Powered by Deep Web Technologies
Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Interfacial temperature measurements, high-speed visualization and finite-element simulations of droplet impact and evaporation on a solid surface  

E-Print Network (OSTI)

The objective of this work is to investigate the coupling of fluid dynamics, heat transfer and mass transfer during the impact and evaporation of droplets on a heated solid substrate. A laser-based thermoreflectance method is used to measure the temperature at the solid-liquid interface, with a time and space resolution of 100 {\\mu}s and 20 {\\mu}m, respectively. Isopropanol droplets with micro- and nanoliter volumes are considered. A finite-element model is used to simulate the transient fluid dynamics and heat transfer during the droplet deposition process, considering the dynamics of wetting as well as Laplace and Marangoni stresses on the liquid-gas boundary. For cases involving evaporation, the diffusion of vapor in the atmosphere is solved numerically, providing an exact boundary condition for the evaporative flux at the droplet-air interface. High-speed visualizations are performed to provide matching parameters for the wetting model used in the simulations. Numerical and experimental results are compar...

Bhardwaj, Rajneesh; Attinger, Daniel

2010-01-01T23:59:59.000Z

2

Intermediate Temperature Solid Oxide Fuel Cell Development  

DOE Green Energy (OSTI)

Solid oxide fuel cells (SOFCs) are high efficiency energy conversion devices. Present materials set, using yttria stabilized zirconia (YSZ) electrolyte, limit the cell operating temperatures to 800 C or higher. It has become increasingly evident however that lowering the operating temperature would provide a more expeditious route to commercialization. The advantages of intermediate temperature (600 to 800 C) operation are related to both economic and materials issues. Lower operating temperature allows the use of low cost materials for the balance of plant and limits degradation arising from materials interactions. When the SOFC operating temperature is in the range of 600 to 700 C, it is also possible to partially reform hydrocarbon fuels within the stack providing additional system cost savings by reducing the air preheat heat-exchanger and blower size. The promise of Sr and Mg doped lanthanum gallate (LSGM) electrolyte materials, based on their high ionic conductivity and oxygen transference number at the intermediate temperature is well recognized. The focus of the present project was two-fold: (a) Identify a cell fabrication technique to achieve the benefits of lanthanum gallate material, and (b) Investigate alternative cathode materials that demonstrate low cathode polarization losses at the intermediate temperature. A porous matrix supported, thin film cell configuration was fabricated. The electrode material precursor was infiltrated into the porous matrix and the counter electrode was screen printed. Both anode and cathode infiltration produced high performance cells. Comparison of the two approaches showed that an infiltrated cathode cells may have advantages in high fuel utilization operations. Two new cathode materials were evaluated. Northwestern University investigated LSGM-ceria composite cathode while Caltech evaluated Ba-Sr-Co-Fe (BSCF) based pervoskite cathode. Both cathode materials showed lower polarization losses at temperatures as low as 600 C than conventional manganite or cobaltite cathodes.

S. Elangovan; Scott Barnett; Sossina Haile

2008-06-30T23:59:59.000Z

3

Ionic Solid Oxides for High Temperature Optical Gas Sensing in ...  

Science Conference Proceedings (OSTI)

Presentation Title, Ionic Solid Oxides for High Temperature Optical Gas Sensing in Fossil Fuel Based Power Plants. Author(s), Junhang Dong, Xiling Tang, Kurtis ...

4

High temperature solid electrolyte fuel cell configurations and interconnections  

DOE Patents (OSTI)

High temperature fuel cell configurations and interconnections are made including annular cells having a solid electrolyte sandwiched between thin film electrodes. The cells are electrically interconnected along an elongated axial outer surface.

Isenberg, Arnold O. (Forest Hills, PA)

1984-01-01T23:59:59.000Z

5

Solid oxide fuel cell operable over wide temperature range  

DOE Patents (OSTI)

Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

Baozhen, Li (Essex Junction, VT); Ruka, Roswell J. (Pittsburgh, PA); Singhal, Subhash C. (Murrysville, PA)

2001-01-01T23:59:59.000Z

6

Solid Mechanics/Finite-Element Analysis Software/Codes - TMS  

Science Conference Proceedings (OSTI)

CalculiX - A Free Software Three-Dimensional Structural Finite Element Program G. Dhondt and K. Wittig. Open Source (GPL) 3-D Finite Element Mechanics...

7

Preparation of high temperature gas-cooled reactor fuel element  

DOE Patents (OSTI)

This invention relates to a method for the preparation of high temperature gas-cooled reactor (HTGR) fuel elements wherein uncarbonized fuel rods are inserted in appropriate channels of an HTGR fuel element block and the entire block is inserted in an autoclave for in situ carbonization under high pressure. The method is particularly applicable to remote handling techniques.

Bradley, Ronnie A. (Oak Ridge, TN); Sease, John D. (Knoxville, TN)

1976-01-01T23:59:59.000Z

8

EA-0510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator Development Project (METC), Churchill, Pennsylvania EA-0510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator...

9

Solid electrolytes for medium temperature steam electrolysis  

SciTech Connect

A research program has been initiated to screen and select electrolyte materials for use in steam electrolyzers in the 300 to 600/sup 0/C temperature range. Screening of a significant number of acid anhydrides, hydroxides, oxides, and phosphates for their electrolytic conductivity properties is underway. Of the binary materials examined to date, only polymerized phosphoric acid, immobilized on an H/sup +/ substituted zeolite, shows promise. A substantial number of ternary compounds remain to be synthesized and evaluated. 7 references, 4 figures, 4 tables.

Findl, E.; Kulesa, F.; Montoneri, E.

1984-04-01T23:59:59.000Z

10

High temperature solid oxide fuel development activities  

DOE Green Energy (OSTI)

This paper presents an overview of the Westinghouse tubular SOFC development activities and current program status. Goal is to develop a cell that can operate for 50,000 to 100,000 h. Test results are presented for multiple single cell tests which have now successfully exceeded 40,000 hours of continuous power operation at temperature. Two 25-kW SOFC customer tests units were delivered in 1992; a 20-kW SOFC system is bein manufactured and will be operated by Southern California Edison in 1995. Megawatt class generators are being developed.

Ray, E.R.

1993-11-01T23:59:59.000Z

11

Modeling of interfaces in two-dimensional problems using solid finite elements with high aspect ratio  

Science Conference Proceedings (OSTI)

The use of standard solid finite elements with a very high aspect ratio is proposed to model the behavior of thin interface regions between distinct components of composite structural members. It is shown that these elements present the same kinematics ... Keywords: Bond-slip, Damage model, Finite elements, Interface model, Reinforced concrete, Strong discontinuity

O. L. Manzoli; A. L. Gamino; E. A. Rodrigues; G. K. S. Claro

2012-03-01T23:59:59.000Z

12

GRR/Elements/18-CA-a.2 - Is the Waste Non-excluded Solid Waste...  

Open Energy Info (EERE)

2 - Is the Waste Non-excluded Solid Waste < GRR | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections...

13

Structural Mechanics & Solid Mechanics A finite element toolbox to MATLAB  

E-Print Network (OSTI)

Structural Mechanics & Solid Mechanics Department of Mechanics and Materials CALFEM A finite.3 Copyright © 1999 by Structural Mechanics, LTH, Sweden. Printed by JABE Offset, Lund, Sweden. ISRN LUTVDG/TVSM--99/9001--SE (1-265) ISSN 0281-6679 Department of Mechanics and Materials Structural Mechanics #12;The

Ehrhardt, Matthias

14

Finite element analysis of monolithic solid oxide fuel cells  

DOE Green Energy (OSTI)

This paper investigates the stress and fracture behavior of a monolithic solid oxide fuel cell (MSOFC) currently under joint development by Allied Signal Corporation and Argonne National Laboratory. The MSOFC is an all-ceramic fuel cell capable of high power density and tolerant of a variety of hydrocarbon fuels, making it potentially attractive for stationary utility and mobile transportation systems. The monolithic design eliminates inactive structural supports, increases active surface area, and lowers voltage losses caused by internal resistance.

Saigal, A. [Tufts Univ., Medford, MA (United States). Dept. of Mechanical Engineering; Majumdar, S. [Argonne National Lab., IL (United States)

1992-04-01T23:59:59.000Z

15

Finite element analysis of monolithic solid oxide fuel cells  

DOE Green Energy (OSTI)

This paper investigates the stress and fracture behavior of a monolithic solid oxide fuel cell (MSOFC) currently under joint development by Allied Signal Corporation and Argonne National Laboratory. The MSOFC is an all-ceramic fuel cell capable of high power density and tolerant of a variety of hydrocarbon fuels, making it potentially attractive for stationary utility and mobile transportation systems. The monolithic design eliminates inactive structural supports, increases active surface area, and lowers voltage losses caused by internal resistance.

Saigal, A. (Tufts Univ., Medford, MA (United States). Dept. of Mechanical Engineering); Majumdar, S. (Argonne National Lab., IL (United States))

1992-01-01T23:59:59.000Z

16

The experimental evaluation and application of high temperature solid lubricants  

Science Conference Proceedings (OSTI)

A research program meant to develop an understanding of high temperature solid lubrication and experimental techniques through the development of a composite lubricant coating system was described. The knowledge gained through this research was then applied to a specific engineering challenge, the tribology of a sliding seal for hypersonic flight vehicles. The solid lubricant coating is a chromium carbide based composite combined with silver, which acts as a low temperature lubricant, and barium fluoride/calcium fluoride eutectic, which acts as a high temperature lubricant. This composite coating provides good wear resistance and low friction for sliding contacts from room temperature to over 900 C in reducing or oxidative environments. The specific research on this coating included a composition screening using a foil gas bearing test rig and the use of thin silver films to reduce initial wear using a pin-on-disk test rig. The chemical stability of the materials used was also addressed. This research indicated that soft metallic films and materials which become soft at elevated temperatures are potentially good lubricants. The general results from the experiments with the model solid libricant coating were then applied to a sliding seal design concept. This seal design requires that a braided ceramic fabric slide against a variety of metal counterface materials at temperatures from 25 to 850 C in an oxidative environment. A pin-on-disk tribometer was used to evaluate the tribological properties of these materials and to develop lubrication techniques. The results indicate that these materials must be lubricated to prevent wear and reduce friction. Thin films of silver, gold and calcium fluoride provided lubrication to the sliding materials. The data obtained and the lubrication techniques developed provide important information to designers of sliding seals.

Dellacorte, C.

1989-01-01T23:59:59.000Z

17

Low Temperature Constrained Sintering of Cerium Gadolinium Oxide Films for Solid Oxide Fuel Cell Applications  

E-Print Network (OSTI)

Temperature Solid Oxide Fuel Cells, In: S.C. Singhal and M.Tubular Solid Oxide Fuel Cell Technology, U.S. Department ofOxide Films for Solid Oxide Fuel Cell Applications by Jason

Nicholas, Jason.D.

2007-01-01T23:59:59.000Z

18

High temperature solid lubricant materials for heavy duty and advanced heat engines  

DOE Green Energy (OSTI)

Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature sterling engines, sidewall seals of rotary engines and various exhaust valve and exhaust component applications. The following paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis to heavy duty and advanced heat engines.

DellaCorte, C.; Wood, J.C.

1994-10-01T23:59:59.000Z

19

Development of Low-Cost Manufacturing Processes for Planar, Multilayer Solid Oxide Fuel Cell Elements  

DOE Green Energy (OSTI)

This report summarizes the results of Phase II of this program, 'Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'. The objective of the program is to develop advanced ceramic manufacturing technologies for making planar solid oxide fuel cell (SOFC) components that are more economical and reliable for a variety of applications. Phase II development work focused on three distinct manufacturing approaches (or tracks) for planar solid oxide fuel cell elements. Two development tracks, led by NexTech Materials and Oak Ridge National Laboratory, involved co-sintering of planar SOFC elements of cathode-supported and anode-supported variations. A third development track, led by the University of Missouri-Rolla, focused on a revolutionary approach for reducing operating temperature of SOFCs by using spin-coating to deposit ultra-thin, nano-crystalline YSZ electrolyte films. The work in Phase II was supported by characterization work at Ohio State University. The primary technical accomplishments within each of the three development tracks are summarized. Track 1--NexTech's targeted manufacturing process for planar SOFC elements involves tape casting of porous electrode substrates, colloidal-spray deposition of YSZ electrolyte films, co-sintering of bi-layer elements, and screen printing of opposite electrode coatings. The bulk of NexTech's work focused on making cathode-supported elements, although the processes developed at NexTech also were applied to the fabrication of anode-supported cells. Primary accomplishments within this track are summarized below: (1) Scale up of lanthanum strontium manganite (LSM) cathode powder production process; (2) Development and scale-up of tape casting methods for cathode and anode substrates; (3) Development of automated ultrasonic-spray process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer elements (both cathode and anode supported); (5) Development of anode and cathode screen-printing processes; and (6) Demonstration of novel processes for composite cathode and cermet anode materials. Track 2--ORNL's development work focused solely on making anode-supported planar cells by tape casting of a porous anode substrate, screen printing of a YSZ electrolyte film, co-sintering of the bi-layer element, and screen-printing of an opposite cathode coating. Primary accomplishments within this track are summarized below: (1) Development and scale-up of anode tape casting and lamination processes; (2) Development of proprietary ink vehicle for screen-printing processes; (3) Development of screen-printing process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer anode-supported elements; and (5) Development of cathode screen-printing process. Track 3--UMR's process development work involved fabrication of a micro-porous cathode substrate, deposition of a nano-porous interlayer film, deposition of nano-crystalline YSZ electrolyte films from polymeric precursor solutions, and deposition of an anode coating. Primary accomplishments within this track are summarized below: (1) Development and scale up of tape casting and sintering methods for cathode substrates; (2) Deposition of nano-porous ceria interlayer films on cathode substrates; (3) Successful deposition of dense YSZ films on porous cathode substrates; and (4) Identification of several anode material options.

Scott Swartz; Matthew Seabaugh; William Dawson; Tim Armstrong; Harlan Anderson; John Lannutti

2001-09-30T23:59:59.000Z

20

A piezoelectric solid shell element based on a mixed variational formulation for geometrically linear and nonlinear applications  

Science Conference Proceedings (OSTI)

The paper is focused on a piezoelectric solid shell finite element formulation. A geometrically nonlinear theory allows large deformations and includes stability problems. The formulation is based on a variational principle of the Hu-Washizu type including ... Keywords: Finite element method, Mixed formulation, Piezoelectricity, Smart structures, Solid shell element

Sven Klinkel; Werner Wagner

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents (OSTI)

The invention is comprised of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb{sub x}Ta{sub y}Ce{sub 1{minus}x{minus}y}O{sub 2} where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same is also described. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell, characterized by a first electrode; an electrically conductive interlayer of niobium and/or tantalum doped cerium oxide deposited over at least a first portion of the first electrode; an interconnect deposited over the interlayer; a solid electrolyte deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode deposited over the solid electrolyte. The interlayer is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode, an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer is a dense yttria stabilized zirconium oxide, the interconnect layer is a dense, doped lanthanum chromite, and the second electrode, a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy. 5 figs.

Singh, P.; Vasilow, T.R.; Richards, V.L.

1996-05-14T23:59:59.000Z

22

Protective interlayer for high temperature solid electrolyte electrochemical cells  

DOE Patents (OSTI)

The invention comprises of an electrically conducting doped or admixed cerium oxide composition with niobium oxide and/or tantalum oxide for electrochemical devices, characterized by the general formula: Nb.sub.x Ta.sub.y Ce.sub.1-x-y O.sub.2 where x is about 0.0 to 0.05, y is about 0.0 to 0.05, and x+y is about 0.02 to 0.05, and where x is preferably about 0.02 to 0.05 and y is 0, and a method of making the same. This novel composition is particularly applicable in forming a protective interlayer of a high temperature, solid electrolyte electrochemical cell (10), characterized by a first electrode (12); an electrically conductive interlayer (14) of niobium and/or tantalum doped cerium oxide deposited over at least a first portion (R) of the first electrode; an interconnect (16) deposited over the interlayer; a solid electrolyte (18) deposited over a second portion of the first electrode, the first portion being discontinuous from the second portion; and, a second electrode (20) deposited over the solid electrolyte. The interlayer (14) is characterized as being porous and selected from the group consisting of niobium doped cerium oxide, tantalum doped cerium oxide, and niobium and tantalum doped cerium oxide or admixtures of the same. The first electrode (12), an air electrode, is a porous layer of doped lanthanum manganite, the solid electrolyte layer (18) is a dense yttria stabilized zirconium oxide, the interconnect layer (16) is a dense, doped lanthanum chromite, and the second electrode (20), a fuel electrode, is a porous layer of nickel-zirconium oxide cermet. The electrochemical cell (10) can take on a plurality of shapes such as annular, planar, etc. and can be connected to a plurality of electrochemical cells in series and/or in parallel to generate electrical energy.

Singh, Prabhakar (Export, PA); Vasilow, Theodore R. (Manor, PA); Richards, Von L. (Angola, IN)

1996-01-01T23:59:59.000Z

23

DEGRADATION ISSUES IN SOLID OXIDE CELLS DURING HIGH TEMPERATURE ELECTROLYSIS  

DOE Green Energy (OSTI)

Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problems between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL's test results on high temperature electrolysis (HTE) using solid oxide cells do not provide a clear evidence whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become non-conductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. University of Utah (Virkar) has developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic non-equilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte.

M. S. Sohal; J. E. O'Brien; C. M. Stoots; V. I. Sharma; B. Yildiz; A. Virkar

2012-02-01T23:59:59.000Z

24

New Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells  

DOE Green Energy (OSTI)

Operation of SOFCs at intermediate temperatures (500-800 C) requires new combinations of electrolyte and electrode materials that will provide both rapid ion transport across the electrolyte and electrode-electrolyte interfaces and efficient electrocatalysis of the oxygen reduction and fuel oxidation reactions. This project concentrates on materials and issues associated with cathode performance that are known to become limiting factors as the operating temperature is reduced. The specific objectives of the proposed research are to develop cathode materials that meet the electrode performance targets of 1.0 W/cm{sup 2} at 0.7 V in combination with YSZ at 700 C and with GDC, LSGM or bismuth oxide based electrolytes at 600 C. The performance targets imply an area specific resistance of {approx}0.5 {Omega}cm{sup 2} for the total cell. The research strategy is to investigate both established classes of materials and new candidates as cathodes, to determine fundamental performance parameters such as bulk diffusion, surface reactivity and interfacial transfer, and to couple these parameters to performance in single cell tests. In this report, further measurements of the oxygen deficient double perovskite PrBaCo{sub 2}O{sub 5.5+{delta}} are reported. The high electronic conductivity and rapid diffusion and surface exchange kinetics of PBCO suggest its application as cathode material in intermediate temperature solid oxide fuel cells. Preliminary measurements in symmetric cells have shown low ASR values at 600 C. Here we describe the first complete cell measurements on Ni/CGO/CGO/PBCO/CGO cells.

Allan J. Jacobson

2006-06-30T23:59:59.000Z

25

Materials System for Intermediate Temperature Solid Oxide Fuel Cell  

DOE Green Energy (OSTI)

AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed strontium-and-magnesium-doped lanthanum gallate electrolyte, La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSGM). The objective of the study was to identify the materials system for fabrication and evaluation of intermediate temperature (600-800 C) solid oxide fuel cells (SOFCs). The slurry-coated electrode materials had fine porosity to enhance catalytic activity. Cathode materials investigated include La{sub 1-x}Sr{sub x}MnO{sub 3} (LSM), LSCF (La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3}), a two-phase particulate composite consisting of LSM-doped-lanthanum gallate (LSGM), and LSCF-LSGM. The anode materials were Ni-Ce{sub 0.85}Gd{sub 0.15}O{sub 2} (Ni-GDC) and Ni-Ce{sub 0.6}La{sub 0.4}O{sub 2} (Ni-LDC) composites. Experiments conducted with the anode materials investigated the effect of having a barrier layer of GDC or LDC in between the LSGM electrolyte and the Ni-composite anode to prevent adverse reaction of the Ni with lanthanum in LSGM. For proper interpretation of the beneficial effects of the barrier layer, similar measurements were performed without the barrier layer. The ohmic and the polarization resistances of the system were obtained over time as a function of temperature (600-800 C), firing temperature, thickness, and the composition of the electrodes. The study revealed important details pertaining to the ohmic and the polarization resistances of the electrode as they relate to stability and the charge-transfer reactions that occur in such electrode structures.

Uday B. Pal; Srikanth Gopalan

2005-01-24T23:59:59.000Z

26

New Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells  

DOE Green Energy (OSTI)

Operation of SOFCs at intermediate temperatures (500-800 C) requires new combinations of electrolyte and electrode materials that will provide both rapid ion transport across the electrolyte and electrode--electrolyte interfaces and efficient electrocatalysis of the oxygen reduction and fuel oxidation reactions. This project concentrates on materials and issues associated with cathode performance that are known to become limiting factors as the operating temperature is reduced. The specific objectives of the proposed research are to develop cathode materials that meet the electrode performance targets of 1.0 W/cm{sup 2} at 0.7 V in combination with YSZ at 700 C and with GDC, LSGM or bismuth oxide based electrolytes at 600 C. The performance targets imply an area specific resistance of {approx}0.5 {Omega}cm{sup 2} for the total cell. The research strategy is to investigate both established classes of materials and new candidates as cathodes, to determine fundamental performance parameters such as bulk diffusion, surface reactivity and interfacial transfer, and to couple these parameters to performance in single cell tests. In this report, the oxygen exchange kinetics of a P2 composition are described in detail. The oxygen exchange kinetics of the oxygen deficient double perovskite LnBaCo{sub 2}O{sub 5.5+{delta}} (Ln=Pr and Nd) have been determined by electrical conductivity relaxation. The high electronic conductivity and rapid diffusion and surface exchange kinetics of PBCO suggest its application as cathode material in intermediate temperature solid oxide fuel cells.

Allan J. Jacobson

2005-11-17T23:59:59.000Z

27

Materials System for Intermediate Temperature Solid Oxide Fuel Cell  

DOE Green Energy (OSTI)

The objective of this work was to obtain a stable materials system for intermediate temperature solid oxide fuel cell (SOFC) capable of operating between 600-800 C with a power density greater than 0.2 W/cm{sup 2}. The solid electrolyte chosen for this system was La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3}, (LSGM). To select the right electrode materials from a group of possible candidate materials, AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed the LSGM electrolyte. Based on the results of the investigation, LSGM electrolyte supported SOFCs were fabricated with La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3}-La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSCF-LSGM) composite cathode and Nickel-Ce{sub 0.6}La{sub 0.4}O{sub 3} (Ni-LDC) composite anode having a barrier layer of Ce{sub 0.6}La{sub 0.4}O{sub 3} (LDC) between the LSGM electrolyte and the Ni-LDC anode. Electrical performance and stability of these cells were determined and the electrode polarization behavior as a function of cell current was modeled between 600-800 C. The electrical performance of the anode-supported SOFC was simulated assuming an electrode polarization behavior identical to the LSGM-electrolyte-supported SOFC. The simulated electrical performance indicated that the selected material system would provide a stable cell capable of operating between 600-800 C with a power density between 0.2 to 1 W/cm{sup 2}.

Uday B. Pal; Srikanth Gopalan

2006-01-12T23:59:59.000Z

28

Measurement and finite element analysis of temperature distribution in arc welding process  

Science Conference Proceedings (OSTI)

This presentation describes both the experimental measurement and finite element analysis used to study the temperature distribution during a metal inert gas (MIG) welding process, including the cooling down period. Welding was carried out on ... Keywords: FEA, MIG welding, arc welding, cracking, finite element analysis, metal inert gas welding, residual stress, simulation, temperature distribution, weldment temperature

C. K. Lee; J. Candy; C. P. H. Tan

2004-12-01T23:59:59.000Z

29

Degradation in Solid Oxide Cells During High Temperature Electrolysis  

DOE Green Energy (OSTI)

Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells. One goal of that project is to address the technical and degradation issues associated with solid oxide electrolysis cells. This report covers a variety of these degradation issues, which were discussed during a workshop on Degradation in Solid Oxide Electrolysis Cells and Strategies for its Mitigation, held in Phoenix, AZ on October 27, 2008. Three major degradation issues related to solid oxide electrolysis cells discussed at the workshop are: Delamination of O2-electrode and bond layer on steam/O2-electrode side Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple-phase boundary) Loss of electrical/ionic conductivity of electrolyte. This list is not all inclusive, but the workshop summary can be useful in providing a direction for future research related to the degradation of solid oxide electrolysis cells.

Manohar Sohal

2009-05-01T23:59:59.000Z

30

EA-0510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator 510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator Development Project (METC), Churchill, Pennsylvania EA-0510: High-Temperature Solid Oxide Fuel Cell (Sofc) Generator Development Project (METC), Churchill, Pennsylvania SUMMARY This EA evaluates the environmental impacts of a proposal to enter into a 5-year cooperative agreement with the Westinghouse Electric Corporation for the development of high-temperature solid oxide fuel cell generators near Pittsburgh, Pennsylvania. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 1, 1991 EA-0510: Final Environmental Assessment High-Temperature Solid Oxide Fuel Cell (Sofc) Generator Development Project (METC) August 1, 1991 EA-0510: Finding of No Significant Impact

31

Size Dependence of a Temperature-Induced Solid-Solid Phase Transition in Copper(I) Sulfide  

DOE Green Energy (OSTI)

Determination of the phase diagrams for the nanocrystalline forms of materials is crucial for our understanding of nanostructures and the design of functional materials using nanoscale building blocks. The ability to study such transformations in nanomaterials with controlled shape offers further insight into transition mechanisms and the influence of particular facets. Here we present an investigation of the size-dependent, temperature-induced solid-solid phase transition in copper sulfide nanorods from low- to high-chalcocite. We find the transition temperature to be substantially reduced, with the high chalcocite phase appearing in the smallest nanocrystals at temperatures so low that they are typical of photovoltaic operation. Size dependence in phase trans- formations suggests the possibility of accessing morphologies that are not found in bulk solids at ambient conditions. These other- wise-inaccessible crystal phases could enable higher-performing materials in a range of applications, including sensing, switching, lighting, and photovoltaics.

Rivest, Jessy B; Fong, Lam-Kiu; Jain, Prashant K; Toney, Michael F; Alivisatos, A Paul

2011-07-24T23:59:59.000Z

32

Solid state thin film battery having a high temperature lithium alloy anode  

SciTech Connect

An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

Hobson, David O. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

33

Low Temperature Constrained Sintering of Cerium Gadolinium OxideFilms for Solid Oxide Fuel Cell Applications  

SciTech Connect

Cerium gadolinium oxide (CGO) has been identified as an acceptable solid oxide fuel cell (SOFC) electrolyte at temperatures (500-700 C) where cheap, rigid, stainless steel interconnect substrates can be used. Unfortunately, both the high sintering temperature of pure CGO, >1200 C, and the fact that constraint during sintering often results in cracked, low density ceramic films, have complicated development of metal supported CGO SOFCs. The aim of this work was to find new sintering aids for Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95}, and to evaluate whether they could be used to produce dense, constrained Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} films at temperatures below 1000 C. To find the optimal sintering aid, Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} was doped with a variety of elements, of which lithium was found to be the most effective. Dilatometric studies indicated that by doping CGO with 3mol% lithium nitrate, it was possible to sinter pellets to a relative density of 98.5% at 800 C--a full one hundred degrees below the previous low temperature sintering record for CGO. Further, it was also found that a sintering aid's effectiveness could be explained in terms of its size, charge and high temperature mobility. A closer examination of lithium doped Ce0.9Gd0.1O1.95 indicated that lithium affects sintering by producing a Li{sub 2}O-Gd{sub 2}O{sub 3}-CeO{sub 2} liquid at the CGO grain boundaries. Due to this liquid phase sintering, it was possible to produce dense, crack-free constrained films of CGO at the record low temperature of 950 C using cheap, colloidal spray deposition processes. This is the first time dense constrained CGO films have been produced below 1000 C and could help commercialize metal supported ceria based solid oxide fuel cells.

Nicholas, Jason.D.

2007-06-30T23:59:59.000Z

34

New Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells  

DOE Green Energy (OSTI)

Operation of SOFCs at intermediate temperatures (500-800 C) requires new combinations of electrolyte and electrode materials that will provide both rapid ion transport across the electrolyte and electrode-electrolyte interfaces and efficient electrocatalysis of the oxygen reduction and fuel oxidation reactions. This project concentrates on materials and issues associated with cathode performance that are known to become limiting factors as the operating temperature is reduced. The specific objectives of the proposed research are to develop cathode materials that meet the electrode performance targets of 1.0 W/cm{sup 2} at 0.7 V in combination with YSZ at 700 C and with GDC, LSGM or bismuth oxide based electrolytes at 600 C. The performance targets imply an area specific resistance of {approx}0.5 {Omega}cm{sup 2} for the total cell. The research strategy is to investigate both established classes of materials and new candidates as cathodes, to determine fundamental performance parameters such as bulk diffusion, surface reactivity and interfacial transfer, and to couple these parameters to performance in single cell tests. The initial choices for study were perovskite oxides based on substituted LaFeO{sub 3} (P1 compositions), where significant data in single cell tests exist at PNNL for example, for La{sub 0.8}Sr{sub 0.2}FeO{sub 3} cathodes on both YSZ and CSO/YSZ. The materials selection was then extended to La{sub 2}NiO{sub 4} compositions (K1 compositions), and then in a longer range task we evaluated the possibility of completely unexplored group of materials that are also perovskite related, the ABM{sub 2}O{sub 5+{delta}}. A key component of the research strategy was to evaluate for each cathode material composition, the key performance parameters, including ionic and electronic conductivity, surface exchange rates, stability with respect to the specific electrolyte choice, and thermal expansion coefficients. In the initial phase, we did this in parallel with the perovskite compositions that were being investigated at PNNL, in order to assess the relative importance of the intrinsic properties such as oxygen ion diffusion and surface exchange rates as predictors of performance in cell tests. We then used these measurements to select new materials for scaled up synthesis and performance evaluation in single cell tests. The results of the single cell tests than provided feedback to the materials synthesis and selection steps. In this summary, the following studies are reported: (1) Synthesis, characterization, and DC conductivity measurements of the P1 compositions La{sub 0.8}Sr{sub 0.2}FeO{sub 3-x} and La{sub 0.7}Sr{sub 0.3}FeO{sub 3-x} were completed. A combinational approach for preparing a range P1 (La,Sr)FeO{sub 3} compositions as thin films was investigated. Synthesis and heat treatment of amorphous SrFeO{sub 3-x} and LaFeO{sub 3-x} films prepared by pulsed laser deposition are described. (2) Oxygen transport properties of K1 compositions La{sub x}Pr{sub 2-x}NiO{sub 4+d} (x =2.0, 1.9, 1.2, 1.0 and 0) measured by electrical conductivity relaxation are presented in this report. Area specific resistances determined by ac impedance measurements for La{sub 2}NiO{sub 4+{delta}} and Pr{sub 2}NiO{sub 4+{delta}} on CGO are encouraging and suggest that further optimization of the electrode microstructure will enable the target to be reached. (3) The oxygen exchange kinetics of the oxygen deficient double perovskite LnBaCo{sub 2}O{sub 5.5+{delta}} (Ln=Pr and Nd) were determined by electrical conductivity relaxation. The high electronic conductivity and rapid diffusion and surface exchange kinetics of PBCO suggest its application as cathode material in intermediate temperature solid oxide fuel cells. The first complete cell measurements were performed on Ni/CGO/CGO/PBCO/CGO cells. (4) The oxygen exchange kinetics of highly epitaxial thin films of PrBaCo{sub 2}O{sub 5.5+{delta}} (PBCO) has been determined by electrical conductivity relaxation and isotope exchange and depth profiling and confirm the high electronic conductivit

Allan J. Jacobson

2006-09-30T23:59:59.000Z

35

A finite element analysis modeling tool for solid oxide fuel cell development: coupled electrochemistry, thermal and flow analysis in MARC  

Science Conference Proceedings (OSTI)

A 3D simulation tool for modeling solid oxide fuel cells is described. The tool combines the versatility and efficiency of a commercial finite element analysis code, MARC{reg_sign}, with an in-house developed robust and flexible electrochemical (EC) module. Based upon characteristic parameters obtained experimentally and assigned by the user, the EC module calculates the current density distribution, heat generation, and fuel and oxidant species concentration, taking the temperature profile provided by MARC{reg_sign} and operating conditions such as the fuel and oxidant flow rate and the total stack output voltage or current as the input. MARC{reg_sign} performs flow and thermal analyses based on the initial and boundary thermal and flow conditions and the heat generation calculated by the EC module. The main coupling between MARC{reg_sign} and EC is for MARC{reg_sign} to supply the temperature field to EC and for EC to give the heat generation profile to MARC{reg_sign}. The loosely coupled, iterative scheme is advantageous in terms of memory requirement, numerical stability and computational efficiency. The coupling is iterated to self-consistency for a steady-state solution. Sample results for steady states as well as the startup process for stacks with different flow designs are presented to illustrate the modeling capability and numerical performance characteristic of the simulation tool.

Khaleel, Mohammad A.; Lin, Zijing; Singh, Prabhakar; Surdoval, Wayne; Collin, D

2004-05-03T23:59:59.000Z

36

Solid-State Radiometer Measurements of Sea Surface Skin Temperature  

Science Conference Proceedings (OSTI)

Satellite sea surface skin temperature (SSST) maps are readily available from precisely calibrated radiometer systems such as the ERS along-track scanning radiometer and, in the near future, from the moderate-resolution imaging spectroradiometer. ...

C. J. Donlon; S. J. Keogh; D. J. Baldwin; I. S. Robinson; I. Ridley; T. Sheasby; I. J. Barton; E. F. Bradley; T. J. Nightingale; W. Emery

1998-06-01T23:59:59.000Z

37

Market Impacts of Rare Earth Element Use in Solid Oxide Fuel Cells  

E-Print Network (OSTI)

Contract Number: DE-FE0004002 (Subcontract: S013-JTH-PPM4002 MOD 00) Summary Rare earth elements (REEs) are critical to the function and performance of solid oxide fuel cells (SOFCs) 1. Given the concentration of commercially minable REE deposits and production in China (and especially given recent tightening of its export quota), the US Department of Energy is interested in understanding how REE demand for SOFC applications could impact REE markets and vice versa. Yttria (yttrium oxide), lanthanum oxide, and ceria (cerium oxide) are important materials in the ceramic cells that form the core of any solid oxide fuel cell, imparting on the functional layers of the cells ionic conductivity, electronic conductivity, and/or structural strength. Gadolinium, scandium, and samarium are also used in some SOFC designs. The amounts of REEs contained in state-of-the-art SOFC are modest, and represent less than 5% of annual production (Table 1). Spent SOFC stacks and production waste will likely be recycled for their metal and REE content, which would reduce REE demand for stack replacements by

J. Thijssen Llc

2010-01-01T23:59:59.000Z

38

DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS  

DOE Green Energy (OSTI)

This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

2004-06-12T23:59:59.000Z

39

The application of the wavelet finite element method on the temperature calculation of ceramic coating diesel engine piston  

Science Conference Proceedings (OSTI)

In order to analyse the temperature distribution of diesel engine piston, the wavelet finite element was constructed based on Daubechies wavelet scale function and traditional finite element. And the temperature distribution of the conventional and ceramic ...

Bin Zhao

2011-09-01T23:59:59.000Z

40

HIGH-TEMPERATURE TUBULAR SOLID OXIDE FUEL CELL GENERATOR DEVELOPMENT  

DOE Green Energy (OSTI)

During the Westinghouse/USDOE Cooperative Agreement period of November 1, 1990 through November 30, 1997, the Westinghouse solid oxide fuel cell has evolved from a 16 mm diameter, 50 cm length cell with a peak power of 1.27 watts/cm to the 22 mm diameter, 150 cm length dimensions of today's commercial prototype cell with a peak power of 1.40 watts/cm. Accompanying the increase in size and power density was the elimination of an expensive EVD step in the manufacturing process. Demonstrated performance of Westinghouse's tubular SOFC includes a lifetime cell test which ran for a period in excess of 69,000 hours, and a fully integrated 25 kWe-class system field test which operated for over 13,000 hours at 90% availability with less than 2% performance degradation over the entire period. Concluding the agreement period, a 100 kW SOFC system successfully passed its factory acceptance test in October 1997 and was delivered in November to its demonstration site in Westervoort, The Netherlands.

S.E. Veyo

1998-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

System Design and New Materials for Reversible, Solid-Oxide, High Temperature Steam Electrolysis  

DOE Green Energy (OSTI)

High temperature solid oxide electrolysis cells (SOECs) offer high electrical efficiency and a potential path to large scale hydrogen production. Solid oxide technology is capable of both power generation and hydrogen production. That makes it possible for the development of a reversible solid-oxide system that can respond to market conditions to produce electricity or hydrogen on demand. New high-temperature electrolyzer cell materials are needed to enable cost-effective hydrogen production system designs based on reversible steam electrolysis. Two test methods were established for the eventual development of the reversible, durable electrode materials: the button cell test and the oxygen electrode test. The button cell test is capable of evaluating the performance and degradation of full solid oxide cells with dual atmosphere of air and hydrogen-steam. The oxygen electrode test is capable of isolating the performance and degradation of the oxygen electrode. It has higher throughput and sensitivity than the button cell test.

Ruud, J.A.

2007-12-20T23:59:59.000Z

42

It's Elemental - The Element Europium  

NLE Websites -- All DOE Office Websites (Extended Search)

Samarium Samarium Previous Element (Samarium) The Periodic Table of Elements Next Element (Gadolinium) Gadolinium The Element Europium [Click for Isotope Data] 63 Eu Europium 151.964 Atomic Number: 63 Atomic Weight: 151.964 Melting Point: 1095 K (822°C or 1512°F) Boiling Point: 1802 K (1529°C or 2784°F) Density: 5.24 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: none Group Name: Lanthanide What's in a name? Named after the continent of Europe. Say what? Europium is pronounced as yoo-RO-pee-em. History and Uses: Europium was discovered by Eugène-Antole Demarçay, a French chemist, in 1896. Demarçay suspected that samples of a recently discovered element, samarium, were contaminated with an unknown element. He was able to produce

43

It's Elemental - The Element Potassium  

NLE Websites -- All DOE Office Websites (Extended Search)

Argon Argon Previous Element (Argon) The Periodic Table of Elements Next Element (Calcium) Calcium The Element Potassium [Click for Isotope Data] 19 K Potassium 39.0983 Atomic Number: 19 Atomic Weight: 39.0983 Melting Point: 336.53 K (63.38°C or 146.08°F) Boiling Point: 1032 K (759°C or 1398°F) Density: 0.89 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 1 Group Name: Alkali Metal What's in a name? From the English word potash. Potassium's chemical symbol comes from the Latin word for alkali, kalium. Say what? Potassium is pronounced as poh-TASS-ee-em. History and Uses: Although potassium is the eighth most abundant element on earth and comprises about 2.1% of the earth's crust, it is a very reactive element

44

It's Elemental - The Element Sulfur  

NLE Websites -- All DOE Office Websites (Extended Search)

Phosphorus Phosphorus Previous Element (Phosphorus) The Periodic Table of Elements Next Element (Chlorine) Chlorine The Element Sulfur [Click for Isotope Data] 16 S Sulfur 32.065 Atomic Number: 16 Atomic Weight: 32.065 Melting Point: 388.36 K (115.21°C or 239.38°F) Boiling Point: 717.75 K (444.60°C or 832.28°F) Density: 2.067 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Non-metal Period Number: 3 Group Number: 16 Group Name: Chalcogen What's in a name? From the Sanskrit word sulvere and the Latin word sulphurium. Say what? Sulfur is pronounced as SUL-fer. History and Uses: Sulfur, the tenth most abundant element in the universe, has been known since ancient times. Sometime around 1777, Antoine Lavoisier convinced the rest of the scientific community that sulfur was an element. Sulfur is a

45

It's Elemental - The Element Magnesium  

NLE Websites -- All DOE Office Websites (Extended Search)

Sodium Sodium Previous Element (Sodium) The Periodic Table of Elements Next Element (Aluminum) Aluminum The Element Magnesium [Click for Isotope Data] 12 Mg Magnesium 24.3050 Atomic Number: 12 Atomic Weight: 24.3050 Melting Point: 923 K (650°C or 1202°F) Boiling Point: 1363 K (1090°C or 1994°F) Density: 1.74 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 3 Group Number: 2 Group Name: Alkaline Earth Metal What's in a name? For Magnesia, a district in the region of Thessaly, Greece. Say what? Magnesium is pronounced as mag-NEE-zhi-em. History and Uses: Although it is the eighth most abundant element in the universe and the seventh most abundant element in the earth's crust, magnesium is never found free in nature. Magnesium was first isolated by Sir Humphry Davy, an

46

MATERIALS SYSTEM FOR INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELL  

DOE Green Energy (OSTI)

AC complex impedance spectroscopy studies were conducted on symmetrical cells of the type [gas, electrode/LSGM electrolyte/electrode, gas]. The electrode materials were slurry-coated on both sides of the LSGM electrolyte support. The electrodes selected for this investigation are candidate materials for SOFC electrodes. Cathode materials include La{sub 1-x}Sr{sub x}MnO{sub 3} (LSM), LSCF (La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3}), a two-phase particulate composite consisting of LSM + doped-lanthanum gallate (LSGM), and LSCF + LSGM. Pt metal electrodes were also used for the purpose of comparison. Anode material investigated was the Ni + GDC composite. The study revealed important details pertaining to the charge-transfer reactions that occur in such electrodes. The information obtained can be used to design electrodes for intermediate temperature SOFCs based on LSGM electrolyte.

Uday B. Pal; Srikanth Gopalan

2004-02-15T23:59:59.000Z

47

NEW CATHODE MATERIALS FOR INTERMEDIATE TEMPERATURE SOLID OXIDE FUEL CELLS  

DOE Green Energy (OSTI)

Operation of SOFCs at intermediate temperatures (500-800 C) requires new combinations of electrolyte and electrode materials that will provide both rapid ion transport across the electrolyte and electrode-electrolyte interfaces and efficient electrocatalysis of the oxygen reduction and fuel oxidation reactions. This project concentrates on materials and issues associated with cathode performance that are known to become limiting factors as the operating temperature is reduced. The specific objectives of the proposed research are to develop cathode materials that meet the electrode performance targets of 1.0 W/cm{sup 2} at 0.7 V in combination with YSZ at 700 C and with GDC, LSGM or bismuth oxide based electrolytes at 600 C. The performance targets imply an area specific resistance of {approx}0.5 {Omega}cm{sup 2} for the total cell. The research strategy is to investigate both established classes of materials and new candidates as cathodes, to determine fundamental performance parameters such as bulk diffusion, surface reactivity and interfacial transfer, and to couple these parameters to performance in single cell tests. The initial choices for study are perovskite oxides based on Sr substituted LaFeO{sub 3}, where significant data in single cell tests exists at PNNL for cathodes on both YSZ and CSO/YSZ, and of Ln{sub 2}NiO{sub 4} compositions. A key component of the research strategy is to evaluate for each cathode material composition, the key performance parameters, including ionic and electronic conductivity, surface exchange rates, stability with respect to the specific electrolyte choice, and thermal expansion coefficients. Results on electrical conductivity relaxation measurements on La{sub 2}NiO{sub 4+x} and Pr{sub 2}NiO{sub 4+x} samples are reported and compared with results from previous studies. Studies of the crystallization of amorphous SrFeO{sub 3-x} and LaFeO{sub 3-x} films prepared by pulsed laser deposition are reported. Such studies are a preliminary to the combinatorial synthesis approach described in the first report.

Allan J. Jacobson

2004-05-11T23:59:59.000Z

48

New Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells  

DOE Green Energy (OSTI)

Operation of SOFCs at intermediate temperatures (500-800 C) requires new combinations of electrolyte and electrode materials that will provide both rapid ion transport across the electrolyte and electrode - electrolyte interfaces and efficient electrocatalysis of the oxygen reduction and fuel oxidation reactions. This project concentrates on materials and issues associated with cathode performance that are known to become limiting factors as the operating temperature is reduced. The specific objectives of the proposed research are to develop cathode materials that meet the electrode performance targets of 1.0 W/cm{sup 2} at 0.7 V in combination with YSZ at 700 C and with GDC, LSGM or bismuth oxide based electrolytes at 600 C. The performance targets imply an area specific resistance of {approx}0.5 {Omega}cm{sup 2} for the total cell. The research strategy is to investigate both established classes of materials and new candidates as cathodes, to determine fundamental performance parameters such as bulk diffusion, surface reactivity and interfacial transfer, and to couple these parameters to performance in single cell tests. The initial choices for study are perovskite oxides based on Sr substituted LaFeO{sub 3}, where significant data in single cell tests exists at PNNL for cathodes on both YSZ and CSO/YSZ, and Ln{sub 2}NiO{sub 4} compositions. A key component of the research strategy is to evaluate for each cathode material composition, the key performance parameters, including ionic and electronic conductivity, surface exchange rates, stability with respect to the specific electrolyte choice, and thermal expansion coefficients. Results on electrical conductivity relaxation measurements on additional compositions in the La{sub 2}NiO{sub 4+x} and Pr{sub 2}NiO{sub 4+x} series are presented in this report. Studies of the inter-diffusion of amorphous SrFeO{sub 3-x} and LaFeO{sub 3-x} bilayer films prepared by pulsed laser deposition are described. Such studies are a preliminary to the combinatorial synthesis approach discussed in previous reports.

Allan J. Jacobson

2004-07-23T23:59:59.000Z

49

Solid state thin film battery having a high temperature lithium alloy anode  

DOE Patents (OSTI)

An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.

Hobson, D.O.

1998-01-06T23:59:59.000Z

50

Modified Nose-Hoover thermostat for solid state for constant temperature molecular dynamics simulation  

SciTech Connect

Nose-Hoover (NH) thermostat methods incorporated with molecular dynamics (MD) simulation have been widely used to simulate the instantaneous system temperature and feedback energy in a canonical ensemble. The method simply relates the kinetic energy to the system temperature via the particles' momenta based on the ideal gas law. However, when used in a tightly bound system such as solids, the method may suffer from deriving a lower system temperature and potentially inducing early breaking of atomic bonds at relatively high temperature due to the neglect of the effect of the potential energy of atoms based on solid state physics. In this paper, a modified NH thermostat method is proposed for solid system. The method takes into account the contribution of phonons by virtue of the vibrational energy of lattice and the zero-point energy, derived based on the Debye theory. Proof of the equivalence of the method and the canonical ensemble is first made. The modified NH thermostat is tested on different gold nanocrystals to characterize their melting point and constant volume specific heat, and also their size and temperature dependence. Results show that the modified NH method can give much more comparable results to both the literature experimental and theoretical data than the standard NH. Most importantly, the present model is the only one, among the six thermostat algorithms under comparison, that can accurately reproduce the experimental data and also the T{sup 3}-law at temperature below the Debye temperature, where the specific heat of a solid at constant volume is proportional to the cube of temperature.

Chen, Wen-Hwa, E-mail: whchen@pme.nthu.edu.tw [Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); National Applied Research Laboratories, Taipei 10622, Taiwan, ROC (China); Wu, Chun-Hung [Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Cheng, Hsien-Chie [Department of Aerospace and Systems Engineering, Feng Chia University, Taichung 40724, Taiwan (China)

2011-07-10T23:59:59.000Z

51

Characterization of high-current, high-temperature superconductor current lead elements  

DOE Green Energy (OSTI)

The refrigeration loads of current leads for superconducting magnets can be significantly reduced by using high-temperature superconductor (HTS) leads. An HTS conductor type that is well suited for this application is a laminated sintered stack of HTS powder-in-tube (PIT) tapes. The superconducting elements are normally characterized by their manufacturer by measuring critical currents at 77 K in self field. Additional characterization, which correlates electrical performance at 77 K and at lower temperatures with applied magnetic fields, provides the current lead designer and conductor element manufacturer with critical information. For HTS conductor elements comprising a laminated and sintered stack of Bi-2223 PIT tapes having an alloyed Ag sheath, this characterization uses variable applied fields and operating temperatures.

Niemann, R.C.; Evans, D.J.; Fisher, B.L. [Argonne National Lab., IL (United States); Brockenborough, W.E.; Roberts, P.R.; Rodenbush, A.J. [American Superconductor Corp., Westborough, MA (United States)

1996-08-01T23:59:59.000Z

52

Parameter Study of Transport Processes with Catalytic Reactions in Intermediate Temperature Solid Oxide Fuel Cells  

Science Conference Proceedings (OSTI)

Solid oxide fuel cell is one of most promising types of fuel cells with advantages of high efficiencies, flexibility of usable fuel types. The performance of SOFC is strongly affected by cell overall parameters, e.g., temperature, pressure, reaction ... Keywords: parameter study, SOFC model, 3D CFD approach, refoming reactions

Chao Yang; Guogang Yang; Danting Yue; Jinliang Yuan

2010-12-01T23:59:59.000Z

53

It's Elemental - The Element Technetium  

NLE Websites -- All DOE Office Websites (Extended Search)

Molybdenum Molybdenum Previous Element (Molybdenum) The Periodic Table of Elements Next Element (Ruthenium) Ruthenium The Element Technetium [Click for Isotope Data] 43 Tc Technetium 98 Atomic Number: 43 Atomic Weight: 98 Melting Point: 2430 K (2157°C or 3915°F) Boiling Point: 4538 K (4265°C or 7709°F) Density: 11 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 5 Group Number: 7 Group Name: none Radioactive and Artificially Produced What's in a name? From the Greek word for artificial, technetos. Say what? Technetium is pronounced as tek-NEE-she-em. History and Uses: Technetium was the first artificially produced element. It was isolated by Carlo Perrier and Emilio Segrè in 1937. Technetium was created by bombarding molybdenum atoms with deuterons that had been accelerated by a

54

It's Elemental - The Element Cobalt  

NLE Websites -- All DOE Office Websites (Extended Search)

Iron Iron Previous Element (Iron) The Periodic Table of Elements Next Element (Nickel) Nickel The Element Cobalt [Click for Isotope Data] 27 Co Cobalt 58.933195 Atomic Number: 27 Atomic Weight: 58.933195 Melting Point: 1768 K (1495°C or 2723°F) Boiling Point: 3200 K (2927°C or 5301°F) Density: 8.86 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 9 Group Name: none What's in a name? From the German word for goblin or evil spirit, kobald and the Greek word for mine, cobalos. Say what? Cobalt is pronounced as KO-bolt. History and Uses: Cobalt was discovered by Georg Brandt, a Swedish chemist, in 1739. Brandt was attempting to prove that the ability of certain minerals to color glass blue was due to an unknown element and not to bismuth, as was commonly

55

It's Elemental - The Element Sodium  

NLE Websites -- All DOE Office Websites (Extended Search)

Neon Neon Previous Element (Neon) The Periodic Table of Elements Next Element (Magnesium) Magnesium The Element Sodium [Click for Isotope Data] 11 Na Sodium 22.98976928 Atomic Number: 11 Atomic Weight: 22.98976928 Melting Point: 370.95 K (97.80°C or 208.04°F) Boiling Point: 1156 K (883°C or 1621°F) Density: 0.97 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 3 Group Number: 1 Group Name: Alkali Metal What's in a name? From the English word soda and from the Medieval Latin word sodanum, which means "headache remedy." Sodium's chemical symbol comes from the Latin word for sodium carbonate, natrium. Say what? Sodium is pronounced as SO-dee-em. History and Uses: Although sodium is the sixth most abundant element on earth and comprises

56

It's Elemental - The Element Francium  

NLE Websites -- All DOE Office Websites (Extended Search)

Radon Radon Previous Element (Radon) The Periodic Table of Elements Next Element (Radium) Radium The Element Francium [Click for Isotope Data] 87 Fr Francium 223 Atomic Number: 87 Atomic Weight: 223 Melting Point: 300 K (27°C or 81°F) Boiling Point: Unknown Density: Unknown Phase at Room Temperature: Solid Element Classification: Metal Period Number: 7 Group Number: 1 Group Name: Alkali Metal Radioactive What's in a name? Named for the country of France. Say what? Francium is pronounced as FRAN-see-em. History and Uses: Francium was discovered by Marguerite Catherine Perey, a French chemist, in 1939 while analyzing actinium's decay sequence. Although considered a natural element, scientists estimate that there is no more than one ounce of francium in the earth's crust at one time. Since there is so little

57

It's Elemental - The Element Phosphorus  

NLE Websites -- All DOE Office Websites (Extended Search)

Silicon Silicon Previous Element (Silicon) The Periodic Table of Elements Next Element (Sulfur) Sulfur The Element Phosphorus [Click for Isotope Data] 15 P Phosphorus 30.973762 Atomic Number: 15 Atomic Weight: 30.973762 Melting Point: 317.30 K (44.15°C or 111.47°F) Boiling Point: 553.65 K (280.5°C or 536.9°F) Density: 1.82 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Non-metal Period Number: 3 Group Number: 15 Group Name: Pnictogen What's in a name? From the Greek word for light bearing, phosphoros. Say what? Phosphorus is pronounced as FOS-fer-es. History and Uses: In what is perhaps the most disgusting method of discovering an element, phosphorus was first isolated in 1669 by Hennig Brand, a German physician and alchemist, by boiling, filtering and otherwise processing as many as 60

58

It's Elemental - The Element Cerium  

NLE Websites -- All DOE Office Websites (Extended Search)

Lanthanum Lanthanum Previous Element (Lanthanum) The Periodic Table of Elements Next Element (Praseodymium) Praseodymium The Element Cerium [Click for Isotope Data] 58 Ce Cerium 140.116 Atomic Number: 58 Atomic Weight: 140.116 Melting Point: 1071 K (798°C or 1468°F) Boiling Point: 3697 K (3424°C or 6195°F) Density: 6.770 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: none Group Name: Lanthanide What's in a name? Named for the asteroid Ceres. Say what? Cerium is pronounced as SER-ee-em. History and Uses: Cerium was discovered by Jöns Jacob Berzelius and Wilhelm von Hisinger, Swedish chemists, and independently by Martin Heinrich Klaproth, a German chemist, in 1803. Cerium is the most abundant of the rare earth elements

59

It's Elemental - The Element Indium  

NLE Websites -- All DOE Office Websites (Extended Search)

Cadmium Cadmium Previous Element (Cadmium) The Periodic Table of Elements Next Element (Tin) Tin The Element Indium [Click for Isotope Data] 49 In Indium 114.818 Atomic Number: 49 Atomic Weight: 114.818 Melting Point: 429.75 K (156.60°C or 313.88°F) Boiling Point: 2345 K (2072°C or 3762°F) Density: 7.31 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 5 Group Number: 13 Group Name: none What's in a name? Named after the bright indigo line in its spectrum. Say what? Indium is pronounced as IN-dee-em. History and Uses: Indium was discovered by the German chemists Ferdinand Reich and Hieronymus Theodor Richter in 1863. Reich and Richter had been looking for traces of the element thallium in samples of zinc ores. A brilliant indigo line in

60

It's Elemental - The Element Manganese  

NLE Websites -- All DOE Office Websites (Extended Search)

Chromium Chromium Previous Element (Chromium) The Periodic Table of Elements Next Element (Iron) Iron The Element Manganese [Click for Isotope Data] 25 Mn Manganese 54.938045 Atomic Number: 25 Atomic Weight: 54.938045 Melting Point: 1519 K (1246°C or 2275°F) Boiling Point: 2334 K (2061°C or 3742°F) Density: 7.3 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 7 Group Name: none What's in a name? From the Latin word for magnet, magnes. Say what? Manganese is pronounced as MAN-ge-nees. History and Uses: Proposed to be an element by Carl Wilhelm Scheele in 1774, manganese was discovered by Johan Gottlieb Gahn, a Swedish chemist, by heating the mineral pyrolusite (MnO2) in the presence of charcoal later that year.

Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

It's Elemental - The Element Titanium  

NLE Websites -- All DOE Office Websites (Extended Search)

Scandium Scandium Previous Element (Scandium) The Periodic Table of Elements Next Element (Vanadium) Vanadium The Element Titanium [Click for Isotope Data] 22 Ti Titanium 47.867 Atomic Number: 22 Atomic Weight: 47.867 Melting Point: 1941 K (1668°C or 3034°F) Boiling Point: 3560 K (3287°C or 5949°F) Density: 4.5 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 4 Group Name: none What's in a name? From the Greek word Titans, the mythological "first sons of the Earth." Say what? Titanium is pronounced as tie-TAY-nee-em. History and Uses: Titanium was discovered in 1791 by the Reverend William Gregor, an English pastor. Pure titanium was first produced by Matthew A. Hunter, an American metallurgist, in 1910. Titanium is the ninth most abundant element in the

62

Mechanical properties of solid oxide fuel cell glass-ceramic seal at high temperatures  

DOE Green Energy (OSTI)

Mechanical properties of solid oxide fuel cell glass-ceramic seal material, G18, are studied at high temperatures. Samples of G18 are aged for either 4h or 100h, resulting in samples with different crystallinity. Reduced modulus, hardness, and time-dependent behavior are measured by nanoindentation. The nanoindentation is performed at room temperature, 550, 650, and 750C, using loading rates of 5 mN/s and 25 mN/s. Results show a decrease in reduced modulus with increasing temperature, with significant decrease above the glass transition temperature (Tg). Hardness generally decreases with increasing temperature, with a slight increase before Tg for the 4h aged sample. Dwell tests show that creep increases with increasing temperature, but decrease with further aging.

Milhans, Jacqueline; Li, Dongsheng; Khaleel, Mohammad A.; Sun, Xin; Al-Haik, Marwan; Harris, Adrian; Garmestani, Hamid

2011-04-20T23:59:59.000Z

63

CHALLENGES IN GENERATING HYDROGEN BY HIGH TEMPERATURE ELECTROLYSIS USING SOLID OXIDE CELLS  

DOE Green Energy (OSTI)

Idaho National Laboratorys (INL) high temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells is presented in this paper. The research results reported here have been obtained in a laboratory-scale apparatus. These results and common scale-up issues also indicate that for the technology to be successful in a large industrial setting, several technical, economical, and manufacturing issues have to be resolved. Some of the issues related to solid oxide cells are stack design and performance optimization, identification and evaluation of cell performance degradation parameters and processes, integrity and reliability of the solid oxide electrolysis (SOEC) stacks, life-time prediction and extension of the SOEC stack, and cost reduction and economic manufacturing of the SOEC stacks. Besides the solid oxide cells, balance of the hydrogen generating plant also needs significant development. These issues are process and ohmic heat source needed for maintaining the reaction temperature (~830C), high temperature heat exchangers and recuperators, equal distribution of the reactants into each cell, system analysis of hydrogen and associated energy generating plant, and cost optimization. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.23/kg of hydrogen assuming an internal rate of return of 10%. These issues need interdisciplinary research effort of federal laboratories, solid oxide cell manufacturers, hydrogen consumers, and other such stakeholders. This paper discusses research and development accomplished by INL on such issues and highlights associated challenges that need to be addressed for hydrogen to become an economical and viable option.

M. S. Sohal; J. E. O'Brien; C. M. Stoots; M. G. McKellar; J. S. Herring; E. A. Harvego

2008-03-01T23:59:59.000Z

64

Thermal element for maintaining minimum lamp wall temperature in fluorescent fixtures  

DOE Patents (OSTI)

In a lighting fixture including a lamp and a housing, an improvement is disclosed for maintaining a lamp envelope area at a cooler, reduced temperature relative to the enclosed housing ambient. The improvement comprises a thermal element in thermal communication with the housing extending to and springably urging thermal communication with a predetermined area of the lamp envelope surface.

Siminovitch, Michael J. (Richmond, CA)

1992-01-01T23:59:59.000Z

65

Thermal element for maintaining minimum lamp wall temperature in fluorescent fixtures  

DOE Patents (OSTI)

In a lighting fixture including a lamp and a housing, an improvement is disclosed for maintaining a lamp envelope area at a cooler, reduced temperature relative to the enclosed housing ambient. The improvement comprises a thermal element in thermal communication with the housing extending to and springably urging thermal communication with a predetermined area of the lamp envelope surface. 12 figs.

Siminovitch, M.J.

1992-11-10T23:59:59.000Z

66

Solid sorbents for removal of carbon dioxide from gas streams at low temperatures  

DOE Patents (OSTI)

New low-cost CO.sub.2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO.sub.2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35.degree. C.

Sirwardane, Ranjani V. (Morgantown, WV)

2005-06-21T23:59:59.000Z

67

Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures  

DOE Patents (OSTI)

New low-cost CO2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35 degrees C.

Sirwardane, Ranjani V.

2005-06-21T23:59:59.000Z

68

Toxicity characteristic leaching procedure fails to extract oxoanion-forming elements that are extracted by municipal solid waste leachates  

Science Conference Proceedings (OSTI)

US EPA and state regulatory agencies rely on standard extraction tests to identify wastes that have the potential to contaminate surface water or groundwater. To evaluate the predictive abilities of these extraction tests, the Toxicity Characteristic Leaching Procedure (TCLP), the Waste Extraction Test (WET), and the Synthetic Precipitation Leaching Procedure (SPLP) were compared with actual municipal solid waste leachates (MSWLs) for their ability to extract regulated elements from a variety of industrial solid wastes in short- and long-term extractions. Short-term extractions used MSWLs from a variety of California landfills. Long-term sequential extractions simulated longer term leaching, as might occur in MSW landfills. For most regulated elements, the TCLP roughly predicted the maximum concentrations extracted by the MSWLs. For regulated elements that form oxoanions (e.g., Sb, As, Mo, Se, V), however the TCLP underpredicted the levels extracted by the MSWL. None of the standard tests adequately predicted these levels. The results emphasize the need for better standardized techniques to identify wastes that have the potential to contaminate groundwater with oxoanion-forming elements, particularly arsenic.

Hooper, K.; Iskander, M.; Sivia, G. [California Dept. of Toxic Substances Control, Berkeley, CA (United States). Hazardous Materials Lab.] [and others

1998-12-01T23:59:59.000Z

69

Thin-film electrolytes for reduced temperature solid oxide fuel cells  

DOE Green Energy (OSTI)

Solid oxide fuel cells produce electricity at very high efficiency and have very low to negligible emissions, making them an attractive option for power generation for electric utilities. However, conventional SOFC`s are operated at 1000{degrees}C or more in order to attain reasonable power density. The high operating temperature of SOFC`s leads to complex materials problems which have been difficult to solve in a cost-effective manner. Accordingly, there is much interest in reducing the operating temperature of SOFC`s while still maintaining the power densities achieved at high temperatures. There are several approaches to reduced temperature operation including alternative solid electrolytes having higher ionic conductivity than yttria stabilized zirconia, thin solid electrolyte membranes, and improved electrode materials. Given the proven reliability of zirconia-based electrolytes (YSZ) in long-term SOFC tests, the use of stabilized zirconia electrolytes in reduced temperature fuel cells is a logical choice. In order to avoid compromising power density at intermediate temperatures, the thickness of the YSZ electrolyte must be reduced from that in conventional cells (100 to 200 {mu}m) to approximately 4 to 10 {mu}m. There are a number of approaches for depositing thin ceramic films onto porous supports including chemical vapor deposition/electrochemical vapor deposition, sol-gel deposition, sputter deposition, etc. In this paper we describe an inexpensive approach involving the use of colloidal dispersions of polycrystalline electrolyte for depositing 4 to 10 {mu}m electrolyte films onto porous electrode supports in a single deposition step. This technique leads to highly dense, conductive, electrolyte films which exhibit near theoretical open circuit voltages in H{sub 2}/air fuel cells. These electrolyte films exhibit bulk ionic conductivity, and may see application in reduced temperature SOFC`s, gas separation membranes, and fast response sensors.

Visco, S.J.; Wang, L.S.; De Souza, S.; De Jonghe, L.C.

1994-11-01T23:59:59.000Z

70

It's Elemental - The Element Platinum  

NLE Websites -- All DOE Office Websites (Extended Search)

Iridium Iridium Previous Element (Iridium) The Periodic Table of Elements Next Element (Gold) Gold The Element Platinum [Click for Isotope Data] 78 Pt Platinum 195.084 Atomic Number: 78 Atomic Weight: 195.084 Melting Point: 2041.55 K (1768.4°C or 3215.1°F) Boiling Point: 4098 K (3825°C or 6917°F) Density: 21.46 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 10 Group Name: none What's in a name? From the Spainsh word for silver, platina. Say what? Platinum is pronounced as PLAT-en-em. History and Uses: Used by the pre-Columbian Indians of South America, platinum wasn't noticed by western scientists until 1735. Platinum can occur free in nature and is sometimes found in deposits of gold-bearing sands, primarily those found in

71

It's Elemental - The Element Arsenic  

NLE Websites -- All DOE Office Websites (Extended Search)

Germanium Germanium Previous Element (Germanium) The Periodic Table of Elements Next Element (Selenium) Selenium The Element Arsenic [Click for Isotope Data] 33 As Arsenic 74.92160 Atomic Number: 33 Atomic Weight: 74.92160 Melting Point: 1090 K (817°C or 1503°F) Boiling Point: 887 K (614°C or 1137°F) Density: 5.776 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Semi-metal Period Number: 4 Group Number: 15 Group Name: Pnictogen What's in a name? From the Latin word arsenicum, the Greek word arsenikon and the Arabic word Az-zernikh. Say what? Arsenic is pronounced as AR-s'n-ik. History and Uses: Although arsenic compounds were mined by the early Chinese, Greek and Egyptian civilizations, it is believed that arsenic itself was first identified by Albertus Magnus, a German alchemist, in 1250. Arsenic occurs

72

It's Elemental - The Element Barium  

NLE Websites -- All DOE Office Websites (Extended Search)

Cesium Cesium Previous Element (Cesium) The Periodic Table of Elements Next Element (Lanthanum) Lanthanum The Element Barium [Click for Isotope Data] 56 Ba Barium 137.327 Atomic Number: 56 Atomic Weight: 137.327 Melting Point: 1000 K (727°C or 1341°F) Boiling Point: 2170 K (1897°C or 3447°F) Density: 3.62 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 2 Group Name: Alkaline Earth Metal What's in a name? From the Greek word for heavy, barys. Say what? Barium is pronounced as BAR-ee-em. History and Uses: Barium was first isolated by Sir Humphry Davy, an English chemist, in 1808 through the electrolysis of molten baryta (BaO). Barium is never found free in nature since it reacts with oxygen in the air, forming barium oxide

73

It's Elemental - The Element Astatine  

NLE Websites -- All DOE Office Websites (Extended Search)

Polonium Polonium Previous Element (Polonium) The Periodic Table of Elements Next Element (Radon) Radon The Element Astatine [Click for Isotope Data] 85 At Astatine 210 Atomic Number: 85 Atomic Weight: 210 Melting Point: 575 K (302°C or 576°F) Boiling Point: Unknown Density: about 7 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Semi-metal Period Number: 6 Group Number: 17 Group Name: Halogen Radioactive What's in a name? From the Greek word for unstable, astatos. Say what? Astatine is pronounced as AS-teh-teen or as AS-teh-ten. History and Uses: Astatine was produced by Dale R. Carson, K.R. MacKenzie and Emilio Segrè by bombarding an isotope of bismuth, bismuth-209, with alpha particles that had been accelerated in a device called a cyclotron. This created

74

It's Elemental - The Element Copper  

NLE Websites -- All DOE Office Websites (Extended Search)

Nickel Nickel Previous Element (Nickel) The Periodic Table of Elements Next Element (Zinc) Zinc The Element Copper [Click for Isotope Data] 29 Cu Copper 63.546 Atomic Number: 29 Atomic Weight: 63.546 Melting Point: 1357.77 K (1084.62°C or 1984.32°F) Boiling Point: 2835 K (2562°C or 4644°F) Density: 8.933 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 11 Group Name: none What's in a name? From the Latin word cuprum, which means "from the island of Cyprus." Say what? Copper is pronounced as KOP-er. History and Uses: Archaeological evidence suggests that people have been using copper for at least 11,000 years. Relatively easy to mine and refine, people discovered methods for extracting copper from its ores at least 7,000 years ago. The

75

It's Elemental - The Element Gadolinium  

NLE Websites -- All DOE Office Websites (Extended Search)

Europium Europium Previous Element (Europium) The Periodic Table of Elements Next Element (Terbium) Terbium The Element Gadolinium [Click for Isotope Data] 64 Gd Gadolinium 157.25 Atomic Number: 64 Atomic Weight: 157.25 Melting Point: 1586 K (1313°C or 2395°F) Boiling Point: 3546 K (3273°C or 5923°F) Density: 7.90 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: none Group Name: Lanthanide What's in a name? Named for the mineral gadolinite which was named after Johan Gadolin, a Finnish chemist. Say what? Gadolinium is pronounced as GAD-oh-LIN-ee-em. History and Uses: Spectroscopic evidence for the existence of gadolinium was first observed by the Swiss chemist Jean Charles Galissard de Marignac in the minerals

76

It's Elemental - The Element Hafnium  

NLE Websites -- All DOE Office Websites (Extended Search)

Lutetium Lutetium Previous Element (Lutetium) The Periodic Table of Elements Next Element (Tantalum) Tantalum The Element Hafnium [Click for Isotope Data] 72 Hf Hafnium 178.49 Atomic Number: 72 Atomic Weight: 178.49 Melting Point: 2506 K (2233°C or 4051°F) Boiling Point: 4876 K (4603°C or 8317°F) Density: 13.3 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 4 Group Name: none What's in a name? From the Latin word for the city of Copenhagen, Hafnia. Say what? Hafnium is pronounced as HAF-neeem. History and Uses: Hafnium was discovered by Dirk Coster, a Danish chemist, and Charles de Hevesy, a Hungarian chemist, in 1923. They used a method known as X-ray spectroscopy to study the arrangement of the outer electrons of atoms in

77

It's Elemental - The Element Boron  

NLE Websites -- All DOE Office Websites (Extended Search)

Beryllium Beryllium Previous Element (Beryllium) The Periodic Table of Elements Next Element (Carbon) Carbon The Element Boron [Click for Isotope Data] 5 B Boron 10.811 Atomic Number: 5 Atomic Weight: 10.811 Melting Point: 2348 K (2075°C or 3767°F) Boiling Point: 4273 K (4000°C or 7232°F) Density: 2.37 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Semi-metal Period Number: 2 Group Number: 13 Group Name: none What's in a name? From the Arabic word Buraq and the Persian word Burah, which are both words for the material "borax." Say what? Boron is pronounced as BO-ron. History and Uses: Boron was discovered by Joseph-Louis Gay-Lussac and Louis-Jaques Thénard, French chemists, and independently by Sir Humphry Davy, an English chemist,

78

It's Elemental - The Element Thorium  

NLE Websites -- All DOE Office Websites (Extended Search)

Actinium Actinium Previous Element (Actinium) The Periodic Table of Elements Next Element (Protactinium) Protactinium The Element Thorium [Click for Isotope Data] 90 Th Thorium 232.03806 Atomic Number: 90 Atomic Weight: 232.03806 Melting Point: 2023 K (1750°C or 3182°F) Boiling Point: 5061 K (4788°C or 8650°F) Density: 11.72 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 7 Group Number: none Group Name: Actinide Radioactive What's in a name? Named for the Scandinavian god of war, Thor. Say what? Thorium is pronounced as THOR-ee-em or as THO-ree-em. History and Uses: Thorium was discovered by Jöns Jacob Berzelius, a Swedish chemist, in 1828. He discovered it in a sample of a mineral that was given to him by the Reverend Has Morten Thrane Esmark, who suspected that it contained an

79

It's Elemental - The Element Chromium  

NLE Websites -- All DOE Office Websites (Extended Search)

Vanadium Vanadium Previous Element (Vanadium) The Periodic Table of Elements Next Element (Manganese) Manganese The Element Chromium [Click for Isotope Data] 24 Cr Chromium 51.9961 Atomic Number: 24 Atomic Weight: 51.9961 Melting Point: 2180 K (1907°C or 3465°F) Boiling Point: 2944 K (2671°C or 4840°F) Density: 7.15 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 6 Group Name: none What's in a name? From the Greek word for color, chroma. Say what? Chromium is pronounced as KROH-mee-em. History and Uses: Chromium was discovered by Louis-Nicholas Vauquelin while experimenting with a material known as Siberian red lead, also known as the mineral crocoite (PbCrO4), in 1797. He produced chromium oxide (CrO3) by mixing

80

It's Elemental - The Element Iron  

NLE Websites -- All DOE Office Websites (Extended Search)

Manganese Manganese Previous Element (Manganese) The Periodic Table of Elements Next Element (Cobalt) Cobalt The Element Iron [Click for Isotope Data] 26 Fe Iron 55.845 Atomic Number: 26 Atomic Weight: 55.845 Melting Point: 1811 K (1538°C or 2800°F) Boiling Point: 3134 K (2861°C or 5182°F) Density: 7.874 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 8 Group Name: none What's in a name? From the Anglo-Saxon word iron. Iron's chemical symbol comes from the Latin word for iron, ferrum. Say what? Iron is pronounced as EYE-ern. History and Uses: Archaeological evidence suggests that people have been using iron for at least 5000 years. Iron is the cheapest and one of the most abundant of all metals, comprising nearly 5.6% of the earth's crust and nearly all of the

Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

It's Elemental - The Element Molybdenum  

NLE Websites -- All DOE Office Websites (Extended Search)

Niobium Niobium Previous Element (Niobium) The Periodic Table of Elements Next Element (Technetium) Technetium The Element Molybdenum [Click for Isotope Data] 42 Mo Molybdenum 95.96 Atomic Number: 42 Atomic Weight: 95.96 Melting Point: 2896 K (2623°C or 4753°F) Boiling Point: 4912 K (4639°C or 8382°F) Density: 10.2 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 5 Group Number: 6 Group Name: none What's in a name? From the Greek word for lead, molybdos. Say what? Molybdenum is pronounced as meh-LIB-deh-nem. History and Uses: Molybdenum was discovered by Carl Welhelm Scheele, a Swedish chemist, in 1778 in a mineral known as molybdenite (MoS2) which had been confused as a lead compound. Molybdenum was isolated by Peter Jacob Hjelm in 1781. Today,

82

It's Elemental - The Element Cesium  

NLE Websites -- All DOE Office Websites (Extended Search)

Xenon Xenon Previous Element (Xenon) The Periodic Table of Elements Next Element (Barium) Barium The Element Cesium [Click for Isotope Data] 55 Cs Cesium 132.9054519 Atomic Number: 55 Atomic Weight: 132.9054519 Melting Point: 301.59 K (28.44°C or 83.19°F) Boiling Point: 944 K (671°C or 1240°F) Density: 1.93 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 1 Group Name: Alkali Metal What's in a name? From the Latin word for sky blue, caesius. Say what? Cesium is pronounced as SEE-zee-em. History and Uses: Cesium was discovered by Robert Wilhelm Bunsen and Gustav Robert Kirchhoff, German chemists, in 1860 through the spectroscopic analysis of Durkheim mineral water. They named cesium after the blue lines they observed in its

83

It's Elemental - The Element Iridium  

NLE Websites -- All DOE Office Websites (Extended Search)

Osmium Osmium Previous Element (Osmium) The Periodic Table of Elements Next Element (Platinum) Platinum The Element Iridium [Click for Isotope Data] 77 Ir Iridium 192.217 Atomic Number: 77 Atomic Weight: 192.217 Melting Point: 2719 K (2446°C or 4435°F) Boiling Point: 4701 K (4428°C or 8002°F) Density: 22.42 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 9 Group Name: none What's in a name? From the Latin word for rainbow, iris. Say what? Iridium is pronounced as i-RID-ee-em. History and Uses: Iridium and osmium were discovered at the same time by the British chemist Smithson Tennant in 1803. Iridium and osmium were identified in the black residue remaining after dissolving platinum ore with aqua regia, a mixture

84

It's Elemental - The Element Gold  

NLE Websites -- All DOE Office Websites (Extended Search)

Platinum Platinum Previous Element (Platinum) The Periodic Table of Elements Next Element (Mercury) Mercury The Element Gold [Click for Isotope Data] 79 Au Gold 196.966569 Atomic Number: 79 Atomic Weight: 196.966569 Melting Point: 1337.33 K (1064.18°C or 1947.52°F) Boiling Point: 3129 K (2856°C or 5173°F) Density: 19.282 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 11 Group Name: none What's in a name? From the Sanskrit word Jval and the Anglo-Saxon word gold. Gold's chemical symbol comes from the the latin word for gold, aurum. Say what? Gold is pronounced as GOLD. History and Uses: An attractive and highly valued metal, gold has been known for at least 5500 years. Gold is sometimes found free in nature but it is usually found

85

It's Elemental - The Element Rhenium  

NLE Websites -- All DOE Office Websites (Extended Search)

Tungsten Tungsten Previous Element (Tungsten) The Periodic Table of Elements Next Element (Osmium) Osmium The Element Rhenium [Click for Isotope Data] 75 Re Rhenium 186.207 Atomic Number: 75 Atomic Weight: 186.207 Melting Point: 3459 K (3186°C or 5767°F) Boiling Point: 5869 K (5596°C or 10105°F) Density: 20.8 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 7 Group Name: none What's in a name? From the Latin word for the Rhine River, Rhenus. Say what? Rhenium is pronounced as REE-nee-em. History and Uses: Rhenium was discovered by the German chemists Ida Tacke-Noddack, Walter Noddack and Otto Carl Berg in 1925. They detected rhenium spectroscopically in platinum ores and in the minerals columbite ((Fe, Mn, Mg)(Nb, Ta)2O6),

86

It's Elemental - The Element Osmium  

NLE Websites -- All DOE Office Websites (Extended Search)

Rhenium Rhenium Previous Element (Rhenium) The Periodic Table of Elements Next Element (Iridium) Iridium The Element Osmium [Click for Isotope Data] 76 Os Osmium 190.23 Atomic Number: 76 Atomic Weight: 190.23 Melting Point: 3306 K (3033°C or 5491°F) Boiling Point: 5285 K (5012°C or 9054°F) Density: 22.57 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 8 Group Name: none What's in a name? From the Greek word for a smell, osme. Say what? Osmium is pronounced as OZ-mee-em. History and Uses: Osmium and iridium were discovered at the same time by the British chemist Smithson Tennant in 1803. Osmium and iridium were identified in the black residue remaining after dissolving platinum ore with aqua regia, a mixture

87

It's Elemental - The Element Antimony  

NLE Websites -- All DOE Office Websites (Extended Search)

Tin Tin Previous Element (Tin) The Periodic Table of Elements Next Element (Tellurium) Tellurium The Element Antimony [Click for Isotope Data] 51 Sb Antimony 121.760 Atomic Number: 51 Atomic Weight: 121.760 Melting Point: 903.78 K (630.63°C or 1167.13°F) Boiling Point: 1860 K (1587°C or 2889°F) Density: 6.685 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Semi-metal Period Number: 5 Group Number: 15 Group Name: Pnictogen What's in a name? From the Greek words anti and monos, which together mean "not alone." Antimony's chemical symbol comes from its historic name, Stibium. Say what? Antimony is pronounced as AN-the-MOH-nee. History and Uses: Antimony has been known since ancient times. It is sometimes found free in nature, but is usually obtained from the ores stibnite (Sb2S3) and

88

Advanced materials and electrochemical processes in high-temperature solid electrolytes  

DOE Green Energy (OSTI)

Fuel cells for the direct conversion of fossil fuels to electric energy necessitates the use of high-temperature solid electrodes. This study has included: (1) determination of electrical transport, thermal and electrical properties to illucidate the effects of microstructure, phase equilibria, oxygen partial pressure, additives, synthesis and fabrication on these properties; (2) investigation of synthesis and fabrication of advanced oxide materials, such as La{sub 0.9}Sn{sub 0.1}MnO{sub 3}; and (3) application of new analytical techniques using complex impedance coupled with conventional electrochemical methods to study the electrochemical processes and behavior of materials for solid oxide fuel cells and other high-temperature electrolyte electrochemical process. 15 refs., 10 figs., 2 tabs. (BM)

Bates, J.L.; Chick, L.A.; Youngblood, G.E.; Weber, W.J.

1990-10-01T23:59:59.000Z

89

Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbents for Removal of Carbon Dioxide from Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 6,908,497 entitled "Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures." Disclosed in this patent is a new low-cost carbon dioxide (CO 2 ) sorbent that can be used in large-scale gas-solid processes. Researchers have developed a new method to prepare these sorbents by treating substrates with an amine and/or an ether in a way that either one comprises at least 50 weight percent of the sorbent. The sorbent captures compounds contained in gaseous fluids through chemisorptions and/or

90

High-temperature electrical testing of a solid oxide fuel cell cathode contact material  

DOE Green Energy (OSTI)

The development of high temperature solid state devices for energy generation and environmental control applications has advanced remarkably over the past decade. However, there remain a number technical barriers that still impede widespread commercial application. One of these, for example, is the development of a robust method of conductively joining the mixed-conducting oxide electrodes that lie at the heart of the device to the heat resistant metal interconnect used to transmit power to or from the electrodes and electrochemically active membrane. In the present study, we have investigated the high-temperature electrical and microstructural characteristics of a series of conductive glass composite paste junctions between two contact materials representative of those employed in solid-state electrochemical devices, lanthanum calcium manganate and 430 stainless steel.

Weil, K. Scott

2004-06-01T23:59:59.000Z

91

Influence of high temperature on solid state nuclear track detector parameters  

Science Conference Proceedings (OSTI)

This work concerns the influence of high temperatures on tracks induced in solid state nuclear track detectors of the CR-39/PM-355 type. In order to investigate this effect some samples of the detectors were irradiated with energetic protons and {alpha} particles and subsequently heated under controlled temperatures for different periods of time. After heating the samples were etched and the track evolution was analyzed using an optical microscope. The bulk etch rate V{sub B} of the PM-355 material was also determined as a function of heating temperature. The track etch rate V{sub T} values were estimated for craters induced by protons and {alpha} particles from track diameter measurement as a function of heating temperature.

Malinowska, A.; Szydlowski, A.; Jaskola, M.; Korman, A. [National Centre for Nuclear Research (NCBJ), Otwock 05-400 (Poland)

2012-09-15T23:59:59.000Z

92

Design and demonstration of a high-temperature, deployable, membrane heat-pipe radiator element  

SciTech Connect

Demonstration of a high-temperature, deployable, membrane heat-pipe radiator element has been conducted. Membrane heat pipes offer the potential for compact storage, ease of transportation, self-deployment, and a high specific radiator performance (kg/kW) for use in thermal reflection systems of space nuclear power plants. A demonstration heat pipe 8-cm wide and 100-cm long was fabricated. The heat pipe containment and wick structure were made of stainless steel and sodium used as the working fluid. The tests demonstrated passive deployment of the high-temperature membrane radiator, simulating a single segment in a flat array, at a temperature of 800 K. Details of test procedures and results of the tests are presented in this paper together with a discussion of the design and development of a full-scale, segmented high-temperature, deployable membrane heat pipe. 5 refs., 7 figs.

Trujillo, V.L.; Keddy, E.S.; Merrigan, M.A.

1989-01-01T23:59:59.000Z

93

Ultrascalable Implicit Finite Element Analyses in Solid Mechanics with over a Half a Billion Degrees of Freedom  

E-Print Network (OSTI)

We present a highly parallel finite element program, Olympus, equipped with an ultrascalable linear solver, Prometheus, applied to micro-FE bone modeling calculations on an IBM SP Power3. Scalability is demonstrated with scaled speedup studies of a non-linear analyses of a vertebral body with over a half of a billion degrees of freedom. We show parallel scalability with up to 4088 processors on the ACSI White machine. This work is significant in that, in the domain of unstructured implicit finite element analysis in solid mechanics with complex geometry, this is the first demonstration of a highly parallel, and e#cient, application of a mathematically optimal linear solution method---smoothed aggregation algebraic multigrid.

Mark F. Adams; Harun H. Bayraktar; Tony M. Keaveny; Panayiotis Papadopoulos

2004-01-01T23:59:59.000Z

94

Solid-phase epitaxy of silicon amorphized by implantation of the alkali elements rubidium and cesium  

Science Conference Proceedings (OSTI)

The redistribution of implanted Rb and Cs profiles in amorphous silicon during solid-phase epitaxial recrystallization has been investigated by Rutherford backscattering spectroscopy and secondary ion mass spectroscopy. For the implantation dose used in these experiments, the alkali atoms segregate at the a-Si/c-Si interface during annealing resulting in concentration peaks near the interface. In this way, the alkali atoms are moved towards the surface. Rutherford backscattering spectroscopy in ion channeling configuration was performed to measure average recrystallization rates of the amorphous silicon layers. Preliminary studies on the influence of the alkali atoms on the solid-phase epitaxial regrowth rate reveal a strong retardation compared to the intrinsic recrystallization rate.

Maier, R.; Haeublein, V.; Ryssel, H.; Voellm, H.; Feili, D.; Seidel, H.; Frey, L. [Lehrstuhl fuer Elektronische Bauelemente (LEB), Universitaet Erlangen-Nuernberg, Cauerstrasse 6, 91058 Erlangen (Germany); Fraunhofer-Institut fuer Integrierte Systeme und Bauelementetechnologie (IISB), Schottkystrasse 10, 91058 Erlangen (Germany); Lehrstuhl fuer Elektronische Bauelemente (LEB), Universitaet Erlangen-Nuernberg, Cauerstrasse 6, 91058 Erlangen (Germany) and Fraunhofer-Institut fuer Integrierte Systeme und Bauelementetechnologie (IISB), Schottkystrasse 10, 9 (Germany); Lehrstuhl fuer Mikromechanik, Mikrofluidik/ Mikroaktorik (LMM), Universitaet des Saarlandes, Campus A5.1, 66123 Saarbruecken (Germany); Lehrstuhl fuer Elektronische Bauelemente (LEB), Universitaet Erlangen-Nuernberg, Cauerstrasse 6, 91058 Erlangen (Germany) and Fraunhofer-Institut fuer Integrierte Systeme und Bauelementetechnologie (IISB), Schottkystrasse 10,91 (Germany)

2012-11-06T23:59:59.000Z

95

Low-Temperature Synthesis of Actinide Tetraborides by Solid-State Metathesis Reactions  

DOE Patents (OSTI)

The synthesis of actinide tetraborides including uranium tetraboride (UB,), plutonium tetraboride (PUB,) and thorium tetraboride (ThB{sub 4}) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to {approx_equal}850 C. As an example, when UCl{sub 4}, is reacted with an excess of MgB{sub 2}, at 850 C, crystalline UB, is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl{sub 3}, as the initial step in the reaction. The UB, product is purified by washing water and drying.

Lupinetti, Anthony J.; Garcia, Eduardo; Abney, Kent D.

2004-12-14T23:59:59.000Z

96

Microwave plasma monitoring system for the elemental composition analysis of high temperature process streams  

DOE Patents (OSTI)

Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, high temperature capability refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. The invention may be incorporated into a high temperature process device and implemented in situ for example, such as with a DC graphite electrode plasma arc furnace. The invention further provides a system for the elemental analysis of process streams by removing particulate and/or droplet samples therefrom and entraining such samples in the gas flow which passes through the plasma flame. Introduction of and entraining samples in the gas flow may be facilitated by a suction pump, regulating gas flow, gravity or combinations thereof.

Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnuthill, MA); Titus, Charles H. (Newtown Square, PA); Surma, Jeffrey E. (Kennewick, WA)

1997-01-01T23:59:59.000Z

97

A STUDY OF GAS-SOLID SUSPENSIONS AT HIGH TEMPERATURES AND EFFECT OF ELECTROMAGNETIC FIELDS. Technical Report IIL-7-P  

SciTech Connect

The equilibrium between thermionic emission from solid particles and space charges of the phases in a gas-solid suspension (thermal electrification) was previously studied. Some further considerations are examined. Investigation of the effects of the properties of the solid phase on thermal electrification indicates that solid particies in a gassolid system could be much hotter than the gas phase since thermal electrification depends mainly on solid particle temperature. Control of thermal electrification by the initial charge of solid particles, particularly removal of electrons by positively charged particles, is considered. The rate of solid particle dispersion is found to be the main factor in deionization of hot gases by charged solid particles. Investigation of the electrical conductivity of a mixture of electrons, charged solid particles, and the gas atoms of the suspending gas reveals that thermal electrification is not the only contributor to high electrical conductivity. Use of a gas-solid system for magnetohydrodynamic energy conversion is also examined. Solid particles of controlled size contribute favorably to MHD generation, but in plasma MHD accelerators would reduce performance. (D.C.W.)

Soo, S.L.

1962-06-01T23:59:59.000Z

98

Finite element methods for unsaturated porous solids and their application to dam engineering problems  

Science Conference Proceedings (OSTI)

This work presents a finite element formulation of equations proposed in a companion paper to describe the hyperelastic response of three-phase porous media. Attention is paid to the development of consistent tangents required by the Newton-Raphson procedure ... Keywords: Concrete dams, Hydro-mechanical coupling, Multiphase porous media, Rock mass permeability, Unilateral constraints

C. Callari; A. Abati

2009-04-01T23:59:59.000Z

99

STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS  

DOE Green Energy (OSTI)

Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible hydrocarbons, CO, or NO{sub x} and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at low to intermediate1 temperatures tremendous benefits may be accrued. At low temperatures, in particular, it becomes feasible to use ferritic steel for interconnects instead of expensive and brittle ceramic materials such as those based on LaCrO{sub 3}. In addition, sealing the fuel cell becomes easier and more reliable; rapid start-up is facilitated; thermal stresses (e.g., those caused by thermal expansion mismatches) are reduced; radiative losses ({approx}T{sup 4}) become minimal; electrode sintering becomes negligible and (due to a smaller thermodynamic penalty) the SOFC operating cycle (heating from ambient) would be more efficient. Combined, all these improvements further result in reduced initial and operating costs. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research are to develop a stable high conductivity (> 0.05 S cm{sup -1} at {le} 550 C) electrolyte for lower temperature SOFCs. This objective is specifically directed toward meeting the lowest (and most difficult) temperature criteria for the 21st Century Fuel Cell Program. Meeting this objective provides a potential for future transportation applications of SOFCs, where their ability to directly use hydrocarbon fuels could permit refueling within the existing transportation infrastructure. In order to meet this objective we are developing a functionally gradient bilayer electrolyte comprised of bismuth oxide on the air side and ceria on the fuel side. Bismuth oxide and doped ceria are among the highest ionic conducting electrolytes and in fact bismuth oxide based electrolytes are the only known solid oxide electrolytes to have an ionic conductivity that meets the program conductivity goal.

Eric D. Wachsman; Keith L. Duncan

2001-09-30T23:59:59.000Z

100

High Temperature Solid-Oxide Electrolyzer 2500 Hour Test Results At The Idaho National Laboratory  

DOE Green Energy (OSTI)

The Idaho National Laboratory (INL) has been developing the concept of using solid oxide fuel cells as electrolyzers for large-scale, high-temperature (efficient), hydrogen production. This program is sponsored by the U.S. Department of Energy under the Nuclear Hydrogen Initiative. Utilizing a fuel cell as an electrolyzer introduces some inherent differences in cell operating conditions. In particular, the performance of fuel cells operated as electrolyzers degrades with time faster. This issue of electrolyzer cell and stack performance degradation over time has been identified as a major barrier to technology development. Consequently, the INL has been working together with Ceramatec, Inc. (Salt Lake City, Utah) to improve the long-term performance of high temperature electrolyzers. As part of this research partnership, the INL conducted a 2500 hour test of a Ceramatec designed and produced stack operated in the electrolysis mode. This paper will provide a summary of experimental results to date for this ongoing test.

Carl Stoots; James O'Brien; Stephen Herring; Keith Condie; Lisa Moore-McAteer; Joseph J. Hartvigsen; Dennis Larsen

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus  

DOE Patents (OSTI)

Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity [>=]10[sup [minus]4] (ohm-cm)[sup [minus]1], and preferably [>=]0.01 (ohm-cm)[sup [minus]1]. The conductivity may be due predominantly to Ag[sup +] ions, as in Ag[sub 2]WO[sub 4], or to F[sup [minus

Zaromb, S.

1994-06-21T23:59:59.000Z

102

2500-Hour High Temperature Solid-Oxide Electrolyzer Long Duration Test  

DOE Green Energy (OSTI)

The Idaho National Laboratory (INL) has been developing the concept of using solid oxide fuel cells as electrolyzers for large-scale, high-temperature (efficient), hydrogen production. This program is sponsored by the U.S. Department of Energy under the Nuclear Hydrogen Initiative. Utilizing a fuel cell as an electrolyzer introduces some inherent differences in cell operating conditions. In particular, the performance of fuel cells operated as electrolyzers degrades with time faster. This issue of electrolyzer cell and stack performance degradation over time has been identified as a major barrier to technology development. Consequently, the INL has been working together with Ceramatec, Inc. (Salt Lake City, Utah) to improve the long-term performance of high temperature electrolyzers. As part of this research partnership, the INL conducted a 2500 hour test of a Ceramatec designed and produced stack operated in the electrolysis mode. This report will provide a summary of experimental results for this long duration test.

C. M. Stoots; J. E. O'Brien; K. G. Condie; L. Moore-McAteer; J. J. Hartvigsen; D. Larsen

2009-11-01T23:59:59.000Z

103

Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells  

DOE Patents (OSTI)

A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

1997-11-11T23:59:59.000Z

104

Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells  

DOE Patents (OSTI)

A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

Kuo, Lewis J. H. (Monroeville, PA); Singh, Prabhakar (Export, PA); Ruka, Roswell J. (Churchill Boro, PA); Vasilow, Theodore R. (Penn Township, PA); Bratton, Raymond J. (Delmont, PA)

1997-01-01T23:59:59.000Z

105

Methods for manufacturing porous nuclear fuel elements for high-temperature gas-cooled nuclear reactors  

SciTech Connect

Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.

Youchison, Dennis L. (Albuquerque, NM); Williams, Brian E. (Pocoima, CA); Benander, Robert E. (Pacoima, CA)

2010-02-23T23:59:59.000Z

106

Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors  

SciTech Connect

Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

Youchison, Dennis L. (Albuquerque, NM); Williams, Brian E. (Pacoima, CA); Benander, Robert E. (Pacoima, CA)

2011-03-01T23:59:59.000Z

107

Element-specific study of the temperature dependent magnetization of Co-Mn-Sb thin films  

SciTech Connect

Magnetron sputtered thin Co-Mn-Sb films were investigated with respect to their element-specific magnetic properties. Stoichiometric Co{sub 1}Mn{sub 1}Sb{sub 1} crystallized in the C1{sub b} structure has been predicted to be half-metallic and is therefore of interest for spintronics applications. It should show a characteristic antiferromagnetic coupling of the Mn and Co magnetic moments and a transition temperature T{sub C} of about 480K. Although the observed transition temperature of our 20nm thick Co{sub 32.4}Mn{sub 33.7}Sb{sub 33.8}, Co{sub 37.7}Mn{sub 34.1}Sb{sub 28.2} and Co{sub 43.2}Mn{sub 32.6}Sb{sub 24.2} films is in quite good agreement with the expected value, we found a ferromagnetic coupling of the Mn and Co magnetic moments which indicates that the films do not crystallize in the C1{sub b} structure and are probably not fully spin-polarized. The ratio of the Co and Mn moments does not change up to the transition temperature and the temperature dependence of the magnetic moments can be well described by the mean field theory.

Schmalhorst, J.; Ebke, D.; Meinert, M.; Thomas, A.; Reiss, G.; Arenholz, E.

2008-09-30T23:59:59.000Z

108

Comparative Finite Element Analysis of the Stress-Strain States in Three Different Bonded Solid Oxide Fuel Cell Seal Designs  

DOE Green Energy (OSTI)

One of the critical issues in designing and fabricating a high performance planar solid oxide fuel cell (pSOFC) stack is the development of the appropriate materials and techniques for hermetically sealing the metal and ceramic components. We are currently developing a foil-based approach that appears to offer good hermeticity and mechanical integrity, while minimizing the generation of interfacial stresses in either of the joint substrate materials, particulary the ceramic cell. Prior experimental work conducted on small-scale samples demonstrated the viability of the concept. Here we present recent results from computational analyses undertaken to investigate potential issues associated with scaling up the seal to full-scale pSOFC stack dimensions/geometry. Here we employ finite element modeling to assess the potential thermal cycling performance of this design, specifically as it pertains to sealing components with vastly different thermal expansion properties.

Weil, K. Scott; Koeppel, Brian J.

2008-05-15T23:59:59.000Z

109

Research of influence of temperature deformations of the big elastic elements on dynamics of a space vehicle  

E-Print Network (OSTI)

At this project considers the problem of analysis temperature deformation of elastic elements of the spacecraft. Spacecraft periodically appears in the earth's shadow on the sunny side when moving from the orbit. Abruptly changing the temperature field of large elastic elements can affect the dynamic characteristics of the spacecraft. This is important when dealing with the implementation of the gravity-sensitive processes on board.

A. V. Sedelnikov; M. I Kazarina

2010-07-23T23:59:59.000Z

110

Solid State Joining of High Temperature Alloy Tubes for USC and Heat-Exchanger Systems  

Science Conference Proceedings (OSTI)

The principal objective of this project was to develop materials enabling joining technologies for use in forward looking heat-exchanger fabrication in Brayton cycle HIPPS, IGCC, FutureGen concepts capable of operating at temperatures in excess of 1000{degree}C as well as conventional technology upgrades via Ultra Super-Critical (USC) Rankine-cycle boilers capable of operating at 760{degree}C (1400F)/38.5MPa (5500psi) steam, while still using coal as the principal fossil fuel. The underlying mission in Rankine, Brayton or Brayton-Rankine, or IGCC combined cycle heat engine is a steady quest to improving operating efficiency while mitigating global environmental concerns. There has been a progressive move to higher overall cycle efficiencies, and in the case of fossil fuels this has accelerated recently in part because of concerns about greenhouse gas emissions, notably CO{sub 2}. For a heat engine, the overall efficiency is closely related to the difference between the highest temperature in the cycle and the lowest temperature. In most cases, efficiency gains are prompted by an increase in the high temperature, and this in turn has led to increasing demands on the materials of construction used in the high temperature end of the systems. Our migration to new advanced Ni-base and Oxide Dispersion Strengthened (ODS) alloys poses significant fabrication challenges, as these materials are not readily weldable or the weld performs poorly in the high temperature creep regime. Thus the joining challenge is two-fold to a) devise appropriate joining methodologies for similar/dissimilar Ni-base and ODS alloys while b) preserving the near baseline creep performance in the welded region. Our program focus is on solid state joining of similar and dissimilar metals/alloys for heat exchanger components currently under consideration for the USC, HIPPS and IGCC power systems. The emphasis is to manipulate the joining methods and variables available to optimize joint creep performance compared to the base material creep performance. Similar and dissimilar butt joints were fabricated of MA956, IN740 alloys and using inertia welding techniques. We evaluated joining process details and heat treatments and its overall effect on creep response. Fixed and incrementally accelerated temperature creep tests were performed for similar and dissimilar joints and such incremental creep life data is compiled and reported. Long term MA956-MA556 joint tests indicate a firm 2Ksi creep stress threshold performance at 850{degree}C with a maximum exposure of over 9725 hours recorded in the current program. A Larsen Miller Parameter (LMP) of 48.50 for a 2Ksi test at 850{degree}C was further corroborated with tests at 2Ksi stress at 900{degree}C yielding a LMP=48.80. Despite this threshold the joints exhibit immense temperature sensitivity and fail promptly when test temperature raised above 900{degree}C. In comparison the performance of dissimilar joints was inferior, perhaps dictated by the creep characteristics of the mating nickel-base alloys. We describe a parametric window of joint development, and post weld heat treatment (PWHT) in dissimilar joints with solid solution (IN601, IN617) and precipitate strengthened (IN740) materials. Some concerns are evident regarding the diffusion of aluminum in dissimilar joints during high temperature recrystallization treatments. It is noted that aggressive treatments rapidly deplete the corrosion protecting aluminum reservoir in the vicinity of the joint interface. Subsequently, the impact of varying PWHT has been evaluated in the context on ensuing creep performance.

Bimal Kad

2011-12-31T23:59:59.000Z

111

NOVEL ELECTRODE MATERIALS FOR LOW-TEMPERATURE SOLID-OXIDE FUEL CELLS  

DOE Green Energy (OSTI)

Composite electrodes consisting of silver and bismuth vanadates exhibit remarkable catalytic activity for oxygen reduction at 500-550 C and greatly reduce the cathode-electrolyte (doped ceria) resistances of low temperature SOFCs, down to about 0.53 {Omega}cm{sup 2} at 500 C and 0.21 {Omega}cm{sup 2} at 550 C. The observed power densities of 231, 332, and 443 mWcm{sup -2} at 500, 525 and 550 C, respectively, make it possible to operate SOFCs at temperatures about 500 C. Using in situ potential dependent FTIR emission spectroscopy, we have found evidence for two, possibly three distinct di-oxygen species present on the electrode surface. We have successfully identified which surface oxygen species is present under a particular electrical or chemical condition and have been able to deduce the reaction mechanisms. This technique will be used to probe the gas-solid interactions at or near the TPB and on the surfaces of mixed-conducting electrodes in an effort to understand the molecular processes relevant to the intrinsic catalytic activity. Broad spectral features are assigned to the polarization-induced changes in the optical properties of the electrode surface layer. The ability of producing vastly different microstructures and morphologies of the very same material is critical to the fabrication of functionally graded electrodes for solid-state electrochemical devices, such as SOFCs and lithium batteries. By carefully adjusting deposition parameters of combustion CVD, we have successfully produced oxide nano-powders with the size of 30 {approx} 200 nm. Porous films with various microstructures and morphologies are also deposited on several substrates by systematic adjustment of deposition parameters. Symmetrical cells were fabricated by depositing cathode materials on both sides of GDC electrolytes.

X. Lu; C. Xia; Y. Liu; W. Rauch; M. Liu

2002-12-01T23:59:59.000Z

112

STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS  

DOE Green Energy (OSTI)

Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible CO, HC, or NOx and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at lower temperatures tremendous benefits may be accrued, not the least of which is reduced cost. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research is to develop a stable high conductivity (>0.05 S cm{sup -1} at 550 C) electrolyte for lower temperature SOFCs. This objective is specifically directed toward meeting the lowest (and most difficult) temperature criteria for the 21st Century Fuel Cell Program. Meeting this objective provides a potential for future transportation applications of SOFCs, where their ability to directly use hydrocarbon fuels could permit refueling within the existing transportation infrastructure. In order to meet this objective we are developing a functionally gradient bilayer electrolyte comprised of bismuth oxide on the air side and ceria on the fuel side. Bismuth oxide and doped ceria are among the highest ionic conducting electrolytes and in fact bismuth oxide based electrolytes are the only known solid oxide electrolytes to have an ionic conductivity that meets the program conductivity goal. We have previously demonstrated that this concept works, that a bismuth oxide/ceria bilayer electrolyte provides near theoretical open circuit potential (OCP) and is stable for 1400 h of fuel cell operation under both open circuit and maximum power conditions. More recently, we developed a computer model to determine the defect transport in this bilayer and have found that a bilayer comprised primarily of the more conductive component (bismuth oxide) is stable for 500 C operation. In this first year of the project we are obtaining necessary thermochemical data to complete the computer model as well as initial SOFC results based on thick 1-2 mm single and bilayer ceria/bismuth oxide electrolytes. We will use the computer model to obtain the optimum relative layer thickness as a function of temperature and air/fuel conditions. SOFCs will be fabricated with 1-2 mm single and bilayer electrolytes based on the modeling results, tested for OCP, conductivity, and stability and compared against the predictions. The computer modeling is a continuation of previous work under support from GRI and the student was available at the inception of the contract. However, the experimental effort was delayed until the beginning of the Spring Semester because the contract was started in October, 2 months after the start of our Fall Semester, and after all of the graduate students were committed to other projects. The results from both of these efforts are described in the following two sections: (1) Experimental; and (2) Computer Modeling.

Eric D. Wachsman

2000-10-01T23:59:59.000Z

113

Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus and methods  

DOE Patents (OSTI)

Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity .gtoreq.10.sup.-4 (ohm-cm).sup.-1, and preferably .gtoreq.0.01 (ohm-cm).sup.-1. The conductivity may be due predominantly to Ag+ ions, as in Ag.sub.2 WO.sub.4.4AgI, or to F- ions, as in Ce.sub.0.95 Ca.sub.0.05 F.sub.2.95. Electrical contacts serve to connect the electrodes to potentiostating and detecting circuitry which controls the potential of the sensing electrode relative to the reference electrode, detects the signal generated by the sensor, and indicates the detected signal.

Zaromb, Solomon (9 S 706 William Dr., Hinsdale, IL 60521)

2001-01-01T23:59:59.000Z

114

Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus  

DOE Patents (OSTI)

Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity .gtoreq.10.sup.-4 (ohm-cm).sup.-1, and preferably .gtoreq.0.01 (ohm-cm).sup.-1. The conductivity may be due predominantly to Ag+ ions, as in Ag.sub.2 WO.sub.4.4AgI, or to F- ions, as in Ce.sub.0.95 Ca.sub.0.05 F.sub.2.95. Electrical contacts serve to connect the electrodes to potentiostating and detecting circuitry which controls the potential of the sensing electrode relative to the reference electrode, detects the signal generated by the sensor, and indicates the detected signal.

Zaromb, Solomon (9S 706 William Dr., Hinsdale, IL 60521)

1994-01-01T23:59:59.000Z

115

It's Elemental - The Element Zinc  

NLE Websites -- All DOE Office Websites (Extended Search)

Copper Copper Previous Element (Copper) The Periodic Table of Elements Next Element (Gallium) Gallium The Element Zinc [Click for Isotope Data] 30 Zn Zinc 65.38 Atomic Number: 30 Atomic Weight: 65.38 Melting Point: 692.68 K (419.53°C or 787.15°F) Boiling Point: 1180 K (907°C or 1665°F) Density: 7.134 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 4 Group Number: 12 Group Name: none What's in a name? From the German word zink. Say what? Zinc is pronounced as ZINK. History and Uses: Although zinc compounds have been used for at least 2,500 years in the production of brass, zinc wasn't recognized as a distinct element until much later. Metallic zinc was first produced in India sometime in the 1400s by heating the mineral calamine (ZnCO3) with wool. Zinc was rediscovered by

116

LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES  

DOE Green Energy (OSTI)

Nanosize yttria-stabilized zirconia (YSZ) was synthesized by a unique approach based on molecular decomposition. In this approach, yttria-doped BaZrO{sub 3} (Y-BaZrO{sub 3}) or yttria-doped Na{sub 2}ZrO{sub 3} (Y-Na{sub 2}ZrO{sub 3}) precursors were first synthesized from BaCO{sub 3}, ZrO{sub 2}, Y2O{sub 3} or BaCO{sub 3} and commercial YSZ for Y-BaZrO{sub 3}, and from Na{sub 2}CO{sub 3} and YSZ for Y-Na{sub 2}ZrO{sub 3}, by a conventional solid state reaction method. Then, the precursors were boiled to leach away the unwanted species, BaO or Na{sub 2}O, either in a dilute HNO{sub 3} solution in water in the case of Y-BaZrO{sub 3}, or in de-ionized water in the case of Y-Na{sub 2}ZrO{sub 3}. During boiling in HNO{sub 3} or water, the insoluble residue of Zr-Y-O composition formed fine, nanosize YSZ particles. X-ray diffraction (XRD) and specific surface area measurements on the as-synthesized powders confirmed the formation of nanosize YSZ. A subsequent heating in air led to particle growth. However, for a treatment at a temperature as high as 1000 C, the particle size was well in the nanosize range. XRD showed that the as-synthesized YSZ powders, as well as those heated up to 1000 C, the maximum temperature the powders were heated to after leaching, are of cubic structure.

Prof. Anil V. Virkar

2000-04-07T23:59:59.000Z

117

Thermodynamic and kinetic studies of some Group III and Group V elements and alloys by solid state electrochemical techniques  

SciTech Connect

The Gibbs free energy of forming gallium sesquioxide and indium sesquioxide are measured using a CO$sub 2$--CO--O$sub 2$ gas reference electrode and calcia stabilized zirconia as the solid electrolyte. The free energies are: $delta$G$sup 0$/sub f/($beta$-Ga$sub 2$O$sub 3$(c)) equals -(265,309 +- 152) + (82.47 +- 0.16) (T/K) cal mol$sup -1$ and $delta$G$sup 0$/sub f/(In$sub 2$O$sub 3$ (c)) equals -(223,160 +- 137) + (79.47 +- 0.12) (T/K) cal mol$sup -$.$sup 1$ A solid state galvanic cell is employed to measure gallium activities in Ga--Sb liquid alloys. Results show moderate negative deviations from ideality in the composition range 0.039 less than x/sub Ga/ less than 0.833. Partial molar enthalpies and entropies are calculated, and agree wih calorimetric data. Results are combined with calorimetric data to calculate the liquidus temperatures of the Ga--Sb system, which are in excellent agreement with measurements. Effect of short-range ordering is also investigated. Coulometric titration techniques are used to investigate the solubility and diffusivity of oxygen in liquid indium. Dissolved atomic oxygen is found to follow Henry's law and a saturation solubility of x$sub 0$/sup sat/ equals 3.3 x 10$sup -3$ is determined at 908$sup 0$K. From a galvanostatic response of an indium electrode, an oxygen diffusivity of 2.2 x 10$sup -6$ cm$sup 2$ s$sup -1$ is found, in good agreement with other available data. (LK)

Anderson, T.J.

1975-10-01T23:59:59.000Z

118

Novel Electrode Materials for Low-Temperature Solid-Oxide Fuel Cells  

DOE Green Energy (OSTI)

Composites electrodes consisting of silver and bismuth vanadates exhibit remarkable catalytic activity for oxygen reduction at 500-550 C and greatly reduce the cathode-electrolyte (doped ceria) resistances of low temperature SOFCs, down to about 0.53 {omega}cm{sup 2} at 500 C and 0.21 {omega}cm{sup 2} at 550 C. The observed power densities of 231, 332, and 443 mWcm-2 at 500, 525 and 550 C, respectively, make it possible to operate SOFCs at temperatures about 500 C. Fuel cell performance depends strongly on the anode microstructure, which is determined by the anode compositions and fabrication conditions. Four types of anodes with two kinds of NiO and GDC powders were investigated. By carefully adjusting the anode microstructure, the GDC electrolyte/anode interfacial polarization resistances reduced dramatically. The interfacial resistance at 600 C decreased from 1.61 {omega} cm{sup 2} for the anodes prepared using commercially available powders to 0.06 {omega} cm{sup 2} for those prepared using powders derived from a glycine-nitrate process. Although steam reforming or partial oxidation is effective in avoiding carbon deposition of hydrocarbon fuels, it increases the operating cost and reduces the energy efficiency. Anode-supported SOFCs with an electrolyte of 20 {micro}m-thick Gd-doped ceria (GDC) were fabricated by co-pressing. A catalyst (1 %wt Pt dispersed on porous Gd-doped ceria) for pre-reforming of propane was developed with relatively low steam to carbon (S/C) ratio ({approx}0.5), coupled with direct utilization of the reformate in low-temperature SOFCs. Propane was converted to smaller molecules during pre-reforming, including H{sub 2}, CH{sub 4}, CO, and CO{sub 2}. A peak power density of 247 mW/cm{sup 2} was observed when pre-reformed propane was directly fed to an SOFC operated at 600 C. No carbon deposition was observed in the fuel cell for a continuous operation of 10 hours at 600 C. The ability of producing vastly different microstructures and morphologies of the very same material is critical to the fabrication of functionally graded electrodes for solid-state electrochemical devices such as SOFCs and lithium batteries. By carefully adjusting deposition parameters, we have successfully produced oxide nano-powders with the size of 30 {approx} 200 nm. Porous films with various microstructures and morphologies are also deposited on several substrates by systematic adjustment of the deposition parameters. Highly porous, excellently bonded and nano-structured electrodes fabricated by combustion CVD exhibit extremely high surface area and remarkable catalytic activities. Using in situ potential dependent FTIR emission spectroscopy, we have found evidence for two, possibly three distinct di-oxygen species present on the electrode surface. We have successfully identified which surface oxygen species is present under a particular electrical or chemical condition and have been able to deduce the reaction mechanisms. This technique will be used to probe the gas-solid interactions at or near the TPB and on the surfaces of mixed-conducting electrodes in an effort to understand the molecular processes relevant to the intrinsic catalytic activity. Broad spectral features are assigned to the electrochemical-polarization-induced changes in the optical properties of the electrode surface layer.

Shaowu Zha; Meilin Liu

2005-03-23T23:59:59.000Z

119

It's Elemental - The Element Iodine  

NLE Websites -- All DOE Office Websites (Extended Search)

Tellurium Tellurium Previous Element (Tellurium) The Periodic Table of Elements Next Element (Xenon) Xenon The Element Iodine [Click for Isotope Data] 53 I Iodine 126.90447 Atomic Number: 53 Atomic Weight: 126.90447 Melting Point: 386.85 K (113.7°C or 236.7°F) Boiling Point: 457.55 K (184.4°C or 364.0°F) Density: 4.93 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Non-metal Period Number: 5 Group Number: 17 Group Name: Halogen What's in a name? From the Greek word for violet, iodes. Say what? Iodine is pronounced as EYE-eh-dine or as EYE-eh-din. History and Uses: Iodine was discovered by the French chemist Barnard Courtois in 1811. Courtois was extracting sodium and potassium compounds from seaweed ash. Once these compounds were removed, he added sulfuric acid (H2SO4) to

120

It's Elemental - The Element Lead  

NLE Websites -- All DOE Office Websites (Extended Search)

Thallium Thallium Previous Element (Thallium) The Periodic Table of Elements Next Element (Bismuth) Bismuth The Element Lead [Click for Isotope Data] 82 Pb Lead 207.2 Atomic Number: 82 Atomic Weight: 207.2 Melting Point: 600.61 K (327.46°C or 621.43°F) Boiling Point: 2022 K (1749°C or 3180°F) Density: 11.342 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 6 Group Number: 14 Group Name: none What's in a name? From the Anglo-Saxon word lead. Lead's chemical symbol comes from the Latin word for waterworks, plumbum. Say what? Lead is pronounced as LED. History and Uses: Lead has been known since ancient times. It is sometimes found free in nature, but is usually obtained from the ores galena (PbS), anglesite (PbSO4), cerussite (PbCO3) and minum (Pb3O4). Although lead makes up only

Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Evaluation of Cathode Materials for Low Temperature (500-700C) Solid Oxide Fuel Cells.  

E-Print Network (OSTI)

?? Solid oxide fuel cells (SOFC) have gained a great deal of interest, due to their potential for high efficiency power generation and ability to (more)

Lassman, Alexander M

2011-01-01T23:59:59.000Z

122

A High Temperature Planar Solid Oxide Fuel Cell Operating on Phosphine Contaminated Coal Syngas.  

E-Print Network (OSTI)

??Solid oxide fuel cells that operate on phosphine contaminated coal syngas are subject to performance degradation due to alterations of the anode microstructure. Theoretical investigations (more)

De Silva, Kandaudage Channa R.

2011-01-01T23:59:59.000Z

123

ANALOG COMPUTATION OF TEMPERATURE DISTRIBUTION IN SOLIDS WITH ELECTRICAL HEAT-GENERATION AND TEMPERATURE-DEPENDENT PROPERTIES  

SciTech Connect

A problem which frequently arises in experimentai heat transfer work is that of determining the surface temperature of a tube in which heat is generated electrically. Solution of this problem involves a temperature measurement of the opposite surface to which a correction factor, the temperature drop through the tube wall, must be applied. This temperature drop is obtnined through the solution of the diffurential equation governing the temperature distribution in the tube wall; however, in the case of temperature-dependent properties of thermal conductivity and electrical resistivity, the governing equation is nonlinear, which necessitates special solutions. In this study a hypothetical surface-temperature problem was established, and the solution of the governing nonlinear differential equation was accomplished by means of an electronic analog computer. Assuming variable properties, the example used in this study was that of a one-dimensional steadystate heat flow through both a thick- and a thin- walled tube. (auth)

Harden, D.G.; Bryant, L.T.

1962-11-01T23:59:59.000Z

124

Promises and problems with metallic interconnects for reduced temperature solid oxide fuel cells  

E-Print Network (OSTI)

Proceedings of Ist European SOFC Forum, U. Bossel , Editor,on Solid Oxide Fuel Cells (SOFC-VI) ed. S. C. Singhal etsolid oxide fuel cell (SOFC) development is towards lower

Hou, Peggy Y.; Huang, Keqin; Bakker, Wate T.

1999-01-01T23:59:59.000Z

125

Reversible temperature regulation of electrical and thermal conductivity using liquidsolid phase transitions  

E-Print Network (OSTI)

Reversible temperature tuning of electrical and thermal conductivities of materials is of interest for many applications, including seasonal regulation of building temperature, thermal storage and sensors. Here we introduce ...

Zheng, Ruiting

126

High temperature behavior of electrostatic precipitator ash from municipal solid waste combustors  

E-Print Network (OSTI)

combustion may cause the oxidation of mercury, and chloride mercury #12;13 13 species may be the major form combustion and gasification flue gases, Environ. Sci. Technol. 30 (1996) 2421-2426. [23] S.B. Ghorishi, C Ms. Ref. No.: HAZMAT-D-07-00176 Accepted manuscript #12;2 2 Abstract Municipal solid waste (MSW) flue

Paris-Sud XI, Université de

127

Soft x-ray scattering using FEL radiation for probing near-solid density plasmas at few electronvolt temperatures  

DOE Green Energy (OSTI)

We report on soft x-ray scattering experiments on cryogenic hydrogen and simple metal targets. As a source of intense and ultrashort soft x-ray pulses we have used free-electron laser radiation at 92 eV photon energy from FLASH at DESY, Hamburg. X-ray pulses with energies up to 100 {micro}J and durations below 50 fs provide interaction with the target leading simultaneously to plasma formation and scattering. Experiments exploiting both of these interactions have been carried out, using the same experimental setup. Firstly, recording of soft x-ray inelastic scattering from near-solid density hydrogen plasmas at few electronvolt temperatures confirms the feasibility of this diagnostics technique. Secondly, the soft x-ray excitation of few electronvolt solid-density plasmas in simple metals could be studied by recording soft x-ray line and continuum emission integrated over emission times from fs to ns.

Toleikis, S; Faustlin, R R; Cao, L; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gode, S; Gregori, G; Irsig, R; Laarmann, T; Lee, H J; Li, B; Meiwes-Broer, K; Przystawik, A; Radcliffe, P; Redmer, R; Tavella, F; Thiele, R; Tiggesbaumker, J; Truong, N X; Uschmann, I; Zastrau, U; Tschentscher, T

2009-03-03T23:59:59.000Z

128

A High Temperature Electrochemical Energy Storage System Based on Sodium Beta-Alumina Solid Electrolyte (Base)  

DOE Green Energy (OSTI)

This report summarizes the work done during the period September 1, 2005 and March 31, 2008. Work was conducted in the following areas: (1) Fabrication of sodium beta{double_prime} alumina solid electrolyte (BASE) using a vapor phase process. (2) Mechanistic studies on the conversion of {alpha}-alumina + zirconia into beta{double_prime}-alumina + zirconia by the vapor phase process. (3) Characterization of BASE by X-ray diffraction, SEM, and conductivity measurements. (4) Design, construction and electrochemical testing of a symmetric cell containing BASE as the electrolyte and NaCl + ZnCl{sub 2} as the electrodes. (5) Design, construction, and electrochemical evaluation of Na/BASE/ZnCl{sub 2} electrochemical cells. (6) Stability studies in ZnCl{sub 2}, SnCl{sub 2}, and SnI{sub 4} (7) Design, assembly and testing of planar stacks. (8) Investigation of the effect of porous surface layers on BASE on cell resistance. The conventional process for the fabrication of sodium ion conducting beta{double_prime}-alumina involves calcination of {alpha}-alumina + Na{sub 2}CO{sub 3} + LiNO{sub 3} at 1250 C, followed by sintering powder compacts in sealed containers (platinum or MgO) at {approx}1600 C. The novel vapor phase process involves first sintering a mixture of {alpha}-alumina + yttria-stabilized zirconia (YSZ) into a dense ceramic followed by exposure to soda vapor at {approx}1450 C to convert {alpha}-alumina into beta{double_prime}-alumina. The vapor phase process leads to a high strength BASE, which is also resistant to moisture attack, unlike BASE made by the conventional process. The PI is the lead inventor of the process. Discs and tubes of BASE were fabricated in the present work. In the conventional process, sintering of BASE is accomplished by a transient liquid phase mechanism wherein the liquid phase contains NaAlO{sub 2}. Some NaAlO{sub 2} continues to remain at grain boundaries; and is the root cause of its water sensitivity. In the vapor phase process, NaAlO{sub 2} is never formed. Conversion occurs by a coupled transport of Na{sup +} through BASE formed and of O{sup 2-} through YSZ to the reaction front. Transport to the reaction front is described in terms of a chemical diffusion coefficient of Na{sub 2}O. The conversion kinetics as a function of microstructure is under investigation. The mechanism of conversion is described in this report. A number of discs and tubes of BASE have been fabricated by the vapor phase process. The material was investigated by X-ray diffraction (XRD), optical microscopy and scanning electron microscopy (SEM), before and after conversion. Conductivity (which is almost exclusively due to sodium ion transport at the temperatures of interest) was measured. Conductivity was measured using sodium-sodium tests as well as by impedance spectroscopy. Various types of both planar and tubular electrochemical cells were assembled and tested. In some cases the objective was to determine if there was any interaction between the salt and BASE. The interaction of interest was mainly ion exchange (possible replacement of sodium ion by the salt cation). It was noted that Zn{sup 2+} did not replace Na+ over the conditions of interest. For this reason much of the work was conducted with ZnCl{sub 2} as the cathode salt. In the case of Sn-based, Sn{sup 2+} did ion exchange, but Sn{sup 4+} did not. This suggests that Sn{sup 4+} salts are viable candidates. These results and implications are discussed in the report. Cells made with Na as the anode and ZnCl{sub 2} as the cathode were successfully charged/discharged numerous times. The key advantages of the batteries under investigation here over the Na-S batteries are: (1) Steel wool can be used in the cathode compartment unlike Na-S batteries which require expensive graphite. (2) Planar cells can be constructed in addition to tubular, allowing for greater design flexibility and integration with other devices such as planar SOFC. (3) Comparable or higher open circuit voltage (OCV) than the Na-S battery. (4) Wider operating temperature range and higher temper

Anil Virkar

2008-03-31T23:59:59.000Z

129

Sealant materials for solid oxide fuels and other high-temperature ceramics  

DOE Green Energy (OSTI)

Glass-ceramic sealing materials have been developed with mechanical and chemical properties suitable for a variety of high-temperature applications. We have demonstrated the ability to tailor the thermal expansion coefficient between 8 and 12 x 10{sup -6}/{degrees}C, and the softening temperature can be adjusted such that the materials have suitable viscosities for a soft, compliant seal at temperatures ranging from 650 to 1000{degrees}C. These materials form excellent bonds to a variety of ceramics and metals during heating to the target operation temperature. They have limited reactivity with the fuel cell materials tested and are stable in both air and reducing environments.

Kueper, T.W.; Bloom, I.D.

1995-12-31T23:59:59.000Z

130

Measurement of gas temperature field in a flame spreading over solid fuel.  

E-Print Network (OSTI)

??An experimental measurement is developed to measure the gas temperature field in a flame spreading downward over thermally thin filter paper. A flame stabilizer apparatus (more)

Alghamdi, Abdulaziz Othman

2012-01-01T23:59:59.000Z

131

High-Temperature Processing of Solids Through Solar Nebular Bow Shocks: 3D Radiation Hydrodynamics Simulations with Particles  

E-Print Network (OSTI)

A fundamental, unsolved problem in Solar System formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks has been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through 3D radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H$_2$ is also used. Solids are followed directly in the simulati...

Boley, A C; Desch, S J

2013-01-01T23:59:59.000Z

132

An Insight into a Solid State Coating Process for High Temperature ...  

Science Conference Proceedings (OSTI)

A comparison with the coating produced via thermal spray, cold spray and arc cladding processes ... A Review of Metallic Systems Used in Offshore, Sour Environments: The Effect of ... High-temperature Foam-reinforced Thermal Insulation.

133

Least-squares variational principles and the finite element method: theory, formulations, and models for solid and fluid mechanics  

E-Print Network (OSTI)

We consider the application of least-squares variational principles and the finite element method to the numerical solution of boundary value problems arising in the fields of solidand fluidmechanics.For manyof these problems least-squares principles offer many theoretical and computational advantages in the implementation of the corresponding finite element model that are not present in the traditional weak form Galerkin finite element model.Most notably, the use of least-squares principles leads to a variational unconstrained minimization problem where stability conditions such as inf-sup conditions (typically arising in mixed methods using weak form Galerkin finite element formulations) never arise. In addition, the least-squares based finite elementmodelalways yields a discrete system ofequations witha symmetric positive definite coeffcientmatrix.These attributes, amongst manyothers highlightedand detailed in this work, allow the developmentofrobust andeffcient finite elementmodels for problems of practical importance. The research documented herein encompasses least-squares based formulations for incompressible and compressible viscous fluid flow, the bending of thin and thick plates, and for the analysis of shear-deformable shell structures.

Pontaza, Juan Pablo

2003-12-01T23:59:59.000Z

134

Strain-rate and temperature-driven transition in the shear transformation zone for two-dimensional amorphous solids  

E-Print Network (OSTI)

We couple the recently developed self-learning metabasin escape algorithm, which enables efficient exploration of the potential energy surface (PES), with shear deformation to elucidate strain-rate and temperature effects on the shear transformation zone (STZ) characteristics in two-dimensional amorphous solids. In doing so, we report a transition in the STZ characteristics that can be obtained through either increasing the temperature or decreasing the strain rate. The transition separates regions having two distinct STZ characteristics. Specifically, at high temperatures and high strain rates, we show that the STZs have characteristics identical to those that emerge from purely strain-driven, athermal quasistatic atomistic calculations. At lower temperatures and experimentally relevant strain rates, we use the newly coupled PES + shear deformation method to show that the STZs have characteristics identical to those that emerge from a purely thermally activated state. The specific changes in STZ characteristics that occur in moving from the strain-driven to thermally activated STZ regime include a 33% increase in STZ size, faster spatial decay of the displacement field, a change in the deformation mechanism inside the STZ from shear to tension, a reduction in the stress needed to nucleate the first STZ, and finally a notable loss in characteristic quadrupolar symmetry of the surrounding elastic matrix that has previously been seen in athermal, quasistatic shear studies of STZs.

Penghui Cao; Harold S. Park; Xi Lin

2013-10-25T23:59:59.000Z

135

Solids mass flow determination  

DOE Patents (OSTI)

Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

Macko, Joseph E. (Hempfield Township, Westmoreland County, PA)

1981-01-01T23:59:59.000Z

136

Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.  

DOE Green Energy (OSTI)

In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

Parkinson, W. J. (William Jerry),

2003-01-01T23:59:59.000Z

137

LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES  

DOE Green Energy (OSTI)

A simple, approximate analysis of the effect of differing cathode and anode areas on the measurement of cell performance on anode-supported solid oxide fuel cells, wherein the cathode area is smaller than the anode area, is presented. It is shown that the effect of cathode area on cathode polarization, on electrolyte contribution, and on anode resistance, as normalized on the basis of the cathode area, is negligible. There is a small but measurable effect on anode polarization, which results from concentration polarization. Effectively, it is the result of a greater amount of fuel transported to the anode/electrolyte interface in cases wherein the anode area is larger than the cathode area. Experiments were performed on cells made with differing cathode areas and geometries. Cathodic and anodic overpotentials measured using reference electrodes, and the measured ohmic area specific resistances by current interruption, were in good agreement with expectations based on the analysis presented. At 800 C, the maximum power density measured with a cathode area of {approx}1.1 cm{sup 2} was {approx}1.65 W/cm{sup 2} compared to {approx}1.45 W/cm{sup 2} for cathode area of {approx}2 cm{sup 2}, for anode thickness of {approx}1.3 mm, with hydrogen as the fuel and air as the oxidant. At 750 C, the measured maximum power densities were {approx}1.3 W/cm{sup 2} for the cell with cathode area {approx}1.1 cm{sup 2}, and {approx}1.25 W/cm{sup 2} for the cell with cathode area {approx}2 cm{sup 2}.

Anil V. Virkar

2001-06-21T23:59:59.000Z

138

LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES  

DOE Green Energy (OSTI)

Anode-supported solid oxide fuel cells with Ni + yttria-stabilized zirconia (YSZ) anode, YSZ-samaria-doped ceria (SDC) bi-layer electrolyte and Sr-doped LaCoO{sub 3} (LSC) + SDC cathode were fabricated. Fuel used consisted of H{sub 2} diluted with He, N{sub 2}, H{sub 2}O or CO{sub 2}, mixtures of H{sub 2} and CO, and mixtures of CO and CO{sub 2}. Cell performance was measured at 800 C with above-mentioned fuel gas mixtures and air as oxidant. For a given concentration of the diluent, the cell performance was higher with He as the diluent than with N{sub 2} as the diluent. Mass transport through porous Ni-YSZ anode for H{sub 2}-H{sub 2}O, CO-CO{sub 2} binary systems and H{sub 2}-H{sub 2}O-diluent gas ternary systems was analyzed using multicomponent gas diffusion theory. At high concentrations of the diluent, the maximum achievable current density was limited by the anodic concentration polarization. From this measured limiting current density, the corresponding effective gas diffusivity was estimated. Highest effective diffusivity was estimated for fuel gas mixtures containing H{sub 2}-H{sub 2}O-He mixtures ({approx}0.34 cm{sup 2}/s), and the lowest for CO-CO{sub 2} mixtures ({approx}0.07 cm{sup 2}/s). The lowest performance was observed with CO-CO{sub 2} mixture as a fuel, which in part was attributed to the lowest effective diffusivity of the fuels tested.

Anil V. Virkar

2001-09-26T23:59:59.000Z

139

Apparatus for measuring tensile and compressive properties of solid materials at cryogenic temperatures  

DOE Patents (OSTI)

An apparatus for evaluating the tensile and compressive properties of material samples at very low or cryogenic temperatures employs a stationary frame and a dewar mounted below the frame. A pair of coaxial cylindrical tubes extend downward towards the bottom of the dewar. A compressive or tensile load is generated hydraulically and is transmitted by the inner tube to the material sample. The material sample is located near the bottom of the dewar in a liquid refrigerant bath. The apparatus employs a displacement measuring device, such as a linear variable differential transformer, to measure the deformation of the material sample relative to the amount of compressive or tensile force applied to the sample.

Gonczy, John D. (Oaklawn, IL); Markley, Finley W. (St. Charles, IL); McCaw, William R. (Burr Ridge, IL); Niemann, Ralph C. (Downers Grove, IL)

1992-01-01T23:59:59.000Z

140

Low temperature electron-spin relaxation in the crystalline and glassy states of solid ethanol  

E-Print Network (OSTI)

X-band electron paramagnetic resonance (EPR) spectroscopy was used to study the spectral properties of a nitroxide spin probe in ethanol glass and crystalline ethanol, at 5 - 11.5 K. The different anisotropy of molecular packing in the two host matrices was evidenced by different rigid limit values for maximal hyperfine splitting in the signal of the spin probe. The significantly shorter phase memory time, , for the spin probe dissolved in crystalline ethanol, as compared to ethanol glass, was discussed in terms of contribution from spectral diffusion. The effect of low-frequency dynamics was manifested in the temperature dependence of and in the difference between the data measured at different spectral positions. This phenomenon was addressed within the framework of the slow-motional isotropic diffusion model [S. Lee, and S. Z. Tang, Phys. Rev. B 31, 1308 (1985)] predicting the spin probe dynamics within the millisecond range, at very low temperatures. The shorter spin-lattice relaxation time of the spin probe in ethanol glass was interpreted in terms of enhanced energy exchange between the spin system and the lattice in the glass matrix due to boson peak excitations.

Marina Kveder; Dalibor Merunka; Milan Joki?; Boris Rakvin

2010-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Neutronic fuel element fabrication  

SciTech Connect

This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.

Korton, George (Cincinnati, OH)

2004-02-24T23:59:59.000Z

142

Thermodynamic estimation of minor element distribution between immiscible liquids in Fe-Cu-based metal phase generated in melting treatment of municipal solid wastes  

SciTech Connect

Graphical abstract: Display Omitted Highlights: Black-Right-Pointing-Pointer Two liquids separation of metal occurs in the melting of municipal solid waste. Black-Right-Pointing-Pointer The distribution of PGMs etc. between two liquid metal phases is studied. Black-Right-Pointing-Pointer Quite simple thermodynamic model is applied to predict the distribution ratio. Black-Right-Pointing-Pointer Au and Ag originated from WEEE are found to be concentrated into Cu-rich phase. - Abstract: Waste electrical and electronic equipment (WEEE) has become an important target in managing material cycles from the viewpoint of not only waste management and control of environmental pollution but also resource conservation. This study investigated the distribution tendency of trace elements in municipal solid waste (MSW) or incinerator ash, including valuable non-ferrous metals (Ni, Co, Cr, Mn, Mo, Ti, V, W, Zr), precious group metals (PGMs) originated from WEEE (Ag, Au, Pd, Pt), and others (Al, B, Pb, Si), between Fe-rich and Cu-rich metal phases by means of simple thermodynamic calculations. Most of the typical alloying elements for steel (Co, Cr, Mo, Nb, Ni, Si, Ti, V, and W) and Rh were preferentially distributed into the Fe-rich phase. PGMs, such as Au, Ag, and Pd, were enriched in the Cu-rich phase, whereas Pt was almost equally distributed into both phases. Since the primary metallurgical processing of Cu is followed by an electrolysis for refining, and since PGMs in crude copper have been industrially recovered from the resulting anode slime, our results indicated that Ag, Au, and Pd could be effectively recovered from MSW if the Cu-rich phase could be selectively collected.

Lu, X. [School of Metallurgical and Ecological Engineering, The University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Nakajima, K.; Sakanakura, H. [Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba 305-8506 (Japan); Matsubae, K. [Graduate School of Engineering, Tohoku University, 6-6-11 Aza-Aoba, Aramaki, Sendai 980-8579 (Japan); Bai, H. [School of Metallurgical and Ecological Engineering, The University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Nagasaka, T., E-mail: t-nagasaka@m.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, 6-6-11 Aza-Aoba, Aramaki, Sendai 980-8579 (Japan)

2012-06-15T23:59:59.000Z

143

An Investigation of the Pressure-induced Superconductivity Transition Temperature Tc and Related Properties in Elemental Superconductors .  

E-Print Network (OSTI)

??More than half of the elements in the periodic table, 53 out of 92, are known to be superconductors with 23 elements becoming superconductors with (more)

Nixon, Lane W.

2011-01-01T23:59:59.000Z

144

LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES  

DOE Green Energy (OSTI)

This report summarizes the work done during the entire project period, between October 1, 1999 and March 31, 2003, which includes a six-month no-cost extension. During the project, eight research papers have, either been, published, accepted for publication, or submitted for publication. In addition, several presentations have been made in technical meetings and workshops. The project also has provided support for four graduate students working towards advanced degrees. The principal technical objective of the project was to analyze the role of electrode microstructure on solid oxide fuel cell performance. Prior theoretical work conducted in our laboratory demonstrated that the particle size of composite electrodes has a profound effect on cell performance; the finer the particle size, the lower the activation polarization, the better the performance. The composite cathodes examined consisted of electronically conducting perovskites such as Sr-doped LaMnO{sub 3} (LSM) or Sr-doped LaCoO{sub 3} (LSC), which is also a mixed conductor, as the electrocatalyst, and yttria-stabilized zirconia (YSZ) or rare earth oxide doped CeO{sub 2} as the ionic conductor. The composite anodes examined were mixtures of Ni and YSZ. A procedure was developed for the synthesis of nanosize YSZ by molecular decomposition, in which unwanted species were removed by leaching, leaving behind nanosize YSZ. Anode-supported cells were made using the as-synthesized powders, or using commercially acquired powders. The electrolyte was usually a thin ({approx}10 microns), dense layer of YSZ, supported on a thick ({approx}1 mm), porous Ni + YSZ anode. The cathode was a porous mixture of electrocatalyst and an ionic conductor. Most of the cell testing was done at 800 C with hydrogen as fuel and air as the oxidant. Maximum power densities as high as 1.8 W/cm{sup 2} were demonstrated. Polarization behavior of the cells was theoretically analyzed. A limited amount of cell testing was done using liquid hydrocarbon fuels where reforming was achieved internally. Significant polarization losses also occur at the anode, especially at high fuel utilizations. An analysis of polarization losses requires that various contributions are isolated, and their dependence on pertinent parameters is quantitatively described. An investigation of fuel composition on gas transport through porous anodes was investigated and the role of fuel diluents was explored. This work showed that the molecular weight of the diluent has a significant effect on anode concentration polarization. This further showed that the presence of some molecular hydrogen is necessary to minimize polarization losses. Theoretical analysis has shown that the electrode microstructure has a profound effect on cell performance. In a series of experiments, cathode microstructural parameters were varied, without altering other parameters. Cathode microstructural parameters, especially three phase boundary (TPB) length, were estimated using techniques in quantitative stereology. Cell performance was quantitatively correlated with the relevant microstructural parameters, and charge transfer resistivity was explicitly evaluated. This is the first time that a fundamental parameter, which governs the activation polarization, has been quantitatively determined. An important parameter, which governs the cathodic activation polarization, and thus cell performance, is the ionic conductivity of the composite cathode. The traditional composite cathode is a mixture of LSM and YSZ. It is well known that Sr and Mg-doped LaGaO{sub 3} (LSGM), exhibits higher oxygen ion conductivity compared to YSZ. Cells were fabricated with composite cathodes comprising a mixture of LSM and LSGM. Studies demonstrated that LSGM-based composite cathodes exhibit excellent behavior. Studies have shown that Ni + YSZ is an excellent anode. In fact, in most cells, the principal polarization losses, at least at low fuel utilizations, are associated with the cathode. Theoretical analysis conducted in our group has also shown that anode-supported cells exhibi

Professor Anil V. Virkar

2003-05-23T23:59:59.000Z

145

NOVEL ELECTRODE MATERIALS FOR LOW-TEMPERATURE SOLID-OXIDE FUEL CELLS  

DOE Green Energy (OSTI)

Fuel cell performance depends strongly on the anode microstructure, which is determined by the anode compositions and fabrication conditions. Four types of anodes with two kinds of NiO and GDC powders were investigated. By carefully adjusting the anode microstructure, the GDC electrolyte/anode interfacial polarization resistances reduced dramatically. The interfacial resistance at 600 C decreased from 1.61 {Omega} cm{sup 2} for the anodes prepared using commercially available powders to 0.06 {Omega} cm{sup 2} for those prepared using powders derived from a glycine-nitrate process. The critical issues facing the development of economically competitive SOFC systems include lowering the operation temperature and creating novel anode materials and microstructures capable of efficiently utilizing hydrocarbon fuels. Anode-supported SOFCs with an electrolyte of 20 {micro}m- thick Gd-doped ceria (GDC) were fabricated by co-pressing, and both Ni- and Cu-based anodes were prepared by a solution impregnation process. At 600 C, SOFCs fueled with humidified H{sub 2}, methane, and propane, reached peak power densities of 602, 519, and 433 mW/cm{sup 2}, respectively. Both microstructure and composition of the anodes, as fabricated using a solution impregnation technique, greatly influence fuel cell performance. Although steam reforming or partial oxidation is effective in avoiding carbon deposition of hydrocarbon fuels, it increases the operating cost and reduces the energy efficiency. A catalyst (1 %wt Pt dispersed on porous Gd-doped ceria) for pre-reforming of propane was developed with relatively low steam to carbon (S/C) ratio ({approx}0.5), coupled with direct utilization of the reformate in low-temperature SOFCs. Propane was converted to smaller molecules during pre-reforming, including H{sub 2}, CH{sub 4}, CO, and CO{sub 2}. A peak power density of 247 mW/cm{sup 2} was observed when pre-reformed propane was directly fed to an SOFC operated at 600 C. No carbon deposition was observed in the fuel cell for a continuous operation of 10 hours at 600 C.

Shaowu Zha; Luis Aguilar; Meilin Liu

2003-12-01T23:59:59.000Z

146

Temperature activated absorption during laser-induced damage: The evolution of laser-supported solid-state absorption fronts  

SciTech Connect

Previously we have shown that the size of laser induced damage sites in both KDP and SiO{sub 2} is largely governed by the duration of the laser pulse which creates them. Here we present a model based on experiment and simulation that accounts for this behavior. Specifically, we show that solid-state laser-supported absorption fronts are generated during a damage event and that these fronts propagate at constant velocities for laser intensities up to 4 GW/cm{sup 2}. It is the constant absorption front velocity that leads to the dependence of laser damage site size on pulse duration. We show that these absorption fronts are driven principally by the temperature-activated deep sub band-gap optical absorptivity, free electron transport, and thermal diffusion in defect-free silica for temperatures up to 15,000K and pressures < 15GPa. In addition to the practical application of selecting an optimal laser for pre-initiation of large aperture optics, this work serves as a platform for understanding general laser-matter interactions in dielectrics under a variety of conditions.

Carr, C W; Bude, J D; Shen, N; Demange, P

2010-10-26T23:59:59.000Z

147

Finite-element analyses of blade and slot coating flows using an implicit pseudo-solid domain mapping technique coupled with unstructured grids  

SciTech Connect

In coating processes (e.g. in blade coating) the flow domain inherently contains free surfaces and three-phase contact lines, and characteristic length scales of flow features in the dimension transverse to the web-movement vary by an order of magnitude or more from a fraction of a millimeter or more to tens of microns or less). The presence of free surfaces and three-phase contact lines, and the sudden changes of flow geometry and directions create difficulties in theoretical analyses of such flows. Though simulations of coating flows via finite-element methods using structured grids have been reportedly demonstrated in the literature, achieving high efficiency of such numerical experiments remains a grand challenge -- mainly due to difficulties in local mesh-refinement and in avoiding unacceptably distorted grids. High efficiency of computing steady flow fields under various process conditions is crucial in shortening turn-around time in design and optimization of coating-flow processes. In this paper we employ a fully-implicit, pseudo-solid, domain mapping technique coupled with unstructured meshes to analyze blade and slot coating flows using Galerkin`s method with finite element basis functions. We demonstrate the robustness and efficiency of our unique technique in circumventing shortcomings of mesh-motion schemes currently being used in the coating-flow research community. Our goal is to develop an efficient numerical tool, together with a suitable optimization toolkit, that can be used routinely in design and optimization of coating-flow processes.

Chen, K.S.; Schunk, P.R.; Sackinger, P.A.

1994-12-04T23:59:59.000Z

148

Multilayered YSZ/GZO films with greatly enhanced ionic conduction for low temperature solid oxide fuel cells  

Science Conference Proceedings (OSTI)

Strain confinement in heterostructured films significantly affects ionic conductivity of the electrolytes for solid oxide fuel cells based on a multi-layered design strategy. Nearly ideal tensile strain can be achieved by a dedicated manipulation of the lattice mismatch between adjacent layers and fine control of the layer thicknesses to minimize the formation of dislocations and thus to achieve optimized ionic conduction. This strategy was demonstrated by a model system of multilayered 8 mol%Y2O3 stabilized ZrO2 (YSZ) with Gd2Zr2O7 (GZO) films, which were epitaxially grown on Al2O3 (0001) substrates by pulsed laser deposition (PLD) with the {111} planes of YSZ/GZO along the Al2O3 [0 1 ?1 0] direction. The tensile strain (3%) resulting from the lattice mismatch can be confined in individual YSZ layers with the formation of a coherent, dislocation-free interface upon the manipulation of the layer thickness below a critical value, e.g., down to 5 nm. The strained heterostructure displays a two order-of-magnitude increase in oxide-ion conductivity as compared with bulk YSZ, and a high ionic conductivity of 0.01 S cm?1 at 475 C can be achieved, five times greater than that of Gd-doped ceria/zirconia. The approach of strain confinement by fine control of lattice mismatch and layer thickness represents a promising strategy in developing advanced electrolytes enabling the miniaturization of solid-state ionic devices that can be operated at low temperatures below 500 C.

Li, Bin; Zhang, Jiaming; Kaspar, Tiffany C.; Shutthanandan, V.; Ewing, Rodney C.; Lian, Jie

2013-01-01T23:59:59.000Z

149

It's Elemental - The Element Bromine  

NLE Websites -- All DOE Office Websites (Extended Search)

Selenium Selenium Previous Element (Selenium) The Periodic Table of Elements Next Element (Krypton) Krypton The Element Bromine [Click for Isotope Data] 35 Br Bromine 79.904 Atomic Number: 35 Atomic Weight: 79.904 Melting Point: 265.95 K (-7.2°C or 19.0°F) Boiling Point: 331.95 K (58.8°C or 137.8°F) Density: 3.11 grams per cubic centimeter Phase at Room Temperature: Liquid Element Classification: Non-metal Period Number: 4 Group Number: 17 Group Name: Halogen What's in a name? From the Greek word for stench, bromos. Say what? Bromine is pronounced as BRO-meen. History and Uses: The only nonmetallic element that is a liquid at normal room temperatures, bromine was produced by Carl Löwig, a young chemistry student, the summer before starting his freshman year at Heidelberg. When he showed his

150

GOMA 6.0 : a full-Newton finite element program for free and moving boundary problems with coupled fluid/solid momentum, energy, mass, and chemical species transport : user%3CU%2B2019%3Es guide.  

SciTech Connect

Goma 6.0 is a finite element program which excels in analyses of multiphysical processes, particularly those involving the major branches of mechanics (viz. fluid/solid mechanics, energy transport and chemical species transport). Goma is based on a full-Newton-coupled algorithm which allows for simultaneous solution of the governing principles, making the code ideally suited for problems involving closely coupled bulk mechanics and interfacial phenomena. Example applications include, but are not limited to, coating and polymer processing flows, super-alloy processing, welding/soldering, electrochemical processes, and solid-network or solution film drying. This document serves as a user's guide and reference.

Schunk, Peter Randall; Rao, Rekha Ranjana; Chen, Ken Shuang; Labreche, Duane A.; Sun, Amy Cha-Tien; Hopkins, Matthew Morgan; Moffat, Harry K.; Roach, Robert Allen; Hopkins, Polly L.; Notz, Patrick K.; Roberts, Scott Alan; Sackinger, Philip A.; Subia, Samuel Ramirez; Wilkes, Edward Dean; Baer, Thomas A.; Noble, David R.; Secor, Robert B. [3M Engineering Systems and Technology, St. Paul, MN

2013-07-01T23:59:59.000Z

151

Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Microwave and H{sub 2}O{sub 2} pretreatment were studied to enhance anaerobic digestion of organic waste. Black-Right-Pointing-Pointer The whole waste pretreated at 115 Degree-Sign C or 145 Degree-Sign C had the highest biogas production. Black-Right-Pointing-Pointer Biogas production of the whole waste decreased at 175 Degree-Sign C due to formation of refractory compounds. Black-Right-Pointing-Pointer Pretreatment to 145 Degree-Sign C and 175 Degree-Sign C were the best when considering only the free liquid fraction. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} pretreatment had a lag phase and the biogas production was not higher than MW pretreated samples. - Abstract: In order to enhance anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW), pretreatment combining two modalities, microwave (MW) heating in presence or absence of hydrogen peroxide (H{sub 2}O{sub 2}) were investigated. The main pretreatment variables affecting the characteristics of the OFMSW were temperature (T) via MW irradiation and supplemental water additions of 20% and 30% (SWA20 and SW30). Subsequently, the focus of this study was to evaluate mesophilic batch AD performance in terms of biogas production, as well as changes in the characteristics of the OFMSW post digestion. A high MW induced temperature range (115-175 Degree-Sign C) was applied, using sealed vessels and a bench scale MW unit equipped with temperature and pressure controls. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW as well as the liquid fractions. The whole OFMSW pretreated at 115 Degree-Sign C and 145 Degree-Sign C showed 4-7% improvement in biogas production over untreated OFMSW (control). When pretreated at 175 Degree-Sign C, biogas production decreased due to formation of refractory compounds, inhibiting the digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP) was more pronounced for SWA20 at 145 Degree-Sign C, with a 26% increase in biogas production after 8 days of digestion, compared to the control. When considering the increased substrate availability in the liquid fraction after MW pretreatment, a 78% improvement in biogas production vs. the control was achieved. Combining MW and H{sub 2}O{sub 2} modalities did not have a positive impact on OFMSW stabilization and enhanced biogas production. In general, all samples pretreated with H{sub 2}O{sub 2} displayed a long lag phase and the CBP was usually lower than MW irradiated only samples. First order rate constant was calculated.

Shahriari, Haleh, E-mail: haleh.shahriari@gmail.com [Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur St., P.O. Box 450, Stn. A, Ottawa, ON, K1N 6N5 (Canada); Warith, Mostafa [Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur St., P.O. Box 450, Stn. A, Ottawa, ON, K1N 6N5 (Canada); Hamoda, Mohamed [Department of Environmental Technology and Management, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait); Kennedy, Kevin J. [Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur St., P.O. Box 450, Stn. A, Ottawa, ON, K1N 6N5 (Canada)

2012-01-15T23:59:59.000Z

152

It's Elemental - The Element Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Nitrogen Previous Element (Nitrogen) The Periodic Table of Elements Next Element (Fluorine) Fluorine The Element Oxygen [Click for Isotope Data] 8 O Oxygen 15.9994 Atomic Number: 8 Atomic Weight: 15.9994 Melting Point: 54.36 K (-218.79°C or -361.82°F) Boiling Point: 90.20 K (-182.95°C or -297.31°F) Density: 0.001429 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 2 Group Number: 16 Group Name: Chalcogen What's in a name? From the greek words oxys and genes, which together mean "acid forming." Say what? Oxygen is pronounced as OK-si-jen. History and Uses: Oxygen had been produced by several chemists prior to its discovery in 1774, but they failed to recognize it as a distinct element. Joseph

153

It's Elemental - The Element Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Carbon Previous Element (Carbon) The Periodic Table of Elements Next Element (Oxygen) Oxygen The Element Nitrogen [Click for Isotope Data] 7 N Nitrogen 14.0067 Atomic Number: 7 Atomic Weight: 14.0067 Melting Point: 63.15 K (-210.00°C or -346.00°F) Boiling Point: 77.36 K (-195.79°C or -320.44°F) Density: 0.0012506 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 2 Group Number: 15 Group Name: Pnictogen What's in a name? From the Greek words nitron and genes, which together mean "saltpetre forming." Say what? Nitrogen is pronounced as NYE-treh-gen. History and Uses: Nitrogen was discovered by the Scottish physician Daniel Rutherford in 1772. It is the fifth most abundant element in the universe and makes up

154

It's Elemental - The Element Neon  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluorine Fluorine Previous Element (Fluorine) The Periodic Table of Elements Next Element (Sodium) Sodium The Element Neon [Click for Isotope Data] 10 Ne Neon 20.1797 Atomic Number: 10 Atomic Weight: 20.1797 Melting Point: 24.56 K (-248.59°C or -415.46°F) Boiling Point: 27.07 K (-246.08°C or -410.94°F) Density: 0.0008999 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 2 Group Number: 18 Group Name: Noble Gas What's in a name? From the Greek word for new, neos. Say what? Neon is pronounced as NEE-on. History and Uses: Neon was discovered by Sir William Ramsay, a Scottish chemist, and Morris M. Travers, an English chemist, shortly after their discovery of the element krypton in 1898. Like krypton, neon was discovered through the

155

Cooling and thermal stabilisation of Faraday rotators in the temperature range 300 - 200 K using Peltier elements  

Science Conference Proceedings (OSTI)

A new method for cooling and thermal stabilisation of Faraday rotators using Peltier elements is proposed and experimentally demonstrated. The scheme of thermal stabilisation of the magnetooptical elements ensures reliable operation of the device at the absorbed power {approx}2 W, which corresponds to the transmitted laser radiation power 1.5 kW. The results of the work make it possible to predict high efficiency of this method at the laser power of tens of kilowatts.

Palashov, O V; Ievlev, Ivan V; Perevezentsev, E A; Katin, E V; Khazanov, Efim A [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod (Russian Federation)

2011-09-30T23:59:59.000Z

156

Experimental investigation of solid hydrogen pellet ablation in high-temperature plasmas using holographic interferometry and other diagnostics  

DOE Green Energy (OSTI)

The technology currently most favored for the refueling of fusion reactors is the high-velocity injection of solid hydrogen pellets. Design details are presented for a holographic interferometer/shadowgraph used to study the microscopic characteristics of a solid hydrogen pellet ablating in an approx. 1-keV plasma. Experimental data are presented for two sets of experiments in which the interferometer/shadowgraph was used to study approx. 1-mm-diam solid hydrogen pellets injected into the Impurity Study Experiment (ISX-B) tokamak at Oak Ridge National Laboratory (ORNL) at velocities of 1000 m/s. In addition to the use of the holographic interferometer, the pellet ablation process is diagnosed by studying the emission of Balmer-alpha photons and by using the available tokamak diagnostics (Thomson scattering, microwave/far-infrared interferometer, pyroelectric radiometer, hard x-ray detector).

Thomas, Jr., C. E.

1981-03-01T23:59:59.000Z

157

Processing of FRG high-temperature gas-cooled reactor fuel elements at General Atomic under the US/FRG cooperative agreement for spent fuel elements  

Science Conference Proceedings (OSTI)

The Federal Republic of Germany (FRG) and the United States (US) are cooperating on certain aspects of gas-cooled reactor technology under an umbrella agreement. Under the spent fuel treatment development section of the agreement, both FRG mixed uranium/ thorium and low-enriched uranium fuel spheres have been processed in the Department of Energy-sponsored cold pilot plant for high-temperature gas-cooled reactor (HTGR) fuel processing at General Atomic Company in San Diego, California. The FRG fuel spheres were crushed and burned to recover coated fuel particles suitable for further treatment for uranium recovery. Successful completion of the tests described in this paper demonstrated certain modifications to the US HTGR fuel burining process necessary for FRG fuel treatment. Results of the tests will be used in the design of a US/FRG joint prototype headend facility for HTGR fuel.

Holder, N.D.; Strand, J.B.; Schwarz, F.A.; Drake, R.N.

1981-11-01T23:59:59.000Z

158

Nano-structured solid oxide fuel cell design with superior power output at high and intermediate operation temperatures  

Science Conference Proceedings (OSTI)

A solid oxide fuel cell (SOFC) with a thin-film yttria-stabilized zirconia (YSZ) electrolyte was developed and tested. This novel SOFC shows a similar multilayer set-up as other current anode-supported SOFCs and is composed of a Ni/8YSZ anode, a gas-tight ...

Tim Van Gestel; Feng Han; Doris Sebold; Hans Peter Buchkremer; Detlev Stver

2011-02-01T23:59:59.000Z

159

Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect  

Science Conference Proceedings (OSTI)

A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two ferritic stainless steel coupons for strength evaluation. The steel coupons were pre-oxidized at elevated temperatures to promote thick oxide layers to simulate long-term exposure conditions. In addition, seals to as-received metal coupons were also tested after aging in oxidizing or reducing environments to simulate the actual SOFC environment. Room temperature tensile testing showed strength degradation when using pre-oxidized coupons, and more extensive degradation after aging in air. Fracture surface and microstructural analysis confirmed that the cause of degradation was formation of SrCrO4 at the outer sealing edges exposed to air.

Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

2008-09-15T23:59:59.000Z

160

It's Elemental - The Element Mercury  

NLE Websites -- All DOE Office Websites (Extended Search)

Gold Gold Previous Element (Gold) The Periodic Table of Elements Next Element (Thallium) Thallium The Element Mercury [Click for Isotope Data] 80 Hg Mercury 200.59 Atomic Number: 80 Atomic Weight: 200.59 Melting Point: 234.32 K (-38.83°C or -37.89°F) Boiling Point: 629.88 K (356.73°C or 674.11°F) Density: 13.5336 grams per cubic centimeter Phase at Room Temperature: Liquid Element Classification: Metal Period Number: 6 Group Number: 12 Group Name: none What's in a name? Named after the planet Mercury. Mercury's chemical symbol comes from the Greek word hydrargyrum, which means "liquid silver." Say what? Mercury is pronounced as MER-kyoo-ree. History and Uses: Mercury was known to the ancient Chinese and Hindus and has been found in 3500 year old Egyptian tombs. Mercury is not usually found free in nature

Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Solid Cold - C  

Office of Scientific and Technical Information (OSTI)

R&D Nuggets Home Page DOE R&D Accomplishments Celebrating Einstein "Solid Cold" (continued) A B C D E F C. Temperature and energy Most basically, temperature is related to energy...

162

It's Elemental - The Element Fluorine  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxygen Oxygen Previous Element (Oxygen) The Periodic Table of Elements Next Element (Neon) Neon The Element Fluorine [Click for Isotope Data] 9 F Fluorine 18.9984032 Atomic Number: 9 Atomic Weight: 18.9984032 Melting Point: 53.53 K (-219.62°C or -363.32°F) Boiling Point: 85.03 K (-188.12°C or -306.62°F) Density: 0.001696 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 2 Group Number: 17 Group Name: Halogen What's in a name? From the Latin and French words for flow, fluere. Say what? Fluorine is pronounced as FLU-eh-reen or as FLU-eh-rin. History and Uses: Fluorine is the most reactive of all elements and no chemical substance is capable of freeing fluorine from any of its compounds. For this reason, fluorine does not occur free in nature and was extremely difficult for

163

It's Elemental - The Element Chlorine  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur Sulfur Previous Element (Sulfur) The Periodic Table of Elements Next Element (Argon) Argon The Element Chlorine [Click for Isotope Data] 17 Cl Chlorine 35.453 Atomic Number: 17 Atomic Weight: 35.453 Melting Point: 171.65 K (-101.5°C or -150.7°F) Boiling Point: 239.11 K (-34.04°C or -29.27°F) Density: 0.003214 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 3 Group Number: 17 Group Name: Halogen What's in a name? From the Greek word for greenish yellow, chloros. Say what? Chlorine is pronounced as KLOR-een or as KLOR-in. History and Uses: Since it combines directly with nearly every element, chlorine is never found free in nature. Chlorine was first produced by Carl Wilhelm Scheele, a Swedish chemist, when he combined the mineral pyrolusite (MnO2) with

164

Multi-element microelectropolishing method  

DOE Patents (OSTI)

A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle. 10 figs.

Lee, P.J.

1994-10-11T23:59:59.000Z

165

Multi-element microelectropolishing method  

DOE Patents (OSTI)

A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle.

Lee, Peter J. (Middleton, WI)

1994-01-01T23:59:59.000Z

166

Solid particle erosion behavior of an Si{sub 3}N{sub 4}-MoSi{sub 2} composite at room and elevated temperatures  

SciTech Connect

The solid particle erosion behavior at room and elevated temperatures (180, 500, 700 and 900 C) of an Si{sub 3}N{sub 4}-MoSi{sub 2} composite was studied. Alumina particles entrained in a stream of nitrogen gas impacted the target material at a velocity of 40 m/s. Impingement angles of either 60, 75 or 90{degree} were used. It was found that the erosion rate for the Si{sub 3}N{sub 4}-MoSi{sub 2} composite (measured at room temperature) was a maximum at the 90{degree} incident angle, erosion behavior typical of brittle materials. The erosion rate of the composite at a 75{degree} impingement angle increased slightly with increasing test temperature up to 700 C (i.e. from 4.1 to 4.9 mm{sup 3}/g). At 900 C, the measured erosion rate decreased to 2.9 mm{sup 3}/g. The erosion behavior of the Si{sub 3}N{sub 4}-MoSi{sub 2} composite was compared to that of commercially available Si{sub 3}N{sub 4}, WC-6%Co, 304 SS, IN-800 (Ni-Fe-Cr alloy) and Stellite-6B (Co-Cr-W-Mo alloy).

Alman, D.E.; Tylczak, J.H.; Hawk, J.A.; Hebsur, M.G.

1999-03-15T23:59:59.000Z

167

Solid particle erosion behavior of an Si[sub 3]N[sub 4]-MoSi[sub 2] composite at room and elevated temperatures  

SciTech Connect

The solid particle erosion behavior at room and elevated temperatures (180, 500, 700 and 900 C) of an Si[sub 3]N[sub 4]-MoSi[sub 2] composite was studied. Alumina particles entrained in a stream of nitrogen gas impacted the target material at a velocity of 40 m/s. Impingement angles of either 60, 75 or 90[degree] were used. It was found that the erosion rate for the Si[sub 3]N[sub 4]-MoSi[sub 2] composite (measured at room temperature) was a maximum at the 90[degree] incident angle, erosion behavior typical of brittle materials. The erosion rate of the composite at a 75[degree] impingement angle increased slightly with increasing test temperature up to 700 C (i.e. from 4.1 to 4.9 mm[sup 3]/g). At 900 C, the measured erosion rate decreased to 2.9 mm[sup 3]/g. The erosion behavior of the Si[sub 3]N[sub 4]-MoSi[sub 22048mposite was compared to that of commercially available Si[sub 3]N[sub 4], WC-6%Co, 304 SS, IN-800 (Ni-Fe-Cr alloy) and Stellite-6B (Co-Cr-W-Mo alloy).

Alman, D.E.; Tylczak, J.H.; Hawk, J.A.; Hebsur, M.G.

1999-03-15T23:59:59.000Z

168

Solid modeling techniques to build 3D finite element models of volcanic systems: An example from the Rabaul Caldera system, Papua New Guinea  

Science Conference Proceedings (OSTI)

Simulating the deformation of active volcanoes is challenging due to inherent mechanical complexities associated with heterogeneous distributions of rheologic properties and irregular geometries associated with the topography and bathymetry. From geologic ... Keywords: 3D geometry, Deformation, Finite Elements Models, Rabaul Caldera

Erika Ronchin, Timothy Masterlark, Joan Mart Molist, Steve Saunders, Wei Tao

2013-03-01T23:59:59.000Z

169

It's Elemental - The Element Fermium  

NLE Websites -- All DOE Office Websites (Extended Search)

Einsteinium Previous Element (Einsteinium) The Periodic Table of Elements Next Element (Mendelevium) Mendelevium The Element Fermium Click for Isotope Data 100 Fm Fermium 257...

170

It's Elemental - The Element Neptunium  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Previous Element (Uranium) The Periodic Table of Elements Next Element (Plutonium) Plutonium The Element Neptunium Click for Isotope Data 93 Np Neptunium 237 Atomic...

171

It's Elemental - The Element Ruthenium  

NLE Websites -- All DOE Office Websites (Extended Search)

Technetium Previous Element (Technetium) The Periodic Table of Elements Next Element (Rhodium) Rhodium The Element Ruthenium Click for Isotope Data 44 Ru Ruthenium 101.07 Atomic...

172

It's Elemental - The Element Actinium  

NLE Websites -- All DOE Office Websites (Extended Search)

Radium Previous Element (Radium) The Periodic Table of Elements Next Element (Thorium) Thorium The Element Actinium Click for Isotope Data 89 Ac Actinium 227 Atomic Number: 89...

173

Effect of aluminizing of Cr-containing ferritic alloys on the seal strength of a novel high-temperature solid oxide fuel cell sealing glass  

Science Conference Proceedings (OSTI)

A novel high-temperature alkaline-earth silicate sealing glass was developed for solid oxide fuel cell (SOFC) applications. The glass was used to join two metallic coupons of Cr-containing ferritic stainless steel for seal strength evaluation. In previous work, SrCrO4 was found to form along the glass/steel interface, which led to severe strength degradation. In the present study, aluminization of the steel surface was investigated as a remedy to minimize or prevent the strontium chromate formation. Three different processes for aluminization were evaluated with Crofer22APU stainless steel: pack cementation, vapor phase deposition, and aerosol spraying. It was found that pack cementation resulted in a rough surface with occasional cracks in the Al-diffused region. Vapor phase deposition yielded a smoother surface, but the resulting high Al content increased the coefficient of thermal expansion (CTE), resulting in failure of joined coupons. Aerosol spraying of an Al-containing salt resulted in formation of a thin aluminum oxide layer without any surface damage. The room temperature seal strength was evaluated in the as-fired state and in environmentally aged conditions. In contrast to earlier results with uncoated Crofer22APU, the aluminized samples showed no strength degradation even for samples aged in air. Interfacial and chemical compatibility was also investigated. The results showed aluminization to be a viable candidate approach to minimize undesirable chromate formation between alkaline earth silicate sealing glass and Cr-containing interconnect alloys for SOFC applications.

Chou, Y. S.; Stevenson, Jeffry W.; Singh, Prabhakar

2008-12-01T23:59:59.000Z

174

Multimedia Trace Elements Measurements  

Science Conference Proceedings (OSTI)

Current and future trace element regulations on flue gas emissions, water discharges, and solid waste disposal will result in increasingly stringent limits and substantially increased costs for energy companies. As a result, there is a critical need to address environmental pollutant releases in a holistic, multimedia manner so that a pollutant removed by a control technology in one medium (for example, flue gas) is properly managed in regard to discharges in the other media (water and solid waste). This...

2008-03-25T23:59:59.000Z

175

(Y0.5In0.5)Ba(Co,Zn)4O7 cathodes with superior high-temperature phase stability for solid oxide fuel cells  

Science Conference Proceedings (OSTI)

(Y0.5In0.5)BaCo4-xZnxO7 (1.0 x 2.0) oxides crystallizing in a trigonal P31c structure have been synthesized and explored as cathode materials for solid oxide fuel cells (SOFC). At a given Zn content, the (Y0.5In0.5)BaCo4-xZnxO7 sample with 50 % Y and 50 % In exhibits much improved phase stability at intermediate temperatures (600 - 800 oC) compared to the samples with 100 % Y or In. However, the substitution of Zn for Co in (Y0.5In0.5)Ba(Co4-xZnx)O7 (1.0 x 2.0) decreases the amount of oxygen loss on heating, total electrical conductivity, and cathode performance in SOFC while providing good long-term phase stability at high temperatures. Among the various chemical compositions investigated in the (Y0.5In0.5)Ba(Co4-xZnx)O7 system, the (Y0.5In0.5)BaCo3ZnO7 sample offers a combination of good electrochemical performance and low thermal expansion coefficient (TEC) while maintaining superior phase stability at 600 800 oC for 100 h. Fuel cell performances of the (Y0.5In0.5)Ba(Co3Zn)O7 + Ce0.8Gd0.2O1.9 (GDC) (50 : 50 wt. %) composite cathodes collected with anode-supported single cell reveal a maximum power density value of 521 mW cm-2 at 700 oC.

Young Nam, Kim [University of Texas, Austin; Kim, Jung-Hyun [ORNL; Paranthaman, Mariappan Parans [ORNL; Manthiram, Arumugam [University of Texas, Austin; Huq, Ashfia [ORNL

2012-01-01T23:59:59.000Z

176

Solids irradiator  

DOE Patents (OSTI)

A novel facility for irradiation of solids embodying pathogens wherein solids are conveyed through an irradiation chamber in individual containers of an endless conveyor.

Morris, Marvin E. (Albuquerque, NM); Pierce, Jim D. (Albuquerque, NM); Whitfield, Willis J. (Albuquerque, NM)

1979-01-01T23:59:59.000Z

177

ELECTRON IRRADIATION OF SOLIDS  

DOE Patents (OSTI)

A method is presented for altering physical properties of certain solids, such as enhancing the usefulness of solids, in which atomic interchange occurs through a vacancy mechanism, electron irradiation, and temperature control. In a centain class of metals, alloys, and semiconductors, diffusion or displacement of atoms occurs through a vacancy mechanism, i.e., an atom can only move when there exists a vacant atomic or lattice site in an adjacent position. In the process of the invention highenergy electron irradiation produces additional vacancies in a solid over those normally occurring at a given temperature and allows diffusion of the component atoms of the solid to proceed at temperatures at which it would not occur under thermal means alone in any reasonable length of time. The invention offers a precise way to increase the number of vacancies and thereby, to a controlled degree, change the physical properties of some materials, such as resistivity or hardness.

Damask, A.C.

1959-11-01T23:59:59.000Z

178

The simulation with the finite element method of the velocity and temperature fields for a nonturbionar jet burner of 35MW feeding with pulverized coal  

Science Conference Proceedings (OSTI)

This paper presents the analysis of coal particle combustion in nonturbionar jet burner of 35MW used the Finite Element Method made with aid of the FLUENT programme. The pulverized coal combustion simulation involves modeling a continuous gas phase flow ... Keywords: FLUENT, coal-air mixture, combustion, finite element method, injection coal, nonturbionar jet

Mihai D. L. Talu; Stefan D. L. Talu; Mihai Negru

2007-07-01T23:59:59.000Z

179

It's Elemental - The Element Lithium  

NLE Websites -- All DOE Office Websites (Extended Search)

(Helium) The Periodic Table of Elements Next Element (Beryllium) Beryllium The Element Lithium Click for Isotope Data 3 Li Lithium 6.941 Atomic Number: 3 Atomic Weight: 6.941...

180

It's Elemental - The Element Plutonium  

NLE Websites -- All DOE Office Websites (Extended Search)

Next Element (Americium) Americium The Element Plutonium Click for Isotope Data 94 Pu Plutonium 244 Atomic Number: 94 Atomic Weight: 244 Melting Point: 913 K (640C or...

Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Solid Cold - A  

NLE Websites -- All DOE Office Websites (Extended Search)

By the early 20th century, the way in which temperatures of solid objects changed as they absorbed heat was considered strong evidence that matter was not made of atoms. Einstein used some recent discoveries about light to turn this assessment around. A B C D E F A. A puzzle, and a surprising solution Take equal masses of lead and aluminum. Heat them until their temperatures are both 10 degrees higher. Will it take the same amount of heat for each? Back in the 18th century, the chemist Joseph Black discovered that different materials required different amounts of heat to raise their temperatures by equal amounts. The amount by which the temperature of a material changes as it absorbs or gives off heat can even be used to help identify the material. Among solid materials near room temperature,

182

Formation of CoAl2O4 nanoparticles via low-temperature solid-state reaction of fine gibbsite and cobalt precursor  

Science Conference Proceedings (OSTI)

Nanocrystalline cobalt aluminate (CoAl2O4) was synthesized by the solid-state reaction method with cobalt chloride hexahydrate (CoCl2 ? 6H2O) as the source of Co and gibbsite (Al(OH)3) as the ...

Natpakan Srisawad, Wasu Chaitree, Okorn Mekasuwandumrong, Piyasan Praserthdam, Joongjai Panpranot

2012-01-01T23:59:59.000Z

183

It's Elemental - Element Concentration Game  

NLE Websites -- All DOE Office Websites (Extended Search)

symbols of the elements. After you have had time to study the cards, the computer will flip them over and ask you to find a particular element. Click on the card that contains...

184

It's Elemental - Isotopes of the Element Neptunium  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Previous Element (Uranium) The Periodic Table of Elements Next Element (Plutonium) Plutonium Isotopes of the Element Neptunium Click for Main Data Most of the isotope...

185

It's Elemental - Isotopes of the Element Nobelium  

NLE Websites -- All DOE Office Websites (Extended Search)

Mendelevium Previous Element (Mendelevium) The Periodic Table of Elements Next Element (Lawrencium) Lawrencium Isotopes of the Element Nobelium Click for Main Data Most of the...

186

It's Elemental - Isotopes of the Element Fermium  

NLE Websites -- All DOE Office Websites (Extended Search)

Einsteinium Previous Element (Einsteinium) The Periodic Table of Elements Next Element (Mendelevium) Mendelevium Isotopes of the Element Fermium Click for Main Data Most of the...

187

It's Elemental - Isotopes of the Element Sulfur  

NLE Websites -- All DOE Office Websites (Extended Search)

Phosphorus Previous Element (Phosphorus) The Periodic Table of Elements Next Element (Chlorine) Chlorine Isotopes of the Element Sulfur Click for Main Data Most of the isotope...

188

It's Elemental - Isotopes of the Element Argon  

NLE Websites -- All DOE Office Websites (Extended Search)

Chlorine Previous Element (Chlorine) The Periodic Table of Elements Next Element (Potassium) Potassium Isotopes of the Element Argon Click for Main Data Most of the isotope data...

189

It's Elemental - Isotopes of the Element Ruthenium  

NLE Websites -- All DOE Office Websites (Extended Search)

Technetium Previous Element (Technetium) The Periodic Table of Elements Next Element (Rhodium) Rhodium Isotopes of the Element Ruthenium Click for Main Data Most of the isotope...

190

It's Elemental - Isotopes of the Element Molybdenum  

NLE Websites -- All DOE Office Websites (Extended Search)

Niobium Previous Element (Niobium) The Periodic Table of Elements Next Element (Technetium) Technetium Isotopes of the Element Molybdenum Click for Main Data Most of the isotope...

191

It's Elemental - Isotopes of the Element Protactinium  

NLE Websites -- All DOE Office Websites (Extended Search)

Thorium Previous Element (Thorium) The Periodic Table of Elements Next Element (Uranium) Uranium Isotopes of the Element Protactinium Click for Main Data Most of the isotope data...

192

Salt Fluxes for Alkali and Alkaline Earth Element Removal from ...  

Science Conference Proceedings (OSTI)

Sep 1, 2001... for Alkali and Alkaline Earth Element Removal from Molten Aluminum ... Solid chloride salts containing MgC2 can be used to remove alkali...

193

It's Elemental - The Element Tungsten  

NLE Websites -- All DOE Office Websites (Extended Search)

melting point of all metallic elements and is used to make filaments for incandescent light bulbs, fluorescent light bulbs and television tubes. Tungsten expands at nearly the...

194

It's Elemental - The Element Darmstadtium  

NLE Websites -- All DOE Office Websites (Extended Search)

Roentgenium The Element Darmstadtium Click for Isotope Data 110 Ds Darmstadtium 281 Atomic Number: 110 Atomic Weight: 281 Melting Point: Unknown Boiling Point: Unknown...

195

It's Elemental - The Element Berkelium  

NLE Websites -- All DOE Office Websites (Extended Search)

Californium The Element Berkelium Click for Isotope Data 97 Bk Berkelium 247 Atomic Number: 97 Atomic Weight: 247 Melting Point: 1323 K (1050C or 1922F) Boiling...

196

Curved mesh generation and mesh refinement using Lagrangian solid mechanics  

E-Print Network (OSTI)

Nonlinear continuum mechanics for ?nite element analysis,nement using Lagrangian Solid Mechanics Per-Olof Persson ?methods for computational mechanics has been emphasized in

Persson, P.-O.

2009-01-01T23:59:59.000Z

197

Production of high-density high-temperature plasma by collapsing small solid-density plasma shell with two ultra-intense laser pulses  

Science Conference Proceedings (OSTI)

Three-dimensional particle-in-cell simulations show that the anisotropic collapse of a plasma microshell by impact of two oppositely directed intense laser pulses can create at the center of the shell cavity a submicron-sized plasma of high density and temperature suitable for generating fusion neutrons.

Xu, H. [National Laboratory for Parallel and Distributed Processing, School of Computer Science, National University of Defense Technology, Changsha 410073 (China); Research Center of Laser Fusion, Chinese Academy of Engineering Physics, Mianyang 621900 (China); Yu Wei [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Yu, M. Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Institute for Theoretical Physics I, Ruhr University, Bochum D-44780 (Germany); Wong, A. Y. [Department of Physics, University of California, Los Angeles, California 90095 (United States); Sheng, Z. M.; Zhang, J. [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Murakami, M. [Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan)

2012-04-02T23:59:59.000Z

198

FUEL ELEMENT CONSTRUCTION  

DOE Patents (OSTI)

Fuel elements having a solid core of fissionable material encased in a cladding material are described. A conversion material is provided within the cladding to react with the fission products to form stable, relatively non- volatile compounds thereby minimizing the migration of the fission products into the coolant. The conversion material is preferably a metallic fluoride, such as lead difluoride, and may be in the form of a coating on the fuel core or interior of the cladding, or dispersed within the fuel core. (AEC)

Zumwalt, L.R.

1961-08-01T23:59:59.000Z

199

Enzymatic temperature change indicator  

DOE Patents (OSTI)

A temperature change indicator is described which is composed of an enzyme and a substrate for that enzyme suspended in a solid organic solvent or mixture of solvents as a support medium. The organic solvent or solvents are chosen so as to melt at a specific temperature or in a specific temperature range. When the temperature of the indicator is elevated above the chosen, or critical temperature, the solid organic solvent support will melt, and the enzymatic reaction will occur, producing a visually detectable product which is stable to further temperature variation.

Klibanov, Alexander M. (Newton, MA); Dordick, Jonathan S. (Iowa City, IA)

1989-01-21T23:59:59.000Z

200

It's Elemental - The Element Lutetium  

NLE Websites -- All DOE Office Websites (Extended Search)

(Hafnium) Hafnium The Element Lutetium Click for Isotope Data 71 Lu Lutetium 174.9668 Atomic Number: 71 Atomic Weight: 174.9668 Melting Point: 1936 K (1663C or 3025F)...

Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

It's Elemental - The Element Holmium  

NLE Websites -- All DOE Office Websites (Extended Search)

(Erbium) Erbium The Element Holmium Click for Isotope Data 67 Ho Holmium 164.93032 Atomic Number: 67 Atomic Weight: 164.93032 Melting Point: 1747 K (1474C or 2685F)...

202

It's Elemental - The Element Promethium  

NLE Websites -- All DOE Office Websites (Extended Search)

(Samarium) Samarium The Element Promethium Click for Isotope Data 61 Pm Promethium 145 Atomic Number: 61 Atomic Weight: 145 Melting Point: 1315 K (1042C or 1908F) Boiling...

203

It's Elemental - The Element Cadmium  

NLE Websites -- All DOE Office Websites (Extended Search)

(Indium) Indium The Element Cadmium Click for Isotope Data 48 Cd Cadmium 112.411 Atomic Number: 48 Atomic Weight: 112.411 Melting Point: 594.22 K (321.07C or 609.93F)...

204

It's Elemental - The Element Praseodymium  

NLE Websites -- All DOE Office Websites (Extended Search)

Today, praseodymium is primarily obtained through an ion exchange process from monazite sand ((Ce, La, Th, Nd, Y)PO4), a material rich in rare earth elements. Praseodymium's...

205

It's Elemental - The Element Neodymium  

NLE Websites -- All DOE Office Websites (Extended Search)

Today, neodymium is primarily obtained from through an ion exchange process monazite sand ((Ce, La, Th, Nd, Y)PO4), a material rich in rare earth elements. Neodymium makes up...

206

It's Elemental - The Element Samarium  

NLE Websites -- All DOE Office Websites (Extended Search)

1879. Today, samarium is primarily obtained through an ion exchange process from monazite sand ((Ce, La, Th, Nd, Y)PO4), a material rich in rare earth elements that can contain as...

207

It's Elemental - The Element Lanthanum  

NLE Websites -- All DOE Office Websites (Extended Search)

Today, lanthanum is primarily obtained through an ion exchange process from monazite sand ((Ce, La, Th, Nd, Y)PO4), a material rich in rare earth elements that can contain as...

208

FUEL ELEMENT  

DOE Patents (OSTI)

A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

Bean, R.W.

1963-11-19T23:59:59.000Z

209

It's Elemental - Isotopes of the Element Thorium  

NLE Websites -- All DOE Office Websites (Extended Search)

Table of Elements Next Element (Protactinium) Protactinium Isotopes of the Element Thorium Click for Main Data Most of the isotope data on this site has been obtained from...

210

Base Elements  

Science Conference Proceedings (OSTI)

Table 4   Principal effects of superalloy base elements on alloy characteristics...to γ? or γ? Requires fcc stabilizer Cobalt prices have been known to be volatile in the past. Suitable for creep-resistant applications with low stresses or

211

Nuclear fuel element  

DOE Patents (OSTI)

A nuclear fuel element and a method of manufacturing the element. The fuel element is comprised of a metal primary container and a fuel pellet which is located inside it and which is often fragmented. The primary container is subjected to elevated pressure and temperature to deform the container such that the container conforms to the fuel pellet, that is, such that the container is in substantial contact with the surface of the pellet. This conformance eliminates clearances which permit rubbing together of fuel pellet fragments and rubbing of fuel pellet fragments against the container, thus reducing the amount of dust inside the fuel container and the amount of dust which may escape in the event of container breach. Also, as a result of the inventive method, fuel pellet fragments tend to adhere to one another to form a coherent non-fragmented mass; this reduces the tendency of a fragment to pierce the container in the event of impact.

Zocher, Roy W. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

212

NEUTRONIC REACTOR AND FUEL ELEMENT THEREFOR  

DOE Patents (OSTI)

This patent relates to a reactor design of the type which employs solid fuel elements disposed in channels within the moderator through which channels and around the fuel elements is conveyed a coolant fiuid. The coolant channels are comprised of aluminum tubes extending through a solid moderator such as graphite and the fuel elements are comprised of an elongated solid body of natural uranium jacketed in an aluminum jacket with the ends thereof closed by aluminum caps of substantially greater thickness than the jacket was and in good thermal contact with the fuel material to facilitate the conduction of heat from the central portion of said ends to the coolant surrounding the fuel element to prevent overheating of said central portion.

Szilard, L.; Young, G.J.

1958-03-01T23:59:59.000Z

213

Badly Shaped Elements (BadlyShapedElements)  

Science Conference Proceedings (OSTI)

... shaped elements. Synopsis. BadlyShapedElements ( threshold ). Details. Base class: SkelModTargets; Parameters: threshold The threshold shape ...

2013-07-05T23:59:59.000Z

214

Multilayered nuclear fuel element  

DOE Patents (OSTI)

A nuclear fuel element is described which is suitable for high temperature applications comprised of a kernel of fissile material overlaid with concentric layers of impervious graphite, vitreous carbon, pyrolytic carbon and metal carbide. The kernel of fissile material is surrounded by a layer of impervious graphite. The layer of impervious graphite is then surrounded by a layer of vitreous carbon. Finally, an outer shell which includes alternating layers of pyrolytic carbon and metal carbide surrounds the layer of vitreous carbon.

Schweitzer, Donald G.; Sastre, Cesar

1996-12-01T23:59:59.000Z

215

FUEL ELEMENT  

DOE Patents (OSTI)

A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)

Fortescue, P.; Zumwalt, L.R.

1961-11-28T23:59:59.000Z

216

Mitigation of chromium poisoning in solid oxide fuel cell system by ...  

Science Conference Proceedings (OSTI)

Ionic Solid Oxides for High Temperature Optical Gas Sensing in Fossil Fuel Based Power Plants Mitigation of chromium poisoning in solid oxide fuel cell...

217

Standard Elements  

Science Conference Proceedings (OSTI)

Table 1   ASTM standards applicable to element-level testing of composites...Composite Plates Subjected to a Distributed Load Plate flexure D 6484 Open-Hole Compression Strength of Polymer Matrix Composites Open-hole compression strength Z 5370Z Compression After Impact Strength of Fiber-Resin Composites Compression after impact Z 7225Z Mixed Mode I-Mode II...

218

High-temperature Material Systems for Energy Conversion and ...  

Science Conference Proceedings (OSTI)

Ionic Solid Oxides for High Temperature Optical Gas Sensing in Fossil Fuel Based Power Plants Mitigation of Chromium Poisoning in Solid Oxide Fuel Cell

219

It's Elemental - The Element Tin  

NLE Websites -- All DOE Office Websites (Extended Search)

carbon. Tin makes up only about 0.001% of the earth's crust and is chiefly mined in Malaysia. Two allotropes of tin occur near room temperature. The first form of tin is called...

220

ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS  

Science Conference Proceedings (OSTI)

OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability.

WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

2002-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

High temperature elemental losses and mineralogical  

E-Print Network (OSTI)

5] Baxter LL. Biomass Bioenergy 1993;4:85102. [6] Miles RR,BM, Oden LL. Biomass Bioenergy 1996;10:12538. [7] HastieKW, Baker AJ. Biomass Bioenergy 1993;4:10316. [16] Jensen

Thy, P.; Jenkins, B. M.; Grundvig, S.; Shiraki, R.; Lesher, C. E.

2006-01-01T23:59:59.000Z

222

High temperature elemental losses and mineralogical  

E-Print Network (OSTI)

earth metals, silicon, and chlorine [13]. Potassium is thenoble gases, nitrogen, chlorine, and ?uorine in magmas. In:the ash. The presence of chlorine in the ash is, therefore,

Thy, P.; Jenkins, B. M.; Grundvig, S.; Shiraki, R.; Lesher, C. E.

2006-01-01T23:59:59.000Z

223

High temperature elemental losses and mineralogical  

E-Print Network (OSTI)

future energy crops. Combustion in biomass fueled boilers,in ash during combustion of biomass fuels is important forC. Combustion characteristics of high alkali biomass. Final

Thy, P.; Jenkins, B. M.; Grundvig, S.; Shiraki, R.; Lesher, C. E.

2006-01-01T23:59:59.000Z

224

Room Temperature Dispenser Photocathode Using Elemental Cesium  

NLE Websites -- All DOE Office Websites (Extended Search)

of devices depending upon the application, while offering a considerable reduction in power consumption and maintenance costs. Typically, alkali-metal coatings with generally...

225

High Temperature Electrochemistry Center - HiTEC  

DOE Green Energy (OSTI)

This presentation discusses the High Temperature Electrochemistry Center (HiTEC). The mission of HiTEC is to advance the solid oxide technology, such as solid oxide, high temperature electrolysers, reversible fuel cells, energy storage devices, proton conductors, etc., for use in DG and FutureGen applications, and to conduct fundamental research that aids the general development of all solid oxide technology.

McVay, G.; Williams, M.

2005-01-27T23:59:59.000Z

226

It's Elemental - Isotopes of the Element Mendelevium  

NLE Websites -- All DOE Office Websites (Extended Search)

The Periodic Table of Elements Next Element (Nobelium) Nobelium Isotopes of the Element Mendelevium Click for Main Data Most of the isotope data on this site has been obtained...

227

It's Elemental - Isotopes of the Element Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Periodic Table of Elements Next Element (Neptunium) Neptunium Isotopes of the Element Uranium Click for Main Data Most of the isotope data on this site has been obtained from...

228

It's Elemental - Isotopes of the Element Lithium  

NLE Websites -- All DOE Office Websites (Extended Search)

Periodic Table of Elements Next Element (Beryllium) Beryllium Isotopes of the Element Lithium Click for Main Data Most of the isotope data on this site has been obtained from...

229

It's Elemental - Isotopes of the Element Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

The Periodic Table of Elements Next Element (Helium) Helium Isotopes of the Element Hydrogen Click for Main Data Most of the isotope data on this site has been obtained from...

230

Creep Behavior of Glass/Ceramic Sealant Used in Solid Oxide Fuel Cells  

SciTech Connect

High operating temperature of solid oxide fuel cells require that sealant must function at high temperature between 600o and 900oC and in the oxidizing and reducing environments of fuel and air. It should be noted that creep deformation becomes relevant for a material when the operating temperature is near or exceeds half of its melting temperature (in degrees of Kelvin). The operating temperatures for most of the solid oxide fuel cells (SOFC) under development in the SECA program are around 800oC, which exceeds the glass transition temperature Tg for most glass ceramic materials. The goal of the study is to develop a creep model to capture the creep behavior of glass ceramic materials at high temperature and to investigate the effect of creep of glass ceramic sealant materials on stresses in glass seal and on the various interfaces of glass seal with other layers. The self-consistent creep models were incorporated into SOFC-MP and Mentat FC, and finite element analyses were performed to quantify the stresses in various parts. The stress in glass seals were released due to its creep behavior during the operating environments.

Liu, Wenning N.; Sun, Xin; Koeppel, Brian J.; Khaleel, Mohammad A.

2010-01-02T23:59:59.000Z

231

Electrolysis High Temperature Hydrogen  

INL has developed a high-temperature process the utilizes solid oxide fuel cells that are operated in the electrolytic mode. The first process includes combining a high-temperature heat source (e.g. nuclear reactor) with a hydrogen production facility ...

232

Solid oxide fuel cell with single material for electrodes and interconnect  

DOE Patents (OSTI)

A solid oxide fuel cell having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed therebetween, and the anode, cathode and interconnect elements are comprised of substantially one material.

McPheeters, Charles C. (Naperville, IL); Nelson, Paul A. (Wheaton, IL); Dees, Dennis W. (Downers Grove, IL)

1994-01-01T23:59:59.000Z

233

Application of Computational Thermodynamics in Solid Oxide Fuel ...  

Science Conference Proceedings (OSTI)

... Heat Index Based on the Hot Metal Silicon Content and Temperature Prediction Model ... Mechanical Stability of Solid Oxide Fuel Cell (SOFC) Materials: A...

234

Thin film techniques for solid oxide fuel cells  

Thin film techniques for solid oxide fuel cells V.E.J. van Dieten and J. Schoonman Laboratory ... ticles stay in the hot temperature region can be ...

235

Solid-State Lighting: Postings  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting: Postings on Twitter Bookmark Solid-State Lighting: Postings on Google Bookmark Solid-State Lighting: Postings on Delicious Rank Solid-State Lighting:...

236

Solid Waste (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

The New Mexico Environment Department's Solid Waste Bureau manages solid waste in the state. The Bureau implements and enforces the rules established by the Environmental Improvement Board.

237

SolidEnergy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SolidEnergy Systems SolidEnergy Systems National Clean Energy Business Plan Competition SolidEnergy Systems Massachusetts Institute of Technology The Polymer Ionic Liquid (PIL) lithium battery combines the safety and energy density of a solid polymer lithium battery and the high performance of a lithium-ion battery. The battery developed by SolidEnergy achieves high energy density that works safely over a wide temperature range, which makes it ideal for electric vehicles and consumer electronics where both energy density and safety are essential. The PIL battery would also be successful in oil and gas drilling applications where the ability to recharge, store, transport, and perform at both very low and very high temperatures safely is mission critical. The PIL lithium battery dramatically improves both the safety and energy

238

SolidEnergy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SolidEnergy Systems SolidEnergy Systems National Clean Energy Business Plan Competition SolidEnergy Systems Massachusetts Institute of Technology The Polymer Ionic Liquid (PIL) lithium battery combines the safety and energy density of a solid polymer lithium battery and the high performance of a lithium-ion battery. The battery developed by SolidEnergy achieves high energy density that works safely over a wide temperature range, which makes it ideal for electric vehicles and consumer electronics where both energy density and safety are essential. The PIL battery would also be successful in oil and gas drilling applications where the ability to recharge, store, transport, and perform at both very low and very high temperatures safely is mission critical. The PIL lithium battery dramatically improves both the safety and energy

239

Reduced Temperature Range for the Solar To Fuel Energy ...  

Science Conference Proceedings (OSTI)

... Active Titania-Based Nanoparticles for Composite Propellant Combustion ... of Novel Nanostructured Electrolytes for Low Temperature Solid Oxide Fuel Cells...

240

Interfacial material for solid oxide fuel cell  

DOE Patents (OSTI)

Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.

Baozhen, Li (Essex Junction, VT); Ruka, Roswell J. (Pittsburgh, PA); Singhal, Subhash C. (Murrysville, PA)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

AN EVALUATION OF POTENTIAL LINER MATERIALS FOR ELIMINATING FCCI IN IRRADIATED METALLIC NUCLEAR FUEL ELEMENTS  

Science Conference Proceedings (OSTI)

Metallic nuclear fuels are being looked at as part of the Global Nuclear Energy Program for transmuting longlive transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products. In order to optimize the performance of these fuels, the concept of using liners to eliminate the fuel/cladding chemical interactions that can occur during irradiation of a fuel element has been investigated. The potential liner materials Zr and V have been tested using solid-solid diffusion couples, consisting of liner materials butted against fuel alloys and against cladding materials. The couples were annealed at the relatively high temperature of 700C. This temperature would be the absolute maximum temperature present at the fuel/cladding interface for a fuel element in-reactor. Analysis was performed using a scanning electron microscope equipped with energy-dispersive and wavelengthdispersive spectrometers (SEM/EDS/WDS) to evaluate any developed diffusion structures. At 700C, minimal interaction was observed between the metallic fuels and either Zr or V. Similarly, limited interaction was observed between the Zr and V and the cladding materials. The best performing liner material appeared to be the V, based on amounts of interaction.

D. D. Keiser; J. I. Cole

2007-09-01T23:59:59.000Z

242

Towards a first-principles thermodynamics of solids  

SciTech Connect

Total energy density-functional methods have made it possible to calculate, from first principles, such important properties as cohesive energies, lattice constants and elastic moduli for elemental crystals and perfectly ordered compounds. Real solids are imperfect, however, so that lattice vibrations and compositional disorder lead to entropy contributions, vibrational and configurational. When these effects are included in an appropriate manner, properties of real crystals can be computed ab initio as a function of temperature and concentration. Consequently, it is possible to obtain, virtually from the knowledge of atomic numbers alone, such basic thermodynamic properties as free energies, entropies, heats of formation, and lattice parameters for stable and metastable phases, leading, for example, to the successful computation of certain classes of phase diagrams. Recent progress in the field will be reviewed. Application is made to the Pd-Rh-V system.

de Fontaine, D.; Wolverton, C.

1992-08-01T23:59:59.000Z

243

Solid oxide electrochemical reactor science.  

DOE Green Energy (OSTI)

Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

2010-09-01T23:59:59.000Z

244

A co-rotational 8-node degenerated thin-walled element with assumed natural strain and enhanced assumed strain  

Science Conference Proceedings (OSTI)

In recent years, solid-shell elements with the absence of the rotational degrees of freedom have considerable attentions in analyzing thin structures. In this paper, the non-linear formulation of a co-rotational 8-node degenerated thin-walled element ... Keywords: 8-Node solid element, Assumed natural strains, Co-rotational method, Enhanced assumed strains, Geometrical nonlinearity

Pramin Norachan; Songsak Suthasupradit; Ki-Du Kim

2012-03-01T23:59:59.000Z

245

Process and material that encapsulates solid hazardous waste  

DOE Patents (OSTI)

A method of encapsulating mixed waste in which a thermoplastic polymer having a melting temperature less than about 150.degree. C. and sulfur and mixed waste are mixed at an elevated temperature not greater than about 200.degree. C. and mixed for a time sufficient to intimately mix the constituents, and then cooled to a solid. The resulting solid is also disclosed.

O' Brien, Michael H. (Idaho Falls, ID); Erickson, Arnold W. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

246

Process and material that encapsulates solid hazardous waste  

DOE Patents (OSTI)

A method is described for encapsulating mixed waste in which a thermoplastic polymer having a melting temperature less than about 150 C and sulfur and mixed waste are mixed at an elevated temperature not greater than about 200 C and mixed for a time sufficient to intimately mix the constituents, and then cooled to a solid. The resulting solid is also disclosed.

O' Brien, Michael H.; Erickson, Arnold W.

1997-12-01T23:59:59.000Z

247

Spent graphite fuel element processing  

SciTech Connect

The Department of Energy currently sponsors two programs to demonstrate the processing of spent graphite fuel elements. General Atomic in San Diego operates a cold pilot plant to demonstrate the processing of both US and German high-temperature reactor fuel. Exxon Nuclear Idaho Company is demonstrating the processing of spent graphite fuel elements from Rover reactors operated for the Nuclear Rocket Propulsion Program. This work is done at Idaho National Engineering Laboratory, where a hot facility is being constructed to complete processing of the Rover fuel. This paper focuses on the graphite combustion process common to both programs.

Holder, N.D.; Olsen, C.W.

1981-07-01T23:59:59.000Z

248

Solid-State Lighting: Solid-State Lighting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid-State Lighting Search Solid-State Lighting Search Search Help Solid-State Lighting HOME ABOUT THE PROGRAM R&D PROJECTS MARKET-BASED PROGRAMS SSL BASICS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES EERE » Building Technologies Office » Solid-State Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards.

249

Elemental Solubility Tendency for the Phases of Uranium by Classical Models Used to Predict Alloy Behavior  

Science Conference Proceedings (OSTI)

Traditional alloy theory models, specifically Darken-Gurry and Miedemas analyses, that characterize solutes in solid solvents relative to physical properties of the elements have been used to assist in predicting alloy behavior. These models will be applied relative to the three solid phases of uranium: alpha (orthorhombic), beta (tetragonal), and gamma (bcc). These phases have different solubilities for specific alloy additions as a function of temperature. The Darken-Gurry and Miedema models, with modifications based on concepts of Waber, Gschneider, and Brewer will be used to predict the behavior of four types of solutes: 1) Transition metals that are used for various purposes associated with the containment as alloy additions in the uranium fuel 2) Transuranic elements in the uranium 3) Rare earth fission products (lanthanides) 4) Transition metals and other fission products Using these solute map criteria, elemental behavior will be predicted as highly soluble, marginally soluble, or immiscible (compound formers) and will be used to compare solute effects during uranium phase transformations. The overlapping of these solute maps are convenient first approximation tools for predicting alloy behavior.

Van Blackwood; Travis Koenig; Saleem Drera; Brajenda Mishra; Davis Olson; Doug Porter; Robert Mariani

2012-03-01T23:59:59.000Z

250

Temperature differential detection device  

DOE Patents (OSTI)

A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions.

Girling, Peter M. (Allentown, PA)

1986-01-01T23:59:59.000Z

251

Temperature differential detection device  

DOE Patents (OSTI)

A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions. 2 figs.

Girling, P.M.

1986-04-22T23:59:59.000Z

252

Solid Oxide Fuel Cells  

Science Conference Proceedings (OSTI)

Solid oxide fuel cell (SOFC) technology, which offers many advantages over traditional energy conversion systems including low emission and high efficiency, has become increasingly attractive to the utility, automotive, and defense industries (as shown in Figure 1). As an all solid-state energy conversion device, the SOFC operates at high temperatures (700-1,000 C) and produces electricity by electrochemically combining the fuel and oxidant gases across an ionically conducting oxide membrane. To build up a useful voltage, a number of cells or PENs (Positive cathode-Electrolyte-Negative anode) are electrically connected in series in a stack through bi-polar plates, also known as interconnects. Shown in Figure 2 (a) is a schematic of the repeat unit for a planar stack, which is expected to be a mechanically robust, high power-density and cost-effective design. In the stack (refer to Figure 2 (b)), the interconnect is simultaneously exposed to both an oxidizing (air) environment on the cathode side and a reducing (fuels such as hydrogen or natural gas) environment on the anode side for thousands of hours at elevated temperatures (700-1,000 C). Other challenges include the fact that water vapor is likely to be present in both of these environments, and the fuel is likely to contain sulfide impurities. Also, the interconnect must be stable towards any sealing materials with which it is in contact, under numerous thermal cycles. Furthermore, the interconnect must also be stable towards electrical contact materials that are employed to minimize interfacial contact resistance, and/or the electrode materials. Considering these service environments, the interconnect materials should possess the following properties: (1) Good surface stability (resistance to oxidation and corrosion) in both cathodic (oxidizing) and anodic (reducing) atmospheres. (2) Thermal expansion matching to the ceramic PEN and other adjacent components, all of which typically have a coefficient of thermal expansion (CTE) in the range of 10.5-12.0 x 10{sup -6} K{sup -1}. (3) High electrical conductivity through both the bulk material and in-situ formed oxide scales. (4) Satisfactory bulk and interfacial mechanical/thermomechanical reliability and durability at the SOFC operating temperatures. (5) Good compatibility with other materials in contact with interconnects such as seals and electrical contact materials. Until recently, the leading candidate material for the interconnect was doped lanthanum chromite (LaCrO3), which is a ceramic material which can easily withstand the traditional 1000 C operating temperature. However, the high cost of raw materials and fabrication, difficulties in obtaining high-density chromite parts at reasonable sintering temperatures, and the tendency of the chromite interconnect to partially reduce at the fuel gas/interconnect interface, causing the component to warp and the peripheral seal to break, have plagued the commercialization of planar SOFCs for years. The recent trend in developing lower temperature, more cost-effective cells which utilize anode-supported, several micron-thin electrolytes and/or new electrolytes with improved conductivity make it feasible for lanthanum chromite to be supplanted by metals or alloys as the interconnect materials. Compared to doped lanthanum chromite, metals or alloys offer significantly lower raw material and fabrication costs.

Yang, Z Gary; Stevenson, Jeffry W.; Singh, Prabhakar

2003-06-15T23:59:59.000Z

253

Solid Mechanics/Finite-Element Analysis Software/Codes  

Science Conference Proceedings (OSTI)

Use this area to submit digital resources and/or make comments on the resources posted by others. DO NOT use this area of the site to initiate discussion

254

Rotary bulk solids divider  

DOE Patents (OSTI)

An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

Maronde, Carl P. (McMurray, PA); Killmeyer, Jr., Richard P. (Pittsburgh, PA)

1992-01-01T23:59:59.000Z

255

Laser cooling of solids  

SciTech Connect

We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

2008-01-01T23:59:59.000Z

256

Solid-State Lighting: Registration  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: Registration on Twitter Bookmark Solid-State Lighting: Registration on Google Bookmark Solid-State Lighting: Registration on Delicious Rank Solid-State Lighting:...

257

Tribological Characterization of Carbon Based Solid Lubricants  

E-Print Network (OSTI)

High performance machines such as gas turbine engines demand efficient solid lubricants at high temperature and in vacuum. The current conventional solid lubricants need to be further improved. This research evaluates carbon based solid lubricants using a high vacuum, high temperature pin-on-disc tribometer. The objectives of this research were to develop an understanding of the tribological properties of solid lubricant coatings under extreme operating conditions, and to determine whether using a carbon based solid lubricant would be acceptable for use in those conditions. Experimentally, two solid lubricant coatings on tungsten carbide substrate were tested against two different materials. The coatings were carbon based and molybdenum disulfide based. The other materials were 440C stainless steel and tungsten carbide. The temperature, pressure, and relative humidity are independent variables. The results showed that the carbon based coating increases friction and wears out quickly due to high temperature, high vacuum, and low humidity. Abrasive wear is the dominating mechanism. At elevated temperatures and in dry environment, the carbon based coating underwent significant oxidation and phase transformation. This research is beneficial for future design and development of solid lubricants for aerospace applications, as well as other industries requiring lubricants that must operate in extreme conditions. This thesis includes five chapters. Chapter I is an introduction to tribology and to the materials being used in this research. Chapter II describes the motivation and objectives behind this research. Chapter III discusses the experimental procedure and further explains the materials used. Chapter IV presents and discusses the results obtained. Chapter V discusses the major conclusions obtained from the results and offers some future work that may be conducted concerning this research.

Sanchez, Carlos Joel

2011-08-01T23:59:59.000Z

258

NEW ALUMINUM OXIDE HUMIDITY ELEMENT. Second Report  

SciTech Connect

An aluminum oxide humidity sensing element is discussed. These elements, which were developed primarily for use in radiosonde weather measuring equipmeni, have a fast response over the entire humidity range and through a broad temperature range of -80 deg F to +l35 deg F. The elements are a marked improvement over previous humidity sensing devices, and their use in specially designed testers allows measurements to be made which were previously unobtainable. Among their other desirable features, these elements are small and lightweight, can be made inexpensively of readily available materials, and can be mass produced. (auth)

Stover, C.M.

1962-03-01T23:59:59.000Z

259

Solid State Division  

SciTech Connect

This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

Green, P.H.; Watson, D.M. (eds.)

1989-08-01T23:59:59.000Z

260

Solid aerosol generator  

DOE Patents (OSTI)

An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

Prescott, Donald S. (Shelley, ID); Schober, Robert K. (Midwest City, OK); Beller, John (Idaho Falls, ID)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The Five Elements of Brazing  

Science Conference Proceedings (OSTI)

Table 1   The five elements of brazing...Fixture mass vs. assembly mass Cost Cost of electricity Cost of natural gas Cost of alternate fuels Heat loss of furnaces Cost of heating fixtures, belts, etc. Compatibility with atmosphere Temperature measurement Type of thermocouple (T/C) T/C Calibration T/C Drift T/C vs. atmosphere Effect of heat (±)...

262

Solid-State Lighting: Solid-State Lighting Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Videos to Solid-State Lighting Videos to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Videos on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Videos on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Videos on Google Bookmark Solid-State Lighting: Solid-State Lighting Videos on Delicious Rank Solid-State Lighting: Solid-State Lighting Videos on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Videos on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Solid-State Lighting Videos On this page you can access DOE Solid-State Lighting (SSL) Program videos. Photo of a museum art gallery with LED lights in track fixtures overhead. The City of Los Angeles LED Streetlight Program

263

Solid-State Lighting: Solid-State Lighting Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

About the About the Program Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting Contacts to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Contacts on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Contacts on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Google Bookmark Solid-State Lighting: Solid-State Lighting Contacts on Delicious Rank Solid-State Lighting: Solid-State Lighting Contacts on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Contacts on AddThis.com... Contacts Partnerships Solid-State Lighting Contacts For information about Solid-State Lighting, contact James Brodrick Lighting Program Manager Building Technologies Office U.S. Department of Energy

264

Extended CO Solid: A New Class of High Energy Density Material  

DOE Green Energy (OSTI)

Covalently bonded extended phases of molecular solids made of first- and second-row elements at high pressures are a new class of materials with advanced optical, mechanical and energetic properties. The existence of such extended solids has recently been demonstrated using diamond anvil cells in several systems, including N{sub 2}, CO{sub 2},and CO. However, the microscopic quantities produced at the formidable high-pressure/temperature conditions have limited the characterization of their predicted novel properties including high-energy content. In this paper, we present the first experimental evidence that these extended low-Z solids are indeed high energy density materials via milligram-scale high-pressure synthesis, recovery and characterization of polymeric CO (p-CO). Our spectroscopic data reveal that p-CO is a random polymer made of lactonic entities and conjugated C=C with an energy content rivaling or exceeding that of HMX. Solid p-CO explosively decomposes to CO{sub 2} and glassy carbon and thus might be used as an advanced energetic material.

Lipp, M J; Evans, W J; Baer, B J; Yoo, C

2004-10-14T23:59:59.000Z

265

Solid-state proton conductors  

DOE Green Energy (OSTI)

The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling and optimization studies. Correlation and optimization studies, to include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells including the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms. 164 refs., 27 figs., 13 tabs.

Jewulski, J.R.; Osif, T.L.; Remick, R.J.

1990-12-01T23:59:59.000Z

266

Solids fluidizer-injector  

DOE Patents (OSTI)

An apparatus and process are described for fluidizing solid particles by causing rotary motion of the solid particles in a fluidizing chamber by a plurality of rotating projections extending from a rotatable cylinder end wall interacting with a plurality of fixed projections extending from an opposite fixed end wall and passing the solid particles through a radial feed orifice open to the solids fluidizing chamber on one side and a solid particle utilization device on the other side. The apparatus and process are particularly suited for obtaining intermittent feeding with continual solids supply to the fluidizing chamber. The apparatus and process are suitable for injecting solid particles, such as coal, to an internal combustion engine. 3 figs.

Bulicz, T.R.

1990-04-17T23:59:59.000Z

267

Solid-State Lighting: Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

about Solid-State Lighting: Tools on Twitter Bookmark Solid-State Lighting: Tools on Google Bookmark Solid-State Lighting: Tools on Delicious Rank Solid-State Lighting: Tools on...

268

Solid-State Lighting: News  

NLE Websites -- All DOE Office Websites (Extended Search)

about Solid-State Lighting: News on Twitter Bookmark Solid-State Lighting: News on Google Bookmark Solid-State Lighting: News on Delicious Rank Solid-State Lighting: News on...

269

Solid-State Lighting: Solid-State Lighting Manufacturing Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting Solid-State Lighting Manufacturing Workshop to someone by E-mail Share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Facebook Tweet about Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Twitter Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Google Bookmark Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Delicious Rank Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on Digg Find More places to share Solid-State Lighting: Solid-State Lighting Manufacturing Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools Solid-State Lighting Manufacturing Workshop Nearly 200 lighting industry leaders, chip makers, fixture and component

270

Gasification of carbonaceous solids  

DOE Patents (OSTI)

A process and apparatus for converting coal and other carbonaceous solids to an intermediate heating value fuel gas or to a synthesis gas. A stream of entrained pulverized coal is fed into the combustion stage of a three-stage gasifier along with a mixture of oxygen and steam at selected pressure and temperature. The products of the combustion stage pass into the second or quench stage where they are partially cooled and further reacted with water and/or steam. Ash is solidified into small particles and the formation of soot is suppressed by water/steam injections in the quench stage. The design of the quench stage prevents slag from solidifying on the walls. The products from the quench stage pass directly into a heat recovery stage where the products pass through the tube, or tubes, of a single-pass, shell and tube heat exchanger and steam is generated on the shell side and utilized for steam feed requirements of the process.

Coates, Ralph L. (Provo, UT)

1976-10-26T23:59:59.000Z

271

Solid hydrogen structure  

DOE Green Energy (OSTI)

The J=0{minus}>2 Raman signal from solid J=0 D{sub 2} or H{sub 2} reveals HCP structure when deposited at a rate 0.1 {le} R({mu}/min) {le} 40 onto MgF{sub 2} at T{sub d}/T{sub tp} > 0.3, a mixture of HCP and FCC crystals at 0.2 < T{sub d}/T{sub tp} < 0.3 and possibly a randomly stacked close packed structure at T{sub d}/T{sub tp} < 0.2, where T{sub tp} is the triple point temperature. Non-HCP crystals transform to HCP continuously and irreversibly with increasing T. Finally, the crystal size decreases with decreasing T{sub d} and increasing R, from {approximately} 1 mm at T{sub d} {approximately} 0.8 T{sub tp} and R {approximately} 2 {mu}/min to {approximately} 1 {mu}m at 0.25 T{sub tp} and R {approximately} 40 {mu}/min.

Collins, G.W.; Unites, W.G.; Mapoles, E.R.; Magnotta, F.; Bernat, T.P.

1994-11-01T23:59:59.000Z

272

It's Elemental - Isotopes of the Element Boron  

NLE Websites -- All DOE Office Websites (Extended Search)

Beryllium Beryllium Previous Element (Beryllium) The Periodic Table of Elements Next Element (Carbon) Carbon Isotopes of the Element Boron [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 10 19.9% STABLE 11 80.1% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 6 No Data Available Double Proton Emission (suspected) No Data Available 7 3.255×10-22 seconds Proton Emission No Data Available Alpha Decay No Data Available 8 770 milliseconds Electron Capture 100.00% Electron Capture with delayed Alpha Decay 100.00% 9 8.439×10-19 seconds Proton Emission 100.00% Double Alpha Decay 100.00%

273

It's Elemental - Isotopes of the Element Tungsten  

NLE Websites -- All DOE Office Websites (Extended Search)

Tantalum Tantalum Previous Element (Tantalum) The Periodic Table of Elements Next Element (Rhenium) Rhenium Isotopes of the Element Tungsten [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 180 0.12% >= 6.6×10+17 years 182 26.50% STABLE 183 14.31% > 1.3×10+19 years 184 30.64% STABLE 186 28.43% > 2.3×10+19 years Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 157 275 milliseconds Electron Capture No Data Available 158 1.25 milliseconds Alpha Decay 100.00% 158m 0.143 milliseconds Isomeric Transition No Data Available Alpha Decay No Data Available 159 7.3 milliseconds Alpha Decay ~ 99.90%

274

It's Elemental - Isotopes of the Element Radon  

NLE Websites -- All DOE Office Websites (Extended Search)

Astatine Astatine Previous Element (Astatine) The Periodic Table of Elements Next Element (Francium) Francium Isotopes of the Element Radon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Radon has no naturally occurring isotopes. Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 193 1.15 milliseconds Alpha Decay 100.00% 194 0.78 milliseconds Alpha Decay 100.00% 195 6 milliseconds Alpha Decay 100.00% 195m 5 milliseconds Alpha Decay 100.00% 196 4.4 milliseconds Alpha Decay 99.90% Electron Capture ~ 0.10% 197 53 milliseconds Alpha Decay 100.00% 197m 25 milliseconds Alpha Decay 100.00% 198 65 milliseconds Alpha Decay No Data Available

275

It's Elemental - Isotopes of the Element Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

Boron Boron Previous Element (Boron) The Periodic Table of Elements Next Element (Nitrogen) Nitrogen Isotopes of the Element Carbon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 12 98.93% STABLE 13 1.07% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 8 1.981×10-21 seconds Proton Emission 100.00% Alpha Decay No Data Available 9 126.5 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 61.60% Electron Capture with delayed Alpha Decay 38.40% 10 19.308 seconds Electron Capture 100.00% 11 20.334 minutes Electron Capture 100.00% 12 STABLE - -

276

It's Elemental - Isotopes of the Element Rhenium  

NLE Websites -- All DOE Office Websites (Extended Search)

Tungsten Tungsten Previous Element (Tungsten) The Periodic Table of Elements Next Element (Osmium) Osmium Isotopes of the Element Rhenium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 185 37.40% STABLE 187 62.60% 4.33×10+10 years Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 159 No Data Available No Data Available No Data Available 160 0.82 milliseconds Proton Emission 91.00% Alpha Decay 9.00% 161 0.44 milliseconds Proton Emission 100.00% Alpha Decay <= 1.40% 161m 14.7 milliseconds Alpha Decay 93.00% Proton Emission 7.00% 162 107 milliseconds Alpha Decay 94.00% Electron Capture 6.00%

277

It's Elemental - Isotopes of the Element Magnesium  

NLE Websites -- All DOE Office Websites (Extended Search)

Sodium Sodium Previous Element (Sodium) The Periodic Table of Elements Next Element (Aluminum) Aluminum Isotopes of the Element Magnesium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 24 78.99% STABLE 25 10.00% STABLE 26 11.01% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 19 4.0 picoseconds Double Proton Emission 100.00% 20 90.8 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission ~ 27.00% 21 122 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 32.60% Electron Capture with delayed Alpha Decay < 0.50%

278

It's Elemental - Isotopes of the Element Chlorine  

NLE Websites -- All DOE Office Websites (Extended Search)

Sulfur Sulfur Previous Element (Sulfur) The Periodic Table of Elements Next Element (Argon) Argon Isotopes of the Element Chlorine [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 35 75.76% STABLE 37 24.24% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 28 No Data Available Proton Emission (suspected) No Data Available 29 < 20 nanoseconds Proton Emission No Data Available 30 < 30 nanoseconds Proton Emission No Data Available 31 150 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 0.70% 32 298 milliseconds Electron Capture 100.00%

279

It's Elemental - Isotopes of the Element Potassium  

NLE Websites -- All DOE Office Websites (Extended Search)

Argon Argon Previous Element (Argon) The Periodic Table of Elements Next Element (Calcium) Calcium Isotopes of the Element Potassium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 39 93.2581% STABLE 40 0.0117% 1.248×10+9 years 41 6.7302% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 32 No Data Available Proton Emission (suspected) No Data Available 33 < 25 nanoseconds Proton Emission No Data Available 34 < 25 nanoseconds Proton Emission No Data Available 35 178 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 0.37% 36 342 milliseconds Electron Capture 100.00%

280

It's Elemental - Isotopes of the Element Phosphorus  

NLE Websites -- All DOE Office Websites (Extended Search)

Silicon Silicon Previous Element (Silicon) The Periodic Table of Elements Next Element (Sulfur) Sulfur Isotopes of the Element Phosphorus [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 31 100% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 24 No Data Available Electron Capture (suspected) No Data Available Proton Emission (suspected) No Data Available 25 < 30 nanoseconds Proton Emission 100.00% 26 43.7 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission No Data Available 27 260 milliseconds Electron Capture 100.00% Electron Capture with

Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

It's Elemental - Isotopes of the Element Francium  

NLE Websites -- All DOE Office Websites (Extended Search)

Radon Radon Previous Element (Radon) The Periodic Table of Elements Next Element (Radium) Radium Isotopes of the Element Francium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Francium has no naturally occurring isotopes. Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 199 12 milliseconds Alpha Decay > 0.00% Electron Capture No Data Available 200 49 milliseconds Alpha Decay 100.00% 201 62 milliseconds Alpha Decay 100.00% 201m 19 milliseconds Alpha Decay 100.00% 202 0.30 seconds Alpha Decay 100.00% 202m 0.29 seconds Alpha Decay 100.00% 203 0.55 seconds Alpha Decay <= 100.00% 204 1.8 seconds Alpha Decay 92.00%

282

It's Elemental - Isotopes of the Element Oxygen  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Nitrogen Previous Element (Nitrogen) The Periodic Table of Elements Next Element (Fluorine) Fluorine Isotopes of the Element Oxygen [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 16 99.757% STABLE 17 0.038% STABLE 18 0.205% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 12 1.139×10-21 seconds Proton Emission No Data Available 13 8.58 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 100.00% 14 70.620 seconds Electron Capture 100.00% 15 122.24 seconds Electron Capture 100.00% 16 STABLE - - 17 STABLE - - 18 STABLE - - 19 26.88 seconds Beta-minus Decay 100.00%

283

It's Elemental - Isotopes of the Element Gallium  

NLE Websites -- All DOE Office Websites (Extended Search)

Zinc Zinc Previous Element (Zinc) The Periodic Table of Elements Next Element (Germanium) Germanium Isotopes of the Element Gallium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 69 60.108% STABLE 71 39.892% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 56 No Data Available Proton Emission (suspected) No Data Available 57 No Data Available Proton Emission (suspected) No Data Available 58 No Data Available Proton Emission (suspected) No Data Available 59 No Data Available Proton Emission (suspected) No Data Available 60 70 milliseconds Electron Capture 98.40%

284

It's Elemental - Isotopes of the Element Sodium  

NLE Websites -- All DOE Office Websites (Extended Search)

Neon Neon Previous Element (Neon) The Periodic Table of Elements Next Element (Magnesium) Magnesium Isotopes of the Element Sodium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 23 100% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 18 1.3×10-21 seconds Proton Emission 100.00% 19 < 40 nanoseconds Proton Emission No Data Available 20 447.9 milliseconds Electron Capture with delayed Alpha Decay 20.05% Electron Capture 100.00% 21 22.49 seconds Electron Capture 100.00% 22 2.6027 years Electron Capture 100.00% 23 STABLE - - 24 14.997 hours Beta-minus Decay 100.00%

285

It's Elemental - Isotopes of the Element Neon  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluorine Fluorine Previous Element (Fluorine) The Periodic Table of Elements Next Element (Sodium) Sodium Isotopes of the Element Neon [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 20 90.48% STABLE 21 0.27% STABLE 22 9.25% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 16 9×10-21 seconds Double Proton Emission 100.00% 17 109.2 milliseconds Electron Capture with delayed Alpha Decay No Data Available Electron Capture 100.00% Electron Capture with delayed Proton Emission 100.00% 18 1.6670 seconds Electron Capture 100.00% 19 17.22 seconds Electron Capture 100.00% 20 STABLE - -

286

It's Elemental - Isotopes of the Element Copper  

NLE Websites -- All DOE Office Websites (Extended Search)

Nickel Nickel Previous Element (Nickel) The Periodic Table of Elements Next Element (Zinc) Zinc Isotopes of the Element Copper [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 63 69.15% STABLE 65 30.85% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 52 No Data Available Proton Emission No Data Available 53 < 300 nanoseconds Electron Capture No Data Available Proton Emission No Data Available 54 < 75 nanoseconds Proton Emission No Data Available 55 27 milliseconds Electron Capture 100.00% Electron Capture with delayed Proton Emission 15.0% 56 93 milliseconds Electron Capture 100.00%

287

NEUTRONIC REACTOR CONTROL ELEMENT  

DOE Patents (OSTI)

A boron-10 containing reactor control element wherein the boron-10 is dispersed in a matrix material is describeri. The concentration of boron-10 in the matrix varies transversely across the element from a minimum at the surface to a maximum at the center of the element, prior to exposure to neutrons. (AEC)

Beaver, R.J.; Leitten, C.F. Jr.

1962-04-17T23:59:59.000Z

288

Solid-State Lighting: Solid-State Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting Lighting Printable Version Share this resource Send a link to Solid-State Lighting: Solid-State Lighting to someone by E-mail Share Solid-State Lighting: Solid-State Lighting on Facebook Tweet about Solid-State Lighting: Solid-State Lighting on Twitter Bookmark Solid-State Lighting: Solid-State Lighting on Google Bookmark Solid-State Lighting: Solid-State Lighting on Delicious Rank Solid-State Lighting: Solid-State Lighting on Digg Find More places to share Solid-State Lighting: Solid-State Lighting on AddThis.com... Pause/Resume Photo of a large room with people standing around poster boards. Register Now for DOE's 11th Annual SSL R&D Workshop January 28-30, join other SSL R&D professionals from industry, government, and academia to learn, share, and shape the future of lighting.

289

Composite element algorithm for the thermal analysis of mass concrete: Simulation of lift joint  

Science Conference Proceedings (OSTI)

Based on the principle of composite element method (CEM), the thermal algorithm for the massive concrete containing lift joint is developed, in which the lift joint segments are embedded within the composite elements. The composite element contains sub-elements ... Keywords: Composite element method, Lift joint, Mass concrete, Temperature field

S. H. Chen; P. F. Su; I. Shahrour

2011-05-01T23:59:59.000Z

290

FUEL ELEMENTS CONFERENCE HELD AT GATLINBURG, TENNESSEE, MAY 14-16, 1958  

SciTech Connect

The fuel element conference provided a favorable medium for presentation and discussion of recent developments in the field of solid fuel elements. The conference was designed to replace the more general Metallurgy Information Meetings held annually in the past. The scope of the meeting embraced the design fabrication, performance, and material problems of fuel elements. (W.D.M)

1959-10-31T23:59:59.000Z

291

SolidEnergy Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Innovation » Commercialization » National Science & Innovation » Innovation » Commercialization » National Clean Energy Business Plan Competition » SolidEnergy Systems National Clean Energy Business Plan Competition SolidEnergy Systems Massachusetts Institute of Technology The Polymer Ionic Liquid (PIL) lithium battery combines the safety and energy density of a solid polymer lithium battery and the high performance of a lithium-ion battery. The battery developed by SolidEnergy achieves high energy density that works safely over a wide temperature range, which makes it ideal for electric vehicles and consumer electronics where both energy density and safety are essential. The PIL battery would also be successful in oil and gas drilling applications where the ability to recharge, store, transport, and perform at both very low and very high

292

Solid tags for identifying failed reactor components  

DOE Patents (OSTI)

A solid tag material which generates stable detectable, identifiable, and measurable isotopic gases on exposure to a neutron flux to be placed in a nuclear reactor component, particularly a fuel element, in order to identify the reactor component in event of its failure. Several tag materials consisting of salts which generate a multiplicity of gaseous isotopes in predetermined ratios are used to identify different reactor components.

Bunch, Wilbur L. (Richland, WA); Schenter, Robert E. (Richland, WA)

1987-01-01T23:59:59.000Z

293

Molecular Solids I  

Science Conference Proceedings (OSTI)

Feb 17, 2010 ... However, milling brings multiple transformations produced in the API. These transformations and the resulting behavior of certain organic solid...

294

Solid Waste Permits (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Louisiana Department of Environmental Quality administers the rules and regulations governing the storage, collection, processing, recovery, and reuse of solid waste protect the air,...

295

Solid Catalyst Alkylation  

This is a method used to reactivate solid/liquid catalysts used in INLs super critical process to produce alkylates. The method brings the catalyst ...

296

Speciation of inorganic and organometallic compounds in solid biological samples by thermal vaporization and plasma emission spectrometry  

Science Conference Proceedings (OSTI)

By means of thermal vaporization, inorganic, organic, and metallorganic species are separated and elemental emission in a microwave plasma is detected as a function of vaporization temperature. Solid samples of 250 mg or more are used to avoid problems with sample heterogeneity. The precision of characteristic appearance temperatures is +/-2/sup 0/C. The single electrode atmosphere pressure microwave plasma system is extremely tolerant to the introduction of water, organic solvents, and air. The measurement system contained a repetition wavelength scan device to allow background correction. The plasma temperature was 5500 K. The system was used to measure C, H, N, O, and Hg in orchard leaves and in tuna fish. 9 figures, 5 tables.

Hanamura, S.; Smith, B.W.; Winefordner, J.D.

1983-11-01T23:59:59.000Z

297

Pressurization of whole element canister during staging  

DOE Green Energy (OSTI)

An analytical model was developed to estimate the buildup of gas pressure for a single outer element in a hot cell test container for a post cold vacuum drying staging/storage test. This model considers various sources of gas generation and gas consumption as a function of time. In a canister containing spent nuclear fuel, hydrogen is generated from the reactions of uranium with free water or hydrated water, hydride decomposition, and radiolysis. The canister pressurization model predicts a stable pressure and a peak temperature during staging, with an assumption that a fuel element contains 40 gm of corrosion products and a decay heat of 2.07 or 1.06 Watts. Calculations were also performed on constant temperature tests for fuel elements containing varied amounts of sludge tested at 150, 125, 105, and 85 C. The pressurization model will be used to evaluate test results obtained from post-drying testing on whole fuel elements.

Huang, F.F.

1998-01-27T23:59:59.000Z

298

Solid composite electrolytes for lithium batteries  

DOE Patents (OSTI)

Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

2000-01-01T23:59:59.000Z

299

Peach Bottom test element program. Final report  

Science Conference Proceedings (OSTI)

Thirty-three test elements were irradiated in the Peach Bottom high-temperature gas-cooled reactor (HTGR) as part of the testing program for advanced HTGRs. Extensive postirradiation examinations and evaluations of 21 of these irradiation experiments were performed. The test element irradiations were simulated using HTGR design codes and data. Calculated fuel burnups, power profiles, fast neutron fluences, and temperatures were verified via destructive burnup measurements, gamma scanning, and in-pile thermocouple readings corrected for decalibration effects. Analytical techniques were developed to improve the quality of temperature predictions through feedback of nuclear measurements into thermal calculations. Dimensional measurements, pressure burst tests, diametral compression tests, ring-cutting tests, strip-cutting tests, and four-point bend tests were performed to measure residual stress, strain, and strength distributions in H-327 graphite structures irradiated in the test elements.

Saurwein, J.J.; Holzgraf, J.F.; MIller, C.M.; Myers, B.F.; Wallroth, C.F.

1982-11-01T23:59:59.000Z

300

High solids fermentation reactor  

DOE Patents (OSTI)

A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

Wyman, Charles E. (Lakewood, CO); Grohmann, Karel (Littleton, CO); Himmel, Michael E. (Littleton, CO); Richard, Christopher J. (Lakewood, CO)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Finial Scientific/Technical Report: Application of a Circulating Fluidized Bed Process for the Chemical Looping Combustion of Solid Fuel  

DOE Green Energy (OSTI)

Chemical Looping Combustion is a novel combustion technology for the inherent separation of the greenhouse gas, CO{sub 2}. In 1983, Richter and Knoche proposed reversible combustion, which utilized both the oxidation and reduction of metal. Metal associated with its oxidized form as an oxygen carrier was circulated between two reactors--oxidizer and reducer. In the reducer, the solid oxygen carrier reacts with the fuel to produce CO{sub 2}, H{sub 2}O and elemental metal only. Pure CO{sub 2} will be obtained in the exit gas stream from the reducer after H{sub 2}O is condensed. The pure CO{sub 2} is ready for subsequent sequestration. In the oxidizer, the elemental metal reacts with air to form metal oxide and separate oxygen from nitrogen. Only nitrogen and some unused oxygen are emitted from the oxidizer. The advantage of CLC compared to normal combustion is that CO{sub 2} is not diluted with nitrogen but obtained in a relatively pure form without any energy needed for separation. In addition to the energy-free purification of CO{sub 2}, the CLC process also provides two other benefits. First, NO{sub x} formation can be largely eliminated. Secondly, the thermal efficiency of a CLC system is very high. Presently, the CLC process has only been used with natural gas. An oxygen carrier based on an energy balance analysis and thermodynamics analysis was selected. Copper (Cu) seems to be the best choice for the CLC system for solid fuels. From this project, the mechanisms of CuO reduction by solid fuels may be as follows: (1) If pyrolysis products of solid fuels are available, reduction of CuO could start at about 400 C or less. (2) If pyrolysis products of solid fuels are unavailable and the reduction temperature is lower, reduction of CuO could occur at an onset temperature of about 500 C, char gasification reactivity in CO{sub 2} was lower at lower temperatures. (3) If pyrolysis products of solid fuels are unavailable and the reduction temperature is higher than 750 C, all reaction reactivities were improved, especially the CO{sub 2} gasification reactivity of char. Thus, the reduction of CuO by the gasification product CO could proceed quickly. Based on the results obtained, the following coal characteristics would be desirable for the Chemical Looping Combustion process: high volatile matter with a high reactivity of the char produced. PRB coal meets these criteria while being comparatively less expensive and also very abundant. The high moisture content present in PRB coal might also increase the reactivity for char gasification through the development of pore structure and specific surface area in the char during pyrolysis. Biomass materials are also suitable, considering the reaction mechanism of CLC system of solid fuels. The feasibility of the chemical looping combustion process of solid fuels was verified by focusing on PRB coal and biomass. Based on PRB coal as the preferred solid fuel in the development of the CLC system, the mass, energy and system in a dual reactor recirculation system has been determined. In the Cu oxidation tests, it was confirmed that the heating rate is the most important effect on the Cu oxidation process. Lower heating rates and lower operational temperatures would result in incomplete conversion of Cu to CuO. Cu{sub 2}O may be the intermediate product. The operating temperature did not affect the reaction rate of the oxidation process. Under any operating conditions, the exothermic properties are clearly shown.

Dr. Wei-Ping Pan; Dr. John T. Riley

2005-10-10T23:59:59.000Z

302

Thermoelectric refrigerator having improved temperature stabilization means  

DOE Patents (OSTI)

A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

Falco, Charles M. (Woodridge, IL)

1982-01-01T23:59:59.000Z

303

Solids decomposition kinetics for LASL bismuth sulfate cycle  

DOE Green Energy (OSTI)

The LASL Bismuth Sulfate Cycle includes a solid-decomposition step as an alternative to the high-temperature evaporation and decomposition of concentrated sulfuric acid, with its attendant drying and materials problems. A solids decomposition facility was constructed and used to study the handling of solid sulfates and the kinetics of their decomposition. The decomposition of Bi/sub 2/O(SO/sub 4/)/sub 2/ has been measured as a function of temperature and transit time through a laboratory-scale rotary kiln, constructed from quartz. Temperatures from 973 to 1143/sup 0/K were investigated. The transit time was controlled by varying the slope of the kiln, its rotational speed, and the rate of feed of a bismuth oxysulfate prepared in the prescribed manner. The preparation and characterization of this solid, which has reasonable feeding properties and minimal solution retention, are described. Significant amounts of decomposition were measured in short reaction times at the temperatures investigated.

Peterson, C.L.; Bowman, M.G.

1980-01-01T23:59:59.000Z

304

Ris National Laboratory Fuel Cells and Solid State Chemistry Department  

E-Print Network (OSTI)

in solid oxide fuel cells (SOFCs). Doped ceria has 1 #12;2 advantages over conventional zirconia oxide, temperature and oxygen activty. High leak current densities may be deduced from reports on SOFCs with ceria

305

The synthetic elements  

Science Conference Proceedings (OSTI)

Prior to 1940, the heaviest element known was uranium, discovered in 1789. Since that time the elements 93 through 109 have been synthesized and identified and the elements 43, 61, 85, and 87 which were missing form the periodic tables of the 1930's have been discovered. The techniques and problems involved in these discoveries and the placement of the transuranium elements in the periodic table will be discussed. The production and positive identification of elements heavier than Md (Z=101), which have very short half-lives and can only be produced an atom-at-a-time, are very difficult and there have been controversies concerning their discovery. Some of the new methods which have been developed and used in these studies will be described. The prospects for production of still heavier elements will be considered.

Hoffman, D.C.

1990-05-01T23:59:59.000Z

306

Solid-State Lighting: 2013 Solid-State Lighting Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Solid-State Lighting Manufacturing R&D Workshop Presentations and Materials to someone by E-mail Share Solid-State Lighting: 2013 Solid-State Lighting Manufacturing R&D...

307

FUEL ELEMENT FOR A NUCLEAR REACTOR  

DOE Patents (OSTI)

A fuel element structure particularly useful in high temperature nuclear reactors is presented. Basically, the structure comprises two coaxial graphite sleeves integrally joined together by radial fins. Due to the high structural strength of graphite at high temperatures and the rigidity of this structure, nuclear fuel encased within the inner sleeve in contiguous relation therewith is supported and prevented from expanding radially at high temperatures. Thus, the necessity of relying on the usual cladding materials with relatively low temperature limitations for structural strength is removed. (AEC)

Davidson, J.K.

1963-11-19T23:59:59.000Z

308

It's Elemental - Isotopes of the Element Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Carbon Previous Element (Carbon) The Periodic Table of Elements Next Element (Oxygen) Oxygen Isotopes of the Element Nitrogen [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 14 99.636% STABLE 15 0.364% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 10 No Data Available Proton Emission 100.00% 11 5.49×10-22 seconds Proton Emission 100.00% 12 11.000 milliseconds Electron Capture 100.00% 13 9.965 minutes Electron Capture 100.00% 14 STABLE - - 15 STABLE - - 16 7.13 seconds Beta-minus Decay 100.00% Beta-minus Decay with delayed Alpha Decay 1.2×10-3 % 17 4.173 seconds Beta-minus Decay 100.00%

309

Materials for low temperature SOFCs.  

Science Conference Proceedings (OSTI)

Solid oxide fuel cells (SOFCs) are one of the potentially most efficient and clean energy conversion technologies for electric utility applications. Laboratory cells have shown extraordinary durability, and actual utility-scale prototypes have worked very well. The main obstacle to commercialization has been the relatively high manufacturing cost. To reduce these costs, efforts have been underway for several years to adapt manufacturing technology from the semiconductor industry to the SOFCs; however, tape casting, screen printing and similar methods are more applicable to planar configurations than to the more proven tubular ones. In planar cells the bipolar plate and edge seals become more critical elements, and material selection may have repercussions for the other fuel cell components. Ferritic stainless steel bipolar plates may be a good choice for reducing the cost of the stacks, but ferritic steels oxidize rapidly at temperatures above 800 C. Inexorably, one is led to the conclusion that anodes, cathodes and electrolytes operating below 800 C need to be found. Another motivation for developing planar SOFCs operating at reduced temperature is the prospect of new non-utility applications. The U.S. Department of Energy has initiated the Solid State Energy Conversion Alliance (SECA) program for developing small modular stacks ranging in capacity from 5 to 10 kW{sup (1)}. This size range meets the power requirements of auxiliary power units for heavy and perhaps even light-duty vehicles, and also for remote stationary applications. In terms of electric capacity, the distributed electric utility market may well exceed the potential market for APUs, but the number of units produced could be higher for the latter, yielding cost benefits related to mass production. On the other hand, the fuel for use in transportation or remote stationary applications will consist of gasoline, diesel or propane, which contain higher sulfur levels than natural gas. Anodes with some resistance to sulfur poisoning would be desirable. Also, during the more frequent shutdowns and startups in these applications, the anodes may get exposed to air. Typical nickel-based SOFC anodes may not tolerate air exposure very well and may need to be modified. Argonne National Laboratory is engaged in developing new materials options for SECA applications, as discussed here.

Krumpelt, M.; Ralph, J.; Cruse, T.; Bae, J.-M.

2002-08-02T23:59:59.000Z

310

FUEL ELEMENT INTERLOCKING ARRANGEMENT  

DOE Patents (OSTI)

This patent relates to a system for mutually interlocking a multiplicity of elongated, parallel, coextensive, upright reactor fuel elements so as to render a laterally selfsupporting bundle, while admitting of concurrent, selective, vertical withdrawal of a sizeable number of elements without any of the remaining elements toppling, Each element is provided with a generally rectangular end cap. When a rank of caps is aligned in square contact, each free edge centrally defines an outwardly profecting dovetail, and extremitally cooperates with its adjacent cap by defining a juxtaposed half of a dovetail- receptive mortise. Successive ranks are staggered to afford mating of their dovetails and mortises. (AEC)

Fortescue, P.; Nicoll, D.

1963-01-01T23:59:59.000Z

311

ElementNodeIterator  

Science Conference Proceedings (OSTI)

... iter=element->node_iterator(); !iter.end(); ++iter) { Node *node = iter.node(); // do something ... node returns a pointer to the iterator's current Node . ...

2013-08-23T23:59:59.000Z

312

Delivery system for molten salt oxidation of solid waste  

DOE Patents (OSTI)

The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

Brummond, William A. (Livermore, CA); Squire, Dwight V. (Livermore, CA); Robinson, Jeffrey A. (Manteca, CA); House, Palmer A. (Walnut Creek, CA)

2002-01-01T23:59:59.000Z

313

Nuclear fuel elements made from nanophase materials  

SciTech Connect

A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.

Heubeck, Norman B. (Schenectady, NY)

1998-01-01T23:59:59.000Z

314

Nuclear fuel elements made from nanophase materials  

DOE Patents (OSTI)

A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain-related failure even at high temperatures, in the order of about 3,000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion and mechanical characteristics.

Heubeck, Norman B.

1997-12-01T23:59:59.000Z

315

Nuclear fuel elements made from nanophase materials  

DOE Patents (OSTI)

A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.

Heubeck, N.B.

1998-09-08T23:59:59.000Z

316

Fabrication of Solid Electrolyte Dendrites for Solid Oxide Fuel Cell ...  

Science Conference Proceedings (OSTI)

Fabrication of Solid Electrolyte Dendrites for Solid Oxide Fuel Cell Miniaturizations Fabrication of TiN Nanoparticle Dispersed Si3N4 Ceramics by Wet Jet...

317

Evaluation of Solid Oxide Fuel Cell Interconnect Coatings: Reaction Layer Microstructure, Chemistry and Formation Mechanisms.  

E-Print Network (OSTI)

?? The implementation of improved electrolyte materials have led to modern solid oxide fuel cells (SOFCs) which operate at lower temperatures (600-800 C) than previously (more)

Magdefrau, Neal J.

2013-01-01T23:59:59.000Z

318

NETL: Optimizing the Costs of Solid Sorbent-Based CO2 Capture...  

NLE Websites -- All DOE Office Websites (Extended Search)

testing and computer modeling of select concepts to address the technology gap of a cross heat exchanger for solids. Processes that depend chiefly on temperature-swing adsorption...

319

NUCLEAR REACTOR FUEL ELEMENTS AND METHOD OF PREPARATION  

DOE Patents (OSTI)

A fuel element consisting of uranium nitride and uranium carbide in the form of discrete particles in a solid coherent matrix of a metal such as steel, beryllium, uranium, or zirconium and clad with a metal such as steel, aluminum, zirconium, or beryllium is described. The element is made by mixing powdered uranium nitride and uranium carbide with powdered matrix metal, then compacting and sintering the mixture. (AEC)

Kingston, W.E.; Kopelman, B.; Hausner, H.H.

1963-07-01T23:59:59.000Z

320

Solid-State Lighting: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Printable Version Share this resource Send a link to Solid-State Lighting: Events to someone by E-mail Share Solid-State Lighting: Events on Facebook Tweet about Solid-State...

Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Time Dependent Deformation of Metals at Room Temperature  

Science Conference Proceedings (OSTI)

Results have been compared to previous work on logarithmic and power law ... into a Solid State Coating Process for High Temperature and Marine Application.

322

NEUTRONIC REACTOR FUEL ELEMENT  

DOE Patents (OSTI)

A reactor fuel element of the capillary tube type is described. The element consists of a thin walled tube, sealed at both ends, and having an interior coatlng of a fissionable material, such as uranium enriched in U-235. The tube wall is gas tight and is constructed of titanium, zirconium, or molybdenum.

Kesselring, K.A.; Seybolt, A.U.

1958-12-01T23:59:59.000Z

323

Trace element emissions  

SciTech Connect

The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and (3) identify methods to control trace element emissions.

Benson, S.A.; Erickson, T.A.; Steadman, E.N.; Zygarlicke, C.J.; Hauserman, W.B.; Hassett, D.J.

1994-10-01T23:59:59.000Z

324

Creep Behavior of Glass/Ceramic Sealant and its Effect on Long-term Performance of Solid Oxide Fuel Cells  

DOE Green Energy (OSTI)

The creep behavior of glass or glass-ceramic sealant materials used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the creep of glass-ceramic sealants was experimentally examined, and a standard linear solid model was applied to capture the creep behavior of glass ceramic sealant materials developed for planar SOFCs at high temperatures. The parameters of this model were determined based on the creep test results. Furthermore, the creep model was incorporated into finite-element software programs SOFC-MP and Mentat-FC developed at Pacific Northwest National Laboratory for multi-physics simulation of SOFCs. The effect of creep of glass ceramic sealant materials on the long-term performance of SOFC stacks was investigated by studying the stability of the flow channels and the stress redistribution in the glass seal and on the various interfaces of the glass seal with other layers. Finite element analyses were performed to quantify the stresses in various parts. The stresses in glass seals were released because of creep behavior during operations.

Liu, Wenning N.; Sun, Xin; Koeppel, Brian J.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

2009-10-14T23:59:59.000Z

325

Solids Accumulation Scouting Studies  

Science Conference Proceedings (OSTI)

The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of the solids mounds. The mounds were scanned after tank supernatant was removed. 4. Core sampler to determine the stainless steel solids distribution within the solids mounds. This sampler was designed and built to remove small sections of the mounds to evaluate concentrations of the stainless steel solids at different special locations. 5. Computer driven positioner that placed the laser rangefinders and the core sampler in appropriate locations over solids mounds that accumulated on the bottom of a scaled staging tank where mixing is poor. These devices and techniques were effective to estimate the movement, location, and concentrations of the solids representing heavier particles and could perform well at a larger scale The experiment contained two campaigns with each comprised of ten cycles to fill and empty the scaled staging tank. The tank was filled without mixing, but emptied, while mixing, in seven batches; the first six were of equal volumes of 13.1 gallons each to represent the planned fullscale batches of 145,000 gallons, and the last, partial, batch of 6.9 gallons represented a full-scale partial batch of 76,000 gallons that will leave a 72-inch heel in the staging tank for the next cycle. The sole difference between the two campaigns was the energy to mix the scaled staging tank, i.e., the nozzle velocity and jet rotational speed of the two jet pumps. Campaign 1 used 22.9 ft/s, at 1.54 rpm based on past testing and Campaign 2 used 23.9 ft/s at 1.75 rpm, based on visual observation of minimum velocity that allowed fast settling solids, i.e., sand and stainless steel, to accumulate on the scaled tank bottom.

Duignan, M. R.; Steeper, T. J.; Steimke, J. L.

2012-09-26T23:59:59.000Z

326

SOLIDS ACCUMULATION SCOUTING STUDIES  

SciTech Connect

The objective of Solids Accumulation activities was to perform scaled testing to understand the behavior of remaining solids in a Double Shell Tank (DST), specifically AW-105, at Hanford during multiple fill, mix, and transfer operations. It is important to know if fissionable materials can concentrate when waste is transferred from staging tanks prior to feeding waste treatment plants. Specifically, there is a concern that large, dense particles containing plutonium could accumulate in poorly mixed regions of a blend tank heel for tanks that employ mixing jet pumps. At the request of the DOE Hanford Tank Operations Contractor, Washington River Protection Solutions, the Engineering Development Laboratory of the Savannah River National Laboratory performed a scouting study in a 1/22-scale model of a waste staging tank to investigate this concern and to develop measurement techniques that could be applied in a more extensive study at a larger scale. Simulated waste tank solids: Gibbsite, Zirconia, Sand, and Stainless Steel, with stainless steel particles representing the heavier particles, e.g., plutonium, and supernatant were charged to the test tank and rotating liquid jets were used to mix most of the solids while the simulant was pumped out. Subsequently, the volume and shape of the mounds of residual solids and the spatial concentration profiles for the surrogate for heavier particles were measured. Several techniques were developed and equipment designed to accomplish the measurements needed and they included: 1. Magnetic particle separator to remove simulant stainless steel solids. A device was designed and built to capture these solids, which represent the heavier solids during a waste transfer from a staging tank. 2. Photographic equipment to determine the volume of the solids mounds. The mounds were photographed as they were exposed at different tank waste levels to develop a composite of topographical areas. 3. Laser rangefinders to determine the volume of the solids mounds. The mounds were scanned after tank supernatant was removed. 4. Core sampler to determine the stainless steel solids distribution within the solids mounds. This sampler was designed and built to remove small sections of the mounds to evaluate concentrations of the stainless steel solids at different special locations. 5. Computer driven positioner that placed the laser rangefinders and the core sampler in appropriate locations over solids mounds that accumulated on the bottom of a scaled staging tank where mixing is poor. These devices and techniques were effective to estimate the movement, location, and concentrations of the solids representing heavier particles and could perform well at a larger scale The experiment contained two campaigns with each comprised of ten cycles to fill and empty the scaled staging tank. The tank was filled without mixing, but emptied, while mixing, in seven batches; the first six were of equal volumes of 13.1 gallons each to represent the planned fullscale batches of 145,000 gallons, and the last, partial, batch of 6.9 gallons represented a full-scale partial batch of 76,000 gallons that will leave a 72-inch heel in the staging tank for the next cycle. The sole difference between the two campaigns was the energy to mix the scaled staging tank, i.e., the nozzle velocity and jet rotational speed of the two jet pumps. Campaign 1 used 22.9 ft/s, at 1.54 rpm based on past testing and Campaign 2 used 23.9 ft/s at 1.75 rpm, based on visual observation of minimum velocity that allowed fast settling solids, i.e., sand and stainless steel, to accumulate on the scaled tank bottom.

Duignan, M.; Steeper, T.; Steimke, J.

2012-09-26T23:59:59.000Z

327

Solid Cold - F  

NLE Websites -- All DOE Office Websites (Extended Search)

F. Progress in science F. Progress in science Aside from what it tells us about the thermodynamics of solids, this analysis by Einstein illustrates some important things about the way scientific progress is made. For one, it serves as a typical example of how discoveries about one phenomenon often help us understand others that had no obvious relation to it earlier. In this case, newly discovered properties of light suggested significant facts about solids-and about whether or not solids were made of atoms. Einstein thus found another significant relation between thermodynamics and optics besides the ones already known earlier. Another point this work illustrates is that progress doesn't always require understanding everything at once. It turned out that solids do act like

328

Solid polymer electrolytes  

DOE Patents (OSTI)

This invention relates to Li ion (Li{sup +}) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF{sub 3}SO{sub 2}){sub 2}, LiAsF{sub 6}, and LiClO{sub 4}. 2 figs.

Abraham, K.M.; Alamgir, M.; Choe, H.S.

1995-12-12T23:59:59.000Z

329

Solid polymer electrolytes  

DOE Patents (OSTI)

This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

Abraham, Kuzhikalail M. (Needham, MA); Alamgir, Mohamed (Dedham, MA); Choe, Hyoun S. (Waltham, MA)

1995-01-01T23:59:59.000Z

330

Solid Cold - D  

Office of Scientific and Technical Information (OSTI)

Diamond (carbon) has atoms of low mass, and absorbs far less heat per degree temperature increase than many other materials, even at room temperature. This is in clear...

331

Solid State Division progress report, September 30, 1981  

DOE Green Energy (OSTI)

Progress made during the 19 months from March 1, 1980, through September 30, 1981, is reported in the following areas: theoretical solid state physics (surfaces, electronic and magnetic properties, particle-solid interactions, and laser annealing); surface and near-surface properties of solids (plasma materials interactions, ion-solid interactions, pulsed laser annealing, and semiconductor physics and photovoltaic conversion); defects in solids (radiation effects, fracture, and defects and impurities in insulating crystals); transport properties of solids (fast-ion conductors, superconductivity, and physical properties of insulating materials); neutron scattering (small-angle scattering, lattice dynamics, and magnetic properties); crystal growth and characterization (nuclear waste forms, ferroelectric mateirals, high-temperature materials, and special materials); and isotope research materials. Publications and papers are listed. (WHK)

Not Available

1982-04-01T23:59:59.000Z

332

NEUTRONIC REACTOR FUEL ELEMENT  

DOE Patents (OSTI)

A fuel element possessing good stability and heat conducting properties is described. The fuel element comprises an outer tube formed of material selected from the group consisting of stainhess steel, V, Ti. Mo. or Zr, a fuel tube concentrically fitting within the outer tube and containing an oxide of an isotope selected from the group consisting of U/sup 235/, U/sup 233/, and Pu/sup 239/, and a hollow, porous core concentrically fitting within the fuel tube and formed of an oxide of an element selected from the group consisting of Mg, Be, and Zr.

Shackleford, M.H.

1958-12-16T23:59:59.000Z

333

Thermodynamic modeling for organic solid precipitation  

SciTech Connect

A generalized predictive model which is based on thermodynamic principle for solid-liquid phase equilibrium has been developed for organic solid precipitation. The model takes into account the effects of temperature, composition, and activity coefficient on the solubility of wax and asphaltenes in organic solutions. The solid-liquid equilibrium K-value is expressed as a function of the heat of melting, melting point temperature, solubility parameter, and the molar volume of each component in the solution. All these parameters have been correlated with molecular weight. Thus, the model can be applied to crude oil systems. The model has been tested with experimental data for wax formation and asphaltene precipitation. The predicted wax appearance temperature is very close to the measured temperature. The model not only can match the measured asphaltene solubility data but also can be used to predict the solubility of asphaltene in organic solvents or crude oils. The model assumes that asphaltenes are dissolved in oil in a true liquid state, not in colloidal suspension, and the precipitation-dissolution process is reversible by changing thermodynamic conditions. The model is thermodynamically consistent and has no ambiguous assumptions.

Chung, T.H.

1992-12-01T23:59:59.000Z

334

Compound and Elemental Analysis | Open Energy Information  

Open Energy Info (EERE)

Compound and Elemental Analysis Compound and Elemental Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Compound and Elemental Analysis Details Activities (104) Areas (69) Regions (6) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Results can aid in the determination of fluid source regions and circulation pathways. Thermal: Certain elements exhibit high spatial correlation with high-temperature geothermal systems. Cost Information Low-End Estimate (USD): 15.001,500 centUSD 0.015 kUSD 1.5e-5 MUSD 1.5e-8 TUSD / compound Median Estimate (USD): 30.003,000 centUSD

335

Discrete-element modeling of particulate aerosol flows  

Science Conference Proceedings (OSTI)

A multiple-time step computational approach is presented for efficient discrete-element modeling of aerosol flows containing adhesive solid particles. Adhesive aerosol particulates are found in numerous dust and smoke contamination problems, including ... Keywords: Aerosols, Aggregation, Particle adhesion, Particulate flow

J. S. Marshall

2009-03-01T23:59:59.000Z

336

Element Word Search  

NLE Websites -- All DOE Office Websites (Extended Search)

or, if you wish, you can download your very own copy of the Table of Elements. Download this Activity Lab Page Puzzle Puzzle Sample AnswersAnswer Key Answer Key Answer Key...

337

Thermal and electrical stabilities of solid nitrogen (SN2) cooled YBCO coated conductors for HTS magnet applications  

E-Print Network (OSTI)

Recently, a cooling system using a solid cryogen such as solid nitrogen (SN2), was introduced for high temperature superconducting (HTS) magnet applications. In order to apply the SN2 cooling system successfully to HTS ...

Song, J. B.

338

Architectures for individual and stacked micro single chamber solid oxide fuel cells  

E-Print Network (OSTI)

Solid oxide fuel cells (SOFCs) are electrochemical conversion devices that convert various fuel sources directly into electrical energy at temperatures ranging from 600C to 1000C. These high temperatures could potentially ...

Crumlin, Ethan J

2007-01-01T23:59:59.000Z

339

Solid state engine using nitinol memory alloy  

DOE Patents (OSTI)

A device for converting heat energy to mechanical energy includes a reservoir of a hot fluid and a rotor assembly mounted thereabove so a portion of it dips into the hot fluid. The rotor assembly may include a shaft having four spokes extending radially outwardly therefrom at right angles to each other, a floating ring and four flexible elements composed of a thermal memory material having a critical temperature between the temperature of the hot fluid and that of the ambient atmosphere extending between the ends of the spokes and the floating ring. Preferably, the flexible elements are attached to the floating ring through curved leaf springs. Energetic shape recovery of the flexible elements in the hot fluid causes the rotor assembly to rotate.

Golestaneh, Ahmad A. (Bolingbrook, IL)

1981-01-01T23:59:59.000Z

340

Solid state engine using nitinol memory alloy  

DOE Patents (OSTI)

A device for converting heat energy to mechanical energy includes a reservoir of a hot fluid and a rotor assembly mounted thereabove so a portion of it dips into the hot fluid. The rotor assembly may include a shaft having four spokes extending radially outwardly therefrom at right angles to each other, a floating ring and four flexible elements composed of a thermal memory material having a critical temperature between the temperature of the hot fluid and that of the ambient atmosphere extending between the ends of the spokes and the floating ring. Preferably, the flexible elements are attached to the floating ring through curved leaf springs. Energetic shape recovery of the flexible elements in the hot fluid causes the rotor assembly to rotate.

Golestaneh, A.A.

1980-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Harsh-Environment Solid-State Gamma Detector for Down-hole Gas and Oil Exploration  

SciTech Connect

The goal of this program was to develop a revolutionary solid-state gamma-ray detector suitable for use in down-hole gas and oil exploration. This advanced detector would employ wide-bandgap semiconductor technology to extend the gamma sensor's temperature capability up to 200 C as well as extended reliability, which significantly exceeds current designs based on photomultiplier tubes. In Phase II, project tasks were focused on optimization of the final APD design, growing and characterizing the full scintillator crystals of the selected composition, arranging the APD device packaging, developing the needed optical coupling between scintillator and APD, and characterizing the combined elements as a full detector system preparing for commercialization. What follows is a summary report from the second 18-month phase of this program.

Peter Sandvik; Stanislav Soloviev; Emad Andarawis; Ho-Young Cha; Jim Rose; Kevin Durocher; Robert Lyons; Bob Pieciuk; Jim Williams; David O'Connor

2007-08-10T23:59:59.000Z

342

Defining and testing a granular continuum element  

Science Conference Proceedings (OSTI)

Continuum mechanics relies on the fundamental notion of amesoscopic volume "element" in which properties averaged over discreteparticles obey deterministic relationships. Recent work on granularmaterials suggests a continuum law may be inapplicable, revealinginhomogeneities at the particle level, such as force chains and slow cagebreaking. Here, we analyze large-scale Discrete-Element Method (DEM)simulations of different granular flows and show that a "granularelement" can indeed be defined at the scale of dynamical correlations,roughly three to five particle diameters. Its rheology is rather subtle,combining liquid-like dependence on deformation rate and solid-likedependence on strain. Our results confirm some aspects of classicalplasticity theory (e.g., coaxiality of stress and deformation rate),while contradicting others (i.e., incipient yield), and can guide thedevelopment of more realistic continuum models.

Rycroft, Chris H.; Kamrin, Ken; Bazant, Martin Z.

2007-12-03T23:59:59.000Z

343

Generator configuration for solid oxide fuel cells  

DOE Patents (OSTI)

Disclosed are improvements in a solid oxide fuel cell generator 1 having a multiplicity of electrically connected solid oxide fuel cells 2, where a fuel gas is passed over one side of said cells and an oxygen-containing gas is passed over the other side of said cells resulting in the generation of heat and electricity. The improvements comprise arranging the cells in the configuration of a circle, a spiral, or folded rows within a cylindrical generator, and modifying the flow rate, oxygen concentration, and/or temperature of the oxygen-containing gases that flow to those cells that are at the periphery of the generator relative to those cells that are at the center of the generator. In these ways, a more uniform temperature is obtained throughout the generator.

Reichner, Philip (Plum Boro, PA)

1989-01-01T23:59:59.000Z

344

Error estimation for the HHT method in non-linear solid dynamics  

Science Conference Proceedings (OSTI)

This work presents a new error estimator that can be used in both linear and non-linear solid and structural dynamic problems. Specifically, this estimator is developed for the Hilber-Hughes-Taylor (HHT) method and it takes into account the error made ... Keywords: Error estimation, Finite elements, Solid dynamics, Structural dynamics, Time integration

Luis M. Lacoma; Ignacio Romero

2007-02-01T23:59:59.000Z

345

Non-uniform isentropic gas flow analysis of explosion in fractured solid media  

Science Conference Proceedings (OSTI)

This paper presents a new formulation of non-uniform isentropic gas flow during an explosion in solid media. The present form takes into account additional effects of variations in geometries of voids and crack openings. Variations of mass, density, ... Keywords: Blast, Combined finite/discrete element method, Explosion, Gas-solid interaction

S. Mohammadi; A. Pooladi

2007-04-01T23:59:59.000Z

346

Phosphorus-31 MRI of hard and soft solids using quadratic echo line-narrowing  

E-Print Network (OSTI)

Phosphorus-31 MRI of hard and soft solids using quadratic echo line-narrowing Merideth A. Freya gradients in sync with this line-narrowing sequence offers a fresh approach to carry out MRI of hard). Extending the reach of MRI to the study of other elements, and to hard or soft solids, opens new frontiers

Haller, Gary L.

347

Solid oxide fuel cell with single material for electrodes and interconnect  

DOE Patents (OSTI)

A solid oxide fuel cell is described having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed there between, and the anode, cathode and interconnect elements are comprised of substantially one material. 9 figs.

McPheeters, C.C.; Nelson, P.A.; Dees, D.W.

1994-07-19T23:59:59.000Z

348

Intermediate temperature electrolytes for SOFC  

DOE Green Energy (OSTI)

The objective of this work is to identify a new set of materials that would allow the operation of the solid oxide fuel cell in the 600--800{sup degrees}C temperature range. The approach that is being used is to start with a systematic evaluation of new electrolyte materials and then to develop compatible electrode and interconnect materials.

Bloom, I.; Krumpelt, M.; Hash, M.C.; Zebrowski, J.P.; Zurawski, D.

1992-01-01T23:59:59.000Z

349

Intermediate temperature electrolytes for SOFC  

DOE Green Energy (OSTI)

The objective of this work is to identify a new set of materials that would allow the operation of the solid oxide fuel cell in the 600--800{sup degrees}C temperature range. The approach that is being used is to start with a systematic evaluation of new electrolyte materials and then to develop compatible electrode and interconnect materials.

Bloom, I.; Krumpelt, M.; Hash, M.C.; Zebrowski, J.P.; Zurawski, D.

1992-09-01T23:59:59.000Z

350

Solid handling valve  

DOE Patents (OSTI)

The present invention is directed to a solids handling valve for use in combination with lock hoppers utilized for conveying pulverized coal to a coal gasifier. The valve comprises a fluid-actuated flow control piston disposed within a housing and provided with a tapered primary seal having a recessed seat on the housing and a radially expandable fluid-actuated secondary seal. The valve seals are highly resistive to corrosion, erosion and abrasion by the solids, liquids, and gases associated with the gasification process so as to minimize valve failure.

Williams, William R. (Morgantown, WV)

1979-01-01T23:59:59.000Z

351

SOLID WASTE MANAGEMENT PLAN  

E-Print Network (OSTI)

ACKNOWLEDGMENTS The Chelan County Public Works Department would like to thank the following organizations and individuals for their assistance in the development of this plan: ? Chelan Countys Solid Waste Council members, past and present, and the municipalities they represent. ? Chelan Countys Solid Waste Advisory Committee members, past and present, and the agencies and businesses they represented. ? the ChelanDouglas Health District staff. ? Washington Department of Ecology staff. Chelan County residents and businesses also contributed to this document through comments provided during public meetings and through various other channels. The Board of County Commissioners and the Public Works Department gratefully acknowledge this input by the

unknown authors

2007-01-01T23:59:59.000Z

352

Thin Film Solid Oxide Fuel Cells  

Science Conference Proceedings (OSTI)

A novel solid oxide fuel cell (SOFC) design that can be fabricated entirely using low-temperature, thin-film processing is described. Potential advantages of the cell are reduced materials costs and improved fuel-cell characteristics. The critical design feature is the use of thin (approximately equal to 50 nanometers), catalytically-active oxide layers on a < 10 micrometer thick yttria-stabilized zirconia (YSZ) supported electrolyte to minimize reaction overpotentials and ohmic losses. Doped ceria at th...

1995-03-29T23:59:59.000Z

353

Solid-solid collapse transition in a two dimensional model molecular system  

E-Print Network (OSTI)

Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte Carlo (MC) simulations to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB) which for a specific set of parameters sustains three solid phases: honeycomb, oblique and triangular. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by heating. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common believe and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as linear strip followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions which enables the dominance of stabilizing energy over the destabilizing surface energy. The nuclei of stable oblique phase are wetted by intermediate order particles which minimizes the surface free energy. We observe different pathways for pressure and temperature induced transitions.

Rakesh S. Singh; Biman Bagchi

2013-04-11T23:59:59.000Z

354

Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Solid Waste Management 0: Solid Waste Management Facilities (New York) Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Multi-Family Residential Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction, and the regulations provide details about permitting, construction, registration, and operation requirements. The regulations contain specific guidance for land

355

Solid electrolytes strengthened by metal dispersions  

DOE Patents (OSTI)

An improvement in solid electrolytes of advanced secondary batteries of the sodium-sulfur, sodium-halogen, and like combinations is achieved by providing said battery with a cermet electrolyte containing a metal dispersion ranging from 0.1 to 10.0 vol. % of a substantially nonreactive metal selected from the group consisting essentially of Pt, Cr, Fe, Co, Ni, Nb, their alloys, and their physical mixtures in the elemental or uncombined state, the remainder of said cermet being an ion-conductive ceramic material.

Lauf, R.J.; Morgan, C.S.

1981-10-05T23:59:59.000Z

356

Compliant high temperature seals for dissimilar materials  

DOE Patents (OSTI)

A high temperature, gas-tight seal is formed by utilizing one or more compliant metallic toroidal ring sealing elements, where the applied pressure serves to activate the seal, thus improving the quality of the seal. The compliant nature of the sealing element compensates for differences in thermal expansion between the materials to be sealed, and is particularly useful in sealing a metallic member and a ceramic tube art elevated temperatures. The performance of the seal may be improved by coating the sealing element with a soft or flowable coating such as silver or gold and/or by backing the sealing element with a bed of fine powder. The material of the sealing element is chosen such that the element responds to stress elastically, even at elevated temperatures, permitting the seal to operate through multiple thermal cycles.

Rynders, Steven Walton (Fogelsville, PA); Minford, Eric (Laurys Station, PA); Tressler, Richard Ernest (Boalsburg, PA); Taylor, Dale M. (Salt Lake City, UT)

2001-01-01T23:59:59.000Z

357

Sealants for Solid Oxide Fuel Cells  

DOE Green Energy (OSTI)

Basic requirements for a sealant are good bonding to the materials of interest, chemical stability in the operating environment, and low gas permeability. For high-temperature operation as in Solid Oxide Fuel Cells (SOFCs), the sealant must also have a thermal expansion which is reasonably close to that of the other materials involved and must have some compliance, or softness, to allow for some mismatch between the components to be joined. In this paper, we discuss a family of glass-ceramic materials with mechanical, chemical, and electrical properties that are suitable for these demanding high-temperature applications.

Kueper, T.W.; Bloom, I.D.; Krumpelt, M.

1996-02-01T23:59:59.000Z

358

Solid composite electrolytes for lithium batteries  

DOE Patents (OSTI)

Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a polymer-ceramic composite electrolyte containing poly(ethylene oxide), lithium tetrafluoroborate and titanium dioxide is provided in the form of an annealed film having a room temperature conductivity of from 10.sup.-5 S cm.sup.-1 to 10.sup.-3 S cm.sup.-1 and an activation energy of about 0.5 eV.

Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

2001-01-01T23:59:59.000Z

359

Elemental sulfur recovery process  

DOE Patents (OSTI)

An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

Flytzani-Stephanopoulos, M.; Zhicheng Hu.

1993-09-07T23:59:59.000Z

360

Computing Heavy Elements  

E-Print Network (OSTI)

Reliable calculations of the structure of heavy elements are crucial to address fundamental science questions such as the origin of the elements in the universe. Applications relevant for energy production, medicine, or national security also rely on theoretical predictions of basic properties of atomic nuclei. Heavy elements are best described within the nuclear density functional theory (DFT) and its various extensions. While relatively mature, DFT has never been implemented in its full power, as it relies on a very large number (~ 10^9-10^12) of expensive calculations (~ day). The advent of leadership-class computers, as well as dedicated large-scale collaborative efforts such as the SciDAC 2 UNEDF project, have dramatically changed the field. This article gives an overview of the various computational challenges related to the nuclear DFT, as well as some of the recent achievements.

Schunck, N; Kortelainen, M; McDonnell, J; Mor, J; Nazarewicz, W; Pei, J; Sarich, J; Sheikh, J; Staszczak, A; Stoitsov, M; Wild, S M

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Computing Heavy Elements  

E-Print Network (OSTI)

Reliable calculations of the structure of heavy elements are crucial to address fundamental science questions such as the origin of the elements in the universe. Applications relevant for energy production, medicine, or national security also rely on theoretical predictions of basic properties of atomic nuclei. Heavy elements are best described within the nuclear density functional theory (DFT) and its various extensions. While relatively mature, DFT has never been implemented in its full power, as it relies on a very large number (~ 10^9-10^12) of expensive calculations (~ day). The advent of leadership-class computers, as well as dedicated large-scale collaborative efforts such as the SciDAC 2 UNEDF project, have dramatically changed the field. This article gives an overview of the various computational challenges related to the nuclear DFT, as well as some of the recent achievements.

N. Schunck; A. Baran; M. Kortelainen; J. McDonnell; J. Mor; W. Nazarewicz; J. Pei; J. Sarich; J. Sheikh; A. Staszczak; M. Stoitsov; S. M. Wild

2011-07-25T23:59:59.000Z

362

CONSTRUCTION OF NUCLEAR FUEL ELEMENTS  

DOE Patents (OSTI)

>A rib arrangement and an end construction for nuclearfuel elements laid end to end in a coolant tube are described. The rib arrangement is such that each fuel element, when separated from other fuel elements, fits loosely in the coolant tube and so can easily be inserted or withdrawn from the tube. The end construction of the fuel elements is such that the fuel elements when assembled end to end are keyed against relative rotation, and the ribs of each fuel element cooperate with the ribs of the adjacent fuel elements to give the assembled fuel elements a tight fit with the coolant tube. (AEC)

Weems, S.J.

1963-09-24T23:59:59.000Z

363

Solid polymer electrolyte compositions  

DOE Patents (OSTI)

An electrolyte composition is featured that includes a solid, ionically conductive polymer, organically modified oxide particles that include organic groups covalently bonded to the oxide particles, and an alkali metal salt. The electrolyte composition is free of lithiated zeolite. The invention also features cells that incorporate the electrolyte composition.

Garbe, James E. (Stillwater, MN); Atanasoski, Radoslav (Edina, MN); Hamrock, Steven J. (St. Paul, MN); Le, Dinh Ba (St. Paul, MN)

2001-01-01T23:59:59.000Z

364

Application of high temperature superconductors to high-gradient magnetic separation  

Science Conference Proceedings (OSTI)

High Gradient Magnetic Separation (HGMS) is a powerful technique which can be used to separate widely dispersed contaminants from a host material, This technology can separate magnetic solids from other solids, liquids or gases. As the name implies HGMS uses large magnetic field gradients to separate ferromagnetic and paramagnetic particles. HGMS separators usually consist of a high-field solenoid magnet, the bore of which contains a fine-structured, ferromagnetic matrix material. The matrix material locally distorts the magnetic field and creates large field gradients in the vicinity of the matrix elements. These elements then become trapping sites for magnetic particles and are the basis for the magnetic separation. In this paper we discuss the design and construction of a prototype HGMS unit using a magnet made with high temperature superconductors (HTS). The prototype consists of an outer vacuum vessel which contains the HTS solenoid magnet The magnet is surrounded by a thermal radiation shield and multilayer insulation (MLI) blankets. The magnet, thermal shield and current leads all operate in a vacuum and are cooled by a cryocooler. High temperature superconducting current leads are used to reduce the heat leak from the ambient environment to the HTS magnet.

Daugherty, M.A.; Prenger, F.C.; Hill, D.D.; Daney, D.E.; Worl, L.W.; Schake, A.R.; Padilla, D.D.

1994-06-01T23:59:59.000Z

365

FUEL ELEMENT CONSTRUCTION  

DOE Patents (OSTI)

A method of preventing diffusible and volatile fission products from diffusing through a fuel element container and contaminating reactor coolant is described. More specifically, relatively volatile and diffusible fission products either are adsorbed by or react with magnesium fluoride or difluoride to form stable, less volatile, less diffusible forms. The magnesium fluoride or difluoride is disposed anywhere inwardly from the outer surface of the fuel element container in order to be contacted by the fission products before they reach and contaminate the reactor coolant. (AEC)

Simnad, M.T.

1961-08-15T23:59:59.000Z

366

DOE Hydrogen Analysis Repository: High Temperature Electrolysis (HTE)  

NLE Websites -- All DOE Office Websites (Extended Search)

High Temperature Electrolysis (HTE) High Temperature Electrolysis (HTE) Project Summary Full Title: High Temperature Electrolysis (HTE) Project ID: 159 Principal Investigator: Steve Herring Brief Description: A three-dimensional computational fluid dynamics (CFD) model was created to model high-temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). A solid-oxide fuel cell model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. Keywords: Solid oxide fuel cell; solid oxide elctrolysis cell; nuclear; model Purpose Assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Performer Principal Investigator: Steve Herring

367

Thermionic Converter Temperature Controller  

DOE Patents (OSTI)

A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

Shaner,B. J.; Wolf, Joseph H.; Johnson, Robert G. R.

1999-08-23T23:59:59.000Z

368

Thermionic converter temperature controller  

DOE Patents (OSTI)

A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

Shaner, Benjamin J. (McMurray, PA); Wolf, Joseph H. (Pittsburgh, PA); Johnson, Robert G. R. (Trafford, PA)

2001-04-24T23:59:59.000Z

369

Radiance Temperature  

Science Conference Proceedings (OSTI)

... Temperature using Detectors Calibrated for Absolute Spectral Power Response, HW ... A Third Generation Water Bath Based Blackbody Source, JB ...

2013-06-27T23:59:59.000Z

370

A coupled gas-solid interaction model for FE/DE simulation of explosion  

Science Conference Proceedings (OSTI)

Blasting is a complicated phenomenon usually assumed to be too complex for deterministic analysis, and many engineers have preferred empirical approaches. In this paper, however, a numerical simulation based on the discrete element methodology is presented ... Keywords: combined finite/discrete element method, explosion, gas flow, gas solid interaction, rock blasting

S. Mohammadi; A. Bebamzadeh

2005-07-01T23:59:59.000Z

371

A coupled gas-solid interaction model for FE/DE simulation of explosion  

Science Conference Proceedings (OSTI)

Blasting is a complicated phenomenon usually assumed to be too complex for deterministic analysis, and many engineers have preferred empirical approaches. In this paper, however, a numerical simulation based on the discrete element methodology is presented ... Keywords: Combined finite/discrete element method, Explosion, Gas flow, Gas solid interaction, Rock blasting

S. Mohammadi; A. Bebamzadeh

2005-07-01T23:59:59.000Z

372

Photovoltaic radiation detector element  

DOE Patents (OSTI)

A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein the edge of which closely approaches but is spaced from the current collector strips.

Agouridis, Dimitrios C. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

373

TABLE OF RADIOACTIVE ELEMENTS.  

SciTech Connect

For those chemical elements which have no stable nuclides with a terrestrial isotopic composition, the data on radioactive half-lives and relative atomic masses for the nuclides of interest and importance have been evaluated and the recommended values and uncertainties are listed.

HOLDEN,N.E.

2001-06-29T23:59:59.000Z

374

NEUTRONIC REACTOR FUEL ELEMENT  

DOE Patents (OSTI)

A nuclear fuel element comprising a plurality of nuclear fuel bearing strips is presented. The strips are folded along their longitudinal axes to an angle of about 60 deg and are secured at each end by ferrule to form an elongated assembly suitable for occupying a cylindrical coolant channel.

Gurinsky, D.H.; Powell, R.W.; Fox, M.

1959-11-24T23:59:59.000Z

375

Photovoltaic radiation detector element  

DOE Patents (OSTI)

A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips.

Agouridis, D.C.

1980-12-17T23:59:59.000Z

376

Heating element support clip  

DOE Patents (OSTI)

An apparatus for supporting a heating element in a channel formed in a heater base is disclosed. A preferred embodiment includes a substantially U-shaped tantalum member. The U-shape is characterized by two substantially parallel portions of tantalum that each have an end connected to opposite ends of a base portion of tantalum. The parallel portions are each substantially perpendicular to the base portion and spaced apart a distance not larger than a width of the channel and not smaller than a width of a graphite heating element. The parallel portions each have a hole therein, and the centers of the holes define an axis that is substantially parallel to the base portion. An aluminum oxide ceramic retaining pin extends through the holes in the parallel portions and into a hole in a wall of the channel to retain the U-shaped member in the channel and to support the graphite heating element. The graphite heating element is confined by the parallel portions of tantalum, the base portion of tantalum, and the retaining pin. A tantalum tube surrounds the retaining pin between the parallel portions of tantalum.

Sawyer, William C. (Salida, CA)

1995-01-01T23:59:59.000Z

377

Chemical digestion of low level nuclear solid waste material  

DOE Patents (OSTI)

A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230.degree.-300.degree.C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue.

Cooley, Carl R. (Richland, WA); Lerch, Ronald E. (Richland, WA)

1976-01-01T23:59:59.000Z

378

Modules for estimating solid waste from fossil-fuel technologies  

SciTech Connect

Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solid wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.

Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

1980-10-01T23:59:59.000Z

379

Solid-State Lighting: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Contacts Printable Version Share this resource Send a link to Solid-State Lighting: Contacts to someone by E-mail Share Solid-State Lighting: Contacts on Facebook Tweet about Solid-State Lighting: Contacts on Twitter Bookmark Solid-State Lighting: Contacts on Google Bookmark Solid-State Lighting: Contacts on Delicious Rank Solid-State Lighting: Contacts on Digg Find More places to share Solid-State Lighting: Contacts on AddThis.com... Contacts Web site and program contacts are provided below. Website Contact Send us your comments, report problems, and/or ask questions about information on this site. Program Contacts Contact information for the Solid-State Lighting Program. Contacts | Web Site Policies | U.S. Department of Energy | USA.gov Content Last Updated: 02/14

380

Solid Waste Management Program (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

The Solid Waste Management Program in the Department of Natural Resources regulates the management of solid waste in the state of Missouri. A permit is required prior to the construction or...

Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Solid Waste Act (New Mexico)  

Energy.gov (U.S. Department of Energy (DOE))

The main purpose of the Solid Waste Act is to authorize and direct the establishment of a comprehensive solid waste management program. The act states details about specific waste management...

382

Solid Waste Disposal Act (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The Texas Commission on Environmental Quality is responsible for the regulation and management of municipal solid waste and hazardous waste. A fee is applied to all solid waste disposed in the...

383

Materials for solid state lighting  

E-Print Network (OSTI)

in the Proceedings. Materials for Solid State Lighting S.G.Johnson Lighting Research Group Building TechnologiesMaterials for Solid State Lighting S.G. Johnson 1 and J. A.

Johnson, S.G.; Simmons, J.A.

2002-01-01T23:59:59.000Z

384

Solid-State Lighting: Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Program Printable Version Share this resource Send a link to Solid-State Lighting: Partnerships to someone by E-mail Share Solid-State Lighting: Partnerships on Facebook...

385

Delaware Solid Waste Authority (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

386

Thermodynamic analysis of interactions between Ni-based solid oxide fuel cells (SOFC) anodes and trace species in a survey of coal syngas  

Science Conference Proceedings (OSTI)

A thermodynamic analysis was conducted to characterize the effects of trace contaminants in syngas derived from coal gasification on solid oxide fuel cell (SOFC) anode material. The effluents from 15 different gasification facilities were considered to assess the impact of fuel composition on anode susceptibility to contamination. For each syngas case, the study considers the magnitude of contaminant exposure resulting from operation of a warm gas cleanup unit at two different temperatures and operation of a nickel-based SOFC at three different temperatures. Contaminant elements arsenic (As), phosphorous (P), and antimony (Sb) are predicted to be present in warm gas cleanup effluent and will interact with the nickel (Ni) components of a SOFC anode. Phosphorous is the trace element found in the largest concentration of the three contaminants and is potentially the most detrimental. Poisoning was found to depend on the composition of the syngas as well as system operating conditions. Results for all trace elements tended to show invariance with cleanup operating temperature, but results were sensitive to syngas bulk composition. Synthesis gas with high steam content tended to resist poisoning.

Andrew Martinez; Kirk Gerdes; Randall Gemmen; James Postona

2010-03-20T23:59:59.000Z

387

Solid state electrochemical current source  

DOE Patents (OSTI)

A cathode and a solid state electrochemical cell comprising said cathode, a solid anode and solid fluoride ion conducting electrolyte. The cathode comprises a metal oxide and a compound fluoride containing at least two metals with different valences. Representative compound fluorides include solid solutions of bismuth fluoride and potassium fluoride; and lead fluoride and potassium fluoride. Representative metal oxides include copper oxide, lead oxide, manganese oxide, vanadium oxide and silver oxide.

Potanin, Alexander Arkadyevich (Sarov, RU); Vedeneev, Nikolai Ivanovich (Sarov, RU)

2002-04-30T23:59:59.000Z

388

Nonhazardous Solid Waste Management Regulations & Criteria (Mississippi)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of the Nonhazardous Solid Waste Management Regulations & Criteria is to establish a minimum State Criteria under the Mississippi Solid Waste Law for all solid waste management...

389

Solid-State Lighting: OLED Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: OLED Basics on Twitter Bookmark Solid-State Lighting: OLED Basics on Google Bookmark Solid-State Lighting: OLED Basics on Delicious Rank Solid-State Lighting:...

390

Solid-State Lighting: Hotel Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Hotel Information on Twitter Bookmark Solid-State Lighting: Hotel Information on Google Bookmark Solid-State Lighting: Hotel Information on Delicious Rank Solid-State...

391

Solid-State Lighting: Past Conferences  

NLE Websites -- All DOE Office Websites (Extended Search)

Past Conferences on Twitter Bookmark Solid-State Lighting: Past Conferences on Google Bookmark Solid-State Lighting: Past Conferences on Delicious Rank Solid-State...

392

Solid-State Lighting: Related Articles  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Articles on Twitter Bookmark Solid-State Lighting: Related Articles on Google Bookmark Solid-State Lighting: Related Articles on Delicious Rank Solid-State...

393

Solid-State Lighting: Research Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Highlights on Twitter Bookmark Solid-State Lighting: Research Highlights on Google Bookmark Solid-State Lighting: Research Highlights on Delicious Rank Solid-State...

394

journal Solid State Ionics  

NLE Websites -- All DOE Office Websites (Extended Search)

Structural and transport properties of Nafion in hydrobromic Structural and transport properties of Nafion in hydrobromic acid solutions journal Solid State Ionics year month abstract p Proton exchange membranes are key solid state ion carriers in many relevant energy technologies including flow batteries fuel cells and solar fuel generators In many of these systems the membranes are in contact with electrolyte solutions In this paper we focus on the impact of different HBr a flow battery and exemplary acid electrolyte external concentrations on the conductivity of Nafion a perfluorosulfonic acid membrane that is commonly used in many energy related applications The peak and then decrease in conductivity is correlated with measured changes in the water and HBr content within the membrane In addition small angle x ray scattering is used to probe the nanostructure to

395

Municipal Solid Waste:  

U.S. Energy Information Administration (EIA) Indexed Site

Methodology for Allocating Municipal Solid Waste Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy May 2007 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy of the Department of Energy or any other organization. Contact This report was prepared by staff of the Renewable Information Team, Coal, Nuclear, and Renewables Division, Office of Coal, Nuclear, Electric and Alternate Fuels.

396

Solid Radwaste Radionuclide Measurements  

Science Conference Proceedings (OSTI)

Methods employed at U.S. nuclear power plants to assay low level solid radwaste were reviewed to identify those aspects of the assay process that have substantial improvement potential and to develop recommendations on programs to develop more effective methods. Discussions were held on practices at 41 nuclear stations and in-depth reviews were performed at 14 sites. Recommendations for future efforts are provided, particularly with reference to demonstrating adherence to proposed regulations.

1982-11-01T23:59:59.000Z

397

Solid polymer MEMS-based fuel cells  

DOE Patents (OSTI)

A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

Jankowski, Alan F. (Livermore, CA); Morse, Jeffrey D. (Pleasant Hill, CA)

2008-04-22T23:59:59.000Z

398

Solar solids reactor  

DOE Patents (OSTI)

A solar powered kiln is provided, that is of relatively simple design and which efficiently uses solar energy. The kiln or solids reactor includes a stationary chamber with a rearward end which receives solid material to be reacted and a forward end through which reacted material is disposed of, and a screw conveyor extending along the bottom of the chamber for slowly advancing the material between the chamber ends. Concentrated solar energy is directed to an aperture at the forward end of the chamber to heat the solid material moving along the bottom of the chamber. The solar energy can be reflected from a mirror facing at an upward incline, through the aperture and against a heat-absorbing material near the top of the chamber, which moves towards the rear of the chamber to distribute heat throughout the chamber. Pumps at the forward and rearward ends of the chamber pump heated sweep gas through the length of the chamber, while minimizing the flow of gas through an open aperture through which concentrated sunlight is received.

Yudow, Bernard D. (Chicago, IL)

1987-01-01T23:59:59.000Z

399

A Method for Rescaling Humidity Sensors at Temperatures Well below Freezing  

Science Conference Proceedings (OSTI)

A method for extending the calibrated temperature rang of a solid-state capacitive humidity sensor is presented. This technique is applicable to relative humidity instruments that are based around solid-state sensors.

P. S. Anderson

1994-10-01T23:59:59.000Z

400

Synthesis and Characterization of Magnesium-Silicon and Magnesium-Tin Solid Solutions for Thermoelectric Applications  

E-Print Network (OSTI)

The environmentally friendly n-type Mg2(Si, Sn) thermoelectric solid solutions have a strong potential of commercial utilization in thermoelectric (TE) energy conversion due to their availability, low density (~3.02 g/cm3), and high stability at middle temperature range (400-600 ?C) that are typically observed from waste heat dissipating systems. The bulk materials were prepared from element powders via slow cooking under vacuum condition and current-assisted hot-press sintering. Temperature vs time curves have been researched in this thesis for fully reacted magnesium-silicide & magnesium-stannide green ingots with doping materials i.e. antimony, bismuth by different doping ratios. These ingots were ground by a high energy ball miller, uniaxial cold pressed into half inch pallets and then sintered by Direct Current-assisted hot pressing. Different synthesis conditions such as ball milling, sintering time, pressure, have been compared by SEM images and XRD tests analysis to figure out optimized process parameters. Several samples thermal conductivities (?) were plotted as a function of temperature to study different synthesis strategies and doping materials effects on phonon scattering inside bulk thermoelectric materials.

Hu, Fang

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Element Crossword Puzzles  

NLE Websites -- All DOE Office Websites (Extended Search)

Crossword Puzzles Crossword Puzzles Welcome to It's Elemental - Element Crossword Puzzles! Use the clues provided to solve each crossword puzzle. To place letters on the puzzle, first select the clue you are answering from the pull-down menu and then enter your answer in the text box. Press the 'return' key on your keyboard when you are done. Correct letters will be green while incorrect letters will be red. Good luck and have fun! If you are reading this, your browser is NOT running JavaScript. JavaScript MUST be enabled for this section of our site to work. Once you have turned JavaScript on, reload this page and this warning will go away. Puzzle 1 - It's a Gas! Puzzle 2 - Easy Symbols Puzzle 3 - Strange Symbols Puzzle 4 - Known to the Ancients Puzzle 5 - The Alkali Metals

402

Physical Model Explaining the Periodic Pattern of the Chemical Elements  

E-Print Network (OSTI)

The fundamental organizing principle resulting in the periodic table is the nuclear charge. Arranging the chemical elements in an increasing atomic number order, a symmetry pattern known as the Periodic Table is detectable. The correlation between nuclear charge and the Periodic System of the Chemical Elements (PSCE) indicates that the symmetry emerges from the nucleus. Nuclear symmetry can only be developed if the positions of the nucleons are preserved. Thus the phase of the nucleus must be solid where the positions of the nucleons are preserved in a lattice. A lattice model, representing the protons and the neutrons by equal spheres and arranging them alternately in a face centered cubic structure forming a double tetrahedron, is able to reproduce all of the properties of the nucleus including the quantum numbers and the periodicity of the elements. Using this nuclear structure model, an attempt is made here to give a physical explanation for the periodicity of the chemical elements.

Jozsef Garai

2011-01-24T23:59:59.000Z

403

Method and apparatus for acoustic plate mode liquid-solid phase transition detection  

DOE Patents (OSTI)

A method and apparatus for sensing a liquid-solid phase transition event is provided which comprises an acoustic plate mode detecting element placed in contact with a liquid or solid material which generates a high-frequency acoustic wave that is attenuated to an extent based on the physical state of the material in contact with the detecting element. The attenuation caused by the material in contact with the acoustic plate mode detecting element is used to determine the physical state of the material being detected. The method and device are particularly suited for detecting conditions such as the icing and deicing of wings of an aircraft. In another aspect of the present invention, a method is provided wherein the adhesion of a solid material to the detecting element can be measured using the apparatus of the invention. 3 figs.

Blair, D.S.; Frye, G.C.; Hughes, R.C.; Martin, S.J.; Ricco, A.J.

1990-12-31T23:59:59.000Z

404

Method and apparatus for acoustic plate mode liquid-solid phase transition detection  

DOE Patents (OSTI)

A method and apparatus for sensing a liquid-solid phase transition event is provided which comprises an acoustic plate mode detecting element placed in contact with a liquid or solid material which generates a high-frequency acoustic wave that is attenuated to an extent based on the physical state of the material in contact with the detecting element. The attenuation caused by the material in contact with the acoustic plate mode detecting element is used to determine the physical state of the material being detected. The method and device are particularly suited for detecting conditions such as the icing and deicing of wings of an aircraft. In another aspect of the present invention, a method is provided wherein the adhesion of a solid material to the detecting element can be measured using the apparatus of the invention. 3 figs.

Blair, D.S.; Frye, G.C.; Hughes, R.C.; Martin, S.J.; Ricco, A.J.

1990-01-01T23:59:59.000Z

405

The Chemical Elements  

Science Conference Proceedings (OSTI)

Table 1   Names and symbols for the elements (in alphabetical order)...Sodium (j) Na Strontium Sr Sulfur S Tantalum Ta Technetium Tc Tellurium Te Terbium Tb Thallium Tl Thorium Th Thulium Tm Tin (k) Sn Titanium Ti Tungsten (l) W Ununnilium Uun Unununium Uuu Uranium U Vanadium V Xenon Xe Ytterbium Yb Yttrium Y Zinc Zn Zirconium Zr (a) Symbol based on the Latin

406

Nuclear fuel element  

DOE Patents (OSTI)

A nuclear fuel element wherein a tubular cladding of zirconium or a zirconium alloy has a fission gas plenum chamber which is held against collapse by the loops of a spacer in the form of a tube which has been deformed inwardly at three equally spaced, circumferential positions to provide three loops. A heat resistant disc of, say, graphite separates nuclear fuel pellets within the cladding from the plenum chamber. The spacer is of zirconium or a zirconium alloy.

Meadowcroft, Ronald Ross (Deep River, CA); Bain, Alastair Stewart (Deep River, CA)

1977-01-01T23:59:59.000Z

407

The transuranium elements: From neptunium and plutonium to element 112  

SciTech Connect

Beginning in the 1930`s, both chemists and physicists became interested in synthesizing new artificial elements. The first transuranium element, Np, was synthesized in 1940. Over the past six decades, 20 transuranium elements have been produced. A review of the synthesis is given. The procedure of naming the heavy elements is also discussed. It appears feasible to produce elements 113 and 114. With the Berkeley Gas-filled Separator, it should be possible to reach the superheavy elements in the region of the spherical Z=114 shell, but with fewer neutrons than the N=184 spherical shell. 57 refs, 6 figs.

Hoffman, D.C. [California Univ., Berkeley, CA (United States)]|[Lawrence Livermore National Lab., CA (United States)

1996-07-26T23:59:59.000Z

408

HIGH TEMPERATURE STEAM GASIFICATION OF SOLID WASTES: CHARACTERISTICS AND KINETICS.  

E-Print Network (OSTI)

??Greater use of renewable energy sources is of pinnacle importance especially with the limited reserves of fossil fuels. It is expected that future energy use (more)

Gomaa, Islam Ahmed

2011-01-01T23:59:59.000Z

409

High temperature solid oxide fuel cell: Customer test units  

DOE Green Energy (OSTI)

There are three 25-kW class SOFC customer test unit programs; two are in Japan (utility joint ventures), one for Southern California Edison Co. The two in Japan are described: Startup, testing, modifications, and operational performance are discussed.

Ray, E.R.; Veyo, S.E.

1993-11-01T23:59:59.000Z

410

High Temperature Solid Oxide Fuel Cell Generator Development  

SciTech Connect

This report describes the results of the tubular SOFC development program from August 22, 1997 to September 30, 2007 under the Siemens/U.S. Department of Energy Cooperative Agreement. The technical areas discussed include cell manufacturing development, cell power enhancement, SOFC module and system cost reduction and technology advancement, and our field unit test program. Whereas significant progress has been made toward commercialization, significant effort remains to achieve our cost, performance and reliability targets for successful commercialization.

Joseph Pierre

2007-09-30T23:59:59.000Z

411

High Temperature Solid Oxide Fuel Cell Generator Development  

DOE Green Energy (OSTI)

Work performed during the period February 21, 2006 through August 21, 2006 is summarized herein. During this period, efforts were focused on 5 kWe bundle testing, development of on-cell reformation, the conceptual design of an advanced module, and the development of a manufacturing roadmap for cells and bundles. A 5 kWe SOFC system was built and delivered to the Pennsylvania State University; fabrication of a second 5 kWe SOFC for delivery to Montana State University was initiated. Cell testing and microstructural analysis in support of these efforts was also conducted.

Joseph F. Pierre

2006-08-21T23:59:59.000Z

412

Spontaneous fission of the heaviest elements  

Science Conference Proceedings (OSTI)

Although spontaneous fission was discovered in /sup 238/U in 1940, detailed studies of the process were first made possible in the 1960's with the availability of milligram quantities of /sup 252/Cf. The advent of solid-state detectors made it possible to perform measurements of coincident fission fragments from even very short-lived spontaneous fission activities or those available in only very small quantities. Until 1971 it was believed that the main features of the mass and kinetic-energy distributions were essentially the same as those for thermal neutron-induced fission and that all low-energy fission proceeded via asymmetric mass division with total kinetic energies which could be derived by linear extrapolation from those of lighter elements. In 1971, measurements of /sup 257/Fm showed an increase in symmetric mass division with anomalously high TKE's. Subsequent experiments showed that in /sup 258/Fm and /sup 259/Fm, the most probable mass split was symmetric with very high total kinetic energy. Measurements for the heavier elements have shown symmetric mass distributions with both high and low total kinetic energies. Recent results for spontaneous fission properties of the heaviest elements are reviewed and compared with theory. 31 refs., 8 figs., 1 tab.

Hoffman, D.C.

1989-04-01T23:59:59.000Z

413

Road to room-temperature superconductivity: A universal model  

E-Print Network (OSTI)

In a semiclassical view superconductivity is attributed exclusively to the advance of atoms' outer s electrons through the nuclei of neighbor atoms in a solid. The necessary progression of holes in the opposite direction has the electric and magnetic effect as if two electrons were advancing instead of each actual one. Superconductivity ceases when the associated lateral oscillation of the outer s electrons extends between neighbor atoms. If such overswing occurs already at T = 0, then the material is a normal conductor. Otherwise, lateral overswing can be caused by lattice vibrations at a critical temperature Tc or by a critical magnetic field Bc. Lateral electron oscillations are reduced - and Tc is increased - when the atoms of the outer s electrons are squeezed, be it in the bulk crystal, in a thin film, or under external pressure on the sample. The model is applied to alkali metals and alkali-doped fullerenes. Aluminum serves as an example of a simple metal with superconductivity. Application of the model to transition metals, intertransitional alloys and compounds of transition metals with other elements sheds light on the pattern of their critical temperature. More examples of the squeeze effect are provided by the superconductivity of PdH, MgB2, borocarbides, ferropnictides, and organic charge-transfer salts. The model also provides the superconduction mechanism in the oxide superconductors, exemplified by YBa2Cu3O7. Finally the model suggests which steps to take in order to reach superconductivity at room temperature and above.

Manfred Bucher

2013-02-15T23:59:59.000Z

414

Solid-State Lighting: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications to someone by Publications to someone by E-mail Share Solid-State Lighting: Publications on Facebook Tweet about Solid-State Lighting: Publications on Twitter Bookmark Solid-State Lighting: Publications on Google Bookmark Solid-State Lighting: Publications on Delicious Rank Solid-State Lighting: Publications on Digg Find More places to share Solid-State Lighting: Publications on AddThis.com... Conferences & Meetings Presentations Publications Postings Articles Program Fact Sheets Technology Fact Sheets CALiPER Reports GATEWAY Reports LED Lighting Facts Reports Project Reports Studies and Reports Technology Roadmaps Product Performance Guides Webcasts Videos Tools Publications The Solid-State Lighting (SSL) program produces a comprehensive portfolio of publications, ranging from overviews of the program's research

415

Solid-State Lighting: Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations to someone by Presentations to someone by E-mail Share Solid-State Lighting: Presentations on Facebook Tweet about Solid-State Lighting: Presentations on Twitter Bookmark Solid-State Lighting: Presentations on Google Bookmark Solid-State Lighting: Presentations on Delicious Rank Solid-State Lighting: Presentations on Digg Find More places to share Solid-State Lighting: Presentations on AddThis.com... Conferences & Meetings Presentations Publications Webcasts Videos Tools Presentations This page provides links to the presentations given at the DOE Solid-State Lighting Workshops, as well as links to reference materials. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Workshop Presentations, Materials and Reports November 2013: Presentations from DOE SSL Market Introduction Workshop

416

Solid-state greenhouses and their implications for icy satellites  

SciTech Connect

The 'solid-state greenhouse effect' model constituted by the subsurface solar heating of translucent, high-albedo materials is presently applied to the study of planetary surfaces, with attention to frost and ice surfaces of the solar system's outer satellites. Temperature is computed as a function of depth for an illustrative range of thermal variables, and it is discovered that the surfaces and interiors of such bodies can be warmer than otherwise suspected. Mechanisms are identified through which the modest alteration of surface properties can substantially change the solid-state greenhouse and force an interior temperature adjustment. 34 references.

Matson, D.L.; Brown, R.H.

1989-01-01T23:59:59.000Z

417

Low Energy Electrodynamics in Solids (LEES) 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Energy Electrodynamics in Solids (LEES) 2012 Low Energy Electrodynamics in Solids (LEES) 2012 July 22-27, 2012; Napa...

418

Comprehensive Municipal Solid Waste Management, Resource Recovery...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Municipal Solid Waste Management, Resource Recovery, and Conservation Act (Texas) Comprehensive Municipal Solid Waste Management, Resource Recovery, and Conservation...

419

Solid Lithium Ion Conducting Electrolytes Suitable for ...  

Batteries with solid lithium ion conducting electrolytes would ... The invention is cost-effective and suitable for manufacturing solid electrolyte ...

420

Solid state optical microscope  

DOE Patents (OSTI)

A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.

Young, I.T.

1983-08-09T23:59:59.000Z

Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Solid state optical microscope  

DOE Patents (OSTI)

A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.

Young, Ian T. (Pleasanton, CA)

1983-01-01T23:59:59.000Z

422

Solid state radiative heat pump  

DOE Patents (OSTI)

A solid state radiative heat pump (10, 50, 70) operable at room temperature (300.degree. K.) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of charge carriers as compared to thermal equilibrium. In one form of the invention (10, 70) an infrared semiconductor photodiode (21, 71) is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention (50), a homogeneous semiconductor (51) is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation through the active surface of the semiconductor are disclosed. In one method, an anti-reflection layer (19) is coated into the active surface (13) of the semiconductor (11), the anti-reflection layer (19) having an index of refraction equal to the square root of that of the semiconductor (11). In the second method, a passive layer (75) is spaced from the active surface (73) of the semiconductor (71) by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler (91) with a paraboloid reflecting surface (92) is in contact with the active surface (13, 53) of the semiconductor (11, 51), the coupler having an index of refraction about the same as that of the semiconductor.

Berdahl, Paul H. (Oakland, CA)

1986-01-01T23:59:59.000Z

423

Solid state radiative heat pump  

DOE Patents (OSTI)

A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

Berdahl, P.H.

1984-09-28T23:59:59.000Z

424

Thermoelectric refrigerator having improved temperature-stabilization means  

DOE Patents (OSTI)

A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

Falco, C.M.

1981-07-29T23:59:59.000Z

425

Solid Cold - E  

Office of Scientific and Technical Information (OSTI)

of the yet-to-be-discovered energy quanta. For all but the lower temperatures, the quantum hypothesis leads to practically the same results as the classical theory. And how low...

426

Effect of Creep of Ferritic Interconnect on Long-Term Performance of Solid Oxide Fuel Cell Stacks  

Science Conference Proceedings (OSTI)

High-temperature ferritic alloys are potential candidates as interconnect (IC) materials and spacers due to their low cost and coefficient of thermal expansion (CTE) compatibility with other components for most of the solid oxide fuel cells (SOFCs) . However, creep deformation becomes relevant for a material when the operating temperature exceeds or even is less than half of its melting temperature (in degrees of Kelvin). The operating temperatures for most of the SOFCs under development are around 1,073 K. With around 1,800 K of the melting temperature for most stainless steel, possible creep deformation of ferritic IC under the typical cell operating temperature should not be neglected. In this paper, the effects of IC creep behavior on stack geometry change and the stress redistribution of different cell components are predicted and summarized. The goal of the study is to investigate the performance of the fuel cell stack by obtaining the changes in fuel- and air-channel geometry due to creep of the ferritic stainless steel IC, therefore indicating possible changes in SOFC performance under long-term operations. The ferritic IC creep model was incorporated into software SOFC-MP and Mentat-FC, and finite element analyses were performed to quantify the deformed configuration of the SOFC stack under the long-term steady-state operating temperature. It was found that the creep behavior of the ferritic stainless steel IC contributes to narrowing of both the fuel- and the air-flow channels. In addition, stress re-distribution of the cell components suggests the need for a compliant sealing material that also relaxes at operating temperature.

Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

2010-08-01T23:59:59.000Z

427

Carbon nanotube temperature and pressure sensors  

Science Conference Proceedings (OSTI)

The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

Ivanov, Ilia N; Geohegan, David Bruce

2013-10-29T23:59:59.000Z

428

Nanocrystal-enabled solid state bonding.  

SciTech Connect

In this project, we performed a preliminary set of sintering experiments to examine nanocrystal-enabled diffusion bonding (NEDB) in Ag-on-Ag and Cu-on-Cu using Ag nanoparticles. The experimental test matrix included the effects of material system, temperature, pressure, and particle size. The nanoparticle compacts were bonded between plates using a customized hot press, tested in shear, and examined post mortem using microscopy techniques. NEDB was found to be a feasible mechanism for low-temperature, low-pressure, solid-state bonding of like materials, creating bonded interfaces that were able to support substantial loads. The maximum supported shear strength varied substantially within sample cohorts due to variation in bonded area; however, systematic variation with fabrication conditions was also observed. Mesoscale sintering simulations were performed in order to understand whether sintering models can aid in understanding the NEDB process. A pressure-assisted sintering model was incorporated into the SPPARKS kinetic Monte Carlo sintering code. Results reproduce most of the qualitative behavior observed in experiments, indicating that simulation can augment experiments during the development of the NEDB process. Because NEDB offers a promising route to low-temperature, low-pressure, solid-state bonding, we recommend further research and development with a goal of devising new NEDB bonding processes to support Sandia's customers.

San Diego State University, San Diego, CA; Puskar, Joseph David; Tikare, Veena; Garcia Cardona, Cristina (San Diego State University, San Diego, CA); Reece, Mark; Brewer, Luke N. (Naval Postgraduate School, Monterey, CA); Holm, Elizabeth Ann

2010-10-01T23:59:59.000Z

429

International team discovers element 117  

NLE Websites -- All DOE Office Websites (Extended Search)

LLNL Click for animated video The experiment produced six atoms of element 117. For each atom, the team observed the alpha decay from element 117 to 115 to 113 and so on until the...

430

Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems  

SciTech Connect

A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.

Liekhus, K.; Grandy, J.; Chambers, A. [and others] [and others

1997-03-01T23:59:59.000Z

431

Nuclear fuel elements and method of making same  

DOE Patents (OSTI)

A nuclear fuel element for a high temperature gas nuclear reactor that has an average operating temperature in excess of 2000.degree. C., and a method of making such a fuel element. The fuel element is characterized by having fissionable fuel material localized and stabilized within pores of a carbon or graphite member by melting the fissionable material to cause it to chemically react with the carbon walls of the pores. The fissionable fuel material is further stabilized and localized within the pores of the graphite member by providing one or more coatings of pyrolytic carbon or diamond surrounding the porous graphite member so that each layer defines a successive barrier against migration of the fissionable fuel from the pores, and so that the outermost layer of pyrolytic carbon or diamond forms a barrier between the fissionable material and the moderating gases used in an associated high temperature gas reactor. The method of the invention provides for making such new elements either as generally spherically elements, or as flexible filaments, or as other relatively small-sized fuel elements that are particularly suited for use in high temperature gas reactors.

Schweitzer, Donald G. (Bayport, NY)

1992-01-01T23:59:59.000Z

432

Solid-State Lighting: Solid-State Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lighting Search Search Help Solid-State Lighting HOME ABOUT THE PROGRAM R&D PROJECTS MARKET-BASED PROGRAMS SSL BASICS INFORMATION RESOURCES FINANCIAL OPPORTUNITIES EERE...

433

3800 Green Series Cost Elements  

Energy.gov (U.S. Department of Energy (DOE))

Stoller - Legacy ManagementSustainable Acquisition (formerly EPP) Program 3800 Series Cost Elements01/30/2012 (Rev. 4)

434

XCCDF Language Schema Element Dictionary  

Science Conference Proceedings (OSTI)

- Extensible Configuration Checklist Description Format - Element Dictionary. Schema: XCCDF Language; Version: 1.2; Release Date: 2011-07-26. ...

2012-10-26T23:59:59.000Z

435

The CEBAF Element Database  

Science Conference Proceedings (OSTI)

With the inauguration of the CEBAF Element Database (CED) in Fall 2010, Jefferson Lab computer scientists have taken a step toward the eventual goal of a model-driven accelerator. Once fully populated, the database will be the primary repository of information used for everything from generating lattice decks to booting control computers to building controls screens. A requirement influencing the CED design is that it provide access to not only present, but also future and past configurations of the accelerator. To accomplish this, an introspective database schema was designed that allows new elements, types, and properties to be defined on-the-fly with no changes to table structure. Used in conjunction with Oracle Workspace Manager, it allows users to query data from any time in the database history with the same tools used to query the present configuration. Users can also check-out workspaces to use as staging areas for upcoming machine configurations. All Access to the CED is through a well-documented Application Programming Interface (API) that is translated automatically from original C++ source code into native libraries for scripting languages such as perl, php, and TCL making access to the CED easy and ubiquitous.

Theodore Larrieu, Christopher Slominski, Michele Joyce

2011-03-01T23:59:59.000Z

436

Durability Prediction of Solid Oxide Fuel Cell Anode Material under Thermo-Mechanical and Fuel Gas Contaminants Effects  

Science Conference Proceedings (OSTI)

Solid Oxide Fuel Cells (SOFCs) operate under harsh environments, which cause deterioration of anode material properties and service life. In addition to electrochemical performance, structural integrity of the SOFC anode is essential for successful long-term operation. The SOFC anode is subjected to stresses at high temperature, thermal/redox cycles, and fuel gas contaminants effects during long-term operation. These mechanisms can alter the anode microstructure and affect its electrochemical and structural properties. In this research, anode material degradation mechanisms are briefly reviewed and an anode material durability model is developed and implemented in finite element analysis. The model takes into account thermo-mechanical and fuel gas contaminants degradation mechanisms for prediction of long-term structural integrity of the SOFC anode. The proposed model is validated experimentally using a NexTech ProbostatTM SOFC button cell test apparatus integrated with a Sagnac optical setup for simultaneously measuring electrochemical performance and in-situ anode surface deformation.

Iqbal, Gulfam; Guo, Hua; Kang , Bruce S.; Marina, Olga A.

2011-01-10T23:59:59.000Z

437

REACTOR FUEL ELEMENTS TESTING CONTAINER  

DOE Patents (OSTI)

This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

Whitham, G.K.; Smith, R.R.

1963-01-15T23:59:59.000Z

438

Advanced materials for solid oxide fuel cells  

DOE Green Energy (OSTI)

The purpose of this research is to improve the properties of the current state-of-the-art materials used for solid oxide fuel cells (SOFCs). The objectives are to: (1) develop materials based on modifications of the state-of-the-art materials; (2) minimize or eliminate stability problems in the cathode, anode, and interconnect; (3) Electrochemically evaluate (in reproducible and controlled laboratory tests) the current state-of-the-art air electrode materials and cathode/electrolyte interfacial properties; (4) Develop accelerated electrochemical test methods to evaluate the performance of SOFCs under controlled and reproducible conditions; and (5) Develop and test materials for use in low-temperature SOFCs.

Armstrong, T.; Stevenson, J.

1995-12-31T23:59:59.000Z

439

Tubular solid oxide fuel cell development program  

DOE Green Energy (OSTI)

This paper presents an overview of the Westinghouse Solid Oxide Fuel Cell (SOFC) development activities and current program status. The Westinghouse goal is to develop a cost effective cell that can operate for 50,000 to 100,000 hours. Progress toward this goal will be discussed and test results presented for multiple single cell tests which have now successfully exceeded 56,000 hours of continuous power operation at temperature. Results of development efforts to reduce cost and increase power output of tubular SOFCs are described.

Ray, E.R.; Cracraft, C.

1995-12-31T23:59:59.000Z

440

Fast-neutron solid-state dosimeter  

DOE Patents (OSTI)

This patent relates to an improved fast-neutron solid-state dosimeter that does not require separation of materials before it can be read out, that utilizes materials that do not melt or otherwise degrade at about 300$sup 0$C readout temperature, that provides a more efficient dosimeter, and that can be reused. The dosimeters are fabricated by intimately mixing a TL material, such as CaSO$sub 4$:Dy, with a powdered polyphenyl, such as p-sexiphenyl, and hot- pressing the mixture to form pellets, followed by out-gassing in a vacuum furnace at 150$sup 0$C prior to first use dosimeters. (auth)

Kecker, K.H.; Haywood, F.F.; Perdue, P.T.; Thorngate, J.H.

1975-07-22T23:59:59.000Z

Note: This page contains sample records for the topic "temperature solid element" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Solid polymer electrolyte lithium batteries  

DOE Patents (OSTI)

This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

1993-01-01T23:59:59.000Z

442

Solid polymer electrolyte lithium batteries  

DOE Patents (OSTI)

This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

Alamgir, M.; Abraham, K.M.

1993-10-12T23:59:59.000Z

443

A two-mesh coupled gas flow-solid interaction model for 2D blast analysis in fractured media  

Science Conference Proceedings (OSTI)

A 2D coupled two-mesh interaction model for blast gas flow through fractured and fragmented solid media is presented. It is mainly designed to solve blast problems where a complicated set of wide difficult phenomena are involved: shock waves, progressive ... Keywords: Blast, Combined finite/discrete element method, Cracking, Explosion, Fragmentation, Gas-solid interaction

S. Mohammadi; A. Pooladi

2012-03-01T23:59:59.000Z

444

Solidification Structures of Solid Solutions  

Science Conference Proceedings (OSTI)

Figure: ...Fig. 16 Binary phase diagrams. L, L 1 , and L 2 are liquid solutions. α and β are solid solutions. (a) Complete

445

Solid Waste Management Act (Pennsylvania)  

Energy.gov (U.S. Department of Energy (DOE))

This Act provides for the planning and regulation of solid waste storage, collection, transportation, processing, treatment, and disposal. It requires that municipalities submit plans for municipal...

446

Solid waste management of Jakarta.  

E-Print Network (OSTI)

?? Solid waste management has been one of the critical issues in Jakarta, Indonesia.With enormous amounts of generated waste per day and limited supportinginfrastructure, the (more)

Trisyanti, Dini

2004-01-01T23:59:59.000Z

447

Treatment of Waste Soils / Solids  

Science Conference Proceedings (OSTI)

About the 1996 International Symposium on Extraction and Processing for the Treatment and Minimization of Wastes: Treatment of Waste Soils / Solids...

448

Nuclear fuel element  

DOE Patents (OSTI)

A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has a composite cladding having a substrate and a metal barrier metallurgically bonded on the inside surface of the substrate so that the metal barrier forms a shield between the substrate and the nuclear fuel material held within the cladding. The metal barrier forms about 1 to about 30 percent of the thickness of the cladding and is comprised of a low neutron absorption metal of substantially pure zirconium. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the substrate from contact and reaction with such impurities and fission products. The substrate of the composite cladding is selected from conventional cladding materials and preferably is a zirconium alloy. Methods of manufacturing the composite cladding are also disclosed.

Armijo, Joseph S. (Saratoga, CA); Coffin, Jr., Louis F. (Schenectady, NY)

1983-01-01T23:59:59.000Z

449

Nuclear fuel element  

DOE Patents (OSTI)

A nuclear fuel element for use in the core of a nuclear reactor is disclosed and has an improved composite cladding comprised of a moderate purity metal barrier of zirconium metallurgically bonded on the inside surface of a zirconium alloy tube. The metal barrier forms a shield between the alloy tube and a core of nuclear fuel material enclosed in the composite cladding. There is a gap between the cladding and the core. The metal barrier forms about 1 to about 30 percent of the thickness of the composite cladding and has low neutron absorption characteristics. The metal barrier serves as a preferential reaction site for gaseous impurities and fission products and protects the alloy tube from contact and reaction with such impurities and fission products. Methods of manufacturing the composite cladding are also disclosed.

Armijo, Joseph S. (Saratoga, CA); Coffin, Jr., Louis F. (Schenectady, NY)

1980-04-29T23:59:59.000Z

450

Photoconductive circuit element reflectometer  

DOE Patents (OSTI)

A photoconductive reflectometer for characterizing semiconductor devices at millimeter wavelength frequencies where a first photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short first laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test. Second PCEs are connected along the transmission line to sample the signals on the transmission line when excited into conductance by short second laser light pulses, spaced apart in time a variable period from the first laser light pulses. Electronic filters connected to each of the second PCEs act as low-pass filters and remove parasitic interference from the sampled signals and output the sampled signals in the form of slowed-motion images of the signals on the transmission line.

Rauscher, Christen (Alexandria, VA)

1990-01-01T23:59:59.000Z

451

Solids feeder apparatus  

SciTech Connect

This invention sets forth a double-acting piston, which carries a floating piston, and which is reciprocated in a housing, for feeding coal to a high pressure gasifier system. The housing has a plurality of solids (for instance: coal) in-feeding ports and a single discharge port, the latter port being in communication with a high pressure gasifier system. The double-acting piston sequentially and individually communicates each of the in-feeding ports with the discharge port. The floating piston both seals off the discharge port while each in-feeding port is receiving coal or the like, to prevent undue escape of gas from the gasifier system, and translates in the housing, following a discharge of coal or the like into the discharge port, to return gas which has been admitted into the housing back into the gasifier system.

Bell, Jr., Harold S. (Madison, NJ)

1979-01-01T23:59:59.000Z

452

DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS  

Science Conference Proceedings (OSTI)

The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

NA

2004-11-22T23:59:59.000Z

453

BSA 07-22: Compact Room-Temperature Radiation Detector for Oil ...  

These small, solid-state radiation detectors can be used at room temperature, making them more practical, mobile, and cost-effective than existing devices.

454

Definition: Element | Open Energy Information  

Open Energy Info (EERE)

Element Element Jump to: navigation, search Dictionary.png Element Any electrical device with terminals that may be connected to other electrical devices such as a generator, transformer, circuit breaker, bus section, or transmission line. An element may be comprised of one or more components.[1] View on Wikipedia Wikipedia Definition Electrical elements are conceptual abstractions representing idealized electrical components, such as resistors, capacitors, and inductors, used in the analysis of electrical networks. Any electrical network can be analysed as multiple, interconnected electrical elements in a schematic diagram or circuit diagram, each of which affects the voltage in the network or current through the network. These ideal electrical elements represent real, physical electrical or electronic components but

455

PERFORMANCE TESTS OF SNAP 10A THERMOELECTRIC ELEMENTS  

SciTech Connect

Apparatus for the performanee testing of SNAP 10A thermoelectric elements was designed, constructed, and is now in operation. Elements may be tested for any desired length of tfme up to 1400 deg F and in a vacuum of 1 x 10/ sup -5/ of Hg. The equipment used for these tcsts may also be utilized for measuring Seebeck coefficient and resistance as a function of temperature. Element performance is derived from the data on voltages and temperatures. The performance variables which are reported in graphic form are as follows: loaded output voltage at any desired DELTA T; open circuit output voltage at any desired DELTA T; power output under optimum load conditions; current produced under matched load conditions; and internal resistance of the element. (auth)

Bergdorf, C.G.

1961-08-30T23:59:59.000Z

456

Space reactor fuel element testing in upgraded TREAT  

DOE Green Energy (OSTI)

The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.

Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W.Y.

1993-05-01T23:59:59.000Z

457

Space reactor fuel element testing in upgraded TREAT  

DOE Green Energy (OSTI)

The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.

Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W.Y.

1993-01-14T23:59:59.000Z

458

Significance of radiation effects in solid radioactive waste  

SciTech Connect

Proposed NRC criteria for disposal of high-level nuclear waste require development of waste packages to contain radionuclide for at least 1000 years, and design of repositories to prevent radionuclide release at an annual rate greater than 1 part in 100,000 of the total activity. The high-level wastes that are now temporarily stored as aqueous salts, sludges, and calcines must be converted to high-integrity solid forms that resist deterioration from radiation and other effects of long-term storage. Spent fuel may be encapsulated for similar long-term storage. Candidate waste forms beside the spent fuel elements themselves, include borosilicate and related glasses, mineral-like crystalline ceramics, concrete formulations, and metal-matrix glass or ceramic composites. these waste forms will sustain damage produced by beta-gamma radiation up to 10/sup 12/ rads, by alpha radiation up to 10/sup 19/ particles/g, by internal helium generation greater than about 0.1 atom percent, and by the atom transmutations accompanying radioactive decay. Current data indicate that under these conditions the glass forms suffer only minor volume changes, stored energy deposition, and leachability effects. The crystalline ceramics appear susceptible to the potentially more severe alterations accompanying metamictization and natural analogs of candidate materials are being examined to establish their suitability as waste forms. Helium concentrations in the waste forms are generally below thresholds for severe damage in either glass or crystalline ceramics at low temperatures, but microstructural effects are not well characterized. Transmutation effects remain to be established.

Permar, P H; McDonell, W R

1980-01-01T23:59:59.000Z

459

Drying damaged K West fuel elements (Summary of whole element furnace runs 1 through 8)  

DOE Green Energy (OSTI)

N Reactor fuel elements stored in the Hanford K Basins were subjected to high temperatures and vacuum conditions to remove water. Results of the first series of whole element furnace tests i.e., Runs 1 through 8 were collected in this summary report. The report focuses on the six tests with breached fuel from the K West Basin which ranged from a simple fracture at the approximate mid-point to severe damage with cladding breaches at the top and bottom ends with axial breaches and fuel loss. Results of the tests are summarized and compared for moisture released during cold vacuum drying, moisture remaining after drying, effects of drying on the fuel element condition, and hydrogen and fission product release.

LAWRENCE, L.A.

1998-10-13T23:59:59.000Z

460

A numerical study of fluid solid interaction in screw compressors  

Science Conference Proceedings (OSTI)

Efforts are continually being made to produce screw compressors with smaller clearances in order to reduce internal leakage. However, since the compression process induces large pressure differences across the rotors and temperature rise, they deform. ... Keywords: analytical grid generation, clearance reduction, compressor deformation, compressor performance, fluid solid interaction, fuid flow, internal leakage reduction, numerical simulation, rotor deflection, screw compressors

Ahmed Kovacevic; Nikola Stosic; Ian K. Smith

2004-12-01T23:59:59.000Z