hydrogen ...

  9. Molecular Dynamics Simulations of the Nucleation of Water: Determining the Sticking Probability and Formation Energy of a Cluster

    E-Print Network [OSTI]

    Kyoko K. Tanaka; Akio Kawano; Hidekazu Tanaka

    2014-02-26T23:59:59.000Z

    We performed molecular dynamics (MD) simulations of the nucleation of water vapor in order to test nucleation theories. Simulations were performed for a wide range of supersaturation ratios (S = 3-25) and water temperatures (Tw=300-390K). We obtained the nucleation rates and the formation free energies of a subcritical cluster from the cluster size distribution. The classical nucleation theory (CNT) and the modified classical nucleation theory (MCNT) overestimate the nucleation rates in all cases. The semi-phenomenological (SP) model, which corrects the MCNT prediction using the second virial coefficient of a vapor, reproduces the formation free energy of a cluster with the size < 20 to within 10 % and the nucleation rate and cluster size distributions to within one order of magnitude. The sticking probability of the vapor molecules to the clusters was also determined from the growth rates of the clusters. The sticking probability rapidly increases with the supersaturation ratio S, which is similar to the Lennard-Jones system.

  10. Development of Nb{sub 3}Sn Cavity Vapor Diffusion Deposition System

    SciTech Connect (OSTI)

    Eremeev, Grigory V.; Macha, Kurt M.; Clemens, William A.; Park, HyeKyoung; Williams, R. Scott

    2014-02-01T23:59:59.000Z

    Nb{sub 3}Sn is a BCS superconductors with the superconducting critical temperature higher than that of niobium, so theoretically it surpasses the limitations of niobium in RF fields. The feasibility of technology has been demonstrated at 1.5 GHz with Nb{sub 3}Sn vapor deposition technique at Wuppertal University. The benefit at these frequencies is more pronounced at 4.2 K, where Nb{sub 3}Sn coated cavities show RF resistances an order of magnitude lower than that of niobium. At Jefferson Lab we started the development of Nb{sub 3}Sn vapor diffusion deposition system within an R\\&D development program towards compact light sources. Here we present the current progress of the system development.

  11. Vaporization studies of plasma interactive materials in simulated plasma disruption events

    SciTech Connect (OSTI)

    Stone, C.A. IV; Croessmann, C.D.; Whitley, J.B.

    1988-03-01T23:59:59.000Z

    The melting and vaporization that occur when plasma facing materials are subjected to a plasma disruption will severely limit component lifetime and plasma performance. A series of high heat flux experiments was performed on a group of fusion reactor candidate materials to model material erosion which occurs during plasma disruption events. The Electron Beam Test System was used to simulate single disruption and multiple disruption phenomena. Samples of aluminum, nickel, copper, molybdenum, and 304 stainless steel were subjected to a variety of heat loads, ranging from 100 to 400 msec pulses of 8 to 18 kWcm/sup 2/. It was found that the initial surface temperature of a material strongly influences the vaporization process and that multiple disruptions do not scale linearly with respect to single disruption events. 2 refs., 9 figs., 5 tabs.

  12. Global Climate Modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds

    E-Print Network [OSTI]

    Navarro, Thomas; Forget, François; Spiga, Aymeric; Millour, Ehouarn; Montmessin, Franck

    2013-01-01T23:59:59.000Z

    Radiative effects of water ice clouds have noteworthy consequences on the Martian atmosphere, its thermal structure and circulation. Accordingly, the inclusion of such effects in the LMD Mars Global Climate Model (GCM) greatly modifies the simulated Martian water cycle. The intent of this paper is to address the impact of radiatively active clouds on atmospheric water vapor and ice in the GCM and improve its representation. We propose a new enhanced modeling of the water cycle, consisting of detailed cloud microphysics with dynamic condensation nuclei and a better implementation of perennial surface water ice. This physical modeling is based on tunable parameters. This new version of the GCM is compared to the Thermal Emission Spectrometer observations of the water cycle. Satisfying results are reached for both vapor and cloud opacities. However, simulations yield a lack of water vapor in the tropics after Ls=180{\\deg} which is persistent in simulations compared to observations, as a consequence of aphelion c...

  13. Field application of an interpretation method of downhole temperature and pressure data for detecting water entry in horizontal/highly inclined gas wells

    E-Print Network [OSTI]

    Achinivu, Ochi I.

    2009-05-15T23:59:59.000Z

    condition change, wellbore structure change, geothermal environment change, or simple just noise of measurement. To separate flow condition change from the other causes of temperature change, we require a comprehensive understanding of flow dynamics. 5.... The interpretation model for downhole temperature and pressure data is a coupled thermal wellbore/reservoir flow model. The model is built on fundamental flow and energy conservation equations for both the reservoir and wellbore. These equations are: Mass balance...

  14. Water, Sun, Energy | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition3 Water Vapor ExperimentIrrigatingWater,

  15. The control of confined vapor phase explosions

    SciTech Connect (OSTI)

    Scilly, N.F. [Laporte plc, Widnes (United Kingdom); Owen, O.J.R. [Fine Organics, Ltd., Middlesborough (United Kingdom); Wilberforce, J.K. [Solvay SA, Brussels (Belgium)

    1995-12-31T23:59:59.000Z

    The probability of, for example, a fire or explosion occurring during a process operation is related both to the fire-related properties of the materials used, such as flash point, flammable limits etc., i.e. the material or intrinsic factors, and the nature of the operation and the equipment used, i.e. the extrinsic factors. The risk, or frequency of occurrence, of other hazards such as reaction runaway, major toxic release etc. can be determined in a similar manner. For a vapor phase explosion (and a fire) the probability of the event is the product of the probability of generating a flammable atmosphere and the probability of ignition. Firstly, materials may be coded using properties that are relevant to the hazard in question. Secondly, different operations have different degrees of risk and these risks are assigned as Low, Medium, High etc. according to criteria outlined here. Combination of these two factors will then be a measure of the overall risk of the operation with the specified material and may be used to define operating standards. Currently, the hazard/risk of a vapor phase explosions is examined by this method but in due course dust explosions, fires, condensed phase explosions, reaction runaways, physical explosions, major toxic releases and incompatibility will be included.

  16. Vapor and gas sampling of Single-Shell Tank 241-T-111 using the vapor sampling system

    SciTech Connect (OSTI)

    Caprio, G.S.

    1995-09-01T23:59:59.000Z

    This document presents sampling data resulting from the January 20, 1995, sampling of SST 241-T-111 using the vapor sampling system.

  17. Vapor and gas sampling of single-shell tank 241-BY-112 using the vapor sampling system

    SciTech Connect (OSTI)

    Caprio, G.S.

    1995-09-20T23:59:59.000Z

    This document presents sampling data from the November 18, 1994, sampling of SST 241-BY-112 using the vapor sampling system.

  18. Vapor and gas sampling of Single-Shell Tank 241-A-101 using the Vapor Sampling System

    SciTech Connect (OSTI)

    Caprio, G.S.

    1995-11-01T23:59:59.000Z

    This document presents sampling data resulting from the June 8, 1995, sampling of SST 241-A-101 using the Vapor Sampling System.

  19. Dynamic characteristics of gas-water interfacial plasma under water

    SciTech Connect (OSTI)

    Zheng, S. J.; Zhang, Y. C.; Ke, B.; Ding, F.; Tang, Z. L.; Yang, K.; Zhu, X. D. [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2012-06-15T23:59:59.000Z

    Gas-water interfacial plasmas under water were generated in a compact space in a tube with a sandglass-like structure, where two metal wires were employed as electrodes with an applied 35 kHz ac power source. The dynamic behaviors of voltage/current were investigated for the powered electrode with/without water cover to understand the effect of the gas-water interface. It is found that the discharge exhibits periodic pulsed currents after breakdown as the powered electrode is covered with water, whereas the electrical current reveals a damped oscillation with time with a frequency about 10{sup 6} Hz as the powered electrode is in a vapor bubble. By increasing water conductivity, a discharge current waveform transition from pulse to oscillation presents in the water covering case. These suggest that the gas-water interface has a significant influence on the discharge property.

  20. RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR

    E-Print Network [OSTI]

    Cronin, Alex D.

    RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR By SCOTT RUSSELL WAITUKAITIS A Thesis Submitted: #12;Abstract I describe a study of Faraday rotation in a hot lithium vapor. I begin by dis- cussing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 The Lithium Oven and Solenoid . . . . . . . . . . . . . . . . . 7 3 Theoretical Framework