Powered by Deep Web Technologies
Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Conducting polymer actuators : temperature effects  

E-Print Network [OSTI]

In order to utilize conducting polymer actuators as a viable engineering solution, it is necessary to produce usable levels of force with a reasonable bandwidth. Polypyrrole actuated at temperatures as high as 100 °C ...

Del Zio, Michael R. (Michael Robert), 1982-

2006-01-01T23:59:59.000Z

2

Low temperature proton conducting oxide devices  

DOE Patents [OSTI]

A device for conducting protons at a temperature below 550.degree. C. includes a LAMOX ceramic body characterized by an alpha crystalline structure.

Armstrong, Timothy R. (Clinton, TN); Payzant, Edward A. (Oak Ridge, TN); Speakman, Scott A. (Oak Ridge, TN); Greenblatt, Martha (Highland Park, NJ)

2008-08-19T23:59:59.000Z

3

Holographic conductivity of zero temperature superconductors  

E-Print Network [OSTI]

Using the recently found by G. Horowitz and M. Roberts (arXiv:0908.3677) numerical model of the ground state of holographic superconductors (at zero temperature), we calculate the conductivity for such models. The universal relation connecting conductivity with the reflection coefficient was used for finding the conductivity by the WKB approach. The dependence of the conductivity on the frequency and charge density is discussed. Numerical calculations confirm the general arguments of (arXiv:0908.3677) in favor of non-zero conductivity even at zero temperature. In addition to the Horowitz-Roberts solution we have found (probably infinite) set of extra solutions which are normalizable and reach the same correct RN-AdS asymptotic at spatial infinity. These extra solutions (which correspond to larger values of the grand canonical potential) lead to effective potentials that also vanish at the horizon and thus correspond to a non-zero conductivity at zero temperature.

R. A. Konoplya; A. Zhidenko

2010-02-15T23:59:59.000Z

4

Electrical and thermal conductivity of low temperature CVD graphene...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and thermal conductivity of low temperature CVD graphene: the effect of disorder This article has been downloaded from IOPscience. Please scroll down to see the full text article....

5

Low Temperature Proton Conductivity | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term StorageDepartment ofPerformance:Temperature

6

Specific features of the temperature dependence of the conduction electron concentration in the narrow-gap and zero-gap states of Cd{sub x}Hg{sub 1-x}Te  

SciTech Connect (OSTI)

Results of studies of the conductivity {sigma} and the Hall coefficient R in the Cd{sub x}Hg{sub 1-x}Te crystals with x = 0.1, 0.12, 0.14, and 0.15 are analyzed in the temperature range T = 4.2-300 K and the magnetic field range B = 0.005-2.22 T. Using data on the R(B) in low and high magnetic fields and the data on {sigma}(T), electron and hole concentrations and mobilities are determined. It is shown that the electron concentration n in the studied samples is almost independent of T in the range 4.2-15 K, while as T increases, it increases according to the law n {proportional_to} T {sup r} (r > 3/2), where r = f(n, T, x). It is found that r varies from 1.7 at x = 0.1 to 3.1 at compositions with x = 0.14 and 0.15. The results for n(T) are compared with theory, taking into account nonparabolicity of the variance law for {epsilon}(T), and with the theory of impurity states in narrow-gap and zero-gap semiconductors. It is shown that the constancy of n(T) up to {approx}15 K and the strong dependence n(T) (r > 3/2) at higher temperatures are caused by the intense ionization of electrons localized at acceptor states.

Aliev, S. A.; Zulfigarov, E. I.; Selim-zade, R. I. [Academy of Sciences of Azerbaijan, Institute of Physics (Azerbaijan)

2012-03-15T23:59:59.000Z

7

An International Round-Robin Study, Part II: Thermal Diffusivity, Specific Heat and Thermal Conductivity  

SciTech Connect (OSTI)

For bulk thermoelectrics, figure-of-merit, ZT, still needs to improve from the current value of 1.0 - 1.5 to above 2 to be competitive to other alternative technologies. In recent years, the most significant improvements in ZT were mainly due to successful reduction of thermal conductivity. However, thermal conductivity cannot be measured directly at high temperatures. The combined measurements of thermal diffusivity and specific heat and density are required. It has been shown that thermal conductivity is the property with the greatest uncertainty and has a direct influence on the accuracy of the figure of merit. The International Energy Agency (IEA) group under the implementing agreement for Advanced Materials for Transportation (AMT) has conducted two international round-robins since 2009. This paper is Part II of the international round-robin testing of transport properties of bulk bismuth telluride. The main focuses in Part II are on thermal diffusivity, specific heat and thermal conductivity.

Wang, Hsin [ORNL; Porter, Wallace D [ORNL; Bottner, Harold [Fraunhofer-Institute, Freiburg, Germany; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany; Chen, Lidong [Chinese Academy of Sciences; Bai, Shengqiang [Chinese Academy of Sciences; Tritt, Terry M. [Clemson University; Mayolett, Alex [Corning, Inc; Senawiratne, Jayantha [Corning, Inc; Smith, Charlene [Corning, Inc; Harris, Fred [ZT-Plus; Gilbert, Partricia [Marlow Industries, Inc; Sharp, J [Marlow Industries, Inc; Lo, Jason [CANMET - Materials Technology Laboratory, Natural Resources of Canada; Keinke, Holger [University of Waterloo, Canada; Kiss, Laszlo I. [University of Quebec at Chicoutimi

2013-01-01T23:59:59.000Z

8

A study of temperature distributions due to conduction reservoir heating  

E-Print Network [OSTI]

of thermal conductivity with temperature. He showed this effect could be very important in considering a material such as oil shale, where the conductivity of the raw shale may be five times as great as that of the spent shale. Neglecting this variation... conduction model to investigate the in place heating of oil shale by hot gases forced through a fracture. The heat injection rate he considered is much less than would normally be employed for steam injection into permeable reservoirs and is only about...

Connaughton, Charles Richard

2012-06-07T23:59:59.000Z

9

Temperature effects on the electronic conductivity of single-walled carbon nanotubes  

E-Print Network [OSTI]

The room-temperature electronic conductivity and temperature dependence of conductivity were measured for samples of carbon nanotubes of three types: pristine; functionalized with a nitrobenzene covalent functionalization, ...

Mascaro, Mark Daniel

2007-01-01T23:59:59.000Z

10

Thermal conductivity and specific heat of sorghum grain  

E-Print Network [OSTI]

Formation of Test Canister Ice Jacket ~ Sealing Test Canister in Calorimeter. . 43 44 Testing of Samples. Initial Calorimeter Observations. 49 Insertion of Grain Samples into Calorimeter. . . . 50 Final Test Observations Processing of Data. 54... to Contain the Grain Sample 38 for the Determination of Specific Heat 39 12. Top View of Calorimeter. 40 13. Galvanized Iron Cylinder Used to Form the Ice Jacket Around the Test Canister 42 VIII Figures 14. Clamping Device Used to Hold Test Canister...

Miller, Clinton Frank

1963-01-01T23:59:59.000Z

11

Thermal contact conductance of metallic coated superconductor/copper interfaces at cryogenic temperatures  

E-Print Network [OSTI]

of the vapor deposition process when using soft metallic coatings so that the maximum allowable enhancement for a specific coating thickness can be obtained. Also, the temperature dependence for the microhardness of copper was ex- perimentally determined...- sate for the difFerence in layer and substrate thermal conductivities. When applied, the model agreed well with the data obtained in this investigation at low coating thick- ness but overpredicted the data, as the thickness increased. In addition...

Ochterbeck, Jay Matthew

1990-01-01T23:59:59.000Z

12

High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems  

SciTech Connect (OSTI)

In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

Tarau, Calin; Walker, Kara L.; Anderson, William G. [Advanced Cooling Technologies, Inc. 1046 New Holland Ave. Lancaster, PA 17601 (United States)

2009-03-16T23:59:59.000Z

13

HIGH TEMPERATURE CONDUCTIVITY PROBE FOR MONITORING CONTAMINATION LEVELS IN POWER PLANT BOILER WATER.  

E-Print Network [OSTI]

??A high temperature/high pressure flow through probe was designed to measure high temperature electrical conductivity of aqueous (aq) dilute electrolyte solutions, an application which can… (more)

Hipple, Sarah

2008-01-01T23:59:59.000Z

14

A Discussion of Conductivity Testing in High Temperature Membranes (lessons learned in assessing transport)  

Broader source: Energy.gov [DOE]

Presentation on conductivity testing in high temperature membranes given by Jim Boncella of Los Alamos National Laboratory at the High Temperature Membrane Working Group meeting in October 2005.

15

STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS  

SciTech Connect (OSTI)

Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible hydrocarbons, CO, or NO{sub x} and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at low to intermediate temperatures tremendous benefits may be accrued. At low temperatures, in particular, it becomes feasible to use ferritic steel for interconnects instead of expensive and brittle ceramic materials such as those based on LaCrO{sub 3}. In addition, sealing the fuel cell becomes easier and more reliable; rapid startup is facilitated; thermal stresses (e.g., those caused by thermal expansion mismatches) are reduced; radiative losses ({approx}T{sup 4}) become minimal; electrode sintering becomes negligible and (due to a smaller thermodynamic penalty) the SOFC operating cycle (heating from ambient) would be more efficient. Combined, all these improvements further result in reduced initial and operating costs. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research is to develop a stable high conductivity (> 0.05 S cm{sup -1} at {le} 550 C) electrolyte for lower temperature SOFCs. This objective is specifically directed toward meeting the lowest (and most difficult) temperature criteria for the 21st Century Fuel Cell Program. Meeting this objective provides a potential for future transportation applications of SOFCs, where their ability to directly use hydrocarbon fuels could permit refueling within the existing transportation infrastructure. In order to meet this objective we are developing a functionally gradient bilayer electrolyte comprised of a layer of erbia-stabilized bismuth oxide (ESB) on the oxidizing side and a layer of SDC or GDC on the reducing side, see Fig. 1. Bismuth oxide and doped ceria are among the highest ionic conducting electrolytes and in fact bismuth oxide based electrolytes are the only known solid oxide electrolytes to have an ionic conductivity that meets the program conductivity goal. In this arrangement, the ceria layer protects the bismuth oxide layer from decomposing by shielding it from very low P{sub O{sub 2}}'s and the ESB layer serves to block electronic flux through the electrolyte. This arrangement has two significant advantages over the YSZ/SDC bilayers investigated by others [1, 2]. The first advantage is that SDC is conductive enough to serve as an intermediate temperature SOFC electrolyte. Moreover, ESB is conductive enough to serve as a low temperature electrolyte. Consequently, at worst an SDC/ESB bilayered SOFC should have the conductivity of SDC but with improved efficiency due to the electronic flux barrier provided by ESB. The second advantage is that small (dopant) concentrations of SDC in ESB or ESB in SDC, have been found to have conductivities comparable to the host lattice [3, 4]. Therefore, if solid solutioning occurs at the SDC-ESB interface, it should not be detrimental to the performance of the bilayer. In contrast, solid solutions of SDC and YSZ have been found to be significantly less conductive than SDC or YSZ. Thus, it bears emphasizing that, at this time, only SDC/ESB electrolytes have potential in low temperature SOFC applications.

Eric D. Wachsman; Keith L. Duncan

2002-03-31T23:59:59.000Z

16

Conduction Models Of The Temperature Distribution In The East...  

Open Energy Info (EERE)

In The East Rift Zone Of Kilauea Volcano Abstract Temperature variations in the 1966-meter Hawaii Geothermal Project well HGP-A are simulated by model studies using a finite...

17

Temperature Dependence of Conductivity in Graphene Final Project in the Computational Physics course  

E-Print Network [OSTI]

Temperature Dependence of Conductivity in Graphene Final Project in the Computational Physics. The Ohmic resistivity of the graphene electrons is calculated by the nite-temperature Drude-Boltzmann theory of graphene and the experimental results of the temperature dependence of conductivity, there is an extensive

Adler, Joan

18

Reversible temperature regulation of electrical and thermal conductivity using liquid–solid phase transitions  

E-Print Network [OSTI]

Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce ...

Zheng, Ruiting

19

STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS  

SciTech Connect (OSTI)

Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible CO, HC, or NOx and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at lower temperatures tremendous benefits may be accrued, not the least of which is reduced cost. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research is to develop a stable high conductivity (>0.05 S cm{sup -1} at 550 C) electrolyte for lower temperature SOFCs. This objective is specifically directed toward meeting the lowest (and most difficult) temperature criteria for the 21st Century Fuel Cell Program. Meeting this objective provides a potential for future transportation applications of SOFCs, where their ability to directly use hydrocarbon fuels could permit refueling within the existing transportation infrastructure. In order to meet this objective we are developing a functionally gradient bilayer electrolyte comprised of bismuth oxide on the air side and ceria on the fuel side. Bismuth oxide and doped ceria are among the highest ionic conducting electrolytes and in fact bismuth oxide based electrolytes are the only known solid oxide electrolytes to have an ionic conductivity that meets the program conductivity goal. We have previously demonstrated that this concept works, that a bismuth oxide/ceria bilayer electrolyte provides near theoretical open circuit potential (OCP) and is stable for 1400 h of fuel cell operation under both open circuit and maximum power conditions. More recently, we developed a computer model to determine the defect transport in this bilayer and have found that a bilayer comprised primarily of the more conductive component (bismuth oxide) is stable for 500 C operation. In this first year of the project we are obtaining necessary thermochemical data to complete the computer model as well as initial SOFC results based on thick 1-2 mm single and bilayer ceria/bismuth oxide electrolytes. We will use the computer model to obtain the optimum relative layer thickness as a function of temperature and air/fuel conditions. SOFCs will be fabricated with 1-2 mm single and bilayer electrolytes based on the modeling results, tested for OCP, conductivity, and stability and compared against the predictions. The computer modeling is a continuation of previous work under support from GRI and the student was available at the inception of the contract. However, the experimental effort was delayed until the beginning of the Spring Semester because the contract was started in October, 2 months after the start of our Fall Semester, and after all of the graduate students were committed to other projects. The results from both of these efforts are described in the following two sections: (1) Experimental; and (2) Computer Modeling.

Eric D. Wachsman

2000-10-01T23:59:59.000Z

20

Electrical conductivity of wadsleyite at high temperatures and high pressures Lidong Dai a,b  

E-Print Network [OSTI]

Electrical conductivity of wadsleyite at high temperatures and high pressures Lidong Dai a,b , Shun 2009 Editor: L. Stixrude Keywords: electrical conductivity wadsleyite oxygen fugacity frequency water The electrical conductivity of wadsleyite aggregates has been determined under the broad range of thermodynamic

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

High-Throughput Computational Screening of thermal conductivity, Debye temperature and Gruneisen parameter  

E-Print Network [OSTI]

thermal properties such as the Debye temperature and the thermal conductivity of materials. We demonstrate studied for the past few decades6 . Low thermal conductivity mate- rials constitute the basis of a new and predict the thermal conductivity of differ- ent materials8,9,11­16 . Such evaluation of the higher

Curtarolo, Stefano

22

Specific heat of apple at different moisture contents and temperatures  

E-Print Network [OSTI]

This work discusses results of experimental investigations of the specific heat, $C$, of apple in a wide interval of moisture contents ($W=0-0.9$) and temperatures ($T = 283-363$ K). The obtained data reveal the important role of the bound water in determination of $C(W,T)$ behaviour. The additive model for description of $C(W)$ dependence in the moisture range of $0.1apple was considered as a mixture of water and hydrated apple material (water plasticised apple) with specific heat $C_h$. The difference between $C_h$ and specific heat of dry apple, $\\Delta Cb=C_h-C_d$, was proposed as a measure of the excess contribution of bound water to the specific heat. The estimated amounts of bound water $W_b$ were comparable with the monolayer moisture content in apple. The analytical equation was proposed for approximation of $C(W,T)$ dependencies in the studied intervals of moisture content and temperature.

Viacheslav Mykhailyk; Nikolai Lebovka

2013-05-11T23:59:59.000Z

23

Temperature dependence of thermal conductivities of coupled rotator lattice and the momentum diffusion in standard map  

E-Print Network [OSTI]

In contrary to other 1D momentum-conserving lattices such as the Fermi-Pasta-Ulam $\\beta$ (FPU-$\\beta$) lattice, the 1D coupled rotator lattice is a notable exception which conserves total momentum while exhibits normal heat conduction behavior. The temperature behavior of the thermal conductivities of 1D coupled rotator lattice had been studied in previous works trying to reveal the underlying physical mechanism for normal heat conduction. However, two different temperature behaviors of thermal conductivities have been claimed for the same coupled rotator lattice. These different temperature behaviors also intrigue the debate whether there is a phase transition of thermal conductivities as the function of temperature. In this work, we will revisit the temperature dependent thermal conductivities for the 1D coupled rotator lattice. We find that the temperature dependence follows a power law behavior which is different with the previously found temperature behaviors. Our results also support the claim that there is no phase transition for 1D coupled rotator lattice. We also give some discussion about the similarity of diffusion behaviors between the 1D coupled rotator lattice and the single kicked rotator also called the Chirikov standard map.

Yunyun Li; Nianbei Li; Baowen Li

2015-01-29T23:59:59.000Z

24

Geometry and temperature dependent thermal conductivity of diamond nanowires: A non-equilibrium molecular dynamics study  

E-Print Network [OSTI]

plasma etching of polycrystalline diamond films [7], microwave plasma assisted chemical vapor deposition. For theoretical calculations of proper- ties of nanosized diamond materials, polycrystalline diamond thin filmsGeometry and temperature dependent thermal conductivity of diamond nanowires: A non

Melnik, Roderick

25

Determination of temperature-dependent heat conductivity and thermal diffusivity of waste glass melter feed  

SciTech Connect (OSTI)

The cold cap is a layer of reacting glass batch floating on the surface of melt in an all-electric continuous glass melter. The heat needed for the conversion of the melter feed to molten glass must be transferred to and through the cold cap. Since the heat flux into the cold cap determines the rate of melting, the heat conductivity is a key property of the reacting feed. We designed an experimental setup consisting of a large cylindrical crucible with an assembly of thermocouples that monitors the evolution of the temperature field while the crucible is heated at a constant rate. Then we used two methods to calculate the heat conductivity and thermal diffusivity of the reacting feed: the approximation of the temperature field by polynomial functions and the finite-volume method coupled with least-squares analysis. Up to 680°C, the heat conductivity of the reacting melter feed was represented by a linear function of temperature.

Pokorny, Richard; Rice, Jarrett A.; Schweiger, Michael J.; Hrma, Pavel R.

2013-06-01T23:59:59.000Z

26

A robust and well shielded thermal conductivity device for low temperature measurements  

SciTech Connect (OSTI)

We present a compact mechanically robust thermal conductivity measurement apparatus for measurements at low temperatures (<1 K) and high magnetic fields on small high-purity single crystal samples. A high-conductivity copper box is used to enclose the sample and all the components. The box provides protection for the thermometers, heater, and most importantly the sample increasing the portability of the mount. In addition to physical protection, the copper box is also effective at shielding radio frequency electromagnetic interference and thermal radiation, which is essential for low temperature measurements. A printed circuit board in conjunction with a braided ribbon cable is used to organize the delicate wiring and provide mechanical robustness.

Toews, W. H.; Hill, R. W. [GWPI and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)] [GWPI and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

2014-04-15T23:59:59.000Z

27

Determination of heat conductivity and thermal diffusivity of waste glass melter feed: Extension to high temperatures  

SciTech Connect (OSTI)

The heat conductivity ({lambda}) and the thermal diffusivity (a) of reacting glass batch, or melter feed, control the heat flux into and within the cold cap, a layer of reacting material floating on the pool of molten glass in an all-electric continuous waste glass melter. After previously estimating {lambda} of melter feed at temperatures up to 680 deg C, we focus in this work on the {lambda}(T) function at T > 680 deg C, at which the feed material becomes foamy. We used a customized experimental setup consisting of a large cylindrical crucible with an assembly of thermocouples, which monitored the evolution of the temperature field while the crucible with feed was heated at a constant rate from room temperature up to 1100°C. Approximating measured temperature profiles by polynomial functions, we used the heat transfer equation to estimate the {lambda}(T) approximation function, which we subsequently optimized using the finite-volume method combined with least-squares analysis. The heat conductivity increased as the temperature increased until the feed began to expand into foam, at which point the conductivity dropped. It began to increase again as the foam turned into a bubble-free glass melt. We discuss the implications of this behavior for the mathematical modeling of the cold cap.

Rice, Jarrett A.; Pokorny, Richard; Schweiger, Michael J.; Hrma, Pavel R.

2014-05-12T23:59:59.000Z

28

Subsurface Temperature, Moisture, Thermal Conductivity and Heat Flux, Barrow, Area A, B, C, D  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Subsurface temperature data are being collected along a transect from the center of the polygon through the trough (and to the center of the adjacent polygon for Area D). Each transect has five 1.5m vertical array thermistor probes with 16 thermistors each. This dataset also includes soil pits that have been instrumented for temperature, water content, thermal conductivity, and heat flux at the permafrost table. Area C has a shallow borehole of 2.5 meters depth is instrumented in the center of the polygon.

Cable, William; Romanovsky, Vladimir

29

Subsurface Temperature, Moisture, Thermal Conductivity and Heat Flux, Barrow, Area A, B, C, D  

SciTech Connect (OSTI)

Subsurface temperature data are being collected along a transect from the center of the polygon through the trough (and to the center of the adjacent polygon for Area D). Each transect has five 1.5m vertical array thermistor probes with 16 thermistors each. This dataset also includes soil pits that have been instrumented for temperature, water content, thermal conductivity, and heat flux at the permafrost table. Area C has a shallow borehole of 2.5 meters depth is instrumented in the center of the polygon.

Cable, William; Romanovsky, Vladimir

2014-03-31T23:59:59.000Z

30

Esimation of field-scale thermal conductivities of unsaturatedrocks from in-situ temperature data  

SciTech Connect (OSTI)

A general approach is presented here which allows estimationof field-scale thermal properties of unsaturated rock using temperaturedata collected from in situ heater tests. The approach developed here isused to determine the thermal conductivities of the unsaturated host rockof the Drift Scale Test (DST) at Yucca Mountain, Nevada. The DST wasdesigned to obtain thermal, hydrological, mechanical, and chemical (THMC)data in the unsaturated fractured rock of Yucca Mountain. Sophisticatednumerical models have been developed to analyze these THMC data. However,though the objective of those models was to analyze "field-scale" (of theorder of tens-of-meters) THMC data, thermal conductivities measured from"laboratory-scale" core samples have been used as input parameters.While, in the absence of a better alternative, using laboratory-scalethermal conductivity values in field-scale models can be justified, suchapplications introduce uncertainties in the outcome of the models. Thetemperature data collected from the DST provides a unique opportunity toresolve some of these uncertainties. These temperature data can be usedto estimate the thermal conductivity of the DST host rock and, given thelarge volume of rock affected by heating at the DST, such an estimatewill be a more reliable effective thermal conductivity value for fieldscale application. In this paper, thus, temperature data from the DST areused to develop an estimate of the field-scale thermal conductivityvalues of the unsaturated host rock of the DST. An analytical solution isdeveloped for the temperature rise in the host rock of the DST; and usinga nonlinear fitting routine, a best-fit estimate of field-scale thermalconductivity for the DST host rock is obtained. Temperature data from theDST show evidence of two distinct thermal regimes: a zone below boiling(wet) and a zone above boiling (dry). Estimates of thermal conductivityfor both the wet and dry zones are obtained in this paper. Sensitivity ofthese estimates to the input heating power of the DST is alsoinvestigated in this paper. These estimated thermal conductivity valuesare compared with core measurements and those estimated fromgeostatistical simulations. Note that the approach presented here isapplicable to other host rock and heater test settings, provided suitablemodifications are made in the analytical solution to account fordifferences in test geometry.

Mukhopadhyay, Sumit; Tsang, Yvonne W.; Birkholzer, Jens T.

2006-06-26T23:59:59.000Z

31

PHYSICAL REVIEW B 90, 174107 (2014) High-throughput computational screening of thermal conductivity, Debye temperature, and  

E-Print Network [OSTI]

for the past few decades [6]. Low thermal conductivity materials constitute the basis of a new generation such as the Debye temperature and the thermal conductivity of materials. We demonstrate that the AGL method, which ranking of the thermal conductivity for several different classes of semiconductor materials

Curtarolo, Stefano

32

On the specifics of the electrical conductivity anomalies in PVC nanocomposites  

E-Print Network [OSTI]

A qualitative model describing the "anomalous" features of the conductivity of polymer nanocomposites, in particular, switching to the conducting state in relatively thick (tens of microns or more) of flexible PVC films is considered. In previously published experimental results, change of conductivity by 10 or more orders of magnitude occurred both in the absence of external influences (spontaneously), and under the influence of an applied electric field, as well as other initiating factors (such as uniaxial pressure) . In a model of hopping conduction mechanism it is shown, that switching in the conduction states under the action of external field significantly (by orders of magnitude) below threshold can be associated with a high-resistance state instability that results from the sequence of "shorting" (reversible soft breakdown) of narrow insulating gaps between regions with relatively high conductivity. Increasing the field strength in the remaining insulating gaps ultimately leads to the formation of a conducting channel between the external electrodes and switching conductivity of the composite film sample in a state of high conductivity. This cascade model is essentially based on the transition from the usual description of the charge tunneling through single independent insulating gap to take into account correlations between adjacent gaps. In the frame of developed model other "anomalies" such as exponential dependence of the resistance on the sample thickness, pressure, and other influences can be qualitative explained. An analogy of the model with a cascading breakdown of avalanche transistors is also considered.

D. V. Vlasov; L. A. Apresyan

2013-02-25T23:59:59.000Z

33

High Temperature Fuel Cell Performance High Temperature Fuel Cell Performance of of Sulfonated Sulfonated Poly(phenylene Poly(phenylene) Proton) Proton Conducting Conducting Polymers  

Broader source: Energy.gov [DOE]

Presentation by Sandia National Laboratories to the High Temperature Membrane Working Group Meeting held in Honolulu, Hawaii October 8, 2004.

34

Investigation of the influence of temperature on the conductive properties of copolymer PVC -PolyAcetylene films  

E-Print Network [OSTI]

The temperature dependence of conductivity of partially dehydrochlorinated PVC films, containing in their macromolecules chains of polyene-conjugated bonds (PCB) and representing copolymer PVC-Polyacetylene. In samples with excess of some "threshold" concentration of PCB with increasing temperature it was found conductivity switching on 10 -11 orders of magnitude. Instability of states with high conductivity in the temperature range which depends on the concentration of PCB was detected. Qualitatively, the increase of concentration of PCB was monitored by fixing the fluorescent and absorption spectra.

D. V. Vlasov; V. I. Kryshtob; T. V. Vlasova; L. A. Apresyan; S. I. Rasmagin

2013-12-26T23:59:59.000Z

35

Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports  

SciTech Connect (OSTI)

We grow ultra-high mass density carbon nanotube forests at 450 °C on Ti-coated Cu supports using Co-Mo co-catalyst. X-ray photoelectron spectroscopy shows Mo strongly interacts with Ti and Co, suppressing both aggregation and lifting off of Co particles and, thus, promoting the root growth mechanism. The forests average a height of 0.38 ?m and a mass density of 1.6 g cm{sup ?3}. This mass density is the highest reported so far, even at higher temperatures or on insulators. The forests and Cu supports show ohmic conductivity (lowest resistance ?22 k?), suggesting Co-Mo is useful for applications requiring forest growth on conductors.

Sugime, Hisashi; Esconjauregui, Santiago; Yang, Junwei; D'Arsié, Lorenzo; Robertson, John [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom)] [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Oliver, Rachel A. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 0FS (United Kingdom)] [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB2 0FS (United Kingdom); Bhardwaj, Sunil [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy) [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy); Sincrotrone Trieste S.C.p.A., Strada Statale 14, Km 163.5, Trieste I-34149 (Italy); Cepek, Cinzia [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy)] [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy)

2013-08-12T23:59:59.000Z

36

High-temperature electrically conductive ceramic composite and method for making same  

DOE Patents [OSTI]

The present invention relates to a metal-oxide ceramic composition useful in induction heating applications for treating uranium and uranium alloys. The ceramic composition is electrically conductive at room temperature and is nonreactive with molten uranium. The composition is prepared from a particulate admixture of 20 to 50 vol. % niobium and zirconium oxide which may be stabilized with an addition of a further oxide such as magnesium oxide, calcium oxide, or yttria. The composition is prepared by blending the powders, pressing or casting the blend into the desired product configuration, and then sintering the casting or compact in an inert atmosphere. In the casting operation, calcium aluminate is preferably added to the admixture in place of a like quantity of zirconia for providing a cement to help maintain the integrity of the sintered product.

Beck, David E. (Knoxville, TN); Gooch, Jack G. (Seymour, TN); Holcombe, Jr., Cressie E. (Knoxville, TN); Masters, David R. (Knoxville, TN)

1983-01-01T23:59:59.000Z

37

JOURNAL DE PHYSIQUE Colloque C6, supplment au n" 8, Tome 39, aot 1978, page C6-982 PHONON SCATTERING AND THE LINEAR SPECIFIC HEAT TERM IN EPOXY-RESINS AT LOW TEMPERATURES  

E-Print Network [OSTI]

SCATTERING AND THE LINEAR SPECIFIC HEAT TERM IN EPOXY-RESINS AT LOW TEMPERATURES S. Kelham and H.M. Rosenberg. Abstract.- The specific heat and the thermal conductivity of an epoxy--resin has been measured from 0 on the thermal conductivity and speci- fic heat of an epoxy-resin in the range 0.1 to 80 K in which

Boyer, Edmond

38

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

that can operate with Stirling engines at 42% efficiency andfor high temperature Stirling engines which operates at 42%turbines such as Stirling engines, while high-temperature (>

Roshandell, Melina

2013-01-01T23:59:59.000Z

39

Establishing Specifications for Low Enriched Uranium Fuel Operations Conducted Outside the High Flux Isotope Reactor Site  

SciTech Connect (OSTI)

The National Nuclear Security Administration (NNSA) has funded staff at Oak Ridge National Laboratory (ORNL) to study the conversion of the High Flux Isotope Reactor (HFIR) from the current, high enriched uranium fuel to low enriched uranium fuel. The LEU fuel form is a metal alloy that has never been used in HFIR or any HFIR-like reactor. This report provides documentation of a process for the creation of a fuel specification that will meet all applicable regulations and guidelines to which UT-Battelle, LLC (UTB) the operating contractor for ORNL - must adhere. This process will allow UTB to purchase LEU fuel for HFIR and be assured of the quality of the fuel being procured.

Pinkston, Daniel [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL

2010-10-01T23:59:59.000Z

40

The effects of temperature and carbon nanotubes on conducting polymer actuator performance  

E-Print Network [OSTI]

Conducting polymers serve as electrically conductive actuators via ion diffusion in and out of the polymer when voltages are applied. Their actuation performance can be largely affected by deposition setup, post-deposition ...

Keng, Yenmei

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS  

SciTech Connect (OSTI)

A bilayer electrolyte consisting of acceptor-doped ceria (on the fuel/reducing side) and cubic-stabilized bismuth oxide (on the oxidizing side) was developed. The bilayer electrolyte that was developed showed significant improvement in open-circuit potential versus a typical ceria based SOFC. Moreover, the OCP of the bilayer cells increased as the thickness of the bismuth oxide layer increased relative to the ceria layer. Thereby, verifying the bilayer concept. Although, because of the absence of a suitable cathode (a problem we are still working assiduously to solve), we were unable to obtain power density curves, our modeling work predicts a reduction in electrolyte area specific resistance of two orders of magnitude over cubic-stabilized zirconia and projects a maximum power density of 9 W/m{sup 2} at 800 C and 0.09 W/m{sup 2} at 500 C. Towards the development of the bilayer electrolyte other significant strides were made. Among these were, first, the development of a, bismuth oxide based, oxide ion conductor with the highest conductivity (0.56 S/cm at 800 C and 0.043 S/cm at 500 C) known to date. Second, a physical model of the defect transport mechanisms and the driving forces for the ordering phenomena in bismuth oxide and other fluorite systems was developed. Third, a model for point defect transport in oxide mixed ionic-electronic conductors was developed, without the typical assumption of a uniform distribution of ions and including the effect of variable loads on the transport properties of an SOFC (with either a single or bilayer electrolyte).

Eric D. Wachsman; Keith L. Duncan

2002-09-30T23:59:59.000Z

42

Composite lead for conducting an electrical current between 75-80K and 4.5K temperatures  

DOE Patents [OSTI]

A composite lead is provided which electrically links and conducts a current between about 75-80K. and liquid helium temperature of about 4.5K. The composite lead may be employed singly or in multiples concurrently to provide conduction of electrical current from normal conductors and semi-conductors at room temperature to superconductors operating at 4.5K. In addition, a variety of organizationl arrangements and assemblies are provided by which the mechanical strength and electrical reliability of the composite lead is maintained.

Negm, Yehia (Braintree, MA); Zimmerman, George O. (South Hamilton, MA); Powers, Jr., Robert E. (East Boston, MA); McConeghy, Randy J. (Waxahachie, TX); Kaplan, Alvaro (Brookline, MA)

1994-12-27T23:59:59.000Z

43

Composite lead for conducting an electrical current between 75--80K and 4. 5K temperatures  

DOE Patents [OSTI]

A composite lead is provided which electrically links and conducts a current between about 75-80K and liquid helium temperature of about 4.5K. The composite lead may be employed singly or in multiples concurrently to provide conduction of electrical current from normal conductors and semi-conductors at room temperature to superconductors operating at 4.5K. In addition, a variety of organizational arrangements and assemblies are provided by which the mechanical strength and electrical reliability of the composite lead is maintained. 12 figures.

Negm, Y.; Zimmerman, G.O.; Powers, R.E. Jr.; McConeghy, R.J.; Kaplan, A.

1994-12-27T23:59:59.000Z

44

Irradiated Materials Testing Complex (IMTL) The Irradiated Materials Testing Laboratory provides the capability to conduct high temperature  

E-Print Network [OSTI]

provides the capability to conduct high temperature corrosion and stress corrosion cracking of neutron next to a hot cell. This configuration allows us to disconnect the autoclave from its water loop, maneuver it into the hot cell, where the neutron irradiated specimens can be safely mounted

Kamat, Vineet R.

45

Esimation of field-scale thermal conductivities of unsaturated rocks from in-situ temperature data  

E-Print Network [OSTI]

vicinity of the heat source, and rock temperature exceededand the dry rock near the heat source. The other differencesources, heat transfer takes place through the wet rock (see

Mukhopadhyay, Sumit; Tsang, Yvonne W.; Birkholzer, Jens T.

2008-01-01T23:59:59.000Z

46

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

Proceedings on thermal energy storage and energy conversion;polymer microcomposites for thermal energy storage. SAE SocLow temperature thermal energy storage: a state of the art

Roshandell, Melina

2013-01-01T23:59:59.000Z

47

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

been heated at solar collection tower, at the temperatureIn the receiver tower, the collected solar radiation heatsfocus and send solar radiation to a receiver tower.

Roshandell, Melina

2013-01-01T23:59:59.000Z

48

Temperature, thermal-conductivity, and heat-flux data,Raft River...  

Open Energy Info (EERE)

conductivity; United States; USGS Authors Urban, T.C.; Diment, W.H.; Nathenson, M.; Smith, E.P.; Ziagos, J.P.; Shaeffer and M.H. Published Open-File Report - U. S. Geological...

49

Measurement of the electronic thermal conductance channels and heat capacity of graphene at low temperature  

E-Print Network [OSTI]

Measurement of the electronic thermal conductance channels and heat capacity of graphene at low, Gwf , test the Wiedemann-Franz (wf) law, and infer the electronic heat capacity, with a minimum value of a Coulomb-interacting electron-hole plasma may result in deviations from the Fermi-liquid values of the Mott

50

High Temperature Oxidation Resistance and Surface Electrical Conductivity of Stainless Steels with Filtered Arc Cr-Al-N Multilayer and/or Superlattice Coatings  

SciTech Connect (OSTI)

The requirements for low cost and high-tempurater corrosion resistance for bipolar interconnect plates in solid oxide fuel cell (SOFC) stacks has directed attention to the use of metal plates with oxidation resistant coatings. Candidate coatings must exhibit chemical and thermal-mechanical stability and high electrical conductivity during long-term (>400,000 hrs) exposure to SOFC operatong conditions. The high temperature oxidation resistance and surface electrical donductivity of 304, 440A,a dn Crofer-22 APU steel coupons, with and without multilayer and/or superlattice coatings from a Cr-Al-N system were investigated as a function of exposure in an oxidization atmosphere at high temperatures. The coatins were deposited using large area filtered arc depsition (LAFAD) technology [1], and subsequently annealed in air at 800 degrees C for varying times. Area specific resistance and activation energy for electrical conductivity of oxidized coupons were measured using a 4-point technique with Pt paste for electrical contact between facing oxidized coupon surfaces. The surface compositon, structure and morphology of the coupons were characterized using RBS, nuclear reaction analysis, XPS, SEM, and AFM techniques. The structure of the CRN/CrAlN multilayered superlattice coatings was characterized by TEM. By altering the architecture of the coating layers, both surface electrical conductivity and oxidation resistance [2] improved signigicantly for some of the coated samples tested up to ~100hrs.

Gannon, Paul E.; Tripp, C.; Knospe, Anders; Ramana, C. V.; Deibert, Max; Smith, Richard J.; Gorokhovsky, Vladimir I.; Shutthanandan, V.; Gelles, David S.

2004-11-01T23:59:59.000Z

51

EFFECTS OF TRITIUM GAS EXPOSURE ON THE GLASS TRANSITION TEMPERATURE OF EPDM ELASTOMER AND ON THE CONDUCTIVITY OF POLYANILINE  

SciTech Connect (OSTI)

Four formulations of EPDM (ethylene-propylene diene monomer) elastomer were exposed to tritium gas initially at one atmosphere and ambient temperature for between three and four months in closed containers. Material properties that were characterized include density, volume, mass, appearance, flexibility, and dynamic mechanical properties. The glass transition temperature was determined by analysis of the dynamic mechanical property data per ASTM standards. EPDM samples released significant amounts of gas when exposed to tritium, and the glass transition temperature increased by about 3 C. during the exposure. Effects of ultraviolet and gamma irradiation on the surface electrical conductivity of two types of polyaniline films are also documented as complementary results to planned tritium exposures. Future work will determine the effects of tritium gas exposure on the electrical conductivity of polyaniline films, to demonstrate whether such films can be used as a sensor to detect tritium. Surface conductivity was significantly reduced by irradiation with both gamma rays and ultraviolet light. The results of the gamma and UV experiments will be correlated with the tritium exposure results.

Clark, E; Marie Kane, M

2008-12-12T23:59:59.000Z

52

Specific features of conductivity of {gamma}-irradiated TlGaTe{sub 2} crystals with nanochain structure  

SciTech Connect (OSTI)

Temperature dependences of electrical conductivity {sigma}(T) and current-voltage characteristics of one-dimensional TlGaTe{sub 2} single crystals subjected to various doses of {gamma}-ray radiation in both geometries of the experiment-along nanochains parallel to the tetragonal axis of the crystal ({sigma}{sub |} ) and perpendicular to these nanochains ({sigma}{sub perpendicular} )-are studied. It is shown that the dependence {sigma}(T) measured in the ohmic region of the current-voltage characteristic is the shape typical of the hopping mechanism and can be described in terms of the Mott approximation. The values of the densities of localized states N{sub F}, the activation energy E{sub a}, the hop lengths R, the difference between the energies of states {Delta}E in the vicinity of the Fermi level, and the concentrations of deep traps N{sub t} are determined. The current-voltage characteristics in the region of a more abrupt increase in the current are also studied. It is shown that this region of current-voltage characteristics is described in the context of the Pool-Frenkel thermal-field effect. Concentrations of ionized centers N{sub f}, the free-path lengths {lambda}, the Frenkel coefficients {beta}, and the shape of the potential well in initial and irradiated (with 250 Mrad) TlGaTe{sub 2} crystals are determined. It is shown that anisotropy of electrical conductivity changes under the effect of irradiation, which brings about translational ordering of nanochains.

Sardarli, R. M., E-mail: sardarli@yahoo.com; Samedov, O. A.; Abdullayev, A. P. [National Academy of Sciences of Azerbaijan, Institute of Radiation Problems (Azerbaijan); Huseynov, E. K. [National Academy of Sciences of Azerbaijan, Institute of Physics (Azerbaijan); Salmanov, F. T.; Safarova, G. R. [National Academy of Sciences of Azerbaijan, Institute of Radiation Problems (Azerbaijan)

2010-05-15T23:59:59.000Z

53

Steady state temperature profiles in two simulated liquid metal reactor fuel assemblies with identical design specifications  

SciTech Connect (OSTI)

Temperature data from steady state tests in two parallel, simulated liquid metal reactor fuel assemblies with identical design specifications have been compared to determine the extent to which they agree. In general, good agreement was found in data at low flows and in bundle-center data at higher flows. Discrepancies in the data wre noted near the bundle edges at higher flows. An analysis of bundle thermal boundary conditions showed that the possible eccentric placement of one bundle within the housing could account for these discrepancies.

Levin, A.E.; Carbajo, J.J.; Lloyd, D.B.; Montgomery, B.H.; Rose, S.D.; Wantland, J.L.

1985-01-01T23:59:59.000Z

54

Effect of Ca Doping on the Electrical Conductivity of the High-Temperature Proton Conductor LaNbO4  

SciTech Connect (OSTI)

The sintering properties, crystal structure and electrical conductivity of La1-xCaxNbO4- (x=0, 0.005, 0.01, 0.015, 0.02 and 0.025), prepared by a conventional solid-state method, have been investigated using powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). In 2.5% Ca doped samples, a small amount of impurities Ca2Nb2O7 were observed from the XRD patterns. Impedance spectra show that the grain boundary resistance increases with increasing Ca content, while the bulk resistance remains essentially constant below 550 C. Despite the higher degree of grain growth was observed for higher Ca-doping levels, the total conductivity of the La1-xCaxNbO4- series decreases with increasing Ca content from 0.5 to 2.0 mol%. The activation energy for the total conductivity decreases with increasing Ca content from 0.71 eV (x=0) to 0.54 eV (x=0.01) for the high temperature tetragonal phase, then it increases to 0.60 eV for x=0.02. For the monoclinic phase, La0.995Ca0.005NbO4- shows the lowest activation energy of 1.26 eV. These results imply that the solubility of CaO in LaNbO4 is in the range from 0.5 to 1.0 mol%. By increasing the sintering temperature from 1500 C to 1550 C, the proton conductivity of the Ca-doped LaNbO4 was improved with enlarged grain size due to a reduction in the resistive grain boundary contribution.

Bi, Zhonghe [ORNL; Pena-Martinez, Juan [ORNL; Kim, Jung-Hyun [ORNL; Bridges, Craig A [ORNL; Huq, Ashfia [ORNL; Hodges, Jason P [ORNL; Paranthaman, Mariappan Parans [ORNL

2012-01-01T23:59:59.000Z

55

LITERATURE REVIEW OF PUO2 CALCINATION TIME AND TEMPERATURE DATA FOR SPECIFIC SURFACE AREA  

SciTech Connect (OSTI)

The literature has been reviewed in December 2011 for calcination data of plutonium oxide (PuO{sub 2}) from plutonium oxalate Pu(C{sub 2}O{sub 4}){sub 2} precipitation with respect to the PuO{sub 2} specific surface area (SSA). A summary of the literature is presented for what are believed to be the dominant factors influencing SSA, the calcination temperature and time. The PuO{sub 2} from Pu(C{sub 2}O{sub 4}){sub 2} calcination data from this review has been regressed to better understand the influence of calcination temperature and time on SSA. Based on this literature review data set, calcination temperature has a bigger impact on SSA versus time. However, there is still some variance in this data set that may be reflecting differences in the plutonium oxalate preparation or different calcination techniques. It is evident from this review that additional calcination temperature and time data for PuO{sub 2} from Pu(C{sub 2}O{sub 4}){sub 2} needs to be collected and evaluated to better define the relationship. The existing data set has a lot of calcination times that are about 2 hours and therefore may be underestimating the impact of heating time on SSA. SRNL recommends that more calcination temperature and time data for PuO{sub 2} from Pu(C{sub 2}O{sub 4}){sub 2} be collected and this literature review data set be augmented to better refine the relationship between PuO{sub 2} SSA and its calcination parameters.

Daniel, G.

2012-03-06T23:59:59.000Z

56

Density dependence of the room temperature thermal conductivity of atomic layer deposition-grown amorphous alumina (Al{sub 2}O{sub 3})  

SciTech Connect (OSTI)

We report on the thermal conductivity of atomic layer deposition-grown amorphous alumina thin films as a function of atomic density. Using time domain thermoreflectance, we measure the thermal conductivity of the thin alumina films at room temperature. The thermal conductivities vary ?35% for a nearly 15% change in atomic density and are substrate independent. No density dependence of the longitudinal sound speeds is observed with picosecond acoustics. The density dependence of the thermal conductivity agrees well with a minimum limit to thermal conductivity model that is modified with a differential effective-medium approximation.

Gorham, Caroline S.; Gaskins, John T.; Hopkins, Patrick E., E-mail: phopkins@virginia.edu [Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Parsons, Gregory N.; Losego, Mark D. [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

2014-06-23T23:59:59.000Z

57

Standard test method for conducting drop-weight test to determine nil-ductility transition temperature of ferritic steels  

E-Print Network [OSTI]

1.1 This test method covers the determination of the nil-ductility transition (NDT) temperature of ferritic steels, 5/8 in. (15.9 mm) and thicker. 1.2 This test method may be used whenever the inquiry, contract, order, or specification states that the steels are subject to fracture toughness requirements as determined by the drop-weight test. 1.3 The values stated in inch-pound units are to be regarded as the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2006-01-01T23:59:59.000Z

58

A quantitative conduction model for a low-resistance nonalloyed ohmic contact structure utilizing low-temperature-grown GaAs  

E-Print Network [OSTI]

A quantitative conduction model for a low-resistance nonalloyed ohmic contact structure utilizing properties of this material. The specific contact resistance is then calculated using an analytic expression for tunneling conduction through an equivalent uniformly doped Schottky barrier. The model has been used to fit

Woodall, Jerry M.

59

A Flow-Through High-Pressure Electrical Conductance Cell for Determining of Ion Association of Aqueous Electrolyte Solutions at High Temperature and Pressure  

SciTech Connect (OSTI)

A flow-through high-pressure electrical conductance cell was designed and constructed to measure limiting molar conductances and ion association constants of dilute aqueous solutions with high precision at high temperatures and pressures. The basic concept of the cell employs the principle developed at the University of Delaware in 1995, but overall targets higher temperatures (to 600 C) and pressures (to 300 MPa). At present the cell has been tested by measuring aqueous NaCl and LiOH solutions (10{sup {minus}3} to 10{sup {minus}5} mol.kg{sup {minus}1}) to 405 C and 33 MPa with good results.

Bianchi, H.; Ho, P.C.; Palmer, D.A.; Wood, R.H.

1999-09-12T23:59:59.000Z

60

Determination of Thermal Diffusivities, Thermal Conductivities, and Sound Speeds of Room-Temperature Ionic Liquids by the Transient Grating Technique  

E-Print Network [OSTI]

Determination of Thermal Diffusivities, Thermal Conductivities, and Sound Speeds of Room. The experiments give thermal diffusivities from which thermal conductivities can be determined, sound speeds not only on the sound speed but also on the thermal diffusivity and acoustic damping of the RTILs

Reid, Scott A.

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

THE JOURNAL OF CHEMICAL PHYSICS 140, 114502 (2014) Thermal conductivity of simple liquids: Origin of temperature and packing  

E-Print Network [OSTI]

. For example, in concen- trating solar power plants1 or in prospective Generation IV nuclear reactors,2THE JOURNAL OF CHEMICAL PHYSICS 140, 114502 (2014) Thermal conductivity of simple liquids: Origin dependence of T1/4 3/2 in the thermal conductivity of the simple Lennard-Jones (LJ) liquid is explored

Boyer, Edmond

62

Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field  

E-Print Network [OSTI]

Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responsesto climate change

Sack, Lawren

63

Thermal conductivity of large-grain niobium and its effect on trapped vortices in the temperature range 1.8?5 K  

SciTech Connect (OSTI)

Experimental investigation of the thermal conductivity of large grain and its dependence on the trapped vortices in parallel magnetic field with respect to the temperature gradient {gradient}T was carried out on four large-grain niobium samples from four different ingots. The zero-field thermal conductivity measurements are in good agreement with the measurements based on the theory of Bardeen-Rickayzen-Tewordt (BRT). The change in thermal conductivity with trapped vortices is analysed with the field dependence of the conductivity results of Vinen et al for low inductions and low-temperature situation. Finally, the dependence of thermal conductivity on the applied magnetic field in the vicinity of the upper critical field H{sub c2} is fitted with the theory of pure type-II superconductor of Houghton and Maki. Initial remnant magnetization in the sample shows a departure from the Houghton?Maki curve whereas the sample with zero trapped flux qualitatively agrees with the theory. A qualitative discussion is presented explaining the reason for such deviation from the theory. It has also been observed that if the sample with the trapped vortices is cycled through T{sub c}, the subsequent measurement of the thermal conductivity coincides with the zero trapped flux results.

Mondal, Jayanta [Bhabha Atomic Research Centre; Ciovati, Gianluigi [JLAB; Mittal, Kailash C. [Bhabha Atomic Research Centre; Myneni, Ganapati Rao [JLAB

2012-04-01T23:59:59.000Z

64

Formulas for zero-temperature conductance through a region with interaction and A. Ramsak1,2  

E-Print Network [OSTI]

-beam li- thography or small metallic grains,1 semiconductor quantum dots,2 or a single large molecule of an atomic-size bridge that forms in the break,3 or even measure the conductance of a single hydrogen

Ramsak, Anton

65

Effect of oxidizer on grain size and low temperature DC electrical conductivity of tin oxide nanomaterial synthesized by gel combustion method  

SciTech Connect (OSTI)

Nanocrystalline Tin oxide material with different grain size was synthesized using gel combustion method by varying the fuel (C{sub 6}H{sub 8}O{sub 7}) to oxidizer (HNO{sub 3}) molar ratio by keeping the amount of fuel as constant. The prepared samples were characterized by using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Analysis X-ray Spectroscopy (EDAX). The effect of fuel to oxidizer molar ratio in the gel combustion method was investigated by inspecting the grain size of nano SnO{sub 2} powder. The grain size was found to be reduced with the amount of oxidizer increases from 0 to 6 moles in the step of 2. The X-ray diffraction patterns of the calcined product showed the formation of high purity tetragonal tin (IV) oxide with the grain size in the range of 12 to 31 nm which was calculated by Scherer's formula. Molar ratio and temperature dependence of DC electrical conductivity of SnO{sub 2} nanomaterial was studied using Keithley source meter. DC electrical conductivity of SnO{sub 2} nanomaterial increases with the temperature from 80K to 300K. From the study it was observed that the DC electrical conductivity of SnO{sub 2} nanomaterial decreases with the grain size at constant temperature.

Rajeeva, M. P., E-mail: jayanna60@gmail.com; Jayanna, H. S., E-mail: jayanna60@gmail.com; Ashok, R. L.; Naveen, C. S. [Department of P.G. Studies and Research in Physics, Kuvempu University, Jnanasahyadri, Shankarghatta, Shimoga- 577451, Karnataka (India); Bothla, V. Prasad [Department of Physics, Indian Institute of Science, Bangalore-560012 (India)

2014-04-24T23:59:59.000Z

66

Voltammetry and conductivity of a polyether-pyridinium room temperature molten salt electrolyte and of its polymer electrolyte solutions in polydimethylsiloxane  

SciTech Connect (OSTI)

This report describes the synthesis, microelectrode voltammetry, and ionic conductivity of a new room temperature molten salt N-(methoxy(ethoxy){sub 2}ethyl)pyridinium p-toluene sulfonate (abbreviated as[Py(E{sub 3}M){sup +}][Tos{sup {minus}}]) and of its solution in a hydroxy-terminated polydimethylsiloxane. Both ionically conductive liquids (conductivity = 1 {times} 10{sup {minus}4} {Omega}{sup {minus}1} cm{sup {minus}1}) exhibit voltammetric potential windows of about 1.5 V. The negative potential limit is determined by the reduction of the [Py(E{sub 3}M){sup +}] pyridinium species, with subsequent radical coupling to form a voltammetrically observed viologen dimer. The estimated diffusivities of the [Py(E{sub 3}M){sup +}] species, of a diethyleneglycol-tailed ferrocene redox solute studied, and by application of Nernst-Einstein relation to the ionic charge carriers, all lie in the 10{sup {minus}7} to 10{sup {minus}8} cm{sup 2}/s range. Viscosities and glass transition thermal observations are reported as is the fit of the temperature dependencies of ionic conductivity in [Py(E{sub 3}M){sup +}][Tos{sup {minus}}] and in [Py(E{sub 3}M){sup +}][TOS{sup {minus}}]/PDMS mixtures to Vogel-Tamman-Fulcher predictions.

Pyati, R.; Murray, R.W. [Univ. of North Carolina, Chapel Hill, NC (United States)

1996-02-01T23:59:59.000Z

67

JOURNAL DE PHYSIQUE Colloque C4, supplment au n" 4, Tome 40, avril 1979, page C4-140 Low temperature specific heat of rocksalt thorium compounds  

E-Print Network [OSTI]

temperature specific heat of rocksalt thorium compounds V. Maurice, J. L. Boutard C) and D. Abbe ( n ) SESI with vacancy content in ThC,^x and is minimal for ThC06N04 compared to ThC and ThN. 1. Introduction. -- Thorium://dx.doi.org/10.1051/jphyscol:1979445 #12;LOW TEMPERATURE SPECIFIC HEAT OF ROCKSALT THORIUM COMPOUNDS C4-141 have

Boyer, Edmond

68

Low-temperature thermal conductivity of antiferromagnetic S?=?1/2 chain material CuCl{sub 2}·2((CH{sub 3}){sub 2}SO)  

SciTech Connect (OSTI)

We study the heat transport of S?=?1/2 chain compound CuCl{sub 2}·2((CH{sub 3}){sub 2}SO) along the b axis (vertical to the chain direction) at very low temperatures. The zero-field thermal conductivity (?) shows a distinct kink at about 0.9?K, which is related to the long-range antiferromagnetic (AF) transition. With applying magnetic field along the c axis, ?(H) curves also show distinct changes at the phase boundaries between the AF and the high-field disordered states. These results indicate a strong spin-phonon interaction and the magnetic excitations play a role in the b-axis heat transport as phonon scatterers.

Ke, W. P.; Zhang, F. B.; Zhao, Z. Y.; Fan, C.; Sun, X. F., E-mail: xfsun@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shi, J. [Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhao, X., E-mail: xiazhao@ustc.edu.cn [School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China)

2014-05-07T23:59:59.000Z

69

Investigation of Temperature Dependent Optical Modes in GexAs35-xSe65 Thin Films: Structure Specific Raman, FIR and Optical Absorption Spectroscopy  

E-Print Network [OSTI]

In this article, we present a comprehensive study of temperature and composition dependent Raman spectroscopy of GexAs35-xSe65 thin films to understand different structural units responsible for optical properties. Strikingly, our experimental results uncover the ratio of GeSe4/2 tetrahedral and AsSe3/2 pyramidal units in GexAs35-xSe65 thin films and their linear scaling relationship with temperature and x. An important notable outcome of our study is the formation of Se8 rings at lower temperatures. Our experimental results further provide interesting optical features, thermally and compositionally tunable optical absorption spectra. Detailed structure specific FIR data at room temperature also present direct information on the structural units in consistent with Raman data. We foresee that our studies are useful in determining the lightinduced response of these films and also for their potential applications in optics and optoelectronics.

Khan, Pritam; Joshy, Abin; Sathe, Vasant; Deshpande, Uday; Adarsh, K V

2015-01-01T23:59:59.000Z

70

Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing  

SciTech Connect (OSTI)

Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratory’s Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

Mark D. McKay

2011-02-01T23:59:59.000Z

71

Study of the dependence of the specific output power of a copper chloride laser on the radial temperature profile of a gas plasma  

SciTech Connect (OSTI)

The design of a copper chloride laser is described, and the laser is optimised by studying the dependence of its output power on the buffer gas type. The voltage and current of the laser discharge at the optimum buffer gas pressure are measured. The influence of the diaphragm diameter on the specific output power is studied after optimisation of switch parameters. When an diaphragm producing the optimal temperature gradient in the laser gas-discharge tube, the record specific output power of 123 W L{sup -1} is obtained without any admixtures. (lasers)

Sadighi-Bonabi, R; Mohammadpour, R; Tavakoli, M [Physics Department, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Soltanmoradi, F [Bonab Research Center, Bonab, Azerbaijan province (Iran, Islamic Republic of); Zand, M [Laser Research Center, Tehran (Iran, Islamic Republic of)

2007-04-30T23:59:59.000Z

72

Temperature effects on the energy bandgap and conductivity effective masses of charge carriers in lead telluride from first-principles calculations  

SciTech Connect (OSTI)

We determined the temperature effects on the electronic properties of lead telluride (PbTe) such as the energy bandgap and the effective masses of charge carriers by incorporating the structural changes of the material with temperature using ab-initio density functional theory (DFT) calculations. Though the first-principles DFT calculations are done at absolute zero temperatures, by incorporating the lattice thermal expansion and the distortion of Pb{sup 2+} ions from the equilibrium positions, we could determine the stable structural configuration of the PbTe system at different temperatures.

Venkatapathi, S., E-mail: saran@vt.edu; Dong, B., E-mail: bind89@vt.edu [Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Hin, C., E-mail: celhin@vt.edu [Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)

2014-07-07T23:59:59.000Z

73

A Combined Near-field Scanning Microwave Microscope and Transport Measurement System for Characterizing Dissipation in Conducting and High-Tc Superconducting Films at Variable Temperature  

E-Print Network [OSTI]

Identifying defects and non-superconducting regions in high-temperature superconductors (HTS) is of great importance because they limit the material's capability to carry higher current densities and serve as nucleation ...

Dizon, Jonathan Reyes

2009-04-28T23:59:59.000Z

74

Temperature Dependence of Sputtered Conductive Carbon Thin Films Bull. Korean Chem. Soc. 2011, Vol. 32, No. 3 939 DOI 10.5012/bkcs.2011.32.3.939  

E-Print Network [OSTI]

°C to 700 °C in increments of 100 °C using a rapid thermal annealing method by vacuum furnace in the electronic devices such as organic thin film transistor (OTFT), dye-sensitized solar cell (DSSC), and field by a vacuum furnace in vacuum ambient, and the effects of annealing temperature on struc- tural, tribological

Boo, Jin-Hyo

75

Lithium ion conducting electrolytes  

DOE Patents [OSTI]

A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

Angell, C.A.; Liu, C.

1996-04-09T23:59:59.000Z

76

Lithium ion conducting electrolytes  

DOE Patents [OSTI]

A liquid, predominantly lithium-conducting, ionic electrolyte having exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH.sub.3 CN) succinnonitrile (CH.sub.2 CN).sub.2, and tetraglyme (CH.sub.3 --O--CH.sub.2 --CH.sub.2 --O--).sub.2 (or like solvents) solvated to a Mg.sup.+2 cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100.degree. C. conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone.

Angell, C. Austen (Tempe, AZ); Liu, Changle (Tempe, AZ)

1996-01-01T23:59:59.000Z

77

Conductive Polymers  

SciTech Connect (OSTI)

Electroluminescent devices such as light-emitting diodes (LED) and high-energy density batteries. These new polymers offer cost savings, weight reduction, ease of processing, and inherent rugged design compared to conventional semiconductor materials. The photovoltaic industry has grown more than 30% during the past three years. Lightweight, flexible solar modules are being used by the U.S. Army and Marine Corps for field power units. LEDs historically used for indicator lights are now being investigated for general lighting to replace fluorescent and incandescent lights. These so-called solid-state lights are becoming more prevalent across the country since they produce efficient lighting with little heat generation. Conductive polymers are being sought for battery development as well. Considerable weight savings over conventional cathode materials used in secondary storage batteries make portable devices easier to carry and electric cars more efficient and nimble. Secondary battery sales represent an $8 billion industry annually. The purpose of the project was to synthesize and characterize conductive polymers. TRACE Photonics Inc. has researched critical issues which affect conductivity. Much of their work has focused on production of substituted poly(phenylenevinylene) compounds. These compounds exhibit greater solubility over the parent polyphenylenevinylene, making them easier to process. Alkoxy substituted groups evaluated during this study included: methoxy, propoxy, and heptyloxy. Synthesis routes for production of alkoxy-substituted poly phenylenevinylene were developed. Considerable emphasis was placed on final product yield and purity.

Bohnert, G.W.

2002-11-22T23:59:59.000Z

78

Acetonitrile Drastically Boosts Conductivity of Ionic Liquids  

E-Print Network [OSTI]

We apply a new methodology in the force field generation (PCCP 2011, 13, 7910) to study the binary mixtures of five imidazolium-based room-temperature ionic liquids (RTILs) with acetonitrile (ACN). The investigated RTILs are composed of tetrafluoroborate (BF4) anion and dialkylimidazolium cations, where one of the alkyl groups is methyl for all RTILs, and the other group is different for each RTILs, being ethyl (EMIM), butyl (BMIM), hexyl (HMIM), octyl (OMIM), and decyl (DMIM). Specific densities, radial distribution functions, ionic cluster distributions, heats of vaporization, diffusion constants, shear viscosities, ionic conductivities, and their correlations are discussed. Upon addition of ACN, the ionic conductivity of RTILs is found to increase by more than 50 times, that significantly exceeds an impact of most known solvents. Remarkably, the sharpest conductivity growth is found for the long-tailed imidazolium-based cations. This new fact motivates to revisit an application of these binary systems as a...

Chaban, Vitaly V; Kalugin, Oleg N; Prezhdo, Oleg V

2012-01-01T23:59:59.000Z

79

Low thermal conductivity skutterudites  

SciTech Connect (OSTI)

Recent experimental results on semiconductors with the skutterudite crystal structure show that these materials possess attractive transport properties and have a good potential for achieving ZT values substantially larger than for state-of-the-art thermoelectric materials. Both n-type and p-type conductivity samples have been obtained, using several preparation techniques. Associated with a low hole effective mass, very high carrier mobilities, low electrical resistivities and moderate Seebeck coefficients are obtained in p-type skutterudites. For a comparable doping level, the carrier mobilities of n-type samples are about an order of magnitude lower than the values achieved on p-type samples. However, the much larger electron effective masses and Seebeck coefficients on p-type samples. However, the much larger electron effective masses and Seebeck coefficients make n-type skutterudite promising candidates as well. Unfortunately, the thermal conductivities of the binary skutterudites compounds are too large, particularly at low temperatures, to be useful for thermoelectric applications. Several approaches to the reduction of the lattice thermal conductivity in skutterudites are being pursued: heavy doping, formation of solid solutions and alloys, study of novel ternary and filled skutterudite compounds. All those approaches have already resulted in skutterudite compositions with substantially lower thermal conductivity values in these materials. Recently, superior thermoelectric properties in the moderate to high temperature range were achieved for compositions combining alloying and filling of the skutterudite structure. Experimental results and mechanisms responsible for low thermal conductivity in skutterudites are discussed.

Fleurial, J.P.; Caillat, T.; Borshchevsky, A.

1997-07-01T23:59:59.000Z

80

Conduction cooled tube supports  

DOE Patents [OSTI]

In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

Worley, Arthur C. (Mt. Tabor, NJ); Becht, IV, Charles (Morristown, NJ)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

High Temperature, Low Relative Humidity, Polymer-type Membranes Based on Disulfonated Poly(arylene ether) Block and Random Copolymers Optionally Incorporating Protonic Conducting Layered Water insoluble Zirconium Fillers  

SciTech Connect (OSTI)

Our research group has been engaged in the past few years in the synthesis of biphenol based partially disulfonated poly(arylene ether sulfone) random copolymers as potential PEMs. This series of polymers are named as BPSH-xx, where BP stands for biphenol, S stands for sulfonated, H stands for acidified and xx represents the degree of disulfonation. All of these sulfonated copolymers phase separate to form nano scale hydrophilic and hydrophobic morphological domains. The hydrophilic phase containing the sulfonic acid moieties causes the copolymer to absorb water. Water confined in hydrophilic pores in concert with the sulfonic acid groups serve the critical function of proton (ion) conduction and water transport in these systems. Both Nafion and BPSH show high proton conductivity at fully hydrated conditions. However proton transport is especially limited at low hydration level for the BPSH random copolymer. It has been observed that the diffusion coefficients of both water and protons change with the water content of the pore. This change in proton and water transport mechanisms with hydration level has been attributed to the solvation of the acid groups and the amount of bound and bulk-like water within a pore. At low hydration levels most of the water is tightly associated with sulfonic groups and has a low diffusion coefficient. This tends to encourage isolated domain morphology. Thus, although there may be significant concentrations of protons, the transport is limited by the discontinuous morphological structure. Hence the challenge lies in how to modify the chemistry of the polymers to obtain significant protonic conductivity at low hydration levels. This may be possible if one can alter the chemical structure to synthesize nanophase separated ion containing block copolymers. Unlike the BPSH copolymers, where the sulfonic acid groups are randomly distributed along the chain, the multiblock copolymers will feature an ordered sequence of hydrophilic and hydrophobic segments. If, like in Nafion, connectivity is established between the hydrophilic domains in these multiblock copolymers, they will not need as much water, and hence will show much better protonic conductivity than the random copolymers (with similar degree of sulfonation, or IEC) at partially hydrated conditions. The goal of this research is to develop a material suitable for use as a polymer electrolyte membrane which by the year 2010 will meet all the performance requirements associated with fuel cell operation at high temperatures and low relative humidity, and will out-perform the present standard Nafion{reg_sign}. In particular, it is our objective to extend our previous research based on the use of thermally, oxidatively, and hydrolytically, ductile, high Tg ion containing polymers based on poly(arylene ethers) to the production of polymer electrolyte membranes which will meet all the performance requirements in addition to having an areal resistance of < 0.05 ohm-cm{sup 2} at a temperature of up to 120 C, relative humidity of 25 to 50%, and up to 2.5 atm total pressure. In many instances, our materials already out performs Nafion{reg_sign}, and it is expected that with some modification by either combining with conductive inorganic fillers and/or synthesizing as a block copolymer it will meet the performance criteria at high temperatures and low relative humidity. A key component in improving the performance of the membranes (and in particular proton conductivity) and meeting the cost requirements of $40/m{sup 2} is our development of a film casting process, which shows promise for generation of void free thin films of uniform thickness with controlled polymer alignment and configuration.

McGrath, James E.; Baird, Donald G.

2010-06-03T23:59:59.000Z

82

Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy  

E-Print Network [OSTI]

chloride salt eutectics for solar thermal-energy storage applications Donghyun Shin, Debjyoti Banerjee for the anoma- lous enhancement of thermal conductivity over that of the neat solvent. Eastman et al. [5] reported thermal conductivity enhance- ment of 30% and 60% for water based nanofluids of Al2O3 and Cu

Banerjee, Debjyoti

83

Oxygen ion conducting materials  

DOE Patents [OSTI]

An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

2005-07-12T23:59:59.000Z

84

Oxygen ion conducting materials  

DOE Patents [OSTI]

An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

2004-11-23T23:59:59.000Z

85

Oxygen ion conducting materials  

DOE Patents [OSTI]

An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

2003-01-01T23:59:59.000Z

86

On viscosity, conduction and sound waves in the intracluster medium  

E-Print Network [OSTI]

Recent X-ray and optical observations of the Perseus cluster indicate that the viscous and conductive dissipation of sound waves is the mechanism responsible for heating the intracluster medium and thus balancing radiative cooling of cluster cores. We discuss this mechanism more generally and show how the specific heating and cooling rates vary with temperature and radius. It appears that the heating mechanism is most effective above 10^7K, which allows for radiative cooling to proceed within normal galaxy formation but will stifle the growth of very massive galaxies. The scaling of the wavelength of sound waves with cluster temperature and feedback in the system are investigated.

A. C. Fabian; C. S. Reynolds; G. B. Taylor; R. J. H. Dunn

2005-08-04T23:59:59.000Z

87

Lithium ion conducting ionic electrolytes  

DOE Patents [OSTI]

A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100.degree. C. or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors.

Angell, C. Austen (Mesa, AZ); Xu, Kang (Tempe, AZ); Liu, Changle (Tulsa, OK)

1996-01-01T23:59:59.000Z

88

Fabrication and Characterization of a Conduction Cooled Thermal Neutron Filter  

SciTech Connect (OSTI)

Installation of a conduction cooled thermal (low-energy) neutron filter in an existing domestic test reactor would provide the U.S. the capability to test new reactor fuels and materials for advanced fast (high-energy) reactor concepts. A composite consisting of Al3Hf-Al has been proposed for the neutron filter due to both the neutron filtering properties of hafnium and the conducting capabilities of aluminum. Knowledge of the thermal conductivity of the Al3Hf-Al composite is essential for the design of the filtering system. The present objectives are to identify a suitable fabrication technique and to measure the thermophysical properties of the Al3Hf intermetallic, which has not been done previous to this study. A centrifugal casting method was used to prepare samples of Al3Hf. X-ray diffraction and Rietveld analysis were conducted to determine the structural make-up of each of the samples. Thermophysical properties were measured as follows: specific heat by a differential scanning calorimeter (DSC), thermal diffusivity by a laser flash thermal diffusivity measuring system, thermal expansion by a dilatometer, and thermal conductivity was calculated based on the previous measurements. All measurements were acquired over a temperature range of 90°C - 375°C with some measurements outside these bounds. The average thermal conductivity of the intermetallic Al3Hf (~7 at.% Hf) was found to be ~ 41 W/m-K for the given temperature range. This information fills a knowledge gap in the thermophysical properties of the intermetallic Al3Hf with the specified percentage of hafnium. A model designed to predict composite properties was used to calculate a thermal conductivity of ~177 W/m-K for an Al3Hf-Al composite with 23 vol% Al3Hf. This calculation was based upon the average thermal conductivity of Al3Hf over the specified temperature range.

Heather Wampler; Adam Gerth; Heng Ban; Donna Post Guillen; Douglas Porter; Cynthia Papesch

2010-06-01T23:59:59.000Z

89

In-Pile Thermal Conductivity Measurement Method for Nuclear Fuels  

SciTech Connect (OSTI)

Thermophysical properties of advanced nuclear fuels and materials during irradiation must be known prior to their use in existing, advanced, or next generation reactors. Thermal conductivity is one of the most important properties for predicting fuel and material performance. A joint Utah State University (USU) / Idaho National Laboratory (INL) project, which is being conducted with assistance from the Institute for Energy Technology at the Norway Halden Reactor Project, is investigating in-pile fuel thermal conductivity measurement methods. This paper focuses on one of these methods – a multiple thermocouple method. This two-thermocouple method uses a surrogate fuel rod with Joule heating to simulate volumetric heat generation to gain insights about in-pile detection of thermal conductivity. Preliminary results indicated that this method can measure thermal conductivity over a specific temperature range. This paper reports the thermal conductivity values obtained by this technique and compares these values with thermal property data obtained from standard thermal property measurement techniques available at INL’s High Test Temperature Laboratory. Experimental results and material properties data are also compared to finite element analysis results.

Joy L. Rempe; Brandon Fox; Heng Ban; Joshua E. Daw; Darrell L. Knudson; Keith G. Condie

2009-08-01T23:59:59.000Z

90

Low-to-moderate temperature geothermal resource assessment for Nevada, area specific studies. Final report, June 1, 1980-August 30, 1981  

SciTech Connect (OSTI)

The Hawthorne study area is located in Mineral County, Nevada and surrounds the municipality of the same name. It encompasses an area of approximately 310 sq. km (120 sq. mi), and most of the land belongs to the US Army Ammunition Plant. The energy needs of the military combined with those of the area population (over 5,000 residents) are substantial. The area is classified as having a high potential for direct applications using the evaluation scheme described in Texler and others (1979). A variety of scientific techniques was employed during area-wide resource assessment. General geologic studies demonstrate the lithologic diversity in the area; these studies also indicate possible sources for dissolved fluid constituents. Geophysical investigations include aero-magnetic and gravity surveys which aid in defining the nature of regional, and to a lesser extent, local variations in subsurface configurations. Surface and near-surface structural features are determined using various types of photo imagery including low sun-angle photography. An extensive shallow depth temperature probe survey indicates two zones of elevated temperature on opposite sides of the Walker Lake basin. Temperature-depth profiles from several wells in the study area indicate significant thermal fluid-bearing aquifers. Fluid chemical studies suggest a wide spatial distribution for the resource, and also suggest a meteoric recharge source in the Wassuk Range. Finally, a soil-mercury survey was not a useful technique in this study area. Two test holes were drilled to conclude the area resource assessment, and thermal fluids were encountered in both wells. The western well has measured temperatures as high as 90 C (194 F) within 150 meters (500 ft) of the surface. Temperature profiles in this well indicate a negative temperature gradient below 180 meters (590 ft). The eastern hole had a bottom hole temperature of 61 C (142 F) at a depth of only 120 meters (395 ft). A positive gradient is observed to a total depth in the well. Several conclusions are drawn from this study: the resource is distributed over a relatively large area; resource fluid temperatures can exceed 90 C (194 F), but are probably limited to a maximum of 125 C (257 F); recharge to the thermal system is meteoric, and flow of the fluids in the near surface (< 500 m) is not controlled by faults; heat supplied to the system may be related to a zone of partially melted crustal rocks in the area 25 km (15 mi) south of Hawthorne. Four papers and an introduction are included. A separate abstract was prepared for each paper. (MHR)

Trexler, D.T.; Koenig, B.A.; Flynn, T.; Bruce, J.L.; Ghusn, G. Jr.

1981-01-01T23:59:59.000Z

91

In-Plane Conductivity Testing Procedures and Results  

Broader source: Energy.gov [DOE]

This presentation on conductivity testing was given at the High Temperature Membrane Working Group Meeting in May 2007.

92

DOCUMENTATION SPECIFIC TASK TRAINING PROGRAM  

E-Print Network [OSTI]

DOCUMENTATION APPENDIX SPECIFIC TASK TRAINING PROGRAM Conducted by the ILLINOIS CENTER ............................................................. Coordination of Contract Documents Art.105.05 Appendix Page 14

Illinois at Urbana-Champaign, University of

93

G-Plus report to Owens Corning-thermal conductivity Measurements of Fiberglass  

SciTech Connect (OSTI)

Fiberglass made by Owens Corning is being used in noise reduction of automobile exhaust system. Specifically, the glass fibers are packed inside the muffler to achieve the desired acoustic effect. A secondary benefit of the fibers is to serve as a thermal insulation. Because of this insulating property, the glass fibers can serve to reduce the temperature of the muffler shell. This in turn reduces the need for heat shields around mufflers and reduces the amount of exterior temperature accelerated corrosion of the muffler shell, especially in the winter ''salt belts'' where large amounts of salt are placed on highways to minimize the safety impact of snow and ice. In addition, for some applications the use of the fiberglass could allow the use of lighter weight carbon based polymer composite materials in place of steel for muffler shells. However, in order to properly design exhaust systems without heat shields or to take advantage of new materials, the thermal conductivity of the fiberglass material at operating temperatures (for some applications above 750 C) must be known. We selected two types of Owens Corning glass fibers, 17 {micro}m and 24 {micro}m in diameter, for this study. There are some room temperature thermal conductivity data for the fiberglass, but high temperature data are not available. Based on the thermal radiation model, thermal conductivity should increase rapidly at high temperature, providing less thermal insulation. In addition, thermal conductivity depends on packing density of the glass fibers. We will study the effect of packing density on thermal conductivity. Another issue is that the glass fiber conducts heat better along the fiber, while the conduction across the fibers is poor, because thermal conduction from one fiber to another has to go through an interface with thermal resistance. In fiberglass, most fibers are not in good contact with the surrounding fibers, thus, most heat transfer is dependent on the thermal radiation effect. Among the many methods of measuring thermal conductivity, only a few can be used for glass fibers. The traditional heat flow meter is used in testing thermal insulations near room temperature. At higher temperatures this method cannot be used due to material and instrument limitations. Our plan is to use a transient plane source (TPS) method to measure thermal conductivity directly. The advantage of the TPS method is that measurements can be taken at over 700 C, and covers the temperature of the automobile exhausts. The following is a report for the G-Plus project conducted at ORNL to apply the TPS method to characterizing the thermal conductivity of two types of fiberglass and also the effect of packing density.

Wang, H

2003-04-15T23:59:59.000Z

94

Student Affairs STUDENT CONDUCT  

E-Print Network [OSTI]

Student Affairs CODE OF STUDENT CONDUCT 2014-15 #12;Contents Letter from the Dean of Students ....................................................................ii Binghamton University's Code of Student Conduct Preamble...................... 1 Section I: Rules of Student Conduct.............................................................. 1 Section II: Definitions

Suzuki, Masatsugu

95

Tuning the Curie temperature of L1{sub 0} ordered FePt thin films through site-specific substitution of Rh  

SciTech Connect (OSTI)

In structurally ordered magnetic thin films, the Curie temperature (T{sub C}) of ferromagnetic films depends on the exchange integral of the short range ordered neighboring atoms. The exchange integral may be adjusted by controlling the elemental substitutional concentration at the lattice site of interest. We show how to control the T{sub C} in high anisotropy L1{sub 0} Fe{sub 50}Pt{sub 50} magnetic thin films by substituting Rh into the Pt site. Rh substitution in L1{sub 0} FePt modified the local atomic environment and the corresponding electronic properties, while retaining the ordered L1{sub 0} phase. The analysis of extended x-ray Absorption Fine Structure spectra shows that Rh uniformly substitutes for Pt in L1{sub 0} FePt. A model of antiferromagnetic defects caused by controlled Rh substitution of the Pt site, reducing the T{sub C,} is proposed to interpret this phenomenon and its validity is further examined by ab initio density functional calculations.

Xu, Dongbin, E-mail: dongbin.xu@seagate.com [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Materials Science and Engineering, National University of Singapore, Singapore 117576 (Singapore); Sun, Cheng-Jun, E-mail: cjsun@aps.anl.gov, E-mail: msecgm@nus.edu.sg; Heald, Steve M. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Chen, Jing-Sheng; Chow, Gan Moog, E-mail: cjsun@aps.anl.gov, E-mail: msecgm@nus.edu.sg [Department of Materials Science and Engineering, National University of Singapore, Singapore 117576 (Singapore); Zhou, Tie-Jun [Data Storage Institute, Agency for Science, Technology and Research (A-STAR), Singapore 117608 (Singapore); Bergman, Anders; Sanyal, Biplab [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden)

2014-10-14T23:59:59.000Z

96

Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses  

SciTech Connect (OSTI)

As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, {tau}, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single distribution of activation energies (DAE) to calculate the corresponding conductivity and relaxation rates as a function of temperature and frequency?

Benjamin Michael Meyer

2003-05-31T23:59:59.000Z

97

An Innovative High Thermal Conductivity Fuel Design  

SciTech Connect (OSTI)

Thermal conductivity of the fuel in today's Light Water Reactors, Uranium dioxide, can be improved by incorporating a uniformly distributed heat conducting network of a higher conductivity material, Silicon Carbide. The higher thermal conductivity of SiC along with its other prominent reactor-grade properties makes it a potential material to address some of the related issues when used in UO2 [97% TD]. This ongoing research, in collaboration with the University of Florida, aims to investigate the feasibility and develop a formal methodology of producing the resultant composite oxide fuel. Calculations of effective thermal conductivity of the new fuel as a function of %SiC for certain percentages and as a function of temperature are presented as a preliminary approach. The effective thermal conductivities are obtained at different temperatures from 600K to 1600K. The corresponding polynomial equations for the temperature-dependent thermal conductivities are given based on the simulation results. Heat transfer mechanism in this fuel is explained using a finite volume approach and validated against existing empirical models. FLUENT 6.1.22 was used for thermal conductivity calculations and to estimate reduction in centerline temperatures achievable within such a fuel rod. Later, computer codes COMBINE-PC and VENTURE-PC were deployed to estimate the fuel enrichment required, to maintain the same burnup levels, corresponding to a volume percent addition of SiC.

Jamil A. Khan

2009-11-21T23:59:59.000Z

98

CONDUCT OF OPERATIONS (CO)  

Broader source: Energy.gov (indexed) [DOE]

CONDUCT OF OPERATIONS (CO) OBJECTIVE TA-55 SST Facility NNSA ORR Implementation Plan 1 1 CO.1 The formality and discipline of operations is adequate to conduct work safely and...

99

Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics  

SciTech Connect (OSTI)

A variety of SiC-based composites and monolithic ceramics were characterized by measuring their thermal diffusivity in the unirradiated, thermal annealed, and irradiated conditions over the temperature range 400 to 1,000 C. The irradiation was conducted in the EBR-II to doses of 33 and 43 dpa-SiC (185 EFPD) at a nominal temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. Thermal diffusivity was measured using the laser flash method, and was converted to thermal conductivity using density data and calculated specific heat values. Exposure to the 165 day anneal did not appreciably degrade the conductivity of the monolithic or particulate-reinforced composites, but the conductivity of the fiber-reinforced composites was slightly degraded. The crystalline SiC-based materials tested in this study exhibited thermal conductivity degradation of irradiation, presumably caused by the presence of irradiation-induced defects. Irradiation-induced conductivity degradation was greater at lower temperatures, and was typically more pronounced for materials with higher unirradiated conductivity. Annealing the irradiated specimens for one hour at 150 C above the irradiation temperature produced an increase in thermal conductivity, which is likely the result of interstitial-vacancy pair recombination. Multiple post-irradiation anneals on CVD {beta}-SiC indicated that a portion of the irradiation-induced damage was permanent. A possible explanation for this phenomenon was the formation of stable dislocation loops at the high irradiation temperature and/or high dose that prevented subsequent interstitial/vacancy recombination.

Senor, D.J.; Youngblood, G.E. [Pacific Northwest National Lab., Richland, WA (United States); Moore, C.E. [Auburn Univ., AL (United States); Trimble, D.J. [Westinghouse Hanford Co., Richland, WA (United States); Woods, J.J. [Lockheed Martin, Schenectady, NY (United States)

1996-06-01T23:59:59.000Z

100

Effects of neutron irradiation on thermal conductivity of SiC-based composites and monolithic ceramics  

SciTech Connect (OSTI)

A variety of SiC-based composites and monolithic ceramics were characterized by measuring their thermal diffusivity in the unirradiated, thermal annealed, and irradiated conditions over the temperature range 400 to 1,000 C. The irradiation was conducted in the EBR-II to doses of 33 and 43 dpa-SiC (185 EFPD) at a nominal temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. Thermal diffusivity was measured using the laser flash method, and was converted to thermal conductivity using density data and calculated specific heat values. Exposure to the 165 day anneal did not appreciably degrade the conductivity of the monolithic or particulate-reinforced composites, but the conductivity of the fiber-reinforced composites was slightly degraded. The crystalline SiC-based materials tested in this study exhibited thermal conductivity degradation after irradiation, presumably caused by the presence of irradiation-induced defects. Irradiation-induced conductivity degradation was greater at lower temperatures, and was typically more pronounced for materials with higher unirradiated conductivity. Annealing the irradiated specimens for one hour at 150 C above the irradiation temperature produced an increase in thermal conductivity, which is likely the result of interstitial-vacancy pair recombination. Multiple post-irradiation anneals on CVD {beta}-SiC indicated that a portion of the irradiation-induced damage was permanent. A possible explanation for this phenomenon was the formation of stable dislocation loops at the high irradiation temperature and/or high dose that prevented subsequent interstitial/vacancy recombination.

Senor, D.J.; Youngblood, G.E. [Pacific Northwest National Lab., Richland, WA (United States); Moore, C.E. [Auburn Univ., AL (United States); Trimble, D.J. [Westinghouse Hanford Co., Richland, WA (United States); Woods, J.J. [Lockheed Martin, Schenectady, NY (United States)

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Cermet fuel thermal conductivity  

E-Print Network [OSTI]

CERMET FUEL THERMAL CONDUCTIVITY A Thesis by JOHN MARK ALVIS, JR. Submitted to the Graduate College of Texas A&. M University in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE August 1988 Major Subject: Nuclear... particles of low conductivity dispersed in a metal matrix of high conductivity. A computer code was developed in order to compute the conductivity of cermet fuels as predicted by existing models and an additional model derived in this work...

Alvis, John Mark

1988-01-01T23:59:59.000Z

102

Thermal Conductivity and Noise Attenuation in  

E-Print Network [OSTI]

.3.4 Corrosion-resistant and high-temperature filters 9 1.3.5 Acoustic Applications 9 2. THERMAL CONDUCTIVITY 2.1 THERMAL RESISTANCE 2.1.1 Thermal Conductors in Series 12 2.1.2 Thermal conductors in parallel 13 2 difference RTH Thermal resistance of conductor sb Stefan's constant T4 Temperature difference K* Total

Cambridge, University of

103

Electrically conductive composite material  

DOE Patents [OSTI]

An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

Clough, R.L.; Sylwester, A.P.

1989-05-23T23:59:59.000Z

104

Electrically conductive composite material  

DOE Patents [OSTI]

An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

Clough, R.L.; Sylwester, A.P.

1988-06-20T23:59:59.000Z

105

Electrically conductive composite material  

DOE Patents [OSTI]

An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

Clough, Roger L. (Albuquerque, NM); Sylwester, Alan P. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

106

Thermal conductivity measurements of Summit polycrystalline silicon.  

SciTech Connect (OSTI)

A capability for measuring the thermal conductivity of microelectromechanical systems (MEMS) materials using a steady state resistance technique was developed and used to measure the thermal conductivities of SUMMiT{trademark} V layers. Thermal conductivities were measured over two temperature ranges: 100K to 350K and 293K to 575K in order to generate two data sets. The steady state resistance technique uses surface micromachined bridge structures fabricated using the standard SUMMiT fabrication process. Electrical resistance and resistivity data are reported for poly1-poly2 laminate, poly2, poly3, and poly4 polysilicon structural layers in the SUMMiT process from 83K to 575K. Thermal conductivity measurements for these polysilicon layers demonstrate for the first time that the thermal conductivity is a function of the particular SUMMiT layer. Also, the poly2 layer has a different variation in thermal conductivity as the temperature is decreased than the poly1-poly2 laminate, poly3, and poly4 layers. As the temperature increases above room temperature, the difference in thermal conductivity between the layers decreases.

Clemens, Rebecca; Kuppers, Jaron D.; Phinney, Leslie Mary

2006-11-01T23:59:59.000Z

107

High conductance surge cable  

DOE Patents [OSTI]

An electrical cable for connecting transient voltage surge suppressors to electrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation. 6 figs.

Murray, M.M.; Wilfong, D.H.; Lomax, R.E.

1998-12-08T23:59:59.000Z

108

High conductance surge cable  

DOE Patents [OSTI]

An electrical cable for connecting transient voltage surge suppressers to ectrical power panels. A strip of electrically conductive foil defines a longitudinal axis, with a length of an electrical conductor electrically attached to the metallic foil along the longitudinal axis. The strip of electrically conductive foil and the length of an electrical conductor are covered by an insulating material. For impedance matching purposes, triangular sections can be removed from the ends of the electrically conductive foil at the time of installation.

Murray, Matthew M. (Espanola, NM); Wilfong, Dennis H. (Brooksville, FL); Lomax, Ralph E. (Santa Fe, NM)

1998-01-01T23:59:59.000Z

109

Tailoring the Thermoelectric Behavior of Electrically Conductive Polymer Composites  

E-Print Network [OSTI]

fabrication temperatures. These concerns have led research efforts into electrically conductive polymer composites prepared in ambient conditions from aqueous solutions. By combining polymer latex with carbon nanotubes (CNT), electrical conductivity can...

Moriarty, Gregory P.

2013-05-21T23:59:59.000Z

110

Electrically conductive cellulose composite  

DOE Patents [OSTI]

An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

2010-05-04T23:59:59.000Z

111

Commissioning Specifications  

Broader source: Energy.gov [DOE]

Commissioning specifications outline basic requirements of the commissioning process and detail the roles and responsibilities of each party involved. System checklists, startup requirements, and...

112

Conductive Channel for Energy Transmission  

SciTech Connect (OSTI)

For many years the attempts to create conductive channels of big length were taken in order to study the upper atmosphere and to settle special tasks, related to energy transmission. There upon the program of creation of 'Impulsar' represents a great interest, as this program in a combination with high-voltage high repetition rate electrical source can be useful to solve the above mentioned problems (N. Tesla ideas for the days of high power lasers). The principle of conductive channel production can be shortly described as follows. The 'Impulsar' - laser jet engine vehicle - propulsion take place under the influence of powerful high repetition rate pulse-periodic laser radiation. In the experiments the CO{sub 2}-laser and solid state Nd:YAG laser systems had been used. Active impulse appears thanks to air breakdown (<30 km) or to the breakdown of ablated material on the board (>30 km), placed in the vicinity of the focusing mirror-acceptor of the breakdown waves. With each pulse of powerful laser the device rises up, leaving a bright and dense trace of products with high degree of ionization and metallization by conductive nano-particles due to ablation. Conductive dust plasma properties investigation in our experiments was produced by two very effective approaches: high power laser controlled ablation and by explosion of wire. Experimental and theoretical results of conductive canal modeling will be presented. The estimations show that with already experimentally demonstrated figures of specific thrust impulse the lower layers of the Ionosphere can be reached in several ten seconds that is enough to keep the high level of channel conductivity and stability with the help of high repetition rate high voltage generator. Some possible applications for new technology are highlighted.

Apollonov, Victor V. [A.M. Prokhorov General Physics Institute, Vavilov Str. 38, Moscow, 119991 (Russian Federation)

2011-11-10T23:59:59.000Z

113

THERMAL CONDUCTIVITY OF NON-REPOSITORY LITHOSTRATIGRAPHIC LAYERS  

SciTech Connect (OSTI)

This model report addresses activities described in ''Technical Work Plan for: Near-Field Environment and Transport Thermal Properties and Analysis Reports Integration'' (BSC 2004 [DIRS 171708]). The model develops values for thermal conductivity, and its uncertainty, for the nonrepository layers of Yucca Mountain; in addition, the model provides estimates for matrix porosity and dry bulk density for the nonrepository layers. The studied lithostratigraphic units, as identified in the ''Geologic Framework Model'' (GFM 2000) (BSC 2004 [DIRS 170029]), are the Timber Mountain Group, the Tiva Canyon Tuff, the Yucca Mountain Tuff, the Pah Canyon Tuff, the Topopah Spring Tuff (excluding the repository layers), the Calico Hills Formation, the Prow Pass Tuff, the Bullfrog Tuff, and the Tram Tuff. The deepest model units of the GFM (Tund and Paleozoic) are excluded from this study because no data suitable for model input are available. The parameter estimates developed in this report are used as input to various models and calculations that simulate heat transport through the rock mass. Specifically, analysis model reports that use product output from this report are: (1) Drift-scale coupled processes (DST and TH seepage) models; (2) Drift degradation analysis; (3) Multiscale thermohydrologic model; and (4) Ventilation model and analysis report. In keeping with the methodology of the thermal conductivity model for the repository layers in ''Thermal Conductivity of the Potential Repository Horizon'' (BSC 2004 [DIRS 169854]), the Hsu et al. (1995 [DIRS 158073]) three-dimensional (3-D) cubic model (referred to herein as ''the Hsu model'') was used to represent the matrix thermal conductivity as a function of the four parameters (matrix porosity, thermal conductivity of the saturating fluid, thermal conductivity of the solid, and geometric connectivity of the solid). The Hsu model requires input data from each test specimen to meet three specific conditions: (1) Known value for matrix porosity; (2) Known values for wet and dry thermal conductivity; and (3) The location of the measured specimen in relation to the model stratigraphic unit. The only matrix thermal conductivity values developed are limited to fully saturated and dry conditions. The model does not include the effects of convection and thermal radiation in voids. The model does not include temperature dependence of thermal conductivity, porosity, or bulk density.

R. JONES

2004-10-22T23:59:59.000Z

114

About influence of gravity on heat conductivity process of the Planets  

E-Print Network [OSTI]

In the present study it is shown that the interaction of a quasi-static gravitational wave through density fluctuations gives rise to a heat conductivity coefficient and hence temperature. This fact is a very important characteristics to establish a heat equilibrium process of such massive body as the Earth and other Planets. To carry out this exercise general mechanism has been provided, which makes a bridge between classical physics and quantum theory, and specific dependence of heat conductivity coefficient in wide region is also calculated.

S. O. Gladkov; Anil Yadav; Saibal Ray; F. Rahaman

2014-07-30T23:59:59.000Z

115

About influence of gravity on heat conductivity process of the Planets  

E-Print Network [OSTI]

In the present study it is shown that the interaction of a quasi-static gravitational wave through density fluctuations gives rise to a heat conductivity coefficient and hence temperature. This fact is a very important characteristics to establish a heat equilibrium process of such massive body as the Earth and other Planets. To carry out this exercise general mechanism has been provided, which makes a bridge between classical physics and quantum theory, and specific dependence of heat conductivity coefficient in wide region is also calculated.

Gladkov, S O; Ray, Saibal; Rahaman, F

2015-01-01T23:59:59.000Z

116

Conduct of Operations  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order defines the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. Cancels DOE O 5480.19. Admin Chg 1, 6-25-13

2010-06-29T23:59:59.000Z

117

Electrically conductive material  

DOE Patents [OSTI]

An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.

Singh, Jitendra P. (Bollingbrook, IL); Bosak, Andrea L. (Burnam, IL); McPheeters, Charles C. (Woodridge, IL); Dees, Dennis W. (Woodridge, IL)

1993-01-01T23:59:59.000Z

118

Electrically conductive material  

DOE Patents [OSTI]

An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

1993-09-07T23:59:59.000Z

119

Thermal Conductivity in Nanocrystalline Ceria Thin Films  

SciTech Connect (OSTI)

The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser-based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO2. A variety of microstructure imaging techniques including X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron analysis, and electron energy loss spectroscopy indicate that the thermal conductivity is influenced by grain boundaries, dislocations, and oxygen vacancies. The temperature dependence of the thermal conductivity is analyzed using an analytical solution of the Boltzmann transport equation. The conclusion of this study is that oxygen vacancies pose a smaller impediment to thermal transport when they segregate along grain boundaries.

Marat Khafizov; In-Wook Park; Aleksandr Chernatynskiy; Lingfeng He; Jianliang Lin; John J. Moore; David Swank; Thomas Lillo; Simon R. Phillpot; Anter El-Azab; David H. Hurley

2014-02-01T23:59:59.000Z

120

The thermally stimulated conductivity in amorphous thin film As?Se?  

E-Print Network [OSTI]

Voltage (Temperature vs. Time) 21 Block Diagrams of the Temperature Control Systems 23 II-8 Parabolic Reference Voltage (Voltage vs. Time) II-9 System Heating Curves Using the Heater Control System (Temper'ature vs. Time) 25 II-10 Block Diagram.... 10 /Temperature) 32 III-3 Conductivity as Function of Temperature for the TSC Experiment (Conductivity vs. Temperature) I II 4 Carrier Concentration as Function of Temperature for TSC (Carrier Concentration vs. Temperature) 35 LIST OF SYNBOLS...

Bryant, John Duffie

1972-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hydraulic Conductivity Measurements Barrow 2014  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Six individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, in May of 2013 as part of the Next Generation Ecosystem Experiment (NGEE). Each core was drilled from a different location at varying depths. A few days after drilling, the cores were stored in coolers packed with dry ice and flown to Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. 3-dimensional images of the cores were constructed using a medical X-ray computed tomography (CT) scanner at 120kV. Hydraulic conductivity samples were extracted from these cores at LBNL Richmond Field Station in Richmond, CA, in February 2014 by cutting 5 to 8 inch segments using a chop saw. Samples were packed individually and stored at freezing temperatures to minimize any changes in structure or loss of ice content prior to analysis. Hydraulic conductivity was determined through falling head tests using a permeameter [ELE International, Model #: K-770B]. After approximately 12 hours of thaw, initial falling head tests were performed. Two to four measurements were collected on each sample and collection stopped when the applied head load exceeded 25% change from the original load. Analyses were performed between 2 to 3 times for each sample. The final hydraulic conductivity calculations were computed using methodology of Das et al., 1985.

Katie McKnight; Tim Kneafsey; Craig Ulrich; Jil Geller

122

Conductive polymeric compositions for lithium batteries  

DOE Patents [OSTI]

Novel chain polymers comprising weakly basic anionic moieties chemically bound into a polyether backbone at controllable anionic separations are presented. Preferred polymers comprise orthoborate anions capped with dibasic acid residues, preferably oxalato or malonato acid residues. The conductivity of these polymers is found to be high relative to that of most conventional salt-in-polymer electrolytes. The conductivity at high temperatures and wide electrochemical window make these materials especially suitable as electrolytes for rechargeable lithium batteries.

Angell, Charles A. (Mesa, AZ); Xu, Wu (Tempe, AZ)

2009-03-17T23:59:59.000Z

123

Tape Casting of Proton Conducting Ceramic Material RMI COSTA, JULIEN HAFSAOUI, ANA PAULA ALMEIDA DE OLIVEIRA, ARNAUD GROSJEAN,  

E-Print Network [OSTI]

to reach the highest anionic conduction performance. Operating SOFC at such an elevated temperature gives

Boyer, Edmond

124

Conduct of Operations  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order defines the requirements for establishing and implementing Conduct of Operations Programs at Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facilities and projects. Cancels DOE O 5480.19. Admin Chg 1, dated 6-25-13, cancels DOE O 422.1. Certified 12-3-14.

2010-06-29T23:59:59.000Z

125

Lithium ion conducting electrolytes  

DOE Patents [OSTI]

The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

Angell, Charles Austen (Mesa, AZ); Liu, Changle (Midland, MI); Xu, Kang (Montgomery Village, MD); Skotheim, Terje A. (Tucson, AZ)

1999-01-01T23:59:59.000Z

126

Oak Ridge Site Specific Advisory Board Committees | Department...  

Office of Environmental Management (EM)

Committees Oak Ridge Site Specific Advisory Board Committees Oak Ridge's Site Specific Advisory Board uses its committee structure to achieve its mission and conduct many of its...

127

Investigations into High Temperature Components and Packaging  

SciTech Connect (OSTI)

The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the temperature increase inside the device due the internal heat that is generated due to conduction and switching losses. Capacitors and high current switches that are reliable and meet performance specifications over an increased temperature range are necessary to realize electronics needed for hybrid-electric vehicles (HEVs), fuel cell (FC) and plug-in HEVs (PHEVs). In addition to individual component level testing, it is necessary to evaluate and perform long term module level testing to ascertain the effects of high temperature operation on power electronics.

Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

2007-12-31T23:59:59.000Z

128

TRANSPORT INVOLVING CONDUCTING FIBERS IN A NON-CONDUCTING MATRIX  

E-Print Network [OSTI]

result is a material with high electrical conductivity and low thermal conductivity. Transport Models,2 , J. Rozen3 Introduction Thermal and electrical transport through a low-conductivity matrix containing conversion devices high electrical conductivity and low thermal conductivity are preferred for superior

Walker, D. Greg

129

RESPONSIBLE CONDUCT OF RESEARCH  

E-Print Network [OSTI]

;Case studies in physics ¨ Premature Higgs (2011) ¨ Cold fusion (1989) ¨ Element X (2002) ¨ Schoer (2002 and Fleischmann announce Cold Fusion ¨ Electrolysis of heavy water ¨ Deuterium enters palladium cathode ¨ See temperature rise ¨ Detect fusion products like Helium in water 5/29/12 16 #12;Show the movie ¨ The Believers

Shahriar, Selim

130

Electrically conductive alternating copolymers  

DOE Patents [OSTI]

Polymers which are soluble in common organic solvents and are electrically conductive, but which also may be synthesized in such a manner that they become nonconductive. Negative ions from the electrolyte used in the electrochemical synthesis of a polymer are incorporated into the polymer during the synthesis and serve as a dopant. A further electrochemical step may be utilized to cause the polymer to be conductive. The monomer repeat unit is comprised of two rings, a pyrrole molecule joined to a thienyl group, or a furyl group, or a phenyl group. The individual groups of the polymers are arranged in an alternating manner. For example, the backbone arrangement of poly(furylpyrrole) is -furan-pyrrole-furan-pyrrole- furan-pyrrole. An alkyl group or phenyl group may be substituted for either or both of the hydrogen atoms of the pyrrole ring.

Aldissi, M.; Jorgensen, B.S.

1987-08-31T23:59:59.000Z

131

STANDARDS OF CONDUCT A MESSAGE FROM THE CHANCELLOR  

E-Print Network [OSTI]

STANDARDS OF CONDUCT A MESSAGE FROM THE CHANCELLOR Dear Faculty and Staff: At Vanderbilt University standards and lawful conduct. The Vanderbilt University Compliance Program articulates specifically what is expected of us, and completing the Standards of Conduct training will ensure that you have a thorough

Bordenstein, Seth

132

High conductivity composite metal  

DOE Patents [OSTI]

Electrical conductors and methods of producing them are disclosed, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps. 10 figs.

Zhou, R.; Smith, J.L.; Embury, J.D.

1998-01-06T23:59:59.000Z

133

High conductivity composite metal  

DOE Patents [OSTI]

Electrical conductors and methods of producing them, where the conductors possess both high strength and high conductivity. Conductors are comprised of carbon steel and a material chosen from a group consisting of copper, nickel, silver, and gold. Diffusion barriers are placed between these two materials. The components of a conductor are assembled and then the assembly is subjected to heat treating and mechanical deformation steps.

Zhou, Ruoyi (Los Alamos, NM); Smith, James L. (Los Alamos, NM); Embury, John David (Hamilton, CA)

1998-01-01T23:59:59.000Z

134

Ac-conductivity and electromagnetic energy absorption for the Anderson model in linear response theory  

E-Print Network [OSTI]

We continue our study of the ac-conductivity in linear response theory for the Anderson model using the conductivity measure. We establish further properties of the conductivity measure, including nontriviality at nonzero temperature, the high temperature limit, and asymptotics with respect to the disorder. We also calculate the electromagnetic energy absorption in linear response theory in terms of the conductivity measure.

Abel Klein; Peter Müller

2014-03-03T23:59:59.000Z

135

TRANSPORT INVOLVING CONDUCTING FIBERS IN A NON-CONDUCTING MATRIX  

E-Print Network [OSTI]

to sev- eral applications including flexible thin-film transistors, PEM fuel cells, and direct energy, particularly Peltier devices, high electrical conductivity and low thermal conductivity are preferred

Walker, D. Greg

136

Estimating the hydraulic conductivity at the South Oyster Site from geophysical tomographic data using Bayesian techniques  

E-Print Network [OSTI]

Estimating the hydraulic conductivity at the South Oyster Site from geophysical tomographic data velocity for hydraulic conductivity estimation at the South Oyster Site, using a Bayesian framework. Since site- specific relations between hydraulic conductivity and geophysical properties are often nonlinear

Hubbard, Susan

137

The Thermal Conductivity of Rocks and Its Dependence Upon Temperature...  

Open Energy Info (EERE)

unavailable. Authors F. Birch and H. Clark Published Journal American Journal of Science, 1940 DOI Not Provided Check for DOI availability: http:crossref.org Online...

138

High Temperature Oxidation Resistance and Surface Electrical Conductivity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in thein the Assembly of Photosystem

139

Investigation of the effect of gel residue on hydraulic fracture conductivity using dynamic fracture conductivity test  

E-Print Network [OSTI]

) ............................................................................ 51 Figure B.9: Fracture Conductivity Behavior (Polymer Concentration = 50 lb/Mgal and Gas Rate = 0.5 slm) ............................................................................ 52 Figure B.10: Fracture Conductivity Behavior (Polymer... documented in API RP-61 (1989). The recommended conditions and procedure for the test includes loading a known proppant concentration (generally 2 lb/ft2) uniformly between two steel pistons at ambient temperature, maintaining closure stress for 15 minutes...

Marpaung, Fivman

2008-10-10T23:59:59.000Z

140

Investigation of the effect of gel residue on hydraulic fracture conductivity using dynamic fracture conductivity test  

E-Print Network [OSTI]

) ............................................................................ 51 Figure B.9: Fracture Conductivity Behavior (Polymer Concentration = 50 lb/Mgal and Gas Rate = 0.5 slm) ............................................................................ 52 Figure B.10: Fracture Conductivity Behavior (Polymer... documented in API RP-61 (1989). The recommended conditions and procedure for the test includes loading a known proppant concentration (generally 2 lb/ft2) uniformly between two steel pistons at ambient temperature, maintaining closure stress for 15 minutes...

Marpaung, Fivman

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Enhanced Thermal Conductivity Oxide Fuels  

SciTech Connect (OSTI)

the purpose of this project was to investigate the feasibility of increasing the thermal conductivity of oxide fuels by adding small fractions of a high conductivity solid phase.

Alvin Solomon; Shripad Revankar; J. Kevin McCoy

2006-01-17T23:59:59.000Z

142

Lateral conduction infrared photodetector  

DOE Patents [OSTI]

A photodetector for detecting infrared light in a wavelength range of 3-25 .mu.m is disclosed. The photodetector has a mesa structure formed from semiconductor layers which include a type-II superlattice formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5. Impurity doped regions are formed on sidewalls of the mesa structure to provide for a lateral conduction of photo-generated carriers which can provide an increased carrier mobility and a reduced surface recombination. An optional bias electrode can be used in the photodetector to control and vary a cut-off wavelength or a depletion width therein. The photodetector can be formed as a single-color or multi-color device, and can also be used to form a focal plane array which is compatible with conventional read-out integrated circuits.

Kim, Jin K. (Albuquerque, NM); Carroll, Malcolm S. (Albuquerque, NM)

2011-09-20T23:59:59.000Z

143

Heat Transfer and Cooling Techniques at Low Temperature  

E-Print Network [OSTI]

The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.

Baudouy, B

2014-01-01T23:59:59.000Z

144

Low Conductivity Thermal Barrier Coatings  

E-Print Network [OSTI]

Low Conductivity Thermal Barrier Coatings A Dissertation Presented to The Faculty of the School conductivity of the coatings. The minimum thermal conductivity occurs at a low rotation rate and is 0.8 W intrinsic thermal conductivity, good phase stability and greater resistance to sintering and CMAS attack

Wadley, Haydn

145

PLASTIC PORT NON-CONDUCTIVE  

E-Print Network [OSTI]

PIN NO. 1 INDICATOR 81 3 5 2 4 6 7 CONDUCTIVE PLASTIC PORT NON-CONDUCTIVE PLASTIC HOUSING Description The conductive port option for the Low Cost Miniature Link component family consists of a grounding path from the conductive port to four grounding pins as shown in the package outline drawing

Berns, Hans-Gerd

146

An Analytical Study Of A 2-Layer Transient Thermal Conduction...  

Open Energy Info (EERE)

Study Of A 2-Layer Transient Thermal Conduction Problem As Applied To Soil-Temperature Surveys Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

147

Laboratory Study to Identify the Impact of Fracture Design Parameters over the Final Fracture Conductivity Using the Dynamic Fracture Conductivity Test Procedure  

E-Print Network [OSTI]

such as closure stress, and temperature and fracture fluid parameters such as proppant loading over the final conductivity of a hydraulic fracture treatment. With the purpose of estimating the relation between fracture conductivity and the design parameters, two...

Pieve La Rosa, Andres Eduardo

2011-08-08T23:59:59.000Z

148

Mössbauer study of conductive oxide glass  

SciTech Connect (OSTI)

Heat treatment of barium iron vanadate glass, BaO?Fe{sub 2}O{sub 3}?V{sub 2}O{sub 5}, at temperatures higher than crystallization temperature causes a marked decrease in resistivity (?) from several M?cm to several ?cm. {sup 57}Fe Mössbauer spectrum of heat-treated vanadate glass shows a marked decrease in quadrupole splitting (?) of Fe{sup III}, reflecting a structural relaxation, i.e., an increased symmetry of 'distorted' FeO{sub 4} and VO{sub 4} tetrahedra which are connected to each other by sharing corner oxygen atoms. Structural relaxation of 3D-network of vanadate glass accompanies a decrease in the activation energy for the conduction, reflecting a decreased energy gap between the donor level and conduction band. A marked increase in the conductivity was observed in CuO- or Cu{sub 2}O-containing barium iron vanadate glass after heat treatment at 450 °C for 30 min or more. 'n-type semiconductor model combined with small polaron hopping theory' was proposed in order to explain the high conductivity.

Matsuda, Koken; Kubuki, Shiro [Tokyo Metropolitan University, Hachi-Oji, Tokyo 192-0397 (Japan); Nishida, Tetsuaki, E-mail: nishida@fuk.kindai.ac.jp [Kinki University, Iizuka, Fukuoka 820-8555 (Japan)

2014-10-27T23:59:59.000Z

149

ambient temperature grown: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ambient Environmental Sciences and Ecology Websites Summary: heat production, Q heat loss, C conductance, Tb body temperature, and Ta ambient temperature...

150

Conductive lithium storage electrode  

DOE Patents [OSTI]

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001conductivity at 27.degree. C. of at least about 10.sup.-8 S/cm. The compound can be a doped lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Seoul, KR); Bloking, Jason T. (Cambridge, MA); Andersson, Anna M. (Uppsala, SE)

2008-03-18T23:59:59.000Z

151

Conductive lithium storage electrode  

DOE Patents [OSTI]

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001conductivity at 27.degree. C. of at least about 10.sup.-8 S/cm. The compound can be a doped lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

2012-04-03T23:59:59.000Z

152

The Electrical Conductivity Of Partly Ionized Helium Plasma  

SciTech Connect (OSTI)

In this paper we analyzed atoms influence on electro conductivity, partially ionized helium plasma, in temperature region 5 000 K - 40 000 K and pressure 0.1 - 10 atm. Electro conductivity was calculated using 'Frost like' formula and Random Phase Approximation method and Semi-Classical (SC) approximation.

Sreckovic, Vladimir A.; Ignjatovic, Ljubinko; Mihajlov, A. A. [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro)

2007-04-23T23:59:59.000Z

153

POLYMERIC MICROCOMBUSTORS FOR SOLID-PHASE CONDUCTIVE FUELS  

E-Print Network [OSTI]

combustor for the ignition and reaction of solid conductive fuels. Solid fuels can he made conductive, the hum rate of fuel in the overall combustor can he decoupled from the chemical reaction rate by changing igniter volume density; the combustor housing can be made of a low-temperature, low-cost mate

154

Gas Code of Conduct (Connecticut)  

Broader source: Energy.gov [DOE]

The Gas Code of Conduct sets forth the standard of conduct for transactions, direct or indirect, between gas companies and their affiliates. The purpose of these regulations is to promote...

155

Nanostructured polymer membranes for proton conduction  

DOE Patents [OSTI]

Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.

Balsara, Nitash Pervez; Park, Moon Jeong

2013-06-18T23:59:59.000Z

156

Pressure &Pressure & TemperatureTemperature  

E-Print Network [OSTI]

to measure atmospheric pressure, and thermometer toprobe to measure atmospheric pressure, and thermometer toprobe to measure atmospheric pressure, and thermometer toprobe to measure atmospheric pressure, and thermometer to measure air temperature.measure air temperature.measure air temperature.measure air temperature

California at Santa Cruz, University of

157

Original article Hydraulic conductance of two co-occuring neotropical  

E-Print Network [OSTI]

Original article Hydraulic conductance of two co-occuring neotropical understory shrubs December 1999) Abstract ­ Whole plant hydraulic conductance was measured for two co-occuring neotropical hydraulic con- ductance and leaf specific conducance in the drought-avoiding species, P. trigonum, than

Paris-Sud XI, Université de

158

Thermal conductivity of electroless nickel-phosphorus alloy plating  

SciTech Connect (OSTI)

Properties of specific heat, thermal diffusivity, density, and calculated thermal conductivity have been determined for a modified acid bath electroless nickel-12.7 wt% phosphorus alloy between 298 ad 423 K. Thermal conductivity values are about half those of pure nickel.

Smith, D.D.

1982-04-01T23:59:59.000Z

159

Technical requirements specification for tank waste retrieval  

SciTech Connect (OSTI)

This document provides the technical requirements specification for the retrieval of waste from the underground storage tanks at the Hanford Site. All activities covered by this scope are conducted in support of the Tank Waste Remediation System (TWRS) mission.

Lamberd, D.L.

1996-09-26T23:59:59.000Z

160

Experimental thermal conductivity and contact conductance of graphite composites  

E-Print Network [OSTI]

Figure 2. 1 One-Dimensional Heat Transfer by Conduction Across a Plane Wall Figure 2. 2 Fundamental Element for Electrically Based Thermal Model. . . 14 Figure 2. 3 Rectangular Unit Cell Orientation . 14 Figure 2. 4 Model of Parabolic Distribution... a low transverse thermal conductivity, they show better thermal performance than MMC's for some weight-critical applications (Ibrahim, 1992). Graphite/organic compound composites also will be reviewed. Using a high conductivity graphite fiber...

Jackson, Marian Christine

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Conductivity and entanglement entropy of high dimensional holographic superconductors  

E-Print Network [OSTI]

We investigate the dependence of the conductivity and the entanglement entropy on the space-time dimensionality $d$ in two holographic superconductors: one dual to a quantum critical point with spontaneous symmetry breaking, and the other modeled by a charged scalar that condenses at a sufficiently low temperature in the presence of a Maxwell field. In both cases the gravity background is asymptotically Anti de Sitter (AdS). In the large $d$ limit we obtain explicit analytical results for the conductivity at zero temperature and the entanglement entropy by a $1/d$ expansion. We show that the entanglement entropy is always smaller in the broken phase and identify a novel decay of the conductivity for intermediate frequencies. As dimensionality increases, the entanglement entropy decreases, the coherence peak in the conductivity becomes narrower and the ratio between the energy gap and the critical temperature decreases. These results suggest that the condensate interactions become weaker in high spatial dimens...

Romero-Bermúdez, Aurelio

2015-01-01T23:59:59.000Z

162

Lattice thermal conductivity of nanograined half-Heusler solid solutions  

SciTech Connect (OSTI)

We report a phenomenological model of atomic weight, lattice constant, temperature, and grain size to calculate the high-temperature lattice thermal conductivity of nanograined solid solutions. The theoretical treatment developed here is reasonably consistent with the experimental results of n-type MNiSn and p-type MCoSb alloys, where M is the combination of Hf, Zr, and Ti. For disordered half-Heusler alloys with moderated grain sizes, we predict that the reduction in lattice thermal conductivity due to grain boundary scattering is independent of the scattering parameter, which characterizes the phonon scattering cross section of point defects. In addition, the lattice thermal conductivity falls off with temperature as T{sup –1?2} around the Debye temperature.

Geng, Huiyuan, E-mail: genghuiyuan@hit.edu.cn; Meng, Xianfu; Zhang, Hao; Zhang, Jian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China)

2014-05-19T23:59:59.000Z

163

Optical Conductivity with Holographic Lattices  

E-Print Network [OSTI]

We add a gravitational background lattice to the simplest holographic model of matter at finite density and calculate the optical conductivity. With the lattice, the zero frequency delta function found in previous calculations (resulting from translation invariance) is broadened and the DC conductivity is finite. The optical conductivity exhibits a Drude peak with a cross-over to power-law behavior at higher frequencies. Surprisingly, these results bear a strong resemblance to the properties of some of the cuprates.

Gary T. Horowitz; Jorge E. Santos; David Tong

2012-08-03T23:59:59.000Z

164

Cylinder Test Specification  

SciTech Connect (OSTI)

The purpose of the cylinder testis two-fold: (1) to characterize the metal-pushing ability of an explosive relative to that of other explosives as evaluated by the E{sub 19} cylinder energy and the G{sub 19} Gurney energy and (2) to help establish the explosive product equation-of-state (historically, the Jones-Wilkins-Lee (JWL) equation). This specification details the material requirements and procedures necessary to assemble and fire a typical Los Alamos National Laboratory (LANL) cylinder test. Strict adherence to the cylinder. material properties, machining tolerances, material heat-treatment and etching processes, and high explosive machining tolerances is essential for test-to-test consistency and to maximize radial wall expansions. Assembly and setup of the cylinder test require precise attention to detail, especially when placing intricate pin wires on the cylinder wall. The cylinder test is typically fired outdoors and at ambient temperature.

Richard Catanach; Larry Hill; Herbert Harry; Ernest Aragon; Don Murk

1999-10-01T23:59:59.000Z

165

Appendix C Conducting Structured Walkthroughs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This guide describes how to conduct a structured walkthroughs during the lifecycle stages of software engineering projects, regardless of hardware platform.

1997-05-21T23:59:59.000Z

166

Electrical conductivities of aluminum, copper, and tungsten observed by an underwater explosion  

SciTech Connect (OSTI)

Conductivities of dense aluminum, copper, and tungsten are evaluated using exploding wire discharges in water. Evolutions of the radius and the electrical resistance of exploding wire are measured together with direct pyrometric estimation of the temperature. The conductivities are evaluated based on the measurements and their density dependence is compared with theoretical predictions at a fixed temperature. The results indicate that regardless of materials, the conductivity has a minimum around 3% of solid density at temperature of 5000 K.

Sasaki, Toru [Department of Electrical Engineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188 (Japan); Nakajima, Mitsuo; Kawamura, Tohru; Horioka, Kazuhiko [Department of Energy Sciences, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8502 (Japan)

2010-08-15T23:59:59.000Z

167

E-Print Network 3.0 - apparent thermal conductivity Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

293 K. To obtain data... results 4,5. Comparing to the apparent thermal conductivity of aerogel when the boundary temperatures... THERMAL ... Source: Chang, Ho-Myung - Department...

168

Exploding conducting film laser pumping apparatus  

DOE Patents [OSTI]

Exploding conducting film laser optical pumping apparatus. The 342-nm molecular iodine and the 1.315-.mu.m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.

Ware, Kenneth D. (San Diego, CA); Jones, Claude R. (Los Alamos, NM)

1986-01-01T23:59:59.000Z

169

Conduction cooling: multicrate fastbus hardware  

SciTech Connect (OSTI)

Described is a new and novel approach for cooling nuclear instrumentation modules via heat conduction. The simplicity of liquid cooled crates and ease of thermal management with conduction cooled modules are described. While this system was developed primarily for the higher power levels expected with Fastbus electronics, it has many general applications.

Makowiecki, D.; Sims, W.; Larsen, R.

1980-11-01T23:59:59.000Z

170

Enhancement of Topological Insulators Surface Conduction  

E-Print Network [OSTI]

Enhancement of Topological Insulators Surface Conduction AEnhancement of Topological Insulators Surface Conduction byTopological Insulator

Yu, Xinxin

2012-01-01T23:59:59.000Z

171

Ion-/proton-conducting apparatus and method  

DOE Patents [OSTI]

A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.

Yates, Matthew (Penfield, NY); Liu, Dongxia (Rochester, NY)

2011-05-17T23:59:59.000Z

172

Mixed oxygen ion/electron-conducting ceramics for oxygen separation  

SciTech Connect (OSTI)

Solid mixed-conducting electrolytes in the series La{sub l-x}A{sub x}Co{sub l-y}Fe{sub y}O{sub 3-{delta}} (A = Sr,Ca,Ba) are potentially useful as passive membranes to separate high purity oxygen from air and as cathodes in fuel cells. All of the compositions studied exhibited very high electrical conductivities. At lower temperatures, conductivities increased with increasing temperature, characterized by activation energies of 0.05 to 0.16 eV that are consistent with a small polaron (localized electronic carrier) conduction mechanism. At higher temperatures, electronic conductivities tended to decrease with increasing temperature, which is attributed to decreased electronic carrier populations associated with lattice oxygen loss. Oxygen ion conductivities were higher than that of yttria stabilized zirconia and increased with the cobalt content and also increased with the extent of divalent A-site substitution. Thermogravimetric studies were conducted to establish the extent of oxygen vacancy formation as a function of temperature, oxygen partial pressure, and composition. These vacancy populations strongly depend on the extent of A-site substitution. Passive oxygen permeation rates were established for each of the compositions as a function of temperature and oxygen partial pressure gradient. For 2.5 mm thick membranes in an oxygen vs nitrogen partial pressure gradient, oxygen fluxes at 900 C ranged from approximately 0.3 sccm/cm{sup 2} for compositions high in iron and with low amounts of strontium A-site substitution to approximately 0.8 sccm/cm{sup 2} for compositions high in cobalt and strontium. A-site substitution with calcium instead of strontium resulted in substantially lower fluxes.

Stevenson, J.W.; Armstrong, B.L.; Armstrong, T.R.; Bates, J.L.; Pederson, L.R.; Weber, W.J.

1995-05-01T23:59:59.000Z

173

Heating System Specification Specification of Heating System  

E-Print Network [OSTI]

Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

Day, Nancy

174

The thermal conductivity of rock under hydrothermal conditions: measurements and applications  

SciTech Connect (OSTI)

The thermal conductivities of most major rock-forming minerals vary with both temperature and confining pressure, leading to substantial changes in the thermal properties of some rocks at the high temperatures characteristic of geothermal systems. In areas with large geothermal gradients, the successful use of near-surface heat flow measurements to predict temperatures at depth depends upon accurate corrections for varying thermal conductivity. Previous measurements of the thermal conductivity of dry rock samples as a function of temperature were inadequate for porous rocks and susceptible to thermal cracking effects in nonporous rocks. We have developed an instrument for measuring the thermal conductivity of water-saturated rocks at temperatures from 20 to 350 °C and confining pressures up to 100 MPa. A transient line-source of heat is applied through a needle probe centered within the rock sample, which in turn is enclosed within a heated pressure vessel with independent controls on pore and confining pressure. Application of this technique to samples of Franciscan graywacke from The Geysers reveals a significant change in thermal conductivity with temperature. At reservoir-equivalent temperatures of 250 °C, the conductivity of the graywacke decreases by approximately 25% relative to the room temperature value. Where heat flow is constant with depth within the caprock overlying the reservoir, this reduction in conductivity with temperature leads to a corresponding increase in the geothermal gradient. Consequently, reservoir temperature are encountered at depths significantly shallower than those predicted by assuming a constant temperature gradient with depth. We have derived general equations for estimating the thermal conductivity of most metamorphic and igneous rocks and some sedimentary rocks at elevated temperature from knowledge of the room temperature thermal conductivity. Application of these equations to geothermal exploration should improve estimates of subsurface temperatures derived from heat flow measurements.

Williams, Colin F.; Sass, John H.

1996-01-24T23:59:59.000Z

175

Continuous production of conducting polymer  

E-Print Network [OSTI]

A device to continuously produce polypyrrole was designed, manufactured, and tested. Polypyrrole is a conducting polymer which has potential artificial muscle applications. The objective of continuous production was to ...

Gaige, Terry A. (Terry Alden), 1981-

2004-01-01T23:59:59.000Z

176

CONDUCTANCE OF NANOSYSTEMS WITH INTERACTION  

E-Print Network [OSTI]

-beam lithography or small metallic grains,[1] semiconductor quantum dots,[2] or a single large molecule of an atomic-size bridge that forms in the break,[3] or even measure the conductance of a single hydrogen

Ramsak, Anton

177

Plasma conductivity at finite coupling  

E-Print Network [OSTI]

By taking into account the full order(\\alpha'^3) type IIB string theory corrections to the supergravity action, we compute the leading finite 't Hooft coupling order(\\lambda^{-3/2}) corrections to the conductivity of strongly-coupled SU(N) {\\cal {N}}=4 supersymmetric Yang-Mills plasma in the large N limit. We find that the conductivity is enhanced by the corrections, in agreement with the trend expected from previous perturbative weak-coupling computations.

Babiker Hassanain; Martin Schvellinger

2011-08-31T23:59:59.000Z

178

Developing a High Thermal Conductivity Fuel with Silicon Carbide Additives  

SciTech Connect (OSTI)

The objective of this research is to increase the thermal conductivity of uranium oxide (UO{sub 2}) without significantly impacting its neutronic properties. The concept is to incorporate another high thermal conductivity material, silicon carbide (SiC), in the form of whiskers or from nanoparticles of SiC and a SiC polymeric precursor into UO{sub 2}. This is expected to form a percolation pathway lattice for conductive heat transfer out of the fuel pellet. The thermal conductivity of SiC would control the overall fuel pellet thermal conductivity. The challenge is to show the effectiveness of a low temperature sintering process, because of a UO{sub 2}-SiC reaction at 1,377°C, a temperature far below the normal sintering temperature. Researchers will study three strategies to overcome the processing difficulties associated with pore clogging and the chemical reaction of SiC and UO{sub 2} at temperatures above 1,300°C:

Ronald baney; James Tulenko

2012-11-20T23:59:59.000Z

179

Single-photon heat conduction in electrical circuits  

E-Print Network [OSTI]

We study photonic heat conduction between two resistors coupled weakly to a single superconducting microwave cavity. At low enough temperature, the dominating part of the heat exchanged between the resistors is transmitted by single-photon excitations of the fundamental mode of the cavity. This manifestation of single-photon heat conduction should be experimentally observable with the current state of the art. Our scheme can possibly be utilized in remote interference-free temperature control of electric components and environment engineering for superconducting qubits coupled to cavities.

Jones, P J; Tan, K Y; Möttönen, M

2011-01-01T23:59:59.000Z

180

Single-photon heat conduction in electrical circuits  

E-Print Network [OSTI]

We study photonic heat conduction between two resistors coupled weakly to a single superconducting microwave cavity. At low enough temperature, the dominating part of the heat exchanged between the resistors is transmitted by single-photon excitations of the fundamental mode of the cavity. This manifestation of single-photon heat conduction should be experimentally observable with the current state of the art. Our scheme can possibly be utilized in remote interference-free temperature control of electric components and environment engineering for superconducting qubits coupled to cavities.

P. J. Jones; J. A. M. Huhtamäki; K. Y. Tan; M. Möttönen

2011-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Mode dependent lattice thermal conductivity of single layer graphene  

SciTech Connect (OSTI)

Molecular dynamics simulation is performed to extract the phonon dispersion and phonon lifetime of single layer graphene. The mode dependent thermal conductivity is calculated from the phonon kinetic theory. The predicted thermal conductivity at room temperature exhibits important quantum effects due to the high Debye temperature of graphene. But the quantum effects are reduced significantly when the simulated temperature is as high as 1000?K. Our calculations show that out-of-plane modes contribute about 41.1% to the total thermal conductivity at room temperature. The relative contribution of out-of-plane modes has a little decrease with the increase of temperature. Contact with substrate can reduce both the total thermal conductivity of graphene and the relative contribution of out-of-plane modes, in agreement with previous experiments and theories. Increasing the coupling strength between graphene and substrate can further reduce the relative contribution of out-of-plane modes. The present investigations also show that the relative contribution of different mode phonons is not sensitive to the grain size of graphene. The obtained phonon relaxation time provides useful insight for understanding the phonon mean free path and the size effects in graphene.

Wei, Zhiyong; Yang, Juekuan; Bi, Kedong; Chen, Yunfei, E-mail: yunfeichen@seu.edu.cn [Jiangsu Key Laboratory for Design and Manufacture of Micro/Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University, Nanjing 210096 (China)

2014-10-21T23:59:59.000Z

182

Microstructure and thermal conductivity of surfactant-free NiO nanostructures  

SciTech Connect (OSTI)

High purity, nanometer sized surfactant-free nickel oxide (NiO) particles were produced in gram scale using a solution combustion method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), gas pycnometry and gas adsorption analysis (BET). The average particle size of the as-synthesized NiO increases significantly with the preheating temperature of the furnace, while the specific surface area decreases. A BET specific surface area of {approx}100 m{sup 2}/g was obtained for NiO nanoparticles with size as small as 3 nm synthesized at 300 Degree-Sign C. The thermal conductivity ({kappa}) of pressed pellets of the synthesized NiO nanoparticles obtained using spark plasma sintering (SPS) and uniaxial hot pressing is drastically decreased ({approx}60%) compared to that of NiO single crystal. This strong reduction in {kappa} with particle size suggests the suitability of the synthesized surfactant-free NiO nanoparticles for use as nanoinclusions when designing high performance materials for waste heat recovery. - Graphical abstract: Highly efficient phonon scattering by surfactant-free NiO nanostructures obtained by solution combustion of a mixture of nickel (II) nitrate hexahydrate (oxidizer) and urea (fuel) at various temperatures. Highlights: Black-Right-Pointing-Pointer Fast synthesis of surfactant-free NiO nanoparticles with controllable size. Black-Right-Pointing-Pointer High specific surface area for NiO nanoparticles with size range from 3 to 7 nm. Black-Right-Pointing-Pointer Strong reduction of the thermal conductivity with decreasing particle size. Black-Right-Pointing-Pointer NiO as nanoinclusions in high performance materials for energy conversion.

Sahoo, Pranati [Laboratory for Emerging Energy and Electronic Materials, Materials Science and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States); Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Misra, Dinesh K. [The Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Salvador, Jim [Chemical Sciences and Materials Systems Laboratory, General Motors R and D Center, Warren, MI 48090 (United States); Makongo, Julien P.A. [Laboratory for Emerging Energy and Electronic Materials, Materials Science and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Chaubey, Girija S. [Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Takas, Nathan J. [Laboratory for Emerging Energy and Electronic Materials, Materials Science and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Wiley, John B. [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States); Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States); Poudeu, Pierre F.P., E-mail: ppoudeup@umich.edu [Laboratory for Emerging Energy and Electronic Materials, Materials Science and Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States); Advanced Materials Research Institute, University of New Orleans, New Orleans, LA 70148 (United States)

2012-06-15T23:59:59.000Z

183

Glass-Like Heat Conduction in Crystalline Semiconductors  

SciTech Connect (OSTI)

The thermal conductivity and structural properties of polycrystalline and single crystal semiconductor type-1 germanium clathrates are reported. Germanium clathrates exhibit thermal conductivities that are typical of amorphous materials. This behavior occurs in spite of their well-defined crystalline structure. The authors employ temperature dependent neutron diffraction data in investigating the displacements of the caged strontium atoms in Sr{sub 8}Ga{sub 16}Ge{sub 30} and their interaction with the polyhedral cages that entrap them. Their aim is to investigate the correlation between the structural properties and the low, glass-like thermal conductivity observed in this compound.

Nolas, G.S.; Cohn, J.L.; Chakoumakos, B.C.; Slack, G.A.

1999-06-13T23:59:59.000Z

184

Optical conductivity of curved graphene  

E-Print Network [OSTI]

We compute the optical conductivity for an out-of-plane deformation in graphene using an approach based on solutions of the Dirac equation in curved space. Different examples of periodic deformations along one direction translates into an enhancement of the optical conductivity peaks in the region of the far and mid infrared frequencies for periodicities $\\sim100\\,$nm. The width and position of the peaks can be changed by dialling the parameters of the deformation profiles. The enhancement of the optical conductivity is due to intraband transitions and the translational invariance breaking in the geometrically deformed background. Furthemore, we derive an analytical solution of the Dirac equation in a curved space for a general deformation along one spatial direction. For this class of geometries, it is shown that curvature induces an extra phase in the electron wave function, which can also be explored to produce interference devices of the Aharonov-Bohm type.

A. J. Chaves; T. Frederico; O. Oliveira; W. de Paula; M. C. Santos

2014-05-01T23:59:59.000Z

185

Electrically Conductive Bacterial Nanowires Produced by Shewanella...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conductive Bacterial Nanowires Produced by Shewanella Oneidensis Strain MR-1 and Other Microorganisms . Electrically Conductive Bacterial Nanowires Produced by Shewanella...

186

High temperature superconductor current leads  

DOE Patents [OSTI]

An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

Hull, J.R.; Poeppel, R.B.

1995-06-20T23:59:59.000Z

187

Temperature Data Evaluation  

SciTech Connect (OSTI)

Groundwater temperature is sensitive to the competing processes of heat flow from below the advective transport of heat by groundwater flow. Because groundwater temperature is sensitive to conductive and advective processes, groundwater temperature may be utilized as a tracer to further constrain the uncertainty of predictions of advective radionuclide transport models constructed for the Nevada Test Site (NTS). Since heat transport, geochemical, and hydrologic models for a given area must all be consistent, uncertainty can be reduced by devaluing the weight of those models that do not match estimated heat flow. The objective of this study was to identify the quantity and quality of available heat flow data at the NTS. One-hundred-forty-five temperature logs from 63 boreholes were examined. Thirteen were found to have temperature profiles suitable for the determination of heat flow values from one or more intervals within the boreholes. If sufficient spatially distributed heat flow values are obtained, a heat transport model coupled to a hydrologic model may be used to reduce the uncertainty of a nonisothermal hydrologic model of the NTS.

Gillespie, David

2003-03-01T23:59:59.000Z

188

Experimental investigation of the thermal conductivity of porous adsorbents. Master's thesis  

SciTech Connect (OSTI)

The thermal conductivities of Praseodymium-Cerium-Oxide (PCO) and Saran Carbon have been experimentally investigated using a steady-state heat transfer technique. The investigated substances are used as adsorbents in adsorption compressors being developed for spaceborne refrigeration applications. The objectives of the investigation were to determine the thermal conductivities and establish their temperature dependency. Data were collected for the PCO over a temperature range of 300 C to 600 C, and O (zero) C to 200 C for the Saran Carbon. The thermal conductivities were found to have a strong temperature dependency. In particular, the results for the PCO showed a temperature dependency indicative of some thermal radiation effects.

Secary, J.J.

1989-01-01T23:59:59.000Z

189

Specific Gravity Urobilinogen  

E-Print Network [OSTI]

Date Lot # Specific Gravity pH Leukocytes Nitrite Protein Glucose Ketone Urobilinogen Bilirubin®(Bilirubin): Lot # Protein (Sulfosalicylic Acid): Lot # Specific Gravity - Saline 0.85 Specific Gravity - H20 RBC AND DATA ENTRY FORMS #12;Date Lot # Specific Gravity pH Leukocytes Nitrite Protein Glucose Ketone

Rodriguez, Carlos

190

Specific Gravity Urobilinogen  

E-Print Network [OSTI]

Date Lot # Specific Gravity pH Leukocytes Nitrite Protein Glucose Ketone Urobilinogen Bilirubin®(Bilirubin): Lot # Protein (Sulfosalicylic Acid): Lot # Specific Gravity - Saline 0.85 Specific Gravity - H20 # Specific Gravity pH Leukocytes Nitrite Protein Glucose Ketone Urobilinogen Bilirubin Blood / Hemoglobin HCG

Rodriguez, Carlos

191

Thin film ion conducting coating  

DOE Patents [OSTI]

Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

1989-01-01T23:59:59.000Z

192

Conducting Your Own Energy Audit  

E-Print Network [OSTI]

Why should you or anyone be interested in conducting a time intensive energy audit. What equipment is needed? When should you get started? Who should do it? The answer to Why is that energy costs are cutting into a company’s profit every minute...

Phillips, J.

2008-01-01T23:59:59.000Z

193

Conducting Polymer Devices for Bioelectronics  

E-Print Network [OSTI]

signals recording. Organic electrochemical transistors (OECTs) represent a step beyond conducting polymer a far superior signal-to-noise- ratio (SNR) compared to electrodes. The high SNR of the OECT recordings and contamination. The use of an organic electrochemical transistor for detection of lactate by integration

Paris-Sud XI, Université de

194

Electrically conductive rigid polyurethane foam  

DOE Patents [OSTI]

A rigid, moldable polyurethane foam comprises about 2 to 10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

Neet, T.E.; Spieker, D.A.

1983-12-08T23:59:59.000Z

195

ETHICAL CONDUCT IN BIOMEDICAL RESEARCH  

E-Print Network [OSTI]

ETHICAL CONDUCT IN BIOMEDICAL RESEARCH: A Handbook for Biomedical Graduate Studies Students and Research Fellows Third Edition BIOMEDICAL GRADUATE STUDIES PROGRAM UNIVERSITY of PENNSYLVANIA #12 that a trainee in biomedical research should be taught to maintain the highest standards of scientific integrity

Plotkin, Joshua B.

196

Molecular Dynamics Simulations of Heat Conduction in Nanostructures: Effect of Heat Bath  

E-Print Network [OSTI]

temperature profile and thermal conductivity in homogeneous materials. Furthermore, the thermal rectification) The low thermal conductivity of SiNWs is of particular interest for thermoelectric application.10 point of view. On the one hand, superior thermal conductivity has been observed in graphene1

Li, Baowen

197

High Temperature Capacitor Development  

SciTech Connect (OSTI)

The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a unique high-temperature electrolyte developed during the course of the program. During this program the feasibility of operating a high voltage hybridized capacitor at 230oC was demonstrated. Capacitor specifications were established in conjunction with potential capacitor users. A method to allow for capacitor operation at both ambient and elevated temperatures was demonstrated. The program was terminated prior to moving into Phase II due to a lack of cost-sharing funds.

John Kosek

2009-06-30T23:59:59.000Z

198

Fourier analysis of conductive heat transfer for glazed roofing materials  

SciTech Connect (OSTI)

For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah [Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Zakaria, Nor Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

2014-07-10T23:59:59.000Z

199

Intrinsically conducting polymers and copolymers containing triazole moieties  

E-Print Network [OSTI]

at such temperatures increase the efficiency of the fuel cell, reduce the overall cost by decreasing the required by Elsevier B.V. Keywords: Proton conduction; Triazole; Fuel cell; Proton exchange membrane 1. Introduction The commercialization of polymer electrolyte membrane fuel cells (PEMFCs) is becoming an increasingly important goal

200

Effective Thermal Conductivity of Graded Nanocomposites with Interfacial Thermal  

E-Print Network [OSTI]

.M. Yin", G. H. Paulino", W.G. Buttlar", and L.Z. Sun'' '^Department of Civil and Environmental the effective thermal conductivity distribution in functionally graded materials (FGMs) considering the Kapitza is developed to derive the averaged heat flux field of the particle phase. Then the temperature gradient can

Paulino, Glaucio H.

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Electrical conductivity in oxygen-deficient phases of transition metal oxides from first-principles calculations.  

SciTech Connect (OSTI)

Density-functional theory calculations, ab-initio molecular dynamics, and the Kubo-Greenwood formula are applied to predict electrical conductivity in Ta2Ox (0x5) as a function of composition, phase, and temperature, where additional focus is given to various oxidation states of the O monovacancy (VOn; n=0,1+,2+). Our calculations of DC conductivity at 300K agree well with experimental measurements taken on Ta2Ox thin films and bulk Ta2O5 powder-sintered pellets, although simulation accuracy can be improved for the most insulating, stoichiometric compositions. Our conductivity calculations and further interrogation of the O-deficient Ta2O5 electronic structure provide further theoretical basis to substantiate VO0 as a donor dopant in Ta2O5 and other metal oxides. Furthermore, this dopant-like behavior appears specific to neutral VO cases in both Ta2O5 and TiO2 and was not observed in other oxidation states. This suggests that reduction and oxidation reactions may effectively act as donor activation and deactivation mechanisms, respectively, for VO0 in transition metal oxides.

Bondi, Robert James; Desjarlais, Michael Paul; Thompson, Aidan Patrick; Brennecka, Geoffrey L.; Marinella, Matthew

2013-09-01T23:59:59.000Z

202

Electrically conductive resinous bond and method of manufacture  

DOE Patents [OSTI]

A method of bonding elements together with a bond of high strength and good electrical conductivity which comprises: applying an unfilled polyimide resin between surfaces of the elements to be bonded, heat treating said unfilled polyimide resin in stages between a temperature range of about 40 to 365/sup 0/C to form a strong adhesive bond between said elements, applying a metal-filled polyimide resin overcoat between said elements so as to provide electrical connection therebetween, and heat treating said metal-filled polyimide resin with substantially the same temperature profile as the unfilled polyimide resin. The present invention is also concerned with an adhesive, resilient, substantially void free bonding combination for providing a high strength, electrically conductive adhesive attachment between electrically conductive elements which comprises a major amount of an unfilled polyimide resin and a minor amount of a metal-filled polyimide resin.

Snowden, T.M. Jr.; Wells, B.J.

1985-01-01T23:59:59.000Z

203

Formed Core Sampler Hydraulic Conductivity Testing  

SciTech Connect (OSTI)

A full-scale formed core sampler was designed and functionally tested for use in the Saltstone Disposal Facility (SDF). Savannah River National Laboratory (SRNL) was requested to compare properties of the formed core samples and core drilled samples taken from adjacent areas in the full-scale sampler. While several physical properties were evaluated, the primary property of interest was hydraulic conductivity. Differences in hydraulic conductivity between the samples from the formed core sampler and those representing the bulk material were noted with respect to the initial handling and storage of the samples. Due to testing conditions, the site port samples were exposed to uncontrolled temperature and humidity conditions prior to testing whereas the formed core samples were kept in sealed containers with minimal exposure to an uncontrolled environment prior to testing. Based on the results of the testing, no significant differences in porosity or density were found between the formed core samples and those representing the bulk material in the test stand.

Miller, D. H.; Reigel, M. M.

2012-09-25T23:59:59.000Z

204

Sampling Artifacts from Conductive Silicone Tubing  

SciTech Connect (OSTI)

We report evidence that carbon impregnated conductive silicone tubing used in aerosol sampling systems can introduce two types of experimental artifacts: 1) silicon tubing dynamically absorbs carbon dioxide gas, requiring greater than 5 minutes to reach equilibrium and 2) silicone tubing emits organic contaminants containing siloxane that adsorb onto particles traveling through it and onto downstream quartz fiber filters. The consequence can be substantial for engine exhaust measurements as both artifacts directly impact calculations of particulate mass-based emission indices. The emission of contaminants from the silicone tubing can result in overestimation of organic particle mass concentrations based on real-time aerosol mass spectrometry and the off-line thermal analysis of quartz filters. The adsorption of siloxane contaminants can affect the surface properties of aerosol particles; we observed a marked reduction in the water-affinity of soot particles passed through conductive silicone tubing. These combined observations suggest that the silicone tubing artifacts may have wide consequence for the aerosol community and should, therefore, be used with caution. Gentle heating, physical and chemical properties of the particle carriers, exposure to solvents, and tubing age may influence siloxane uptake. The amount of contamination is expected to increase as the tubing surface area increases and as the particle surface area increases. The effect is observed at ambient temperature and enhanced by mild heating (<100 oC). Further evaluation is warranted.

Timko, Michael T.; Yu, Zhenhong; Kroll, Jesse; Jayne, John T.; Worsnop, Douglas R.; Miake-Lye, Richard C.; Onasch, Timothy B.; Liscinsky, David; Kirchstetter, Thomas W.; Destaillats, Hugo; Holder, Amara L.; Smith, Jared D.; Wilson, Kevin R.

2009-05-15T23:59:59.000Z

205

Biorheology 44 (2007) 303317 303 The hydraulic conductivity of MatrigelTM  

E-Print Network [OSTI]

Biorheology 44 (2007) 303­317 303 IOS Press The hydraulic conductivity of MatrigelTM William J. Mc the specific hydraulic conductivity (K) of MatrigelTM at 1% and 2% concentrations as a function of perfusion to determining the hydraulic conductivity of these membranes. The major components of MatrigelTM are laminin

Ottino, Julio M.

2007-01-01T23:59:59.000Z

206

Metallic coatings for enhancement of thermal contact conductance  

SciTech Connect (OSTI)

The reliability of standard electronic modules may be improved by decreasing overall module temperature. This may be accomplished by enhancing the thermal contact conductance at the interface between the module frame guide rib and the card rail to which the module is clamped. Some metallic coatings, when applied to the card rail, would deform under load, increasing the contact area and associated conductance. This investigation evaluates the enhancements in thermal conductance afforded by vapor deposited silver and gold coatings. Experimental thermal conductance measurements were made for anodized aluminum 6101-T6 and electroless nickel-plated copper C11000-H03 card materials to the aluminum A356-T61 rail material. Conductance values for the electroless nickel-plated copper junction ranged from 600 to 2800 W/m(exp 2)K and those for the anodized aluminum junction ranged from 25 to 91 W/m(exp 2)K for contact pressures of 0.172-0.862 MPa and mean junction temperatures of 20-100 C. Experimental thermal conductance values of vapor deposited silver- and gold-coated aluminum A356-T61 rail surfaces indicate thermal enhancements of 1.25-2.19 for the electroless nickel-plated copper junctions and 1.79-3.41 for the anodized aluminum junctions. The silver and gold coatings provide significant thermal enhancement; however, these coating-substrate combinations are susceptible to galvanic corrosion under some conditions. 25 refs.

Lambert, M.A.; Fletcher, L.S. (Texas A M Univ., College Station, TX (United States))

1994-04-01T23:59:59.000Z

207

Conduct of operations implementation plan  

SciTech Connect (OSTI)

This implementation plan describes the process and provides information and schedules that are necessary to implement and comply with the Department of Energy (DOE) Order 5480.19, {open_quotes}Conduct of Operations{close_quotes} (CoOp). This plan applies to all Pinellas Plant operations and personnel. Generally, this Plan discusses how DOE Order 5480.19 will be implemented at the Pinellas Plant.

Anderson, C.K.; Hall, R.L.

1991-02-20T23:59:59.000Z

208

Electrically conductive polymer concrete coatings  

DOE Patents [OSTI]

A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

Fontana, J.J.; Elling, D.; Reams, W.

1988-05-26T23:59:59.000Z

209

Electrically conductive polymer concrete coatings  

DOE Patents [OSTI]

A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

Fontana, Jack J. (Shirley, NY); Elling, David (Centereach, NY); Reams, Walter (Shirley, NY)

1990-01-01T23:59:59.000Z

210

Electrically conductive polymer concrete coatings  

DOE Patents [OSTI]

A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

Fontana, J.J.; Elling, D.; Reams, W.

1990-03-13T23:59:59.000Z

211

Ion/proton-conducting apparatus and method  

DOE Patents [OSTI]

A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors. Additional high-density and gas-tight HAP film compositions may be deposited using a two-step deposition method that includes an electrochemical deposition method followed by a hydrothermal deposition method. The two-step method uses a single hydrothermal deposition solution composition. The method may be used to deposit HAP films including but not limited to at least doped HAP films, and more particularly including carbonated HAP films. In addition, the high-density and gas-tight HAP films may be used in proton exchange membrane fuel cells.

Yates, Matthew; Xue, Wei

2014-12-23T23:59:59.000Z

212

Specific Learning Difficulties  

E-Print Network [OSTI]

Dyslexia and other Specific Learning Difficulties (SpLDs) A guide for tutors Enabling Services Supporting you to succeed #12;2 Contents Dyslexia Support ............................................................................................................ 3 Recognising students with dyslexia or other specific learning difficulties................. 4

Anderson, Jim

213

The Effects of Initial Condition of Fracture Surfaces, Acid Spending, and Type on Conductivity of Acid Fracture  

E-Print Network [OSTI]

. Another area of interest is the variation of conductivity along the fracture due to acid spending. We also investigated the contact time, acid system type, and treatment temperature effects on conductivity using San Andres dolomite cores. The results...

Almomen, Ali Mansour

2013-07-24T23:59:59.000Z

214

Method for conducting exothermic reactions  

DOE Patents [OSTI]

A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

Smith, Jr., Lawrence (Bellaire, TX); Hearn, Dennis (Houston, TX); Jones, Jr., Edward M. (Friendswood, TX)

1993-01-01T23:59:59.000Z

215

Method for conducting exothermic reactions  

DOE Patents [OSTI]

A liquid phase process for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

Smith, L. Jr.; Hearn, D.; Jones, E.M. Jr.

1993-01-05T23:59:59.000Z

216

An optimal guarding scheme for thermal conductivity measurement using a guarded cut-bar technique, part 1 experimental study  

SciTech Connect (OSTI)

In the guarded cut-bar technique, a guard surrounding the measured sample and reference (meter) bars is temperature controlled to carefully regulate heat losses from the sample and reference bars. Guarding is typically carried out by matching the temperature profiles between the guard and the test stack of sample and meter bars. Problems arise in matching the profiles, especially when the thermal conductivitiesof the meter bars and of the sample differ, as is usually the case. In a previous numerical study, the applied guarding condition (guard temperature profile) was found to be an important factor in measurement accuracy. Different from the linear-matched or isothermal schemes recommended in literature, the optimal guarding condition is dependent on the system geometry and thermal conductivity ratio of sample to meter bar. To validate the numerical results, an experimental study was performed to investigate the resulting error under different guarding conditions using stainless steel 304 as both the sample and meter bars. The optimal guarding condition was further verified on a certified reference material, pyroceram 9606, and 99.95% pure iron whose thermal conductivities are much smaller and much larger, respectively, than that of the stainless steel meter bars. Additionally, measurements are performed using three different inert gases to show the effect of the insulation effective thermal conductivity on measurement error, revealing low conductivity, argon gas, gives the lowest error sensitivity when deviating from the optimal condition. The result of this study provides a general guideline for the specific measurement method and for methods requiring optimal guarding or insulation.

Changhu Xing [Utah State Univ., Logan, UT (United States). Dept. of Mechanical and Aerospace Engineering; Colby Jensen [Utah State Univ., Logan, UT (United States). Dept. of Mechanical and Aerospace Engineering; Charles Folsom [Utah State Univ., Logan, UT (United States). Dept. of Mechanical and Aerospace Engineering; Heng Ban [Utah State Univ., Logan, UT (United States). Dept. of Mechanical and Aerospace Engineering; Douglas W. Marshall [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

2014-01-01T23:59:59.000Z

217

Design of a variable-conductance vacuum insulation  

SciTech Connect (OSTI)

This paper describes one approach to the design of a variable-conductance vacuum insulation. In this design, the vacuum insulation consists of a permanently sealed, thin sheet steel, evacuated envelope of whatever geometry is required for the application. The steel envelope is supported internally against the atmospheric pressure loads by an array of discrete, low-conductance, ceramic supports, and radiative heat transfer is blocked by layers of thin metal radiation shields. Thermal conductance through this insulation is controlled electronically by changing the temperature of a small metal hydride connected to the vacuum envelope. The hydride reversibly absorbs/desorbs hydrogen to produce a hydrogen pressure typically within the range from less than 10{sup {minus}6} to as much as 1 torr. Design calculations are compared with results from laboratory tests of bench scale samples, and some possible automotive applications for this variable-conductance vacuum insulation are suggested.

Benson, D K; Potter, T F; Tracy, C E

1994-01-01T23:59:59.000Z

218

Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification  

SciTech Connect (OSTI)

The project entitled, ''Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification'', was successfully completed by the Principal Investigator, Dr. S. Lee and his research team in the Center for Advanced Energy Systems and Environmental Control Technologies at Morgan State University. The major results and outcomes were presented in semi-annual progress reports and annual project review meetings/presentations. Specifically, the literature survey including the gasifier temperature measurement, the ultrasonic application in cleaning application, and spray coating process and the gasifier simulator (cold model) testing has been successfully conducted during the first year. The results show that four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. Then the gasifier simulator (hot model) design and the fabrication as well as the systematic tests on hot model were completed to test the significant factors on temperature measurement in the second year. The advanced Industrial analytic methods such as statistics-based experimental design, analysis of variance (ANOVA) and regression methods were applied in the hot model tests. The results show that operational parameters (i.e. air flow rate, water flow rate, fine dust particle amount, ammonia addition) presented significant impact on the temperature measurement inside the gasifier simulator. The experimental design and ANOVA are very efficient way to design and analyze the experiments. The results show that the air flow rate and fine dust particle amount are statistically significant to the temperature measurement. The regression model provided the functional relation between the temperature and these factors with substantial accuracy. In the last year of the project period, the ultrasonic and subsonic cleaning methods and coating materials were tested/applied on the thermocouple cleaning according to the proposed approach. Different frequency, application time and power of the ultrasonic/subsonic output were tested. The results show that the ultrasonic approach is one of the best methods to clean the thermocouple tips during the routine operation of the gasifier. In addition, the real time data acquisition system was also designed and applied in the experiments. This advanced instrumentation provided the efficient and accurate data acquisition for this project. In summary, the accomplishment of the project provided useful information of the ultrasonic cleaning method applied in thermocouple tip cleaning. The temperature measurement could be much improved both in accuracy and duration provided that the proposed approach is widely used in the gasification facilities.

Seong W. Lee

2006-09-30T23:59:59.000Z

219

Temperature and electrical memory of polymer fibers  

SciTech Connect (OSTI)

We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.

Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe [Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, Avenue Schweitzer, 33600 Pessac (France)

2014-05-15T23:59:59.000Z

220

Student ConduCt Student Affairs  

E-Print Network [OSTI]

Code of Student ConduCt 2013-14 Student Affairs #12;Contents Letter from the Dean of Students .........................................................................................ii University Code of Student Conduct Preamble............................................. 1 Section I: Rules of Student Conduct.............................................................. 1 Section

Suzuki, Masatsugu

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Lithium-cation conductivity and crystal structure of lithium diphosphate  

SciTech Connect (OSTI)

The electrical conductivity of lithium diphosphate Li{sub 4}P{sub 2}O{sub 7} has been measured and jump-like increasing of ionic conductivity at 913 K has been found. The crystal structure of Li{sub 4}P{sub 2}O{sub 7} has been refined using high temperature neutron diffraction at 300–1050 K. At 913 K low temperature triclinic form of Li{sub 4}P{sub 2}O{sub 7} transforms into high temperature monoclinic one, space group P2{sub 1}/n, a=8.8261(4) Å, b=5.2028(4) Å, c=13.3119(2) Å, ?=104.372(6)°. The migration maps of Li{sup +} cations based on experimental data implemented into program package TOPOS have been explored. It was found that lithium cations in both low- and high temperature forms of Li{sub 4}P{sub 2}O{sub 7} migrate in three dimensions. Cross sections of the migrations channels extend as the temperature rises, but at the phase transition point have a sharp growth showing a strong “crystal structure – ion conductivity” correlation. -- Graphical abstract: Crystal structure of Li{sub 4}P{sub 2}O{sub 7} at 950 K. Red balls represent oxygen atoms; black lines show Li{sup +} ion migration channels in the layers perpendicular to [001] direction. Highlights: • Structure of Li{sub 4}P{sub 2}O{sub 7} has been refined using high temperature neutron diffraction. • At 913 K triclinic form of Li{sub 4}P{sub 2}O{sub 7} transforms into high temperature monoclinic one. • The migration maps of Li{sup +} implemented into program package TOPOS have been explored. • Cross sections of the migrations channels at the phase transition have a sharp growth.

Voronin, V.I., E-mail: voronin@imp.uran.ru [Institute of Metal Physics Urals Branch RAS, S.Kovalevskoy Street 18, 620041 Ekaterinburg (Russian Federation); Sherstobitova, E.A. [Institute of Metal Physics Urals Branch RAS, S.Kovalevskoy Street 18, 620041 Ekaterinburg (Russian Federation); Blatov, V.A., E-mail: blatov@samsu.ru [Samara Center for Theoretical Materials Science (SCTMS), Samara State University, Ac.Pavlov Street 1, 443011 Samara (Russian Federation); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Shekhtman, G.Sh., E-mail: shekhtman@ihte.uran.ru [Institute of High Temperature Electrochemistry Urals Branch RAS, Akademicheskaya 20, 620990 Ekaterinburg (Russian Federation)

2014-03-15T23:59:59.000Z

222

EVALUATION OF ZERO-POWER, ELEVATED-TEMPERATURE MEASUREMENTS AT JAPAN’S HIGH TEMPERATURE ENGINEERING TEST REACTOR  

SciTech Connect (OSTI)

The High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Agency (JAEA) is a 30 MWth, graphite-moderated, helium-cooled reactor that was constructed with the objectives to establish and upgrade the technological basis for advanced high-temperature gas-cooled reactors (HTGRs) as well as to conduct various irradiation tests for innovative high-temperature research. The core size of the HTTR represents about one-half of that of future HTGRs, and the high excess reactivity of the HTTR, necessary for compensation of temperature, xenon, and burnup effects during power operations, is similar to that of future HTGRs. During the start-up core physics tests of the HTTR, various annular cores were formed to provide experimental data for verification of design codes for future HTGRs. The experimental benchmark performed and currently evaluated in this report pertains to the data available for two zero-power, warm-critical measurements with the fully-loaded HTTR core. Six isothermal temperature coefficients for the fully-loaded core from approximately 340 to 740 K have also been evaluated. These experiments were performed as part of the power-up tests (References 1 and 2). Evaluation of the start-up core physics tests specific to the fully-loaded core (HTTR-GCR-RESR-001) and annular start-up core loadings (HTTR-GCR-RESR-002) have been previously evaluated.

John D. Bess; Nozomu Fujimoto; James W. Sterbentz; Luka Snoj; Atsushi Zukeran

2011-03-01T23:59:59.000Z

223

Carbon promoted water electrolysis to produce hydrogen at room temperature.  

E-Print Network [OSTI]

??The objective of the work was to conduct water electrolysis at room temperature with reduced energy costs for hydrogen production. The electrochemical gasification of carbons… (more)

Ranganathan, Sukanya.

2007-01-01T23:59:59.000Z

224

Process for fabricating composite material having high thermal conductivity  

DOE Patents [OSTI]

A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

Colella, Nicholas J. (Livermore, CA); Davidson, Howard L. (San Carlos, CA); Kerns, John A. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA)

2001-01-01T23:59:59.000Z

225

Water-soluble conductive polymers  

DOE Patents [OSTI]

Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

Aldissi, M.

1988-02-12T23:59:59.000Z

226

Water-soluble conductive polymers  

DOE Patents [OSTI]

Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

Aldissi, Mahmoud (Sante Fe, NM)

1989-01-01T23:59:59.000Z

227

Water-soluble conductive polymers  

DOE Patents [OSTI]

Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

Aldissi, Mahmoud (Sante Fe, NM)

1990-01-01T23:59:59.000Z

228

Advances in inherently conducting polymers  

SciTech Connect (OSTI)

The discovery of polyacetylene as the prototype material led to extensive research on its synythesis and characterization. The techniques that emerged as the most important and promising ones are those that dealt with molecular orientation and that resulted in conductivities almost as high as that of copper. The study of dozens of other materials followed. Interest in conducting polymers stems from their nonclassical optical and electronic properties as well as their potential technological applications. However, some of the factors currently limiting their use are the lack of long-term stability and the need to develop conventional low-cost techniques for easy processing. Therefore, research was extended toward solving these problems, and progress has been recently made in that direction. The synthesis of new materials such as stable and easily processable alkylthiophenes, water-soluble polymers, and multicomponent systems, including copolymers and composites, constitutes an important step forward in the area of synthetic metals. However, a full understanding of materials chemistry and properties requires more work in the years to come. Although, few small-scale applications have proven to be successful, long-term stability and applicability tests are needed before their commercial use becomes reality.

Aldissi, M.

1987-09-01T23:59:59.000Z

229

Thermal Conductivity of Polycrystalline Semiconductors and Ceramics  

E-Print Network [OSTI]

semiconductors and ceramics with desired thermalthermal conductivity of several polycrystalline semiconductors and ceramics,Thermal Conductivity of Polycrystalline Semiconductors and Ceramics

Wang, Zhaojie

2012-01-01T23:59:59.000Z

230

Continuous Processing of High Thermal Conductivity Polyethylene...  

Broader source: Energy.gov (indexed) [DOE]

Processing of High Thermal Conductivity Polyethylene Fibers and Sheets Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets Massachusetts Institute of...

231

Precise Application of Transparent Conductive Oxide Coatings...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Precise Application of Transparent Conductive Oxide Coatings for Flat Panel Displays and Photovoltaic Cells Technology available for licensing: New transparent conducting oxide...

232

A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives  

SciTech Connect (OSTI)

The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

None, None

2012-01-31T23:59:59.000Z

233

Development Of 2-Meter Soil Temperature Probes And Results Of...  

Open Energy Info (EERE)

Meter Soil Temperature Probes And Results Of Temperature Survey Conducted At Desert Peak, Nevada, Usa Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

234

Beamline Temperatures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground8.0.1 PrintTemperatures Energy: 3.0000 GeV

235

New Polymeric Proton Conductors for Water-free and High-temperature...  

Broader source: Energy.gov (indexed) [DOE]

for water-free and high temperature operation. - Measure conductivity, mechanicalthermal properties of Nafion and Polyether polyelectrolytes doped with imidazoles....

236

Specific Heat of Disordered 3He  

SciTech Connect (OSTI)

Porous aerogel is a source of elastic scattering in superfluid 3He and modifies the properties of the superfluid, suppressing the transition temperature and order parameter. The specific heat jumps for the B-phase of superfluid 3He in aerogel have been measured as a function of pressure and interpreted using the homogeneous and inhomogeneous isotropic scattering models. The specific heat jumps for others p-wave states are estimated for comparison.

Choi, H.; Davis, J. P.; Pollanen, J.; Halperin, W. P. [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Mulders, N. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

2006-09-07T23:59:59.000Z

237

Fiber/Matrix Interfacial Thermal Conductance Effect on the Thermal Conductivity of SiC/SiC Composites  

SciTech Connect (OSTI)

SiC/SiC composites used in fusion reactor applications are subjected to high heat fluxes and require knowledge and tailoring of their in-service thermal conductivity. Accurately predicting the thermal conductivity of SiC/SiC composites as a function of temperature will guide the design of these materials for their intended use, which will eventually include the effects of 14-MeV neutron irradiations. This paper applies an Eshelby-Mori-Tanaka approach (EMTA) to compute the thermal conductivity of unirradiated SiC/SiC composites. The homogenization procedure includes three steps. In the first step EMTA computes the homogenized thermal conductivity of the unidirectional (UD) SiC fiber embraced by its coating layer. The second step computes the thermal conductivity of the UD composite formed by the equivalent SiC fibers embedded in a SiC matrix, and finally the thermal conductivity of the as-formed SiC/SiC composite is obtained by averaging the solution for the UD composite over all possible fiber orientations using the second-order fiber orientation tensor. The EMTA predictions for the transverse thermal conductivity of several types of SiC/SiC composites with different fiber types and interfaces are compared to the predicted and experimental results by Youngblood et al.

Nguyen, Ba Nghiep; Henager, Charles H.

2013-04-20T23:59:59.000Z

238

Hydraulic conductivity of shaly sands  

SciTech Connect (OSTI)

The effects of clays on the hydraulic conductivity of a sandstone are analyzed by considering a simple clay coating structure for the sand grains. In the model, silicate insulating nuclei are uniformly surrounded by charged clay particles. The total charge on the clays is compensated by a counterion density Q{sub v}. Assuming a capillary flow regime inside this granular model a Kozeny-Carman type equation has been derived, expressing its intrinsic permeability k in terms of a porosity-tortuosity factor {phi}{sup (m{minus}0.5)} and of the parameter Q{sub v}. The power-law derived expression shows that k decreases with the amount of clay, not only because a high Q{sub v} implies a narrowing of the pore channels, but also because it modifies the hydraulic tortuosity of the medium. This new equation has been statistically tested with extensive petrophysical laboratory data for different types of shaly sandstones.

Lima, O.A.L. de [PPPG/Federal Univ. of Bahia, Salvador Bahia (Brazil)

1994-12-31T23:59:59.000Z

239

STUDENT CONDUCT CODE REVIEW/DISCUSSION  

E-Print Network [OSTI]

STUDENT CONDUCT CODE REVISION REVIEW/DISCUSSION Student Conduct Code Revision Workgroup #12;Agenda Introductions/Purpose History of the Student Conduct Code Revision Workgroup Highlights of the Draft Revision Introduction: Principles Promoting Student Responsibility Jurisdiction Conduct in Violation of Community

Fainman, Yeshaiahu

240

Heat conductivity in the beta-FPU lattice. Solitons and breathers as energy carriers  

E-Print Network [OSTI]

This paper consists of two parts. The first part proposes a new methodological framework within which the heat conductivity in 1D lattices can be studied. The total process of heat conductivity is decomposed into two contributions where the first one is the equilibrium process at equal temperatures T of both lattice ends and the second -- non-equilibrium process with the temperature \\Delta T of one end and zero temperature of the other. The heat conductivity in the limit \\Delta T \\to 0 is reduced to the heat conductivity of harmonic lattice. A threshold temperature T_{thr} scales T_{thr}(N) \\sim N^{-3} with the lattice size N. Some unusual properties of heat conductivity can be exhibited on nanoscales at low temperatures. The thermodynamics of the \\beta-FPU lattice can be adequately approximated by the harmonic lattice. The second part testifies in the favor of the soliton and breather contribution to the heat conductivity in contrast to [N. Li, B. Li, S. Flach, PRL 105 (2010) 054102]. In the continuum limit the \\beta-FPU lattice is reduced to the modified Korteweg - de Vries equation with soliton and breather solutions. Numerical simulations demonstrate their high stability. New method for the visualization of moving solitons and breathers is suggested. An accurate expression for the dependence of the sound velocity on temperature is also obtained. Our results support the conjecture on the solitons and breathers contribution to the heat conductivity.

T. Yu. Astakhova; V. N. Likhachev; G. A. Vinogradov

2011-03-18T23:59:59.000Z

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

High temperature structural insulating material  

DOE Patents [OSTI]

A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

Chen, W.Y.

1984-07-27T23:59:59.000Z

242

High temperature structural insulating material  

DOE Patents [OSTI]

A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

Chen, Wayne Y. (Munster, IN)

1987-01-01T23:59:59.000Z

243

Lattice thermal conductivity of filled skutterudites: An anharmonicity perspective  

SciTech Connect (OSTI)

We report a phenomenological model to calculate the high-temperature lattice thermal conductivity of filled skutterudite antimonides. The model needs no phonon resonant scattering terms. Instead, we assume that umklapp processes dominate the high-temperature phonon scattering. In order to represent the anharmonicity introduced by the filling atom, we introduce a Gaussian term into the relaxation time of the umklapp process. The developed model agrees remarkably well with the experimental results of RE{sub f}Co{sub 4}Sb{sub 12} and RE{sub f}Fe{sub 4}Sb{sub 12} (RE?=?Yb, Ba, and Ca) alloys. To further test the validity of our model, we calculate the lattice thermal conductivity of nanostructured or multi-filled skutterudites. The calculation results are also in good agreement with experiment, increasing our confidence in the developed anharmonicity model.

Geng, Huiyuan, E-mail: genghuiyuan@hit.edu.cn; Meng, Xianfu; Zhang, Hao; Zhang, Jian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China)

2014-10-28T23:59:59.000Z

244

Enhanced Semiconductor Nanocrystal Conductance via Solution Grown Contacts  

SciTech Connect (OSTI)

We report a 100,000-fold increase in the conductance of individual CdSe nanorods when they are electrically contacted via direct solution phase growth of Au tips on the nanorod ends. Ensemble UV-Vis and X-Ray photoelectron spectroscopy indicate this enhancement does not result from alloying of the nanorod. Rather, low temperature tunneling and high temperature (250-400 K) thermionic emission across the junction at the Au contact reveal a 75percent lower interface barrier to conduction compared to a control sample. We correlate this barrier lowering with the electronic structure at the Au-CdSe interface. Our results emphasize the importance of nanocrystal surface structure for robust device performance and the advantage of this contact method.

Sheldon, Matthew T.; Trudeau, Paul-Emile; Mokari, Taleb; Wang, Lin-Wang; Alivisatos, A. Paul

2009-08-19T23:59:59.000Z

245

Ultrasonic hydrometer. [Specific gravity of electrolyte  

DOE Patents [OSTI]

The disclosed ultrasonic hydrometer determines the specific gravity (density) of the electrolyte of a wet battery, such as a lead-acid battery. The hydrometer utilizes a transducer that when excited emits an ultrasonic impulse that traverses through the electrolyte back and forth between spaced sonic surfaces. The transducer detects the returning impulse, and means measures the time t between the initial and returning impulses. Considering the distance d between the spaced sonic surfaces and the measured time t, the sonic velocity V is calculated with the equation V = 2d/t. The hydrometer also utilizes a thermocouple to measure the electrolyte temperature. A hydrometer database correlates three variable parameters including sonic velocity in and temperature and specific gravity of the electrolyte, for temperature values between 0 and 40/sup 0/C and for specific gravity values between 1.05 and 1.30. Upon knowing two parameters (the calculated sonic velocity and the measured temperature), the third parameter (specific gravity) can be uniquely found in the database. The hydrometer utilizes a microprocessor for data storage and manipulation.

Swoboda, C.A.

1982-03-09T23:59:59.000Z

246

J. Geomag. Geoelectr., 45, 707728, 1993 Constraints on Mantle Electrical Conductivity  

E-Print Network [OSTI]

and Laboratory Measurements Steven Constable Institute of Geophysics and Planetary Physics, La Jolla CA92093 electrical conductivity to temperature in mantle materials 707 #12;708 S. Constable supports further analysis

Constable, Steve

247

High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction  

DOE Patents [OSTI]

A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.

Verhoeven, John D. (Ames, IA); Spitzig, William A. (Ames, IA); Gibson, Edwin D. (Ames, IA); Anderson, Iver E. (Ames, IA)

1991-08-27T23:59:59.000Z

248

Method for producing high carrier concentration p-Type transparent conducting oxides  

DOE Patents [OSTI]

A method for producing transparent p-type conducting oxide films without co-doping plasma enhancement or high temperature comprising: a) introducing a dialkyl metal at ambient temperature and a saturated pressure in a carrier gas into a low pressure deposition chamber, and b) introducing NO alone or with an oxidizer into the chamber under an environment sufficient to produce a metal-rich condition to enable NO decomposition and atomic nitrogen incorporation into the formed transparent metal conducting oxide.

Li, Xiaonan (Evergreen, CO); Yan, Yanfa (Littleton, CO); Coutts, Timothy J. (Golden, CO); Gessert, Timothy A. (Conifer, CO); Dehart, Clay M. (Westminster, CO)

2009-04-14T23:59:59.000Z

249

VALIDATION OF A THERMAL CONDUCTIVITY MEASUREMENT SYSTEM FOR FUEL COMPACTS  

SciTech Connect (OSTI)

A high temperature guarded-comparative-longitudinal heat flow measurement system has been built to measure the thermal conductivity of a composite nuclear fuel compact. It is a steady-state measurement device designed to operate over a temperature range of 300 K to 1200 K. No existing apparatus is currently available for obtaining the thermal conductivity of the composite fuel in a non-destructive manner due to the compact’s unique geometry and composite nature. The current system design has been adapted from ASTM E 1225. As a way to simplify the design and operation of the system, it uses a unique radiative heat sink to conduct heat away from the sample column. A finite element analysis was performed on the measurement system to analyze the associated error for various operating conditions. Optimal operational conditions have been discovered through this analysis and results are presented. Several materials have been measured by the system and results are presented for stainless steel 304, inconel 625, and 99.95% pure iron covering a range of thermal conductivities of 10 W/m*K to 70 W/m*K. A comparison of the results has been made to data from existing literature.

Jeff Phillips; Colby Jensen; Changhu Xing; Heng Ban

2011-03-01T23:59:59.000Z

250

Extraction Utility Design Specification  

Energy Savers [EERE]

Extraction Utility Design Specification January 11, 2011 Document Version 1.9 1 Revision History Date Version Section and Titles Author Summary of Change January 15, 2010 1.0 All...

251

Specific light in sculpture  

E-Print Network [OSTI]

Specific light is defined as light from artificial or altered natural sources. The use and manipulation of light in three dimensional sculptural work is discussed in an historic and contemporary context. The author's work ...

Powell, John William

1989-01-01T23:59:59.000Z

252

Redesigning specificity in miniproteins  

E-Print Network [OSTI]

This work focuses on designing specific miniprotein interactions using computational models and then testing these designs with experiments. Miniproteins are small, autonomously-folding proteins that are excellent for ...

Taylor, Christina Marie

2006-01-01T23:59:59.000Z

253

New equation calculates thermal conductivities of C[sub 1]-C[sub 4] gases  

SciTech Connect (OSTI)

In the design of heat exchangers, heat-transfer coefficients are commonly calculated for individual items. These calculations require knowledge of the thermal conductivities of the species involved. The calculation require knowledge of the thermal conductivities of the species involved. The calculation of the overall heat-transfer coefficient for a heat exchanger also requires thermal conductivity data for the individual species. In fact, thermal conductivity is the fundamental property involved in heat transfer. Ordinarily, thermal conductivities are either measured experimentally or estimated using complex correlations and models. Engineers must search existing literature for the values needed. Here, a compilation of thermal conductivity data for gases is presented for a wide temperature range. Using these data with the accompanying equation will enable engineers to quickly determine values at the desired temperatures. The results are provided in an easy-to-use tabular format, which is especially helpful for rapid calculations using a personal computer or hand-held calculator.

Yaws, C.L.; Lin, X.; Bu, L.; Nijhawan, S. (Lamar Univ., Beaumont, TX (United States))

1994-04-18T23:59:59.000Z

254

Rural Labor Manual: Guide to the Conduct of Specific Community Educational Programs.  

E-Print Network [OSTI]

worked 15 hours or more as unpaid workers in an enterprise operated by a member of the family; or 2. Did not work but had jobs or businesses from which they were temporar il absent because of illness, bad weather, vacation, labor management disputes... labor require detailed infotmation regarding an employer I s hiring practices, training programs, job turnover, occupational requirements, entry level wage and existing. and/or proj ected .vacancies. In many cases, because of the large number of local...

Ruesink, David C.

1980-01-01T23:59:59.000Z

255

Harmonization of Biodiesel Specifications  

SciTech Connect (OSTI)

Worldwide biodiesel production has grown dramatically over the last several years. Biodiesel standards vary across countries and regions, and there is a call for harmonization. For harmonization to become a reality, standards have to be adapted to cover all feedstocks. Additionally, all feedstocks cannot meet all specifications, so harmonization will require standards to either tighten or relax. For harmonization to succeed, the biodiesel market must be expanded with the alignment of test methods and specification limits, not contracted.

Alleman, T. L.

2008-02-01T23:59:59.000Z

256

Conduct of operations: The foundation of safety -- An overview  

SciTech Connect (OSTI)

This paper discusses issues and approaches dealing with conceptualizing, implementing, and maintaining configuration control commensurate with the conduct of operations approach defined by DOE ORDER 5480.19. Specific topics reviewed will include key elements of assessments to determine the status quo such as assessment criteria, assessment personnel, and assessment scope; administrative programs to maintain the status quo such as organizational definition, responsibilities, interfaces, and priorities; oversight to determine control effectiveness via compliance and performance assessment.

Willett, D.J.; Hertel, N.E.

1992-05-01T23:59:59.000Z

257

Summary Weusedthreemethodstomeasureboundarylayer conductance to heat transfer (gbH) and water vapor transfer  

E-Print Network [OSTI]

Summary Weusedthreemethodstomeasureboundarylayer conductance to heat transfer (gbH) and water vapor of transpiration). The boundary layer conductance to heat transfer is small enough that leaf temperature can become diffusion, the boundary layer around a leaf also provides resistance to the transfer of heat between a leaf

Martin, Timothy

258

Electrical conductivity of minerals and rocks Shun-ichiro Karato1  

E-Print Network [OSTI]

1 Electrical conductivity of minerals and rocks Shun-ichiro Karato1 and Duojun Wang1,2 1 : Yale-Blackwell #12;2 SUMMARY Electrical conductivity of most minerals is sensitive to hydrogen (water) content, temperature, major element chemistry and oxygen fugacity. The influence of these parameters on electrical

259

Conductance modulation in topological insulator Bi{sub 2}Se{sub 3} thin films with ionic liquid gating  

SciTech Connect (OSTI)

A Bi{sub 2}Se{sub 3} topological insulator field effect transistor is investigated by using ionic liquid as an electric double layer gating material, leading to a conductance modulation of 365% at room temperature. We discuss the role of charged impurities on the transport properties. The conductance modulation with gate bias is due to a change in the carrier concentration, whereas the temperature dependent conductance change is originated from a change in mobility. Large conductance modulation at room temperature along with the transparent optical properties makes topological insulators as an interesting (opto)electronic material.

Son, Jaesung; Banerjee, Karan; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore)] [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576 (Singapore); Brahlek, Matthew; Koirala, Nikesh; Oh, Seongshik [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, New Jersey 08854 (United States)] [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, New Jersey 08854 (United States); Lee, Seoung-Ki [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of) [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Ahn, Jong-Hyun [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)] [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

2013-11-18T23:59:59.000Z

260

Design Specification | Department of Energy  

Energy Savers [EERE]

Design Specification Design Specification PARS II Extraction Utility Design Spec v8020130510.pdf More Documents & Publications Design Specifications for the PARS II Extraction...

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Reduced Thermal Conductivity of Compacted Silicon Nanowires  

E-Print Network [OSTI]

Thermal-Barrier-Coating Applications,” Journa of American Ceramicthermal conductivity materials are typically found among ceramicsThermal Conductivity of Porous Materials: Application to Thick Barrier Coatings,” Journal of the European Ceramic

Yuen, Taylor S.

262

High Temperatures & Electricity Demand  

E-Print Network [OSTI]

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

263

CHARACTERIZATION OF ELEVATED TEMPERATURE PROPERTIES OF HEAT EXCHANGER AND STEAM GENERATOR ALLOYS  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant project is considering Alloy 800H and Alloy 617 for steam generator and intermediate heat exchangers. It is envisioned that a steam generator would operate with reactor outlet temperatures from 750 to 800 C, while an intermediate heat exchanger for primary to secondary helium would operate up to an outlet temperature of 950 C. Although both alloys are of interest due in part to their technical maturity, a number of specific properties require further characterization for design of nuclear components. Strain rate sensitivity of both alloys has been characterized and is found to be significant above 600 C. Both alloys also exhibit dynamic strain aging, characterized by serrated flow, over a wide range of temperatures and strain rates. High temperature tensile testing of Alloy 617 has been conducted over a range of temperatures. Dynamic strain aging is a concern for these materials since it is observed to result in reduced ductility for many solid solution alloys. Creep, fatigue, and creep-fatigue properties of Alloy 617 have been measured as well, with the goal of determining the influence of the temperature, strain rate and atmosphere on the creep fatigue life of Alloy 617. Elevated temperature properties and implications for codification of the alloys will be described.

J.K. Wright; L.J. Carroll; C.J. Cabet; T. Lillo; J.K. Benz; J.A. Simpson; A. Chapman; R.N. Wright

2012-10-01T23:59:59.000Z

264

Analysis of the Temporal Evolution of Thermal Conductivity in Alumina-Water Nanofluid  

E-Print Network [OSTI]

both the United States Department of Energy and Texas Advanced Research Program. vi NOMENCLATURE D Thermal diffusivity Ei Exponential integral k Thermal conductivity k n Nanofluid thermal conductivity k b Base fluid thermal...?s thermal conductivity (k) and thermal diffusivity (D), are related to the temperature difference null?nullnull between the heat source and surrounding medium at a distance (r) from the source of a quantity of heat (Q) a certain time (t) after the heat...

Fortenberry, Stephen

2009-09-30T23:59:59.000Z

265

The measurement of thermal conductivity of jelly from 25 to 95 C  

E-Print Network [OSTI]

line heat source method, the thermal con- ductivities of a jelly model (unflavored jelly), sugar solution and some commercial jelly products were measured. The studies were conducted in the temperature range from 25 to 95 'C. Thermal conductivity... were developed from experimental data for unflavored jelly and sugar solutions to predict the thermal conductivity of commercially available fruit jellies at various moisture contents. The predicted values obtained were statistically compared...

Chen, Yih-Rong

1985-01-01T23:59:59.000Z

266

Conducting Polymer Nanotubes toward Supercapacitor Ran Liu and Sang Bok Lee*  

E-Print Network [OSTI]

scan rate, nanotube supercapacitors displayed high specific power energy without sacrificing muchConducting Polymer Nanotubes toward Supercapacitor Ran Liu and Sang Bok Lee* Capacitive properties were investigated using PEDOT [Poly(3,4-ethylenedioxythiophene)] nanotubes and nanowires arrays

Rubloff, Gary W.

267

Organic conductive films for semiconductor electrodes  

DOE Patents [OSTI]

According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor over-coated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

Frank, A.J.

1984-01-01T23:59:59.000Z

268

The workshop on conductive polymers: Final report  

SciTech Connect (OSTI)

Reports are made by groups on: polyacetylene, polyphenylene, polyaniline, and related systems; molecular, crystallographic, and defect structures in conducting polymers; heterocyclic polymers; synthesis of new and improved conducting polymers; future applications possibilities for conducting polymers; and challenges for improved understanding of properties. (DLC)

Not Available

1985-01-01T23:59:59.000Z

269

PHYSICAL REVIEW B 83, 094521 (2011) Thermal conductivity in the mixed state of a superconductor at low magnetic fields  

E-Print Network [OSTI]

15 March 2011) We evaluate accurate low-field/low-temperature asymptotics of the thermal conductivityPHYSICAL REVIEW B 83, 094521 (2011) Thermal conductivity in the mixed state of a superconductor conductivity at low fields. DOI: 10.1103/PhysRevB.83.094521 PACS number(s): 74.25.fc, 74.25.Uv I. INTRODUCTION

Alexei, Koshelev

270

Suppression of thermal conductivity in InxGa12xN alloys by nanometer-scale disorder  

E-Print Network [OSTI]

power requires low lattice thermal conductivity while maintaining high mobility of the charge carriers. The binary InN and GaN materials have high ther- mal conductivity materials9­14 (the room-temperature thermalSuppression of thermal conductivity in InxGa12xN alloys by nanometer-scale disorder T. Tong,1,a) D

Wu, Junqiao

271

Mold, flow, and economic considerations in high temperature precision casting  

E-Print Network [OSTI]

Casting high temperature alloys that solidify through a noticeable two phase region, specifically platinum-ruthenium alloys, is a particularly challenging task due to their high melting temperature and this necessitates ...

Humbert, Matthew S

2013-01-01T23:59:59.000Z

272

Binary inorganic salt mixtures as high conductivity liquid electrolytes for .100 uC fuel cells{  

E-Print Network [OSTI]

Binary inorganic salt mixtures as high conductivity liquid electrolytes for .100 uC fuel cells cations (e.g. ammonium) as electrolytes in fuel cells operating in the temperature range 100­200 uC, where cell operating with optimized electrodes in the same temperature range, while open circuit voltages

Angell, C. Austen

273

Ultrahigh Specific Impulse Nuclear Thermal Propulsion  

SciTech Connect (OSTI)

Research on nuclear thermal propulsion systems (NTP) have been in forefront of the space nuclear power and propulsion due to their design simplicity and their promise for providing very high thrust at reasonably high specific impulse. During NERVA-ROVER program in late 1950's till early 1970's, the United States developed and ground tested about 18 NTP systems without ever deploying them into space. The NERVA-ROVER program included development and testing of NTP systems with very high thrust (~250,000 lbf) and relatively high specific impulse (~850 s). High thrust to weight ratio in NTP systems is an indicator of high acceleration that could be achieved with these systems. The specific impulse in the lowest mass propellant, hydrogen, is a function of square root of absolute temperature in the NTP thrust chamber. Therefor optimizing design performance of NTP systems would require achieving the highest possible hydrogen temperature at reasonably high thrust to weight ratio. High hydrogen exit temperature produces high specific impulse that is a diret measure of propellant usage efficiency.

Anne Charmeau; Brandon Cunningham; Samim Anghaie

2009-02-09T23:59:59.000Z

274

Comparison of a One-Dimensional Model of a High-Temperature Solid-Oxide Electrolysis Stack with CFD and Experimental Results  

SciTech Connect (OSTI)

A one-dimensional model has been developed to predict the thermal and electrochemical behavior of a high-temperature steam electrolysis stack. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet gas flow rates, current density, cell active area, and external heat loss or gain. The model includes a temperature-dependent area-specific resistance (ASR) that accounts for the significant increase in electrolyte ionic conductivity that occurs with increasing temperature. Model predictions are shown to compare favorably with results obtained from a fully 3-D computational fluid dynamics model. The one-dimensional model was also employed to demonstrate the expected trends in electrolyzer performance over a range of operating conditions including isothermal, adiabatic, constant steam utilization, constant flow rate, and the effects of operating temperature.

J. E. O'Brien; C. M. Stoots; G. L. Hawkes

2005-11-01T23:59:59.000Z

275

Baseline Concept Description of a Small Modular High Temperature Reactor  

SciTech Connect (OSTI)

The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.

Hans Gougar

2014-05-01T23:59:59.000Z

276

THE MULTI-USE STEINEL VARIABLE TEMPERATURE  

E-Print Network [OSTI]

THE MULTI-USE STEINEL VARIABLE TEMPERATURE ELECTRONICALLY CONTROLLED HEAT GUNTEMPERATURE RANGE 212 at the outlet nozzle will bum flesh. Do not tum on Heat Gun with hand in front of nozzle. DO NOT USE NEAR equipment Specifications Temperature Variable from 212" F to 1100° F Watts 1500W Weight 1.5 lbs. Supply

Kleinfeld, David

277

THE MULTI-USE STEINEL VARIABLE TEMPERATURE  

E-Print Network [OSTI]

THE MULTI-USE STEINEL VARIABLE TEMPERATURE ELECTRONICALLY CONTROLLED HEAT GUNTEMPERATURE RANGE 212 at the outlet nozzle will bum flesh. Do not tum on Heat Gun with hand in front of nozzle. DO NOT USE NEAR equipment Specifications Temperature Variable from 212° F to 1100° F Watts 1500W Weight 1.5 lbs. Supply

Kleinfeld, David

278

Improvements in Shallow (Two-Meter) Temperature Measurements...  

Open Energy Info (EERE)

to study influences on shallow temperature measurements related to geological and solar radiation factors specifically, slope orientation, ground composition and albedo. In...

279

High temperature Seebeck coefficient metrology  

SciTech Connect (OSTI)

We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectric measurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

Martin, J. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Tritt, T. [Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634 (United States); Uher, C. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

2010-12-15T23:59:59.000Z

280

High temperature Seebeck coefficient metrology  

SciTech Connect (OSTI)

We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential propertymeasurement for evaluating the potential performance of novel thermoelectricmaterials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectricmeasurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

Martin, J.; Tritt, T.; Uher, Ctirad

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Control of differential strain during heating and cooling of mixed conducting metal oxide membranes  

DOE Patents [OSTI]

Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side and a permeate side, which method comprises controlling the differential strain between the oxidant feed side and the permeate side by varying either or both of the oxygen partial pressure and the total gas pressure on either or both of the oxidant feed side and the permeate side of the membrane while changing the temperature of the membrane from a first temperature to a second temperature.

Carolan, Michael Francis (Allentown, PA)

2007-12-25T23:59:59.000Z

282

Universal conductance fluctuations in electrolyte-gated SrTiO{sub 3} nanostructures  

SciTech Connect (OSTI)

We report low-temperature magnetoconductance measurements of a patterned two-dimensional electron system at the surface of strontium titanate, gated by an ionic liquid electrolyte. We observe universal conductance fluctuations, a signature of phase-coherent transport in mesoscopic devices. From the universal conductance fluctuations, we extract an electron dephasing rate linear in temperature, characteristic of electron-electron interaction in a disordered conductor. The dephasing rate has a temperature-independent offset, which could possibly be explained by the presence of unscreened local magnetic moments in the sample.

Stanwyck, Sam W. [Department of Applied Physics, Stanford University, Stanford, California 94305 (United States)] [Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Gallagher, P.; Williams, J. R.; Goldhaber-Gordon, David [Department of Physics, Stanford University, Stanford, California 94305 (United States)] [Department of Physics, Stanford University, Stanford, California 94305 (United States)

2013-11-18T23:59:59.000Z

283

IDC System Specification Document.  

SciTech Connect (OSTI)

This document contains the system specifications derived to satisfy the system requirements found in the IDC System Requirements Document for the IDC Reengineering Phase 2 project. Revisions Version Date Author/Team Revision Description Authorized by V1.0 12/2014 IDC Reengineering Project Team Initial delivery M. Harris

Clifford, David J.

2014-12-01T23:59:59.000Z

284

Understanding Operational Amplifier Specifications  

E-Print Network [OSTI]

are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters are the property of their respective owners. #12;CONTACT INFORMATION INTERNET www.ti.com Register with TI INFORMATION CENTERS US TMS320 Hotline (281) 274-2320 Fax (281) 274-2324 BBS (281) 274-2323 email dsph

Jones, R. Victor

285

Basal-plane thermal conductivity of few-layer molybdenum disulfide  

SciTech Connect (OSTI)

We report the in-plane thermal conductivity of suspended exfoliated few-layer molybdenum disulfide (MoS{sub 2}) samples that were measured by suspended micro-devices with integrated resistance thermometers. The obtained room-temperature thermal conductivity values are (44–50) and (48–52) W m{sup ?1} K{sup ?1} for two samples that are 4 and 7 layers thick, respectively. For both samples, the peak thermal conductivity occurs at a temperature close to 120?K, above which the thermal conductivity is dominated by intrinsic phonon-phonon scattering although phonon scattering by surface disorders can still play an important role in these samples especially at low temperatures.

Jo, Insun; Ou, Eric; Shi, Li, E-mail: lishi@mail.utexas.edu [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Pettes, Michael Thompson [Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Department of Mechanical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Wu, Wei [Department of Mechanical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States)

2014-05-19T23:59:59.000Z

286

Final Report - IHLW PCT, Spinel T1%, Electrical Conductivity, and Viscosity Model Development, VSL-07R1240-4  

SciTech Connect (OSTI)

This report is the last in a series of currently scheduled reports that presents the results from the High Level Waste (HLW) glass formulation development and testing work performed at the Vitreous State Laboratory (VSL) of the Catholic University of America (CUA) and the development of IHLW property-composition models performed jointly by Pacific Northwest National Laboratory (PNNL) and VSL for the River Protection Project-Waste Treatment and Immobilization Plant (RPP-WTP). Specifically, this report presents results of glass testing at VSL and model development at PNNL for Product Consistency Test (PCT), one-percent crystal fraction temperature (T1%), electrical conductivity (EC), and viscosity of HLW glasses. The models presented in this report may be augmented and additional validation work performed during any future immobilized HLW (IHLW) model development work. Completion of the test objectives is addressed.

Kruger, Albert A.; Piepel, Gregory F.; Landmesser, S. M.; Pegg, I. L.; Heredia-Langner, Alejandro; Cooley, Scott K.; Gan, H.; Kot, W. K.

2013-11-13T23:59:59.000Z

287

Solid velocity correction schemes for a temperature transforming  

E-Print Network [OSTI]

for a temperature transforming model (TTM) for convection controlled solid-liquid phase-change problem. Design ¼ gravitational acceleration, 9.8 m/s2 H ¼ height of the vertical wall (m) k ¼ thermal conductivity (W/(m K)) K, K T * ¼ scaled temperature, T 0 2 T0 m; K T0 c ¼ cold surface temperature, K T0 m ¼ melting (or

Zhang, Yuwen

288

Communication: Minimum in the thermal conductivity of supercooled water: A computer simulation study  

SciTech Connect (OSTI)

We report the results of a computer simulation study of the thermodynamic properties and the thermal conductivity of supercooled water as a function of pressure and temperature using the TIP4P-2005 water model. The thermodynamic properties can be represented by a two-structure equation of state consistent with the presence of a liquid-liquid critical point in the supercooled region. Our simulations confirm the presence of a minimum in the thermal conductivity, not only at atmospheric pressure, as previously found for the TIP5P water model, but also at elevated pressures. This anomalous behavior of the thermal conductivity of supercooled water appears to be related to the maximum of the isothermal compressibility or the minimum of the speed of sound. However, the magnitudes of the simulated thermal conductivities are sensitive to the water model adopted and appear to be significantly larger than the experimental thermal conductivities of real water at low temperatures.

Bresme, F., E-mail: f.bresme@imperial.ac.uk [Chemical Physics Section, Department of Chemistry, Imperial College, London SW7 2AZ, United Kingdom and Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491 (Norway); Biddle, J. W.; Sengers, J. V.; Anisimov, M. A. [Institute for Physical Science and Technology, and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)] [Institute for Physical Science and Technology, and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)

2014-04-28T23:59:59.000Z

289

High Temperature Integrated Thermoelectric Ststem and Materials  

SciTech Connect (OSTI)

The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits. Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

Mike S. H. Chu

2011-06-06T23:59:59.000Z

290

Summary We investigated hydraulic conductance charac-teristics and associated dry matter production and distribution  

E-Print Network [OSTI]

Summary We investigated hydraulic conductance charac- teristics and associated dry matter') vigor rootstock. `K146-43' and `Hiawatha' rootstocks had 27 and 52% lower mean leaf-specific hydraulic and rootstock, which may be a compensatory response to the differences in leaf specific hydraulic conduc- tance

DeJong, Theodore

291

Central Solenoid Insert Technical Specification  

SciTech Connect (OSTI)

The US ITER Project Office (USIPO) is responsible for the ITER central solenoid (CS) contribution to the ITER project. The Central Solenoid Insert (CSI) project will allow ITER validation the appropriate lengths of the conductors to be used in the full-scale CS coils under relevant conditions. The ITER Program plans to build and test a CSI to verify the performance of the CS conductor. The CSI is a one-layer solenoid with an inner diameter of 1.48 m and a height of 4.45 m between electric terminal ends. The coil weight with the terminals is approximately 820 kg without insulation. The major goal of the CSI is to measure the temperature margin of the CS under the ITER direct current (DC) operating conditions, including determining sensitivity to load cycles. Performance of the joints, ramp rate sensitivity, and stability against thermal or electromagnetic disturbances, electrical insulation, losses, and instrumentation are addressed separately and therefore are not major goals in this project. However, losses and joint performance will be tested during the CSI testing campaign. The USIPO will build the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at the Japan Atomic Energy Agency (JAEA), Naka, Japan. The industrial vendors (the Suppliers) will report to the USIPO (the Company). All approvals to proceed will be issued by the Company, which in some cases, as specified in this document, will also require the approval of the ITER Organization. Responsibilities and obligations will be covered by respective contracts between the USIPO, called Company interchangeably, and the industrial Prime Contractors, called Suppliers. Different stages of work may be performed by more than one Prime Contractor, as described in this specification. Technical requirements of the contract between the Company and the Prime Contractor will be covered by the Fabrication Specifications developed by the Prime Contractor based on this document and approved by the Company and ITER. The Fabrication Specifications may reflect some national requirements and regulations that are not fully provided here. This document presents the ITER CSI specifications.

Martovetsky, Nicolai N [ORNL; Smirnov, Alexandre [ORNL

2011-09-01T23:59:59.000Z

292

Transport involving conducting fibers in a non-conducting matrix R. A. Hansela  

E-Print Network [OSTI]

result is a material with high electrical conduc- tivity and low thermal conductivity. If we consider, conducting fibers, thin-film devices 1. Introduction Thermal and electrical transport through a low to predict conductance of the combined system. However, if the two materials are similar in conductivity

Walker, D. Greg

293

Highly conductive electrolyte composites containing glass and ceramic, and method of manufacture  

DOE Patents [OSTI]

An electrolyte composite is manufactured by pressurizing a mixture of sodium ion conductive glass and an ionically conductive compound at between 12,000 and 24,000 pounds per square inch to produce a pellet. The resulting pellet is then sintered at relatively lower temperatures (800--1200 C), for example 1000 C, than are typically required (1400 C) when fabricating single constituent ceramic electrolytes. The resultant composite is 100 percent conductive at 250 C with conductivity values of 2.5 to 4[times]10[sup [minus]2](ohm-cm)[sup [minus]1]. The matrix exhibits chemical stability against sodium for 100 hours at 250 to 300 C. 1 figure.

Hash, M.C.; Bloom, I.D.

1992-10-13T23:59:59.000Z

294

Conducting polymer actuator enhancement through microstructuring  

E-Print Network [OSTI]

Electroactive conducting polymers, such as polypyrrole, polyaniline, and polythiophenes are currently studied as novel biologically inspired actuators. The actuation mechanisms in these materials are based on the diffusion ...

Pillai, Priam Vasudevan

2007-01-01T23:59:59.000Z

295

Fabrication and characterization of conducting polymer microwires  

E-Print Network [OSTI]

Flexible microwires fabricated from conducting polymers have a wide range of potential applications, including smart textiles that incorporate sensing, actuation, and data processing. The development of garments that ...

Saez, Miguel Angel

2009-01-01T23:59:59.000Z

296

Industrial Energy Audit Guidebook: Guidelines for Conducting...  

Open Energy Info (EERE)

Industry Resource Type: Guidemanual Website: china.lbl.govsiteschina.lbl.govfilesLBNL-3991E.Industrial%20Energy Industrial Energy Audit Guidebook: Guidelines for Conducting...

297

Thermal conductivity and heat transfer in superlattices  

SciTech Connect (OSTI)

Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and devices based on quantum structures. This work reports progress on the modeling of thermal conductivity of superlattice structures. Results from the models established based on the Boltzmann transport equation could explain existing experimental results on the thermal conductivity of semiconductor superlattices in both in plane and cross-plane directions. These results suggest the possibility of engineering the interfaces to further reduce thermal conductivity of superlattice structures.

Chen, G.; Neagu, M.; Borca-Tasciuc, T.

1997-07-01T23:59:59.000Z

298

Modernizing Patent Law's Inequitable Conduct Doctrine  

E-Print Network [OSTI]

conduct doctrine, but the patent system in general. Berkeleyof the currently pending patent reform legislation containsUTCLE 12th Annual Advanced Patent Law Institute, http://

Cotropia, Christopher

2008-01-01T23:59:59.000Z

299

EPA -- Addressing Children's Health through Reviews Conducted...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Addressing Children's Health through Reviews Conducted Pursuant to the National Environmental Policy Act and Section 309 of the Clean Air Act EPA -- Addressing Children's Health...

300

Specific heat in two-dimensional melting  

E-Print Network [OSTI]

We report the specific heat $c_N$ around the melting transition(s) of micrometer-sized superparamagnetic particles confined in two dimensions, calculated from fluctuations of positions and internal energy, and corresponding Monte Carlo simulations. Since colloidal systems provide single particle resolution, they offer the unique possibility to compare the experimental temperatures of peak position of $c_N(T)$ and symmetry breaking, respectively. While order parameter correlation functions confirm the Kosterlitz-Thouless-Halperin-Nelson-Young melting scenario where translational and orientational order symmetries are broken at different temperatures with an intermediate so called hexatic phase, we observe a single peak of the specific heat within the hexatic phase, with excellent agreement between experiment and simulation. Thus, the peak is not associated with broken symmetries but can be explained with the total defect density, which correlates with the maximum increase of isolated dislocations. The absence of a latent heat strongly supports the continuous character of both transitions.

Sven Deutschländer; Antonio M. Puertas; Georg Maret; Peter Keim

2014-05-14T23:59:59.000Z

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Changing fuel specifications  

SciTech Connect (OSTI)

This paper will describe the goals, methods, and results of a program designed to expand fuel specifications. The ability to expand fuel specs can provide many advantages to a power company. These would include increased fuel flexibility, better performance and lower fuel cost. The expansion of transportation modes also may enhance the scenario. Although brief, this paper should provide a good understanding of the types of problems that can be encountered, and the cooperative effort necessary to resolve them.

Hatt, R.

1995-08-01T23:59:59.000Z

302

Multisublevel Magnetoquantum Conductance in Single and Coupled Double Quantum Wires  

SciTech Connect (OSTI)

We study the ballistic and diffusive magnetoquantum transport using a typical quantum point contact geometry for single and tunnel-coupled double wires that are wide (less than or similar to1 mum) in one perpendicular direction with densely populated sublevels and extremely confined in the other perpendicular (i.e., growth) direction. A general analytic solution to the Boltzmann equation is presented for multisublevel elastic scattering at low temperatures. The solution is employed to study interesting magnetic-field dependent behavior of the conductance such as a large enhancement and quantum oscillations of the conductance for various structures and field orientations. These phenomena originate from the following field-induced properties: magnetic confinement, displacement of the initial- and final-state wave functions for scattering, variation of the Fermi velocities, mass enhancement, depopulation of the sublevels and anticrossing (in double quantum wires). The magnetoconductance is strikingly different in long diffusive (or rough. dirty) wires from the quantized conductance in short ballistic (or clean) wires. Numerical results obtained for the rectangular confinement potentials in the growth direction are satisfactorily interpreted in terms of the analytic solutions based on harmonic confinement potentials. Some of the predicted features of the field-dependent diffusive and quantized conductances are consistent with recent data from GaAs/AlxGa1-xAs double quantum wires.

Lyo, Sungkwun Ken; Huang, Danhong

2001-09-15T23:59:59.000Z

303

LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES  

SciTech Connect (OSTI)

This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and Testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Progress has been made in the preparation and characterization of thin electrolytes and porous LSM substrates. Both of these tasks are essentially on or ahead of schedule. In our proposal, we suggested that the ZrO{sub 2}/Sc system needed to be considered as a candidate as a thin electrolyte. This was because microcrystalline ZrO{sub 2}/Sc has a significantly higher ionic conductivity than YSZ, particularly at the lower temperatures. As a result, some 0.5 micron thick film of ZrO{sub 2}/16% Sc on an alumina substrate (grain size 20nm) was prepared and the electrical conductivity measured as a function of temperature and oxygen activity. The Sc doped ZrO{sub 2} certainly has a higher conductivity that either 20nm or 2400nm YSZ, however, electronic conductivity dominates the conductivity for oxygen activities below 10{sup -15}. Whereas for YSZ, electronic conductivity is not a problem until the oxygen activity decreases below 10{sup -25}. These initial results show that the ionic conductivity of 20nm YSZ and 20nm ZrO{sub 2}/16% Sc are essentially the same and the enhanced conductivity which is observed for Sc doping in microcrystalline specimens is not observed for the same composition when it is nanocrystalline. In addition they show that the electronic conductivity of Sc doped ZrO{sub 2} is at least two orders of magnitude higher than that observed for YSZ. The conclusion one reaches is that for 0.5 to 1 micron thick nanocrystalline films, Sc doping of ZrO{sub 2} has no benefits compared to YSZ. As a result, electrolyte films of ZrO{sub 2}/Sc should not be considered as candidates. However, they have the potential of being useful as an interface on the anode side of the electrolyte. NexTech has focused much of its effort during the past few months on establishing tape casting methods for porous LSM substrates. This work, performed under a separate DOE-funded program, involved tape casting formulations comprising LSM powders with bi-modal particle size distributions and fugitive pore forming additives. Sintered LSM substrates with porosities in the 30 to 40 vol% range, and pore sizes of 10 {approx} 20 microns have been prepared. In addition, tape casting formulations involving composite mixtures of LSM and Sm-doped ceria (SDC) have been evaluated. The LSM/SDC cathode substrates are expected to provide better performance at low temperatures. Characterization of these materials is currently underway.

Harlan U. Anderson

2000-03-31T23:59:59.000Z

304

Effect of interfacial interactions on the thermal conductivity and interfacial thermal conductance in tungsten–graphene layered structure  

SciTech Connect (OSTI)

Graphene film was deposited by microwave plasma assisted deposition on polished oxygen free high conductivity copper foils. Tungsten–graphene layered film was formed by deposition of tungsten film by magnetron sputtering on the graphene covered copper foils. Tungsten film was also deposited directly on copper foil without graphene as the intermediate film. The tungsten–graphene–copper samples were heated at different temperatures up to 900?°C in argon atmosphere to form an interfacial tungsten carbide film. Tungsten film deposited on thicker graphene platelets dispersed on silicon wafer was also heated at 900?°C to identify the formation of tungsten carbide film by reaction of tungsten with graphene platelets. The films were characterized by scanning electron microscopy, Raman spectroscopy, and x-ray diffraction. It was found that tungsten carbide film formed at the interface upon heating only above 650?°C. Transient thermoreflectance signal from the tungsten film surface on the samples was collected and modeled using one-dimensional heat equation. The experimental and modeled results showed that the presence of graphene at the interface reduced the cross-plane effective thermal conductivity and the interfacial thermal conductance of the layer structure. Heating at 650 and 900?°C in argon further reduced the cross-plane thermal conductivity and interface thermal conductance as a result of formation nanocrystalline tungsten carbide at the interface leading to separation and formation of voids. The present results emphasize that interfacial interactions between graphene and carbide forming bcc and hcp elements will reduce the cross-plane effective thermal conductivity in composites.

Jagannadham, K., E-mail: jag-kasichainula@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

2014-09-01T23:59:59.000Z

305

Thermal conduction of SSC (Superconducting Super Collider) wire  

SciTech Connect (OSTI)

A method suitable for measuring the thermal conductivity of good thermal conductors at low temperatures was implemented. It successfully served its purpose: to detect the effect of doping with manganese the interfilament part of the copper matrix of the superconducting wire used in the magnets of the Superconducting Super Collider. It uses two heaters and one thermometer per sample reducing the accuracy requirement on the thermometers, automatically compensating for zero offsets and reducing the number of critical thermal contacts. Commercially available strain gauges are used as heaters. 3 refs., 2 figs.

Kuchnir, M.; Tague, J.L.

1989-08-01T23:59:59.000Z

306

STUDENT CONDUCT CODE (Approved June 16, 2006)  

E-Print Network [OSTI]

CHAPTER 8 STUDENT CONDUCT CODE (Approved June 16, 2006) 8.010. Purpose 8.020. Definitions 8 of the conduct of all students" and "to enforce obedience to the rules." Although the grant of authority is broadly stated, it is well recognized that students are citizens. Students have legal rights, and deserve

Gering, Jon C.

307

Flexible moldable conductive current-limiting materials  

SciTech Connect (OSTI)

A current limiting PTC device (10) has two electrodes (14) with a thin film of electric conducting polymer material (20) disposed between the electrodes, the polymer material (20) having superior flexibility and short circuit performance, where the polymer material contains short chain aliphatic diepoxide, conductive filler particles, curing agent, and, preferably, a minor amount of bisphenol A epoxy resin.

Shea, John Joseph (Pittsburgh, PA); Djordjevic, Miomir B. (Milwaukee, WI); Hanna, William Kingston (Pittsburgh, PA)

2002-01-01T23:59:59.000Z

308

Selected factors influencing GCL hydraulic conductivity  

SciTech Connect (OSTI)

A series of confined swell and hydraulic conductivity tests were conducted on a needle-punched geosynthetic clay liner (GCL) with water as the hydrating medium and reference permeant. Increases in the static confining stress and the needle-punching both restricted GCL swell and contributed to lower bulk GCL void ratios and hence significantly lower hydraulic conductivity values. A well defined linear-log relationship is found between the bulk void ratio and hydraulic conductivity. The number of pore volumes of permeant flow and consequently the level of chemical equilibrium is shown to have a significant effect on the hydraulic conductivity. It is shown that there is a decrease in hydraulic conductivity for small amounts of permeant flow for all ethanol/water mixtures examined. At or near chemical equilibrium, low concentration mixtures (25 and 50% ethanol) continued to produce relative decreases in GCL hydraulic conductivity due to the increased viscosity of the permeant; however, highly concentrated mixtures (75 and 100% ethanol) produced relative increases in GCL hydraulic conductivity arising from double layer contraction. The implications are discussed.

Petrov, R.J. [Trow Consulting Engineers Ltd., Brampton, Ontario (Canada); Rowe, R.K.; Quigley, R.M. [Univ. of Western Ontario, London, Ontario (Canada)

1997-08-01T23:59:59.000Z

309

Ion-conducting ceramic apparatus, method, fabrication, and applications  

DOE Patents [OSTI]

A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.

Yates, Matthew (Penfield, NY); Liu, Dongxia (Rochester, NY)

2012-03-06T23:59:59.000Z

310

The Organic Chemistry of Conducting Polymers  

SciTech Connect (OSTI)

For the last several years, we have examined the fundamental principles of conduction in one-dimensional systems, i.e., molecular “wires”. It is, of course, widely recognized that such systems, as components of electronically conductive materials, function in a two- and three-dimensional milieu. Thus interchain hopping and grain-boundary resistivity are limiting conductivity factors in highly conductive materials, and overall conductivity is a function of through-chain and boundary hopping. We have given considerable attention to the basic principles underlying charge transport (the “rules of the game”) in two-dimensional systems by using model systems which allow direct observation of such processes, including the examination of tunneling and hopping as components of charge transfer. In related work, we have spent considerable effort on the chemistry of conjugated heteropolymers, most especially polythiophens, with the aim of using these most efficient of readily available electroactive polymers in photovoltaic devices.

Tolbert, Laren Malcolm [Georgia Institute of Technology

2014-12-01T23:59:59.000Z

311

Proton conducting ceramic membranes for hydrogen separation  

DOE Patents [OSTI]

A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.

Elangovan, S. (South Jordan, UT); Nair, Balakrishnan G. (Sandy, UT); Small, Troy (Midvale, UT); Heck, Brian (Salt Lake City, UT)

2011-09-06T23:59:59.000Z

312

Oak Ridge Site Specific  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactor TechnologyOFFICE: I Oak Ridge, TennesseeSite Specific

313

Electronically conducting metal oxide nanoparticles and films for optical sensing applications  

DOE Patents [OSTI]

The disclosure relates to a method of detecting a change in a chemical composition by contacting a conducting oxide material with a monitored stream, illuminating the conducting oxide material with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The conducting metal oxide has a carrier concentration of at least 10.sup.17/cm.sup.3, a bandgap of at least 2 eV, and an electronic conductivity of at least 10.sup.-1 S/cm, where parameters are specified at the gas stream temperature. The optical response of the conducting oxide materials is proposed to result from the high carrier concentration and electronic conductivity of the conducting metal oxide, and the resulting impact of changing gas atmospheres on that relatively high carrier concentration and electronic conductivity. These changes in effective carrier densities and electronic conductivity of conducting metal oxide films and nanoparticles are postulated to be responsible for the change in measured optical absorption associated with free carriers. Exemplary conducting metal oxides include but are not limited to Al-doped ZnO, Sn-doped In.sub.2O.sub.3, Nb-doped TiO.sub.2, and F-doped SnO.sub.2.

Ohodnicki, Jr., Paul R.; Wang, Congjun; Andio, Mark A

2014-09-16T23:59:59.000Z

314

IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 25, NO. 4, DECEMBER 2002 615 In-Plane Effective Thermal Conductivity of  

E-Print Network [OSTI]

material. Thermal conductivity of second phase material. . . Heat flux. Mesh numbers along. Effective thermal resistance. Thermal diffusivity. Specific surface area. Porosity. Time. Manuscript effect, the effective thermal conductivity of these materials, is relatively small, so that much

Wirtz, Richard A.

315

Electric conductivity of the quark-gluon plasma investigated using a perturbative QCD based parton cascade  

E-Print Network [OSTI]

Electric conductivity is sensitive to effective cross sections among the particles of the partonic medium. We investigate the electric conductivity of a hot plasma of quarks and gluons, solving the relativistic Boltzmann equation. In order to extract this transport coefficient, we employ the Green-Kubo formalism and, independently, a method motivated by the classical definition of electric conductivity. To this end we evaluate the static electric diffusion current upon the influence of an electric field. Both methods give identical results. For the first time, we obtain numerically the Drude electric conductivity formula for an ultrarelativistic gas of quarks and gluons employing constant isotropic binary cross sections. Furthermore, we extract the electric conductivity for a system of massless quarks and gluons including screened binary and inelastic, radiative $2\\leftrightarrow 3$ perturbative QCD scattering. Comparing with recent lattice results, we find an agreement in the temperature dependence of the conductivity.

Moritz Greif; Ioannis Bouras; Zhe Xu; Carsten Greiner

2014-11-17T23:59:59.000Z

316

Crevice corrosion repassivation temperatures of highly alloyed stainless steels  

SciTech Connect (OSTI)

An investigation was conducted to study the repassivation temperature of a highly alloyed austenitic (UNS S31254) and of a highly alloyed duplex (UNS S32750) stainless steel (SS). When initiated at a high temperature, repassivation occurred at a temperature level significantly lower than normally associated with initiation of crevice corrosion. Experimental results combined with computer modeling of crevice corrosion explored the mechanistic aspects. In this respect, the similarity between the hysteresis observed by cyclic polarization and cyclic temperature tests was emphasized.

Valen, S.; Gartland, P.O. [SINTEF Corrosion Center, Trondheim (Norway)

1995-10-01T23:59:59.000Z

317

Electrical and thermal conductivities in dense plasmas  

SciTech Connect (OSTI)

Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

Faussurier, G., E-mail: gerald.faussurier@cea.fr; Blancard, C.; Combis, P.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

2014-09-15T23:59:59.000Z

318

Thermal conductivity of bulk nanostructured lead telluride  

SciTech Connect (OSTI)

Thermal conductivity of lead telluride with embedded nanoinclusions was studied using Monte Carlo simulations with intrinsic phonon transport properties obtained from first-principles-based lattice dynamics. The nanoinclusion/matrix interfaces were set to completely reflect phonons to model the maximum interface-phonon-scattering scenario. The simulations with the geometrical cross section and volume fraction of the nanoinclusions matched to those of the experiment show that the experiment has already reached the theoretical limit of thermal conductivity. The frequency-dependent analysis further identifies that the thermal conductivity reduction is dominantly attributed to scattering of low frequency phonons and demonstrates mutual adaptability of nanostructuring and local disordering.

Hori, Takuma [Department of Mechanical Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); Chen, Gang [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Shiomi, Junichiro, E-mail: shiomi@photon.t.u-tokyo.ac.jp [Department of Mechanical Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan)

2014-01-13T23:59:59.000Z

319

Increased thermal conductivity monolithic zeolite structures  

DOE Patents [OSTI]

A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

Klett, James (Knoxville, TN); Klett, Lynn (Knoxville, TN); Kaufman, Jonathan (Leonardtown, MD)

2008-11-25T23:59:59.000Z

320

Characterization of macro-length conducting polymers and the development of a conducting polymer rotary motor  

E-Print Network [OSTI]

Conducting polymers are a subset of materials within the electroactive polymer class that exhibit active mechanical deformations. These deformations induce stresses and strains that allow for conducting polymers to be used ...

Schmid, Bryan D. (Bryan David), 1981-

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Method and apparatus for casting conductive and semi-conductive materials  

DOE Patents [OSTI]

A method and apparatus is disclosed for casting conductive and semi-conductive materials. The apparatus includes a plurality of conductive members arranged to define a container-like area having a desired cross-sectional shape. A portion or all of the conductive or semi-conductive material which is to be cast is introduced into the container-like area. A means is provided for inducing the flow of an electrical current in each of the conductive members, which currents act collectively to induce a current flow in the material. The induced current flow through the conductive members is in a direction substantially opposite to the induced current flow in the material so that the material is repelled from the conductive members during the casting process.

Ciszek, T.F.

1984-08-13T23:59:59.000Z

322

High Temperature Heat Exchanger Project  

SciTech Connect (OSTI)

The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

Anthony E. Hechanova, Ph.D.

2008-09-30T23:59:59.000Z

323

Finite Temperature Closed Superstring Theory  

E-Print Network [OSTI]

We find that the gas of IIA strings undergoes a phase transition into a gas of IIB strings at the self-dual temperature. A gas of free heterotic strings undergoes a Kosterlitz-Thouless duality transition with positive free energy and positive specific heat but vanishing internal energy at criticality. We examine the consequences of requiring a tachyon-free thermal string spectrum. We show that in the absence of Ramond-Ramond fluxes the IIA and IIB string ensembles are thermodynamically ill-defined. The 10D heterotic superstrings have nonabelian gauge fields and in the presence of a temperature dependent Wilson line background are found to share a stable and tachyon-free ground state at all temperatures starting from zero with gauge group SO(16)xSO(16). The internal energy of the heterotic string is a monotonically increasing function of temperature with a stable and supersymmetric zero temperature limit. Our results point to the necessity of gauge fields in a viable weakly coupled superstring theory. Note Added (Sep 2005).

Shyamoli Chaudhuri

2005-09-12T23:59:59.000Z

324

Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films  

SciTech Connect (OSTI)

Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H{sub 2})-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H{sub 2}-plasma treatment performed at a substrate temperature of 50?°C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitive substrates.

Morales-Masis, M., E-mail: monica.moralesmasis@epfl.ch; Ding, L.; Dauzou, F. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Jeangros, Q. [Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Hessler-Wyser, A. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Nicolay, S. [Centre Suisse d’Electronique et de Microtechnique (CSEM) SA, Rue Jaquet-Droz 1, CH-2002 Neuchatel (Switzerland); Ballif, C. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Centre Suisse d’Electronique et de Microtechnique (CSEM) SA, Rue Jaquet-Droz 1, CH-2002 Neuchatel (Switzerland)

2014-09-01T23:59:59.000Z

325

Construction of an Ultralow Temperature Cryostat and Transverse Acoustic Spectroscopy in Superfluid Helium-3 in Compressed Aerogels.  

E-Print Network [OSTI]

??An ultra low temperature cryostat is designed and implemented in this work to perform experiments at sub-millikelvin temperatures, specifically aimed at understanding the superfluid phases… (more)

Bhupathi, Pradeep

2009-01-01T23:59:59.000Z

326

Large displacement fast conducting polymer actuators  

E-Print Network [OSTI]

Conducting polymers are a promising class of electroactive materials that undergo volumetric changes under applied potentials, which make them particularly useful for many actuation applications. Polypyrrole , is one of ...

Chen, Angela Y. (Angela Ying-Ju), 1982-

2006-01-01T23:59:59.000Z

327

Conducting polymer nanostructures for biological applications  

E-Print Network [OSTI]

Synthesis and characterization of conducting copolymer nanofibrils of pyrrolepolypyrrole synthesis was 0.1 M pyrrole monomer dissolved insynthesis Polypyrrole was electropolymerized from a solution of 0.1 M pyrrole (

Berdichevsky, Yevgeny

2006-01-01T23:59:59.000Z

328

California: Conducting Polymer Binder Boosts Storage Capacity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- 10:17am Addthis Working with Nextval, Inc., Lawrence Berkeley National Laboratory (LBNL) developed a Conducting Polymer Binder for high-capacity lithium-ion batteries. With a...

329

Modeling tensorial conductivity of particle suspension networks  

E-Print Network [OSTI]

Significant microstructural anisotropy is known to develop during shearing flow of attractive particle suspensions. These suspensions, and their capacity to form conductive networks, play a key role in flow-battery technology, among other applications. Herein, we present and test an analytical model for the tensorial conductivity of attractive particle suspensions. The model utilizes the mean fabric of the network to characterize the structure, and the relationship to the conductivity is inspired by a lattice argument. We test the accuracy of our model against a large number of computer-generated suspension networks, based on multiple in-house generation protocols, giving rise to particle networks that emulate the physical system. The model is shown to adequately capture the tensorial conductivity, both in terms of its invariants and its mean directionality.

Tyler Olsen; Ken Kamrin

2015-01-13T23:59:59.000Z

330

November 15, 2012 Conducting and managing documents  

E-Print Network [OSTI]

1 November 15, 2012 Conducting and managing documents #12;2 Agenda 1. Basics of copyright 2. Necessary information for citing materials 3. Citation Manager #12;1.Basics of copyright 3 #12;Definitions

Kaji, Hajime

331

Synthesis and characterization of conducting polymer actuators  

E-Print Network [OSTI]

Conducting polymers are known to mechanically respond to electrochemical stimuli and have been utilized as linear actuators. To date, the most successful mechanism for actuation is ionic ingress and egress, though mechanisms ...

Vandesteeg, Nathan A. (Nathan Alan)

2007-01-01T23:59:59.000Z

332

Development and characterization of conducting polymer actuators  

E-Print Network [OSTI]

Conducting polymers such as polypyrrole, polythiophene and polyaniline are currently studied as novel biologically inspired actuators. The actuation mechanism of these materials depends upon the motion of ions in and out ...

Pillai, Priam Vasudevan

2011-01-01T23:59:59.000Z

333

Thermal conductivity of thermal-battery insulations  

SciTech Connect (OSTI)

The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

Guidotti, R.A.; Moss, M.

1995-08-01T23:59:59.000Z

334

M. Bahrami ENSC 388 (F09) Steady Conduction Heat Transfer 1 Steady Heat Conduction  

E-Print Network [OSTI]

of the material. In the limiting case where x0, the equation above reduces to the differential form: W dx dT k is the only energy interaction; the energy balance for the wall can be expressed: dt dE QQ wall outin). Thermal Conductivity Thermal conductivity k [W/mK] is a measure of a material's ability to conduct heat

Bahrami, Majid

335

Standards of Student Conduct: A Guide to the University of Rochester Conduct  

E-Print Network [OSTI]

Standards of Student Conduct: A Guide to the University of Rochester Conduct Process and Policies 2012-2013 Center for Student Conflict Management #12;2 STANDARDS OF STUDENT CONDUCT A Guide Student Handbook, the Residential Community Standards material, the Resident Network Acceptable Use Policy

Portman, Douglas

336

Student Conduct Information Packet A Step-by-Step Guide to the Student Conduct Process  

E-Print Network [OSTI]

Student Conduct Information Packet A Step-by-Step Guide to the Student Conduct Process Basic Overview The student conduct process at the College is summarized in the flow chart below. This chart is provided to students to explain the process during the Information Session. #12;Taking a Closer Look

Zobin, Nahum

337

Microsoft Vendor Code of Conduct (US 2012) 1 Microsoft Vendor Code of Conduct  

E-Print Network [OSTI]

Microsoft Vendor Code of Conduct (US 2012) 1 Microsoft Vendor Code of Conduct Microsoft aspires with customers, partners, governments, communities, and vendors. Through the Standards of Business Conduct (www expects its vendors to embrace this commitment to integrity by complying with and training its employees

Bernstein, Phil

338

Lattice thermal conductivity of UO{sub 2} using ab-initio and classical molecular dynamics  

SciTech Connect (OSTI)

We applied the non-equilibrium ab-initio molecular dynamics and predict the lattice thermal conductivity of the pristine uranium dioxide for up to 2000?K. We also use the equilibrium classical molecular dynamics and heat-current autocorrelation decay theory to decompose the lattice thermal conductivity into acoustic and optical components. The predicted optical phonon transport is temperature independent and small, while the acoustic component follows the Slack relation and is in good agreement with the limited single-crystal experimental results. Considering the phonon grain-boundary and pore scatterings, the effective lattice thermal conductivity is reduced, and we show it is in general agreement with the sintered-powder experimental results. The charge and photon thermal conductivities are also addressed, and we find small roles for electron, surface polaron, and photon in the defect-free structures and for temperatures below 1500?K.

Kim, Hyoungchul [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136–791 (Korea, Republic of); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kaviany, Massoud, E-mail: kaviany@umich.edu [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

2014-03-28T23:59:59.000Z

339

Transparent conducting oxides and production thereof  

SciTech Connect (OSTI)

Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber. The method may also comprise depositing a metal oxide on the target in the process chamber to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

Gessert, Timothy A.; Yoshida, Yuki; Coutts, Timothy J.

2014-06-10T23:59:59.000Z

340

Transparent conducting oxides and production thereof  

SciTech Connect (OSTI)

Transparent conducting oxides and production thereof are disclosed. An exemplary method of producing a transparent conducting oxide (TCO) material may comprise: providing a TCO target (110) doped with either a high-permittivity oxide or a low-permittivity oxide in a process chamber (100). The method may also comprise depositing a metal oxide on the target (110) to form a thin film having enhanced optical properties without substantially decreasing electrical quality.

Gessert, Timothy A; Yoshida, Yuki; Coutts, Timothy J

2014-05-27T23:59:59.000Z

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

High quality transparent conducting oxide thin films  

DOE Patents [OSTI]

A transparent conducting oxide (TCO) film comprising: a TCO layer, and dopants selected from the elements consisting of Vanadium, Molybdenum, Tantalum, Niobium, Antimony, Titanium, Zirconium, and Hafnium, wherein the elements are n-type dopants; and wherein the transparent conducting oxide is characterized by an improved electron mobility of about 42 cm.sup.2/V-sec while simultaneously maintaining a high carrier density of .about.4.4e.times.10.sup.20 cm.sup.-3.

Gessert, Timothy A. (Conifer, CO); Duenow, Joel N. (Golden, CO); Barnes, Teresa (Evergreen, CO); Coutts, Timothy J. (Golden, CO)

2012-08-28T23:59:59.000Z

342

Specific systems studies of battery energy storage for electric utilities  

SciTech Connect (OSTI)

Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. As a part of this program, four utility-specific systems studies were conducted to identify potential battery energy storage applications within each utility network and estimate the related benefits. This report contains the results of these systems studies.

Akhil, A.A.; Lachenmeyer, L. [Sandia National Labs., Albuquerque, NM (United States); Jabbour, S.J. [Decision Focus, Inc., Mountain View, CA (United States); Clark, H.K. [Power Technologies, Inc., Roseville, CA (United States)

1993-08-01T23:59:59.000Z

343

High temperature mechanical performance of a hot isostatically pressed silicon nitride  

SciTech Connect (OSTI)

Silicon nitride ceramics are an attractive material of choice for designers and manufacturers of advanced gas turbine engine components for many reasons. These materials typically have potentially high temperatures of usefulness (up to 1400{degrees}C), are chemically inert, have a relatively low specific gravity (important for inertial effects), and are good thermal conductors (i.e., resistant to thermal shock). In order for manufacturers to take advantage of these inherent properties of silicon nitride, the high-temperature mechanical performance of the material must first be characterized. The mechanical response of silicon nitride to static, dynamic, and cyclic conditions at elevated temperatures, along with reliable and representative data, is critical information that gas turbine engine designers and manufacturers require for the confident insertion of silicon nitride components into gas turbine engines. This final report describes the high-temperature mechanical characterization and analyses that were conducted on a candidate structural silicon nitride ceramic. The high-temperature strength, static fatigue (creep rupture), and dynamic and cyclic fatigue performance were characterized. The efforts put forth were part of Work Breakdown Structure Subelement 3.2.1, {open_quotes}Rotor Data Base Generation.{close_quotes} PY6 is comparable to other hot isostatically pressed (HIPed) silicon nitrides currently being considered for advanced gas turbine engine applications.

Wereszczak, A.A.; Ferber, M.K.; Jenkins, M.G.; Lin, C.K.J. [and others] [and others

1996-01-01T23:59:59.000Z

344

Development, setup and testing of a dynamic hydraulic fracture conductivity apparatus  

E-Print Network [OSTI]

gel tank, a series of multistage centrifugal pumps to inject fluid at high pressure, cylindrical heaters and heating jacket to build fluid temperature up to reservoir conditions, a modified API fracture conductivity cell, a load frame to apply... pumps by a small centrifugal pump, flows through cylindrical heaters, and enters the conductivity cell. The fluid flows into a high-pressure vessel and goes into a waste tank. The pressure is controlled by needle valves installed at the outlet...

Pongthunya, Potcharaporn

2009-06-02T23:59:59.000Z

345

Structural and electrochemical characterization of two proton conducting oxide thin films for a microfabricated solid oxide fuel cell  

E-Print Network [OSTI]

The use of proton conducting oxide materials as an electrolyte offers the potential to reduce the operating temperature of a solid oxide fuel cell (SOFC), leading to improved thermal management and material compatibility. ...

Capozzoli, Peter M

2006-01-01T23:59:59.000Z

346

A three dimensional simulation of a thermal experiment conducted on an accelerator driven system target model concept  

E-Print Network [OSTI]

dynamics (CFD). The benchmark for the model comparison is an experiment conducted by the Institute of Physics and Power Engineering on one particular ATW system concept. The experimenters used thermocouples to determine the temperature profile...

Pratt, Preston Persley

2003-01-01T23:59:59.000Z

347

Tunable ionic-conductivity of collapsed Sandia octahedral molecular sieves (SOMS).  

SciTech Connect (OSTI)

This proposal focuses on the synthesis and characterization of ''tunable'' perovskite ceramics with resulting controlled strength and temperature of dielectric constants and/or with ionic conductivity. Traditional methods of synthesis involve high temperature oxide mixing and baking. We developed a new methodology of synthesis involving the (1) low temperature hydrothermal synthesis of metastable porous phases with ''tuned'' stoichiometry, and element types, and then (2) low temperature heat treatment to build exact stoichiometry perovskites, with the desired vacancy concentrations. This flexible pathway can lead to compositions and structures not attainable by conventional methods. During the course of this program, a series of Na-Nb perovskites were synthesized by calcining and collapsing microporous Sandia Octahedral Molecular Sieve (SOMS) phases. These materials were studied by various characterization techniques and conductivity measurements to better delineate stability and stoichiometry/bulk conductivity relationships. The conductivity can be altered by changing the concentration and type of the substituting framework cation(s) or by ion exchange of sodium. To date, the Na{sub 0.9}Mg{sub 0.1}Nb{sub 0.8}Ti{sub 0.2}O{sub 3-{delta}} shows the best conductivity.

Pless, Jason; Nenoff, Tina Maria; Garino, Terry J.; Axness, Marlene

2006-11-01T23:59:59.000Z

348

Maximum surface level and temperature histories for Hanford waste tanks  

SciTech Connect (OSTI)

Radioactive defense waste resulting from the chemical processing of spent nuclear fuel has been accumulating at the Hanford Site since 1944. This waste is stored in underground waste-storage tanks. The Hanford Site Tank Farm Facilities Interim Safety Basis (ISB) provides a ready reference to the safety envelope for applicable tank farm facilities and installations. During preparation of the ISB, tank structural integrity concerns were identified as a key element in defining the safety envelope. These concerns, along with several deficiencies in the technical bases associated with the structural integrity issues and the corresponding operational limits/controls specified for conduct of normal tank farm operations are documented in the ISB. Consequently, a plan was initiated to upgrade the safety envelope technical bases by conducting Accelerated Safety Analyses-Phase 1 (ASA-Phase 1) sensitivity studies and additional structural evaluations. The purpose of this report is to facilitate the ASA-Phase 1 studies and future analyses of the single-shell tanks (SSTs) and double-shell tanks (DSTs) by compiling a quantitative summary of some of the past operating conditions the tanks have experienced during their existence. This report documents the available summaries of recorded maximum surface levels and maximum waste temperatures and references other sources for more specific data.

Flanagan, B.D.; Ha, N.D.; Huisingh, J.S.

1994-09-02T23:59:59.000Z

349

High-temperature photochemical destruction of toxic organic wastes using concentrated solar radiation  

SciTech Connect (OSTI)

Application of concentrated solar energy has been proposed to be a viable waste disposal option. Specifically, this concept of solar induced high-temperature photochemistry is based on the synergistic contribution of concentrated infrared (IR) radiation, which acts as an intense heating source, and near ultraviolet and visible (UV-VIS) radiation, which can induce destructive photochemical processes. Some significant advances have been made in the theoretical framework of high-temperature photochemical processes (Section 2) and development of experimental techniques for their study (Section 3). Basic thermal/photolytic studies have addressed the effect of temperature on the photochemical destruction of pure compounds (Section 4). Detailed studies of the destruction of reaction by-products have been conducted on selected waste molecules (Section 5). Some very limited results are available on the destruction of mixtures (Section 6). Fundamental spectroscopic studies have been recently initiated (Section 7). The results to date have been used to conduct some relatively simple scale-up studies of the solar detoxification process. More recent work has focused on destruction of compounds that do not directly absorb solar radiation. Research efforts have focused on homogeneous as well as heterogeneous methods of initiating destructive reaction pathways (Section 9). Although many conclusions at this point must be considered tentative due to lack of basic research, a clearer picture of the overall process is emerging (Section 10). However, much research remains to be performed and most follow several veins, including photochemical, spectroscopic, combustion kinetic, and engineering scale-up (Section 11).

Dellinger, B.; Graham, J.L.; Berman, J.M.; Taylor, P.H. [Dayton Univ., OH (United States)

1994-05-01T23:59:59.000Z

350

Esimation of field-scale thermal conductivities of unsaturated rocks from in-situ temperature data  

E-Print Network [OSTI]

Properties in Hard Rock, Ph.D. Thesis, Lulea Universityof Technology, Lulea, Sweden. Kolditz, O. and C. Clauser, (

Mukhopadhyay, Sumit; Tsang, Yvonne W.; Birkholzer, Jens T.

2008-01-01T23:59:59.000Z

351

The Effect of Nanoparticles on Thermal Conductivity of Nanocomposite Thin Films at Low Temperatures  

E-Print Network [OSTI]

Generalized equation of phonon radiative transport”. Appliedtransport cross section to solve the generalized equation for phonon radiative

Katika, Kamal M.; Pilon, Laurent

2008-01-01T23:59:59.000Z

352

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

Thermal energy storage for sustainable energy consumption –Sustainable Energy, Cambridge University Press, 65- Dermott A.M, Frysinger G.R, Storage

Roshandell, Melina

2013-01-01T23:59:59.000Z

353

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

materials (PCM) in solar thermal concentrating technologyeffective and efficient solar thermal electricity generatorbeen considered for solar thermal energy storages. These are

Roshandell, Melina

2013-01-01T23:59:59.000Z

354

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications AMaterials for Concentrating Solar Power Plant Applications

Roshandell, Melina

2013-01-01T23:59:59.000Z

355

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

are non-compatibility with plastic containers, and moderateCaCl 2 . 6 H 2 O in plastic film containers reported to beare often containers and bags made of metal or plastic [6].

Roshandell, Melina

2013-01-01T23:59:59.000Z

356

FAST STATIC AND DYNAMIC GRID LEVEL THERMAL SIMULATION CONSIDERING TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY OF SILICON  

E-Print Network [OSTI]

heat diffusion equation has been conventionally handled by grid-grids and an approximate delta function simulating a point heatgrid size of 64×64. To obtain transient thermal mask an impulse heat

Ziabari, Amirkoushyar

2012-01-01T23:59:59.000Z

357

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

microencapsulation. Macroencapsulation means filling the PCMor plastic [6]. Macroencapsulation is very common becauseabilities. Also, macroencapsulation of CaCl 2 . 6 H 2 O in

Roshandell, Melina

2013-01-01T23:59:59.000Z

358

Measuring Frac-pack Conductivity at Reservoir Temperature and High Closure Stress  

E-Print Network [OSTI]

fractures packed with high proppant concentrations. Understanding the behavior of the fracture fluid and proppant is critical to pump such a job successfully and to ensure long term productivity from the fracture. A series of laboratory experiments have been...

Fernandes, Preston X.

2010-10-12T23:59:59.000Z

359

FAST STATIC AND DYNAMIC GRID LEVEL THERMAL SIMULATION CONSIDERING TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY OF SILICON  

E-Print Network [OSTI]

is based on an equivalent circuit of thermal resistances andof convection resistance to 0.13 K/W. This is equivalent toequivalent convection coefficient. h = 1/(R × A) The convection resistance

Ziabari, Amirkoushyar

2012-01-01T23:59:59.000Z

360

Effects of temperature and disorder on thermal boundary conductance at solidsolid interfaces: Nonequilibrium  

E-Print Network [OSTI]

with the constituent materials. The inter- face thermal resistance, often referred to as thermal boundary resistance between two different materials when a heat flux is applied. The inverse of thermal boundary resistance mismatched interfaces. Ã? 2007 Elsevier Ltd. All rights reserved. Keywords: Thermal boundary resistance

Zhigilei, Leonid V.

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Temperature-Dependent Phonon Conduction and Nanotube Engagement in Metalized Single Wall Carbon  

E-Print Network [OSTI]

storage materials.9 They potentially offer the unique combination of low thermal resistance, MWNT) films are promising materials for thermal management1-4 and electronics applications,4,14,15 and physically deposited metals,3,15 yield large nanotube-substrate thermal interface resistances in the range

Maruyama, Shigeo

362

Conduction Models Of The Temperature Distribution In The East Rift Zone Of  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) | Open Energy Information1988)Concow,

363

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

analyzed a built-in, storage-type water heater containing astorage and thermal protection that can operate with PCM technology. Among them are building insulators, water heaters,

Roshandell, Melina

2013-01-01T23:59:59.000Z

364

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

537°C) steam for the steam turbine to generate electricity.as heat sources for steam turbines. Mainly three approachesto Stirling or Brayton steam turbine, moderate to high heat

Roshandell, Melina

2013-01-01T23:59:59.000Z

365

Temperature, thermal-conductivity, and heat-flux data,Raft River area,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to: navigation,Telluric Survey DetailsCassia County,

366

The Thermal Conductivity of Rocks and Its Dependence Upon Temperature and  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump Jump to:InformationThe PotomacInc Jump

367

Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications  

E-Print Network [OSTI]

for evening cooking in a solar cooker. Energy Convers Manageperformance of a solar cooker based on an evacuated tube

Roshandell, Melina

2013-01-01T23:59:59.000Z

368

General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications  

E-Print Network [OSTI]

General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications Vehicle Characteristics Specification Maximum Depth 700m with 1.5 safety factor Vehicle power 2kWHr Li Ion Rechargeable Transducer 700m rated Paroscientific Depth Sensor will be integrated into the vehicle navigation stream

Gilbes, Fernando

369

Method and apparatus for producing a carbon based foam article having a desired thermal-conductivity gradient  

DOE Patents [OSTI]

A carbon based foam article is made by heating the surface of a carbon foam block to a temperature above its graphitizing temperature, which is the temperature sufficient to graphitize the carbon foam. In one embodiment, the surface is heated with infrared pulses until heat is transferred from the surface into the core of the foam article such that the graphitizing temperature penetrates into the core to a desired depth below the surface. The graphitizing temperature is maintained for a time sufficient to substantially entirely graphitize the portion of the foam article from the surface to the desired depth below the surface. Thus, the foam article is an integral monolithic material that has a desired conductivity gradient with a relatively high thermal conductivity in the portion of the core that was graphitized and a relatively low thermal conductivity in the remaining portion of the foam article.

Klett, James W. (Knoxville, TN) [Knoxville, TN; Cameron, Christopher Stan (Sanford, NC) [Sanford, NC

2010-03-02T23:59:59.000Z

370

On Energy and Entropy Influxes in the Green-Naghdi Type III Theory of Heat Conduction  

E-Print Network [OSTI]

The energy-influx/entropy-influx relation in the Green-Naghdi Type III theory of heat conduction is examined within a thermodynamical framework \\`a la Mueller-Liu, where that relation is not specified a priori irrespectively of the constitutive class under attention. It is shown that the classical assumption, i.e., that the entropy influx and the energy influx are proportional via the absolute temperature, holds true if heat conduction is, in a sense that is made precise, isotropic. In addition, it is proven that the standard assumption does not hold in case of transversely isotropic conduction.

Swantje Bargmann; Antonino Favata; Paolo Podio-Guidugli

2012-09-13T23:59:59.000Z

371

Quantum conductance of zigzag graphene oxide nanoribbons  

SciTech Connect (OSTI)

The electronic properties of zigzag graphene oxide nanoribbons (ZGOR) are presented. The results show interesting behaviors which are considerably different from the properties of the perfect graphene nanoribbons (GNRs). The theoretical methods include a Huckel-tight binding approach, a Green's function methodology, and the Landauer formalism. The presence of oxygen on the edge results in band bending, a noticeable change in density of states and thus the conductance. Consequently, the occupation in the valence bands increase for the next neighboring carbon atom in the unit cell. Conductance drops in both the conduction and valence band regions are due to the reduction of allowed k modes resulting from band bending. The asymmetry of the energy band structure of the ZGOR is due to the energy differences of the atoms. The inclusion of a foreign atom's orbital energies changes the dispersion relation of the eigenvalues in energy space. These novel characteristics are important and valuable in the study of quantum transport of GNRs.

Kan, Zhe; Nelson, Christopher; Khatun, Mahfuza, E-mail: mkhatun@bsu.edu [Department of Physics and Astronomy, Center for Computational Nanoscience, Ball State University, Muncie, Indiana 47306 (United States)

2014-04-21T23:59:59.000Z

372

Casimir energy for surfaces with constant conductivity  

E-Print Network [OSTI]

We consider the vacuum energy of the electromagnetic field in systems characterized by a constant conductivity using the zeta-regularization approach. The interaction in two cases is investigated: two infinitely thin parallel sheets and an infinitely thin spherical shell. We found that the Casimir energy for the planar system is always attractive and it has the same characteristic distance dependence as the interaction for two perfect semi-infinite metals. The Casimir energy for the spherical shell depends on the inverse radius of the sphere, but it maybe negative or positive depending on the value of the conductivity. If the conductivity is less than a certain critical value, the interaction is attractive, otherwise the Casimir force is repulsive regardless of the spherical shell radius.

Nail Khusnutdinov; D. Drosdoff; Lilia M. Woods

2014-04-09T23:59:59.000Z

373

Gas storage carbon with enhanced thermal conductivity  

DOE Patents [OSTI]

A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

Burchell, Timothy D. (Oak Ridge, TN); Rogers, Michael Ray (Knoxville, TN); Judkins, Roddie R. (Knoxville, TN)

2000-01-01T23:59:59.000Z

374

Generic refinements for behavioral specifications   

E-Print Network [OSTI]

This thesis investigates the properties of generic refinements of behavioral specifications. At the base of this investigation stands the view from algebraic specification that abstract data types can be modeled as ...

Petria, Marius

2011-01-01T23:59:59.000Z

375

Conduct of Operations and Quality Assurance Compliance  

SciTech Connect (OSTI)

The purpose of this document is to present and detail the deliverables for the Tiger Team Action Plan, Finding MF-11, and milestones in the FY92 Performance Appraisal for Conduct of Operations from Sandia National Laboratories to DOE. The ``Proposal for Reporting Conduct of Operations & Quality Assurance Compliance to DOE`` describes what the deliverables shall be. Five major steps that result in the development of line practices are covered in this document. These line practices specify what Sandia will do to comply with the above DOE management orders. The five steps include: hazard classification; programmatic risk classification; management grouping; compliance plan; and corporate reporting.

Andrews, N.S.

1992-06-01T23:59:59.000Z

376

Conduct of Operations and Quality Assurance Compliance  

SciTech Connect (OSTI)

The purpose of this document is to present and detail the deliverables for the Tiger Team Action Plan, Finding MF-11, and milestones in the FY92 Performance Appraisal for Conduct of Operations from Sandia National Laboratories to DOE. The Proposal for Reporting Conduct of Operations Quality Assurance Compliance to DOE'' describes what the deliverables shall be. Five major steps that result in the development of line practices are covered in this document. These line practices specify what Sandia will do to comply with the above DOE management orders. The five steps include: hazard classification; programmatic risk classification; management grouping; compliance plan; and corporate reporting.

Andrews, N.S.

1992-06-01T23:59:59.000Z

377

Conductivity as applied to water analysis  

E-Print Network [OSTI]

for the "Dionio Water Tester11. 1. Detection of condenser leaks. 2. Measurement of the priming of boilers. 3. Estimation of the hardness of water. 6. 4. Softening water. 5. Detection of sewage pollution. 6. Test of sewage effluent. 7. Estimation... of the purity of distilled water. 8. Checking the purity of a water supply. In most cases, conductivity is a very satisfactory means of detecting condenser leaks and may also he used in estimating the extent of the leakage. The conductivity of a sample...

Godfrey, Truman M.

1913-05-15T23:59:59.000Z

378

Electronic conduction through single crystals of polyethylene  

E-Print Network [OSTI]

May, 1966 Major Subjects Physics ELECTRONIC CONDUCTION THROUGH SINGLE CRYSTRLS OF POLYETHYLENE k Thesis By Gerald Maurice Samson Approved as to style and content by: naen of the Committee ad of the D artment ber ber c- The autho. u... talc o Polyot! ylone . -y, i'oo Gerald !':cur"' co Samson Directed by: Zr. Joe S. The predominant conduction mechani m through single cryo' mls op polyethylene is shown to be Schott!cy ( hernal) oui "sion . or tompora- o tu. es - bove 0 C. . "or...

Samson, Gerald Maurice

1966-01-01T23:59:59.000Z

379

Electrically conductive connection for an electrode  

DOE Patents [OSTI]

An electrically conductive connection for an electrode assembly of an electrolyte cell in which aluminum is produced by electrolysis in a molten salt is described. The electrode assembly comprises an electrode flask and a conductor rod. The flask has a collar above an area of minimum flask diameter. The electrically conductive connection comprises the electrode flask, the conductor rod and a structure bearing against the collar and the conductor rod for pulling the conductor rod into compressive and electrical contact with the flask. 2 figs.

Hornack, T.R.; Chilko, R.J.

1986-09-02T23:59:59.000Z

380

Electrospun nanofibers with tunable electrical conductivity  

E-Print Network [OSTI]

Electrospinning is a convenient method to produce nanofibers with controlled diameters on the order of tens to hundreds of nanometers. The resulting nonwoven fiber mats are lightweight, highly porous, and have high specific ...

Zhang, Yuxi, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Conductivity Measurements of Synthesized Heteropoly Acid Membranes for Proton Exchange Membrane Fuel Cells  

SciTech Connect (OSTI)

Fuel cell technology is receiving attention due to its potential to be a pollution free method of electricity production when using renewably produced hydrogen as fuel. In a Proton Exchange Membrane (PEM) fuel cell H2 and O2 react at separate electrodes, producing electricity, thermal energy, and water. A key component of the PEM fuel cell is the membrane that separates the electrodes. DuPont’s Nafion® is the most commonly used membrane in PEM fuel cells; however, fuel cell dehydration at temperatures near 100°C, resulting in poor conductivity, is a major hindrance to fuel cell performance. Recent studies incorporating heteropoly acids (HPAs) into membranes have shown an increase in conductivity and thus improvement in performance. HPAs are inorganic materials with known high proton conductivities. The primary objective of this work is to measure the conductivity of Nafion, X-Ionomer membranes, and National Renewable Energy Laboratory (NREL) Developed Membranes that are doped with different HPAs at different concentrations. Four-point conductivity measurements using a third generation BekkTech? conductivity test cell are used to determine membrane conductivity. The effect of multiple temperature and humidification levels is also examined. While the classic commercial membrane, Nafion, has a conductivity of approximately 0.10 S/cm, measurements for membranes in this study range from 0.0030 – 0.58 S/cm, depending on membrane type, structure of the HPA, and the relative humidity. In general, the X-ionomer with H6P2W21O71 HPA gave the highest conductivity and the Nafion with the 12-phosphotungstic (PW12) HPA gave the lowest. The NREL composite membranes had conductivities on the order of 0.0013 – 0.025 S/cm.

Record, K.A.; Haley, B.T.; Turner, J.

2006-01-01T23:59:59.000Z

382

Strings at finite temperature  

SciTech Connect (OSTI)

We obtain a semiclassical evaluation of the temperature for which the free energy of the strings of spontaneously broken scalar electrodynamics vanishes. We argue that, above this temperature, these objects should play a significant physical role.

Arago C. de; Bazeia, D.; Eboli, O.J.P.; Marques, G.C.

1985-12-15T23:59:59.000Z

383

High temperature thermographic measurements of laser heated silica  

SciTech Connect (OSTI)

In situ spatial and temporal surface temperature profiles of CO{sub 2} laser-heated silica were obtained using a long wave infrared (LWIR) HgCdTe camera. Solutions to the linear diffusion equation with volumetric and surface heating are shown to describe the temperature evolution for a range of beam powers, over which the peak surface temperature scales linearly with power. These solutions were used with on-axis steady state and transient experimental temperatures to extract thermal diffusivity and conductivity for a variety of materials, including silica, spinel, sapphire, and lithium fluoride. Experimentally-derived thermal properties agreed well with reported values and, for silica, thermal conductivity and diffusivity are shown to be approximately independent of temperature between 300 and 2800K. While for silica our analysis based on a temperature independent thermal conductivity is shown to be accurate, for other materials studied this treatment yields effective thermal properties that represent reasonable approximations for laser heating. Implementation of a single-wavelength radiation measurement in the semi-transparent regime is generally discussed, and estimates of the apparent temperature deviation from the actual outer surface temperature are also presented. The experimental approach and the simple analysis presented yield surface temperature measurements that can be used to validate more complex physical models, help discriminate dominant heat transport mechanisms, and to predict temperature distribution and evolution during laser-based material processing.

Elhadj, S; Yang, S T; Matthews, M J; Cooke, D J; Bude, J D; Johnson, M; Feit, M; Draggoo, V; Bisson, S E

2009-11-02T23:59:59.000Z

384

Application of conducting polymers to electroanalysis  

SciTech Connect (OSTI)

Conducting polymers can be used as sensitive layers in chemical microsensors leading to new applications of theses devices. They offer the potential for developing material properties that are critical to the sensor sensitivity, selectivity and fabrication. The advantages and limitations of the use of thin polymer layers in electrochemical sensors are discussed.

Josowicz, M.A.

1994-04-01T23:59:59.000Z

385

Faculty and Staff Commute Report Conducted by  

E-Print Network [OSTI]

Faculty and Staff Commute Report July 2008 Conducted by #12;Executive Summary The price of gasoline at Austin is $91.35 per month. With no relief in sight to rising gasoline prices, employees are increasingly to accommodate future vehicles, such as installing charging stations on campus for plug in cars. #12;Faculty

Yang, Zong-Liang

386

Fracture Conductivity of the Eagle Ford Shale  

E-Print Network [OSTI]

such as the Eagle Ford Shale. This work investigates the fracture conductivities of seven Eagle Ford Shale samples collected from an outcrop of facies B. Rough fractures were induced in the samples and laboratory experiments that closely followed the API RP-61...

Guzek, James J

2014-07-25T23:59:59.000Z

387

Extremal structures of multiphase heat conducting composites  

E-Print Network [OSTI]

Extremal structures of multiphase heat conducting composites A.V. Cherkaev \\Lambda L.V. Gibiansky y April 19, 1995 Abstract In this paper we construct microstructures of multiphase composites with un be easily gen­ eralized for the three­dimensional composites with arbitrary number of phases. 1 Introduction

Cherkaev, Andrej

388

Code of Conduct Etiquette at Utrecht University  

E-Print Network [OSTI]

Code of Conduct Etiquette at Utrecht University What principles underpin our behaviour of Utrecht University. The Code describes the values that govern the way people work and study for sanctions. How is Utrecht University different from other universities? What do we wish to achieve? MISSION

Utrecht, Universiteit

389

How to Conduct an Energy Efficiency Study  

E-Print Network [OSTI]

This paper describes how to organize a team of specialists in order to conduct an energy efficiency study in a totally unfamiliar plant. In-plant data gathering techniques are presented as well as methods for obtaining ideas and information from...

Biles, J. E.

1979-01-01T23:59:59.000Z

390

Heat conductivity of a pion gas  

E-Print Network [OSTI]

We evaluate the heat conductivity of a dilute pion gas employing the Uehling-Uehlenbeck equation and experimental phase-shifts parameterized by means of the SU(2) Inverse Amplitude Method. Our results are consistent with previous evaluations. For comparison we also give results for an (unphysical) hard sphere gas.

Antonio Dobado Gonzalez; Felipe J. Llanes-Estrada; Juan M. Torres Rincon

2007-02-13T23:59:59.000Z

391

Conducting a Wildland Visual Resources Inventory1  

E-Print Network [OSTI]

Conducting a Wildland Visual Resources Inventory1 James F. Palmer 2/ 1/ Submitted to the National of Massachusetts, Amherst, MA 01003. Abstract: This paper describes a procedure for system- atically inventorying- tion and description of each inventoried scene are recorded on U.S. Geological Survey topographic maps

Standiford, Richard B.

392

Conduct of Operations Requirements for DOE Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

"To provide requirements and guidelines for Departmental Elements, including the National Nuclear Security Administration (NNSA), to use in developing directives, plans, and/or procedures relating to the conduct of operations at DOE facilities. The implementation of these requirements and guidelines should result in improved quality and uniformity of operations. Change 2, 10-23-2001. Canceled by DOE O 422.1.

1990-07-09T23:59:59.000Z

393

GEOPHYSICS, VOL. 63, NO. 4 (JULY-AUGUST 1998); P. 11371149, 10 FIGS., 1 TABLE. Electrical conductivity of steam-flooded,  

E-Print Network [OSTI]

conductivity of steam-flooded, clay-bearing geologic materials David B. Butler and Rosemary J. Knight ABSTRACT the conductivity of a steam zone by providing a surface conduction path that is enhanced strongly by temperature increases. Clay also increases the residual water saturation in a steam zone, further increasing

Knight, Rosemary

394

Insulating and sheathing materials of electric and optical cables - Common test methods - Part 5-1: Methods specific to filling compounds - Drop-point - Separation of oil - Lower temperature brittleness - Total acid number - Absence of corrosive components - Permittivity at 23 °C - DC resistivity at 23 °C and 100 °C  

E-Print Network [OSTI]

Specifies the test methods for filling compounds of electric cables used with telecommunication equipment. Gives the methods for drop-point, separation of oil, lower temperature brittleness, total acid number, absence of corrosive components, permittivity at 23 °C, d.c. resistivity at 23°C and 100°C.

International Electrotechnical Commission. Geneva

2004-01-01T23:59:59.000Z

395

6, 13011320, 2006 Temperature  

E-Print Network [OSTI]

ACPD 6, 1301­1320, 2006 Temperature climatology and trend estimates over Durban, South Africa H and Physics Discussions Temperature climatology and trend estimates in the UTLS region as observed over Commons License. 1301 #12;ACPD 6, 1301­1320, 2006 Temperature climatology and trend estimates over Durban

Boyer, Edmond

396

Effect of polymer-nanoparticle interactions on the glass transition dynamics and the conductivity mechanism in polyurethane titanium dioxide nanocomposites  

SciTech Connect (OSTI)

We report on the glass transition dynamics and the conductivity properties of a nanodielectric system composed of pre-synthesized TiO{sub 2} nanoparticles embedded in thermoplastic polyurethane. Increase of TiO{sub 2} loading results in enhanced segmental mobility of the composites and less steep temperature dependence, i.e., lower fragility index. The decrease in the fragility index and glass transition temperature is discussed based on the FTIR results. We observe different behavior of conductivity for temperatures above and below the glass transition temperature. At high temperatures the composites exhibit conductivity values more than 2 orders of magnitude higher than those in the pristine matrix. At the same time, at sub-Tg temperatures composites are characterized by superior electrical insulation properties compared to pristine matrix material. Such drastic temperature dependence of the conductivity/insulating ability of the flexible and light-weight, low-Tg composite material can be utilized in various applications including sensing and temperature switching materials.

Polyzos, Georgios [ORNL; Tuncer, Enis [ORNL; Agapov, Alexander L [ORNL; Stevens, Derrick [ORNL; Sokolov, Alexei P [ORNL; Kidder, Michelle [ORNL; Jacobs, [Air Force Research Laboratory, Wright-Patterson AFB, OH; Koerner, Hilmar [Air Force Research Laboratory, Wright-Patterson AFB, OH; Vaia, Richard [Air Force Research Laboratory, Wright-Patterson AFB, OH; More, Karren Leslie [ORNL; Sauers, Isidor [ORNL

2012-01-01T23:59:59.000Z

397

Renewable Energy Ready Home Solar Photovoltaic Specifications...  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Ready Home Solar Photovoltaic Specifications Renewable Energy Ready Home Solar Photovoltaic Specifications Solar Photovoltaic Specification, Checklist and Guide,...

398

Casimir effect at nonzero temperature for wedges and cylinders  

SciTech Connect (OSTI)

We consider the Casimir-Helmholtz free energy at nonzero temperature T for a circular cylinder and perfectly conducting wedge closed by a cylindrical arc, either perfectly conducting or isorefractive. The energy expression at nonzero temperature may be regularized to obtain a finite value, except for a singular corner term in the case of the wedge which is present also at zero temperature. Assuming the medium in the interior of the cylinder or wedge be nondispersive with refractive index n, the temperature dependence enters only through the nondimensional parameter 2{pi}naT, a being the radius of the cylinder or cylindrical arc. We show explicitly that the known zero-temperature result is regained in the limit aT{yields}0 and that previously derived high-temperature asymptotics for the cylindrical shell are reproduced exactly.

Ellingsen, Simen A.; Brevik, Iver; Milton, Kimball A. [Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Oklahoma Center for High Energy Physics and Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019 (United States)

2010-03-15T23:59:59.000Z

399

Software Requirements Specification Verifiable Fuel Cycle Simulation (VISION) Model  

SciTech Connect (OSTI)

The purpose of this Software Requirements Specification (SRS) is to define the top-level requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). This simulation model is intended to serve a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies.

D. E. Shropshire; W. H. West

2005-11-01T23:59:59.000Z

400

Conductance characteristics between a normal metal and a clean superconductor carrying a supercurrent  

E-Print Network [OSTI]

The effect of a transverse supercurrent I-s up to the thermodynamic critical current on the low-temperature conductance characteristics between a normal metal N and a clean s- or d-wave superconductor (S) is theoretically investigated, covering from...

Zhang, DG; Ting, CS; Hu, Chia-Ren.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Scaling laws for thermal conductivity of crystalline nanoporous silicon based on molecular dynamics simulations  

E-Print Network [OSTI]

is a potentially efficient ther- moelectric material for energy harvesting applications.11,12 Thermoelectric on the temperature and on the material.13 Good thermoelectric materials feature high electrical conductivity and high to the interdependence among r, S, and k.13 As a thermoelectric material, bulk dense crystalline Si is considered

Pilon, Laurent

402

Raman and conductivity studies of boron doped microcrystalline diamond, facetted nanocrystalline diamond  

E-Print Network [OSTI]

superconductivity at temperatures polycrystalline boron-doped CVD diamond filmsRaman and conductivity studies of boron doped microcrystalline diamond, facetted nanocrystalline diamond and cauliflower diamond films P.W. May a,*, W.J. Ludlow a , M. Hannaway a , P.J. Heard b , J

Bristol, University of

403

Thermal Conduction Path Analysis in 3-D ICs Boris Vaisband1  

E-Print Network [OSTI]

in the temperature and thermal resistance of up to, respectively, 20% and 28%. As confirmed by simulation, those [9], [10]. Thermal flow in materials is described by the Fourier Law, q = -k · T . (1) Thermal-D stack. through a unit of area) q [ W m2 ], the thermal conductivity, a property of the material k

Friedman, Eby G.

404

Journal of Power Sources 161 (2006) 11061115 Direct measurement of through-plane thermal conductivity and  

E-Print Network [OSTI]

conductivity and contact resistance in fuel cell materials Manish Khandelwal, M.M. Mench Fuel Cell Dynamics, and the thermal contact resistance between diffusion media and a metal plate as a function of temperature® membrane; Diffusion media; Thermal contact resistance 1. Introduction Detailed knowledge of the internal

Mench, Matthew M.

405

Thermal conductance of metal-diamond interfaces at high pressure Gregory T. Hohensee  

E-Print Network [OSTI]

are concerned with the exchange of thermal energy across an interface between two materials. This topic-nonmetal interface, a two-temperature model predicts a thermal resistance of Rep = 1/ gL in series with the phononThermal conductance of metal-diamond interfaces at high pressure Gregory T. Hohensee Department

Cahill, David G.

406

Heat conduction problem of an evaporating liquid T. Barta, V. Janecek, D. Prazak  

E-Print Network [OSTI]

ratio = kL/kS (e.g. for water on metallic heater 10-3 ) for which the perturbation of temperature of authors, see e.g. [13, 11, 3, 6]. Majority of research publications rely on isothermal heater pressure) of the solid heater. Such assumption is justified for vanishing liquid-solid thermal conductivity

Bárta, Tomás

407

Features of conduction mechanisms in Si/oligo-{beta}-naphthol/metal heterostructures  

SciTech Connect (OSTI)

Conduction mechanisms in Si-polymer-metal heterostructures with oligo-{beta}-naphthol as a wide band-gap polymer have been studied. The results obtained are explained within the models of hopping transport via trap levels, Schottky emission, and field tunneling emission. Different charge transport mechanisms operate in different temperature ranges and under different electric fields.

Hasannli, Sh. M., E-mail: Hasanli_sh@rambler.ru; Mursakulov, N. N.; Samedova, U. F.; Abdulzade, N. N.; Mamedov, B. A. [National Academy of Sciences of Azerbaijan, Institute of Physics (Azerbaijan); Guseynov, R. K. [Ganja State University (Azerbaijan)

2010-07-15T23:59:59.000Z

408

Graphene growth on glass 1 Synthesis of conducting transparent few-layer graphene directly  

E-Print Network [OSTI]

Graphene growth on glass 1 Synthesis of conducting transparent few-layer graphene directly on glass major hurdles that research has to overcome to get graphene out of research laboratories. Here, using transparent graphene layers at temperatures as low as 450 °C. Our few-layer graphene grows at the interface

Paris-Sud XI, Université de

409

Appendix A: Committee on Student Conduct Hearing Procedures Committee on Student Conduct Hearing Procedures  

E-Print Network [OSTI]

Appendix A: Committee on Student Conduct Hearing Procedures Committee on Student Conduct Hearing Procedures A. Introduction B. Parties to the Complaint C. Committee and Panels D. Cases of Physical. For the purpose of these procedures, the parties are identified as the University presenter and the accused

Amin, S. Massoud

410

Temperature compensated photovoltaic array  

DOE Patents [OSTI]

A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

Mosher, D.M.

1997-11-18T23:59:59.000Z

411

Temperature compensated photovoltaic array  

DOE Patents [OSTI]

A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

Mosher, Dan Michael (Plano, TX)

1997-11-18T23:59:59.000Z

412

First high-temperature electronics products survey 2005.  

SciTech Connect (OSTI)

On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

Normann, Randy Allen

2006-04-01T23:59:59.000Z

413

RESPONSIBLE CONDUCT OF RESEARCH PART II  

E-Print Network [OSTI]

in physics Premature Higgs (2011) Cold Fusion (1989) Element X (2002) Molecular Transistors (2001) 11;1989 : Cold Fusion Pons and Fleischmann announce Cold Fusion Electrolysis of heavy water Deuterium enters palladium cathode See temperature rise Detect fusion products like Helium in water 11/1/12 12 #12;Big

Shahriar, Selim

414

Conductive Thermal Interaction in Evaporative Cooling Process  

E-Print Network [OSTI]

be considered. Usually the dry-bulb depression performed by an evaporative cooler depends solely on the ambient wet-bulb temperature. The cool underground water in an evaporative cooler can cause not only adiabatic evaporation but also sensible heat transfer...

Kim, B. S.; Degelman, L. O.

1990-01-01T23:59:59.000Z

415

Numerical heat conduction in hydrodynamical models of colliding hypersonic flows  

E-Print Network [OSTI]

Hydrodynamical models of colliding hypersonic flows are presented which explore the dependence of the resulting dynamics and the characteristics of the derived X-ray emission on numerical conduction and viscosity. For the purpose of our investigation we present models of colliding flow with plane-parallel and cylindrical divergence. Numerical conduction causes erroneous heating of gas across the contact discontinuity which has implications for the rate at which the gas cools. We find that the dynamics of the shocked gas and the resulting X-ray emission are strongly dependent on the contrast in the density and temperature either side of the contact discontinuity, these effects being strongest where the postshock gas of one flow behaves quasi-adiabatically while the postshock gas of the other flow is strongly radiative. Introducing additional numerical viscosity into the simulations has the effect of damping the growth of instabilities, which in some cases act to increase the volume of shocked gas and can re-he...

Parkin, E R

2010-01-01T23:59:59.000Z

416

Rechargeable aluminum batteries with conducting polymers as positive electrodes.  

SciTech Connect (OSTI)

This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole and polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g-1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg-1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.

Hudak, Nicholas S.

2013-12-01T23:59:59.000Z

417

Multiterminal Conductance of a Floquet Topological Insulator  

E-Print Network [OSTI]

We report on simulations of the dc conductance and quantum Hall response of a Floquet topological insulator using Floquet scattering theory. Our results reveal that laser-induced edge states in graphene lead to quantum Hall plateaus once imperfect matching with the non-illuminated leads is lessened. But the magnitude of the Hall plateaus is not directly related to the number and chirality of all the edge states at a given energy as usual. Instead, the plateaus are dominated only by those edge states adding to the dc density of states. Therefore, the dc quantum Hall conductance of a Floquet topological insulator is not directly linked to topological invariants of the full the Floquet bands.

L. E. F. Foa Torres; P. M. Perez-Piskunow; C. A. Balseiro; G. Usaj

2014-09-08T23:59:59.000Z

418

Helicopter magnetic survey conducted to locate wells  

SciTech Connect (OSTI)

A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3’s (NPR-3) Teapot Dome Field near Casper, Wyoming. The survey’s purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

Veloski, G.A.; Hammack, R.W.; Stamp, V. (Rocky Mountain Oilfield Testing Center); Hall, R. (Rocky Mountain Oilfield Testing Center); Colina, K. (Rocky Mountain Oilfield Testing Center)

2008-07-01T23:59:59.000Z

419

Nuclear fission as resonance-mediated conductance  

E-Print Network [OSTI]

For 75 years the theory of nuclear fission has been based on the existence of a collective coordinate associated with the nuclear shape, an assumption required by the Bohr-Wheeler formula as well as by the R-matrix theory of fission. We show that it is also possible to formulate the theory without the help of collective coordinates. In the new formulation, fission is facilitated by individual states in the barrier region rather than channels over the barrier. In a certain limit the theory reduces to a formula closely related to the formula for electronic conductance through resonant tunneling states. In contrast, conduction through channels gives rise to a staircase excitation function that is well-known in nanoscale electronics but has never been seen in nuclear fission.

G. F. Bertsch

2014-12-18T23:59:59.000Z

420

Evaluation of high strength, high conductivity CuNiBe alloys for fusion energy applications  

SciTech Connect (OSTI)

The unirradiated tensile properties for several different heats and thermomechanical treatment conditions of precipitation strengthened Hycon 3HPTM CuNiBe (Cu-2%Ni-0.35%Be in wt.%) have been measured over the temperature range of 20-500 C for longitudinal and long transverse orientations. The room temperature electrical conductivity has also been measured for several heats, and the precipitate microstructure was characterized using transmission electron microscopy. The CuNiBe alloys exhibit very good combination of strength and conductivity at room temperature, with yield strengths of 630-725 MPa and electrical conductivities of 65-72% International Annealed Copper Standard (IACS). The strength remained relatively high at all test temperatures, with yield strengths of 420-520 MPa at 500 C. However, low levels of ductility (<5% uniform elongation) were observed at test temperatures above 200-250 C, due to flow localization near grain boundaries (exacerbated by having only 10-20 grains across the gage thickness of the miniaturized sheet tensile specimens). Scanning electron microscopy observation of the fracture surfaces found a transition from ductile transgranular to ductile intergranular fracture with increasing test temperature. Fission neutron irradiation to a dose of ~0.7 displacements per atom (dpa) at temperatures between 100 and 240 C produced a slight increase in strength and a significant decrease in ductility. The measured tensile elongation increased with increasing irradiation temperature, with a uniform elongation of ~3.3% observed at 240 C. The electrical conductivity decreased slightly following irradiation, due to the presence of defect clusters and Ni, Zn, Co transmutation products. Considering also previously published fracture toughness data, this indicates that CuNiBe alloys have irradiated tensile and electrical properties comparable or superior to CuCrZr and oxide dispersion strengthened copper at temperatures <250 C, and may be an attractive candidate for certain fusion energy structural applications. Conversely, CuNiBe may not be preferred at intermediate temperatures of 250-500 C due to the poor ductility and fracture toughness of CuNiBe alloys at temperatures >250 C. The potential deformation mechanisms responsible for the transition from transgranular to intergranular fracture are discussed. The possible implications for other precipitation hardened alloys such as nickel based superalloys are briefly discussed.

Zinkle, Steven J [ORNL] [ORNL

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Standard guide for conducting exfoliation corrosion tests in aluminum alloys  

E-Print Network [OSTI]

1.1 This guide differs from the usual ASTM standard in that it does not address a specific test. Rather, it is an introductory guide for new users of other standard exfoliation test methods, (see Terminology G 15 for definition of exfoliation). 1.2 This guide covers aspects of specimen preparation, exposure, inspection, and evaluation for conducting exfoliation tests on aluminum alloys in both laboratory accelerated environments and in natural, outdoor atmospheres. The intent is to clarify any gaps in existent test methods. 1.3 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

1992-01-01T23:59:59.000Z

422

Polymeric salt bridges for conducting electric current in microfluidic devices  

DOE Patents [OSTI]

A "cast-in-place" monolithic microporous polymer salt bridge for conducting electrical current in microfluidic devices, and methods for manufacture thereof is disclosed. Polymeric salt bridges are formed in place in capillaries or microchannels. Formulations are prepared with monomer, suitable cross-linkers, solvent, and a thermal or radiation responsive initiator. The formulation is placed in a desired location and then suitable radiation such as UV light is used to polymerize the salt bridge within a desired structural location. Embodiments are provided wherein the polymeric salt bridges have sufficient porosity to allow ionic migration without bulk flow of solvents therethrough. The salt bridges form barriers that seal against fluid pressures in excess of 5000 pounds per square inch. The salt bridges can be formulated for carriage of suitable amperage at a desired voltage, and thus microfluidic devices using such salt bridges can be specifically constructed to meet selected analytical requirements.

Shepodd, Timothy J. (Livermore, CA); Tichenor, Mark S. (San Diego, CA); Artau, Alexander (Humacao, PR)

2009-11-17T23:59:59.000Z

423

Status of surface conduction in topological insulators  

SciTech Connect (OSTI)

In this report, we scrutinize the thickness dependent resistivity data from the recent literature on electrical transport measurements in topological insulators. A linear increase in resistivity with increase in thickness is expected in the case of these materials since they have an insulating bulk and a conducting surface. However, such a trend is not seen in the resistivity versus thickness data for all the cases examined, except for some samples, where it holds for a range of thickness.

Barua, Sourabh, E-mail: sbarua@iitk.ac.in; Rajeev, K. P. [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)] [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

2014-01-15T23:59:59.000Z

424

Transverse electric conductivity of quantum collisional plasmas  

E-Print Network [OSTI]

Formulas for calculation of transverse dielectric function and transverse electric conductivity in quantum collisional plasmas under arbitrary degree of degeneracy of the electron gas are received. The Wigner - Vlasov - Boltzmann kinetic equation with collision integral in BGK (Bhatnagar, Gross and Krook) form in coordinate space is used. Various special cases are investigated. The case of fully degenerate quantum plasma was considered separately. Comparison with Lindhard's formula has been realized.

A. V. Latyshev; A. A. Yushkanov

2010-07-06T23:59:59.000Z

425

Conduct of Operations Assessment Field Handbook  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheatfor Optimized91 * September 2005 Conduct

426

Transparent conducting oxides: A -doped superlattice approach  

SciTech Connect (OSTI)

Two-dimensional electron gases (2DEGs) at the interface of oxide heterostructures have been the subject of recent experiment and theory, due to the intriguing phenomena that occur in confined electronic states. However, while much has been done to understand the origin of 2DEGs and related phenomena, very little has been explored with regards to the control of conduction pathways and the distribution of charge carriers. Using first principles simulations and experimental thin film synthesis methods, we examine the effect of dimensionality on carrier transport in La delta-doped SrTiO3 (STO) superlattices, as a function of the thickness of the insulating STO spacer. Our computed Fermi surfaces and layer-resolved carrier density proles demonstrate that there is a critical thickness of the STO spacer, below which carrier transport is dominated by three-dimensional conduction of interface charges arising from appreciable overlap of the quantum mechanical wavefunctions between neighboring delta-doped layers. We observe that, experimentally, these superlattices remain highly transparent to visible light. Band structure calculations indicate that this is a result of the appropriately large gap between the O 2p and Ti d states. The tunability of the quantum mechanical wavefunctions and the optical transparency highlight the potential for using oxide heterostructures in novel opto-electronic devices; thus providing a route to the creation of novel transparent conducting oxides.

Cooper, Valentino R [ORNL; Seo, Sung Seok A. [University of Kentucky, Lexington; Lee, Suyoun [ORNL; Kim, Jun Sung [Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea; Choi, Woo Seok [ORNL; Okamoto, Satoshi [ORNL; Lee, Ho Nyung [ORNL

2014-01-01T23:59:59.000Z

427

Conductance valve and pressure-to-conductance transducer method and apparatus  

DOE Patents [OSTI]

A device for interrupting or throttling undesired ionic transport through a fluid network is disclosed. The device acts as a fluid valve by reversibly generating a fixed "bubble" in the conducting solvent solution carried by the network. The device comprises a porous hydrophobic structure filling a portion of a connecting channel within the network and optionally incorporates flow restrictor elements at either end of the porous structure that function as pressure isolation barriers, and a fluid reservoir connected to the region of the channel containing the porous structure. Also included is a pressure pump connected to the fluid reservoir. The device operates by causing the pump to vary the hydraulic pressure to a quantity of solvent solution held within the reservoir and porous structure. At high pressures, most or all of the pores of the structure are filled with conducting liquid so the ionic conductance is high. At lower pressures, only a fraction of the pores are filled with liquid, so ionic conductivity is lower. Below a threshold pressure, the porous structure contains only vapor, so there is no liquid conduction path. The device therefore effectively throttles ionic transport through the porous structure and acts as a "conductance valve" or "pressure-to-conductance" transducer within the network.

Schoeniger, Joseph S.; Cummings, Eric B.; Brennan, James S.

2005-01-18T23:59:59.000Z

428

Information content of slug tests for estimating hydraulic properties in realistic, high-conductivity aquifer scenarios  

E-Print Network [OSTI]

Information content of slug tests for estimating hydraulic properties in realistic, high for partially-penetrating slug tests in unconfined aquifers (Malama et al., in press) provides a semi the ultimate goal of determining aquifer properties such as hydraulic conductivity K and specific storage Ss

Barrash, Warren

429

The simple boundary element method for transient heat conduction in functionally graded materials  

E-Print Network [OSTI]

of functional material variation (quadratic, exponential and trigonometric) of thermal conductivity and specific, in an FGM, one face of a structural component is an engineering ceramic that can resist severe thermal ceramic and fracture- resisting metal can improve the properties of thermal barrier systems because

Paulino, Glaucio H.

430

Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires  

SciTech Connect (OSTI)

Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: Black-Right-Pointing-Pointer A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. Black-Right-Pointing-Pointer A direct method is used to calculate phonon group velocity for these nanowires. Black-Right-Pointing-Pointer 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. Black-Right-Pointing-Pointer Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2-300 K, was performed using a modified Callaway model. Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10{sup 14} m{sup -2} the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10{sup 14} m{sup -2}, lattice thermal conductivity would be independent of that.

Mamand, S.M., E-mail: soran.mamand@univsul.net [Department of Physics, College of Science, University of Sulaimani, Sulaimanyah, Iraqi Kurdistan (Iraq); Omar, M.S. [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq)] [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq); Muhammad, A.J. [Department of Physics, College of Science, University of Kirkuk, Kirkuk (Iraq)] [Department of Physics, College of Science, University of Kirkuk, Kirkuk (Iraq)

2012-05-15T23:59:59.000Z

431

Effect of Li{sub 2}SO{sub 4} addition on structure and ionic conductivity of lithium borosilicotitanate glasses  

SciTech Connect (OSTI)

Lithium borosilicotitanate glasses containing Li{sub 2}SO{sub 4} were prepared by melt quenching technique. Electrical conductivity, density, molar volume and glass transition temperature T{sub g} for all the glass samples were measured. IR spectroscopy was used for structural studies of these glasses in the range from 400 to 2000 cm{sub ?1}. The conductivity of the Li{sub 2}SO{sub 4} containing glasses was found to be half an order higher than the base glass. The electrical conductivity was interpreted from the point of view of glass structure which suggests that an enhancement in conductivity is due to the incorporation of Li{sub 2}SO{sub 4} in the macromolecular network. The molar volume and glass transition temperature T{sub g} results are found to be in good correlation with conductivity results.

Satpute, N. S., E-mail: nspaighanp@gmail.com [Department of Applied Physics, Visvesvaraya National Institute of Technology, Nagpur-440010 (India); Deshpande, A. V. [Department of Applied Physics, Dr. Babasaheb Ambedkar College of Engineering and Research, Nagpur- 441110 (India)

2014-04-24T23:59:59.000Z

432

Absorber Materials at Room and Cryogenic Temperatures  

SciTech Connect (OSTI)

We recently reported on investigations of RF absorber materials at cryogenic temperatures conducted at Jefferson Laboratory (JLab). The work was initiated to find a replacement material for the 2 Kelvin low power waveguide Higher Order Mode (HOM) absorbers employed within the original cavity cryomodules of the Continuous Electron Beam Accelerator Facility (CEBAF). This effort eventually led to suitable candidates as reported in this paper. Furthermore, though constrained by small funds for labor and resources, we have analyzed a variety of lossy ceramic materials, several of which could be usable as HOM absorbers for both normal conducting and superconducting RF structures, e.g. as loads in cavity waveguides and beam tubes either at room or cryogenic temperatures and, depending on cooling measures, low to high operational power levels.

F. Marhauser, T.S. Elliott, A.T. Wu, E.P. Chojnacki, E. Savrun

2011-09-01T23:59:59.000Z

433

Automatic temperature adjustment apparatus  

DOE Patents [OSTI]

An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.

Chaplin, James E. (66 Overlook Rd., Bloomingdale, NJ 07403)

1985-01-01T23:59:59.000Z

434

Hanford Site environmental management specification  

SciTech Connect (OSTI)

The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL`s application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents.

Grygiel, M.L.

1998-06-10T23:59:59.000Z

435

Temperature and RH Targets  

Broader source: Energy.gov [DOE]

Presented by Vishal O Mittal of the Florida Solar Energy Center at the High Temperature Membrane Working Group Meeting, San Francisco, September 14, 2006.

436

Highly conductive electrolyte composites containing glass and ceramic, and method of manufacture  

DOE Patents [OSTI]

An electrolyte composite is manufactured by pressurizing a mixture of sodium ion conductive glass and an ionically conductive compound at between 12,000 and 24,000 pounds per square inch to produce a pellet. The resulting pellet is then sintered at relatively lower temperatures (800.degree. C.-1200.degree. C.), for example 1000.degree. C., than are typically required (1400.degree. C.) when fabricating single constituent ceramic electrolytes. The resultant composite is 100 percent conductive at 250.degree. C. with conductivity values of 2.5 to 4.times.10.sup.-2 (ohm-cm).sup.-1. The matrix exhibits chemical stability against sodium for 100 hours at 250.degree. to 300.degree. C.

Hash, Mark C. (Joliet, IL); Bloom, Ira D. (Bolingbrook, IL)

1992-01-01T23:59:59.000Z

437

LOWER TEMPERATURE ELECTROLYTE AND ELECTRODE MATERIALS  

SciTech Connect (OSTI)

A thorough literature survey on low-temperature electrolyte and electrode materials for SOFC is given in this report. Thermodynamic stability of selected electrolyte and its chemical compatibility with cathode substrate were evaluated. Preliminary electrochemical characterizations were conducted on symmetrical cells consisting of the selected electrolyte and various electrode materials. Feasibility of plasma spraying new electrolyte material thin-film on cathode substrate was explored.

Keqin Huang

2003-04-30T23:59:59.000Z

438

Synthesis of transparent conducting oxide coatings  

DOE Patents [OSTI]

A method and system for preparing a light transmitting and electrically conductive oxide film. The method and system includes providing an atomic layer deposition system, providing a first precursor selected from the group of cyclopentadienyl indium, tetrakis (dimethylamino) tin and mixtures thereof, inputting to the deposition system the first precursor for reaction for a first selected time, providing a purge gas for a selected time, providing a second precursor comprised of an oxidizer, and optionally inputting a second precursor into the deposition system for reaction and alternating for a predetermined number of cycles each of the first precursor, the purge gas and the second precursor to produce the oxide film.

Elam, Jeffrey W.; Martinson, Alex B. F.; Pellin, Michael J.; Hupp, Joseph T.

2010-05-04T23:59:59.000Z

439

Universality of conductivity in interacting graphene  

E-Print Network [OSTI]

The Hubbard model on the honeycomb lattice describes charge carriers in graphene with short range interactions. While the interaction modifies several physical quantities, like the value of the Fermi velocity or the wave function renormalization, the a.c. conductivity has a universal value independent of the microscopic details of the model: there are no interaction corrections, provided that the interaction is weak enough and that the system is at half filling. We give a rigorous proof of this fact, based on exact Ward Identities and on constructive Renormalization Group methods.

A. Giuliani; V. Mastropietro; M. Porta

2011-01-11T23:59:59.000Z

440

Conductive ceramic composition and method of preparation  

DOE Patents [OSTI]

A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell.

Smith, James L. (Lemont, IL); Kucera, Eugenia H. (Downers Grove, IL)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Code of Conduct Regarding Holiday Gifts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof aChristinaCliffPublicationCode of Conduct

442

Conductive Plays - Basement | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) | Open EnergyConductive Plays - Basement Jump to:

443

Conductive ceramic composition and method of preparation  

DOE Patents [OSTI]

A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell. 4 figures.

Smith, J.L.; Kucera, E.H.

1991-04-16T23:59:59.000Z

444

Effective hydraulic conductivity of bounded, strongly heterogeneous porous media  

E-Print Network [OSTI]

Effective hydraulic conductivity of bounded, strongly heterogeneous porous media Evangelos K of Arizona, Tucson Abstract. We develop analytical expressions for the effective hydraulic conductivity Ke boundaries. The log hydraulic conductivity Y forms a Gaussian, statistically homogeneous and anisotropic

Tartakovsky, Daniel M.

445

Optoelectronic switches based on diffusive conduction Hilmi Volkan Demira  

E-Print Network [OSTI]

Optoelectronic switches based on diffusive conduction Hilmi Volkan Demira and Fatih Hakan Koklu the process of diffusive conduction that we use in our optoelectronic switches to achieve rapid optical. We demonstrate the feasibility of using such diffusive conductive optoelectronic switches

Miller, David A. B.

446

Relationship between transport properties and phase transformations in mixed-conducting oxides  

SciTech Connect (OSTI)

To elucidate the relationship between transport properties and phase transformations in mixed-conducting oxides, Sr{sub 0.9}Ca{sub 0.1}Co{sub 0.89}Fe{sub 0.11}O{sub 3-} {sub {delta}} (SCCFO) and SrCoO{sub 3-} {sub {delta}} (SCO) were chosen as the model materials and have been investigated in detail. Oxygen permeation measurements verified that both oxides are well permeable to oxygen at elevated temperatures, e.g., at 900 deg. C during a cooling procedure, oxygen permeation rates as large as 1.5 and 2.0 mL/min/cm{sup 2} could be obtained with disk-shaped SCCFO and SCO membranes of thickness 1.5 mm, respectively. But when cooled to critical temperatures, the oxygen permeability of these kinds of oxides diminished sharply, which could be recovered by increasing the temperature again to certain values. Abrupt changes on electrical conductivity were also observed for both oxides around the same region of temperature as that of oxygen permeability. As indicated by high-temperature X-ray diffraction and thermal analysis, the SCCFO and SCO systems undergo phase transformation between a low-temperature orthorhombic brownmillerite structure (B) or a hexagonal 2H-type structure (H) and a high-temperature cubic perovskite structure (C), respectively. The present results suggest the observed abrupt changes in transport properties versus temperature are attributed to such phase transformation, which may be directly associated with the order-disorder transition of oxygen vacancies. Moreover, compared to the B/C transformation that mainly involves an order-disorder transition on the oxygen sublattice, the H/C one necessarily also involves the cooperative long-range reorganization on the cation sublattice. Therefore it occurs at a higher temperature and absorbs more heat quantity than those of B/C transformation.

Deng, Z.Q. [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)]. E-mail: dzqm@dicp.ac.cn; Yang, W.S. [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Liu, W. [Laboratory of Advanced Functional Materials and Devices, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Chen, C.S. [Laboratory of Advanced Functional Materials and Devices, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China)

2006-02-15T23:59:59.000Z

447

Joining Mixed Conducting Oxides Using an Air-Fired Electrically Conductive Braze  

SciTech Connect (OSTI)

Due to their mixed oxygen ion and electron conducting properties, ceramics such as lanthanum strontium cobalt ferrites (LSCF) are attractive materials for use in active electrochemical devices such as solid oxide fuel cells (SOFC) and oxygen separation membranes. However, to take full advantage of the unique properties of these materials, reliable joining techniques need to be developed. If such a joining technique yields a ceramic-to-metal junction that is also electrically conductive, the hermetic seals in the device could provide the added function of either drawing current from the mixed conducting oxide, in the case of SOFC applications, or carrying it to the oxide to initate ionic conduction, in the case of oxygen separation and electrocatalysis applications. This would greatly reduce the need for complex interconnect design, thereby simplifying one of the major challenges faced in SOFC development. A process referred to as reactive air brazing (RAB) has been developed in which firing a Ag-CuO filler material in air creates a functional ceramic-to-metal junction, in which the silver-based matrix of the braze affords both metallic ductility and conductivity in the joint. Investigating a range of Ag-CuO alloy combinations determined that compositions containing between 1.4 and 16 mol% CuO appear to offer the best combination of wettability, joint strength, and electrical conductivity.

Hardy, John S.; Kim, Jin Yong Y.; Weil, K. Scott

2004-10-01T23:59:59.000Z

448

Horticultural marketing in Kenya: conduct and performance  

E-Print Network [OSTI]

and standards of the market and engages in those activities that are expected to improve performance that private participants do not seem to perform efficiently. Within this general market framework, it can be 10 shown that a competitive industry is more... and specific practices and commodities. 2. examine the role of grades and standards and the transportation system in the marketing of horticultural products. 3. explore the usefulness of modern facilities and methods in the horticultural marketing industry...

Mutoka, Dickson Teyie

1981-01-01T23:59:59.000Z

449

Finite Temperature Gases of Fermionic Strings  

E-Print Network [OSTI]

We show that in the absence of a Ramond-Ramond sector both the type IIA and type IIB free string gases have a thermal instability due to low temperature tachyon modes. The gas of free IIA strings undergoes a thermal duality transition into a gas of free IIB strings at the self-dual temperature. The free heterotic string gas is a tachyon-free ensemble with gauge symmetry SO(16)$\\times$SO(16) in the presence of a timelike Wilson line background. It exhibits a holographic duality relation undergoing a self-dual phase transition with positive free energy and positive specific heat. The type IB open and closed string ensemble is related by thermal duality to the type I' string ensemble. We identify the order parameter for the Kosterlitz-Thouless phase transition from a low temperature gas of short open strings to a high temperature long string phase at or below T_C. Note Added (Sep 2005).

Shyamoli Chaudhuri

2005-09-12T23:59:59.000Z

450

LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES  

SciTech Connect (OSTI)

This report represents a summary of the work carried out on this project which started October 1999 and ended March 2003. A list of the publications resulting from the work are contained in Appendix A. The most significant achievements are: (1) Dense nanocrystalline zirconia and ceria films were obtained at temperatures < 400 C. (2) Nanocrystalline films of both ceria and zirconia were characterized. (3) We showed that under anodic conditions 0.5 to 1 micron thick nanocrystalline films of Sc doped zirconia have sufficient electronic conductivity to prevent them from being useful as an electrolyte. (4) We have developed a process by which dense 0.5 to 5 micron thick dense films of either YSZ or ceria can be deposited on sintered porous substrates which serve as either the cathode or anode at temperatures as low as 400 C. (5) The program has provided the research to produce two PhD thesis for students, one is now working in the solid oxide fuel cell field. (6) The results of the research have resulted in 69 papers published, 3 papers submitted or being prepared for publication, 50 oral presentations and 3 patent disclosures.

Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

2003-03-31T23:59:59.000Z

451

Composite material having high thermal conductivity and process for fabricating same  

DOE Patents [OSTI]

A process is disclosed for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost. 7 figs.

Colella, N.J.; Davidson, H.L.; Kerns, J.A.; Makowiecki, D.M.

1998-07-21T23:59:59.000Z

452

Composite material having high thermal conductivity and process for fabricating same  

DOE Patents [OSTI]

A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

Colella, Nicholas J. (Livermore, CA); Davidson, Howard L. (San Carlos, CA); Kerns, John A. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA)

1998-01-01T23:59:59.000Z

453

Thermopower, electrical and Hall conductivity of undoped and doped iron disilicide single crystals  

SciTech Connect (OSTI)

The electrical transport properties of {beta}-FeSi{sub 2} single crystals have been investigated in dependence on the purity of the source material and on doping with 3d transition metals. The transport properties included are electrical conductivity, Hall conductivity and thermopower mainly in the temperature range from 4K to 300K. The single crystals have been prepared by chemical transport reaction in a closed system with iodine as transport agent. In undoped single crystals prepared with 5N Fe both electrical conductivity and thermopower depend on the composition within the homogeneity range of {beta}-FeSi{sub 2} which is explained by different intrinsic defects at the Si-rich and Fe-rich phase boundaries. In both undoped and doped single crystals impurity band conduction is observed at low temperatures but above 100K extrinsic behavior determined by shallow impurity states. The thermopower shows between 100K and 200K a significant phonon drag contribution which depends on intrinsic defects and additional doping. The Hall resistivity is considered mainly with respect to an anomalous contribution found in p-type and n-type single crystals and thin films. In addition doped single crystals show at temperatures below about 130K an hysteresis of the Hall voltage. These results make former mobility data uncertain. Comparison will be made between the transport properties of single crystals and polycrystalline material.

Heinrich, A.; Behr, G.; Griessmann, H.; Teichert, S.; Lange, H.

1997-07-01T23:59:59.000Z

454

Guidance manual for conducting technology demonstration activities  

SciTech Connect (OSTI)

This demonstration guidance manual has been prepared to assist Martin Marietta Energy Systems, Inc. (Energy Systems), staff in conducting demonstrations. It is prepared in checklist style to facilitate its use and assumes that Energy Systems personnel have project management responsibility. In addition to a detailed step-by-step listing of procedural considerations, a general checklist, logic flow diagram, and several examples of necessary plans are included to assist the user in developing an understanding of the many complex activities required to manage technology demonstrations. Demonstrations are pilot-scale applications of often innovative technologies to determine the commercial viability of the technologies to perform their designed function. Demonstrations are generally conducted on well-defined problems for which existing technologies or processes are less than satisfactory in terms of effectiveness, cost, and/or regulatory compliance. Critically important issues in demonstration management include, but are not limited to, such factors as communications with line and matrix management and with the US Department of Energy (DOE) and Energy Systems staff responsible for management oversight, budgetary and schedule requirements, regulatory compliance, and safety.

Jolley, R.L.; Morris, M.I.; Singh, S.P.N.

1991-12-01T23:59:59.000Z

455

Fiber optic temperature sensor  

SciTech Connect (OSTI)

Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

Rabold, D.

1995-12-01T23:59:59.000Z

456

An automated tool for three types of saturated hydraulic conductivity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

automated tool for three types of saturated hydraulic conductivity laboratory measurements. An automated tool for three types of saturated hydraulic conductivity laboratory...

457

aquifer tests conducted: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies and Information Sciences Websites Summary: CodeofConduct British Computer Society Code of Conduct 5 SEPTEMBER 2001 VERSION 2.0 12;INTRODUCTION This Code sets out...

458

CRAD, Conduct of Operations Assessment Plan | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Conduct of Operations Assessment Plan CRAD, Conduct of Operations Assessment Plan Performance Objective: The purpose of this assessment is to verify programmatic implementation of...

459

Conduct Operations Assessment Plan - Developed By NNSA/Nevada...  

Broader source: Energy.gov (indexed) [DOE]

August 2003 - Conduct of Operations (Programmatic Implementation) Utilize Conduct of Operations - 5480.19 Utilize BN PD-0021.001 - Formality of Operations Utilize LLNL, LANL...

460

Bureau of Land Management - Notice of Intent to Conduct Geothermal...  

Open Energy Info (EERE)

Conduct Geothermal Resource Exploration Operations Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Bureau of Land Management - Notice of Intent to Conduct...

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

CRAD, Conduct of Operations - Office of River Protection K Basin...  

Broader source: Energy.gov (indexed) [DOE]

Conduct of Operations - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System May 2004 A...

462

CRAD, Conduct of Operations - Los Alamos National Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

Conduct of Operations - Los Alamos National Laboratory TA 55 SST Facility CRAD, Conduct of Operations - Los Alamos National Laboratory TA 55 SST Facility June 2005 A section of...

463

CRAD, Conduct of Operations - Oak Ridge National Laboratory TRU...  

Broader source: Energy.gov (indexed) [DOE]

Conduct of Operations - Oak Ridge National Laboratory TRU ALPHA LLWT Project CRAD, Conduct of Operations - Oak Ridge National Laboratory TRU ALPHA LLWT Project November 2003 A...

464

Continuous Processing of High Thermal Conductivity Fibers and...  

Broader source: Energy.gov (indexed) [DOE]

We are developing a continuous fabrication process for high thermal conductivity polyethylene (PE) films While high thermal conductivity in (PE) has been shown in isolated...

465

Federal Register Notice: Plan for Conduct of 2012 Electric Transmissio...  

Energy Savers [EERE]

Federal Register Notice: Plan for Conduct of 2012 Electric Transmission Congestion Study Federal Register Notice: Plan for Conduct of 2012 Electric Transmission Congestion Study...

466

Plan to Conduct Electric Transmission Congestion Study: Federal...  

Broader source: Energy.gov (indexed) [DOE]

Plan to Conduct Electric Transmission Congestion Study: Federal Register Volume 76, No. 218 - Nov. 10, 2011 Plan to Conduct Electric Transmission Congestion Study: Federal Register...

467

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...  

Broader source: Energy.gov (indexed) [DOE]

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations Commonwealth Aluminum: Manufacturer Conducts Plant-Wide...

468

Glass-like thermal conductivity in high efficiency thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Glass-like thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to...

469

Non carbon mixed conducting materials for PEFC electrocatalysts...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Non carbon mixed conducting materials for PEFC electrocatalysts and electrodes Non carbon mixed conducting materials for PEFC electrocatalysts and electrodes These slides were...

470

Low-temperature random matrix theory at the soft edge  

SciTech Connect (OSTI)

“Low temperature” random matrix theory is the study of random eigenvalues as energy is removed. In standard notation, ? is identified with inverse temperature, and low temperatures are achieved through the limit ? ? ?. In this paper, we derive statistics for low-temperature random matrices at the “soft edge,” which describes the extreme eigenvalues for many random matrix distributions. Specifically, new asymptotics are found for the expected value and standard deviation of the general-? Tracy-Widom distribution. The new techniques utilize beta ensembles, stochastic differential operators, and Riccati diffusions. The asymptotics fit known high-temperature statistics curiously well and contribute to the larger program of general-? random matrix theory.

Edelman, Alan [Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Persson, Per-Olof [Department of Mathematics, University of California, Berkeley, California 94720 (United States); Sutton, Brian D. [Department of Mathematics, Randolph-Macon College, Ashland, Virginia 23005 (United States)

2014-06-15T23:59:59.000Z

471

High temperature probe  

DOE Patents [OSTI]

A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

Swan, Raymond A. (Fremont, CA)

1994-01-01T23:59:59.000Z

472

Ultra-High Temperature Distributed Wireless Sensors  

SciTech Connect (OSTI)

Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.

May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O'Donnell, Alan; Bresnahan, Peter

2013-03-31T23:59:59.000Z

473

Apparatus for characterizing conductivity of superconducting materials  

DOE Patents [OSTI]

Apparatus and method for noncontact, radio-frequency shielding current characterization of materials. Self- or mutual inductance changes in one or more inductive elements, respectively, occur when materials capable of supporting shielding currents are placed in proximity thereto, or undergo change in resistivity while in place. Such changes can be observed by incorporating the inductor(s) in a resonant circuit and determining the frequency of oscillation or by measuring the voltage induced on a coupled inductive element. The present invention is useful for determining the critical temperature and superconducting transition width for superconducting samples. 10 figures.

Doss, J.D.

1993-12-07T23:59:59.000Z

474

Electric motor model repair specifications  

SciTech Connect (OSTI)

These model repair specifications list the minimum requirements for repair and overhaul of polyphase AC squireel cage induction motors. All power ranges, voltages, and speeds of squirrel cage motors are covered.

NONE

1995-08-01T23:59:59.000Z

475

Computational Efficient Upscaling Methodology for Predicting Thermal Conductivity of Nuclear Waste forms  

SciTech Connect (OSTI)

This study evaluated different upscaling methods to predict thermal conductivity in loaded nuclear waste form, a heterogeneous material system. The efficiency and accuracy of these methods were compared. Thermal conductivity in loaded nuclear waste form is an important property specific to scientific researchers, in waste form Integrated performance and safety code (IPSC). The effective thermal conductivity obtained from microstructure information and local thermal conductivity of different components is critical in predicting the life and performance of waste form during storage. How the heat generated during storage is directly related to thermal conductivity, which in turn determining the mechanical deformation behavior, corrosion resistance and aging performance. Several methods, including the Taylor model, Sachs model, self-consistent model, and statistical upscaling models were developed and implemented. Due to the absence of experimental data, prediction results from finite element method (FEM) were used as reference to determine the accuracy of different upscaling models. Micrographs from different loading of nuclear waste were used in the prediction of thermal conductivity. Prediction results demonstrated that in term of efficiency, boundary models (Taylor and Sachs model) are better than self consistent model, statistical upscaling method and FEM. Balancing the computation resource and accuracy, statistical upscaling is a computational efficient method in predicting effective thermal conductivity for nuclear waste form.

Li, Dongsheng; Sun, Xin; Khaleel, Mohammad A.

2011-09-28T23:59:59.000Z

476

MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE  

SciTech Connect (OSTI)

One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were {approx} 55% higher than the previous measurement of specific heat capacity on a reference Saltstone mix in 1997. Values of mixes prepared using Deliquification, Dissolution and Adjustment (DDA), Modular Caustic Side Solvent Extraction Unit (MCU) and Salt Waste Processing Facility (SWPF) simulants and premix at 0.60 w/cm ratio were {approx} 1.95 J/g/{sup o}C and were equivalent within experimental error. The simple law of mixtures was used to predict the heat capacities of the Saltstone and the results were in excellent agreement with experimental data. This simple law of mixtures can therefore be used to predict the heat capacities of Saltstone mixes in those cases where measurements have not been made. The time dependence of the heat capacity is important as an input to the modeling of temperature increase in Saltstone vaults. The heat capacity of a mix of MCU and premix at 0.60 w/cm ratio was measured immediately after initial mixing and then periodically up to times greater than 100 days. Within experimental error, the heat capacity did not change with time. Therefore, the modeling is not complicated by requiring a time dependent function for specific heat capacity. The water to cementitious material (w/cm) ratio plays a key role in determining the value of the heat capacity. Both experimental and predictive values for SWPF mixes as function of the w/cm ratio were obtained and presented in this report. Predictions of the maximum temperatures of the Saltstone mixes were made using the heat of hydration data from previous isothermal measurements and the newly measured heat capacities for DDA, MCU and SWPF mixes. The maximum temperature increase ranged from 37 to 48 C for these mixes. The presence of aluminate at 0.33 M produced a temperature increase of 68 C which is close to the adiabatic temperature rise of 74 C observed by Steimke and Fowler in 1997 for a mix containing 0.35 M aluminate. Aluminum dissolution of the sludge will increase the aluminate in the DSS which in turn will result in a larger temperature increase in the Saltstone vaults during the curing p

Harbour, J; Vickie Williams, V

2008-09-29T23:59:59.000Z

477

Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty...  

Broader source: Energy.gov (indexed) [DOE]

in the following eleven slides Current Specific Objectives: (SNL) Understand the spatial and temporal evolution of soot formation in low-temperature diesel combustion...

478

Neutrons and X-rays reveal structure of high-temperature liquid...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

first determination of the complete set of pair distribution functions for a high temperature oxide melt, which gives element-specific information on the probability of finding...

479

Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction  

SciTech Connect (OSTI)

We measure thermal transport across a graphene/hexagonal boron nitride (h-BN) interface by electrically heating the graphene and measuring the temperature difference between the graphene and BN using Raman spectroscopy. Because the temperature of the graphene and BN are measured optically, this approach enables nanometer resolution in the cross-plane direction. A temperature drop of 60?K can be achieved across this junction at high electrical powers (14 mW). Based on the temperature difference and the applied power data, we determine the thermal interface conductance of this junction to be 7.4?×?10{sup 6}?Wm{sup ?2}K{sup ?1}, which is below the 10{sup 7}–10{sup 8}?Wm{sup ?2}K{sup ?1} values previously reported for graphene/SiO{sub 2} interface.

Chen, Chun-Chung; Li, Zhen; Cronin, Stephen B. [Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States); Shi, Li [Department of Mechanical Engineering and Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States)

2014-02-24T23:59:59.000Z

480

IMPACT OF WATER TEMPERATURE ON ZEBRA MUSSEL MORTALITY  

SciTech Connect (OSTI)

These tests conducted this past quarter have indicated that the bacterium Pseudomonas fluorescens strain CL0145A is effective at killing zebra mussels at water temperatures ranging from 7 to 23 C. Percent kill will likely be somewhat lower at very low temperatures, e.g., 7 C, but even at such low temperatures high mussel kill can still be achieved (>70% kill). This is significant because the development of a zebra mussel control method that is efficacious in such a wide range of temperatures broadens its usefulness as a potential commercial product.

Daniel P. Molloy

2002-08-07T23:59:59.000Z

Note: This page contains sample records for the topic "temperature specific conductance" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Finite temperature Casimir effect for graphene  

E-Print Network [OSTI]

We adopt the Dirac model for quasiparticles in graphene and calculate the finite temperature Casimir interaction between a suspended graphene layer and a parallel conducting surface. We find that at high temperature the Casimir interaction in such system is just one half of that for two ideal conductors separated by the same distance. In this limit single graphene layer behaves exactly as a Drude metal. In particular, the contribution of the TE mode is suppressed, while one of the TM mode saturates the ideal metal value. Behaviour of the Casimir interaction for intermediate temperatures and separations accessible for an experiment is studied in some detail. We also find an interesting interplay between two fundamental constants of graphene physics: the fine structure constant and the Fermi velocity.

Ignat V. Fialkovsky; Valery N. Marachevsky; Dmitri V. Vassilevich

2011-02-09T23:59:59.000Z

482

Development of an Acoustic Sensor for On-Line Gas Temperature Measurement in Gasifiers  

SciTech Connect (OSTI)

This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2-Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. Since 1989 the U.S. Department of Energy has supported development of advanced coal gasification technology. The Wabash River and TECO IGCC demonstration projects supported by the DOE have demonstrated the ability of these plants to achieve high levels of energy efficiency and extremely low emissions of hazardous pollutants. However, a continuing challenge for this technology is the tradeoff between high carbon conversion which requires operation with high internal gas temperatures, and limited refractory life which is exacerbated by those high operating temperatures. Attempts to control internal gas temperature so as to operate these gasifiers at the optimum temperature have been hampered by the lack of a reliable technology for measuring internal gas temperatures. Thermocouples have serious survival problems and provide useful temperature information for only a few days or weeks after startup before burning out. For this reason, the Department of Energy has funded several research projects to develop more robust and reliable temperature measurement approaches for use in coal gasifiers. Enertechnix has developed a line of acoustic gas temperature sensors for use in coal-fired electric utility boilers, kraft recovery boilers, cement kilns and petrochemical process heaters. Acoustic pyrometry provides several significant advantages for gas temperature measurement in hostile process environments. First, it is non-intrusive so survival of the measurement components is not a serious problem. Second, it provides a line-of-sight average temperature rather than a point measurement, so the measured temperature is more representative of the process conditions than those provided by thermocouples. Unlike radiation pyrometers, the measured temperature is a linear average over the full path rather than a complicated function of gas temperature and the exponential Beer's law. For this reason, acoustic pyrometry is well suited to tomography allowing detailed temperature maps to be created through the use of multiple path measurements in a plane. Therefore, acoustic pyrometry is an attractive choice for measuring gas temperature inside a coal gasifier. The objective of this project is to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project is organized in three phases, each of approximately one year duration. The first phase consists of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that can be tested on an operating gasifier. The second phase consists of designing and fabricating a series of prototype sensors, testing them in the lab and at a gasifier facility, and developing a conceptual design for an engineering prototype sensor. The third phase consists of designing and fabricating the engineering prototype, testing it in the lab and in a commercial gasifier, and conducting extended field trials to demonstrate sensor performance and investigate the ability to im

Peter Ariessohn; Hans Hornung

2006-01-15T23:59:59.000Z

483