National Library of Energy BETA

Sample records for temperature superconducting hts

  1. Silver-bearing, high-temperature, superconducting (HTS) paint

    SciTech Connect (OSTI)

    Ferrando, W.A.

    1990-02-15

    A substantial set of device applications awaits development of a workable, durable, high-temperature superconducting (HTS) paint. Such a paint should be truly superconducting with its critical temperature T sub c>77K. For most of these applications, a high critical current (J sub c) is not required, although probably desirable. A process is described which can be used to produce silver-bearing HTS paint coatings on many engineering materials. Preliminary tests have shown good adherence to several ceramics and the ability to meet the superconducting criteria. Moreover, the coatings withstand multiple thermal cycling and stability under laboratory ambient storage conditions for periods of at least several months.

  2. Project Fact Sheet Columbus HTS Power Cable Superconductivity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Columbus HTS Power Cable Superconductivity Partnerships with Industry www.oe.energy.gov Phone: 202 \ 586-1411 Office of Electricity Delivery and Energy Reliability, OE-1 U.S. Department of Energy - 1000 Independence Avenue, SW - Washington, DC 20585 Plugging America Into the Future of Power This project involves field-testing of a long-length high-temperature superconducting (HTS) cable under real environmental stresses and real electrical loads. The cable system forms an important electrical

  3. High Temperature Superconducting Underground Cable

    SciTech Connect (OSTI)

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  4. Project Fact Sheet Long Island HTS Power Cable Superconducting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long Island HTS Power Cable Superconducting Power Equipment www.oe.energy.gov Phone: 202-586-1411 Office of Electricity Delivery and Energy Reliability, OE-1 U.S. Department of Energy - 1000 Independence Avenue, SW - Washington, DC 20585 Plugging America Into the Future of Power What is the status of the Project? The cable was energized April 22, 2008 and serves the equivalent of 300,000 homes. It is the first HTS power cable to operate at transmission voltage in the grid. LIPA plans to retain

  5. Albany HTS Power Cable | Department of Energy

    Office of Environmental Management (EM)

    Albany HTS Power Cable Albany HTS Power Cable This project involves the development and demonstration of a high-temperature superconducting (HTS) cable in the power grid in Albany, ...

  6. Columbus HTS Power Cable | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Columbus HTS Power Cable Columbus HTS Power Cable This project involves field-testing of a long-length high-temperature superconducting (HTS) cable under real environmental stresses and real electrical loads. The cable system forms an important electrical link in a utility substation in Columbus, Ohio. Columbus HTS Power Cable (349.01 KB) More Documents & Publications HTS Cable Projects High-Temperature Superconductivity Cable Demonstration Projects Albany HTS Power Cable

  7. Long Island HTS Power Cable | Department of Energy

    Office of Environmental Management (EM)

    Long Island HTS Power Cable This project involves the demonstration of a hightemperature ... HTS Cable Projects High-Temperature Superconductivity Cable Demonstration Projects ...

  8. Reflective HTS switch

    DOE Patents [OSTI]

    Martens, J.S.; Hietala, V.M.; Hohenwarter, G.K.G.

    1994-09-27

    A HTS (High Temperature Superconductor) switch includes a HTS conductor for providing a superconducting path for an electrical signal and an serpentine wire actuator for controllably heating a portion of the conductor sufficiently to cause that portion to have normal, and not superconducting, resistivity. Mass of the portion is reduced to decrease switching time. 6 figs.

  9. Superconductivity Program Overview High-Temperature Superconductivity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SuperconducTiviTy program haS Three FocuS areaS: SuperconducTiviTy applicaTionS Developing HTS-based electric power equipment such as transmission and distribution cables and fault current limiters Second-generaTion Wire developmenT Developing high-performance, low-cost, second- generation HTS wire at long lengths STraTegic reSearch Supporting fundamental research activities to better understand relationships between the microstructure of HTS materials and their ability to carry large electric

  10. High-temperature superconducting current leads

    SciTech Connect (OSTI)

    Niemann, R.C.

    1995-03-01

    Use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature can reduce refrigeration requirements to values significantly below those achievable with conventional leads. HTS leads are now near commercial realization. Argonne National Laboratory (ANL) has developed a sinter-forge process to fabricate current leads from bismuth-based superconductors. The current-carrying capacity of these leads is five times better than that of HTS leads made by a conventional fabrication process. ANL along with Superconductivity, Inc., has developed a 1500 ampere current lead for an existing superconducting magnetic energy storage (SMES) device. With Babcock & Wilcox Company, Argonne is creating 16-kiloampere leads for use in a 0.5 MWh SMES. In a third project Argonne performed characterization testing of a existing, proprietary conduction-cooled lead being developed by Zer Res Corp.

  11. Cryogenic System for a High Temperature Superconducting Power Transmission Cable

    SciTech Connect (OSTI)

    Demko, J.A.; Gouge, M.J.; Hughey, R.L.; Lue, J.W.; Martin, R.; Sinha, U.; Stovall, J.P.

    1999-07-12

    High-temperature superconducting (HTS) cable systems for power transmission are under development that will use pressurized liquid nitrogen to provide cooling of the cable and termination hardware. Southwire Company and Oak Ridge National Laboratory have been operating a prototype HTS cable system that contains many of the typical components needed for a commercial power transmission application. It is being used to conduct research in the development of components and systems for eventual commercial deployment. The cryogenic system was built by Air Products and Chemicals, Allentown, Pennsylvania, and can circulate up to 0.35 kg/s of liquid nitrogen at temperatures as low as 67 K at pressures of 1 to 10 bars. Sufficient cooling is provided for testing a 5-m-long HTS transmission cable system that includes the terminations required for room temperature electrical connections. Testing of the 5-m HTS transmission cable has been conducted at the design ac conditions of 1250 A and 7.5 kV line to ground. This paper contains a description of the essential features of the HTS cable cryogenic system and performance results obtained during operation of the system. The salient features of the operation that are important in large commercial HTS cable applications will be discussed.

  12. High temperature interfacial superconductivity

    DOE Patents [OSTI]

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  13. High Temperature Superconductivity Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Superconductivity Partners Map showing DOE's partnersstakeholders in the ... More Documents & Publications DOE Superconductivity Program Stakeholders DOE Provides up ...

  14. High-Temperature Superconductivity Cable Demonstration Projects...

    Energy Savers [EERE]

    High-Temperature Superconductivity Cable Demonstration Projects High-Temperature Superconductivity Cable Demonstration Projects A National Effort to Introduce New Technology into ...

  15. Reflective HTS switch

    DOE Patents [OSTI]

    Martens, Jon S.; Hietala, Vincent M.; Hohenwarter, Gert K. G.

    1994-01-01

    A HTS switch includes a HTS conductor for providing a superconducting path for an electrical signal and an serpentine wire actuator for controllably heating a portion of the conductor sufficiently to cause that portion to have normal, and not superconducting, resistivity. Mass of the portion is reduced to decrease switching time.

  16. Microwave properties of HTS (high temperature superconductor) films

    SciTech Connect (OSTI)

    Cooke, D.W.; Arendt, P.N.; Gray, E.R.; Muenchausen, R.E.; Bennett, B.L.; Foltyn, S.R.; Estler, R.C.; Wu, X.D.; Reeves, G.A.; Elliott, N.E.; Brown, D.R. ); Portis, A.M. ); Taber, R.C. . Labs.); Mogro-Campero, A. . Corporate Research and Development Ce

    1990-01-01

    High-frequency applications of high-temperature superconductors generally fall into two categories: devices that require low values of surface resistance R{sub s} in ambient surface magnetic fields H{sub rf}, and devices that require low R{sub s} in modest fields. Moreover, many applications can be realized with small-surface-area films whereas others require larger areas-radiofrequency (rf) cavities, for example. Regardless of the application, the potential of HTS films is predicated on satisfying one or both of the above-stated requirements. We have measured the surface resistance of small-area (1 cm{sup 2}) and large-area (6.5 cm{sup 2}) YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) films that have been laser ablated onto LaA{ell}O{sub 3} substrates, large-area (5.1 cm{sup 2}) YBCO films that have been e-beam deposited onto LaA{ell}O{sub 3}, and large-area (11.4 cm{sup 2}) T{ell}-based films that have been magnetron sputtered onto metallic substrates. The best R{sub s} values are obtained from the 1-cm{sup 2} laser-ablated films; they are 40 {mu}{Omega} and 340 {mu}{Omega} at 4 K and 77 K, respectively ({omega}/2{pi} = 10 GHz). Comparable values for Cu are 6 and 13 m{Omega}, respectively. Large-area T{ell}-based films yield typical R{sub s} values of 4 m{Omega} and 14 m{Omega} at 4 K and 77 K, respectively ({omega}/2{pi} = 18 GHz). The dependence of R{sub s} on H{sub rf} for these films indicates that surface fields as large as 55 Oe can be achieved with R{sub s} increasing only by a factor of 10. This field dependence is associated with c-axis texturing.

  17. High temperature interface superconductivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  18. OSTIblog Articles in the HTS Topic | OSTI, US Dept of Energy Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information HTS Topic Solving the mystery of superconductivity by Kathy Chambers 17 Oct, 2013 in Products and Content 9539 yongchu.jpg Solving the mystery of superconductivity Read more about 9539 At the legendary 1987 American Physical Society conference, sometimes called the "Woodstock of physics", thousands of physicists descended upon a New York Hilton ballroom to hear about the discovery of high-temperature superconductivity (HTS) in ceramic materials.

  19. Superconductivity for Electric Systems: 2008 Annual Peer Review Final

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy Superconductivity for Electric Systems: 2008 Annual Peer Review Final Report Superconductivity for Electric Systems: 2008 Annual Peer Review Final Report The Office of Electricity Delivery and Energy Reliability's High Temperature Superconductivity (HTS) for Electric Systems Program's specific mission is to work in partnership with industry to develop HTS wire and perform other research and development activities leading to the commercialization of HTS-based

  20. High-Temperature Superconductivity

    ScienceCinema (OSTI)

    Peter Johnson

    2010-01-08

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  1. High-temperature superconductivity: A conventional conundrum...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: High-temperature superconductivity: A conventional conundrum Citation ... OSTI Identifier: 1245373 Report Number(s): BNL--111729-2016-JA Journal ID: ISSN 1745-2473; ...

  2. Design, Construction and Test of Cryogen-Free HTS Coil Structure

    SciTech Connect (OSTI)

    Hocker, H.; Anerella, M.; Gupta, R.; Plate, S.; Sampson, W.; Schmalzle, J.; Shiroyanagi, Y.

    2011-03-28

    This paper will describe design, construction and test results of a cryo-mechanical structure to study coils made with the second generation High Temperature Superconductor (HTS) for the Facility for Rare Isotope Beams (FRIB). A magnet comprised of HTS coils mounted in a vacuum vessel and conduction-cooled with Gifford-McMahon cycle cryocoolers is used to develop and refine design and construction techniques. The study of these techniques and their effect on operations provides a better understanding of the use of cryogen free magnets in future accelerator projects. A cryogen-free, superconducting HTS magnet possesses certain operational advantages over cryogenically cooled, low temperature superconducting magnets.

  3. Method and apparatus for measuring gravitational acceleration utilizing a high temperature superconducting bearing

    DOE Patents [OSTI]

    Hull, John R.

    2000-01-01

    Gravitational acceleration is measured in all spatial dimensions with improved sensitivity by utilizing a high temperature superconducting (HTS) gravimeter. The HTS gravimeter is comprised of a permanent magnet suspended in a spaced relationship from a high temperature superconductor, and a cantilever having a mass at its free end is connected to the permanent magnet at its fixed end. The permanent magnet and superconductor combine to form a bearing platform with extremely low frictional losses, and the rotational displacement of the mass is measured to determine gravitational acceleration. Employing a high temperature superconductor component has the significant advantage of having an operating temperature at or below 77K, whereby cooling may be accomplished with liquid nitrogen.

  4. High Temperature Superconducting Thick Films

    DOE Patents [OSTI]

    Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Holesinger, Terry G.; Jia, Quanxi

    2005-08-23

    An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, (generally the inert oxide material layer has a smooth surface, i.e., a RMS roughness of less than about 2 nm), a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer is provided together with additional layers such as at least one layer of a buffer material upon the oriented cubic oxide material layer or a HTS top-layer of YBCO directly upon the oriented cubic oxide material layer. With a HTS top-layer of YBCO upon at least one layer of a buffer material in such an article, Jc's of 1.4×106 A/cm2 have been demonstrated with projected Ic's of 210 Amperes across a sample 1 cm wide.

  5. High Temperature Superconducting Thick Films

    DOE Patents [OSTI]

    Arendt, Paul N. (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM); Groves, James R. (Los Alamos, NM); Holesinger, Terry G. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

    2005-08-23

    An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, (generally the inert oxide material layer has a smooth surface, i.e., a RMS roughness of less than about 2 nm), a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer is provided together with additional layers such as at least one layer of a buffer material upon the oriented cubic oxide material layer or a HTS top-layer of YBCO directly upon the oriented cubic oxide material layer. With a HTS top-layer of YBCO upon at least one layer of a buffer material in such an article, Jc's of 1.4106 A/cm2 have been demonstrated with projected Ic's of 210 Amperes across a sample 1 cm wide.

  6. R&D ERL: HTS Solenoid

    SciTech Connect (OSTI)

    Gupta, R.; Muratore, J.; Plate, S.

    2010-01-01

    An innovative feature of the ERL project is the use of a solenoid made with High Temperature Superconductor (HTS) with the Superconducting RF cavity. The HTS solenoid design offers many advantages because of several unique design features. Typically the solenoid is placed outside the cryostat which means that the beam gets significantly defused before a focusing element starts. In the current design, the solenoid is placed inside the cryostat which provides an early focusing structure and thus a significant reduction in the emittance of the electron beam. In addition, taking full advantage of the high critical temperature of HTS, the solenoid has been designed to reach the required field at {approx}77 K, which can be obtained with liquid nitrogen. This significantly reduces the cost of testing and allows a variety of critical pre-tests which would have been prohibitively expensive at 4 K in liquid helium because of the additional requirements of cryostat and associated facilities.

  7. A potential Rosetta Stone of high temperature superconductivity...

    Office of Science (SC) Website

    for the high temperature superconductivity. Summary Superconductivity enables the flow of electricity without any loss of energy, but this extremely-low temperature...

  8. Superconductivity Program Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Superconductivity Program Overview Superconductivity Program Overview High-Temperature Superconductivity (HTS) has the potential for achieving a more fundamental change to electric power technologies than has occurred since the use of electricity became widespread nearly a century ago. Superconductivity Program Overview (3.2 MB) More Documents & Publications Fault Current Limiters (FCL) Fact Sheet High-Temperature Superconductivity Cable Demonstration Projects U.S. Department of Energy and

  9. Design Construction and Test Results of a HTS Solenoid For Energy Recovery Linac

    SciTech Connect (OSTI)

    Anerella, M; Ben-Zvi, I; Kayran, D; McIntyre, G; Muratore, J; Plate, S; Sampson, W; Cole, M; Holmes, D

    2011-03-28

    An innovative feature of the proposed Energy Recovery Linac (ERL) is the use of a solenoid made with High Temperature Superconductor (HTS) with the Superconducting RF cavity. The use of HTS allows solenoid to be placed in close proximity to the cavity and thus provides early focusing of the electron beam. In addition, cryogenic testing at {approx}77 K is simpler and cheaper than 4 K testing. This paper will present the design, construction and test results of this HTS solenoid. The HTS solenoid in the proposed ERL will be situated in the transition region between the superconducting cavity at {approx}4 K and the cryostat at the room temperature. Solenoid inside the cryogenic structure provides an early focusing and hence low emittance beam. The temperature in the transition region will be too high for a conventional low temperature superconductor and resistive heat load from copper coils will be too high on cryogenic system. HTS coils also allow much higher current density and significant reduction in size as compared to copper coils. Hence HTS solenoid provide a unique and technically superior solution. The use of a HTS solenoid with superconducting cavity offers a unique option as it can be placed in a cold to warm transition region to provide early focussing without using additional space. Construction and test results so far are very encouraging for its use in the ERL project.

  10. High-temperature superconductivity: A conventional conundrum

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Božović, Ivan

    2016-01-07

    High-temperature superconductivity in ultrathin films of iron selenide deposited on strontium titanate has been attributed to various exotic mechanisms, and new experiments indicate that it may be conventional, with broader implications.

  11. High Temperature Interfacial Superconductivity - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Temperature Interfacial Superconductivity Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication High-temperature interface superconductivity between metallic and insulating copper oxides (791 KB) <p> (a) Annular dark field image of the structure showing extended defects in the metal layer (marked by white arrows). The black arrow shows the metal-insulator interface (b) A magnified image of one defect which nucleated at the

  12. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  13. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  14. The Effect of Magnetic Field on HTS Leads What Happens when thePower Fails at RAL?

    SciTech Connect (OSTI)

    Green, Michael A.

    2007-02-14

    The key to being able to operate the MICE superconducting solenoids on small coolers is the use of high temperature superconducting (HTS) leads between the first stage of the cooler and the magnet, which operates at around 4.2 K. Because MICE magnets are not shielded, all of the MICE magnets have a stray magnetic field in the region where the coolers and the HTS leads are located. The behavior of the HTS leads in a magnetic field depends strongly on the HTS material used for the leads and the temperature of the cooler first stage temperature. The HTS leads can be specified to operate at the maximum current for the magnet. This report shows how the HTS leads can be specified for use the MICE magnets. MICE magnets take from 1.3 hours (the tracker solenoids) to 3.7 hours (the coupling magnet) to charge to the highest projected operating currents. If the power fails, the cooler and the upper ends of the HTS leads warm up. The question is how one can discharge the magnet to protect the HTS leads without quenching the MICE magnets. This report describes a method that one can use to protect the HTS leads in the event of a power failure at the Rutherford Appleton Laboratory (RAL).

  15. HTS Wire Development Workshop: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The 1994 High-Temperature Superconducting Wire Development Workshop was held on February 16--17 at the St. Petersburg Hilton and Towers in St. Petersburg, Florida. The meeting was hosted by Florida Power Corporation and sponsored by the US Department of Energy`s Superconductivity Program for Electric Power Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. The meeting opened with a general discussion on the needs and benefits of superconductivity from a utility perspective, the US global competitiveness position, and an outlook on the overall prospects of wire development. The meeting then focused on four important technology areas: Wire characterization: issues and needs; technology for overcoming barriers: weak links and flux pinning; manufacturing issues for long wire lengths; and physical properties of HTS coils. Following in-depth presentations, working groups were formed in each technology area to discuss the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  16. Superconducting transition temperature in anodized aluminum

    SciTech Connect (OSTI)

    Leemann, C.; Elliott, J.H.; Deutscher, G.; Orbach, R.; Wolf, S.A.

    1983-08-01

    We have measured the superconducting transition temperature of anodized aluminum films of grain sizes ranging from less than 100 to 3000 A. The transition temperature is 1.8 K for films of grain size 100 A and decreases monotonically with increasing grain size to 1.2 K for 3000-A grains. The effect depends only on the volume of the grains.

  17. High temperature interfacial superconductivity (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Patent: High temperature interfacial superconductivity Citation Details In-Document Search Title: High temperature interfacial superconductivity High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting

  18. The creation of high-temperature superconducting cables of megawatt range in Russia

    SciTech Connect (OSTI)

    Sytnikov, V. E. Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.

    2015-12-15

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  19. HTS thin films: Passive microwave components and systems integration issues

    SciTech Connect (OSTI)

    Miranda, F.A.; Chorey, C.M.; Bhasin, K.B.

    1994-12-31

    The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and space-based systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustrate many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory`s High Temperature Superconductivity Space Experiment II (HTSSE-II). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects.

  20. Review of activities in USA on HTS materials

    SciTech Connect (OSTI)

    Peterson, D.E.

    1995-02-01

    Rapid progress in attaining practical applications of High Temperature Superconductors (HTS) has been made since the discovery of these new materials. Many critical parameters influencing HTS powder synthesis and wire processing have been identified through a combination of fundamental exploration and applied research. The complexity of these novel materials with regard to phase behavior and physical properties has become evident as a result of these careful studies. Achieving optimal mechanical and superconducting properties in wires and tapes will require further understanding and synergy among several different technical disciplines. Highlights of efforts towards producing practical superconductors for electric power applications based on rare earth-, bismuth-, and thallium-based systems are reviewed.

  1. Thermal management of long-length HTS cable systems

    SciTech Connect (OSTI)

    Demko, Jonathan A; Hassenzahl, William V

    2011-01-01

    Projections of electric power production suggest a major shift to renewables, such as wind and solar, which will be in remote locations where massive quantities of power are available. One solution for transmitting this power over long distances to load centers is direct current (dc), high temperature superconducting (HTS) cables. Electric transmission via dc cables promises to be effective because of the low-loss, highcurrent- carrying capability of HTS wire at cryogenic temperatures. However, the thermal management system for the cable must be carefully designed to achieve reliable and energyefficient operation. Here we extend the analysis of a superconducting dc cable concept proposed by the Electric Power Research Institute (EPRI), which has one stream of liquid nitrogen flowing in a cryogenic enclosure that includes the power cable, and a separate return tube for the nitrogen. Refrigeration stations positioned every 10 to 20 km cool both nitrogen streams. Both go and return lines are contained in a single vacuum/cryogenic envelope. Other coolants, including gaseous helium and gaseous hydrogen, could provide potential advantages, though they bring some technical challenges to the operation of long-length HTS dc cable systems. A discussion of the heat produced in superconducting cables and a system to remove the heat are discussed. Also, an analysis of the use of various cryogenic fluids in long-distance HTS power cables is presented.

  2. Pseudogap and Superconducting Gap in High-Temperature Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pseudogap and Superconducting Gap in High-Temperature Superconductors Two decades after the discovery of first high temperature superconductors, the microscopic mechanism of high-Tc superconductivity remains elusive. In conventional superconductors, it has been well established that electrons form so-called "Cooper pairs" to give rise to superconductivity. The pair binding manifests itself as an energy gap in many spectroscopic measurements. This energy gap, known as superconducting

  3. High-Temperature Superconducting Composite Conductors

    DOE Patents [OSTI]

    Holesinger, Terry G.; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.; Jia, Quanxi; Ayala, Alicia

    2005-01-18

    Copper or excess copper is added to one or more layers of a superconducting composite structure to reduce migration of copper form a copper based superconducting layer.

  4. Purple Path toward High Temperature Superconductivity? | The Ames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Purple Path toward High Temperature Superconductivity? Discovery of an unconventional charge density wave (CDW) in purple bronze, a molybdenum oxide, points to a possible new pathway to high temperature superconductivity. A CDW is a state of matter where electrons bunch together periodically, like a standing wave of light or water. CDWs and superconductivity are frenemies, since they share a common origin and often coexist, yet compete for dominance. Conventional CDWs and

  5. Enhanced Superconducting Gaps in Trilayer High-Temperature Bi...

    Office of Scientific and Technical Information (OSTI)

    ...-Temperature Bi (2) Sr (2) Ca (2) Cu (3) O (10+delta) Cuprate Superconductor Citation Details In-Document Search Title: Enhanced Superconducting Gaps in Trilayer High-Temperature ...

  6. Cryogenic deformation of high temperature superconductive composite structures

    DOE Patents [OSTI]

    Roberts, Peter R.; Michels, William; Bingert, John F.

    2001-01-01

    An improvement in a process of preparing a composite high temperature oxide superconductive wire is provided and involves conducting at least one cross-sectional reduction step in the processing preparation of the wire at sub-ambient temperatures.

  7. Characterization of a high-temperature superconducting conductor on round core cables in magnetic fields up to 20 T

    SciTech Connect (OSTI)

    van der Laan, D. C.; Noyes, P. D.; Miller, G. E.; Weijers, H. W.; Willering, G. P.

    2013-02-13

    The next generation of high-ï¬eld magnets that will operate at magnetic ï¬elds substantially above 20 T, or at temperatures substantially above 4.2 K, requires high-temperature superconductors (HTS). Conductor on round core (CORC) cables, in which RE-Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} (RE = rare earth) (REBCO) coated conductors are wound in a helical fashion on a flexible core, are a practical and versatile HTS cable option for low-inductance, high-field magnets. We performed the first tests of CORC magnet cables in liquid helium in magnetic fields of up to 20 T. A record critical current I{sub c} of 5021 A was measured at 4.2 K and 19 T. In a cable with an outer diameter of 7.5 mm, this value corresponds to an engineering current density J{sub e} of 114 A mm{sup -2} , the highest J{sub e} ever reported for a superconducting cable at such high magnetic fields. Additionally, the first magnet wound from an HTS cable was constructed from a 6 m-long CORC cable. The 12-turn, double-layer magnet had an inner diameter of 9 cm and was tested in a magnetic field of 20 T, at which it had an I{sub c} of 1966 A. The cables were quenched repetitively without degradation during the measurements, demonstrating the feasibility of HTS CORC cables for use in high-field magnet applications.

  8. Power applications of high-temperature superconductivity: Variable speed motors, current switches, and energy storage for end use

    SciTech Connect (OSTI)

    Hawsey, R.A. [Oak Ridge National Lab., TN (United States); Banerjee, B.B.; Grant, P.M. [Electric Power Research Inst., Palo Alto, CA (United States)

    1996-08-01

    The objective of this project is to conduct joint research and development activities related to certain electric power applications of high-temperature superconductivity (HTS). The new superconductors may allow development of an energy-efficient switch to control current to variable speed motors, superconducting magnetic energy storage (SMES) systems, and other power conversion equipment. Motor types that were considered include induction, permanent magnet, and superconducting ac motors. Because it is impractical to experimentally alter certain key design elements in radial-gap motors, experiments were conducted on an axial field superconducting motor prototype using 4 NbTi magnets. Superconducting magnetic energy storage technology with 0.25--5 kWh stored energy was studied as a viable solution to short duration voltage sag problems on the customer side of the electric meter. The technical performance characteristics of the device wee assembled, along with competing technologies such as active power line conditioners with storage, battery-based uninterruptible power supplies, and supercapacitors, and the market potential for SMES was defined. Four reports were prepared summarizing the results of the project.

  9. High temperature interfacial superconductivity (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Patent: High temperature interfacial superconductivity Citation Details In-Document Search ... OSTI Identifier: 1055453 Report Number(s): 8,204,564 US patent applicaiton 12264,742 DOE ...

  10. Damping in high-temperature superconducting levitation systems

    DOE Patents [OSTI]

    Hull, John R.

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  11. Superconducting Cable Termination

    DOE Patents [OSTI]

    Sinha, Uday K. (Carrollton, GA); Tolbert, Jerry (Newnan, GA)

    2005-08-30

    Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to 72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.

  12. Superconducting Cable Termination

    DOE Patents [OSTI]

    Sinha, Uday K.; Tolbert, Jerry

    2005-08-30

    Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to ˜72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.

  13. High temperature superconducting composite conductor and method for manufacturing the same

    DOE Patents [OSTI]

    Holesinger, Terry G.; Bingert, John F.

    2002-01-01

    A high temperature superconducting composite conductor is provided including a high temperature superconducting material surrounded by a noble metal layer, the high temperature superconducting composite conductor characterized as having a fill factor of greater than about 40. Additionally, the conductor can be further characterized as containing multiple cores of high temperature superconducting material surrounded by a noble metal layer, said multiple cores characterized as having substantially uniform geometry in the cross-sectional dimensions. Processes of forming such a high temperature superconducting composite conductor are also provided.

  14. Study of HTS Insert Coils for High Field Solenoids

    SciTech Connect (OSTI)

    Lombardo, Vito; /Fermilab

    2009-09-01

    Fermilab is currently working on the development of high field magnet systems for ionization cooling of muon beams. The use of high temperature superconducting materials (HTS) is being considered for these solenoids using Helium refrigeration. Several studies have been performed on insert coils made of BSCCO-2223 tapes and second generation (2G) YBCO coated conductors, which are tested at various temperatures and at external fields of up to 14 T. Critical current (I{sub c}) measurements of YBCO short samples are presented as a function of bending stress, magnetic field and field orientation with respect to the sample surface. An analytical fit of critical current data as a function of field and field orientation is also presented. Results from several single-layer and double-layer pancake coils are also discussed.

  15. Temperature Mapping of Nitrogen-doped Niobium Superconducting Radiofrequency Cavities

    SciTech Connect (OSTI)

    Makita, Junki; Ciovati, Gianluigi; Dhakal, Pashupati

    2015-09-01

    It was recently shown that diffusing nitrogen on the inner surface of superconducting radiofrequency (SRF) cavities at high temperature can improve the quality factor of the niobium cavity. However, a reduction of the quench field is also typically found. To better understand the location of rf losses and quench, we used a thermometry system to map the temperature of the outer surface of ingot Nb cavities after nitrogen doping and electropolishing. Surface temperature of the cavities was recorded while increasing the rf power and also during the quenching. The results of thermal mapping showed no precursor heating on the cavities and quenching to be ignited near the equator where the surface magnetic field is maximum. Hot-spots at the equator area during multipacting were also detected by thermal mapping.

  16. (Neutron scattering studies of the high-temperature superconducting materials)

    SciTech Connect (OSTI)

    Mook, H.A. Jr.

    1991-01-04

    The traveler was given beam time at the ILL to continue neutron scattering work on high-temperature superconductivity. The unique facilities at the ILL for both high-energy and low-energy neutron instrumentation made the experiments possible. The measurements consisted of two basic types. The first of these is the study of the nature of spin fluctuations in high-{Tc} materials. This work is fundamental to the mechanism that is responsible for the high-transition temperatures. The second consisted of experiments on the flux lattice in high-temperature superconductors. The flux lattice has interesting physics in its own right and is important in understanding the current-carrying capability of superconductors.

  17. HTS Cable Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HTS Cable Projects HTS Cable Projects Fact sheet describing what is being done to modernize electricity transmission and distribution PDF icon HTS Cable Projects More Documents &...

  18. Characterization of high-current, high-temperature superconductor current lead elements

    SciTech Connect (OSTI)

    Niemann, R.C.; Evans, D.J.; Fisher, B.L.; Brockenborough, W.E.; Roberts, P.R.; Rodenbush, A.J.

    1996-08-01

    The refrigeration loads of current leads for superconducting magnets can be significantly reduced by using high-temperature superconductor (HTS) leads. An HTS conductor type that is well suited for this application is a laminated sintered stack of HTS powder-in-tube (PIT) tapes. The superconducting elements are normally characterized by their manufacturer by measuring critical currents at 77 K in self field. Additional characterization, which correlates electrical performance at 77 K and at lower temperatures with applied magnetic fields, provides the current lead designer and conductor element manufacturer with critical information. For HTS conductor elements comprising a laminated and sintered stack of Bi-2223 PIT tapes having an alloyed Ag sheath, this characterization uses variable applied fields and operating temperatures.

  19. High Temperature Superconducting Reciprocating Magnetic Separator Final Report

    SciTech Connect (OSTI)

    James F. Maguire

    2008-06-05

    In 2001, under DOE's Superconductivity Partnership Initiative (SPI), E. I. du Pont de Nemours & Co. (Dupont) was awarded a cost-share contract to build a fully functional full-scale model high temperature superconducting reciprocating magnet unit specifically designed for the koalin clay industry. After competitive bidding, American Superconductor (AMSC) was selected to provide the coil for the magnet. Dupont performed the statement of work until September 2004, when it stopped work, with the concurrence of DOE, due to lack of federal funds. DOE had paid all invoices to that point, and Dupont had provided all cost share. At this same time, Dupont determined that this program did not fit with its corporate strategies and notified DOE that it was not interesting in resuming the program when funding became available. AMSC expressed interest in assuming performance of the Agreement to Dupont and DOE, and in March 2005, this project was transferred to AMSC by DOE amendment to the original contract and Novation Agreement between AMSC and Dupont. Design drawings and some hardware components and subassemblies were transferred to AMSC. However, no funding was obligated by DOE and AMSC never performed work on the project. This report contains a summary of the work performed by Dupont up to the September 04 timeframe.

  20. HTS Magnets for Advanced Magnetoplasma Space Propulsion Applications

    SciTech Connect (OSTI)

    Carte, M.D.; Chang-Diaz, F.R. Squire, J.P.; Schwenterly, S.W.

    1999-07-12

    Plasma rockets are being considered for both Earth-orbit and interplanetary missions because their extremely high exhaust velocity and ability to modulate thrust allow very efficient use of propellant mass. In such rockets, a hydrogen or helium plasma is RF-heated and confined by axial magnetic fields produced by coils around the plasma chamber. HTS coils cooled by the propellant are desirable to increase the energy efficiency of the system. We describe a set of prototype high-temperature superconducting (HTS) coils that are being considered for the VASIMR ( Variable Specific Impulse Magnetoplasma Rocket) thruster proposed for testing on the Radiation Technology Demonstration (RTD) satellite. Since this satellite will be launched by the Space Shuttle, for safety reasons liquid helium will be used as propellant and coolant. The coils must be designed to operate in the space environment at field levels of 1 T. This generates a unique set of requirements. Details of the overall winding geometry and current density, as well as the challenging thermal control aspects associated with a compact, minimum weight design will be discussed.

  1. Shock-induced synthesis of high temperature superconducting materials

    DOE Patents [OSTI]

    Ginley, D.S.; Graham, R.A.; Morosin, B.; Venturini, E.L.

    1987-06-18

    It has now been determined that the unique features of the high pressure shock method, especially the shock-induced chemical synthesis technique, are fully applicable to high temperature superconducting materials. Extraordinarily high yields are achievable in accordance with this invention, e.g., generally in the range from about 20% to about 99%, often in the range from about 50% to about 90%, lower and higher yields, of course, also being possible. The method of this invention involves the application of a controlled high pressure shock compression pulse which can be produced in any conventional manner, e.g., by detonation of a high explosive material, the impact of a high speed projectile or the effect of intense pulsed radiation sources such as lasers or electron beams. Examples and a discussion are presented.

  2. The DARPA manufacturing initiative in high temperature superconductivity

    SciTech Connect (OSTI)

    Adams, K.R. )

    1989-01-01

    The Defense Advanced Research Projects Agency (DARPA) has a very aggressive Technology Base program in high temperature superconductivity. This program is expected to provide the basis for a specialized set of military products - passive microwave and millimeter wave devices - within the next three years. In order to get these high leverage products into military systems, a manufacturing base must be developed for HTSC components. A plan for DARPA in HTSC manufacturing is directly coupled with the ongoing DARPA materials and device oriented R and D program. In essence, this plan recommends a three phased effort: 1. Phase I (two years); Fund companies through R and D contracts for specialized HTSC components; prepare a detailed plan and develop an HTSC consortium. 2. Phase II (six years): Establish an HTSC Sematech initiative for electronic applications, including active devices. 3. Phase III (optional): Continue the HTSC Sematech with emphasis on high power applications.

  3. High voltage design structure for high temperature superconducting device

    DOE Patents [OSTI]

    Tekletsadik, Kasegn D.

    2008-05-20

    In accordance with the present invention, modular corona shields are employed in a HTS device to reduce the electric field surrounding the HTS device. In a exemplary embodiment a fault current limiter module in the insulation region of a cryogenic cooling system has at least one fault current limiter set which employs a first corona shield disposed along the top portion of the fault current limiter set and is electrically coupled to the fault current limiter set. A second corona shield is disposed along the bottom portion of the fault current limiter set and is electrically coupled to the fault current limiter set. An insulation barrier is disposed within the insulation region along at least one side of the fault current limiter set. The first corona shield and the second corona shield act together to reduce the electric field surrounding the fault limiter set when voltage is applied to the fault limiter set.

  4. Method and etchant to join ag-clad BSSCO superconducting tape

    DOE Patents [OSTI]

    Balachandran, Uthamalingam; Iyer, Anand N.; Huang, Jiann Yuan

    1999-01-01

    A method of removing a silver cladding from high temperature superconducting material clad in silver (HTS) is disclosed. The silver clad HTS is contacted with an aqueous solution of HNO.sub.3 followed by an aqueous solution of NH.sub.4 OH and H.sub.2 O.sub.2 for a time sufficient to remove the silver cladding from the superconducting material without adversely affecting the superconducting properties of the superconducting material. A portion of the silver cladding may be masked with a material chemically impervious to HNO.sub.3 and to a combination of NH.sub.4 OH and H.sub.2 O.sub.2 to preserve the Ag coating. A silver clad superconductor is disclosed, made in accordance with the method discussed.

  5. Method and etchant to join Ag-clad BSSCO superconducting tape

    DOE Patents [OSTI]

    Balachandran, U.; Iyer, A.N.; Huang, J.Y.

    1999-03-16

    A method of removing a silver cladding from high temperature superconducting material clad in silver (HTS) is disclosed. The silver clad HTS is contacted with an aqueous solution of HNO{sub 3} followed by an aqueous solution of NH{sub 4}OH and H{sub 2}O{sub 2} for a time sufficient to remove the silver cladding from the superconducting material without adversely affecting the superconducting properties of the superconducting material. A portion of the silver cladding may be masked with a material chemically impervious to HNO{sub 3} and to a combination of NH{sub 4}OH and H{sub 2}O{sub 2} to preserve the Ag coating. A silver clad superconductor is disclosed, made in accordance with the method discussed. 3 figs.

  6. Using magnetic fields to understand high-temperature superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (high-Tc) superconductivity has been the issue as to whether a quantum critical point-a special doping value where quantum fluctuations lead to strong...

  7. Damping and support in high-temperature superconducting levitation systems

    DOE Patents [OSTI]

    Hull, John R.; McIver, Carl R.; Mittleider, John A.

    2009-12-15

    Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.

  8. Low-Temperature Synthesis of Superconducting NanocrystallineMgB2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Jun; Xiao, Zhili; Lin, Qiyin; Claus, Helmut; Fang, Zhigang Zak

    2010-01-01

    Magnesium diboride (MgB2) is considered a promising material for practical application in superconducting devices, with a transition temperature near 40?K. In the present paper, nanocrystalline MgB2with an average particle size of approximately 70?nm is synthesized by reacting LiBH4with MgH2at temperatures as low as 450C. This synthesis approach successfully bypasses the usage of either elemental boron or toxic diborane gas. The superconductivity of the nanostructures is confirmed by magnetization measurements, showing a superconducting critical temperature of 38.7?K.

  9. Low-Temperature Synthesis of Superconducting Nanocrystalline MgB 2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lu, Jun; Xiao, Zhili; Lin, Qiyin; Claus, Helmut; Fang, Zhigang Zak

    2010-01-01

    Magnesium diboride (MgB 2 ) is considered a promising material for practical application in superconducting devices, with a transition temperature near 40 K. In the present paper, nanocrystalline MgB 2 with an average particle size of approximately 70 nm is synthesized by reacting LiBH 4 with MgH 2 at temperatures as low as 450 ° C. This synthesis approach successfully bypasses the usage of either elemental boron or toxic diborane gas. The superconductivity of the nanostructures is confirmed by magnetization measurements, showing a superconducting critical temperature of 38.7 K.

  10. Workshop on research needs and opportunities in high-temperature superconductivity held in Copper Mountain, Colorado in 19-20 August 1991. Final report, 1 Jun 91-30 Apr 92

    SciTech Connect (OSTI)

    Shaw, D.T.; Kroger, H.; Jin, S.; Gubser, D.U.; Falco, C.M.

    1991-11-01

    This is the report of the Workshop on New Research Opportunities in Superconductivity held at Copper Mountain, Colorado on August 19-20,1991. The workshop is a follow-up to two previous meetings to evaluate progress in superconductivity. The first, held at Copper Mountain, Colorado in 1983, focuses on low-temperature superconductors (LTS), while the second-in 1988 examined the progress of low-temperature materials and the potential of the then recently-discovered high-temperature superconductors (HTS). The summaries of these two superconductivity workshops were published in Cryogenics (July 1984, p.378; and November 1988, p.711). This workshop was the first in this series to concentrate largely on high-temperature superconductors. Its objectives were to identify the barriers limiting progress in high-temperature materials and to assess research areas that are ripe for important advances. The workshop was organized in four sessions, with Robert C.Dynes and Victor J. Emery leading the session on Fundamentals, Charles M. Falco and Donald U. Gubser leading the session on Materials, David K. Christen and Harry Kroger leading the session on Thin Films and Devices, and Sungho Jin and David T. Shaw leading the session on Bulk Materials and Large-Scale Applications. The organizational committee for the workshop consisted of David K. Christen, Alan F. Clark, Robert C. Dynes, Donald H. Liebenberg, David L. Nelson, and David T. Shaw (chair).

  11. Efficient growth of HTS films with volatile elements

    DOE Patents [OSTI]

    Siegal, Michael P.; Overmyer, Donald L.; Dominguez, Frank

    1998-01-01

    A system for applying a volatile element-HTS layer, such as Tl-HTS, to a substrate in a multiple zone furnace, said method includes heating at higher temperature, in one zone of the furnace, a substrate and adjacent first source of Tl-HTS material, to sublimate Tl-oxide from the source to the substrate; and heating at lower temperature, in a separate zone of the furnace, a second source of Tl-oxide to replenish the first source of Tl-oxide from the second source.

  12. Efficient growth of HTS films with volatile elements

    DOE Patents [OSTI]

    Siegal, M.P.; Overmyer, D.L.; Dominguez, F.

    1998-12-22

    A system is disclosed for applying a volatile element-HTS layer, such as Tl-HTS, to a substrate in a multiple zone furnace, said method includes heating at higher temperature, in one zone of the furnace, a substrate and adjacent first source of Tl-HTS material, to sublimate Tl-oxide from the source to the substrate; and heating at lower temperature, in a separate zone of the furnace, a second source of Tl-oxide to replenish the first source of Tl-oxide from the second source. 3 figs.

  13. Enhanced Superconducting Gaps in Trilayer High-Temperature Bi (2) Sr (2) Ca

    Office of Scientific and Technical Information (OSTI)

    (2) Cu (3) O (10+delta) Cuprate Superconductor (Journal Article) | SciTech Connect Enhanced Superconducting Gaps in Trilayer High-Temperature Bi (2) Sr (2) Ca (2) Cu (3) O (10+delta) Cuprate Superconductor Citation Details In-Document Search Title: Enhanced Superconducting Gaps in Trilayer High-Temperature Bi (2) Sr (2) Ca (2) Cu (3) O (10+delta) Cuprate Superconductor Authors: Ideta, S ; Takashima, K. ; Hashimoto, M. ; Yoshida, T. ; Fujimori, A. ; Anzai, H. ; Fujita, T. ; Nakashima, Y. ;

  14. High-field magnets using high-critical-temperature superconducting thin films

    DOE Patents [OSTI]

    Mitlitsky, F.; Hoard, R.W.

    1994-05-10

    High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla are disclosed. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field. 4 figures.

  15. High-field magnets using high-critical-temperature superconducting thin films

    DOE Patents [OSTI]

    Mitlitsky, Fred; Hoard, Ronald W.

    1994-01-01

    High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field.

  16. HTS Cable Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cable Projects HTS Cable Projects Fact sheet describing what is being done to modernize electricity transmission and distribution HTS Cable Projects More Documents & Publications...

  17. Automatic HTS force measurement instrument

    DOE Patents [OSTI]

    Sanders, Scott T.; Niemann, Ralph C.

    1999-01-01

    A device for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed.

  18. Automatic HTS force measurement instrument

    DOE Patents [OSTI]

    Sanders, S.T.; Niemann, R.C.

    1999-03-30

    A device is disclosed for measuring the levitation force of a high temperature superconductor sample with respect to a reference magnet includes a receptacle for holding several high temperature superconductor samples each cooled to superconducting temperature. A rotatable carousel successively locates a selected one of the high temperature superconductor samples in registry with the reference magnet. Mechanism varies the distance between one of the high temperature superconductor samples and the reference magnet, and a sensor measures levitation force of the sample as a function of the distance between the reference magnet and the sample. A method is also disclosed. 3 figs.

  19. Passive Superconducting Flux Conservers for Rotating-Magnetic-Field-Driven Field-Reversed Configurations

    SciTech Connect (OSTI)

    Oz, E.; Myers, C. E.; Edwards, M. R.; Berlinger, B.; Brooks, A.; Cohen, S. A.

    2011-01-05

    The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-? plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMFo from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (?fc) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with (?fc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 103 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.

  20. The Progress on Low-Cost, High-Quality, High-Temperature Superconducting Tapes Deposited by the Combustion Chemical Vapor Deposition Process

    SciTech Connect (OSTI)

    Shoup, S.S.; White, M.K.; Krebs, S.L.; Darnell, N.; King, A.C.; Mattox, D.S.; Campbell, I.H.; Marken, K.R.; Hong, S.; Czabaj, B.; Paranthaman, M.; Christen, H.M.; Zhai, H.-Y. Specht, E.

    2008-06-24

    The innovative Combustion Chemical Vapor Deposition (CCVD) process is a non-vacuum technique that is being investigated to enable next generation products in several application areas including high-temperature superconductors (HTS). In combination with the Rolling Assisted Biaxially Textured Substrate (RABiTS) technology, the CCVD process has significant promise to provide low-cost, high-quality lengths of YBCO coated conductor. Over 100 meter lengths of both Ni and Ni-W (3 at. Wt.%) substrates with a surface roughness of 12-18 nm were produced. The CCVD technology has been used to deposit both buffer layer coatings as well as YBCO superconducting layers. Buffer layer architecture of strontium titanate (SrTiO{sub 3}) and ceria (CeO{sub 2}) have been deposited by CCVD on textured nickel substrates and optimized to appropriate thicknesses and microstructures to provide templates for growing PLD YBCO with a J{sub c} of 1.1 MA/cm{sup 2} at 77 K and self-field. The CCVD buffer layers have been scaled to meter plus lengths with good epitaxial uniformity along the length. A short sample cut from one of the lengths enabled high critical current density PLD YBCO. Films of CCVD YBCO superconductors have been grown on single crystal substrates with critical current densities over 1 MA/cm{sup 2}. In addition, superconducting YBCO films with an I{sub c} of 60 A/cm-width (J{sub c} = 1.5 MA/cm{sup 2}) were grown on ORNL RABiTS (CeO{sub 2}/YSZ/Y{sub 2}O{sub 3}/Ni/Ni-3W) using CCVD process.

  1. Superconductivity Centennial | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconductivity Centennial Superconductivity Centennial Superconductivity Centennial - Friday, April 8, marks 100 years since Heike Kamerlingh Onnes discovered the basis for CEBAF's success: superconductivity. Superconducting radiofrequency accelerator cavities, like this one, harness the energy that the CEBAF accelerator pumps into its electron beam for nuclear physics research. SRF cavities are typically made of niobium, a metal that becomes superconducting at extremely low temperatures.

  2. A review of basic phenomena and techniques for sputter-deposition of high temperature superconducting films

    SciTech Connect (OSTI)

    Auciello, O. North Carolina State Univ., Raleigh, NC . Dept. of Materials Science and Engineering); Ameen, M.S.; Kingon, A.I.; Lichtenwalner, D.J. . Dept. of Materials Science and Engineering); Krauss, A.R. )

    1990-01-01

    The processes involved in plasma and ion beam sputter-deposition of high temperature superconducting thin films are critically reviewed. Recent advances in the development of these techniques are discussed in relation to basic physical phenomena, specific to each technique, which must be understood before high quality films can be produced. Control of film composition is a major issue in sputter-deposition of multicomponent materials. Low temperature processing of films is a common goal for each technique, particularly in relation to integrating high temperature superconducting films with the current microelectronics technology. It has been understood for some time that for Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} deposition, the most intensely studied high-{Tc} compound, incorporation of sufficient oxygen into the film during deposition is necessary to produce as-deposited superconducting films at relatively substrate temperatures. Recent results have shown that with the use of suitable buffer layers, high quality Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} sputtered films can be obtained on Si substrates without the need for post-deposition anneal processing. This review is mainly focussed on issues related to sputter-deposition of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} thin films, although representative results concerning the bismuth and thallium based compounds are included. 143 refs., 11 figs.

  3. Vibrations Raise the Critical Temperature for Superconductivity | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Vibrations Raise the Critical Temperature for Superconductivity Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 12.14.15

  4. Can Magnetism Explain High Temperature Superconductivity? | U.S. DOE Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Science (SC) Can Magnetism Explain High Temperature Superconductivity? Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 05.01.12 Can Magnetism

  5. Superconductive wire

    DOE Patents [OSTI]

    Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

    1995-07-18

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.

  6. Superconductive wire

    DOE Patents [OSTI]

    Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell

    1995-01-01

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  7. Narrowband high temperature superconducting receiver for low frequency radio waves

    DOE Patents [OSTI]

    Reagor, David W.

    2001-01-01

    An underground communicating device has a low-noise SQUID using high temperature superconductor components connected to detect a modulated external magnetic flux for outputting a voltage signal spectrum that is related to the varying magnetic flux. A narrow bandwidth filter may be used to select a portion of the voltage signal spectrum that is relatively free of power line noise to output a relatively low noise output signal when operating in a portion of the electromagnetic spectra where such power line noise exists. A demodulator outputs a communication signal, which may be an FM signal, indicative of a modulation on the modulated external magnetic flux.

  8. Method and apparatus for forming high-critical-temperature superconducting layers on flat and/or elongated substrates

    DOE Patents [OSTI]

    Ciszek, Theodore F.

    1994-01-01

    An elongated, flexible superconductive wire or strip is fabricated by pulling it through and out of a melt of metal oxide material at a rate conducive to forming a crystalline coating of superconductive metal oxide material on an elongated, flexible substrate wire or strip. A coating of crystalline superconductive material, such as Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.8, is annealed to effect conductive contact between adjacent crystalline structures in the coating material, which is then cooled to room temperature. The container for the melt can accommodate continuous passage of the substrate through the melt. Also, a second pass-through container can be used to simultaneously anneal and overcoat the superconductive coating with a hot metallic material, such as silver or silver alloy. A hollow, elongated tube casting method of forming an elongated, flexible superconductive wire includes drawing the melt by differential pressure into a heated tubular substrate.

  9. Method and apparatus for forming high-critical-temperature superconducting layers on flat and/or elongated substrates

    DOE Patents [OSTI]

    Ciszek, T.F.

    1994-04-19

    An elongated, flexible superconductive wire or strip is fabricated by pulling it through and out of a melt of metal oxide material at a rate conducive to forming a crystalline coating of superconductive metal oxide material on an elongated, flexible substrate wire or strip. A coating of crystalline superconductive material, such as Bi[sub 2]Sr[sub 2]CaCu[sub 2]O[sub 8], is annealed to effect conductive contact between adjacent crystalline structures in the coating material, which is then cooled to room temperature. The container for the melt can accommodate continuous passage of the substrate through the melt. Also, a second pass-through container can be used to simultaneously anneal and overcoat the superconductive coating with a hot metallic material, such as silver or silver alloy. A hollow, elongated tube casting method of forming an elongated, flexible superconductive wire includes drawing the melt by differential pressure into a heated tubular substrate. 8 figures.

  10. "Flexible aerogel as a superior thermal insulation for high temperature superconductor cable applications"

    SciTech Connect (OSTI)

    White, Shannon O. [Aspen Aerogel, Inc.; Demko, Jonathan A [ORNL; Tomich, A. [Aspen Aerogel, Inc.

    2010-01-01

    High temperature superconducting (HTS) cables are an advanced technology that can both strengthen and improve the national electrical distribution infrastructure. HTS cables require sufficient cooling to overcome inherent low temperature heat loading. Heat loads are minimized by the use of cryogenic envelopes or cryostats. Cryostats require improvement in efficiency, reliability, and cost reduction to meet the demanding needs of HTS conductors (1G and 2G wires). Aspen Aerogels has developed a compression resistant aerogel thermal insulation package to replace compression sensitive multi-layer insulation (MLI), the incumbent thermal insulation, in flexible cryostats for HTS cables. Oak Ridge National Laboratory tested a prototype aerogel package in a lab-scale pipe apparatus to measure the rate of heat invasion. The lab-scale pipe test results of the aerogel solution will be presented and directly compared to MLI. A compatibility assessment of the aerogel material with HTS system components will also be presented. The aerogel thermal insulation solution presented will meet the demanding needs of HTS cables.

  11. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; Cheng, G.; Flood, R.; Jordan, K.; Kneisel, P.; Morrone, M.; Nemes, G.; Turlington, L.; et al

    2012-03-16

    An apparatus was created to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in details in this contribution.

  12. Ceramic superconductor/metal composite materials employing the superconducting proximity effect

    DOE Patents [OSTI]

    Holcomb, Matthew J.

    2002-01-01

    Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.

  13. Structure for hts composite conductors and the manufacture of same

    DOE Patents [OSTI]

    Cotton, James D.; Riley, Jr., Gilbert Neal

    1999-01-01

    A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (i) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (ii) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer.

  14. Structure for HTS composite conductors and the manufacture of same

    DOE Patents [OSTI]

    Cotton, J.D.; Riley, G.N. Jr.

    1999-06-01

    A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (1) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (2) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer. 10 figs.

  15. Method and apparatus for connecting high voltage leads to a high temperature super-conducting transformer

    DOE Patents [OSTI]

    Golner, Thomas M.; Mehta, Shirish P.

    2005-07-26

    A method and apparatus for connecting high voltage leads to a super-conducting transformer is provided that includes a first super-conducting coil set, a second super-conducting coil set, and a third super-conducting coil set. The first, second and third super-conducting coil sets are connected via an insulated interconnect system that includes insulated conductors and insulated connectors that are utilized to connect the first, second, and third super-conducting coil sets to the high voltage leads.

  16. Method for determining hydrogen mobility as a function of temperature in superconducting niobium cavities

    DOE Patents [OSTI]

    May, Robert

    2008-03-11

    A method for determining the mobility of hydrogen as a function of temperature in superconducting niobium cavities comprising: 1) heating a cavity under test to remove free hydrogen; 2) introducing hydrogen-3 gas into the cavity; 3) cooling the cavity to allow absorption of hydrogen-3; and 4) measuring the amount of hydrogen-3 by: a) cooling the cavity to about 4.degree. K while flowing a known and regulated amount of inert carrier gas such as argon or helium into the cavity; b) allowing the cavity to warm at a stable rate from 4.degree. K to room temperature as it leaves the chamber; and c) directing the exit gas to an ion chamber radiation detector.

  17. Design Considerations of Fast-cycling Synchrotrons Based on Superconducting Transmission Line Magnets

    SciTech Connect (OSTI)

    Piekarz, H.; Hays, S.; Huang, Y.; Shiltsev, V.; /Fermilab

    2008-06-01

    Fast-cycling synchrotrons are key instruments for accelerator based nuclear and high-energy physics programs. We explore a possibility to construct fast-cycling synchrotrons by using super-ferric, {approx}2 Tesla B-field dipole magnets powered with a superconducting transmission line. We outline both the low temperature (LTS) and the high temperature (HTS) superconductor design options and consider dynamic power losses for an accelerator with operation cycle of 0.5 Hz. We also briefly outline possible power supply system for such accelerator, and discuss the quench protection system for the magnet string powered by a transmission line conductor.

  18. Field Demonstration of a 24-kV Superconducting Cable at Detroit Edison

    SciTech Connect (OSTI)

    Kelley, Nathan; Corsaro, Pietro

    2004-12-01

    Customer acceptance of high temperature superconducting (HTS) cable technology requires a substantial field demonstration illustrating both the system's technical capabilities and its suitability for installation and operation within the utility environment. In this project, the world's first underground installation of an HTS cable using existing ductwork, a 120 meter demonstration cable circuit was designed and installed between the 24 kV bus distribution bus and a 120 kV-24 kV transformer at Detroit Edison's Frisbie substation. The system incorporated cables, accessories, a refrigeration system, and control instrumentation. Although the system was never put in operation because of problems with leaks in the cryostat, the project significantly advanced the state-of-the-art in the design and implementation of Warm Dielectric cable systems in substation applications. Lessons learned in this project are already being incorporated in several ongoing demonstration projects.

  19. Superconducting magnetic Wollaston prism for neutron spin encoding

    SciTech Connect (OSTI)

    Li, F., E-mail: fankli@indiana.edu; Parnell, S. R.; Wang, T.; Baxter, D. V. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States)] [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States); Hamilton, W. A. [Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States)] [Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Maranville, B. B. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)] [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Semerad, R. [Ceraco Ceramic Coating GmbH, Ismaning 85737 (Germany)] [Ceraco Ceramic Coating GmbH, Ismaning 85737 (Germany); Cremer, J. T. [Adelphi Technology Inc., Redwood City, California 94063 (United States)] [Adelphi Technology Inc., Redwood City, California 94063 (United States); Pynn, R. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States) [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States); Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States)

    2014-05-15

    A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ?30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ?98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm 30 mm) and an increase in length scales accessible to SESAME to beyond 10 ?m. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.

  20. Nanostructures of Boron, Carbon and Magnesium Diboride for High Temperature Superconductivity

    SciTech Connect (OSTI)

    Pfefferle, Lisa; Fang, Fang; Iyyamperumal, Eswarmoorthi; Keskar, Gayatri

    2013-12-23

    Direct fabrication of MgxBy nanostructures is achieved by employing metal (Ni,Mg) incorporated MCM-41 in the Hybrid Physical-Chemical Vapor Deposition (HPCVD) reaction. Different reaction conditions are tested to optimize the fabrication process. TEM analysis shows the fabrication of MgxBy nanostructures starting at the reaction temperature of 600oC, with the yield of the nanostructures increasing with increasing reaction temperature. The as-synthesized MgxBy nanostructures have the diameters in the range of 3-5nm, which do not increase with the reaction temperature consistent with templated synthesis. EELS analysis of the template removed nanostructures confirms the existence of B and Mg with possible contamination of Si and O. NEXAFS and Raman spectroscopy analysis suggested a concentric layer-by-layer MgxBy nanowire/nanotube growth model for our as-synthesized nanostructures. Ni k-edge XAS indicates that the formation of MgNi alloy particles is important for the Vapor-Liquid-Solid (VLS) growth of MgxBy nanostructures with fine diameters, and the presence of Mg vapor not just Mg in the catalyst is crucial for the formation of Ni-Mg clusters. Physical templating by the MCM-41 pores was shown to confine the diameter of the nanostructures. DC magnetization measurements indicate possible superconductive behaviors in the as-synthesized samples.

  1. Progress in high-temperature superconducting transistors and other devices; Proceedings of the SPIE Meeting, Vol. 1394, Santa Clara, CA, Oct. 4, 5, 1990

    SciTech Connect (OSTI)

    Singh, R.; Narayan, J.; Shaw, D.T.

    1991-01-01

    Various papers on progress in high-temperature superconducting transistors and other devices are presented. Individual topics addressed include: superconductor/semiconductor structure and its application to superconducting devices, superconducting YBa{sup 2}Cu{sub 3}O{sub 7} films on Si and GaAs with conducting indium tin oxide buffer layers, high-temperature superconducting Josephson junction devices, planar SNS Josephson junctions using multilayer Bi system, YBa{sup 2}Cu{sub 3}O{sub 7-x}/Au/Nb device structures, cleaved surfaces of high Tc films for making SNS structures, high-temperature superconductive microwave technology for space applications, high-Tc superconducting infrared bolometric detector, thin film processing and device fabrication in the Tl-Ca-Ba-Cu-O system. Also discussed are: grain-oriented high--Tc superconductors and their applications, speed of optically controlled superconducting devices, effect of laser irradiation on superconducting properties of laser-deposited YBa{sub 2}Cu{sub 3}O{sub 7} thin films, role of buffer layers in the laser-ablated films on metallic substrates, progress toward device applications using MOCVD of TlBaCaCuO, versatility of metal organic chemical vapor deposition process for fabrication of high-quality YBCO superconducting thin films.

  2. Restoration and testing of an HTS fault current controller

    SciTech Connect (OSTI)

    Waynert, J. A.; Boenig, H.; Mielke, C. H.; Willis, J. O.; Burley, B. L.

    2002-01-01

    A three-phase, 1200 A, 12.5 kV fault current controller using three HTS 4 mH coils, was built by industry and tested in 1999 at the Center Substation of Southern California Edison in Norwalk, CA. During the testing, it appeared that each of the three single-phase units had experienced a voltage breakdown, one externally and two internally. Los Alamos National Laboratory (LANL) was asked by DOE to restore the operation of the fault current controller provided the HTS coils had not been damaged during the initial substation tests. When the internally-failed coil vacuum vessels were opened it became evident that in these two vessels, a flashover had occurred at the high voltage bus section leading to the terminals of the superconducting coil. An investigation into the failure mechanism resulted in six possible causes for the flashover. Based on these causes, the high voltage bus was completely redesigned. Single-phase tests were successfully performed on the modified unit at a 13.7 kV LANL substation. This paper presents the postulated voltage flashover failure mechanisms, the new high voltage bus design which mitigates the failure mechanisms, the sequence of tests used to validate the new design, and finally, the results of variable load and short-circuit tests with the single-phase unit operating on the LANL 13.7 kV substation.

  3. Comparative Assessment of Direct Drive High Temperature Superconducting Generators in Multi-Megawatt Class Wind Turbines

    SciTech Connect (OSTI)

    Maples, B.; Hand, M.; Musial, W.

    2010-10-01

    This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes. Based on the cost and performance data supplied by AMSC, HTSDD technology has good potential to compete successfully as an alternative technology to PMDD and geared technology turbines in the multi megawatt classes. In addition, data suggests the economics of HTSDD turbines improve with increasing size, although several uncertainties remain for all machines in the 6 to 10 MW class.

  4. Prospects for the medium- and long-term development of China`s electric power industry and analysis of the potential market for superconductivity technology

    SciTech Connect (OSTI)

    Li, Z.

    1998-05-01

    First of all, overall economic growth objectives in China are concisely and succinctly specified in this report. Secondly, this report presents a forecast of energy supply and demand for China`s economic growth for 2000--2050. In comparison with the capability of energy construction in China in the future, a gap between supply and demand is one of the important factors hindering the sustainable development of Chain`s economy. The electric power industry is one of China`s most important industries. To adopt energy efficiency through high technology and utilizing energy adequately is an important technological policy for the development of China`s electric power industry in the future. After briefly describing the achievements of China`s electric power industry, this report defines the target areas and policies for the development of hydroelectricity and nuclear electricity in the 2000s in China, presents the strategic position of China`s electric power industry as well as objectives and relevant plans of development for 2000--2050. This report finds that with the discovery of superconducting electricity, the discovery of new high-temperature superconducting (HTS) materials, and progress in materials techniques, the 21st century will be an era of superconductivity. Applications of superconductivity in the energy field, such as superconducting storage, superconducting transmission, superconducting transformers, superconducting motors, its application in Magneto-Hydro-Dynamics (MHD), as well as in nuclear fusion, has unique advantages. Its market prospects are quite promising. 12 figs.

  5. Flywheel energy storage advances using HTS bearings.

    SciTech Connect (OSTI)

    Mulcahy, T. M.

    1998-09-11

    High-Temperature-Superconducting (HT) bearings have the potential to reduce idling losses and make flywheel energy storage economical. Demonstration of large, high-speed flywheels is key to market penetration. Toward this goal, a flywheel system has been developed and tested with 5-kg to 15-kg disk-shaped rotors. Rlm speeds exceeded 400 mls and stored energies were >80 W-hr. Test implementation required technological advances in nearly all aspects of the flywheel system. Features and limitations of the design and tests are discussed, especially those related to achieving additional energy storage.

  6. Superconducting materials for large scale applications

    SciTech Connect (OSTI)

    Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.

    2004-05-06

    Significant improvements in the properties ofsuperconducting materials have occurred recently. These improvements arebeing incorporated into the latest generation of wires, cables, and tapesthat are being used in a broad range of prototype devices. These devicesinclude new, high field accelerator and NMR magnets, magnets for fusionpower experiments, motors, generators, and power transmission lines.These prototype magnets are joining a wide array of existing applicationsthat utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments suchas ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising newmaterials such as MgB2 have been discovered and are being studied inorder to assess their potential for new applications. In this paper, wewill review the key developments that are leading to these newapplications for superconducting materials. In some cases, the key factoris improved understanding or development of materials with significantlyimproved properties. An example of the former is the development of Nb3Snfor use in high field magnets for accelerators. In other cases, thedevelopment is being driven by the application. The aggressive effort todevelop HTS tapes is being driven primarily by the need for materialsthat can operate at temperatures of 50 K and higher. The implications ofthese two drivers for further developments will be discussed. Finally, wewill discuss the areas where further improvements are needed in order fornew applications to be realized.

  7. Commercialization of Medium Voltage HTS Triax TM Cable Systems

    SciTech Connect (OSTI)

    Knoll, David

    2012-12-31

    The original project scope that was established in 2007 aimed to install a 1,700 meter (1.1 mile) medium voltage HTS Triax{TM} cable system into the utility grid in New Orleans, LA. In 2010, however, the utility partner withdrew from the project, so the 1,700 meter cable installation was cancelled and the scope of work was reduced. The work then concentrated on the specific barriers to commercialization of HTS cable technology. The modified scope included long-length HTS cable design and testing, high voltage factory test development, optimized cooling system development, and HTS cable life-cycle analysis. In 2012, Southwire again analyzed the market for HTS cables and deemed the near term market acceptance to be low. The scope of work was further reduced to the completion of tasks already started and to testing of the existing HTS cable system in Columbus, OH. The work completed under the project included: Long-length cable modeling and analysis HTS wire evaluation and testing Cable testing for AC losses Optimized cooling system design Life cycle testing of the HTS cable in Columbus, OH Project management. The 200 meter long HTS Triax{TM} cable in Columbus, OH was incorporated into the project under the initial scope changes as a test bed for life cycle testing as well as the site for an optimized HTS cable cooling system. The Columbus cable utilizes the HTS TriaxTM design, so it provided an economical tool for these of the project tasks.

  8. Neutron scattering studies of spin-phonon hybridization and superconducting spin gaps in the high temperature superconductor La2-x(Sr;Ba)xCuO4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wagman, J. J.; Carlo, Jeremy P.; Gaudet, J.; Van Gastel, G. J.; Abernathy, Douglas L.; Stone, Matthew B.; Granroth, Garrett E.; Kolesnikov, Alexander I.; Savici, Andrei T.; Kim, Young -June; et al

    2016-03-14

    We present time-of-flight neutron-scattering measurements on single crystals of La2-xBaxCuO4 (LBCO) with 0 ≤ x ≤ 0.095 and La2-xSrxCuO4 (LSCO) with x = 0.08 and 0.11. This range of dopings spans much of the phase diagram relevant to high temperature cuprate superconductivity, ranging from insulating, three dimensional commensurate long range antiferromagnetic order for x ≤ 0.02 to two dimensional (2D) incommensurate antiferromagnetism co-existing with superconductivity for x ≥ 0.05. Previous work on lightly doped LBCO with x = 0.035 showed a clear resonant enhancement of the inelastic scattering coincident with the low energy crossings of the highly dispersive spin excitationsmore » and quasi-2D optic phonons. The present work extends these measurements across the phase diagram and shows this enhancement to be a common feature to this family of layered quantum magnets. Furthermore we show that the low temperature, low energy magnetic spectral weight is substantially larger for samples with non-superconducting ground states relative to any of the samples with superconducting ground states. Lastly spin gaps, suppression of low energy magnetic spectral weight, are observed in both superconducting LBCO and LSCO samples, consistent with previous observations for superconducting LSCO« less

  9. Department of Energy`s Wire Development Workshop - Superconductivity program for electric systems

    SciTech Connect (OSTI)

    1996-06-01

    The 1996 High-Temperature Superconducting Wire Development Workshop was held on January 31--February 1 at the Crown Plaza Tampa Westshore in Tampa, Florida. The meeting was hosted by Tampa Electric Company and sponsored by the Department of Energy`s Superconductivity Program for Electric Systems. The meeting focused on recent high-temperature superconducting wire development activities in the Department of Energy`s Superconductivity Systems program. Tampa Electric`s Greg Ramon began the meeting by giving a perspective on the changes now occurring in the utility sector. Major program wire development accomplishments during the past year were then highlighted, particularly the world record achievements at Los Alamos and Oak Ridge National Laboratories. The meeting then focussed on three priority technical issues: thallium conductors; AC losses in HTS conductors; and coated conductors on textured substrates. Following in-depth presentations, working groups were formed in each technology area to discuss and critique the most important current research and development issues. The working groups identified research areas that have the potential for greatly enhancing the wire development effort. These areas are discussed in the summary reports from each of the working groups. This document is a compilation of the workshop proceedings including all general session presentations and summary reports from the working groups.

  10. From Ions to Wires to the Grid: The Transformational Science of LANL Research in High-Tc Superconducting Tapes and Electric Power Applications

    ScienceCinema (OSTI)

    Marken, Ken [Superconductivity Technology Center, Los Alamos, New Mexico, United States

    2010-01-08

    The Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) has been tasked to lead national efforts to modernize the electric grid, enhance security and reliability of the energy infrastructure, and facilitate recovery from disruptions to energy supplies. LANL has pioneered the development of coated conductors ? high-temperature superconducting (HTS) tapes ? which permit dramatically greater current densities than conventional copper cable, and enable new technologies to secure the national electric grid. Sustained world-class research from concept, demonstration, transfer, and ongoing industrial support has moved this idea from the laboratory to the commercial marketplace.

  11. DOE Superconductivity Program Stakeholders | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Superconductivity Program Stakeholders DOE Superconductivity Program Stakeholders Map showing the stakeholders involved in High Temperature Superconductivity work with the DOE. DOE Superconductivity Program Stakeholders (104.19 KB) More Documents & Publications High Temperature Superconductivity Partners DOE Provides up to $51.8 Million to Modernize the U.S. Electric Grid System. June 27, 2007 Superconductivity for Electric Systems: 2008 Annual Peer Review Final Report

  12. 10MW Class Direct Drive HTS Wind Turbine: Cooperative Research...

    Office of Scientific and Technical Information (OSTI)

    SEMICONDUCTOR; 20MW CLASS DIRECT DRIVE HTS WIND TURBINE; Commercialization and Technology Transfer Word Cloud More Like This Full Text preview image File size NAView Full Text ...

  13. Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guguchia, Z.; Amato, A.; Kang, J.; Luetkens, H.; Biswas, P. K.; Prando, G.; von Rohr, F.; Bukowski, Z.; Shengelaya, A.; Keller, H.; et al

    2015-11-09

    The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. Contrasting with other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperaturemore » behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap.« less

  14. Method of forming an HTS article

    DOE Patents [OSTI]

    Bhattacharya, Raghu N.; Zhang, Xun; Selvamanickam, Venkat

    2014-08-19

    A method of forming a superconducting article includes providing a substrate tape, forming a superconducting layer overlying the substrate tape, and depositing a capping layer overlying the superconducting layer. The capping layer includes a noble metal and has a thickness not greater than about 1.0 micron. The method further includes electrodepositing a stabilizer layer overlying the capping layer using a solution that is non-reactive to the superconducting layer. The superconducting layer has an as-formed critical current I.sub.C(AF) and a post-stabilized critical current I.sub.C(PS). The I.sub.C(PS) is at least about 95% of the I.sub.C(AF).

  15. Superconducting radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  16. Superconductive radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  17. What Causes High-temperature Superconductivity? | U.S. DOE Office...

    Office of Science (SC) Website

    Image courtesy of Ames Laboratory Diagram showing the properties of a material as temperature and chemical composition (phosphorus level in this study) are varied. The figure shows ...

  18. Superconducting active impedance converter

    DOE Patents [OSTI]

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  19. Superconducting active impedance converter

    DOE Patents [OSTI]

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  20. Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor

    SciTech Connect (OSTI)

    Guguchia, Z.; Amato, A.; Kang, J.; Luetkens, H.; Biswas, P. K.; Prando, G.; von Rohr, F.; Bukowski, Z.; Shengelaya, A.; Keller, H.; Morenzoni, E.; Fernandes, Rafael M.; Khasanov, R.

    2015-11-09

    The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. Contrasting with other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap.

  1. Apparatus and method for controlling the temperature of the core of a super-conducting transformer

    SciTech Connect (OSTI)

    Golner, Thomas; Pleva, Edward; Mehta, Shirish

    2006-10-10

    An apparatus for controlling the temperature of a core of a transformer is provided that includes a core, a shield surrounding the core, a cast formed between the core and the shield, and tubing positioned on the shield. The cast directs heat from the core to the shield and cooling fluid is directed through the tubing to cool the shield.

  2. FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS

    SciTech Connect (OSTI)

    Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

    2007-10-26

    This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

  3. Method for making mirrored surfaces comprising superconducting material

    DOE Patents [OSTI]

    Early, J.T.; Hargrove, R.S.

    1989-12-12

    Superconducting mirror surfaces are provided by forming a mirror surface from a material which is superconductive at a temperature above about 40 K and adjusting the temperature of the surface to that temperature at which the material is superconducting. The mirror surfaces are essentially perfect reflectors for electromagnetic radiation with photon energy less than the superconducting band gap.

  4. Method for making mirrored surfaces comprising superconducting material

    DOE Patents [OSTI]

    Early, James T.; Hargrove, R. Steven

    1989-01-01

    Superconducting mirror surfaces are provided by forming a mirror surface from a material which is superconductive at a temperature above about 40.degree. K. and adjusting the temperature of the surface to that temperature at which the material is superconducting. The mirror surfaces are essentially perfect reflectors for electromagnetic radiation with photon energy less than the superconducting band gap.

  5. Optimization of superconducting tiling pattern for superconducting bearings

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL)

    1996-01-01

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.

  6. Optimization of superconducting tiling pattern for superconducting bearings

    DOE Patents [OSTI]

    Hull, J.R.

    1996-09-17

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings are disclosed. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures. 20 figs.

  7. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  8. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  9. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, John D.; El-Genk, Mohamed S.

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  10. Superconducting transistor

    DOE Patents [OSTI]

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  11. The Mechanical Design Optimization of a High Field HTS Solenoid

    SciTech Connect (OSTI)

    Lalitha, SL; Gupta, RC

    2015-06-01

    This paper describes the conceptual design optimization of a large aperture, high field (24 T at 4 K) solenoid for a 1.7 MJ superconducting magnetic energy storage device. The magnet is designed to be built entirely of second generation (2G) high temperature superconductor tape with excellent electrical and mechanical properties at the cryogenic temperatures. The critical parameters that govern the magnet performance are examined in detail through a multiphysics approach using ANSYS software. The analysis results formed the basis for the performance specification as well as the construction of the magnet.

  12. Proximity effects of superconducting multilayer film

    SciTech Connect (OSTI)

    Xueyu, C.; Daole, Y.

    1984-07-01

    The proximity effects of superconducting multilayer films composed of different metals are considered. The relationship between the critical temperature of a superconducting multilayer film with strong heterogeneity and its geometric structure is given.

  13. Cryogenic experiences during W7-X HTS-current lead tests

    SciTech Connect (OSTI)

    Richter, Thomas; Lietzow, Ralph

    2014-01-29

    The Karlsruhe Institute of Technology (KIT) was responsible for design, production and test of the High Temperature Superconductor (HTS) current leads (CL) for the stellerator Wendelstein 7-X (W7-X). 16 current leads were delivered. Detailed prototype tests as well as the final acceptance tests were performed at KIT, using a dedicated test cryostat assembled beside and connected to the main vacuum vessel of the TOSKA facility. A unique feature is the upside down orientation of the current leads due to the location of the power supplies in the basement of the experimental area of W7-X. The HTS-CL consists of three main parts: the cold end for the connection to the bus bar at 4.5 K, the HTS part operating in the temperature range from 4.5 K to 65 K and a copper heat exchanger (HEX) in the temperature range from 65 K to room temperature, which is cooled with 50 K helium. Therefore in TOSKA it is possible to cool test specimens simultaneously with helium at two different temperature levels. The current lead tests included different scenarios with currents up to 18.2 kA. In total, 10 cryogenic test campaigns with a total time of about 24 weeks were performed till beginning of 2013. The test facility as well as the 2 kW cryogenic plant of ITEP showed a very good reliability. However, during such a long and complex experimental campaign, one has to deal with failures, technical difficulties and incidents. The paper gives a summary of the test performance comprising the test preparation and operation. This includes the performance and reliability of the refrigerator and the test facility with reference to the process measuring and control system, the data acquisition system, as well as the building infrastructure.

  14. Superconductive devices and circuits. Proceedings SPIE Volume 2160

    SciTech Connect (OSTI)

    Buhrman, R.A.; Clarke, J.; Daly, K.; Koch, R.H.; Luine, J.A.; Simon, R.W.

    1994-12-31

    The relative infancy of high-temperature superconductor (HTS) technology is reflected in the number and diversity of approaches to microelectronic devices. Although each application calls for devices with specific functions and characteristics, all applications demand reproducibility, device-to-device uniformity, and manufacturability from device fabrication technology. The complexity of the various HTS materials contributes to the difficulty of achieving desired device properties but also provides many avenues of approach. This is why there is a multiplicity of approaches to HTS device design and fabrication. Although significant progress is being made, the technology is still too young to have settled upon a few clearly successful device designs. This is reflected in the articles where seven different types of Josephson junctions are discussed and used to illustrate physical phenomena. Also discussed are electric field effect phenomena related to HTS transistor-like three terminal devices. Separate abstracts were prepared for 22 papers in this book.

  15. Cryocooler applications for high-temperature superconductor magnetic bearings.

    SciTech Connect (OSTI)

    Niemann, R. C.

    1998-05-22

    The efficiency and stability of rotational magnetic suspension systems are enhanced by the use of high-temperature superconductor (HTS) magnetic bearings. Fundamental aspects of the HTS magnetic bearings and rotational magnetic suspension are presented. HTS cooling can be by liquid cryogen bath immersion or by direct conduction, and thus there are various applications and integration issues for cryocoolers. Among the numerous cryocooler aspects to be considered are installation; operating temperature; losses; and vacuum pumping.

  16. The Effect of Magnetic Field on the Position of HTS Leads and theCooler in the Services Tower of the MICE Focusing Magnet

    SciTech Connect (OSTI)

    Green, M.A.; Yang, S.Q.; Cobb, J.; Lau, P.; Lau, W.W.; Witte,H.; Baynham, D.E.; Bradshaw, T.W.

    2007-08-27

    The MICE focusing solenoids have three 4 K coolers (two forthe superconducting magnet and one for the liquid absorber) and four HTSleads that feed the current to the focusing coils. The focusing solenoidsproduce large radial external fields when they operate with the polarityof the two coils in opposition (the gradient or flip mode). When the MICEfocusing coils operate at the same polarity (the solenoid or non-flipmode), the fields are much smaller and parallel to the axis of thesolenoid. The worst-case magnetic field affects the selection of thecooler and the HTS leads. This magnetic field can also determine theheight of the service towers that house the three coolers and the fourHTS leads. This paper shows the criteria used for Cooler selection, HTSlead selection, and the position of both the cooler and leads withrespect to the solenoid axis of rotation.

  17. Operation of a test bed axial-gap brushless dc rotor with a superconducting stator

    SciTech Connect (OSTI)

    McKeever, J.W.; Sohns, C.W.; Schwenterly, S.W.; Young, R.W. Sr.; Campbell, V.W.; Hickey, M.H.; Ott, G.W.; Bailey, J.M.

    1993-08-01

    A variable-speed axial-gap motor with a stator consisting of four liquid helium cooled superconducting electromagnets (two pole pairs) was built and proof tested up to 608 rpm in November 1990 as a tool for joint industry-laboratory evaluation of coils fabricated from high-temperature oxide superconductors. A second rotor was fabricated with improved materia winding configuration, and wire type, and the drive system was modified to eliminate current spiking. The modified motor was characterized to design speed, 188 rad/s (1800 rpm), to acquire a performance baseline for future comparison with that of high-temperature superconducting (HIS) wire. As it becomes commercially available, HTS wire will replace the low-temperature electromagnet wire in a stator modified to control wire temperatures between 4 K and 77 K. Measurements of the superconducting electromagnetic field and locked rotor torque as functions of cryocurrent and dc current through two phases of the rotor, respectively, provided data to estimate power that could be developed by the rotor. Back emf and parasitic mechanical and electromagnetic drag torques were measured as functions of angular velocity to calculate actual rotor power developed and to quantify losses, which reduce the motor`s efficiency. A detailed measurement of motor power at design speed confirmed the developed power equation. When subsequently operated at the 33-A maximum available rotor current, the motor delivered 15.3 kill (20.5 hp) to the load. In a final test, the cryostat was operated at 2500 A, 200 A below its critical current. At rotor design current of 60 A and 2500 A stator current, the extrapolated developed power would be 44.2 kill (59.2 hp) with 94% efficiency.

  18. Superconducting Cable

    DOE Patents [OSTI]

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  19. Superconducting Cable

    DOE Patents [OSTI]

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  20. Superconductivity in graphite intercalation compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore » and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less

  1. Superconductive radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  2. Superconducting radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  3. Superconductive articles including cerium oxide layer

    DOE Patents [OSTI]

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  4. Superconducting structure

    DOE Patents [OSTI]

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  5. Superconducting Structure

    DOE Patents [OSTI]

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  6. A New Universal Parameter for Superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Universal Parameter for Superconductivity A New Universal Parameter for Superconductivity Print Thursday, 14 April 2016 00:00 Scientists have been researching high-temperature (high-Tc) superconductors for decades with the goal of finding materials that express superconducting capabilities at room temperature, which would be a requirement for practical and cost-effective applications. The higher the operating temperature, the more realistic energy-saving applications such as lossless

  7. Spin dynamics near a putative antiferromagnetic quantum critical point in Cu-substituted BaFe2As2 and its relation to high-temperature superconductivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, M. G.; Wang, M.; Tucker, G. S.; Valdivia, P. N.; Abernathy, D. L.; Chi, Songxue; Christianson, A. D.; Aczel, A. A.; Hong, T.; Heitmann, T. W.; et al

    2015-12-02

    We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba(Fe0.957Cu0.043)2As2, a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe2As2 and superconducting Ba(Fe1–xNix)2As2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba(Fe0.957Cu0.043)2As2, which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouples the interaction between quasiparticles and the spin fluctuations. In addition, we show that themore » spin-spin correlation length ξ(T) increases rapidly as the temperature is lowered and find ω/T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.« less

  8. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  9. Superconductivity at Dawn of the Iron Age (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Superconductivity is a stunning quantum phenomenon and among the deepest paradigms in all ... in a new era of high-temperature superconductivity, and the joyous exuberance that ...

  10. Superconducting-semiconducting circuits, devices and systems

    SciTech Connect (OSTI)

    Kroger, H.; Ghoshal, U.S.

    1991-06-18

    This paper describes a superconducting-semiconducting electrical circuit element. It comprises: a superconducting charge controlled three-terminal device, having a device control terminal, a second terminal and a third terminal, wherein the output current between the second and third terminals is controlled by the voltage applied to the control terminal, and wherein the output current exhibits superconducting characteristics as a function of temperature and input charge conditions; and a cryogenic semiconducting interconnect circuit, adapted to receive as an input an output signal from the superconducting device, and to provide a semiconductor switching voltage level output signal modulated by the input signal from the superconducting device.

  11. Design of High Field Solenoids made of High Temperature Superconductors

    SciTech Connect (OSTI)

    Bartalesi, Antonio; /Pisa U.

    2010-12-01

    This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductor (HTS). Finally, a technological winding process was proposed and the required tooling is designed.

  12. High Temperature Superconductors: From Delivery to Applications (Presentation from 2011 Ernest Orlando Lawrence Award-winner, Dr. Amit Goyal, and including introduction by Energy Secretary, Dr. Steven Chu)

    ScienceCinema (OSTI)

    Goyal, Amit (Oak Ridge National Laboratory)

    2012-06-28

    Dr. Amit Goyal, a high temperature superconductivity (HTS) researcher at Oak Ridge National Laboratory, was named a 2011 winner of the Department of Energy's Ernest Orlando Lawrence Award honoring U.S. scientists and engineers for exceptional contributions in research and development supporting DOE and its mission. Winner of the award in the inaugural category of Energy Science and Innovation, Dr. Goyal was cited for his work in 'pioneering research and transformative contributions to the field of applied high temperature superconductivity, including fundamental materials science advances and technical innovations enabling large-scale applications of these novel materials.' Following his basic research in grain-to-grain supercurrent transport, Dr. Goyal focused his energy in transitioning this fundamental understanding into cutting-edge technologies. Under OE sponsorship, Dr. Goyal co-invented the Rolling Assisted Bi-Axially Textured Substrate technology (RABiTS) that is used as a substrate for second generation HTS wires. OE support also led to the invention of Structural Single Crystal Faceted Fiber Substrate (SSIFFS) and the 3-D Self Assembly of Nanodot Columns. These inventions and associated R&D resulted in 7 R&D 100 Awards including the 2010 R&D Magazine's Innovator of the Year Award, 3 Federal Laboratory Consortium Excellence in Technology Transfer National Awards, a DOE Energy100 Award and many others. As a world authority on HTS materials, Dr. Goyal has presented OE-sponsored results in more than 150 invited talks, co-authored more than 350 papers and is a fellow of 7 professional societies.

  13. Nozzle for superconducting fiber production

    DOE Patents [OSTI]

    Righi, Jamal

    1992-11-17

    A nozzle apparatus for producing flexible fibers of superconducting material receives melted material from a crucible for containing a charge of the superconducting material. The material is melted in the crucible and falls in a stream through a bottom hole in the crucible. The stream falls through a protecting collar which maintains the stream at high temperatures. The stream is then supplied through the downwardly directed nozzle where it is subjected to a high velocity air flow which breaks the melted superconducting material into ligaments which solidify into the flexible fibers. The fibers are collected by blowing them against a porous cloth.

  14. Electronic structure of superconductivity refined

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic structure of superconductivity refined Electronic structure of superconductivity refined A team of physicists propose a new model that expands on a little understood aspect of the electronic structure in high-temperature superconductors. July 10, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  15. Hybrid superconducting neutron detectors

    SciTech Connect (OSTI)

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  16. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  17. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  18. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  19. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  20. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Print Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual electrons to be spin polarized even at room temperature and to strongly

  1. Towards a next theory of superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding high-temperature superconductivity Using magnetic fields to understand high-temperature superconductivity The eventual goal of the research would be to create a superconductor that operates at room temperature and needs no cooling at all March 26, 2015 Los Alamos National Laboratory scientist Brad Ramshaw conducts an experiment at the Pulsed Field Facility of the National High Magnetic Field Lab, exposing high-temperature superconductors to very high magnetic fields, changing the

  2. Design, Fabrication and Testing of a Superconducting Fault Current Limiter (SFCL)

    SciTech Connect (OSTI)

    Gouge, M..; Schwenterly, S.W.; Hazelton, D.

    2011-06-15

    The purpose of this project was to conduct R&D on specified components and provide technical design support to a SuperPower team developing a high temperature superconducting Fault Current Limiter (SFCL). ORNL teamed with SuperPower, Inc. on a Superconductivity Partnerships with Industry (SPI) proposal for the SFCL that was submitted to DOE and approved in FY 2003. A contract between DOE and SuperPower, Inc. was signed on July 14, 2003 to design, fabricate and test the SFCL. This device employs high temperature superconducting (HTS) elements and SuperPower's proprietary technology. The program goal was to demonstrate a device that will address a broad range of the utility applications and meet utility industry requirements. This DOE-sponsored Superconductivity Partnership with Industry project would positively impact electric power transmission reliability and security by introducing a new element in the grid that can significantly mitigate fault currents and provide lower cost solutions for grid protection. The project will conduct R&D on specified components and provide technical design support to a SuperPower-led team developing a SFCL as detailed in tasks 1-5 below. Note the SuperPower scope over the broad SPI project is much larger than that shown below which indicates only the SuperPower tasks that are complementary to the ORNL tasks. SuperPower is the Project Manager for the SFCL program, and is responsible for completion of the project on schedule and budget. The scope of work for ORNL is to provide R&D support for the SFCL in the following four broad areas: (1) Assist with high voltage subsystem R&D, design, fabrication and testing including characterization of the general dielectric performance of LN2 and component materials; (2) Consult on cryogenic subsystem R&D, design, fabrication and testing; (3) Participate in project conceptual and detailed design reviews; and (4) Guide commercialization by participation on the Technical Advisory Board (TAB). Super

  3. Magnetically leviated superconducting bearing

    DOE Patents [OSTI]

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  4. Superconductive articles including cerium oxide layer

    DOE Patents [OSTI]

    Wu, X.D.; Muenchausen, R.E.

    1993-11-16

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.

  5. Sr2IrO4: Gateway to cuprate superconductivity?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mitchell, J. F.

    2015-06-05

    High temperature superconductivity in cuprates remains a defining challenge in condensed matter physics. Recently, a new set of related compounds based on Ir rather than Cu has been discovered that may be on the verge of superconductivity themselves or be able to shed new light on the underlying interactions responsible for superconductivity in the cuprates.

  6. A New Universal Parameter for Superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Universal Parameter for Superconductivity Print Scientists have been researching high-temperature (high-Tc) superconductors for decades with the goal of finding materials that express superconducting capabilities at room temperature, which would be a requirement for practical and cost-effective applications. The higher the operating temperature, the more realistic energy-saving applications such as lossless electrical transmission or magnetically levitated trains become. Scientists thought

  7. A New Universal Parameter for Superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Universal Parameter for Superconductivity Print Scientists have been researching high-temperature (high-Tc) superconductors for decades with the goal of finding materials that express superconducting capabilities at room temperature, which would be a requirement for practical and cost-effective applications. The higher the operating temperature, the more realistic energy-saving applications such as lossless electrical transmission or magnetically levitated trains become. Scientists thought

  8. A New Universal Parameter for Superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Universal Parameter for Superconductivity Print Scientists have been researching high-temperature (high-Tc) superconductors for decades with the goal of finding materials that express superconducting capabilities at room temperature, which would be a requirement for practical and cost-effective applications. The higher the operating temperature, the more realistic energy-saving applications such as lossless electrical transmission or magnetically levitated trains become. Scientists thought

  9. A New Universal Parameter for Superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Universal Parameter for Superconductivity Print Scientists have been researching high-temperature (high-Tc) superconductors for decades with the goal of finding materials that express superconducting capabilities at room temperature, which would be a requirement for practical and cost-effective applications. The higher the operating temperature, the more realistic energy-saving applications such as lossless electrical transmission or magnetically levitated trains become. Scientists thought

  10. A New Universal Parameter for Superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Universal Parameter for Superconductivity Print Scientists have been researching high-temperature (high-Tc) superconductors for decades with the goal of finding materials that express superconducting capabilities at room temperature, which would be a requirement for practical and cost-effective applications. The higher the operating temperature, the more realistic energy-saving applications such as lossless electrical transmission or magnetically levitated trains become. Scientists thought

  11. A New Universal Parameter for Superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Universal Parameter for Superconductivity Print Scientists have been researching high-temperature (high-Tc) superconductors for decades with the goal of finding materials that express superconducting capabilities at room temperature, which would be a requirement for practical and cost-effective applications. The higher the operating temperature, the more realistic energy-saving applications such as lossless electrical transmission or magnetically levitated trains become. Scientists thought

  12. A New Universal Parameter for Superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Universal Parameter for Superconductivity Print Scientists have been researching high-temperature (high-Tc) superconductors for decades with the goal of finding materials that express superconducting capabilities at room temperature, which would be a requirement for practical and cost-effective applications. The higher the operating temperature, the more realistic energy-saving applications such as lossless electrical transmission or magnetically levitated trains become. Scientists thought

  13. Engineering Division Superconducting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Fusion Magnets Present and Future * Superconducting Magnet Technology is available now for up to ITER scale - ITER is built with 1980's and 1990's technology * ...

  14. Electrodynamics of superconducting pnictide superlattices

    SciTech Connect (OSTI)

    Perucchi, A.; Pietro, P. Di; Capitani, F.; Lupi, S.; Lee, S.; Kang, J. H.; Eom, C. B.; Jiang, J.; Weiss, J. D.; Hellstrom, E. E.; Dore, P.

    2014-06-02

    It was recently shown that superlattices where layers of the 8% Co-doped BaFe{sub 2}As{sub 2} superconducting pnictide are intercalated with non superconducting ultrathin layers of either SrTiO{sub 3} or of oxygen-rich BaFe{sub 2}As{sub 2}, can be used to control flux pinning, thereby increasing critical fields and currents, without significantly affecting the critical temperature of the pristine superconducting material. However, little is known about the electron properties of these systems. Here, we investigate the electrodynamics of these superconducting pnictide superlattices in the normal and superconducting state by using infrared reflectivity, from THz to visible range. We find that multigap structure of these superlattices is preserved, whereas some significant changes are observed in their electronic structure with respect to those of the original pnictide. Our results suggest that possible attempts to further increase the flux pinning may lead to a breakdown of the pnictide superconducting properties.

  15. 2D 'Flat' Boron Yields a Superconducting Surprise

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2D 'Flat' Boron Yields a Superconducting Surprise 2D 'Flat' Boron Yields a Superconducting Surprise Simulations Run at NERSC Help Reveal Material's Superconducting Superpowers April 22, 2016 2Dboron Electrons with opposite momenta and spins pair up via lattice vibrations at low temperatures in 2D boron and give it superconducting properties. Image: Evgeni Penev, Rice University Density functional theory simulations run at NERSC helped Rice University researchers determine that two-dimensional

  16. Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miura, Masashi; Maiorov, Boris; Balakirev, Fedor F.; Kato, Takeharu; Sato, Michio; Takagi, Yuji; Izumi, Teruo; Civale, Leonardo

    2016-02-08

    Here, we show a simple and effective way to improve the vortex irreversibility line up to very high magnetic fields (60T) by increasing the density of second phase BaZrO3 nanoparticles. (Y0.77,Gd0.23)Ba2Cu3Oy films were grown on metal substrates with different concentration of BaZrO3 nanoparticles by the metal organic deposition method. We find that upon increase of the BaZrO3 concentration, the nanoparticle size remains constant but the twin-boundary density increases. Up to the highest nanoparticle concentration (n ~ 1.3 × 1022/m3), the irreversibility field (Hirr) continues to increase with no sign of saturation up to 60 T, although the vortices vastly outnumbermore » pinning centers. We find extremely high Hirr, namely Hirr = 30 T (H||45°) and 24 T (H||c) at 65 K and 58 T (H||45°) and 45 T (H||c) at 50K. The difference in pinning landscape shifts the vortex solid-liquid transition upwards, increasing the vortex region useful for power applications, while keeping the upper critical field, critical temperature and electronic mass anisotropy unchanged.« less

  17. DOE Science Showcase - Understanding High-Temperature Superconductors |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy Office of Scientific and Technical Information Understanding High-Temperature Superconductors Credit: DOE Scientists have long worked to understand one of the great mysteries of modern physics - the origin and behavior of high-temperature superconductors (HTS) that are uniquely capable of transmitting electricity with zero loss when chilled to subzero temperatures. For decades there have been competing theories and misunderstandings of how HTS materials actually work

  18. Superconducting wires

    SciTech Connect (OSTI)

    Lanagan, M.T.; Poeppel, R.B.; Singh, J.P.; Dos Santos, D.I.; Lumpp, J.K.; Dusek, J.T.; Goretta, K.C.

    1988-06-01

    The requirement of high critical current density has prompted extensive research on ceramic processing of high-T/sub c/ superconductors. An overview of wire fabrication techniques and the limitations they impose on component design will be presented. The effects of processing on microstructure and critical current density will also be discussed. Particle alignment has been observed in extruded samples which is attributed to high shear stresses during plastic forming. Composites of superconductor and silver in several configurations have been made with little deleterious effect on the superconducting properties. 35 refs., 2 figs., 1 tab.

  19. Molybdenum-rhenium superconducting suspended nanostructures

    SciTech Connect (OSTI)

    Aziz, Mohsin; Christopher Hudson, David; Russo, Saverio

    2014-06-09

    Suspended superconducting nanostructures of MoRe 50%/50% by weight are fabricated employing commonly used fabrication steps in micro- and nano-meter scale devices followed by wet-etching with Hydro-fluoric acid of a SiO{sub 2} sacrificial layer. Suspended superconducting channels as narrow as 50?nm and length 3??m have a critical temperature of ?6.5?K, which can increase by 0.5?K upon annealing at 400?C. A detailed study of the dependence of the superconducting critical current and critical temperature upon annealing and in devices with different channel widths reveals that desorption of contaminants is responsible for the improved superconducting properties. These findings pave the way for the development of superconducting electromechanical devices using standard fabrication techniques.

  20. Fast superconducting magnetic field switch

    DOE Patents [OSTI]

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  1. Fast superconducting magnetic field switch

    DOE Patents [OSTI]

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  2. Frequency dispersion of nonlinear response of thin superconducting...

    Office of Scientific and Technical Information (OSTI)

    Resistance changes induced by microwaves were investigated at different temperatures (8-15 K) near the superconducting transition. A strong decrease of the nonlinear response is ...

  3. Ultrasonic signatures at the superconducting and the pseudogap...

    Office of Scientific and Technical Information (OSTI)

    A major issue in the understanding of cuprate superconductors is the nature of the metallic state from which high temperature superconductivity emerges. Central to this issue is ...

  4. Ultrasonic signatures at the superconducting and the pseudogap...

    Office of Scientific and Technical Information (OSTI)

    that extends from room temperature to the superconducting transition. Although polarized neutron scattering studies hint at magnetic order associated with the pseudogap, there is...

  5. New Processing and Characterization Approaches for Achieving Full Performance of High Temperature Superconducting Tapes of (Bi,Pb)2Sr2Ca2Cu3Ox

    SciTech Connect (OSTI)

    E.E. Hellstrom; D.C. Larbalestier

    2006-03-22

    The thrust of this research was to identify and understand current limiting mechanisms (CLMs) that limit the current carrying capacity of (Bi,Pb)2Sr2Ca2Cu3Ox (2223) in Ag-sheathed wire. Our program concentrated on developing new methods to identify CLMs at the micrometer scale and new processing techniques to eliminate CLMs. All of the DOE Superconductivity Partnership Initiative (SPI) programs are using 2223 wire, so increasing the critical current density (Jc) in the wire can improve the technical performance of the demonstration projects, and at the same time it can decrease the cost of the wire. The important cost metric for superconducting wire is $/kAm, so increasing Jc, which is in the denominator, decreases the wire cost. The obvious CLMs were micrometer size obstacles in the 2223 ceramic that block current flow, including: misaligned grains, cracks, pores, and nonsuperconducting phases. Pores and cracks - regions where there is no superconductor or the grains are not physically connected to one another ? cannot carry supercurrent, so they were the first CLMs we tried to eliminate with improved processing. Prior to the contract, we had started investigating overpressure (OP) processing with Williams at ORNL to heal cracks and remove pores. OP processing, which is a variant of hot isostatic pressing (HIP), uses an Ar/O2 gas mixture to apply a high pressure (up to 200 atm) to compress the sample and to set the oxygen partial pressure (pO2) to form 2223. Williams had a static pressure system we used to demonstrate that OP processing healed cracks and densified the wire, but the static system limited the processing parameters we could investigate. We proposed building a new gas-flow OP system to expand the experimental capabilities and to investigate new processing routes using the gas-flow OP system. Using the gas-flow OP system, we established new world records in 2003 for Jc and Ic. These records were finally matched by Sumitomo Electric Company in early

  6. Superconductivity with Stripes | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    structure in high-Tc superconductors was manipulated in high-pressure experiments at the APS. The physics of low-temperature superconductivity is fairly well understood, but the...

  7. Secrets of superconductivity revealed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secrets of superconductivity revealed Secrets of superconductivity revealed The superconducting material Cerium-Colbalt-Indium5 reveals new secrets about how superconductivity and magnetism can be related. January 3, 2014 Simon Gerber, first author of the publication on the superconducting properties of CeCoIn5 at the Morpheus instrument of the Spallation Neutron Source SINQ in Switzerland. (Photo: Paul Scherrer Institute/Markus Fischer) Simon Gerber, first author of the publication on the

  8. Strain tolerant microfilamentary superconducting wire

    DOE Patents [OSTI]

    Finnemore, D.K.; Miller, T.A.; Ostenson, J.E.; Schwartzkopf, L.A.; Sanders, S.C.

    1993-02-23

    A strain tolerant microfilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments.

  9. 119Sn-NMR investigations on superconducting Ca3Ir4Sn13: Evidence for multigap superconductivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sarkar, R.; Petrovic, C.; Bruckner, F.; Gunther, M.; Wang, Kefeng; Biswas, P. K.; Luetkens, H.; Morenzoni, E.; Amato, A.; Klauss, H. -H.

    2015-09-25

    In this study, we report bulk superconductivity (SC) in Ca3Ir4Sn13 by means of 119Sn nuclear magnetic resonance (NMR) experiments. Two classical signatures of BCS superconductivity in spin-lattice relaxation rate (1/T1), namely the Hebel–Slichter coherence peak just below the Tc, and the exponential decay in the superconducting phase, are evident. The noticeable decrease of 119Sn Knight shift below Tc indicates spin-singlet superconductivity. The temperature dependence of the spin-lattice relaxation rate 119(1/T1) is convincingly described by the multigap isotropic superconducting gap. NMR experiments do not witness any sign of enhanced spin fluctuations.

  10. HUMAN-RESOURCES-SYSTEM-PAYROLL-SYSTEM.pdf

    Energy Savers [EERE]

    HTS Cable Projects HTS Cable Projects Fact sheet describing what is being done to modernize electricity transmission and distribution HTS Cable Projects (461.25 KB) More Documents & Publications High-Temperature Superconductivity Cable Demonstration Projects Superconductivity Program Overview Albany HTS Power Cable D.C | Department of Energy

    HUBZone Business Opportunity Session to be held on July 29 in Washington D.C HUBZone Business Opportunity Session to be held on July 29 in

  11. Superconducting magnet

    DOE Patents [OSTI]

    Satti, John A. (Naperville, IL)

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  12. Permanent magnet design for high-speed superconducting bearings

    DOE Patents [OSTI]

    Hull, J.R.; Uherka, K.L.; Abdoud, R.G.

    1996-09-10

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure is disclosed. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing. 9 figs.

  13. Permanent magnet design for high-speed superconducting bearings

    DOE Patents [OSTI]

    Hull, John R.; Uherka, Kenneth L.; Abdoud, Robert G.

    1996-01-01

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing.

  14. Electrodynamic properties of coplanar waveguides made from high-temperature superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} electrodes on nonlinear dielectric SrTiO{sub 3} substrates

    SciTech Connect (OSTI)

    Findikoglu, A.T.; Reagor, D.W.; Rasmussen, K.O.; Bishop, A.R.; Gro Jia, Q.X.; Fan, Y.; Kwon, C.; Ostrovsky, L.A.

    1999-08-01

    We present a comprehensive study of broadband (0{endash}2 GHz) electrodynamic properties of coplanar waveguides made from high-temperature superconducting thin-film YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} electrodes on nonlinear dielectric single-crystal SrTiO{sub 3} substrates. The waveguides exhibit strong dielectric nonlinearities, in addition to temperature-, dc-bias-, and frequency-dependent dissipation and refractive index. By using parameters determined from small-signal (linear) transmission characteristics of the waveguides as a function of dc bias, we develop a model equation that successfully predicts and describes large-signal (nonlinear) behavior. {copyright} {ital 1999 American Institute of Physics.}

  15. Protective link for superconducting coil

    DOE Patents [OSTI]

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  16. Superconducting magnetic coil

    DOE Patents [OSTI]

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  17. Superconducting magnetic coil

    DOE Patents [OSTI]

    Aized, Dawood; Schwall, Robert E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  18. Superconducting magnetic coil

    DOE Patents [OSTI]

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  19. Pseudogaps, Polarons, and the Mystery of High-Tc Superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pseudogaps, Polarons, and the Mystery of High-Tc Superconductivity Print Working at the ALS, a multi-institutional collaboration led by researchers at ALS and Stanford University has identified a pseudogap phase with a nodal-antinodal dichotomy in ferromagnetic manganese oxide materials (manganites). Even though ferromagnetism and superconductivity do not exist together, the pseudogap state found in these manganites is remarkably similar to that found in high-temperature superconducting copper

  20. Ultrasonic signatures at the superconducting and the pseudogap phase

    Office of Scientific and Technical Information (OSTI)

    boundaries in YBCO cuprates. (Technical Report) | SciTech Connect Ultrasonic signatures at the superconducting and the pseudogap phase boundaries in YBCO cuprates. Citation Details In-Document Search Title: Ultrasonic signatures at the superconducting and the pseudogap phase boundaries in YBCO cuprates. A major issue in the understanding of cuprate superconductors is the nature of the metallic state from which high temperature superconductivity emerges. Central to this issue is the pseudogap

  1. Pseudogaps, Polarons, and the Mystery of High-Tc Superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pseudogaps, Polarons, and the Mystery of High-Tc Superconductivity Print Working at the ALS, a multi-institutional collaboration led by researchers at ALS and Stanford University has identified a pseudogap phase with a nodal-antinodal dichotomy in ferromagnetic manganese oxide materials (manganites). Even though ferromagnetism and superconductivity do not exist together, the pseudogap state found in these manganites is remarkably similar to that found in high-temperature superconducting copper

  2. Pseudogaps, Polarons, and the Mystery of High-Tc Superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pseudogaps, Polarons, and the Mystery of High-Tc Superconductivity Print Working at the ALS, a multi-institutional collaboration led by researchers at ALS and Stanford University has identified a pseudogap phase with a nodal-antinodal dichotomy in ferromagnetic manganese oxide materials (manganites). Even though ferromagnetism and superconductivity do not exist together, the pseudogap state found in these manganites is remarkably similar to that found in high-temperature superconducting copper

  3. Anisotropy reversal of the upper critical field at low temperatures and spin-locked superconductivity in K2Cr3As3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balakirev, F. F.; Kong, T.; Jaime, M.; McDonald, R. D.; Mielke, C. H.; Gurevich, A.; Canfield, P. C.; Bud'ko, S. L.

    2015-06-23

    We report measurements of the anisotropic upper critical field Hc2(T) for K2Cr3As3 single crystals up to 60 T and T>0.6K. Our results show that the upper critical field parallel to the Cr chains, H∥c2(T), exhibits a paramagnetically limited behavior, whereas the shape of the H⊥c2(T) curve (perpendicular to the Cr chains) has no evidence of paramagnetic effects. As a result, the curves H⊥c2(T) and H∥c2(T) cross at T≈4K, so that the anisotropy parameter γH(T)=H⊥c2/H∥c2(T)increases from γH(Tc)≈0.35 near Tc to γH(0)≈1.7 at 0.6 K. This behavior of H∥c2(T) is inconsistent with triplet superconductivity but suggests a form of singlet superconductivity withmore » the electron spins locked onto the direction of Cr chains.« less

  4. Supervisory IT Specialist | Department of Energy

    Energy Savers [EERE]

    Report | Department of Energy Superconductivity for Electric Systems: 2008 Annual Peer Review Final Report Superconductivity for Electric Systems: 2008 Annual Peer Review Final Report The Office of Electricity Delivery and Energy Reliability's High Temperature Superconductivity (HTS) for Electric Systems Program's specific mission is to work in partnership with industry to develop HTS wire and perform other research and development activities leading to the commercialization of HTS-based

  5. MICROSTRUCTURE OF SUPERCONDUCTING MGB(2).

    SciTech Connect (OSTI)

    ZHU,Y.; LI,Q.; WU,L.; VOLKOV,V.; GU,G.; MOODENBAUGH,A.R.

    2001-07-12

    Recently, Akimitsu and co-workers [1] discovered superconductivity at 39 K in the intermetallic compound MgB{sub 2}. This discovery provides a new perspective on the mechanism for superconductivity. More specifically, it opens up possibilities for investigation of structure/properties in a new class of materials. With the exceptions of the cuprate and C{sub 60} families of compounds, MgB{sub 2} possesses the highest superconducting transition temperature T{sub c}. Its superconductivity appears to follow the BCS theory, apparently being mediated by electron-phonon coupling. The coherence length of MgB{sub 2} is reported to be longer than that of the cuprates [2]. In contrast to the cuprates, grain boundaries are strongly coupled and current density is determined by flux pinning [2,3]. Presently, samples of MgB{sub 2} commonly display inhomogeneity and porosity on the nanoscale, and are untextured. In spite of these obstacles, magnetization and transport measurements show that polycrystalline samples may carry large current densities circulating across many grains [3,4]. Very high values of critical current densities and critical fields have been recently observed in thin films [5,6]. These attributes suggest possible large scale and electronic applications. The underlying microstructure can be intriguing, both in terms of basic science and in applied areas. Subsequent to the discovery, many papers were published [1-13], most dealing with synthesis, physical properties, and theory. There have yet been few studies of microstructure and structural defects [11, 14]. A thorough understanding of practical superconducting properties can only be developed after an understanding of microstructure is gained. In this work we review transmission electron microscopy (TEM) studies of sintered MgB{sub 2} pellets [14]. Structural defects, including second phase particles, dislocations, stacking faults, and grain boundaries, are analyzed using electron diffraction, electron

  6. Superconductivity at Dawn of the Iron Age

    ScienceCinema (OSTI)

    Tesanovic, Zlatko [Johns Hopkins University, Baltimore, Maryland, United States

    2010-09-01

    Superconductivity is a stunning quantum phenomenon and among the deepest paradigms in all of physics. From fundamental theories of the universe to strange goings-on in exotic materials to medical imaging and cell phones, its conceptual and practical dimensions span a reach as wide as anything in science. Twenty-odd years ago, the discovery of copper oxides ushered in a new era of high-temperature superconductivity, and the joyous exuberance that followed - with physicists throwing everything from fancy gauge theories to synchrotron radiation into its kitchen sink - only recently began to show any signs of waning. In the spring of 2008, as if on cue, a new family of iron pnictide high-temperature superconductors burst on the scene, hinting at an alternative route to room-temperature superconductivity and all of its momentous consequences. Fueled by genuine excitement - and a bit of hype - the iron-based superconductivity turned into a science blockbuster of 2009. I will present a pedagogical review of this new field, contrast the physics of iron- and copper-based systems, and speculate on the microscopic origins of the two types of high-temperature superconductivity.

  7. Superconductive imaging surface magnetometer

    DOE Patents [OSTI]

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  8. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    copper, it's possible to make the topologically ordered electrons superconducting, dropping electrical resistance in the surface states all the way to zero. A Major(ana) Quantum...

  9. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    taken even further. Their studies showed that by doping the TI, bismuth selenide, with copper, it's possible to make the topologically ordered electrons superconducting, dropping...

  10. Superconducting VAR control

    DOE Patents [OSTI]

    Boenig, Heinrich J.; Hassenzahl, William V.

    1982-01-01

    Static VAR control means employing an asymmetrically controlled Graetz bridge and a superconducting direct current coil having low losses and low cost characteristics.

  11. SciTech Connect: superconduct*

    Office of Scientific and Technical Information (OSTI)

    superconduct* Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: superconduct* Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  12. Impurity effects in superconducting UPt sub 3

    SciTech Connect (OSTI)

    Aronson, M.C. (The Harrison M. Randall Laboratory of Physics, The University of Michigan, Ann Arbor, Michigan 48109 (USA)); Vorenkamp, T.; Koziol, Z.; de Visser, A.; Bakker, K.; Franse, J.J.M. (Natuurkundig Laboratorium der Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands (USA)); Smith, J.L. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (USA))

    1991-04-15

    Superconducting UPt{sub 3} is characterized by a novel and complex magnetic field-temperature phase diagram, with two superconducting transitions at {ital T}{sub {ital c}1} and {ital T}{sub {ital c}2} in zero field. We have studied the effects of Pd and Y impurities on the zero field superconducting properties of UPt{sub 3}. Resistance measurements show that both dopants increase the residual resistivity and decrease the spin fluctuation temperature in the normal state. {ital T}{sub {ital c}1} is depressed by both dopants, but more effectively by Pd. {vert bar}{ital T}{sub {ital c}1} {minus} {ital T}{sub {ital c}2}{vert bar} is essentially unaffected by Y doping, but increases dramatically with Pd doping.

  13. Superconductivity of magnesium diboride

    SciTech Connect (OSTI)

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  14. Superconductivity of magnesium diboride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  15. Dual control active superconductive devices

    DOE Patents [OSTI]

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  16. Superconducting FCL using a combined inducted magnetic field trigger and shunt coil

    DOE Patents [OSTI]

    Tekletsadik, Kasegn D.

    2007-10-16

    A single trigger/shunt coil is utilized for combined induced magnetic field triggering and shunt impedance. The single coil connected in parallel with the high temperature superconducting element, is designed to generate a circulating current in the parallel circuit during normal operation to aid triggering the high temperature superconducting element to quench in the event of a fault. The circulating current is generated by an induced voltage in the coil, when the system current flows through the high temperature superconducting element.

  17. Superconducting Radiofrequency (SRF) Accelerator Cavities

    ScienceCinema (OSTI)

    Reece, Charlie

    2014-05-22

    Charlie Reece, an accelerator technology scientist, explains how superconducting radiofrequency accelerator cavities work.

  18. Method for forming bismuth-based superconducting ceramics

    DOE Patents [OSTI]

    Maroni, Victor A.; Merchant, Nazarali N.; Parrella, Ronald D.

    2005-05-17

    A method for reducing the concentration of non-superconducting phases during the heat treatment of Pb doped Ag/Bi-2223 composites having Bi-2223 and Bi-2212 superconducting phases is disclosed. A Pb doped Ag/Bi-2223 composite having Bi-2223 and Bi-2212 superconducting phases is heated in an atmosphere having an oxygen partial pressure not less than about 0.04 atmospheres and the temperature is maintained at the lower of a non-superconducting phase take-off temperature and the Bi-2223 superconducting phase grain growth take-off temperature. The oxygen partial pressure is varied and the temperature is varied between about 815.degree. C. and about 835.degree. C. to produce not less than 80 percent conversion to Pb doped Bi-2223 superconducting phase and not greater than about 20 volume percent non-superconducting phases. The oxygen partial pressure is preferably varied between about 0.04 and about 0.21 atmospheres. A product by the method is disclosed.

  19. Improved superconducting magnet wire

    DOE Patents [OSTI]

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  20. Scientists optimize defects for better superconducting effects | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory optimize defects for better superconducting effects By Jared Sagoff * July 12, 2016 Tweet EmailPrint High-temperature superconducting materials hold enormous promise for a variety of different applications because of their ability to transmit a current without any dissipation at relatively high temperatures - up to around 90 Kelvin (about -300° F), which permits cooling with liquid nitrogen. However, this special ability decreases rapidly in the presence of a magnetic

  1. Scientists optimize defects for better superconducting effects | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership Computing Facility Scientists optimize defects for better superconducting effects Author: Jared Sagoff July 12, 2016 Facebook Twitter LinkedIn Google E-mail Printer-friendly version High-temperature superconducting materials hold enormous promise for a variety of different applications because of their ability to transmit a current without any dissipation at relatively high temperatures - up to around 90 Kelvin (about -300° F), which permits cooling with liquid nitrogen. However,

  2. Apparatus for characterizing conductivity of superconducting materials

    DOE Patents [OSTI]

    Doss, James D.

    1993-01-01

    Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples.

  3. Superconducting nanowire single photon detector on diamond

    SciTech Connect (OSTI)

    Atikian, Haig A.; Burek, Michael J.; Choy, Jennifer T.; Lon?ar, Marko; Eftekharian, Amin; Jafari Salim, A.; Hamed Majedi, A.

    2014-03-24

    Superconducting nanowire single photon detectors are fabricated directly on diamond substrates and their optical and electrical properties are characterized. Dark count performance and photon count rates are measured at varying temperatures for 1310?nm and 632?nm photons. A multi-step diamond surface polishing procedure is reported, involving iterative reactive ion etching and mechanical polishing to create a suitable diamond surface for the deposition and patterning of thin film superconducting layers. Using this approach, diamond substrates with less than 300?pm Root Mean Square surface roughness are obtained.

  4. Apparatus for characterizing conductivity of superconducting materials

    DOE Patents [OSTI]

    Doss, J.D.

    1993-12-07

    Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples. 10 figures.

  5. Alexei Abrikosov and Superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alexei Abrikosov and Superconductivity Resources with Additional Information * Publications at ANL Alexei A. Abrikosov of the U.S. Department of Energy's Argonne National Laboratory (ANL) is a recipient of the 2003 Nobel Prize in Physics for his research in the area of superconductivity. Alexei Abrikosov Courtesy Argonne National Laboratory "Abrikosov's research [at ANL] centers on condensed-matter physics (the structure and behavior of solids and liquids), and concentrates on

  6. Superconductive ceramic oxide combination

    SciTech Connect (OSTI)

    Chatterjee, D.K.; Mehrotra, A.K.; Mir, J.M.

    1991-03-05

    This patent describes the combination of a superconductive ceramic oxide which degrades in conductivity upon contact of ambient air with its surface and, interposed between the ceramic oxide surface and ambient air in the amount of at least 1 mg per square meter of surface area of the superconductive ceramic oxide, a passivant polymer selected from the group consisting of a polyester ionomer and an alkyl cellulose.

  7. Superconducting Topological Insulators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconducting Topological Insulators Superconducting Topological Insulators Print Wednesday, 26 January 2011 00:00 Three-dimensional topological insulators (TIs), discovered experimentally in 2007-2009 by a Princeton-ALS collaboration, are a promising platform for developing the next generation of electronics. Electrons within one nanometer of a TI's surface move at high speeds in a "light-like" fashion. The quantum interactions that generate these electronic states cause individual

  8. Superconducting submillimeter and millimeter wave detectors

    SciTech Connect (OSTI)

    Nahum, M.

    1992-10-20

    The series of projects described in this dissertation was stimulated by the discovery of high temperature superconductivity. Our goal was to develop useful applications which would be competitive with the current state of technology. The high-[Tc] microbolometer was developed into the most sensitive direct detector of millimeter waves, when operated at liquid nitrogen temperatures. The thermal boundary resistance of thin YBa[sub 2]Cu[sub 3]0[sub 7-[delta

  9. Levitation pressure and friction losses in superconducting bearings

    DOE Patents [OSTI]

    Hull, John R.

    2001-01-01

    A superconducting bearing having at least one permanent magnet magnetized with a vertical polarization. The lower or stator portion of the bearing includes an array of high-temperature superconducting elements which are comprised of a plurality of annular rings. An annular ring is located below each permanent magnet and an annular ring is offset horizontally from at least one of the permanent magnets. The rings are composed of individual high-temperature superconducting elements located circumferentially along the ring. By constructing the horizontally-offset high-temperature superconducting ring so that the c-axis is oriented in a radial direction, a higher levitation force can be achieved. Such an orientation will also provide substantially lower rotational drag losses in the bearing.

  10. Magnetic and Superconducting Materials at High Pressures

    SciTech Connect (OSTI)

    Struzhkin, Viktor V.

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  11. Superconducting transmission line particle detector

    DOE Patents [OSTI]

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  12. Superconducting transmission line particle detector

    DOE Patents [OSTI]

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  13. Segmented superconducting tape having reduced AC losses and method of making

    DOE Patents [OSTI]

    Foltyn, Stephen R.; Jia, Quanxi; Arendt, Paul N.; Holesinger, Terry G.; Wang, Haiyan

    2009-09-22

    A superconducting tape having reduced AC losses. The tape has a high temperature superconductor layer that is segmented. Disruptive strips, formed in one of the tape substrate, a buffer layer, and the superconducting layer create parallel discontinuities in the superconducting layer that separate the current-carrying elements of the superconducting layer into strips or filament-like structures. Segmentation of the current-carrying elements has the effect of reducing AC current losses. Methods of making such a superconducting tape and reducing AC losses in such tapes are also disclosed.

  14. Suppression of the Critical Temperature of Superconducting NdFeAs(OF) Single Crystals by Kondo-Like Defect Sites Induced by {alpha}-Particle Irradiation

    SciTech Connect (OSTI)

    Tarantini, C.; Gurevich, A.; Larbalestier, D. C.; Putti, M.; Shen, Y.; Singh, R. K.; Rowell, J. M.; Newman, N.; Cheng Peng; Jia Ying; Wen Haihu

    2010-02-26

    We report the effect of {alpha}-particle irradiation on the reduction of the critical temperature T{sub c} of a NdFeAs(OF) single crystal. Our data indicate that irradiation defects cause both nonmagnetic and magnetic scattering, resulting in the Kondo-like excess resistance {Delta}{rho}(T)propor tolnT over 2 decades in temperatures above T{sub c}. The critical density of magnetic irradiation defects which suppresses T{sub c} is found to be much higher than those for cuprates and multiband BCS superconductors. We suggest that such anomalously weak pair breaking by irradiation defects indicates that magnetic scattering in pnictides is coupled with pairing interactions mediated by spin fluctuations.

  15. Prediction of superconductivity in Li-intercalated bilayer phosphorene

    SciTech Connect (OSTI)

    Huang, G. Q.; Xing, Z. W.; Xing, D. Y.

    2015-03-16

    It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling λ can be larger than 1 and the superconducting temperature T{sub c} can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor.

  16. Radiofrequency amplifier based on a dc superconducting quantum interference device

    DOE Patents [OSTI]

    Hilbert, C.; Martinis, J.M.; Clarke, J.

    1984-04-27

    A low noise radiofrequency amplifer, using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID and an input coil are maintained at superconductivity temperatures in a superconducting shield, with the input coil inductively coupled to the superconducting ring of the dc SQUID. A radiofrequency signal from outside the shield is applied to the input coil, and an amplified radiofrequency signal is developed across the dc SQUID ring and transmitted to exteriorly of the shield. A power gain of 19.5 +- 0.5 dB has been achieved with a noise temperature of 1.0 +- 0.4 K at a frequency of 100 MHz.

  17. Radiofrequency amplifier based on a dc superconducting quantum interference device

    DOE Patents [OSTI]

    Hilbert, Claude; Martinis, John M.; Clarke, John

    1986-01-01

    A low noise radiofrequency amplifier (10), using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID (11) and an input coil (12) are maintained at superconductivity temperatures in a superconducting shield (13), with the input coil (12) inductively coupled to the superconducting ring (17) of the dc SQUID (11). A radiofrequency signal from outside the shield (13) is applied to the input coil (12), and an amplified radiofrequency signal is developed across the dc SQUID ring (17) and transmitted to exteriorly of the shield (13). A power gain of 19.5.+-.0.5 dB has been achieved with a noise temperature of 1.0.+-.0.4 K. at a frequency of 100 MHz.

  18. Nonlinear terahertz superconducting plasmonics

    SciTech Connect (OSTI)

    Wu, Jingbo; Liang, Lanju; Jin, Biaobing E-mail: tonouchi@ile.osaka-u.ac.jp Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng E-mail: tonouchi@ile.osaka-u.ac.jp; Zhang, Caihong; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi E-mail: tonouchi@ile.osaka-u.ac.jp; Wang, Huabing

    2014-10-20

    Nonlinear terahertz (THz) transmission through subwavelength hole array in superconducting niobium nitride (NbN) film is experimentally investigated using intense THz pulses. The good agreement between the measurement and numerical simulations indicates that the field strength dependent transmission mainly arises from the nonlinear properties of the superconducting film. Under weak THz pulses, the transmission peak can be tuned over a frequency range of 145 GHz which is attributed to the high kinetic inductance of 50?nm-thick NbN film. Utilizing the THz pump-THz probe spectroscopy, we study the dynamic process of transmission spectra and demonstrate that the transition time of such superconducting plasmonic device is within 5 ps.

  19. The Hardest Superconducting Metal Nitride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transitionmetal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rocksalt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 1020 GPa. Here, we report highpressure synthesis of hexagonal ?MoN and cubic ?MoN through an ionexchange reaction at 3.5 GPa. The final products are in the bulk form withmorecrystallite sizes of 50 80 ?m. Based on indentation testing on single crystals, hexagonal ?MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic ?MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded MoN network than that in cubic phase. The measured superconducting transition temperatures for ?MoN and cubic ?MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.less

  20. The Hardest Superconducting Metal Nitride

    SciTech Connect (OSTI)

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form with crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.

  1. The Hardest Superconducting Metal Nitride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Shanmin; Antonio, Daniel; Yu, Xiaohui; Zhang, Jianzhong; Cornelius, Andrew L.; He, Duanwei; Zhao, Yusheng

    2015-09-03

    Transition–metal (TM) nitrides are a class of compounds with a wide range of properties and applications. Hard superconducting nitrides are of particular interest for electronic applications under working conditions such as coating and high stress (e.g., electromechanical systems). However, most of the known TM nitrides crystallize in the rock–salt structure, a structure that is unfavorable to resist shear strain, and they exhibit relatively low indentation hardness, typically in the range of 10–20 GPa. Here, we report high–pressure synthesis of hexagonal δ–MoN and cubic γ–MoN through an ion–exchange reaction at 3.5 GPa. The final products are in the bulk form withmore » crystallite sizes of 50 – 80 μm. Based on indentation testing on single crystals, hexagonal δ–MoN exhibits excellent hardness of ~30 GPa, which is 30% higher than cubic γ–MoN (~23 GPa) and is so far the hardest among the known metal nitrides. The hardness enhancement in hexagonal phase is attributed to extended covalently bonded Mo–N network than that in cubic phase. The measured superconducting transition temperatures for δ–MoN and cubic γ–MoN are 13.8 and 5.5 K, respectively, in good agreement with previous measurements.« less

  2. Magnetism and Superconductivity Compete in Iron-based Superconductors |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford Synchrotron Radiation Lightsource Magnetism and Superconductivity Compete in Iron-based Superconductors Wednesday, April 30, 2014 HTSC Figure 1 Fig. 1. Measured electronic structure of underdoped Ba1-xKxFe2As2 in the orthorhombic spin-density-wave (SDW) ordered state. The antiferromagnetic and ferromagnetic directions are indicated by arrows. High-temperature superconductivity (HTSC), one of the long-standing unsolved mysteries of condensed matter physics, is a beautiful example of

  3. Electro-thermal simulation of superconducting nanowire avalanche photodetectors

    SciTech Connect (OSTI)

    Marsili, F.; Najafi, F.; Herder, C.; Berggren, K. K.

    2011-01-01

    We developed an electrothermal model of NbN superconducting nanowire avalanche photodetectors (SNAPs) on sapphire substrates. SNAPs are single-photon detectors consisting of the parallel connection of N superconducting nanowires. We extrapolated the physical constants of the model from experimental data and we simulated the time evolution of the device resistance, temperature and current by solving two coupled electrical and thermal differential equations describing the nanowires. The predictions of the model were in good quantitative agreement with the experimental results.

  4. Graphite and its Hidden Superconductivity | Stanford Synchrotron Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource powders [7]. Special emphasis will be given to the possible ways to differentiate between ferromagnetic- from superconducting-like signals when the magnetic moments of interest remain small in comparison with the large diamagnetic backgrounds. Recently done transport and persistent currents experiments at room temperature on graphite flakes embedded in alkanes and their reproducibility. All the experimental evidence as a whole suggests the existence of superconductivity at very

  5. A small-bore high-field superconducting quadrupole magnet

    SciTech Connect (OSTI)

    Barlow, D.B.; Kraus, R.H.; Lobb, C.T.; Menzel, M.T. ); Walstrom, P.L. )

    1990-01-01

    A prototype superconducting quadrupole magnet was designed and built for use in superconducting coupled-cavity linacs where the use of permanent magnets is ruled out by consideration of trapped flux losses. The magnet has a clear bore diameter of 1.8 cm and outside diameter of 11 cm and length of 11 cm. The magnet was operated at a temperature of 4.2 K and obtained a peak quadrupole field gradient of 320 T/m.

  6. DOE Science Showcase - Superconductivity | OSTI, US Dept of Energy Office

    Office of Scientific and Technical Information (OSTI)

    of Scientific and Technical Information Superconductivity "Harnessing the power of superconductivity, or the ability of certain materials to conduct electricity with zero energy loss, is one of the most exciting possibilities for creating a more energy-efficient future. But because most superconductors only work at very low temperatures-just a few degrees above absolute zero, or -273 degrees Celsius-they are not yet useful for everyday life. The discovery in the 1980s of

  7. Composite arrays of superconducting microstrip line resonators

    SciTech Connect (OSTI)

    Mohebbi, H. R. Miao, G. X.; Benningshof, O. W. B.; Taminiau, I. A. J.; Cory, D. G.

    2014-03-07

    A novel design of an array of half-wave superconductive microstrip resonators is described. The resonator is intended to be useful for electron spin resonance studies of thin film samples at cryogenic temperatures. It achieves a high quality factor, has a small mode-volume, and creates a uniform magnetic field in a plane above the resonator. The device is made of thin film Niobium on sapphire wafer and is tested with a static magnetic field. Variation of Q-factor versus the magnetic field's strength at different temperatures is reported and is in a good agreement with simulation when the loss due to the vortices is included. Also, the power-dependence response of the resonator is shown in experiments and is verified by capturing the nonlinearity associated with the surface impedance of the superconducting film into the circuit model of the device.

  8. Active superconducting devices formed of thin films

    DOE Patents [OSTI]

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1991-05-28

    Active superconducting devices are formed of thin films of superconductor which include a main conduction channel which has an active weak link region. The weak link region is composed of an array of links of thin film superconductor spaced from one another by voids and selected in size and thickness such that magnetic flux can propagate across the weak link region when it is superconducting. Magnetic flux applied to the weak link region will propagate across the array of links causing localized loss of superconductivity in the links and changing the effective resistance across the links. The magnetic flux can be applied from a control line formed of a superconducting film deposited coplanar with the main conduction channel and weak link region on a substrate. The devices can be formed of any type to superconductor but are particularly well suited to the high temperature superconductors since the devices can be entirely formed from coplanar films with no overlying regions. The devices can be utilized for a variety of electrical components, including switching circuits, amplifiers, oscillators and modulators, and are well suited to microwave frequency applications.

  9. Striving for Superconducting Perfection | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Striving for Superconducting Perfection A member of the complex family of iron-based superconductors has been newly synthesized, shown to be highly ordered, and exhibits nearly optimal properties. Well-ordered, single crystals of CaKFe4As4 superconductors have allowed researchers to remove one of the veils of complexity for iron-based superconductors-disorder. Previously, our understanding of the higher transition temperatures, and promising high-magnetic field properties of iron-based

  10. AC/RF Superconductivity

    SciTech Connect (OSTI)

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  11. Langmuir vacuum and superconductivity

    SciTech Connect (OSTI)

    Veklenko, B. A.

    2012-06-15

    It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  12. Engineering Division Superconducting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Engineering Division Superconducting Magnet Technology for Fusion and Large Scale Applications Joseph V. Minervini Massachusetts Institute of Technology Plasma Science and Fusion Center Princeton Plasma Physics Laboratory Colloquium Princeton, NJ October 15, 2014 Technology & Engineering Division Contents * Fusion Magnets - Present and Future - Vision - State-of-the-art - New developments in superconductors * Advanced fusion magnet technology * Other large scale applications of

  13. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOE Patents [OSTI]

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  14. Superconducting articles of manufacture and method of producing same

    DOE Patents [OSTI]

    Newkirk, Lawrence R.; Valencia, Flavio A.

    1980-01-01

    Bulk coatings of Nb.sub.3 Ge with high superconducting transition temperatures bonded to metallic substrates and a chemical vapor deposition method for producing such coatings on metallic substrates are disclosed. In accordance with the method, a Nb.sub.3 Ge coating having a transition temperature in excess of 21.5 K may be tightly bonded to a copper substrate.

  15. Qualification High Voltage Testing of Short Triax HTS Cables in the Laboratory

    SciTech Connect (OSTI)

    James, David Randy; Sauers, Isidor; Ellis, Alvin R; Tuncer, Enis; Gouge, Michael J; Demko, Jonathan A; Duckworth, Robert C; Rey, Christopher M

    2009-01-01

    In order to qualify the electrical insulation design of future HTS cables installed in the electric grid, a number of high voltage qualification tests are generally performed in the laboratory on either single-phase model cables and/or actual three-phase cable samples. Prior to installation of the 200-m Triax HTS cable at the American Electric Power Bixby substation near Columbus, Ohio, in September, 2006, such tests were conducted on both single-phase model cables made at ORNL and tri-axial cable sections cut off from cable made on a production run. The three-phase tri-axial design provides some specific testing challenges since the ground shield and three phases are concentric about a central former with each phase separated by dielectric tape insulation immersed in liquid nitrogen. The samples were successfully tested and qualified for partial discharge inception, AC withstand, and lightning impulse where voltage is applied to one phase with the other phases grounded. In addition one of the phase pairs was tested for dc withstand as a ldquoworst caserdquo scenario to simulate the effect of VLF (Very Low Frequency) tests on the actual cable installed at the Bixby site. The model and prototype cables will be described and the high voltage test results summarized.

  16. Electronic structure in high temperature superconducting oxides

    SciTech Connect (OSTI)

    Howell, R.H.; Sterne, P.; Solal, F.; Fluss, M.J.; Tobin, J.; O`Brien, J.; Radousky, H.B.; Haghighi, H.; Kaiser, J.H.; Rayner, S.L.; West, R.N.; Liu, J.Z.; Shelton, R.; Olsen, C.G.; Gu, C.; Kitazawa, K.; Kojima, H.

    1991-08-20

    We have performed measurements on entwined single crystals of YBCO using both photoemission and positron angular correlation of annihilation radiation and on single crystals of LSCO using only angular correlation. Fermi surface features in good agreement with band theory were found and identified in all of the measurements. In photoemission the Fermi momentum was fixed for several points and the band dispersion below the Fermi energy was mapped. In positron angular correlation measurements the shape of the Fermi surface was mapped for the CuO chains (YBCO) and the CuO planes (LSCO). Demonstration of the existence of Fermi surfaces in the HTSC materials points a direction for future theoretical considerations.

  17. Method of manufacturing a niobium-aluminum-germanium superconductive material

    DOE Patents [OSTI]

    Wang, J.L.F.; Pickus, M.R.; Douglas, K.E.

    A method for manufacturing flexible Nb/sub 3/ (Al,Ge) multifilamentary superconductive material in which a sintered porous Nb compact is infiltrated with an Al-Ge alloy. It is deformed and heat treated in a series of steps at successively higher temperatures preferably below 1000/sup 0/C during the heat treatment, cladding material such as copper can be applied to facilitate a deformation step preceding the heat treatment and can remain in place through the heat treatment to serve as a temperature stabilizer for the superconductive material produced. These lower heat treatment temperatures favor formation of filaments with reduced grain size and with more grain boundaries which in turn increase the current-carrying capacity of the superconductive material.

  18. Superconducting current transducer

    SciTech Connect (OSTI)

    Kuchnir, M.; Ozelis, J.P. )

    1991-03-01

    This paper describes the construction and performance of an electric current meter that operates in liquid He and mechanically splits apart to permit replacement of the current carrying conductor. It permits the measurement of currents induced in a loop of superconducting cable and expeditious exchange of such loops. It is a key component for a short sample cable testing facility that requires no high current power supplies nor high current leads. Its superconducting pickup circuit involves a non-magnetic core toroidal split-coil that surrounds the conductor and a solenoid whose field is sensed by a Hall probe. This toroidal split-coil is potted inside another compensating toroidal split-coil.

  19. Superconducting magnet wire

    DOE Patents [OSTI]

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  20. Superconducting molybdenum-rhenium electrodes for single-molecule transport studies

    SciTech Connect (OSTI)

    Gaudenzi, R.; Island, J. O.; Bruijckere, J. de; Burzurí, E.; Zant, H. S. J. van der; Klapwijk, T. M.

    2015-06-01

    We demonstrate that electronic transport through single molecules or molecular ensembles, commonly based on gold (Au) electrodes, can be extended to superconducting electrodes by combining gold with molybdenum-rhenium (MoRe). This combination induces proximity-effect superconductivity in the gold to temperatures of at least 4.6 K and magnetic fields of 6 T, improving on previously reported aluminum based superconducting nanojunctions. As a proof of concept, we show three-terminal superconductive transport measurements through an individual Fe{sub 4} single-molecule magnet.

  1. Proceedings of the fourth international conference and exhibition: World Congress on superconductivity. Volume 1

    SciTech Connect (OSTI)

    Krishen, K.; Burnham, C.

    1994-12-31

    The goals of the World Congress on Superconductivity (WCS) have been to establish and foster the development and commercial application of superconductivity technology on a global scale by providing a non-adversarial, non-advocacy forum where scientists, engineers, businessmen and government personnel can freely exchange information and ideas on recent developments and directions for the future of superconductive research. Sessions were held on: accelerator technology, power and energy, persistent magnetic fields, performance characterization, physical properties, fabrication methodology, superconductive magnetic energy storage (SMES), thin films, high temperature materials, device applications, wire fabrication, and granular superconductors. Individual papers are indexed separately.

  2. HINS Superconducting Lens and Cryostat Performance

    SciTech Connect (OSTI)

    Page, T.M.; DiMarco, J.; Huang, Y.; Orris, D.F.; Tartaglia, M.A.; Terechkine, I.; Tompkins, J.C.; /Fermilab

    2008-08-01

    Fermi National Accelerator Laboratory is involved in the development of a 60 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. A prototype solenoid cryostat was built and tested at the Fermilab Magnet Test Facility. This paper discusses the test results of the prototype and compares the measured and estimated performance of the cryostat. We also present the methods and results for measuring and fiducializing the axis of the solenoid lens.

  3. Critical parameters of superconducting materials and structures

    SciTech Connect (OSTI)

    Fluss, M.J.; Howell, R.H.; Sterne, P.A.; Dykes, J.W.; Mosley, W.D.; Chaiken, A.; Ralls, K.; Radousky, H.

    1995-02-01

    We report here the completion of a one year project to investigate the synthesis, electronic structure, defect structure, and physical transport properties of high temperature superconducting oxide materials. During the course of this project we produced some of the finest samples of single crystal detwinned YBa{sub 2}Cu{sub 3}O{sub 7}, and stoichiometrically perfect (Ba,K)BiO{sub 3}. We deduced the Fermi surface of YBa{sub 2}Cu{sub 3}O{sub 7}, (La,Sr){sub 2}CuO{sub 4}, and (Ba,K)BiO{sub 3} through the recording of the electron momentum density in these materials as measured by positron annihilation spectroscopy and angle resolved photoemission. We also performed extensive studies on Pr substituted (Y,Pr)Ba{sub 2}Cu{sub 3}O{sub 7} so as to further understand the origin of the electron pairing leading to superconductivity.

  4. Superconducting cuprate heterostructures for hot electron bolometers

    SciTech Connect (OSTI)

    Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.

    2013-11-25

    Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La{sub 2?x}Sr{sub x}CuO{sub 4} layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, ?V??I{sup 3}, with a coefficient ?(T) that correlates with the temperature variation of the resistivity d?/dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area g{sub e?ph}?1 W/K cm{sup 2} at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.

  5. The TESLA superconducting linear collider

    SciTech Connect (OSTI)

    the TESLA Collaboration

    1997-03-01

    This paper summarizes the present status of the studies for a superconducting Linear Collider (TESLA). {copyright} {ital 1997 American Institute of Physics.}

  6. Superconducting VAR control. [Patent application

    DOE Patents [OSTI]

    Boenig, H.J.; Hassenzahl, W.V.

    1980-12-05

    Static VAR control means are described employing an asymmetrically controlled Graetz bridge and a superconducting direct current coil having low losses and low cost characteristics.

  7. Superconducting magnet development in Japan

    SciTech Connect (OSTI)

    Yasukochi, K.

    1983-05-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb/sub 3/Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting ..mu.. meson channel and ..pi.. meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration.

  8. Topological confinement and superconductivity (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Topological confinement and superconductivity Citation Details In-Document Search Title: Topological confinement and superconductivity You are accessing a document from the ...

  9. Influence of optically quenched superconductivity on quasiparticle...

    Office of Scientific and Technical Information (OSTI)

    Influence of optically quenched superconductivity on quasiparticle relaxation rates in Bi ... Title: Influence of optically quenched superconductivity on quasiparticle relaxation rates ...

  10. Superconductivity, Glue, and the Pseudogap (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Superconductivity, Glue, and the Pseudogap Citation Details In-Document Search Title: Superconductivity, Glue, and the Pseudogap Authors: Migliori, Albert 1 + Show Author ...

  11. Superconductivity (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Superconductivity Citation Details In-Document Search Title: Superconductivity Authors: Maiorov, Boris A. 1 + Show Author Affiliations Los Alamos National ...

  12. Power superconducting power transmission cable

    DOE Patents [OSTI]

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  13. High critical current superconducting tapes

    DOE Patents [OSTI]

    Holesinger, Terry G. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM)

    2003-09-23

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.

  14. Power superconducting power transmission cable

    DOE Patents [OSTI]

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  15. Superconducting magnet cooling system

    DOE Patents [OSTI]

    Vander Arend, Peter C.; Fowler, William B.

    1977-01-01

    A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

  16. Superconducting dipole electromagnet

    DOE Patents [OSTI]

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  17. Rotatable superconducting cyclotron adapted for medical use

    DOE Patents [OSTI]

    Blosser, Henry G. (East Lansing, MI); Johnson, David A. (Williamston, MI); Riedel, Jack (East Lansing, MI); Burleigh, Richard J. (Berkeley, CA)

    1985-01-01

    A superconducting cyclotron (10) rotatable on a support structure (11) in an arc of about 180.degree. around a pivot axis (A--A) and particularly adapted for medical use is described. The rotatable support structure (13, 15) is balanced by being counterweighted (14) so as to allow rotation of the cyclotron and a beam (12), such as a subparticle (neutron) or atomic particle beam, from the cyclotron in the arc around a patient. Flexible hose (25) is moveably attached to the support structure for providing a liquified gas which is supercooled to near 0.degree. K. to an inlet means (122) to a chamber (105) around superconducting coils (101, 102). The liquid (34) level in the cyclotron is maintained approximately half full so that rotation of the support structure and cyclotron through the 180.degree. can be accomplished without spilling the liquid from the cyclotron. With the coils vertically oriented, each turn of the winding is approximately half immersed in liquid (34) and half exposed to cold gas and adequate cooling to maintain superconducting temperatures in the section of coil above the liquid level is provided by the combination of cold gas/vapor and by the conductive flow of heat along each turn of the winding from the half above the liquid to the half below.

  18. Method and apparatus of cryogenic cooling for high temperature superconductor devices

    DOE Patents [OSTI]

    Yuan, Xing; Mine, Susumu

    2005-02-15

    A method and apparatus for providing cryogenic cooling to HTS devices, in particular those that are used in high-voltage electric power applications. The method involves pressurizing liquid cryogen to above one atmospheric pressure to improve its dielectric strength, while sub-cooling the liquid cryogen to below its saturation temperature in order to improve the performance of the HTS components of the device. An apparatus utilizing such a cooling method consists of a vessel that contains a pressurized gaseous cryogen region and a sub-cooled liquid cryogen bath, a liquid cryogen heating coupled with a gaseous cryogen venting scheme to maintain the pressure of the cryogen to a value in a range that corresponds to optimum dielectric strength of the liquid cryogen, and a cooling system that maintains the liquid cryogen at a temperature below its boiling point to improve the performance of HTS materials used in the device.

  19. Discovery of superconductivity in hard hexagonal ε-NbN

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zou, Yongtao; Li, Qiang; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; et al

    2016-02-29

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ~11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bondingmore » in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ~20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (~227 GPa). Furthermore, this exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.« less

  20. Superconducting current transducer

    SciTech Connect (OSTI)

    Kuchnir, M.; Ozelis, J.P.

    1990-10-01

    The construction and performance of an electric current meter that operates in liquid He and mechanically splits apart to permit replacement of the current carrying conductor is described. It permits the measurement of currents induced in a loop of superconducting cable and expeditious exchange of such loops. It is a key component for a short sample cable testing facility that requires no high current power supplies nor high current leads. Its superconducting pickup circuit involves a non-magnetic core toroidal split-coil that surrounds the conductor and a solenoid whose field is sensed by a Hall probe. This toroidal split-coil is potted inside another compensating toroidal split-coil. The C shaped half toroids can be separated and brought precisely together from outside the cryostat. The Hall probe is energized and sensed by a lock-in amplifier whose output drives a bipolar power supply which feeds the compensating coil. The output is the voltage across a resistor in this feedback circuit. Currents of up to 10 kA can be measured with a precision of 150 mA. 3 refs., 4 figs.

  1. SECTION V: SUPERCONDUCTING CYCLOTRON AND INSTRUMENTATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... V-4 K. Hagel and R. Burch Commissioning of the superconducting solenoid rare isotope beamline......

  2. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL)

    1996-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  3. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL)

    1997-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  4. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOE Patents [OSTI]

    Hull, J.R.

    1996-10-08

    A method and apparatus are disclosed for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap. 4 figs.

  5. Method of making superconducting cylinders for flux detectors

    DOE Patents [OSTI]

    Goodkind, J.M.; Stolfa, D.L.

    1971-07-06

    A method of making superconducting cylinders of the ''weak link'' type is provided. The method allows the weak link to be made much smaller than was heretofore possible, thereby greatly increasing sensitivity and operating temperature range when the cylinder is used in a flux detector. The resistance of the weak link is monitored continuously as metal is removed from the link by electrochemical action.

  6. Method for obtaining large levitation pressure in superconducting magnetic bearings

    DOE Patents [OSTI]

    Hull, J.R.

    1997-08-05

    A method and apparatus are disclosed for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap. 4 figs.

  7. Construction of a superconducting RFQ structure

    SciTech Connect (OSTI)

    Shepard, K.W.; Kennedy, W.L.; Crandall, K.R.

    1993-07-01

    This paper reports the design and construction status of a niobium superconducting RFQ operating at 194 MHz. The structure is of the rod and post type, novel in that each of four rods is supported by two posts oriented radially with respect to the beam axis. Although the geometry has four-fold rotation symmetry, the dipole-quadrupole mode splitting is large, giving good mechanical tolerances. The simplicity of the geometry enables designing for good mechanical stability while minimizing tooling costs for fabrication with niobium. Design details of a prototype niobium resonator, results of measurements on room temperature models, and construction status are discussed.

  8. Clamshell microwave cavities having a superconductive coating

    DOE Patents [OSTI]

    Cooke, D. Wayne; Arendt, Paul N.; Piel, Helmut

    1994-01-01

    A microwave cavity including a pair of opposing clamshell halves, such halves comprised of a metal selected from the group consisting of silver, copper, or a silver-based alloy, wherein the cavity is further characterized as exhibiting a dominant TE.sub.011 mode is provided together with an embodiment wherein the interior concave surfaces of the clamshell halves are coated with a superconductive material. In the case of copper clamshell halves, the microwave cavity has a Q-value of about 1.2.times.10.sup.5 as measured at a temperature of 10K and a frequency of 10 GHz.

  9. Enhancement of superconductivity of lanthanum and yttrium sesquicarbide

    DOE Patents [OSTI]

    Krupka, M.C.; Giorgi, A.L.; Krikorian, N.H.; Szklarz, E.G.

    1971-06-22

    A method of enhancing the superconductivity of body-centered cubic lanthanum and yttrium sesquicarbide through formation of the sesquicarbides from ternary alloys of novel composition (N/sub x/M/sub 1-x/)C/sub z/, where N is yttrium or lanthanum, M is thorium, any of the Group IV and VI transition metals, or gold, germanium or silicon, and z is approximately 1.2 to 1.6. These ternary sesquicarbides have superconducting transition temperatures as high as 17.0/sup 0/K.

  10. Enhancement of Superconductivity of Lanthanum and Yttrium Sesquicarbide

    DOE Patents [OSTI]

    Krupka, M. C.; Giorgi, A. L.; Krikorian, N. H.; Szklarz, E. G.

    1972-06-22

    A method of enhancing the superconductivity of body-centered cubic lanthanum and yttrium sesquicarbide through formation of the sesquicarbides from ternary alloys of novel composition (N/sub x/M/sub 1-x/)C/sub z/, where N is yttrium or lanthanum, M is thorium, any of the Group IV and VI transition metals, or gold, germanium or silicon, and z is approximately 1.2 to 1.6. These ternary sesquicarbides have superconducting transition temperatures as high as 17.0/sup 0/K.

  11. Los Alamos scientists see new mechanism for superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    superconductivity Researchers have posited an explanation for superconductivity that may open the door to the discovery of new, unconventional forms of superconductivity. November...

  12. Superconducting magnetic energy storage

    SciTech Connect (OSTI)

    Hassenzahl, W.

    1988-08-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

  13. Superconducting energy storage

    SciTech Connect (OSTI)

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  14. Method of manufacturing a niobium-aluminum-germanium superconductive material

    DOE Patents [OSTI]

    Wang, John L.; Pickus, Milton R.; Douglas, Kent E.

    1980-01-01

    A method for manufacturing flexible Nb.sub.3 (Al,Ge) multifilamentary superconductive material in which a sintered porous niobium compact is infiltrated with an aluminum-germanium alloy and thereafter deformed and heat treated in a series of steps at different successively higher temperatures preferably below 1000.degree. C. to produce filaments composed of Nb.sub.3 (Al,G3) within the compact. By avoiding temperatures in excess of 1000.degree. C. during the heat treatment, cladding material such as copper can be applied to facilitate a deformation step preceding the heat treatment and can remain in place through the heat treatment to also serve as a temperature stabilizer for supeconductive material produced. Further, these lower heat treatment temperatures favor formation of filaments with reduced grain size and, hence with more grain boundaries which in turn increase the current-carrying capacity of the superconductive material.

  15. High intensity neutrino source superconducting solenoid cyrostat design

    SciTech Connect (OSTI)

    Page, T.M.; Nicol, T.H.; Feher, S.; Terechkine, I.; Tompkins, J.; /Fermilab

    2006-06-01

    Fermi National Accelerator Laboratory (FNAL) is involved in the development of a 100 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. The solenoid cryostat will house the helium vessel, suspension system, thermal shield, multilayer insulation, power leads, instrumentation, a vacuum vessel and cryogenic distribution lines. This paper discusses the requirements and detailed design of these superconducting solenoid cryostats.

  16. Superconductivity in layered BiS2-based compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yazici, D.; Jeon, I.; White, B. D.; Maple, M. B.

    2015-02-25

    Here, a novel family of superconductors based on BiS2-based superconducting layers were discovered in 2012. In short order, other BiS2-based superconductors with the same or related crystal structures were discovered with superconducting critical temperatures Tc of up to 10 K. Many experimental and theoretical studies have been carried out with the goal of establishing the basic properties of these new materials and understanding the underlying mechanism for superconductivity. In this selective review of the literature, we distill the central discoveries from this extensive body of work, and discuss the results from different types of experiments on these materials within themore » context of theoretical concepts and models.« less

  17. Method for producing strain tolerant multifilamentary oxide superconducting wire

    DOE Patents [OSTI]

    Finnemore, Douglas K.; Miller, Theodore A.; Ostenson, Jerome E.; Schwartzkopf, Louis A.; Sanders, Steven C.

    1994-07-19

    A strain tolerant multifilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments.

  18. Method for producing strain tolerant multifilamentary oxide superconducting wire

    DOE Patents [OSTI]

    Finnemore, D.K.; Miller, T.A.; Ostenson, J.E.; Schwartzkopf, L.A.; Sanders, S.C.

    1994-07-19

    A strain tolerant multifilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments. 6 figs.

  19. Development of Ultra-Efficient Electric Motors Final Technical Report Covering work from April 2002 through September 2007

    SciTech Connect (OSTI)

    Rich Schiferl

    2008-05-30

    High temperature superconducting (HTS) motors offer the potential for dramatic volume and loss reduction compared to conventional, high horspower, industrial motors. This report is the final report on the results of eight research tasks that address some of the issues related to HTS motor development that affect motor efficiency, cost, and reliability.

  20. EIS-0138: Superconducting Super Collider

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to analyze the potential environmental impacts of constructing the Superconducting Super Collider, a large proton accelerator, at each of seven alternative locations.

  1. Mixed-mu superconducting bearings

    DOE Patents [OSTI]

    Hull, J.R.; Mulcahy, T.M.

    1998-03-03

    A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs.

  2. Mixed-mu superconducting bearings

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Mulcahy, Thomas M. (Western Springs, IL)

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  3. Spin dynamics near a putative antiferromagnetic quantum critical point in Cu-substituted BaFe2As2 and its relation to high-temperature superconductivity

    SciTech Connect (OSTI)

    Kim, M. G.; Wang, M.; Tucker, G. S.; Valdivia, P. N.; Abernathy, D. L.; Chi, Songxue; Christianson, A. D.; Aczel, A. A.; Hong, T.; Heitmann, T. W.; Ran, S.; Canfield, P. C.; Bourret-Courchesne, E. D.; Kreyssig, A.; Lee, D. H.; Goldman, A. I.; McQueeney, R. J.; Birgeneau, R. J.

    2015-12-02

    We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba(Fe0.957Cu0.043)2As2, a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe2As2 and superconducting Ba(Fe1xNix)2As2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba(Fe0.957Cu0.043)2As2, which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouples the interaction between quasiparticles and the spin fluctuations. In addition, we show that the spin-spin correlation length ?(T) increases rapidly as the temperature is lowered and find ?/T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.

  4. Process for preparing superconducting film having substantially uniform phase development

    DOE Patents [OSTI]

    Bharacharya, R.; Parilla, P.A.; Blaugher, R.D.

    1995-12-19

    A process is disclosed for preparing a superconducting film, such as a thallium-barium-calcium-copper oxide superconducting film, having substantially uniform phase development. The process comprises providing an electrodeposition bath having one or more soluble salts of one or more respective potentially superconducting metals in respective amounts adequate to yield a superconducting film upon subsequent appropriate treatment. Should all of the metals required for producing a superconducting film not be made available in the bath, such metals can be a part of the ambient during a subsequent annealing process. A soluble silver salt in an amount between about 0.1% and about 4.0% by weight of the provided other salts is also provided to the bath, and the bath is electrically energized to thereby form a plated film. The film is annealed in ambient conditions suitable to cause formation of a superconductor film. Doping with silver reduces the temperature at which the liquid phase appears during the annealing step, initiates a liquid phase throughout the entire volume of deposited material, and influences the nucleation and growth of the deposited material. 3 figs.

  5. Process for preparing superconducting film having substantially uniform phase development

    DOE Patents [OSTI]

    Bharacharya, Raghuthan; Parilla, Philip A.; Blaugher, Richard D.

    1995-01-01

    A process for preparing a superconducting film, such as a thallium-barium-calcium-copper oxide superconducting film, having substantially uniform phase development. The process comprises providing an electrodeposition bath having one or more soluble salts of one or more respective potentially superconducting metals in respective amounts adequate to yield a superconducting film upon subsequent appropriate treatment. Should all of the metals required for producing a superconducting film not be made available in the bath, such metals can be a part of the ambient during a subsequent annealing process. A soluble silver salt in an amount between about 0.1% and about 4.0% by weight of the provided other salts is also provided to the bath, and the bath is electrically energized to thereby form a plated film. The film is annealed in ambient conditions suitable to cause formation of a superconductor film. Doping with silver reduces the temperature at which the liquid phase appears during the annealing step, initiates a liquid phase throughout the entire volume of deposited material, and influences the nucleation and growth of the deposited material.

  6. Hermetically sealed superconducting magnet motor

    DOE Patents [OSTI]

    DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.

    1996-01-01

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

  7. Hermetically sealed superconducting magnet motor

    DOE Patents [OSTI]

    DeVault, R.C.; McConnell, B.W.; Phillips, B.A.

    1996-07-02

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit. 6 figs.

  8. Superconducting gamma and fast-neutron spectrometers with high energy resolution

    DOE Patents [OSTI]

    Friedrich, Stephan; , Niedermayr, Thomas R.; Labov, Simon E.

    2008-11-04

    Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.

  9. Two Phase Transitions Make a High-Temperature Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound...

  10. Process for producing clad superconductive materials

    DOE Patents [OSTI]

    Cass, Richard B. (Ringoes, NJ); Ott, Kevin C. (Los Alamos, NM); Peterson, Dean E. (Los Alamos, NM)

    1992-01-01

    A process for fabricating superconducting composite wire by the steps of placing a superconductive precursor admixture capable of undergoing a self propagating combustion in stoichiometric amounts sufficient to form a superconductive product within a metal tube, sealing one end of said tube, igniting said superconductive precursor admixture whereby said superconductive precursor admixture endburns along the length of the admixture, and cross-section reducing said tube at a rate substantially equal to the rate of burning of said superconductive precursor admixture and at a point substantially planar with the burnfront of the superconductive precursor mixture, whereby a clad superconductive product is formed in situ, the product characterized as superconductive without a subsequent sintering stage, is disclosed.

  11. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K.; Ruegg, Christian; Susner, Michael A.; Sefat, Athena S.; Zhigadlo, Nikolai D.; et al

    2015-09-08

    We report that the recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreasesmore » upon increasing the pressure. In the intermediate pressure region (3.5≲ p ≲ 7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc3.2 as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.« less

  12. Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

    SciTech Connect (OSTI)

    Khasanov, Rustem; Guguchia, Zurab; Eremin, Ilya; Luetkens, Hubertus; Amato, Alex; Biswas, Pabitra K.; Ruegg, Christian; Susner, Michael A.; Sefat, Athena S.; Zhigadlo, Nikolai D.; Morenzoni, Elvezio

    2015-09-08

    We report that the recent discovery of pressure (p) induced superconductivity in the binary helimagnet CrAs has raised questions on how superconductivity emerges from the magnetic state and on the mechanism of the superconducting pairing. In the present work the suppression of magnetism and the occurrence of superconductivity in CrAs were studied by means of muon spin rotation. The magnetism remains bulk up to p ≃ 3.5 kbar while its volume fraction gradually decreases with increasing pressure until it vanishes at p ≃ 7 kbar. At 3.5 kbar superconductivity abruptly appears with its maximum Tc ≃ 1.2 K which decreases upon increasing the pressure. In the intermediate pressure region (3.5≲ p ≲ 7 kbar) the superconducting and the magnetic volume fractions are spatially phase separated and compete for phase volume. Our results indicate that the less conductive magnetic phase provides additional carriers (doping) to the superconducting parts of the CrAs sample thus leading to an increase of the transition temperature (Tc) and of the superfluid density (ρs). A scaling of ρs with Tc3.2 as well as the phase separation between magnetism and superconductivity point to a conventional mechanism of the Cooper-pairing in CrAs.

  13. Superconductivity and Physical Properties of CaPd2Ge2 Single Crystals

    SciTech Connect (OSTI)

    Anand, V K; Kim, Hyunsoo; Tanatar, Makariy A; Prozorov, Ruslan; Johnston, David C

    2014-10-08

    We present the superconducting and normal state properties of CaPd2Ge2 single crystals investigated by magnetic susceptibility ?, isothermal magnetization M, heat capacity Cp, in-plane electrical resistivity ? and London penetration depth ? versus temperature T and magnetic field H measurements. Bulk superconductivity is inferred from the ?(T) and Cp(T) data. The ?(T) data exhibit metallic behavior and a superconducting transition with Tc onset = 1.98 K and zero resistivity at Tc 0 = 1.67 K. The ?(T) reveals the onset of superconductivity at 2.0 K. For T > 2.0 K, the ?(T) and M(H) are weakly anisotropic paramagnetic with ?ab > ?c. The Cp(T) data confirm the bulk superconductivity below Tc = 1.69(3) K. The superconducting state electronic heat capacity is analyzed within the framework of a single-band ?-model of BCS superconductivity and various normal and superconducting state parameters are estimated. Within the ?-model, the Cp(T) data and the ab plane ?(T) data consistently indicate a moderately anisotropic s-wave gap with ?(0)/kBTc ? 1.6, somewhat smaller than the BCS value of 1.764. The relationship of the heat capacity jump at Tc and the penetration depth measurement to the anisotropy in the s-wave gap is discussed.

  14. Performance of Conduction Cooled Splittable Superconducting Magnet Package for Linear Accelerators

    SciTech Connect (OSTI)

    Kashikhin, Vladimire S.; Andreev, N.; Cheban, S.; DiMarco, J.; Kimura, N.; Makarov, A.; Orlov, Y.; Poloubotko. V., Poloubotko. V.; Tartaglia, M.; Yamamoto, A.

    2015-01-01

    New Linear Superconducting Accelerators need a superconducting magnet package installed inside SCRF Cryomodules to focus and steer electron or proton beams. A superconducting magnet package was designed and built as a collaborative effort of FNAL and KEK. The magnet package includes one quadrupole, and two dipole windings. It has a splittable in the vertical plane configuration, and features for conduction cooling. The magnet was successfully tested at room temperature, in a liquid He bath, and in a conduction cooling experiment. The paper describes the design and test results including: magnet cooling, training, and magnetic measurements by rotational coils. The effects of superconductor and iron yoke magnetization, hysteresis, and fringe fields are discussed.

  15. Superconducting PM undiffused machines with stationary superconducting coils

    DOE Patents [OSTI]

    Hsu, John S.; Schwenterly, S. William

    2004-03-02

    A superconducting PM machine has a stator, a rotor and a stationary excitation source without the need of a ferromagnetic frame which is cryogenically cooled for operation in the superconducting state. PM material is placed between poles on the rotor to prevent leakage or diffusion of secondary flux before reaching the main air gap, or to divert PM flux where it is desired to weaken flux in the main air gap. The PM material provides hop-along capability for the machine in the event of a fault condition.

  16. Ceramic/metal and A15/metal superconducting composite materials exploiting the superconducting proximity effect and method of making the same

    DOE Patents [OSTI]

    Holcomb, Matthew J. (Manhattan Beach, CA)

    1999-01-01

    A composite superconducting material made of coated particles of ceramic superconducting material and a metal matrix material. The metal matrix material fills the regions between the coated particles. The coating material is a material that is chemically nonreactive with the ceramic. Preferably, it is silver. The coating serves to chemically insulate the ceramic from the metal matrix material. The metal matrix material is a metal that is susceptible to the superconducting proximity effect. Preferably, it is a NbTi alloy. The metal matrix material is induced to become superconducting by the superconducting proximity effect when the temperature of the material goes below the critical temperature of the ceramic. The material has the improved mechanical properties of the metal matrix material. Preferably, the material consists of approximately 10% NbTi, 90% coated ceramic particles (by volume). Certain aspects of the material and method will depend upon the particular ceramic superconductor employed. An alternative embodiment of the invention utilizes A15 compound superconducting particles in a metal matrix material which is preferably a NbTi alloy.

  17. Structural feature controlling superconductivity in compressed...

    Office of Scientific and Technical Information (OSTI)

    Subject: catalysis (heterogeneous), solar (photovoltaic), phonons, thermoelectric, energy storage (including batteries and capacitors), hydrogen and fuel cells, superconductivity, ...

  18. Design considerations for fast-cycling superconducting accelerator magnets of 2 T B-field generated by a transmission line conductor of up to 100 kA current

    SciTech Connect (OSTI)

    Piekarz, Henryk; Hays, Steven; Huang, Yuenian; Kashikhin, Vadim; de Rijk, Gijsbert; Rossi, Lucio; /CERN

    2007-08-01

    Recently proposed synchrotrons, SF-SPS at CERN and DSF-MR at Fermilab, would operate with a 0.5 Hz cycle (or 2 second time period) while accelerating protons to 480 GeV. We examine possibilities of superconducting magnet technology that would allow for an accelerator quality magnetic field sweep of 2 T/s. For superconducting magnets the cryogenic cooling power demand due to AC losses in the superconductor leads to a high operational cost. We outline a novel magnet technology based on HTS superconductors that may allow to reduce AC losses in the magnet coil possibly up to an order of magnitude as compared to similar applications based on LTS type superconductors.

  19. Superconducting wire with improved strain characteristics

    DOE Patents [OSTI]

    Luhman, Thomas; Klamut, Carl J.; Suenaga, Masaki; Welch, David

    1982-01-01

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improves the strain characteristics of the wire.

  20. Superconducting wire with improved strain characteristics

    DOE Patents [OSTI]

    Luhman, Thomas; Klamut, Carl J.; Suenaga, Masaki; Welch, David

    1982-01-01

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.

  1. Superconducting wire with improved strain characteristics

    DOE Patents [OSTI]

    Luhman, T.; Klamut, C.J.; Suenaga, M.; Welch, D.

    1979-12-19

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.

  2. Center for Emergent Superconductivity (CES) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Center for Emergent Superconductivity (CES) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Emergent Superconductivity (CES) Print Text Size: A A A FeedbackShare Page CES Header Director Peter Johnson Lead Institution Brookhaven National Laboratory Year Established 2009 Mission To discover new high-temperature superconductors and improve the

  3. Photo of the Week: How to Grow Superconducting Crystals | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy How to Grow Superconducting Crystals Photo of the Week: How to Grow Superconducting Crystals September 13, 2013 - 11:29am Addthis Many of the materials that scientists work with at Brookhaven National Laboratory are too small and too precise for traditional tools. In cases like these, the labs grow materials instead of building them. Brookhaven physicist Genda Gu pioneered techniques that grow some of the largest single-crystal high-temperature superconductors in the world. The

  4. Stress dependent oxidation of sputtered niobium and effects on superconductivity

    SciTech Connect (OSTI)

    David Henry, M. Wolfley, Steve; Monson, Todd; Clark, Blythe G.; Shaner, Eric; Jarecki, Robert

    2014-02-28

    We report on the suppression of room temperature oxidation of DC sputtered niobium films and the effects upon the superconductive transition temperature, T{sub c}. Niobium was sputter-deposited on silicon dioxide coated 150?mm wafers and permitted to oxidize at room temperature and pressure for up to two years. Resistivity and stress measurements indicate that tensile films greater than 400?MPa resist bulk oxidation with measurements using transmission electron microscope, electron dispersive X-ray spectroscopy, x-ray photoelectric spectroscopy, and secondary ion mass spectrometry confirming this result. Although a surface oxide, Nb{sub 2}O{sub 5}, consumed the top 610?nm, we measure less than 1 at.% oxygen and nitrogen in the bulk of the films after the oxidation period. T{sub c} measurements using a SQUID magnetometer indicate that the tensile films maintained a T{sub c} approaching the dirty superconductive limit of 8.4?K after two years of oxidation while maintaining room temperature sheet resistance. This work demonstrates that control over niobium film stress during deposition can prevent bulk oxidation by limiting the vertical grain boundaries ability to oxidize, prolonging the superconductive properties of sputtered niobium when exposed to atmosphere.

  5. Freely oriented portable superconducting magnet

    DOE Patents [OSTI]

    Schmierer, Eric N.; Prenger, F. Coyne; Hill, Dallas D.

    2010-01-12

    A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.

  6. Electronic Structure of LaOFeP - a Different Type of High Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superconductor Electronic Structure of LaOFeP - a Different Type of High Temperature Superconductor The recent discovery of superconductivity in iron-based layered compounds has created renewed interest in high temperature superconductivity. With a superconducting transition temperature as high as 55 K, this discovery not only ended the monopoly of copper oxides in the family of high temperature superconductors, but also provides a new direction to understand the essential ingredients for

  7. Free-standing oxide superconducting articles

    DOE Patents [OSTI]

    Wu, X.D.; Muenchausen, R.E.

    1993-12-14

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer.

  8. Crystal growth and annealing study of fragile, non-bulk superconductivity in YFe2Ge 2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, H.; Ran, S.; Mun, E. D.; Hodovanets, H.; Tanatar, M. A.; Prozorov, R.; Bud’ko, S. L.; Canfield, P. C.

    2015-02-05

    In this study, we investigated the occurrence and nature of superconductivity in single crystals of YFe2Ge2 grown out of Sn flux by employing X-ray diffraction, electrical resistivity and specific heat measurements. We found that the residual resistivity ratio (RRR) of single crystals can be greatly improved, reaching as high as ~60, by decanting the crystals from the molten Sn at ~350°C and/or by annealing at temperatures between 550°C and 600°C. We found that the samples with RRR ≳ 34 showed resistive signatures of superconductivity with the onset of the superconducting transition Tc ≈ 1.4K. RRR values vary between 35 andmore » 65 with, on average, no systematic change in value Tc, indicating that the systematic changes in RRR do not lead to comparable changes in Tc. Specific heat measurements on samples that showed the clear resistive signatures of a superconducting transition did not show any signature of a superconducting phase transition, which suggests that the superconductivity observed in this compound is either some sort of filamentary, strain-stabilized superconductivity associated with small amounts of stressed YFe2Ge2 (perhaps at twin boundaries or dislocations) or is a second crystallographic phase that is present at level below detection capability of conventional powder X-ray techniques.« less

  9. Unconventional superconductivity in heavy-fermion compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates andmore » iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.« less

  10. Superconducting Linac for the SNS

    SciTech Connect (OSTI)

    J. Stovall; S. Nath; J. Billen; L. Young; M. Lynch; D. Rees; J. Galambos; D. Jeon; D. Raparia; J. Wei; R. Sundelin; K. Crandall; C. Pagani; P. Pierini

    2000-08-01

    The Spallation Neutron Source (SNS) linac is comprised of both normal and superconducting rf (SRF) accelerating structures. The SRF linac is accelerates the beam from 186 to 1250 MeV through 117 elliptical, multi-cell niobium cavities. This paper describes the SRF linac architecture, physics design considerations, cavity commissioning, and the expected beam dynamics performance.

  11. Superconducting flux flow digital circuits

    DOE Patents [OSTI]

    Hietala, Vincent M.; Martens, Jon S.; Zipperian, Thomas E.

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  12. Superconducting flux flow digital circuits

    DOE Patents [OSTI]

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  13. Demonstration of superconducting micromachined cavities

    SciTech Connect (OSTI)

    Brecht, T. Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  14. Superconducting submillimeter and millimeter wave detectors

    SciTech Connect (OSTI)

    Nahum, M.

    1992-10-20

    The series of projects described in this dissertation was stimulated by the discovery of high temperature superconductivity. Our goal was to develop useful applications which would be competitive with the current state of technology. The high-{Tc} microbolometer was developed into the most sensitive direct detector of millimeter waves, when operated at liquid nitrogen temperatures. The thermal boundary resistance of thin YBa{sub 2}Cu{sub 3}0{sub 7-{delta}} films was subsequently measured and provided direct evidence for the bolometric response of high-{Tc} films to fast (ns) laser pulses. The low-{Tc} microbolometer was developed and used to make the first direct measurements of the frequency dependent optical efficiency of planar lithographed antennas. The hot-electron microbolometer was invented less than a year prior to the writing of this dissertation. Our analysis, presented here, indicates that it should be possible to attain up to two orders of magnitude higher sensitivity than that of the best available direct detectors when operated at the same temperature. The temperature readout scheme for this device could also be used to measure the intrinsic interaction between electrons and phonons in a metal with a sensitivity that is five orders of magnitude better than in previous measurements. Preliminary measurements of quasiparticle trapping effects at the interface between a metal and a superconductor are also presented.

  15. Concerning the possibility of employing superconducting systems for analyzing the composition of cosmic rays

    SciTech Connect (OSTI)

    Anashkin, O.P.; Belitskiy, B.M.; Brodskiy, V.B.; Kurnosova, L.V.; Mikhaylov, N.N.

    1983-09-01

    The experimental results on the use of superconductive systems onboard spacecraft are described. To ensure low temperatures in the cryostat under weightlessness helium was used at a pressure above the critical value. In flight the temperature was controlled at six points while the pressure and intensity of the magnetic field were controlled in the solenoids.

  16. Thermodynamics and superconductivity of Th7(Fe, Ru, Os, Co, Rh, Ir)3 system

    SciTech Connect (OSTI)

    Smith, James L; Lashley, Jason C; Volz, Heather M; Fisher, Robert A

    2008-01-01

    Expanding the temperature range of previous specific-heat measurements on the Th7(Fe, Ru, Os, Co, Rh, Ir)3 system, we measure the effect of transition-metal substitution on total entropy (S{sub 298 k}), electronic specific heat ({gamma}), and Debye temperature ({Theta}D). In addition we measure the pressure dependence, up to 10 kbar, of the superconducting transition.

  17. Dependence of superconductivity in CuxBi2Se3 on quenching conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schneeloch, J. A.; Zhong, R. D.; Xu, Z. J.; Gu, G. D.; Tranquada, J. M.

    2015-04-20

    Topological superconductivity, implying gapless protected surface states, has recently been proposed to exist in the compound CuxBi₂Se₃. Unfortunately, low diamagnetic shielding fractions and considerable inhomogeneity have been reported in this compound. In an attempt to understand and improve on the finite superconducting volume fractions, we have investigated the effects of various growth and post-annealing conditions. With a melt-growth (MG) method, diamagnetic shielding fractions of up to 56% in Cu₀̣₃Bi₂Se₃ have been obtained, the highest value reported for this method. We investigate the efficacy of various quenching and annealing conditions, finding that quenching from temperatures above 560°C is essential for superconductivity,more » whereas quenching from lower temperatures or not quenching at all is detrimental. A modified floating zone (FZ) method yielded large single crystals but little superconductivity. Even after annealing and quenching, FZ-grown samples had much less chance of being superconducting than MG-grown samples. Thus, from the low shielding fractions in FZ-grown samples and the quenching dependence, we suggest that a metastable secondary phase having a small volume fraction in most of the samples may be responsible for the superconductivity.« less

  18. Dependence of superconductivity in CuxBi?Se? on quenching conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schneeloch, J. A.; Zhong, R. D.; Xu, Z. J.; Gu, G. D.; Tranquada, J. M.

    2015-04-20

    Topological superconductivity, implying gapless protected surface states, has recently been proposed to exist in the compound CuxBi?Se?. Unfortunately, low diamagnetic shielding fractions and considerable inhomogeneity have been reported in this compound. In an attempt to understand and improve on the finite superconducting volume fractions, we have investigated the effects of various growth and post-annealing conditions. With a melt-growth (MG) method, diamagnetic shielding fractions of up to 56% in Cu???Bi?Se? have been obtained, the highest value reported for this method. We investigate the efficacy of various quenching and annealing conditions, finding that quenching from temperatures above 560C is essential for superconductivity,morewhereas quenching from lower temperatures or not quenching at all is detrimental. A modified floating zone (FZ) method yielded large single crystals but little superconductivity. Even after annealing and quenching, FZ-grown samples had much less chance of being superconducting than MG-grown samples. From the low shielding fractions in FZ-grown samples and the quenching dependence, we suggest that a metastable secondary phase having a small volume fraction in most of the samples may be responsible for the superconductivity.less

  19. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    SciTech Connect (OSTI)

    Si, W.; Zhang, C.; Wu, L.; Ozaki, T.; Gu, G.; Li, Q.

    2015-09-01

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF2 crystalline substrates respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk. With large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.

  20. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Si, W.; Zhang, C.; Wu, L.; Ozaki, T.; Gu, G.; Li, Q.

    2015-09-01

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF2 crystalline substrates respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk.more » With large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.« less

  1. Final report. Superconducting materials

    SciTech Connect (OSTI)

    John Ruvalds

    1999-09-11

    Our group has discovered a many body effect that explains the surprising divergence of the spin susceptibility which has been measured by neutron scattering experiments on high temperature superconductors and vanadium oxide metals. Electron interactions on nested - i.e., nearly parallel paths - have been analyzed extensively by our group, and such processes provide a physical explanation for many anomalous features that distinguish cuprate superconductors from ordinary metals.

  2. Cr-free Fe-based metal oxide catalysts for high temperature water gas shift reaction of fuel processor using LPG

    SciTech Connect (OSTI)

    lee, Joon Y.; Lee, Dae-Won; Lee, Kwan Young; Wang, Yong

    2009-08-15

    The goal of this study was to identify the most suitable chromium-free iron-based catalysts for the HTS (high temperature shift) reaction of a fuel processor using LPG. Hexavalent chromium (Cr6+) in the commercial HTS catalyst has been regarded as hazardous material. We selected Ni and Co as the substitution for chromium in the Fe-based HTS catalyst and investigated the HTS activities of these Crfree catalysts at LPG reformate condition. Cr-free Fe-based catalysts which contain Ni, Zn, or Co instead of Cr were prepared by coprecipitation method and the performance of the catalysts in HTS was evaluated under gas mixture conditions (42% H2, 10% CO, 37% H2O, 8% CO2, and 3% CH4; R (reduction factor): about 1.2) similar to the gases from steam reforming of LPG (100% conversion at steam/carbon ratio = 3), which is higher than R (under 1) of typically studied LNG reformate condition. Among the prepared Cr-free Febased catalysts, the 5 wt%-Co/Fe/20 wt%-Ni and 5 wt%-Zn/Fe/20 wt%-Ni catalysts showed good catalytic activity under this reaction condition simulating LPG reformate gas.

  3. Preparation and composition of superconducting copper oxides based on Ga-O layers

    DOE Patents [OSTI]

    Dabrowski, Bogdan; Vaughey, J. T.; Poeppelmeier, Kenneth R.

    1994-01-01

    A high temperature superconducting material with the general formula GaSr.sub.2 Ln.sub.1-x MxCu.sub.2 O.sub.7.+-.w wherein Ln is selected from the group consisting of La, Ce, Pt, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Y and M is selected from the group consisting of Ca and Sr, 0.2.ltoreq.x.ltoreq.0.4 and w is a small fraction of one. A method of preparing this high temperature superconducting material is provided which includes heating and cooling a mixture to produce a crystalline material which is subsequently fired, ground and annealed at high pressure and temperature in oxygen to establish superconductivity.

  4. Preparation and composition of superconducting copper oxides based on Ga-O layers

    DOE Patents [OSTI]

    Dabrowski, B.; Vaughey, J.T.; Poeppelmeier, K.R.

    1994-12-20

    A high temperature superconducting material with the general formula GaSr[sub 2]Ln[sub 1[minus]x]M[sub x]Cu[sub 2]O[sub 7[+-]w] wherein Ln is selected from the group consisting of La, Ce, Pt, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Y and M is selected from the group consisting of C and Sr, 0.2[<=]x[<=]0.4 and w is a small fraction of one. A method of preparing this high temperature superconducting material is provided which includes heating and cooling a mixture to produce a crystalline material which is subsequently fired, ground and annealed at high pressure and temperature in oxygen to establish superconductivity. 14 figures.

  5. Tunable high-q superconducting notch filter

    DOE Patents [OSTI]

    Pang, C.S.; Falco, C.M.; Kampwirth, R.T.; Schuller, I.K.

    1979-11-29

    A superconducting notch filter is made of three substrates disposed in a cryogenic environment. A superconducting material is disposed on one substrate in a pattern of a circle and an annular ring connected together. The second substrate has a corresponding pattern to form a parallel plate capacitor and the second substrate has the circle and annular ring connected by a superconducting spiral that forms an inductor. The third substrate has a superconducting spiral that is placed parallel to the first superconducting spiral to form a transformer. Relative motion of the first substrate with respect to the second is effected from outside the cryogenic environment to vary the capacitance and hence the frequency of the resonant circuit formed by the superconducting devices.

  6. Superconducting Cable Having A Flexible Former

    DOE Patents [OSTI]

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-08-30

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  7. Superconducting Cable Having A Felexible Former

    DOE Patents [OSTI]

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-15

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  8. Processing method for superconducting ceramics

    DOE Patents [OSTI]

    Bloom, Ira D.; Poeppel, Roger B.; Flandermeyer, Brian K.

    1993-01-01

    A process for preparing a superconducting ceramic and particularly YBa.sub.2 Cu.sub.3 O.sub.7-.delta., where .delta. is in the order of about 0.1-0.4, is carried out using a polymeric binder which decomposes below its ignition point to reduce carbon residue between the grains of the sintered ceramic and a nonhydroxylic organic solvent to limit the problems with water or certain alcohols on the ceramic composition.

  9. Processing method for superconducting ceramics

    DOE Patents [OSTI]

    Bloom, Ira D.; Poeppel, Roger B.; Flandermeyer, Brian K.

    1993-02-02

    A process for preparing a superconducting ceramic and particularly YBa.sub.2 Cu.sub.3 O.sub.7-.delta., where .delta. is in the order of about 0.1-0.4, is carried out using a polymeric binder which decomposes below its ignition point to reduce carbon residue between the grains of the sintered ceramic and a nonhydroxylic organic solvent to limit the problems with water or certain alcohols on the ceramic composition.

  10. Superconductivity at Dawn of the Iron Age (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; COPPER OXIDES; DIMENSIONS; IRON; PHYSICS; PNICTIDES; SUPERCONDUCTIVITY; SUPERCONDUCTORS; SYNCHROTRON ...

  11. Superconducting thin films on potassium tantalate substrates

    DOE Patents [OSTI]

    Feenstra, Roeland; Boatner, Lynn A.

    1992-01-01

    A superconductive system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  12. Superconducting microcircuitry by the microlithgraphic patterning of superconducting compounds and related materials

    DOE Patents [OSTI]

    Coppa, Nicholas V.

    1993-01-01

    Superconducting microcircuits including a thin layer of Ba.sub.2 Cu.sub.3 O.sub.5+x (0superconducting patterns of YBa.sub.2 Cu.sub.3 O.sub.7-x, or Pr.sub.2 O.sub.3 for insulator patterns of PrBa.sub.2 Cu.sub.3 O.sub.7-x. These layers are covered with a layer of photoresist, which is exposed to light through a mask having a pattern for a desired circuit. The photoresist is then developed to reveal a pattern of the thin dopant layer which will be etched away. The microcircuit is then etched and stripped to remove the unneeded portion of the thin dopant layer. Finally, the microcircuit is heated at a temperature and for a period of time sufficient to diffuse and react the dopant layer with the thin layer of Ba.sub.2 Cu.sub.3 O.sub.5+x, forming a pattern of superconductor or insulator.

  13. MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; SOLID STATE...

    Office of Scientific and Technical Information (OSTI)

    Open problems in condensed matter physics, 1987 Falicov, L.M. 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; SOLID STATE PHYSICS; RESEARCH PROGRAMS;...

  14. New Advance in SuperConducting Materials

    ScienceCinema (OSTI)

    None

    2010-01-08

    Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laborator...  

  15. Synthesis of superconducting Nb3Sn coatings on Nb substrates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barzi, E.; Franz, S.; Reginato, F.; Turrioni, D.; Bestetti, M.

    2015-12-01

    In the present work the electrochemical and thermal syntheses of superconductive Nb3Sn films are investigated. The Nb3Sn phase is obtained by electrodeposition of Sn layers and Cu intermediate layers onto Nb substrates followed by high temperature diffusion in inert atmosphere. Electrodeposition was performed from aqueous solutions at current densities in the 20 to 50 mA/cm2 range and at temperatures between 40 and 50°C. Subsequent thermal treatments were realized to obtain the Nb3Sn superconductive phase. Glow discharge optical emission spectrometry (GDOES) demonstrated that after thermal treatment interdiffusion of Nb and Sn occurred across a thickness of about 13 μm. Scanning Electronmore » Microscopy (SEM) allowed accurately measuring the thickness of the Nb3Sn phase, whose average for the various types of film samples was between 5.7 and 8.0 μm. X-ray diffraction (XRD) patterns confirmed the presence of a cubic Nb3Sn phase (A15 structure) having (210) preferred orientation. The maximum obtained Tc was 17.68 K and the Bc20 ranged between 22.5 T and 23.8 T. With the procedure described in the present paper, coating complex shapes cost-effectively becomes possible, which is typical of electrochemical techniques. Furthermore, this approach can be implemented in classical wire processes such as "Jelly Roll" or "Rod in Tube", or directly used for producing superconducting surfaces. In conclusion, the potential of this method for Superconducting Radiofrequency (SRF) structures is also outlined.« less

  16. Evidence for charge Kondo effect in superconducting Tl-doped PbTe (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Evidence for charge Kondo effect in superconducting Tl-doped PbTe Citation Details In-Document Search Title: Evidence for charge Kondo effect in superconducting Tl-doped PbTe We report results of low-temperature thermodynamic and transport measurements of Pb{sub 1-x}Tl{sub x}Te single crystals for Tl concentrations up to the solubility limit of approximately x = 1.5%. For all doped samples, we observe a low-temperature resistivity upturn that scales in magnitude

  17. Superconductivity Distorted by the Coexisting Pseudogap in the...

    Office of Scientific and Technical Information (OSTI)

    Superconductivity Distorted by the Coexisting Pseudogap in the Antinodal Region of ... Citation Details In-Document Search Title: Superconductivity Distorted by the Coexisting ...

  18. Superconductivity for Electric Systems: 2008 Annual Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Superconductivity for Electric Systems: 2008 Annual Peer Review Final Report Superconductivity for Electric Systems: 2008 Annual Peer Review Final Report The Office of Electricity ...

  19. New Superconducting Magnet Will Lead to Next Generation of Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Superconducting Magnet Will Lead to Next Generation of Wind Turbine Generators New Superconducting Magnet Will Lead to Next Generation of Wind Turbine Generators September 12, 2014 ...

  20. Superfluid helium cryogenic systems for superconducting RF cavities...

    Office of Scientific and Technical Information (OSTI)

    systems for superconducting RF cavities at KEK Recent accelerator projects at KEK, such as the Superconducting RF Test Facility (STF) for R and D of the International Linear ...

  1. Time-reversal-invariant topological superconductivity in n -doped...

    Office of Scientific and Technical Information (OSTI)

    Time-reversal-invariant topological superconductivity in n -doped BiH Citation Details In-Document Search Title: Time-reversal-invariant topological superconductivity in n -doped ...

  2. Model of Electronic Structure and Superconductivity in Orbitally...

    Office of Scientific and Technical Information (OSTI)

    Model of Electronic Structure and Superconductivity in Orbitally Ordered FeSe Title: Model of Electronic Structure and Superconductivity in Orbitally Ordered FeSe Authors: ...

  3. Fidelity study of superconductivity in extended Hubbard models...

    Office of Scientific and Technical Information (OSTI)

    Fidelity study of superconductivity in extended Hubbard models Title: Fidelity study of superconductivity in extended Hubbard models Authors: Plonka, N. ; Jia, C. J. ; Wang, Y. ; ...

  4. Fidelity study of superconductivity in extended Hubbard models...

    Office of Scientific and Technical Information (OSTI)

    Fidelity study of superconductivity in extended Hubbard models Citation Details In-Document Search Title: Fidelity study of superconductivity in extended Hubbard models Authors: ...

  5. "ONE HUNDRED YEARS OF SUPERCONDUCTIVITY", Dr. Michael Norman...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "ONE HUNDRED YEARS OF SUPERCONDUCTIVITY", Dr. Michael Norman, Materials Science Division, Argonne National Laboratory ONE HUNDRED YEARS OF SUPERCONDUCTIVITY PPPL Entrance ...

  6. The oxygen content of the high-temperature superconducting compound Bi{sub 2+x}Sr{sub 3-y}CayCu{sub 2}O{sub 8+d} with respect to varying Ca and Bi contents

    SciTech Connect (OSTI)

    Majewski, P.; Su, H.L.; Aldinger, F.

    1994-12-31

    The oxygen content of Bi{sub 2+x}Sr{sub 3-y}Ca{sub y}Cu{sub 2}O{sub 8+d} (2212 phase) has been determined as a function of its cation concentration. With increasing Ca and Bi content the oxygen content increases and T{sub c} decreases. The oxygen content of Ca rich 2212 phase increases with decreasing annealing temperatures. The study shows that the T{sub c} of the 2212 phase primarily is controlled by its cation concentration.

  7. Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters

    SciTech Connect (OSTI)

    Frank Darmann; Robert Lombaerde; Franco Moriconi; Albert Nelson

    2011-10-31

    Zenergy Power has successfully designed, built, tested, and installed in the US electrical grid a saturable reactor Fault Current Limiter. Beginning in 2007, first as SC Power Systems and from 2008 as Zenergy Power, Inc., ZP used DOE matching grant and ARRA funds to help refine the design of the saturated reactor fault current limiter. ZP ultimately perfected the design of the saturated reactor FCL to the point that ZP could reliably design a suitable FCL for most utility applications. Beginning with a very basic FCL design using 1G HTS for a coil housed in a LN2 cryostat for the DC bias magnet, the technology progressed to a commercial system that was offered for sale internationally. Substantial progress was made in two areas. First, the cryogenics cooling system progressed from a sub-cooled liquid nitrogen container housing the HTS coils to cryostats utilizing dry conduction cooling and reaching temperatures down to less than 20 degrees K. Large, round cryostats with “warm bore” diameters of 1.7 meters enabled the design of large tanks to hold the AC components. Second, the design of the AC part of the FCL was refined from a six legged “spider” design to a more compact and lighter design with better fault current limiting capability. Further refinement of the flux path and core shape led to an efficient saturated reactor design requiring less Ampere-turns to saturate the core. In conclusion, the development of the saturable reactor FCL led to a more efficient design not requiring HTS magnets and their associated peripheral equipment, which yielded a more economical product in line with the electric utility industry expectations. The original goal for the DOE funding of the ZP project “Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters” was to stimulate the HTS wire industry with, first 1G, then 2G, HTS wire applications. Over the approximately 5 years of ZP’s product

  8. Microelectronic superconducting crossover and coil

    DOE Patents [OSTI]

    Wellstood, Frederick C.; Kingston, John J.; Clarke, John

    1994-01-01

    A microelectronic component comprising a crossover is provided comprising a substrate, a first high T.sub.c superconductor thin film, a second insulating thin film comprising SrTiO.sub.3 ; and a third high T.sub.c superconducting film which has strips which crossover one or more areas of the first superconductor film. An in situ method for depositing all three films on a substrate is provided which does not require annealing steps and which can be opened to the atmosphere between depositions.

  9. High specific heat superconducting composite

    DOE Patents [OSTI]

    Steyert, Jr., William A.

    1979-01-01

    A composite superconductor formed from a high specific heat ceramic such as gadolinium oxide or gadolinium-aluminum oxide and a conventional metal conductor such as copper or aluminum which are insolubly mixed together to provide adiabatic stability in a superconducting mode of operation. The addition of a few percent of insoluble gadolinium-aluminum oxide powder or gadolinium oxide powder to copper, increases the measured specific heat of the composite by one to two orders of magnitude below the 5.degree. K. level while maintaining the high thermal and electrical conductivity of the conventional metal conductor.

  10. Microelectronic superconducting crossover and coil

    DOE Patents [OSTI]

    Wellstood, F.C.; Kingston, J.J.; Clarke, J.

    1994-03-01

    A microelectronic component comprising a crossover is provided comprising a substrate, a first high T[sub c] superconductor thin film, a second insulating thin film comprising SrTiO[sub 3]; and a third high T[sub c] superconducting film which has strips which crossover one or more areas of the first superconductor film. An in situ method for depositing all three films on a substrate is provided which does not require annealing steps and which can be opened to the atmosphere between depositions. 13 figures.

  11. (High T sub c superconductivity)

    SciTech Connect (OSTI)

    Rasolt, M.

    1990-10-02

    A detailed description of the research conducted at the University of Paris at Orsay and the International Meeting on High-{Tc} Superconductivity, organized by the traveler, H. Schultz from Orsay, and D. M. Newns from IBM, is presented. Particular emphasis is placed on the collaboration with F. Perrot of the Centre Europeen de Calcul Atomique et Moleculaire. In addition, descriptions of the different scientific interactions and information obtained and implications of this scientific exchange on the research conducted in the Solid State Division of ORNL are made.

  12. Superconducting and magnetic properties of Sr?Ir?Sn??

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Biswas, P. K.; Wang, Kefeng; Amato, A.; Khasanov, R.; Luetkens, H.; Petrovic, C.; Cook, R. M.; Lees, M. R.; Morenzoni, E.

    2014-10-10

    Magnetization and muon spin relaxation or rotation (SR) measurements have been performed to study the superconducting and magnetic properties of Sr?Ir?Sn??. From magnetization measurements the lower and upper critical fields of Sr?Ir?Sn?? are found to be 81(1) Oe and 14.4(2) kOe, respectively. Zero-field SR data show no sign of any magnetic ordering or weak magnetism in Sr?Ir?Sn??. Transverse-field SR measurements in the vortex state provided the temperature dependence of the magnetic penetration depth ?. The dependence of ?? with temperature is consistent with the existence of single s-wave energy gap in the superconducting state of Sr?Ir?Sn?? with a gap valuemoreof 0.82(2) meV at absolute zero temperature. The magnetic penetration depth at zero temperature ?(0) is 291(3) nm. The ratio ?(0)/kBTc = 2.1(1) indicates that Sr?Ir?Sn?? should be considered as a strong-coupling superconductor.less

  13. Electronic structure and relaxation dynamics in a superconducting topological material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Neupane, Madhab; Ishida, Yukiaki; Sankar, Raman; Zhu, Jian-Xin; Sanchez, Daniel S.; Belopolski, Ilya; Xu, Su-Yang; Alidoust, Nasser; Hosen, M. Mofazzel; Shin, Shik; et al

    2016-03-03

    Topological superconductors host new states of quantum matter which show a pairing gap in the bulk and gapless surface states providing a platform to realize Majorana fermions. Recently, alkaline-earth metal Sr intercalated Bi2Se3 has been reported to show superconductivity with a Tc~3K and a large shielding fraction. Here we report systematic normal state electronic structure studies of Sr0.06Bi2Se3 (Tc~2.5K) by performing photoemission spectroscopy. Using angle-resolved photoemission spectroscopy (ARPES), we observe a quantum well confined two-dimensional (2D) state coexisting with a topological surface state in Sr0.06Bi2Se3. Furthermore, our time-resolved ARPES reveals the relaxation dynamics showing different decay mechanism between the excitedmore » topological surface states and the two-dimensional states. Our experimental observation is understood by considering the intra-band scattering for topological surface states and an additional electron phonon scattering for the 2D states, which is responsible for the superconductivity. Our first-principles calculations agree with the more effective scattering and a shorter lifetime of the 2D states. In conclusion, our results will be helpful in understanding low temperature superconducting states of these topological materials.« less

  14. Exotic Superconductivity in Correlated Electron Systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mu, Gang; Sandu, Viorel; Li, Wei; Shen, Bing

    2015-05-25

    Over the past decades, the search for high-Tc superconductivity (SC) and its novel superconducting mechanisms is one of the most challenging tasks of condensed matter physicists and material scientists, wherein the most striking achievement is the discovery of high-c and unconventional superconductivity in strongly correlated 3d-electron systems, such as cuprates and iron pnictides/chalcogenides. Those exotic superconductors display the behaviors beyond the scope of the BCS theory (in the SC states) and the Landau-Fermi liquid theory (in the normal states). In general, such exotic superconductivity can be seen as correlated electron systems, where there are strong interplays among charge, spin, orbital,more » and lattice degrees of freedom. Thus, we focus on the exotic superconductivity in materials with correlated electrons in the present special issue.« less

  15. Exotic Superconductivity in Correlated Electron Systems

    SciTech Connect (OSTI)

    Mu, Gang; Sandu, Viorel; Li, Wei; Shen, Bing

    2015-05-25

    Over the past decades, the search for high-Tc superconductivity (SC) and its novel superconducting mechanisms is one of the most challenging tasks of condensed matter physicists and material scientists, wherein the most striking achievement is the discovery of high-c and unconventional superconductivity in strongly correlated 3d-electron systems, such as cuprates and iron pnictides/chalcogenides. Those exotic superconductors display the behaviors beyond the scope of the BCS theory (in the SC states) and the Landau-Fermi liquid theory (in the normal states). In general, such exotic superconductivity can be seen as correlated electron systems, where there are strong interplays among charge, spin, orbital, and lattice degrees of freedom. Thus, we focus on the exotic superconductivity in materials with correlated electrons in the present special issue.

  16. Free-standing oxide superconducting articles

    DOE Patents [OSTI]

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template lay This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  17. Particle-hole symmetry broken pseudogap in high temperature superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle-hole symmetry broken pseudogap in high temperature superconductors High-temperature (Tc) superconductivity is one of the most important topics in condensed matter physics. Despite extensive studies over more than two decades, the microscopic mechanism of high temperature superconductivity still remains elusive due to many unconventional properties that are not well understood. Among them, the most mysterious behavior of high-Tc superconductor is the nature of so called

  18. Two Phase Transitions Make a High-Temperature Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Phase Transitions Make a High-Temperature Superconductor Two Phase Transitions Make a High-Temperature Superconductor Print Wednesday, 30 November 2011 00:00 Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally

  19. Superconducting coil and method of stress management in a superconducting coil

    DOE Patents [OSTI]

    McIntyre, Peter M.; Shen, Weijun; Diaczenko, Nick; Gross, Dan A.

    1999-01-01

    A superconducting coil (12) having a plurality of superconducting layers (18) is provided. Each superconducting layer (18) may have at least one superconducting element (20) which produces an operational load. An outer support structure (24) may be disposed outwardly from the plurality of layers (18). A load transfer system (22) may be coupled between at least one of the superconducting elements (20) and the outer support structure (24). The load transfer system (22) may include a support matrix structure (30) operable to transfer the operational load from the superconducting element (20) directly to the outer support structure (24). A shear release layer (40) may be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a shear stress between the superconducting element (20) and the support matrix structure (30). A compliant layer (42) may also be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a compressive stress on the superconducting element (20).

  20. Status of superconducting magnets for the Superconducting Super Collider

    SciTech Connect (OSTI)

    Schermer, R.I.

    1993-09-01

    The arc sections of the High Energy Booster and the two Collider Rings will need more than 10,000, very large, superconducting dipole and quadrupole magnets. Development work on these magnets was carried out at US/DOE laboratories in a program that began in the mid 1980`s. In 1991-1992, the technology was transferred to industry and twenty, full-length, Collider dipoles were successfully fabricated and tested. This program, along with HERA and Tevatron experience, has provided industry a data base to use in formulating detailed designs for the prototypes of the accelerator magnets, with an eye to reducing cost and enhancing producibility. Several model magnets from this latest phase of the industrial program have already been tested. The excessive ramp-rate sensitivity of the magnets is understood and solutions are under investigation.

  1. Cryostat design for the Superconducting Super Collider

    SciTech Connect (OSTI)

    Nicol, T.H.

    1990-09-01

    The cryostat of an SSC dipole magnet consists of all magnet components except the cold mass assembly. It serves to support the cold mass accurately and reliably within the vacuum vessel, provide all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations and must be manufacturable at low cost. The major components of the cryostat are the vacuum vessel, thermal shields, multilayer insulation (MLI) system, cryogenic piping, interconnections, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course their 25 year expected life. This paper describes the design of the current SSC collider dipole magnet cryostat and includes discussions on the thermal, structural, and dynamic considerations involved in the development of each of the major systems. 7 refs., 4 figs.

  2. Superconductivity for Large Scale Wind Turbines

    SciTech Connect (OSTI)

    R. Fair; W. Stautner; M. Douglass; R. Rajput-Ghoshal; M. Moscinski; P. Riley; D. Wagner; J. Kim; S. Hou; F. Lopez; K. Haran; J. Bray; T. Laskaris; J. Rochford; R. Duckworth

    2012-10-12

    A conceptual design has been completed for a 10MW superconducting direct drive wind turbine generator employing low temperature superconductors for the field winding. Key technology building blocks from the GE Wind and GE Healthcare businesses have been transferred across to the design of this concept machine. Wherever possible, conventional technology and production techniques have been used in order to support the case for commercialization of such a machine. Appendices A and B provide further details of the layout of the machine and the complete specification table for the concept design. Phase 1 of the program has allowed us to understand the trade-offs between the various sub-systems of such a generator and its integration with a wind turbine. A Failure Modes and Effects Analysis (FMEA) and a Technology Readiness Level (TRL) analysis have been completed resulting in the identification of high risk components within the design. The design has been analyzed from a commercial and economic point of view and Cost of Energy (COE) calculations have been carried out with the potential to reduce COE by up to 18% when compared with a permanent magnet direct drive 5MW baseline machine, resulting in a potential COE of 0.075 $/kWh. Finally, a top-level commercialization plan has been proposed to enable this technology to be transitioned to full volume production. The main body of this report will present the design processes employed and the main findings and conclusions.

  3. The integration of cryogenic cooling systems with superconducting electronic systems

    SciTech Connect (OSTI)

    Green, Michael A.

    2003-07-01

    The need for cryogenic cooling has been critical issue that has kept superconducting electronic devices from reaching the market place. Even though the performance of the superconducting circuit is superior to silicon electronics, the requirement for cryogenic cooling has put the superconducting devices at a disadvantage. This report will talk about the various methods for refrigerating superconducting devices. Cryocooler types will be compared for vibration, efficiency, and cost. Some solutions to specific problems of integrating cryocoolers to superconducting devices are presented.

  4. Non-hysteretic superconducting quantum interference proximity transistor with enhanced responsivity

    SciTech Connect (OSTI)

    Jabdaraghi, R. N.; Meschke, M.; Pekola, J. P.

    2014-02-24

    This Letter presents fabrication and characterization of an optimized superconducting quantum interference proximity transistor. The present device, characterized by reduced tunnel junction area and shortened normal-metal section, demonstrates no hysteresis at low temperatures as we increased the Josephson inductance of the weak link by decreasing its cross section. It has consequently almost an order of magnitude improved magnetic field responsivity as compared to the earlier design. The modulation of both the current and the voltage across the junction have been measured as a function of magnetic flux piercing the superconducting loop.

  5. Superconductivity at Dawn of the Iron Age (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Superconductivity at Dawn of the Iron Age Citation Details In-Document Search Title: Superconductivity at Dawn of the Iron Age Superconductivity is a stunning quantum ...

  6. Subranging technique using superconducting technology

    DOE Patents [OSTI]

    Gupta, Deepnarayan

    2003-01-01

    Subranging techniques using "digital SQUIDs" are used to design systems with large dynamic range, high resolution and large bandwidth. Analog-to-digital converters (ADCs) embodying the invention include a first SQUID based "coarse" resolution circuit and a second SQUID based "fine" resolution circuit to convert an analog input signal into "coarse" and "fine" digital signals for subsequent processing. In one embodiment, an ADC includes circuitry for supplying an analog input signal to an input coil having at least a first inductive section and a second inductive section. A first superconducting quantum interference device (SQUID) is coupled to the first inductive section and a second SQUID is coupled to the second inductive section. The first SQUID is designed to produce "coarse" (large amplitude, low resolution) output signals and the second SQUID is designed to produce "fine" (low amplitude, high resolution) output signals in response to the analog input signals.

  7. Evidence of superconductivity-induced phonon spectra renormalization in alkali-doped iron selenides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Opačić, M.; Lazarević, N.; Šćepanović, M.; Ryu, Hyejin; Lei, Hechang; Petrovic, C.; Popović, Z. V.

    2015-11-16

    Polarized Raman scattering spectra of superconducting KxFe2-ySe2 and nonsuperconducting K0.8Fe1.8Co0.2Se2 single crystals were measured in a temperature range from 10 K up to 300 K. Two Raman active modes from the I4/mmm phase and seven from the I4/m phase are observed in frequency range from 150 to 325 cm -1 in both compounds, suggesting that K0.8Fe1.8Co0.2Se2 single crystal also has two-phase nature. Temperature dependence of Raman mode energy is analyzed in terms of lattice thermal expansion and phonon-phonon interaction. Temperature dependence of Raman mode linewidth is considered as temperature-induced anharmonic effects. It is shown that change of Raman mode energymore » with temperature is dominantly driven by thermal expansion of the crystal lattice. Abrupt change of the A1g mode energy near TC was observed in KxFe2-ySe2 , whereas it is absent in K0.8Fe1.8Co0.2Se2. Phonon energy hardening at low temperatures in the superconducting sample is a consequence of superconductivity-induced redistribution of the electronic states below critical temperature.« less

  8. Superconducting magnet performance for 28 GHz electron cyclotron resonance ion source developed at the Korea Basic Science Institute

    SciTech Connect (OSTI)

    Park, Jin Yong; Pusan National University, Busan ; Choi, Seyong; Lee, Byoung-Seob; Yoon, Jang-Hee; Ok, Jung-Woo; Shin, Chang Seouk; Won, Mi-Sook; Kim, Byoung Chul; Ahn, Jung Keun

    2014-02-15

    A superconducting magnet for use in an electron cyclotron resonance ion source was developed at the Korea Basic Science Institute. The superconducting magnet is comprised of three solenoids and a hexapole magnet. According to the design value, the solenoid magnets can generate a mirror field, resulting in axial magnetic fields of 3.6 T at the injection area and 2.2 T at the extraction region. A radial field strength of 2.1 T can also be achieved by hexapole magnet on the plasma chamber wall. NbTi superconducting wire was used in the winding process following appropriate techniques for magnet structure. The final assembly of the each magnet involved it being vertically inserted into the cryostat to cool down the temperature using liquid helium. The performance of each solenoid and hexapole magnet was separately verified experimentally. The construction of the superconducting coil, the entire magnet assembly for performance testing and experimental results are reported herein.

  9. Molybdenum-rhenium alloy based high-Q superconducting microwave resonators

    SciTech Connect (OSTI)

    Singh, Vibhor Schneider, Ben H.; Bosman, Sal J.; Merkx, Evert P. J.; Steele, Gary A.

    2014-12-01

    Superconducting microwave resonators (SMRs) with high quality factors have become an important technology in a wide range of applications. Molybdenum-Rhenium (MoRe) is a disordered superconducting alloy with a noble surface chemistry and a relatively high transition temperature. These properties make it attractive for SMR applications, but characterization of MoRe SMR has not yet been reported. Here, we present the fabrication and characterization of SMR fabricated with a MoRe 60–40 alloy. At low drive powers, we observe internal quality-factors as high as 700 000. Temperature and power dependence of the internal quality-factors suggest the presence of the two level systems from the dielectric substrate dominating the internal loss at low temperatures. We further test the compatibility of these resonators with high temperature processes, such as for carbon nanotube chemical vapor deposition growth, and their performance in the magnetic field, an important characterization for hybrid systems.

  10. Dome – like variation of the superconducting gap anisotropy in Fe-based superconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prozorov, R.; Cho, K.; Kim, H.; Tanatar, M. A.

    2013-07-17

    Experiments performed on different iron-based superconductors suggest a variety of possible structures of the superconducting energy gap, both nodeless and nodal. To understand the pairing mechanisms, it is important to identify common features in the behavior of different materials. Measurements of the temperature - dependent London penetration depth provide important information on the structure of the superconducting gap. We show that despite significant differences between different iron - based superconductors, there is a universal trend: the gap is least anisotropic at the optimal doping and its anisotropy increases upon the departure towards underdoped and overdoped ends of the ''superconducting dome''.more » As a result, this trend is not related to the presence of the long-range magnetic order in the underdoped state.« less

  11. Performance of conduction cooled splittable superconducting magnet package for linear accelerators

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kashikhin, Vladimire S.; Andreev, N.; Cheban, S.; DiMarco, J.; Kimura, N.; Makarov, A.; Orlov, Y.; V. Poloubotko; Tartaglia, M.; Yamamoto, A.

    2016-02-19

    New Linear Superconducting Accelerators need a superconducting magnet package installed inside SCRF Cryomodules to focus and steer electron or proton beams. A superconducting magnet package was designed and built as a collaborative effort of FNAL and KEK. The magnet package includes one quadrupole, and two dipole windings. It has a splittable in the vertical plane configuration, and features for conduction cooling. The magnet was successfully tested at room temperature, in a liquid He bath, and in a conduction cooling experiment. The paper describes the design and test results including: magnet cooling, training, and magnetic measurements by rotational coils. Furthermore, themore » effects of superconductor and iron yoke magnetization, hysteresis, and fringe fields are discussed.« less

  12. Giant phonon anomaly associated with superconducting fluctuations in the pseudogap phase of cuprates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Ye-Hua; Konik, Robert M.; Rice, T. M.; Zhang, Fu-Chun

    2016-01-20

    The pseudogap in underdoped cuprates leads to significant changes in the electronic structure, and was later found to be accompanied by anomalous fluctuations of superconductivity and certain lattice phonons. Here we propose that the Fermi surface breakup due to the pseudogap, leads to a breakup of the pairing order into two weakly coupled sub-band amplitudes, and a concomitant low energy Leggett mode due to phase fluctuations between them. This increases the temperature range of superconducting fluctuations containing an overdamped Leggett mode. In this range inter-sub-band phonons show strong damping due to resonant scattering into an intermediate state with a pairmore » of overdamped Leggett modes. In the ordered state, the Leggett mode develops a finite energy, changing the anomalous phonon damping into an anomaly in the dispersion. Finally, this proposal explains the intrinsic connection between the anomalous pseudogap phase, enhanced superconducting fluctuations and giant anomalies in the phonon spectra.« less

  13. Degreasing and cleaning superconducting RF Niobium cavities

    SciTech Connect (OSTI)

    Rauchmiller, Michael; Kellett, Ron; /Fermilab

    2011-09-01

    The purpose and scope of this report is to detail the steps necessary for degreasing and cleaning of superconducting RF Niobium cavities in the A0 clean room. It lists the required equipment and the cleaning procedure.

  14. New Advances in SuperConducting Materials

    ScienceCinema (OSTI)

    None

    2014-08-12

    Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laboratory, new materials science concepts are bringing this essential technology closer to widespread industrial use.

  15. Performance of Conduction Cooled Splittable Superconducting Magnet...

    Office of Scientific and Technical Information (OSTI)

    A superconducting magnet package was designed and built as a collaborative effort of FNAL and KEK. The magnet package includes one quadrupole, and two dipole windings. It has a ...

  16. Cooling arrangement for a superconducting coil

    DOE Patents [OSTI]

    Herd, Kenneth Gordon; Laskaris, Evangelos Trifon

    1998-06-30

    A superconducting device, such as a superconducting rotor for a generator or motor. A vacuum enclosure has an interior wall surrounding a cavity containing a vacuum. A superconductive coil is placed in the cavity. A generally-annularly-arranged, thermally-conductive sheet has an inward-facing surface contacting generally the entire outward-facing surface of the superconductive coil. A generally-annularly-arranged coolant tube contains a cryogenic fluid and contacts a generally-circumferential portion of the outward-facing surface of the sheet. A generally-annularly-arranged, thermally-insulative coil overwrap generally circumferentially surrounds the sheet. The coolant tube and the inward-facing surface of the coil overwrap together contact generally the entire outward-facing surface of the sheet.

  17. Cooling arrangement for a superconducting coil

    DOE Patents [OSTI]

    Herd, K.G.; Laskaris, E.T.

    1998-06-30

    A superconducting device is disclosed, such as a superconducting rotor for a generator or motor. A vacuum enclosure has an interior wall surrounding a cavity containing a vacuum. A superconductive coil is placed in the cavity. A generally-annularly-arranged, thermally-conductive sheet has an inward-facing surface contacting generally the entire outward-facing surface of the superconductive coil. A generally-annularly-arranged coolant tube contains a cryogenic fluid and contacts a generally-circumferential portion of the outward-facing surface of the sheet. A generally-annularly-arranged, thermally-insulative coil overwrap generally circumferentially surrounds the sheet. The coolant tube and the inward-facing surface of the coil overwrap together contact generally the entire outward-facing surface of the sheet. 3 figs.

  18. Operational experience with superconducting synchrotron magnets

    SciTech Connect (OSTI)

    Martin, P.S.

    1987-03-01

    The operational experience with the Fermilab Tevatron is presented, with emphasis on reliability and failure modes. Comprisons are made between the operating efficiencies for the superconducting machine and for he conventional Main Ring.

  19. Topological confinement and superconductivity (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Topological confinement and superconductivity Citation Details ... Publication Date: 2008-01-01 OSTI Identifier: 960605 Report Number(s): LA-UR-08-05469; LA-UR-08-5469 Journal ID: ...

  20. Superconductive microstrip exhibiting negative differential resistivity

    DOE Patents [OSTI]

    Huebener, R.P.; Gallus, D.E.

    1975-10-28

    A device capable of exhibiting negative differential electrical resistivity over a range of values of current and voltage is formed by vapor- depositing a thin layer of a material capable of exhibiting superconductivity on an insulating substrate, establishing electrical connections at opposite ends of the deposited strip, and cooling the alloy into its superconducting range. The device will exhibit negative differential resistivity when biased in the current- induced resistive state.

  1. Passive energy dump for superconducting coil protection

    DOE Patents [OSTI]

    Luton, J.N. Jr.

    1973-01-16

    The patent describes a passive resistance type energy dump for the protection of the coils of a superconducting magnet. Insertion heaters are immersed in a rigid container filled with a fusible alloy. The energy dump is connected across the coils of the superconducting magnet wherein individual heater elements are connected singly to the windings or otherwise according to the energy dumping requirements upon transition of the magnet to a normal state.

  2. Architecture for high critical current superconducting tapes

    DOE Patents [OSTI]

    Jia, Quanxi; Foltyn, Stephen R.

    2002-01-01

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of, e.g., multilayer YBCO structures where individual YBCO layers are separated by a layer of an insulating material such as CeO.sub.2 and the like, a layer of a conducting material such as strontium ruthenium oxide and the like or by a second superconducting material such as SmBCO and the like.

  3. Superconductivity (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Superconductivity Citation Details In-Document Search Title: Superconductivity Authors: Maiorov, Boris A. [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-06-19 OSTI Identifier: 1084504 Report Number(s): LA-UR-13-24526 DOE Contract Number: AC52-06NA25396 Resource Type: Technical Report Research Org: Los Alamos National Laboratory (LANL) Sponsoring Org: LDRD Country of Publication: United States Language: English Subject: Condensed Matter

  4. Armored spring-core superconducting cable and method of construction

    DOE Patents [OSTI]

    McIntyre, Peter M.; Soika, Rainer H.

    2002-01-01

    An armored spring-core superconducting cable (12) is provided. The armored spring-core superconducting cable (12) may include a spring-core (20), at least one superconducting strand (24) wound onto the spring-core (20), and an armored shell (22) that encases the superconducting strands (24). The spring-core (20) is generally a perforated tube that allows purge gases and cryogenic liquids to be circulated through the armored superconducting cable (12), as well as managing the internal stresses within the armored spring-core superconducting cable (12). The armored shell (22) manages the external stresses of the armored spring-core superconducting cable (12) to protect the fragile superconducting strands (24). The armored spring-core superconducting cable (12) may also include a conductive jacket (34) formed outwardly of the armored shell (22).

  5. Current-carrying element based on second-generation high-temperature superconductor for the magnet system of a fusion neutron source

    SciTech Connect (OSTI)

    Novikov, M. S. Ivanov, D. P. E-mail: denis.ivanov30@mail.ru; Novikov, S. I. Shuvaev, S. A. E-mail: sergey.shuvaev@phystech.edu

    2015-12-15

    Application of current-carrying elements (CCEs) made of second-generation high-temperature superconductor (2G HTS) in magnet systems of a fusion neutron source (FNS) and other fusion devices will allow their magnetic field and thermodynamic stability to be increased substantially in comparison with those of low-temperature superconductor (LTS) magnets. For a toroidal magnet of the FNS, a design of a helical (partially transposed) CCE made of 2G HTS is under development with forced-flow cooling by helium gas, a current of 20–30 kA, an operating temperature of 10–20 K, and a magnetic field on the winding of 12–15 T (prospectively ∼20 T). Short-sized samples of the helical flexible heavy-current CCE are being fabricated and investigated; a pilot-line unit for production of long-sized CCE pieces is under construction. The applied fabrication technique allows the CCE to be produced which combines a high operating current, thermal and mechanical stability, manufacturability, and low losses in the alternating modes. The possibility of fabricating the CCE with the outer dimensions and values of the operating parameter required for the FNS (and with a significant margin) using already available serial 2G HTS tapes is substantiated. The maximum field of toroidal magnets with CCEs made of 2G HTS will be limited only by mechanical properties of the magnet’s casing and structure, while the thermal stability will be approximately two orders of magnitude higher than that of toroidal magnets with LTS-based CCEs. The helical CCE made of 2G HTS is very promising for fusion and hybrid electric power plants, and its design and technologies of production, as well as the prototype coils made of it for the FNS and other tokamaks, are worth developing now.

  6. High temperature interfacial superconductivity (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi ...

  7. High-temperature superconducting thin-film-based electronic devices

    SciTech Connect (OSTI)

    Wu, X.D; Finokoglu, A.; Hawley, M.; Jia, Q.; Mitchell, T.; Mueller, F.; Reagor, D.; Tesmer, J.

    1996-09-01

    This the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project involved optimization of processing of Y123 and Tl-2212 thin films deposited on novel substrates for advanced electronic devices. The Y123 films are the basis for development of Josephson Junctions to be utilized in magnetic sensors. Microwave cavities based on the Tl-2212 films are the basis for subsequent applications as communication antennas and transmitters in satellites.

  8. Enhanced Superconducting Gaps in Trilayer High-Temperature Bi...

    Office of Scientific and Technical Information (OSTI)

    Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  9. Brushless exciters using a high temperature superconducting field winding

    DOE Patents [OSTI]

    Garces, Luis Jose; Delmerico, Robert William; Jansen, Patrick Lee; Parslow, John Harold; Sanderson, Harold Copeland; Sinha, Gautam

    2008-03-18

    A brushless exciter for a synchronous generator or motor generally includes a stator and a rotor rotatably disposed within the stator. The rotor has a field winding and a voltage rectifying bridge circuit connected in parallel to the field winding. A plurality of firing circuits are connected the voltage rectifying bridge circuit. The firing circuit is configured to fire a signal at an angle of less than 90.degree. or at an angle greater than 90.degree.. The voltage rectifying bridge circuit rectifies the AC voltage to excite or de-excite the field winding.

  10. Two Phase Transitions Make a High-Temperature Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first

  11. Two Phase Transitions Make a High-Temperature Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first

  12. Two Phase Transitions Make a High-Temperature Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first

  13. Two Phase Transitions Make a High-Temperature Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first

  14. Two Phase Transitions Make a High-Temperature Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first

  15. Two Phase Transitions Make a High-Temperature Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first

  16. Two Phase Transitions Make a High-Temperature Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Two Phase Transitions Make a High-Temperature Superconductor Print Superconductivity-conceptually remarkable and practically revolutionary-is a quantum phenomenon in which bound electron pairs flow through a material in perfect synchrony, without friction. Conventional superconducting materials reach this state via a single thermal phase transition at a critical temperature (Tc). It was generally believed that such a picture also applied to the copper oxide (cuprate) superconductors-first

  17. ASC 84: applied superconductivity conference. Final program and abstracts

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Abstracts are given of presentations covering: superconducting device fabrication; applications of rf superconductivity; conductor stability and losses; detectors and signal processing; fusion magnets; A15 and Nb-Ti conductors; stability, losses, and various conductors; SQUID applications; new applications of superconductivity; advanced conductor materials; high energy physics applications of superconductivity; electronic materials and characterization; general superconducting electronics; ac machinery and new applications; digital devices; fusion and other large scale applications; in-situ and powder process conductors; ac applications; synthesis, properties, and characterization of conductors; superconducting microelectronics. (LEW)

  18. Efficient incorporation of silver to improve superconducting fibers

    DOE Patents [OSTI]

    Gleixner, Richard A.; LaCount, Dale F.; Finnemore, Douglas K.

    1994-04-26

    An improved method for the efficient incorporation of a metal such as silver in a superconducting material includes blending the metal with a high temperature superconductor or precursor powder and consolidating the same into pellets. The pellets are charged directly into a heating assembly where it is melted and heated sufficiently to a uniform temperature prior to fiberization. Droplets of the melted blend fall through a collar into a nozzle where they are subjected to a high velocity gas to break the melted material into ligaments which solidify into improved flexible fibers having the metal homogeneously dis This invention was made with Government support under a contract with the Department of Energy (DOE) and Ames Laboratory, Contract No. SC-91-225, our reference No. CRD-1272. The Government has certain rights in this invention.

  19. Cryogenic expansion joint for large superconducting magnet structures

    DOE Patents [OSTI]

    Brown, Robert L.

    1978-01-01

    An expansion joint is provided that accommodates dimensional changes occurring during the cooldown and warm-up of large cryogenic devices such as superconducting magnet coils. Flattened tubes containing a refrigerant such as gaseous nitrogen (N.sub.2) are inserted into expansion spaces in the structure. The gaseous N.sub.2 is circulated under pressure and aids in the cooldown process while providing its primary function of accommodating differential thermal contraction and expansion in the structure. After lower temperatures are reached and the greater part of the contraction has occured, the N.sub.2 liquefies then solidifies to provide a completely rigid structure at the cryogenic operating temperatures of the device.

  20. Mechanical stabilization of BSCCO-2223 superconducting tapes

    SciTech Connect (OSTI)

    King, C.G.; Grey, D.A.; Mantone, A.

    1996-12-31

    A system to provide mechanical stabilization to high temperature BSCCO-2223 superconducting tape by laminating 0.081 mm thick, spring hard, copper foil to both sides with lead-tin eutectic solder has been successfully optimized. This system has been applied as a method to create a strong, windable composite from pure silver BSCCO tapes with a minimum of critical current (I{sub c}) degradation. The {open_quotes}as received{close_quotes} conductor is evaluated for physical consistency of width and thickness over the 3000 meters that were later strengthened, insulated and wound into a demonstration coil. Electrical degradation in the strengthened tape as a result of lamination was found to average 24 percent with a range from 4 to 51 percent. This was less than the degradation that would have occurred in an unstrengthened tape during subsequent insulation and coil winding processes. Additional work was performed to evaluate the mechanical properties of the strengthened tapes. The copper can double the ultimate tensile strength of the pure silver tapes. Additionally, pure silver and dispersion strengthened silver matrix tapes are laminated with 0.025 mm thick copper and 304 stainless steel foil to investigate minimization of the cross sectional area of the strengthening component. The stainless steel can increase the UTS of the pure silver tapes sixfold. Metallography is used to examine the laminate and the conductor. Mechanical properties and critical currents of these tapes are also reported both before and after strengthening. The I{sub c} is also measured as a function of strain on the laminated tapes.

  1. BNL Direct Wind Superconducting Magnets

    SciTech Connect (OSTI)

    Parker, B.; Anerella, M.; Escallier, J.; Ghosh, A.; Jain, A.; Marone, A.; Muratore, A.; Wanderer, P.

    2011-09-12

    BNL developed Direct Wind magnet technology is used to create a variety of complex multi-functional multi-layer superconducting coil structures without the need for creating custom production tooling and fixturing for each new project. Our Direct Wind process naturally integrates prestress into the coil structure so external coil collars and yokes are not needed; the final coil package transverse size can then be very compact. Direct Wind magnets are produced with very good field quality via corrections applied during the course of coil winding. The HERA-II and BEPC-II Interaction Region (IR) magnet, J-PARC corrector and Alpha antihydrogen magnetic trap magnets and our BTeV corrector magnet design are discussed here along with a full length ILC IR prototype magnet presently in production and the coils that were wound for an ATF2 upgrade at KEK. A new IR septum magnet design concept for a 6.2 T combined-function IR magnet for eRHIC, a future RHIC upgrade, is introduced here.

  2. OSTIblog Articles in the Brookhaven Topic | OSTI, US Dept of Energy Office

    Office of Scientific and Technical Information (OSTI)

    of Scientific and Technical Information Brookhaven Topic Solving the mystery of superconductivity by Kathy Chambers 17 Oct, 2013 in Products and Content 9539 yongchu.jpg Solving the mystery of superconductivity Read more about 9539 At the legendary 1987 American Physical Society conference, sometimes called the "Woodstock of physics", thousands of physicists descended upon a New York Hilton ballroom to hear about the discovery of high-temperature superconductivity (HTS) in ceramic

  3. OSTIblog Articles in the X-Ray Nanoprobe Topic | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information X-Ray Nanoprobe Topic Solving the mystery of superconductivity by Kathy Chambers 17 Oct, 2013 in Products and Content 9539 yongchu.jpg Solving the mystery of superconductivity Read more about 9539 At the legendary 1987 American Physical Society conference, sometimes called the "Woodstock of physics", thousands of physicists descended upon a New York Hilton ballroom to hear about the discovery of high-temperature superconductivity (HTS)

  4. OSTI, US Dept of Energy Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond Solving the mystery of superconductivity by Kathy Chambers on Thu, October 17, 2013 9539 yongchu.jpg Solving the mystery of superconductivity Read more about 9539 At the legendary 1987 American Physical Society conference, sometimes called the "Woodstock of physics", thousands of physicists descended upon a New York Hilton ballroom to hear about the discovery of high-temperature superconductivity (HTS) in ceramic materials.

  5. Bandwidth and Electron Correlation-Tuned Superconductivity in...

    Office of Scientific and Technical Information (OSTI)

    Bandwidth and Electron Correlation-Tuned Superconductivity in Rb 0.8 Fe 2 ( Se 1 - z S z ) ... Title: Bandwidth and Electron Correlation-Tuned Superconductivity in Rb 0.8 Fe 2 ( Se 1 - ...

  6. Coexistence of a pseudogap and a superconducting gap for the...

    Office of Scientific and Technical Information (OSTI)

    Coexistence of a pseudogap and a superconducting gap for the high - T c superconductor La ... Title: Coexistence of a pseudogap and a superconducting gap for the high - T c ...

  7. Method and means for separating and classifying superconductive particles

    DOE Patents [OSTI]

    Park, Jin Y. (Moscow, ID); Kearney, Robert J. (Moscow, ID)

    1991-01-01

    The specification and drawings describe a series of devices and methods for classifying and separating superconductive particles. The superconductive particles may be separated from non-superconductive particles, and the superconductive particles may be separated by degrees of susceptibility to the Meissner effect force. The particles may also be simultaneously separated by size or volume and mass to obtain substantially homogeneous groups of particles. The separation techniques include levitation, preferential sedimentation and preferential concentration. Multiple separation vector forces are disclosed.

  8. ORNL Publishes Study on Superconducting Wire Performance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy ORNL Publishes Study on Superconducting Wire Performance ORNL Publishes Study on Superconducting Wire Performance August 23, 2013 - 4:06pm Addthis The Department of Energy's Oak Ridge National Laboratory (ORNL) recently released a new study on advances in superconducting wire technology. A team led by ORNL's Amit Goyal demonstrated that the ability to control nanoscale imperfections in superconducting wires results in materials with excellent and customized performance. The team's

  9. Los Alamos scientists see new mechanism for superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New mechanism for superconductivity Los Alamos scientists see new mechanism for superconductivity Researchers have posited an explanation for superconductivity that may open the door to the discovery of new, unconventional forms of superconductivity. November 24, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to

  10. Evolution of superconducting correlations within magnetic-field...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: phonons, thermal conductivity, energy storage (including batteries and capacitors), superconductivity, defects,...

  11. Nuclear relaxation in the superconducting state of (MDT-TTF)[sub 2]AuI[sub 2

    SciTech Connect (OSTI)

    Kobayashi, Yoshiaki; Nakamura, Toshikazu; Takahashi, Toshihiro ); Kanoda, Kazushi ); Hilti, B.; Zambounis, J.S. )

    1994-06-01

    We report the results of our attempt to measure the proton nuclear relaxation rate, 1/T[sub 1], in the superconducting state of the title material. The relaxation rate in the superconducting state at a field of 1 T was found much longer than that in the normal state, but it became clear that the dominant contribution came from the normal core region. The nuclear relaxation at zero field was examined by using the field cycling technique. An In(t) term in the relaxation curve was observed at low temperatures, suggesting the contribution of the creeping motion of vortices. We discuss the possibility to determine the intrinsic temperature dependence of 1/T[sub 1] in the superconducting state. 10 refs., 3 figs.

  12. Magnetoelastically coupled structural, magnetic, and superconducting order parameters in BaFe₂(As₁₋xPx)₂

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kuo, H.-H.; Analytis, James G.; Chu, J.-H.; Fernandes, R. M.; Schmalian, J.; Fisher, I. R.

    2012-10-04

    We measure the transport properties of mechanically strained single crystals of BaFe₂(As₁₋xPx)₂ over a wide range of x. The Néel transition is extremely sensitive to stress and this sensitivity increases as optimal doping is approached (doping with the highest superconducting Tc), even though the magnetic transition itself is strongly suppressed. Furthermore, we observe significant changes in the superconducting transition temperature with applied strain, which mirror changes in the composition x. These experiments are a direct illustration of the intimate coupling between different degrees of freedom in iron-based superconductors, revealing the importance of magnetoelastic coupling to the magnetic and superconducting transitionmore » temperatures.« less

  13. Superconducting microcircuitry by the microlithographic patterning of superconducting compounds and related materials

    DOE Patents [OSTI]

    Coppa, N.V.

    1993-08-24

    A method is described of producing superconducting microcircuits comprising the steps of: depositing a thin film of Ba[sub 2]Cu[sub 3]O[sub 5+x](O < x < 1) onto a substrate; depositing a thin film of a dopant onto said thin film of Ba[sub 2]Cu[sub 3]O[sub 5+x]; depositing a photoresist onto said thin film of a dopant; shining light through a mask containing a pattern for a desired circuit configuration and onto said photoresist; developing said photoresist to remove portions of said photoresist shined by the light and to selectively expose said dopant film; etching said selectively exposed dopant film from said thin film of Ba[sub 2]Cu[sub 3]O[sub 5+x] to form a pattern of dopant; and heating said substrate at a temperature and for a period of time sufficient to diffuse and react said pattern of dopant with said thin film of Ba[sub 2]Cu[sub 3]O[sub 5+x].

  14. Superconducting magnetic shielding apparatus and method

    DOE Patents [OSTI]

    Clem, J.R.; Clem, J.R.

    1983-10-11

    Disclosed are a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped. 5 figs.

  15. Superconducting magnetic shielding apparatus and method

    DOE Patents [OSTI]

    Clem, John R.; Clem, John R.

    1983-01-01

    Disclosed is a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped.

  16. Superconducting magnetic shielding apparatus and method

    DOE Patents [OSTI]

    Clem, J.R.

    1982-07-09

    Disclosed is a method and apparatus for providing magnetic shielding around a working volume. The apparatus includes a hollow elongated superconducting shell or cylinder having an elongated low magnetic pinning central portion, and two high magnetic pinning end regions. Transition portions of varying magnetic pinning properties are interposed between the central and end portions. The apparatus further includes a solenoid substantially coextensive with and overlying the superconducting cylinder, so as to be magnetically coupled therewith. The method includes the steps passing a longitudinally directed current through the superconducting cylinder so as to depin magnetic reservoirs trapped in the cylinder. Next, a circumferentially directed current is passed through the cylinder, while a longitudinally directed current is maintained. Depinned magnetic reservoirs are moved to the end portions of the cylinder, where they are trapped.

  17. Extrusion of metal oxide superconducting wire, tube or ribbon

    DOE Patents [OSTI]

    Dusek, Joseph T. (Lombard, IL)

    1993-01-01

    A process for extruding a superconducting metal oxide composition YBa.sub.2 Cu.sub.3 O.sub.7-x provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6-85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87-355 mil has also been produced. Flat ribbons have been produced in the range of 10-125 mil thick by 100-500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.

  18. Extrusion of metal oxide superconducting wire, tube or ribbon

    DOE Patents [OSTI]

    Dusek, Joseph T.

    1993-10-05

    A process for extruding a superconducting metal oxide composition YBa.sub.2 Cu.sub.3 O.sub.7-x provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6-85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87-355 mil has also been produced. Flat ribbons have been produced in the range of 10-125 mil thick by 100-500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.

  19. Theory of spin-fluctuation induced superconductivity in iron-based superconductors

    SciTech Connect (OSTI)

    Zhang, Junhua

    2011-01-01

    In this dissertation we focus on the investigation of the pairing mechanism in the recently discovered high-temperature superconductor, iron pnictides. Due to the proximity to magnetic instability of the system, we considered short-range spin fluctuations as the major mediating source to induce superconductivity. Our calculation supports the magnetic fluctuations as a strong candidate that drives Cooper-pair formation in this material. We find the corresponding order parameter to be of the so-called ss-wave type and show its evolution with temperature as well as the capability of supporting high transition temperature up to several tens of Kelvin. On the other hand, our itinerant model calculation shows pronounced spin correlation at the observed antiferromagnetic ordering wave vector, indicating the underlying electronic structure in favor of antiferromagnetic state. Therefore, the electronic degrees of freedom could participate both in the magnetic and in the superconducting properties. Our work shows that the interplay between magnetism and superconductivity plays an important role to the understanding of the rich physics in this material. The magnetic-excitation spectrum carries important information on the nature of magnetism and the characteristics of superconductivity. We analyze the spin excitation spectrum in the normal and superconducting states of iron pnictides in the magnetic scenario. As a consequence of the sign-reversed gap structure obtained in the above, a spin resonance mode appears below the superconducting transition temperature. The calculated resonance energy, scaled with the gap magnitude and the magnetic correlation length, agrees well with the inelastic neutron scattering (INS) measurements. More interestingly, we find a common feature of those short-range spin fluctuations that are capable of inducing a fully gapped ss state is the momentum anisotropy with elongated span along the direction transverse to the antiferromagnetic momentum

  20. Superconducting fault current controller/current controller

    DOE Patents [OSTI]

    Cha, Yung S.

    2004-06-15

    A superconducting fault current controller/current controller employs a superconducting-shielded core reactor (SSCR) with a variable impedance in a secondary circuit to control current in a primary circuit such as an electrical distribution system. In a second embodiment, a variable current source is employed in a secondary circuit of an SSCR to control current in the primary circuit. In a third embodiment, both a variable impedance in one secondary circuit and a variable current source in a second circuit of an SSCR are employed for separate and independent control of current in the primary circuit.

  1. Preferential orientation of metal oxide superconducting materials

    DOE Patents [OSTI]

    Capone, Donald W.; Poeppel, Roger B.

    1991-01-01

    A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities.

  2. Magnetism and superconductivity in U?PtxRh(1x)C?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wakeham, N.; Ni, Ni; Bauer, E. D.; Thompson, J. D.; Tegtmeier, E.; Ronning, F.

    2015-01-01

    We report the phase diagram of the doping series U?PtxRh(1x)C?, studied through measurements of resistivity, specific heat, and magnetic susceptibility. The Nel temperature of U?Rh?C? of ~ 22 K is suppressed with increasing Pt content, reaching zero temperature close to x = 0.7, where we observed signatures of increased quantum fluctuations. In addition, evidence is presented that the antiferromagnetic state undergoes a spin-reorientation transition upon application of an applied magnetic field. This transition shows non-monotonic behavior as a function of x, peaking at around x = 0.3. Superconductivity is observed for x ? 0.9, with Tc increasing with increasing x.moreThe reduction in Tc and increase in residual resistivity with decreasing Pt content is inconsistent with the extension of the Abrikosov-Gor'kov theory to unconventional superconductivity.less

  3. Magnetism and superconductivity in U2PtxRh1?xC2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wakeham, N.; Ni, Ni; Bauer, E. D.; Thompson, J. D.; Tegtmeier, E.; Ronning, F.

    2015-01-09

    We report the phase diagram of the doping series U?PtxRh(1x)C?, studied through measurements of resistivity, specific heat, and magnetic susceptibility. The Nel temperature of U?Rh?C? of ~ 22 K is suppressed with increasing Pt content, reaching zero temperature close to x = 0.7, where we observed signatures of increased quantum fluctuations. Additionally, evidence is presented that the antiferromagnetic state undergoes a spin-reorientation transition upon application of an applied magnetic field. This transition shows non-monotonic behavior as a function of x, peaking at around x = 0.3. Superconductivity is observed for x ? 0.9, with Tc increasing with increasing x. Themorereduction in Tc and increase in residual resistivity with decreasing Pt content is inconsistent with the extension of the Abrikosov-Gor'kov theory to unconventional superconductivity.less

  4. Proximity-induced superconductivity effect in a double-stranded DNA

    SciTech Connect (OSTI)

    Simchi, Hamidreza; Esmaeilzadeh, Mahdi Mazidabadi, Hossein

    2014-02-07

    We study the proximity-induced superconductivity effect in a double-stranded DNA by solving the Bogoliubov-de Gennes equations and taking into account the effect of thermal fluctuations of the twist angle between neighboring base pairs. We show that the electron conductance is spin-dependent and the conductance of spin up (down) increases (decreases) due to the spin-orbit coupling (SOC). It is found that, for T < 100 K, the band gap energy is temperature-independent and it decreases due to the SOC. In addition, by solving the Bogoliubov-de Gennes equations and local gap parameter equation self-consistently, we find the critical temperature at which transition to superconductivity can take place.

  5. Magnetism and superconductivity in U2PtxRh1-xC2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wakeham, N.; Ni, Ni; Bauer, E. D.; Thompson, J. D.; Tegtmeier, E.; Ronning, F.

    2015-01-09

    We report the phase diagram of the doping series U₂PtxRh(1–x)C₂, studied through measurements of resistivity, specific heat, and magnetic susceptibility. The Néel temperature of U₂Rh₂C₂ of ~ 22 K is suppressed with increasing Pt content, reaching zero temperature close to x = 0.7, where we observed signatures of increased quantum fluctuations. Additionally, evidence is presented that the antiferromagnetic state undergoes a spin-reorientation transition upon application of an applied magnetic field. This transition shows non-monotonic behavior as a function of x, peaking at around x = 0.3. Superconductivity is observed for x ≥ 0.9, with Tc increasing with increasing x. Themore » reduction in Tc and increase in residual resistivity with decreasing Pt content is inconsistent with the extension of the Abrikosov-Gor'kov theory to unconventional superconductivity.« less

  6. A superconducting focusing solenoid for the neutrino factory linear accelerator

    SciTech Connect (OSTI)

    M.A. Green; V. Lebedev; B.R. Strauss

    2002-03-01

    The proposed superconducting linear accelerator that accelerates muons from 190 MeV to 2.45 GeV will use superconducting solenoids for focusing the muon beam. The accelerator will use superconducting RF cavities. These cavities are very sensitive to stay magnetic field from the focusing magnets. Superconducting solenoids can have large stray fields. This paper describes the 201.25-MHz acceleration system for the neutrino factory. This paper also describes a focusing solenoid that delivers almost no stray field to a neighboring superconducting RF cavity.

  7. Inductively-Charged High-Temperature Superconductors And Methods Of Use

    DOE Patents [OSTI]

    Bromberg, Leslie

    2003-09-16

    The invention provides methods of charging superconducting materials and, in particular, methods of charging high-temperature superconducting materials. The methods generally involve cooling a superconducting material to a temperature below its critical temperature. Then, an external magnetic field is applied to charge the material at a nearly constant temperature. The external magnetic field first drives the superconducting material to a critical state and then penetrates into the material. When in the critical state, the superconducting material loses all the pinning ability and therefore is in the flux-flow regime. In some embodiments, a first magnetic field may be used to drive the superconducting material to the critical state and then a second magnetic field may be used to penetrate the superconducting material. When the external field or combination of external fields are removed, the magnetic field that has penetrated into the material remains trapped. The charged superconducting material may be used as solenoidal magnets, dipole magnets, or other higher order multipole magnets in many applications.

  8. Superconductivity in strong spin orbital coupling compound Sb2Se3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kong, P. P.; Sun, F.; Xing, L. Y.; Zhu, J.; Zhang, S. J.; Li, W. M.; Liu, Q. Q.; Wang, X. C.; Feng, S. M.; Yu, X. H.; et al

    2014-10-20

    Recently, A2B3 type strong spin orbital coupling compounds such as Bi2Te3, Bi2Se3 and Sb2Te3 were theoretically predicated to be topological insulators and demonstrated through experimental efforts. The counterpart compound Sb2Se3 on the other hand was found to be topological trivial, but theoretical studies indicated that the pressure might induce Sb2Se3 into a topological nontrivial state. We report on the discovery of superconductivity in Sb2Se3 single crystal induced via pressure. Our experiments indicated that Sb2Se3 became superconductive at high pressures above 10 GPa proceeded by a pressure induced insulator to metal like transition at ~3 GPa which should be related tomore » the topological quantum transition. The superconducting transition temperature (TC) increased to around 8.0 K with pressure up to 40 GPa while it keeps ambient structure. As a result, high pressure Raman revealed that new modes appeared around 10 GPa and 20 GPa, respectively, which correspond to occurrence of superconductivity and to the change of TC slop as the function of high pressure in conjunction with the evolutions of structural parameters at high pressures.« less

  9. Superconducting fault current-limiter with variable shunt impedance

    DOE Patents [OSTI]

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  10. Method And Apparatus For Evaluatin Of High Temperature Superconductors

    DOE Patents [OSTI]

    Fishman, Ilya M.; Kino, Gordon S.

    1996-11-12

    A technique for evaluation of high-T.sub.c superconducting films and single crystals is based on measurement of temperature dependence of differential optical reflectivity of high-T.sub.c materials. In the claimed method, specific parameters of the superconducting transition such as the critical temperature, anisotropy of the differential optical reflectivity response, and the part of the optical losses related to sample quality are measured. The apparatus for performing this technique includes pump and probe sources, cooling means for sweeping sample temperature across the critical temperature and polarization controller for controlling a state of polarization of a probe light beam.

  11. Dynamic high pressure process for fabricating superconducting and permanent magnetic materials

    DOE Patents [OSTI]

    Nellis, William J.; Geballe, Theodore H.; Maple, M. Brian

    1990-01-01

    Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures. The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80.degree.-100.degree. K. to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder.

  12. Dynamic high pressure process for fabricating superconducting and permanent magnetic materials

    DOE Patents [OSTI]

    Nellis, W.J.; Geballe, T.H.; Maple, M.B.

    1990-03-13

    Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures is disclosed. The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80--100 K to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder. 9 figs.

  13. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak

    SciTech Connect (OSTI)

    Liu, X.; Zhao, H. L.; Liu, Y. Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D.; Domier, C. W.; Luhmann, N. C.

    2014-09-15

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.

  14. Termination for a superconducting power transmission line including a horizontal cryogenic bushing

    DOE Patents [OSTI]

    Minati, Kurt F.; Morgan, Gerry H.; McNerney, Andrew J.; Schauer, Felix

    1984-01-01

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminates the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  15. Horizontal cryogenic bushing for the termination of a superconducting power-transmission line

    DOE Patents [OSTI]

    Minati, K.F.; Morgan, G.H.; McNerney, A.J.; Schauer, F.

    1982-07-29

    A termination for a superconducting power transmission line is disclosed which is comprised of a standard air entrance insulated vertical bushing with an elbow, a horizontal cryogenic bushing linking the pressurized cryogenic cable environment to the ambient temperature bushing and a stress cone which terminated the cable outer shield and transforms the large radial voltage gradient in the cable dielectric into a much lower radial voltage gradient in the high density helium coolant at the cold end of the cryogenic bushing.

  16. DOE, Texas settle super(conducting) differences

    SciTech Connect (OSTI)

    Crawford, M.

    1994-08-02

    The US DOE agreed to pay over $200 million in cash and transfer $510 million in property to Texas to settle the state`s claims against the federal government for cancellation of the Superconducting Super Collider. This article discusses the settlement and its history and what will be done with the facilities.

  17. Eccentric superconducting RF cavity separator structure

    DOE Patents [OSTI]

    Aggus, John R.; Giordano, Salvatore T.; Halama, Henry J.

    1976-01-01

    Accelerator apparatus having an eccentric-shaped, iris-loaded deflecting cavity for an rf separator for a high energy high momentum, charged particle accelerator beam. In one embodiment, the deflector is superconducting, and the apparatus of this invention provides simplified machining and electron beam welding techniques. Model tests have shown that the electrical characteristics provide the desired mode splitting without adverse effects.

  18. Termination for superconducting power transmission systems

    DOE Patents [OSTI]

    Forsyth, E.B.; Jensen, J.E.

    1975-08-26

    This patent relates to a cold, electrical gradient, terminal section for a superconducting cable for alternating current power transmission. A cold electrical gradient section filled with a gaseous coolant acting as an insulator is provided in series with a separate thermal gradient section. (auth)

  19. Nano-superconducting quantum interference devices with suspended junctions

    SciTech Connect (OSTI)

    Hazra, D.; Hasselbach, K.; Kirtley, J. R.

    2014-04-14

    Nano-Superconducting Quantum Interference Devices (nano-SQUIDs) are usually fabricated from a single layer of either Nb or Al. We describe here a simple method for fabricating suspended nano-bridges in Nb/Al thin-film bilayers. We use these suspended bridges, which act as Josephson weak links, to fabricate nano-SQUIDs which show critical current oscillations at temperatures up to 1.5?K and magnetic flux densities up to over 20?mT. These nano-SQUIDs exhibit flux modulation depths intermediate between all-Al and all-Nb devices, with some of the desirable characteristics of both. The suspended geometry is attractive for magnetic single nanoparticle measurements.

  20. Effect of Eu substitution on superconductivity in Ba{sub 8?x}Eu{sub x}Al{sub 6}Si{sub 40} clathrates

    SciTech Connect (OSTI)

    Liu, Lihua; Bi, Shanli; Peng, Bailu; Li, Yang

    2015-05-07

    The silicon clathrate superconductor is uncommon as its structure is dominated by strong Si-Si covalent bonds, rather than the metallic bond, that are more typical of traditional superconductors. To understand the influence of large magnetic moment of Eu on superconductivity for type-I clathrates, a series of samples with the chemical formula Ba{sub 8?x}Eu{sub x}Al{sub 6}Si{sub 40} (x?=?0, 0.5, 1, and 2) were synthesised in which Eu occupied Ba sites in cage center. With the increase of Eu content, the cubic lattice parameter decreases monotonically signifying continuous shrinkage of the constituting (Ba/Eu)@Si{sub 20} and (Ba/Eu)@Si{sub 24} cages. The temperature dependence of magnetization at low temperature revealed that Ba{sub 8}Al{sub 6}Si{sub 40} is superconductive with transition temperature at T{sub C}?=?5.6?K. The substitution of Eu for Ba results in a strong superconductivity suppression; Eu-doping largely decreases the superconducting volume and transition temperature T{sub C}. Eu atoms enter the clathrate lattice and their magnetic moments break paired electrons. The Curie-Weiss temperatures were observed at 3.9, 6.6, and 10.9?K, respectively, for samples with x?=?0.5, 1.0, and 2.0. Such ferromagnetic interaction of Eu can destroy superconductivity.

  1. Spin liquid polymorphism in a correlated electron system on the threshold of superconductivity

    SciTech Connect (OSTI)

    Zalinznyak, Igor; Savici, Andrei T.; Lumsden, Mark D.; Tsvelik, Alexei; Hu, Rongwei; Petrovic, Cedomir

    2015-08-18

    We report neutron scattering measurements which reveal spin-liquid polymorphism in an 11 iron chalcogenide superconductor. It occurs when a poorly metallic magnetic state of FeTe is tuned toward superconductivity by substitution of a small amount of tellurium with isoelectronic sulfur. We also observe a liquid-like magnetic response, which is described by the coexistence of two disordered magnetic phases with different local structures whose relative abundance depends on temperature. One is the ferromagnetic (FM) plaquette phase observed in undoped, nonsuperconducting FeTe, which preserves the C4 symmetry of the underlying square lattice and is favored at high temperatures, whereas the other is the antiferromagnetic plaquette phase with broken C4 symmetry, which emerges with doping and is predominant at low temperatures. These findings suggest the coexistence of and competition between two distinct liquid states, and a liquidliquid phase transformation between these states, in the electronic spin system of FeTe1-x(S,Se)x. We have thus discovered the remarkable physics of competing spin-liquid polymorphs in a correlated electron system approaching superconductivity. These results facilitate an understanding of large swaths of recent experimental data in unconventional superconductors. In particular, the phase with lower C2 local symmetry, whose emergence precedes superconductivity, naturally accounts for a propensity for forming electronic nematic states which have been observed experimentally, in cuprate and iron-based superconductors alike.

  2. Spin liquid polymorphism in a correlated electron system on the threshold of superconductivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zalinznyak, Igor; Savici, Andrei T.; Lumsden, Mark D.; Tsvelik, Alexei; Hu, Rongwei; Petrovic, Cedomir

    2015-08-18

    We report neutron scattering measurements which reveal spin-liquid polymorphism in an 11 iron chalcogenide superconductor. It occurs when a poorly metallic magnetic state of FeTe is tuned toward superconductivity by substitution of a small amount of tellurium with isoelectronic sulfur. We also observe a liquid-like magnetic response, which is described by the coexistence of two disordered magnetic phases with different local structures whose relative abundance depends on temperature. One is the ferromagnetic (FM) plaquette phase observed in undoped, nonsuperconducting FeTe, which preserves the C4 symmetry of the underlying square lattice and is favored at high temperatures, whereas the other ismorethe antiferromagnetic plaquette phase with broken C4 symmetry, which emerges with doping and is predominant at low temperatures. These findings suggest the coexistence of and competition between two distinct liquid states, and a liquidliquid phase transformation between these states, in the electronic spin system of FeTe1-x(S,Se)x. We have thus discovered the remarkable physics of competing spin-liquid polymorphs in a correlated electron system approaching superconductivity. These results facilitate an understanding of large swaths of recent experimental data in unconventional superconductors. In particular, the phase with lower C2 local symmetry, whose emergence precedes superconductivity, naturally accounts for a propensity for forming electronic nematic states which have been observed experimentally, in cuprate and iron-based superconductors alike.less

  3. Superconducting cable cooling system by helium gas at two pressures

    DOE Patents [OSTI]

    Dean, John W.

    1977-01-01

    Thermally contacting, oppositely streaming, cryogenic fluid streams in the same enclosure in a closed cycle that changes the fluid from a cool high pressure helium gas to a cooler reduced pressure helium gas in an expander so as to be at different temperature ranges and pressures respectively in go and return legs that are in thermal contact with each other and in thermal contact with a longitudinally extending superconducting transmission line enclosed in the same cable enclosure that insulates the line from the ambient at a temperature T.sub.1. By first circulating the fluid from a refrigerator at one end of the line as a cool gas at a temperature range T.sub.2 to T.sub.3 in the go leg, then circulating the gas through an expander at the other end of the line where the gas becomes a cooler gas at a reduced pressure and at a reduced temperature T.sub.4 and finally by circulating the cooler gas back again to the refrigerator in a return leg at a temperature range T.sub.4 to T.sub.5, while in thermal contact with the gas in the go leg, and in the same enclosure therewith for compression into a higher pressure gas at T.sub.2 in a closed cycle, where T.sub.2 >T.sub.3 and T.sub.5 >T.sub.4, the fluid leaves the enclosure in the go leg as a gas at its coldest point in the go leg, and the temperature distribution is such that the line temperature decreases along its length from the refrigerator due to the cooling from the gas in the return leg.

  4. Understanding Superconducting Magnetic Energy Storage (SMES) technology, applications, and economics, for end-use workshop

    SciTech Connect (OSTI)

    Ferraro, R.J.; McConnell, B.W.

    1993-06-01

    The overall objective of this project was to determine the state-of-the-art and to what extent existing SMES is a viable option in meeting the needs of utilities and their customers for improving electric service power quality. By defining and analyzing SMES electrical/mechanical performance characteristics, and comparing SMES application benefits with competitive stored energy systems, industry will be able to determine SMES unique applications and potential market penetration. Building on this information base, it would also be possible to evaluate the impact of high temperature superconductors (77 K and 20-35 K) on SMES technology applications. The authors of this report constructed a network of industry contacts and research consultants that were used to collect, update, and analyze ongoing SMES R&D and marketing activities in industries, utilities, and equipment manufacturers. These key resources were utilized to assemble performance characteristics on existing SMES, battery, capacitor, flywheel, and high temperature superconductor (HTS) stored energy technologies. From this information, preliminary stored energy system comparisons were accomplished. In this way, the electric load needs would be readily comparable to the potential solutions and applications offered by each aforementioned energy storage technology.

  5. Improvement in J{sub c} performance below liquid nitrogen temperature for SmBa{sub 2}Cu{sub 3}O{sub y} superconducting films with BaHfO{sub 3} nano-rods controlled by low-temperature growth

    SciTech Connect (OSTI)

    Miura, S. Yoshida, Y.; Ichino, Y.; Xu, Q.; Matsumoto, K.; Ichinose, A.; Awaji, S.

    2016-01-01

    For use in high-magnetic-field coil-based applications, the critical current density (J{sub c}) of REBa{sub 2}Cu{sub 3}O{sub y} (REBCO, where RE = rare earth) coated conductors must be isotropically improved, with respect to the direction of the magnetic field; these improvements must be realized at the operating conditions of these applications. In this study, improvement of the J{sub c} for various applied directions of magnetic field was achieved by controlling the morphology of the BaHfO{sub 3} (BHO) nano-rods in a SmBCO film. We fabricated the 3.0 vol. % BHO-doped SmBCO film at a low growth temperature of 720 °C, by using a seed layer technique (T{sub s} = 720 °C film). The low-temperature growth resulted in a morphological change in the BHO nano-rods. In fact, a high number density of (3.1 ± 0.1) × 10{sup 3} μm{sup −2} of small (diameter: 4 ± 1 nm), discontinuous nano-rods that grew in various directions, was obtained. In J{sub c} measurements, the J{sub c} of the T{sub s} = 720 °C film in all directions of the applied magnetic field was higher than that of the non-doped SmBCO film. The J{sub c}{sup min} (6.4 MA/cm{sup 2}) of the former was more than 6 times higher than that (1.0 MA/cm{sup 2}) of the latter at 40 K, under 3 T. The aforementioned results indicated that the discontinuous BHO nano-rods, which occurred with a high number density, exerted a 3D-like flux pinning at the measurement conditions considered. Moreover, at 4.2 K and under 17 T, a flux pinning force density of 1.6 TN/m{sup 3} was realized; this value was comparable to the highest value recorded, to date.

  6. Buffer layers on metal alloy substrates for superconducting tapes

    DOE Patents [OSTI]

    Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.

    2004-10-05

    An article including a substrate, at least one intermediate layer upon the surface of the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the at least one intermediate layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected I.sub.c 's of over 200 Amperes across a sample 1 cm wide.

  7. HTS Cable Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    hat is being done to modernize electricity transmission and distribution In a national ... in mid 2007. The planned total investment in the three projects is 81,710,000 ...

  8. Evidence of superconductivity-induced phonon spectra renormalization in alkali-doped iron selenides

    SciTech Connect (OSTI)

    Opačić, M.; Lazarević, N.; Šćepanović, M.; Ryu, Hyejin; Lei, Hechang; Petrovic, C.; Popović, Z. V.

    2015-11-16

    Polarized Raman scattering spectra of superconducting KxFe2-ySe2 and nonsuperconducting K0.8Fe1.8Co0.2Se2 single crystals were measured in a temperature range from 10 K up to 300 K. Two Raman active modes from the I4/mmm phase and seven from the I4/m phase are observed in frequency range from 150 to 325 cm -1 in both compounds, suggesting that K0.8Fe1.8Co0.2Se2 single crystal also has two-phase nature. Temperature dependence of Raman mode energy is analyzed in terms of lattice thermal expansion and phonon-phonon interaction. Temperature dependence of Raman mode linewidth is considered as temperature-induced anharmonic effects. It is shown that change of Raman mode energy with temperature is dominantly driven by thermal expansion of the crystal lattice. Abrupt change of the A1g mode energy near TC was observed in KxFe2-ySe2 , whereas it is absent in K0.8Fe1.8Co0.2Se2. Phonon energy hardening at low temperatures in the superconducting sample is a consequence of superconductivity-induced redistribution of the electronic states below critical temperature.

  9. Control of magnetic, nonmagnetic, and superconducting states in annealed Ca(Fe1–xCox)₂As₂

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ran, S.; Bud'ko, S. L.; Straszheim, W. E.; Soh, J.; Kim, M. G.; Kreyssig, A.; Goldman, A. I.; Canfield, P. C.

    2012-06-22

    We have grown single-crystal samples of Co substituted CaFe₂As₂ using an FeAs flux and systematically studied the effects of annealing/quenching temperature on the physical properties of these samples. Whereas the as-grown samples (quenched from 960°C) all enter the collapsed tetragonal phase upon cooling, annealing/quenching temperatures between 350 and 800°C can be used to tune the system to low-temperature antiferromagnetic/orthorhomic or superconducting states as well. The progression of the transition temperature versus annealing/quenching temperature (T-Tanneal) phase diagrams with increasing Co concentration shows that, by substituting Co, the antiferromagnetic/orthorhombic and the collapsed tetragonal phase lines are separated and bulk superconductivity is revealed.more » We established a 3D phase diagram with Co concentration and annealing/quenching temperature as two independent control parameters. At ambient pressure, for modest x and Tanneal values, the Ca(Fe₁₋xCox)₂As₂ system offers ready access to the salient low-temperature states associated with Fe-based superconductors: antiferromagnetic/orthorhombic, superconducting, and nonmagnetic/collapsed tetragonal.« less

  10. Wavelength-dependent optical enhancement of superconducting interlayer coupling in La1.885Ba0.115CuO4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Casandruc, E.; Nicoletti, D.; Rajasekaran, S.; Laplace, Y.; Khanna, V.; Gu, G.; Hill, J. P.; Cavalleri, A.

    2015-05-05

    We analyze the pump wavelength dependence for the photo-induced enhancement of interlayer coupling in La1.885Ba0.115CuO4, which is promoted by optical melting of the stripe order. In the equilibrium superconducting state (T < TC = 13 K), in which stripes and superconductivity coexist, time-domain THz spectroscopy reveals a photo-induced blue-shift of the Josephson Plasma Resonance after excitation with optical pulses polarized perpendicular to the CuO2 planes. In the striped, non-superconducting state (TC < T < TSO ≃ 40 K) a transient plasma resonance similar to that seen below TC appears from a featureless equilibrium reflectivity. Most strikingly, both these effects becomemore » stronger upon tuning of the pump wavelength from the mid-infrared to the visible, underscoring an unconventional competition between stripe order and superconductivity, which occurs on energy scales far above the ordering temperature.« less

  11. Design of a horizontal test cryostat for superconducting RF cavities for the FREIA facility at Uppsala University

    SciTech Connect (OSTI)

    Chevalier, N. R.; Thermeau, J.-P.; Bujard, P.; Junquera, T.; Hermansson, L.; Kern, R. Santiago; Ruber, R.

    2014-01-29

    Uppsala University is constructing a large scale facility, called FREIA (Facility for Research Instrumentation and Accelerator Development). FREIA includes a helium liquefier and an accelerator test facility and has the capacity to test superconducting radio-frequency (RF) cavities with the same RF system and RF power level as in an accelerator. A central element of FREIA is a horizontal test cryostat connected in closed loop to a helium liquefier. This cryostat can house two fully equipped (tuners, piezo, power coupler, helium tank) superconducting cavities to perform full RF high power tests and operate at temperatures between 1.8 K and 4.2 K. The cryostat is designed to accommodate a large array of superconducting cavities and magnets, among which the European Spallation Source (ESS) type spoke and high-β elliptical cavities as well as TESLA/ILC type elliptical cavities. The present status of the project and the design of the cryostat are reported.

  12. Torsional texturing of superconducting oxide composite articles

    DOE Patents [OSTI]

    Christopherson, Craig John; Riley, Jr., Gilbert N.; Scudiere, John

    2002-01-01

    A method of texturing a multifilamentary article having filaments comprising a desired oxide superconductor or its precursors by torsionally deforming the article is provided. The texturing is induced by applying a torsional strain which is at least about 0.3 and preferably at least about 0.6 at the surface of the article, but less than the strain which would cause failure of the composite. High performance multifilamentary superconducting composite articles having a plurality of low aspect ratio, twisted filaments with substantially uniform twist pitches in the range of about 1.00 inch to 0.01 inch (25 to 0.25 mm), each comprising a textured desired superconducting oxide material, may be obtained using this texturing method. If tighter twist pitches are desired, the article may be heat treated or annealed and the strain repeated as many times as necessary to obtain the desired twist pitch. It is preferred that the total strain applied per step should be sufficient to provide a twist pitch tighter than 5 times the diameter of the article, and twist pitches in the range of 1 to 5 times the diameter of the article are most preferred. The process may be used to make a high performance multifilamentary superconducting article, having a plurality of twisted filaments, wherein the degree of texturing varies substantially in proportion to the radial distance from the center of the article cross-section, and is substantially radially homogeneous at any given cross-section of the article. Round wires and other low aspect ratio multifilamentary articles are preferred forms. The invention is not dependent on the melting characteristics of the desired superconducting oxide. Desired oxide superconductors or precursors with micaceous or semi-micaceous structures are preferred. When used in connection with desired superconducting oxides which melt irreversibly, it provides multifilamentary articles that exhibit high DC performance characteristics and AC performance markedly

  13. Structural/magnetic phase transitions and superconductivity in Ba(Fe1-xTMx)2As2 (TM=Co, Ni, Cu, Co/Cu, Rh and Pd) single crystals

    SciTech Connect (OSTI)

    Ni, Ni

    2009-08-15

    Since its discovery in 1911, superconductivity has been one of the most actively studied fields in condensed matter physics and has attracted immense experimental and theoretical effort. At this point in time, with more and more superconductors discovered in elements, alloys, intermetallic compounds and oxides, it is becoming clear that superconductivity is actually not so rare in nature. Almost half of the elements in the periodic table and hundreds of compounds have been found to be superconducting. Fig. 1.1 shows the milestones in discovering higher T{sub c} superconductors. Among the elemental superconductors, Niobium has the highest superconducting transition temperature, T{sub c}, of 9.5 K. This record held for more than ten years, until the discovery of niobium nitride which superconducts below 16 K. It took another thirty years for T{sub c} to increase from 16 K in niobium nitride to 23 K in niobium germanium.

  14. Processing of superconductive materials and high frequency

    SciTech Connect (OSTI)

    Smith, J.L.

    1987-01-01

    We do not know yet if superconductivity will become useful without refrigeration. Now, the superconductors are so different from copper that it is difficult to imagine replacing copper with such a brittle material. Superconductors conduct dc with no loss, ac with small losses, and microwaves in co-axial lines with almost no loss and with no dispersion from dc to the highest frequencies. They will probably allow us to close the gap between radio frequency and infrared optical transmission. Clearly your industry should know some things about where superconductivity may lead us and must consider whether the greater risk is to develop them or to let others try it. There are no easy answers yet.

  15. Superconductivity and magnetism in rapidly solidified perovskites

    SciTech Connect (OSTI)

    O'Handley, R.C.; Kalonji, G.

    1991-01-01

    The report is divided into six parts, reflecting major thrusts of our work since 1987. The six areas are: molecular orbital theory of high {Tc} superconductivity; rapid solidification processing of oxide superconductors; time dependent magnetic and superconducting properties of these inhomogeneous materials; excess Gd in Gd{sub 1+x}Ba{sub 2-x}Cu{sub 3}O{sub 7-{delta}} perovskites; rapid solidification and directional annealing to achieve high Jc; and Mossbauer studies of T = Fe, Co and Ni site selection in YBa{sub 2}(CuT){sub 3}O{sub 7-{delta}} and GdBa{sub 2}(CuT){sub 3}O{sub 7-{delta}}.

  16. Method of fabricating composite superconducting wire

    DOE Patents [OSTI]

    Strauss, Bruce P.; Reardon, Paul J.; Remsbottom, Robert H.

    1977-01-01

    An improvement in the method for preparing composite rods of superconducting alloy and normal metal from which multifilament composite superconducting wire is fabricated by bending longitudinally a strip of normal metal around a rod of superconductor alloy and welding the edges to form the composite rod. After the rods have preferably been provided with a hexagonal cross-sectional shape, a plurality of the rods are stacked into a normal metal extrusion can, sealed and worked to reduce the cross-sectional size and form multifilament wire. Diffusion barriers and high-electrical resistance barriers can easily be introduced into the wire by plating or otherwise coating the faces of the normal metal strip with appropriate materials.

  17. The superconducting solenoid magnets for MICE

    SciTech Connect (OSTI)

    Green, Michael A.

    2002-12-22

    The Muon Ionization Cooling Experiment (MICE) is a channel of superconducting solenoid magnets. The magnets in MICE are around the RF cavities, absorbers (liquid or solid) and the primary particle detectors [1], [2]. The MICE superconducting solenoid system consists of eighteen coils that are grouped in three types of magnet assemblies. The cooling channel consists of two complete cell of an SFOFO cooling channel. Each cell consists of a focusing coil pair around an absorber and a coupling coil around a RF cavity that re-accelerates the muons to their original momentum. At the ends of the experiment are uniform field solenoids for the particle detectors and a set of matching coils used to match the muon beam to the cooling cells. Three absorbers are used instead of two in order to shield the detectors from dark currents generated by the RF cavities at high operating acceleration gradients.

  18. Self-triggering superconducting fault current limiter

    DOE Patents [OSTI]

    Yuan, Xing; Tekletsadik, Kasegn

    2008-10-21

    A modular and scaleable Matrix Fault Current Limiter (MFCL) that functions as a "variable impedance" device in an electric power network, using components made of superconducting and non-superconducting electrically conductive materials. The matrix fault current limiter comprises a fault current limiter module that includes a superconductor which is electrically coupled in parallel with a trigger coil, wherein the trigger coil is magnetically coupled to the superconductor. The current surge doing a fault within the electrical power network will cause the superconductor to transition to its resistive state and also generate a uniform magnetic field in the trigger coil and simultaneously limit the voltage developed across the superconductor. This results in fast and uniform quenching of the superconductors, significantly reduces the burnout risk associated with non-uniformity often existing within the volume of superconductor materials. The fault current limiter modules may be electrically coupled together to form various "n" (rows).times."m" (columns) matrix configurations.

  19. Anisotropy reversal of the upper critical field at low temperatures and spin-locked superconductivity in K2Cr3As3

    SciTech Connect (OSTI)

    Balakirev, F. F.; Kong, T.; Jaime, M.; McDonald, R. D.; Mielke, C. H.; Gurevich, A.; Canfield, P. C.; Bud'ko, S. L.

    2015-06-23

    We report measurements of the anisotropic upper critical field Hc2(T) for K2Cr3As3 single crystals up to 60 T and T>0.6K. Our results show that the upper critical field parallel to the Cr chains, Hc2(T), exhibits a paramagnetically limited behavior, whereas the shape of the Hc2(T) curve (perpendicular to the Cr chains) has no evidence of paramagnetic effects. As a result, the curves Hc2(T) and Hc2(T) cross at T≈4K, so that the anisotropy parameter γH(T)=Hc2/Hc2(T)increases from γH(Tc)≈0.35 near Tc to γH(0)≈1.7 at 0.6 K. This behavior of Hc2(T) is inconsistent with triplet superconductivity but suggests a form of singlet superconductivity with the electron spins locked onto the direction of Cr chains.

  20. Superconducting RF systems for eRHIC

    SciTech Connect (OSTI)

    Belomestnykh S.; Ben-Zvi, I.; Brutus, J.C.; Hahn, H. et al

    2012-05-20

    The proposed electron-hadron collider eRHIC will consist of a six-pass 30-GeV electron Energy Recovery Linac (ERL) and one of RHIC storage rings operating with energy up to 250 GeV. The collider design extensively utilizes superconducting RF (SRF) technology in both electron and hadron parts. This paper describes various SRF systems, their requirements and parameters.

  1. Fermilab | Science | Particle Accelerators | Advanced Superconducting Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Fermilab Accelerator Science and Technology Facility photo The Fermilab Accelerator Science and Technology (FAST) Facility is America's only test bed for cutting-edge, record high-intensity particle beams and for accelerator research aimed at intensity frontier proton accelerators. FAST will also be unique in the United States as a particle beam research facility based on superconducting radio-frequency technology, on which nearly all proposed future accelerators in the world are

  2. Rotor assembly including superconducting magnetic coil

    DOE Patents [OSTI]

    Snitchler, Gregory L.; Gamble, Bruce B.; Voccio, John P.

    2003-01-01

    Superconducting coils and methods of manufacture include a superconductor tape wound concentrically about and disposed along an axis of the coil to define an opening having a dimension which gradually decreases, in the direction along the axis, from a first end to a second end of the coil. Each turn of the superconductor tape has a broad surface maintained substantially parallel to the axis of the coil.

  3. Core/coil assembly for use in superconducting magnets and method for assembling the same

    DOE Patents [OSTI]

    Kassner, David A.

    1979-01-01

    A core/coil assembly for use in a superconducting magnet of the focusing or bending type used in syncronous particle accelerators comprising a coil assembly contained within an axial bore of the stacked, washer type, carbon steel laminations which comprise the magnet core assembly, and forming an interference fit with said laminations at the operating temperature of said magnet. Also a method for making such core/coil assemblies comprising the steps of cooling the coil assembly to cryogenic temperatures and drawing it rapidly upwards into the bore of said stacked laminations.

  4. Proximity effect bilayer nano superconducting quantum interference devices for millikelvin magnetometry

    SciTech Connect (OSTI)

    Blois, A. Rozhko, S.; Romans, E. J.; Hao, L.; Gallop, J. C.

    2013-12-21

    Superconducting quantum interference devices (SQUIDs) incorporating thin film nanobridges as weak links have sensitivities approaching that required for single spin detection at 4.2 K. However, due to thermal hysteresis they are difficult to operate at much lower temperatures which hinder their application to many quantum measurements. To overcome this, we have developed nanoscale SQUIDs made from titanium-gold proximity bilayers. We show that their electrical properties are consistent with a theoretical model developed for heat flow in bilayers and demonstrate that they enable magnetic measurements to be made on a sample at system temperatures down to 60 mK.

  5. Lumens: The new way to shop for light

    Energy Savers [EERE]

    Long Island HTS Power Cable Long Island HTS Power Cable This project involves the demonstration of a hightemperature superconducting (HTS) power cable in the Long Island Power grid, spanning nearly half a mile and serving as a permanent link in the Long Island Power Authority's (LIPA) grid network. The cable represents the world's first installation of a superconducting cable in a live grid at transmission voltages. Long Island HTS Power Cable (1.96 MB) More Documents & Publications HTS

  6. Substrates suitable for deposition of superconducting thin films

    DOE Patents [OSTI]

    Feenstra, Roeland; Boatner, Lynn A.

    1993-01-01

    A superconducting system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  7. Magnetic excitations in Kondo liquid: superconductivity and hidden magnetic

    Office of Scientific and Technical Information (OSTI)

    quantum critical fluctuations (Journal Article) | SciTech Connect Magnetic excitations in Kondo liquid: superconductivity and hidden magnetic quantum critical fluctuations Citation Details In-Document Search Title: Magnetic excitations in Kondo liquid: superconductivity and hidden magnetic quantum critical fluctuations We report Knight shift experiments on the superconducting heavy electron material CeCoIn{sub 5} that allow one to track with some precision the behavior of the heavy electron

  8. Method for manufacturing a rotor having superconducting coils

    DOE Patents [OSTI]

    Driscoll, David I.; Shoykhet, Boris A.

    2001-01-01

    A method and apparatus for manufacturing a rotor for use with a rotating machine is provided that employs a superconducting coil on the rotor. An adhesive is applied to an outer surface of the rotor body, which may include a groove disposed within an outer surface of the rotor body. A superconducting coil is then mounted onto the rotor body such that the adhesive bonds the superconducting coil to the rotor body.

  9. Magnetism and superconductivity observed to exist in harmony

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetism and superconductivity exist in harmony Magnetism and superconductivity observed to exist in harmony Physicists have observed, for the first time in a single exotic phase, a situation where magnetism and superconductivity are necessary for each other's existence. August 28, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable

  10. Pseudogaps, Polarons, and the Mystery of High-Tc Superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pseudogaps, Polarons, and the Mystery of High-Tc Superconductivity Pseudogaps, Polarons, and the Mystery of High-Tc Superconductivity Print Wednesday, 26 April 2006 00:00 Working at the ALS, a multi-institutional collaboration led by researchers at ALS and Stanford University has identified a pseudogap phase with a nodal-antinodal dichotomy in ferromagnetic manganese oxide materials (manganites). Even though ferromagnetism and superconductivity do not exist together, the pseudogap state found in

  11. Frequency dispersion of nonlinear response of thin superconducting films in the Berezinskii-Kosterlitz-Thouless state

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dietrich, Scott; Mayer, William; Byrnes, Sean; Vitkalov, Sergey; Sergeev, A.; Bollinger, Anthony T.; Božović, Ivan

    2015-02-20

    The effects of microwave radiation on transport properties of atomically thin La2-xSrxCuO₄ films were studied in the 0.1-20 GHz frequency range. Resistance changes induced by microwaves were investigated at different temperatures (8–15 K) near the superconducting transition. A strong decrease of the nonlinear response is observed within a few GHz of a cutoff frequency νcut ≈ 2GHz. The expected frequency dependence vastly underestimates the sharpness of this drop. Numerical simulations that assume ac response to follow dc V-I characteristics of the films reproduce well the low frequency behavior, but fail above νcut. Thus, high-frequency radiation is much less effective inmore » inducing vortex-antivortex dissociation in the oscillating superconducting condensate.« less

  12. Vibration Measurements to Study the Effect of Cryogen Flow in Superconducting Quadrupole.

    SciTech Connect (OSTI)

    He,P.; Anerella, M.; aydin, S.; Ganetis, G. Harrison, M.; Jain, A.; Parker, B.

    2007-06-25

    The conceptual design of compact superconducting magnets for the International Linear Collider final focus is presently under development. A primary concern in using superconducting quadrupoles is the potential for inducing additional vibrations from cryogenic operation. We have employed a Laser Doppler Vibrometer system to measure the vibrations in a spare RHIC quadrupole magnet under cryogenic conditions. Some preliminary results of these studies were limited in resolution due to a rather large motion of the laser head as well as the magnet. As a first step towards improving the measurement quality, a new set up was used that reduces the motion of the laser holder. The improved setup is described, and vibration spectra measured at cryogenic temperatures, both with and without helium flow, are presented.

  13. Modifications of Superconducting Properties of Niobium Caused by Nitrogen Doping Recipes for High Q Cavities

    SciTech Connect (OSTI)

    Vostrikov, Alexander; Checchin, Mattia; Grassellino, Anna; Kim, Young-Kee; Romanenko, Alexander

    2015-06-01

    A study is presented on the superconducting properties of niobium used for the fabrication of the SRF cavities after treating by recently discovered nitrogen doping methods. Cylindrical niobium samples have been subjected to the standard surface treatments applied to the cavities (electro-polishing, l 20°C bake) and compared with samples treated by additional nitrogen doping recipes routinely used to reach ultra-high quality factor values (>3· 1010 at 2 K, 16 MV/m). The DC magnetization curves and the complex magnetic AC susceptibility have been measured. Evidence for the lowered field of first flux penetration after nitrogen doping is found suggesting a correlation with the lowered quench fields. Superconducting critical temperatures Tc = 9.25 K are found to be in agreement with previous measurements, and no strong effect on the critical surface field (Bd) from nitrogen doping was found.

  14. Frequency dispersion of nonlinear response of thin superconducting films in the Berezinskii-Kosterlitz-Thouless state

    SciTech Connect (OSTI)

    Dietrich, Scott; Mayer, William; Byrnes, Sean; Vitkalov, Sergey; Sergeev, A.; Bollinger, Anthony T.; Boovi?, Ivan

    2015-02-20

    The effects of microwave radiation on transport properties of atomically thin La2-xSrxCuO? films were studied in the 0.1-20 GHz frequency range. Resistance changes induced by microwaves were investigated at different temperatures (815 K) near the superconducting transition. A strong decrease of the nonlinear response is observed within a few GHz of a cutoff frequency ?cut ? 2GHz. The expected frequency dependence vastly underestimates the sharpness of this drop. Numerical simulations that assume ac response to follow dc V-I characteristics of the films reproduce well the low frequency behavior, but fail above ?cut. Thus, high-frequency radiation is much less effective in inducing vortex-antivortex dissociation in the oscillating superconducting condensate.

  15. Frequency dispersion of nonlinear response of thin superconducting films in the Berezinskii-Kosterlitz-Thouless state

    SciTech Connect (OSTI)

    Dietrich, Scott; Mayer, William; Byrnes, Sean; Vitkalov, Sergey; Sergeev, A.; Bollinger, Anthony T.; Božović, Ivan

    2015-02-20

    The effects of microwave radiation on transport properties of atomically thin La2-xSrxCuO₄ films were studied in the 0.1-20 GHz frequency range. Resistance changes induced by microwaves were investigated at different temperatures (8–15 K) near the superconducting transition. A strong decrease of the nonlinear response is observed within a few GHz of a cutoff frequency νcut ≈ 2GHz. The expected frequency dependence vastly underestimates the sharpness of this drop. Numerical simulations that assume ac response to follow dc V-I characteristics of the films reproduce well the low frequency behavior, but fail above νcut. Thus, high-frequency radiation is much less effective in inducing vortex-antivortex dissociation in the oscillating superconducting condensate.

  16. Low-temperature electrical transport in B-doped ultrananocrystalline diamond film

    SciTech Connect (OSTI)

    Li, Lin; Zhao, Jing; Hu, Zhaosheng; Quan, Baogang; Li, Junjie Gu, Changzhi

    2014-05-05

    B-doped ultrananocrystalline diamond (UNCD) films are grown using hot-filament chemical vapor deposition method, and their electrical transport properties varying with temperature are investigated. When the B-doped concentration of UNCD film is low, a step-like increase feature of the resistance is observed with decreasing temperature, reflecting at least three temperature-modified electronic state densities at the Fermi level according to three-dimensional Mott's variable range hopping transport mechanism, which is very different from that of reported B-doped nanodiamond. With increasing B-doped concentration, a superconductive transformation occurs in the UNCD film and the highest transformation temperature of 5.3?K is observed, which is higher than that reported for superconducting nanodiamond films. In addition, the superconducting coherence length is about 0.63?nm, which breaks a reported theoretical and experimental prediction about ultra-nanoscale diamond's superconductivity.

  17. History of the superconducting-magnet bubble chambers

    SciTech Connect (OSTI)

    Derrick, M.; Hyman, L.G.; Pewitt, E.G.

    1980-01-01

    This review covers the development of superconducting magnets, small bubble chambers, and the early history of the 12-foot bubble chamber. (MOW)

  18. Unified description of superconducting pairing symmetry in electron...

    Office of Scientific and Technical Information (OSTI)

    Title: Unified description of superconducting pairing symmetry in electron-doped Fe-based-... Type: Publisher's Accepted Manuscript Journal Name: Physical Review B Additional Journal ...

  19. Systems Reiter, George 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY...

    Office of Scientific and Technical Information (OSTI)

    Compton Scattering as a Probe of Hydrogen Bonded (and other) Systems Reiter, George 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 77 NANOSCIENCE AND...

  20. A young person's view of the Superconducting Super Collider

    SciTech Connect (OSTI)

    Moya, A.

    1990-08-01

    This report gives a simple description of the Superconducting Super Collider, how it works, and what it is used for. (LSP)