Sample records for temperature heating

  1. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  2. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  3. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  4. temperature heat pumps applied to

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    losses (waste heat) 250-300°C......1100°C ~ 100 TWh/year Low temperature thermal losses (waste heat) 25°C;Waste heat recovery (1) In a decreasing energetic interest order Achema 2012 Frankfurt June 21th 2012>>Twaste #12;Waste heat recovery (2) Achema 2012 Frankfurt June 21th 2012 There is no interesting thermal

  5. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

  6. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

  7. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  8. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

  9. High Temperature Heat Exchanger Project

    SciTech Connect (OSTI)

    Anthony E. Hechanova, Ph.D.

    2008-09-30T23:59:59.000Z

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  10. Litchfield Correctional Center District Heating Low Temperature...

    Open Energy Info (EERE)

    Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature Geothermal...

  11. City of Klamath Falls District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath Falls...

  12. Low Temperature Heat Recovery for Boiler Systems 

    E-Print Network [OSTI]

    Shook, J. R.; Luttenberger, D. B.

    1986-01-01T23:59:59.000Z

    Low temperature corrosion proof heat exchangers designed to reduce boiler flue gas temperatures to 150°F or lower are now being commercially operated on gas, oil and coal fired boilers. These heat exchangers, when applied to boiler flue gas...

  13. Osmotic Heat Engine for Energy Production from Low Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Osmotic Heat Engine for Energy Production from Low Temperature Geothemal Resources Osmotic Heat Engine for Energy Production from Low Temperature Geothemal Resources Osmotic Heat...

  14. Design manual. [High temperature heat pump for heat recovery system

    SciTech Connect (OSTI)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01T23:59:59.000Z

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  15. Industrial Low Temperature Waste Heat Utilization

    E-Print Network [OSTI]

    Altin, M.

    1981-01-01T23:59:59.000Z

    In this paper, some common and emerging techniques to better utilize energy in the chemical process industries are discussed. Temperature levels of waste heat available are pointed out. Emerging practices for further economical utilization of waste...

  16. New Mexico State University District Heating Low Temperature...

    Open Energy Info (EERE)

    New Mexico State University District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name New Mexico State University District Heating Low Temperature...

  17. Elko County School District District Heating Low Temperature...

    Open Energy Info (EERE)

    Elko County School District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko County School District District Heating Low Temperature...

  18. Cedarville Elementary & High School Space Heating Low Temperature...

    Open Energy Info (EERE)

    Elementary & High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cedarville Elementary & High School Space Heating Low Temperature...

  19. Oregon Institute of Technology District Heating Low Temperature...

    Open Energy Info (EERE)

    District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Institute of Technology District Heating Low Temperature Geothermal Facility Facility...

  20. Walley's Hot Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Walley's...

  1. Steamboat Villa Hot Springs Spa Space Heating Low Temperature...

    Open Energy Info (EERE)

    Villa Hot Springs Spa Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal...

  2. Warner Springs Ranch Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility Facility Warner...

  3. Broadwater Athletic Club & Hot Springs Space Heating Low Temperature...

    Open Energy Info (EERE)

    Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Athletic Club & Hot Springs Space Heating Low Temperature...

  4. Klamath Apartment Buildings (13) Space Heating Low Temperature...

    Open Energy Info (EERE)

    Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Apartment Buildings (13) Space Heating Low Temperature...

  5. Agua Calientes Trailer Park Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Calientes Trailer Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Agua Calientes Trailer Park Space Heating Low Temperature Geothermal...

  6. Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Shoshone Motel & Trailer Park Space Heating Low Temperature...

  7. Warm Springs Water District District Heating Low Temperature...

    Open Energy Info (EERE)

    Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal...

  8. Hot Springs National Park Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    National Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs National Park Space Heating Low Temperature Geothermal Facility...

  9. Wiesbaden Motel & Health Resort Space Heating Low Temperature...

    Open Energy Info (EERE)

    Motel & Health Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Wiesbaden Motel & Health Resort Space Heating Low Temperature Geothermal...

  10. Maywood Industries of Oregon Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Maywood Industries of Oregon Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Maywood Industries of Oregon Space Heating Low Temperature...

  11. Modesto Memorial Hospital Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Memorial Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modesto Memorial Hospital Space Heating Low Temperature Geothermal Facility...

  12. Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility...

  13. Senior Citizens' Center Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Senior Citizens' Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Senior Citizens' Center Space Heating Low Temperature Geothermal Facility...

  14. Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Springs Ranch Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal Facility...

  15. Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility...

  16. Pagosa Springs Private Wells Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Private Wells Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs Private Wells Space Heating Low Temperature Geothermal Facility...

  17. Fort Boise Veteran's Hospital District Heating Low Temperature...

    Open Energy Info (EERE)

    Veteran's Hospital District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fort Boise Veteran's Hospital District Heating Low Temperature Geothermal...

  18. Merle West Medical Center Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Merle West Medical Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Merle West Medical Center Space Heating Low Temperature Geothermal...

  19. Warm Springs State Hospital Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility...

  20. Low Temperature Heat Release Behavior of Conventional and Alternative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Heat Release Behavior of Conventional and Alternative Fuels in a Motored Engine Low Temperature Heat Release Behavior of Conventional and Alternative Fuels in a...

  1. Performance Optimization of an Irreversible Heat Pump with Variable-temperature Heat Reservoirs

    E-Print Network [OSTI]

    Huang, Y.; Sun, D.

    2006-01-01T23:59:59.000Z

    An irreversible cycle model of a heat pump operating between two variable-temperature heat reservoirs is established and used to analyze the performance of the heat pump affected by heat resistances, heat leakage and internal dissipation...

  2. Performance Optimization of an Irreversible Heat Pump with Variable-temperature Heat Reservoirs 

    E-Print Network [OSTI]

    Huang, Y.; Sun, D.

    2006-01-01T23:59:59.000Z

    An irreversible cycle model of a heat pump operating between two variable-temperature heat reservoirs is established and used to analyze the performance of the heat pump affected by heat resistances, heat leakage and internal dissipation...

  3. Low Temperature Heat Recovery for Boiler Systems

    E-Print Network [OSTI]

    Shook, J. R.; Luttenberger, D. B.

    be economically heated to within 50 0 F of the entering flue gas temperature. Other less common, but practical, uses for energy include driving a low-temperature electric turbine cycle or an absorption chilling cycle. An improvement in boiler efficiency of 3...% to 8% can normally be realized by cooling boiler flue gasses down to llO o F_200 0 F. This recovers a large quantity of the available sensible heat in most boiler flue gas streams. Efficiency can be improv ed by up to 10% if flue gas is cooled down...

  4. Heating tar sands formations to visbreaking temperatures

    DOE Patents [OSTI]

    Karanikas, John Michael (Houston, TX); Colmenares, Tulio Rafael (Houston, TX); Zhang, Etuan (Houston, TX); Marino, Marian (Houston, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX); Ryan, Robert Charles (Houston, TX); Beer, Gary Lee (Houston, TX); Dombrowski, Robert James (Houston, TX); Jaiswal, Namit (Houston, TX)

    2009-12-22T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat may be controlled so that at least a majority of the section reaches an average temperature of between 200.degree. C. and 240.degree. C., which results in visbreaking of at least some hydrocarbons in the section. At least some visbroken hydrocarbon fluids may be produced from the formation.

  5. Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Institute of Technology's Geo-Heat Center1 Fairmont Hot Springs Resort is a Space Heating low temperature direct use geothermal facility in Fairmont, Montana. This article is...

  6. Salida Hot Springs (Poncha Spring) Space Heating Low Temperature...

    Open Energy Info (EERE)

    Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs (Poncha Spring) Space Heating Low...

  7. Temperature profile of the infrared image Heat exchange between

    E-Print Network [OSTI]

    Jaehne, Bernd

    T Temperature profile of the infrared image Heat exchange between atmosphere and ocean References coefficient of heat in water determine the heat transfer velocity: *t Infrared images of the water surface: a-Karls-Universität Heidelberg www.uni-heidelberg.de Active controlled flux technique (ACFT) Continuous heat flux Periodic heat

  8. CONTROL OF SUPPLY TEMPERATURE IN DISTRICT HEATING SYSTEMS

    E-Print Network [OSTI]

    CONTROL OF SUPPLY TEMPERATURE IN DISTRICT HEATING SYSTEMS T.S. Nielsen, H. Madsen Informatics the supply temperature in district heating systems using stochastic modelling, prediction and control at Roskilde Varmeforsyning. The results obtained for the Roskilde district heating utility are evaluated

  9. Predictive control of supply temperature in district heating systems

    E-Print Network [OSTI]

    Predictive control of supply temperature in district heating systems Torben Skov Nielsen Henrik This report considers a new concept for controlling the supply temperature in district heating systems using stochastic modelling, prediction and control. A district heating systems is a di#30;cult system to control

  10. High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes

    SciTech Connect (OSTI)

    Morris, J. F.

    1985-03-19T23:59:59.000Z

    This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. The heat pipe is used to cool the nuclear reactor while the heat pipe is connected thermally and electrically to a thermionic converter. If the receiver requires greater thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparatively low thermal power densities through the electrically nonconducting gap between the two heat pipes.

  11. DESIGN OF A COMPACT HEAT EXCHANGER FOR HEAT RECUPERATION FROM A HIGH TEMPERATURE ELECTROLYSIS SYSTEM

    SciTech Connect (OSTI)

    G. K. Housley; J.E. O'Brien; G.L. Hawkes

    2008-11-01T23:59:59.000Z

    Design details of a compact heat exchanger and supporting hardware for heat recuperation in a high-temperature electrolysis application are presented. The recuperative heat exchanger uses a vacuum-brazed plate-fin design and operates between 300 and 800°C. It includes corrugated inserts for enhancement of heat transfer coefficients and extended heat transfer surface area. Two recuperative heat exchangers are required per each four-stack electrolysis module. The heat exchangers are mated to a base manifold unit that distributes the inlet and outlet flows to and from the four electrolysis stacks. Results of heat exchanger design calculations and assembly details are also presented.

  12. advanced low-temperature heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only...

  13. An analysis of a reversed absorption heat pump for low temperature waste heat utilization

    E-Print Network [OSTI]

    Wade, Glenn William

    1979-01-01T23:59:59.000Z

    AN ANALYSIS OF A REVERSED ABSORPTION HEAT PUMP FOR LOW TEMPERATURE WASTE HEAT UTILIZATION A Thesis by GLENN WILLIAM WADE Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE May 1979 Major Subject: Mechanical Engineering AN ANALYSIS OF A REVERSED ABSORPTION HEAT PUMP FOR LOW TEMPERATURE WASTE HEAT UTILIZATION A Thesis by GLENN WILLIAM WADE Approved as to style and content by: Chai n of Committee...

  14. Low exhaust temperature electrically heated particulate matter filter system

    DOE Patents [OSTI]

    Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI); Bhatia, Garima (Bangalore, IN)

    2012-02-14T23:59:59.000Z

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  15. Low GWP Working Fluid for High Temperature Heat Pumps

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Low GWP Working Fluid for High Temperature Heat Pumps: DR-2 Chemical Stability at High Temperatures Temp Heat Pumps: DR-2 Very Low GWP AND Non-Flammable HFC-245fa DR-2 Chemical Formula CF3CH2CHF2 HFO 171.3 Pcr [MPa] 3.65 2.9 Kontomaris-DuPont; European Heat Pump Summit, Nuremberg, October 15th, 2013

  16. Temperature and Heat Transfer Measurements Cengiz Camci

    E-Print Network [OSTI]

    Camci, Cengiz

    mainly because of thermal reasons. Satel- lite thermal management systems, hot sections of propulsion systems, combustors, aerodynamic heating of supersonic/ hypersonicvehiclesurfaces is not meaningful, since there are no agitated particles in empty space. A body in which "thermal agitation

  17. Project Profile: High Operating Temperature Liquid Metal Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A freezing point below 100C Stable at temperatures greater than 800C Low corrosion of stainless steel and high-nickel content alloys A heat capacity greater than 2...

  18. Temperatures, heat flow, and water chemistry from drill holes...

    Open Energy Info (EERE)

    Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

  19. Temperature Fields Produced by Traveling Distributed Heat Sources

    E-Print Network [OSTI]

    Eagar, Thomas W.

    Temperature Fields Produced by Traveling Distributed Heat Sources Use of a Gaussian heat distribution in dimensionless form indicates final weld pool shape can be predicted accurately for many welds information about both the size and the shape of arc weld pools. The results indicate that both welding

  20. The Seasonal Cycle of Atmospheric Heating and Temperature AARON DONOHOE

    E-Print Network [OSTI]

    Battisti, David

    The Seasonal Cycle of Atmospheric Heating and Temperature AARON DONOHOE Massachusetts Institute of Technology, Cambridge, Massachusetts DAVID S. BATTISTI Department of Atmospheric Sciences, University) ABSTRACT The seasonal cycle of the heating of the atmosphere is divided into a component due to direct

  1. Design of a high temperature hot water central heating system

    SciTech Connect (OSTI)

    Beaumont, E.L.; Johnson, R.C.; Weaver, J.M.

    1981-11-01T23:59:59.000Z

    The paper reviews the conceptual design of a central heating system at Los Alamos Scientific Laboratory. The resource considered for this heating system design was hot dry rock geothermal energy. Design criteria were developed to ensure reliability of energy supply, to provide flexibility for adaptation to multiple energy resources, to make optimum use of existing equipment and to minimize reinvestment cost. A variable temperature peaking high temperature water system was selected for this purpose.

  2. Heat Transfer and Cooling Techniques at Low Temperature

    E-Print Network [OSTI]

    Baudouy, B

    2014-01-01T23:59:59.000Z

    The first part of this chapter gives an introduction to heat transfer and cooling techniques at low temperature. We review the fundamental laws of heat transfer (conduction, convection and radiation) and give useful data specific to cryogenic conditions (thermal contact resistance, total emissivity of materials and heat transfer correlation in forced or boiling flow for example) used in the design of cooling systems. In the second part, we review the main cooling techniques at low temperature, with or without cryogen, from the simplest ones (bath cooling) to the ones involving the use of cryocoolers without forgetting the cooling flow techniques.

  3. Determining heat fluxes from temperature measurements made in massive walls

    SciTech Connect (OSTI)

    Balcomb, J.D.; Hedstrom, J.C.

    1980-01-01T23:59:59.000Z

    A technique is described for determining heat fluxes at the surfaces of masonry walls or floors using temperature data measured at two points within the wall, usually near the surfaces. The process consists of solving the heat diffusion equation in one dimension using finite difference techniques given two measured temperatures as input. The method is fast and accurate and also allows for an in-situ measurement of wall thermal diffusivity if a third temperature is measured. The method is documented in sufficient detail so that it can be readily used by the reader. Examples are given for heat flow through walls. Annual results for two cases are presented. The method has also been used to determine heat flow into floors.

  4. High-Temperature Components for Rankine-Cycle-Based Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery Systems on Combustion Engines High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery...

  5. NGNP/HTE full-power operation at reduced high-temperature heat exchanger temperatures.

    SciTech Connect (OSTI)

    VIlim, R.; Nuclear Engineering Division

    2009-03-12T23:59:59.000Z

    Operation of the Next Generation Nuclear Plant (NGNP) with reduced reactor outlet temperature at full power was investigated for the High Temperature Electrolysis (HTE) hydrogen-production application. The foremost challenge for operation at design temperature is achieving an acceptably long service life for heat exchangers. In both the Intermediate Heat Exchanger (IHX) and the Process Heat Exchanger (PHX) (referred to collectively as high temperature heat exchangers) a pressure differential of several MPa exists with temperatures at or above 850 C. Thermal creep of the heat exchanger channel wall may severely limit heat exchanger life depending on the alloy selected. This report investigates plant performance with IHX temperatures reduced by lowering reactor outlet temperature. The objective is to lower the temperature in heat transfer channels to the point where existing materials can meet the 40 year lifetime needed for this component. A conservative estimate for this temperature is believed to be about 700 C. The reactor outlet temperature was reduced from 850 C to 700 C while maintaining reactor power at 600 MWt and high pressure compressor outlet at 7 MPa. We included a previously reported design option for reducing temperature at the PHX. Heat exchanger lengths were adjusted to reflect the change in performance resulting from coolant property changes and from resizing related to operating-point change. Turbomachine parameters were also optimized for the new operating condition. An integrated optimization of the complete system including heat transfer equipment was not performed. It is estimated, however, that by performing a pinch analysis the combined plant efficiency can be increased from 35.5 percent obtained in this report to a value between 38.5 and 40.1 percent. Then after normalizing for a more than three percent decrease in commodities inventory compared to the reference plant, the commodities-normalized efficiency lies between 40.0 and 41.3. This compares with a value of 43.9 for the reference plant. This latter plant has a reactor outlet temperature of 850 C and the two high temperature heat exchangers. The reduction in reactor outlet temperature from 850 C to 700 C reduces the tritium permeability rate in the IHX metal by a factor of three and thermal creep by five orders of magnitude. The design option for reducing PHX temperature from 800 C to 200 C reduces the permeability there by three orders of magnitude. In that design option this heat exchanger is the single 'choke-point' for tritium migration from the nuclear to the chemical plant.

  6. Effects of Temperature Gradients and Heat Fluxes on High-Temperature Oxidation

    SciTech Connect (OSTI)

    Holcomb, G.R.

    2008-04-01T23:59:59.000Z

    The effects of a temperature gradient and heat flux on point defect diffusion in protective oxide scales were examined. Irreversible thermodynamics were used to expand Fick’s first law of diffusion to include a heat-flux term—a Soret effect. Oxidation kinetics were developed for the oxidation of cobalt and of nickel doped with chromium. Research is described to verify the effects of a heat flux by oxidizing pure cobalt in a temperature gradient at 900 °C, and comparing the kinetics to isothermal oxidation. No evidence of a heat flux effect was found.

  7. The Temperature of Interstellar Clouds from Turbulent Heating

    E-Print Network [OSTI]

    Liubin Pan; Paolo Padoan

    2008-10-22T23:59:59.000Z

    To evaluate the effect of turbulent heating in the thermal balance of interstellar clouds, we develop an extension of the log-Poisson intermittency model to supersonic turbulence. The model depends on a parameter, d, interpreted as the dimension of the most dissipative structures. By comparing the model with the probability distribution of the turbulent dissipation rate in a simulation of supersonic and super-Alfvenic turbulence, we find a best-fit value of d=1.64. We apply this intermittency model to the computation of the mass-weighted probability distribution of the gas temperature of molecular clouds, high-mass star-forming cores, and cold diffuse HI clouds. Our main results are: i) The mean gas temperature in molecular clouds can be explained as the effect of turbulent heating alone, while cosmic ray heating may dominate only in regions where the turbulent heating is low; ii) The mean gas temperature in high-mass star-forming cores with typical FWHM of ~6 km/s (corresponding to a 1D rms velocity of 2.5 km/s) may be completely controlled by turbulent heating, which predicts a mean value of approximately 36 K, two to three times larger than the mean gas temperature in the absence of turbulent heating; iii) The intermittency of the turbulent heating can generate enough hot regions in cold diffuse HI clouds to explain the observed CH+ abundance, if the rms velocity on a scale of 1 pc is at least 3 km/s, in agreement with previous results based on incompressible turbulence. Because of its importance in the thermal balance of molecular clouds and high-mass star-forming cores, the process of turbulent heating may be central in setting the characteristic stellar mass and in regulating molecular chemical reactions.

  8. Effect of heat treatment temperature on nitinol wire

    SciTech Connect (OSTI)

    Cai, S.; Schaffer, J. E. [Fort Wayne Metals Research Products Corporation, 9609 Ardmore Ave., Fort Wayne, Indiana 46809 (United States); Daymond, M. R. [Department of Mechanical and Materials Engineering, Queen's University, Nicol Hall, 60 Union Street, Kingston, Ontario K7L 3N6 (Canada); Yu, C. [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, 102249 Beijing (China); Ren, Y. [Argonne National Laboratory, 9700 S. Cass Ave, 433/D008, Argonne, Illinois 60439 (United States)

    2014-08-18T23:59:59.000Z

    In-situ synchrotron X-ray diffraction has been used to study the influence of the heat treatment temperature on the subsequent micromechanical behavior of nitinol wire. It was found that increase in the heat treatment temperature rotated the austenite texture from the (332){sub B2} fiber towards the (111){sub B2} fiber, and the texture of the Stress-Induced Martensite phase changed from the (1{sup ¯}40){sub B19'} to the (1{sup ¯}20){sub B19'} fiber accordingly. Heat treatment at a low temperature reduces the internal residual strains in the austenite during super-elastic deformation and therefore improves the materials fatigue performance. The development of internal residual strains in austenite is controlled by transformation induced plasticity and the reversal martensite to austenite transformation.

  9. Characterization of polyparaphenylene subjected to different heat treatment temperatures

    SciTech Connect (OSTI)

    Brown, S.D.M.; Matthews, M.J.; Marucci, A.; Pimenta, M.A.; Dresselhaus, M.S.; Endo, M.; Hiraoka, T.

    1998-07-01T23:59:59.000Z

    The authors investigated the structural and electronic properties of samples of polyparaphenylene (PPP), derived from two synthesis methods (the Kovacic and Yamamoto methods). These samples have been subjected to different heat-treatment temperatures (650 C {le} T{sub HT} {le} 2,000 C) and their properties are compared to the polymer prior to heat-treatment (T{sub HT} = 0 C). The photoluminescence (PL) spectra of heat-treated PPP based on the two synthesis methods reflects the differences in electronic structure of the starting polymers. The PL emission from the heat-treated Yamamoto polymer is quenched at much lower T{sub HT} than from the Kovacic material. However, Raman spectra taken of the material resulting from heat-treatment of the polymer (using both preparation methods) indicate the presence of phonon modes for PPP in samples at T{sub HT} up to 650 C.

  10. Predicting temperatures of stacked heat sinks with a shroud

    SciTech Connect (OSTI)

    Petrie, T.W.; Bajabir, A.A. (Marquette Univ., Milwaukee, WI (USA)); Petrie, D.J. (Eaton Corporation, Milwaukee, WI (USA))

    1988-08-01T23:59:59.000Z

    Air cooling of enclosed electrical and electronic equipment is a common application for natural convection heat sinks. Space restrictions lead to stacking of the sinks into vertical arrays. A need for mechanical and electrical isolation leads to placement of a shroud over the array. The result is a complicated heat transfer situation. This paper reports on the first step toward development of analytical design procedures for stacked heat sink arrays with a shroud. It explores the use of a one-dimensional model based on available semi-empirical free convection correlations. These correlations do not yield air temperatures within the sink array.

  11. Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating System 

    E-Print Network [OSTI]

    Wu, Z.; Li, D.

    2006-01-01T23:59:59.000Z

    The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but also makes people feel more...

  12. Design and Experiments of a Solar Low-temperature Hot Water Floor Radiant Heating System

    E-Print Network [OSTI]

    Wu, Z.; Li, D.

    2006-01-01T23:59:59.000Z

    The solar low-temperature hot water floor radiant heating system combines solar energy heating with floor radiant heating. This kind of environmental heating way not only saves fossil resources and reduces pollution, but also makes people feel more...

  13. Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions.

    SciTech Connect (OSTI)

    Blanchat, Thomas K.; Hanks, Charles R.

    2013-04-01T23:59:59.000Z

    Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000%C2%B0C showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.

  14. Remote high-temperature insulatorless heat-flux gauge

    DOE Patents [OSTI]

    Noel, B.W.

    1993-12-28T23:59:59.000Z

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge. 3 figures.

  15. Remote high-temperature insulatorless heat-flux gauge

    DOE Patents [OSTI]

    Noel, Bruce W. (Espanola, NM)

    1993-01-01T23:59:59.000Z

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge.

  16. .Heat Generation Patterns and Temperature Profiles in_ Electroslag Welding

    E-Print Network [OSTI]

    Eagar, Thomas W.

    l .Heat Generation Patterns and Temperature Profiles in_ Electroslag Welding ) · T. DEBROY, J in the slag and metal phases for an electroslag welding system. It is shown that the current is significantly larger for the electroslag welding process than that of the electroslao refinino process operating

  17. Temperature measurements using multicolor pyrometry in thermal radiation heating environments

    SciTech Connect (OSTI)

    Fu, Tairan, E-mail: trfu@mail.tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China) [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Beijing 100084 (China); Liu, Jiangfan; Duan, Minghao; Zong, Anzhou [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)] [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2014-04-15T23:59:59.000Z

    Temperature measurements are important for thermal-structural experiments in the thermal radiation heating environments such as used for thermal-structural stress analyses. This paper describes the use of multicolor pyrometry for the measurements of diffuse surfaces in thermal radiation environments that eliminates the effects of background radiation reflections and unknown emissivities based on a least-squares algorithm. The near-infrared multicolor pyrometer had a spectral range of 1100–2400 nm, spectrum resolution of 6 nm, maximum sampling frequency of 2 kHz, working distance of 0.6 m to infinity, temperature range of 700–1700 K. The pyrometer wavelength response, nonlinear intensity response, and spectral response were all calibrated. The temperature of a graphite sample irradiated by quartz lamps was then measured during heating and cooling using the least-squares algorithm based on the calibrated irradiation data. The experiments show that higher temperatures and longer wavelengths are more suitable for the thermal measurements in the quartz lamp radiation heating system. This analysis provides a valuable method for temperature measurements of diffuse surfaces in thermal radiation environments.

  18. A study of temperature distributions due to conduction reservoir heating

    E-Print Network [OSTI]

    Connaughton, Charles Richard

    1969-01-01T23:59:59.000Z

    of thermal conductivity with temperature. He showed this effect could be very important in considering a material such as oil shale, where the conductivity of the raw shale may be five times as great as that of the spent shale. Neglecting this variation... conduction model to investigate the in place heating of oil shale by hot gases forced through a fracture. The heat injection rate he considered is much less than would normally be employed for steam injection into permeable reservoirs and is only about...

  19. Analysis of roll gap heat transfers in hot steel strip rolling through roll temperature sensors and heat transfer models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Analysis of roll gap heat transfers in hot steel strip rolling through roll temperature sensors and heat transfer models N. Legrand1,a , N. Labbe1,b D. Weisz-Patrault2,c , A. Ehrlacher2,d , T. Luks3,e heat transfers during pilot hot steel strip rolling. Two types of temperature sensors (drilled and slot

  20. High Temperature Heat Recovery Systems Using Ceramic Recuperators

    E-Print Network [OSTI]

    Young, S. B.; Bjerklie, J. W.; York, W. A.

    1980-01-01T23:59:59.000Z

    HIGH TEMPERATURE HEAT RECOVERY SYSTEMS USING CERAMIC RECUPERATORS S. B. Young, J. W. Bjerklie, W. A. York Hague International South Portland, Maine ABSTRACT i Ceramic shell and tube recuperators capable of providing up to 1800 0 F (980... !HAGUE INTERNATIONAL ? 3 ADAMS STREET , SOUTH PORTLAND, MAINE 04106 2011111-1510 2011199-1341 FIGURE 1 ..__ .._.~_._---_._~ -- _._.- ._-----_._--_._-----_.__.._--- _._--~~~-~~~-~--_._._---~---~-~ .".;,,":;' ESL-IE-80-04-50 Proceedings from...

  1. High Temperature Fuel Cell Tri-Generation of Power, Heat & H2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas Success story about using waste water...

  2. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    SciTech Connect (OSTI)

    Tarau, Calin; Walker, Kara L.; Anderson, William G. [Advanced Cooling Technologies, Inc. 1046 New Holland Ave. Lancaster, PA 17601 (United States)

    2009-03-16T23:59:59.000Z

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

  3. Secondary heat exchanger design and comparison for advanced high temperature reactor

    SciTech Connect (OSTI)

    Sabharwall, P. [Idaho National Laboratory, Idaho Falls, ID 83415-3860 (United States); Kim, E. S. [Seoul National Univ., P.O. Box 1625, Idaho Falls, ID 83415-3860 (United States); Siahpush, A.; McKellar, M.; Patterson, M. [Idaho National Laboratory, Idaho Falls, ID 83415-3860 (United States)

    2012-07-01T23:59:59.000Z

    Next generation nuclear reactors such as the advanced high temperature reactor (AHTR) are designed to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. This study considers two different types of heat exchangers - helical coiled heat exchanger and printed circuit heat exchanger - as possible options for the AHTR secondary heat exchangers with distributed load analysis and comparison. Comparison is provided for all different cases along with challenges and recommendations. (authors)

  4. Topic 14. Retrofit and optimal operation of the building energy systems Performances of Low Temperature Radiant Heating Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Temperature Radiant Heating Systems Milorad Boji1*, Dragan Cvetkovi1 , Jasmina Skerli1 , Danijela Nikoli1., University of Réunion Island, France * Corresponding email: bojic@kg.ac.rs Keywords: Low temperature heating, wall heating, floor heating, ceiling heating, EnergyPlus SUMMARY Low temperature heating panel systems

  5. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    DOE Patents [OSTI]

    Meisner, Gregory P

    2013-10-08T23:59:59.000Z

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  6. Computer simulation of a lithium bromide-water absorption heat pump for temperature boosting

    SciTech Connect (OSTI)

    Grossman, G.; Childs, K.W.

    1983-01-01T23:59:59.000Z

    A computer-simulation model has been developed to predict the performance of an absorption heat pump for temperature boosting of low-grade heat. The model simulated a single-stage, lithium bromide-water system currently being constructed. Te effects of waste-heat temperature, cooling-water temperature, and solution circulation rate were investigated. The temperature boost and delivered capacity increased almost linearly with an increase in the waste-heat temperature or a decrease in the cooling-water temperature. The system's coefficient of performance (COP) increases slightly under either of these conditions.

  7. Nanosecond Range Heating and Temperature Measurement on Thin Layers Experiment and Simulation

    E-Print Network [OSTI]

    Moritz, Werner

    Nanosecond Range Heating and Temperature Measurement on Thin Layers Experiment and Simulation W for sensitivity measurements, heating resistance and temperature sensor. Taking advantage of using the gate electrode for heating only the sensitive two layer system LaF3/Pt (thickness only 300 nm) has to be at high

  8. Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor

    SciTech Connect (OSTI)

    Piyush Sabharwall; Ali Siahpush; Michael McKellar; Michael Patterson; Eung Soo Kim

    2012-06-01T23:59:59.000Z

    The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangers—helical coiled heat exchanger and printed circuit heat exchanger—as possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.

  9. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    DOE Patents [OSTI]

    The United States of America as represented by the United States Department of Energy (Washington, DC)

    2009-12-15T23:59:59.000Z

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  10. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    SciTech Connect (OSTI)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01T23:59:59.000Z

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  11. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    SciTech Connect (OSTI)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01T23:59:59.000Z

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  12. Sample Self-Heating in the Portable Dilution Refrigerator Figure 1. Self-heating of a model sample in a dilution refrigerator. Sample temperature is

    E-Print Network [OSTI]

    Weston, Ken

    1 Sample Self-Heating in the Portable Dilution Refrigerator Figure 1. Self-heating of a model ~ 6 pW, self heating begins to occur. The most dramatic result of this test was that a temperature

  13. Modeling ofHybrid (Heat Radiation and Microwave) High Temperature Processing ofLimestone

    E-Print Network [OSTI]

    Yakovlev, Vadim

    Modeling ofHybrid (Heat Radiation and Microwave) High Temperature Processing ofLimestone Shawn M (electromagnetic and thermal) modeling to cover practically valuable scenarios of hybrid (heat radiation is applied to the process of hybrid heating of cylindrical samples of limestone in Ceralink's MAT TM kiln

  14. Scaling laws for heat generation and temperature oscillations in EDLCs under galvanostatic cycling

    E-Print Network [OSTI]

    Pilon, Laurent

    Scaling laws for heat generation and temperature oscillations in EDLCs under galvanostatic cycling rules and thermal management strategies for electric double layer capacitors (EDLCs). First, it presents heat generated during a charging step and for the maximum temperature oscillations in EDLCs under

  15. Liu UCD Phy9B 07 1 Ch 17. Temperature & Heat

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    in temperature. Like water, flows from high to low (temperature). Not the energy a body contains. #12;Liu UCD Phy of how hot /cold an object is Temperature Scale Celsius (centigrade) ºC Fahrenheit ºF Absolute (Kelvin of heat necessary to raise the temperature of 1 gram of water by 1Cº kilocalorie (kcal) 1 kcal =1000 cal

  16. Temperature distributions in the laser-heated diamond anvil cell from 3-D numerical modeling

    SciTech Connect (OSTI)

    Rainey, E. S. G.; Kavner, A. [Department of Earth and Space Sciences, University of California, Los Angeles, California 90095 (United States); Hernlund, J. W. [Department of Earth and Planetary Science, University of California, Berkeley, California 94720 (United States); Earth-Life Science Institute, Megoro, Tokyo 152-8551 (Japan)

    2013-11-28T23:59:59.000Z

    We present TempDAC, a 3-D numerical model for calculating the steady-state temperature distribution for continuous wave laser-heated experiments in the diamond anvil cell. TempDAC solves the steady heat conduction equation in three dimensions over the sample chamber, gasket, and diamond anvils and includes material-, temperature-, and direction-dependent thermal conductivity, while allowing for flexible sample geometries, laser beam intensity profile, and laser absorption properties. The model has been validated against an axisymmetric analytic solution for the temperature distribution within a laser-heated sample. Example calculations illustrate the importance of considering heat flow in three dimensions for the laser-heated diamond anvil cell. In particular, we show that a “flat top” input laser beam profile does not lead to a more uniform temperature distribution or flatter temperature gradients than a wide Gaussian laser beam.

  17. Osmotic Heat Engine for Energy Production from Low Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    to demonstrate the economic viability of an Osmotic Heat Engine for electricity production from extremely low-grade geothermal resources. lowmcginnisosmoticheatengine.pdf More...

  18. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17T23:59:59.000Z

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  19. Determination of temperature-dependent heat conductivity and thermal diffusivity of waste glass melter feed

    SciTech Connect (OSTI)

    Pokorny, Richard; Rice, Jarrett A.; Schweiger, Michael J.; Hrma, Pavel R.

    2013-06-01T23:59:59.000Z

    The cold cap is a layer of reacting glass batch floating on the surface of melt in an all-electric continuous glass melter. The heat needed for the conversion of the melter feed to molten glass must be transferred to and through the cold cap. Since the heat flux into the cold cap determines the rate of melting, the heat conductivity is a key property of the reacting feed. We designed an experimental setup consisting of a large cylindrical crucible with an assembly of thermocouples that monitors the evolution of the temperature field while the crucible is heated at a constant rate. Then we used two methods to calculate the heat conductivity and thermal diffusivity of the reacting feed: the approximation of the temperature field by polynomial functions and the finite-volume method coupled with least-squares analysis. Up to 680°C, the heat conductivity of the reacting melter feed was represented by a linear function of temperature.

  20. THE INTEGRATION OF PROCESS HEAT APPLICATIONS TO HIGH TEMPERATURE GAS REACTORS

    SciTech Connect (OSTI)

    Michael G. McKellar

    2011-11-01T23:59:59.000Z

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  1. Heat treated 9 Cr-1 Mo steel material for high temperature application

    DOE Patents [OSTI]

    Jablonski, Paul D.; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-08-21T23:59:59.000Z

    The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.

  2. Electrically Heated High Temperature Incineration of Air Toxics

    E-Print Network [OSTI]

    Agardy, F. J.; Wilcox, J. B.

    In-Process Technology has placed a prototype of its patented, electrically heated, packed-bed air toxics oxidizer at a northern California chemical plant. This thermal oxidizer is capable of handling a wide range of chlorinated and non...

  3. Electrically Heated High Temperature Incineration of Air Toxics 

    E-Print Network [OSTI]

    Agardy, F. J.; Wilcox, J. B.

    1990-01-01T23:59:59.000Z

    In-Process Technology has placed a prototype of its patented, electrically heated, packed-bed air toxics oxidizer at a northern California chemical plant. This thermal oxidizer is capable of handling a wide range of chlorinated and non...

  4. Temperature profile and heat transfer model for a chemical wastewater treatment plant

    SciTech Connect (OSTI)

    Brown, E.V. (CH2M HILL, Atlanta, GA (United States)); Enzminger, J.D. (CH2M HILL, Parsippany, NJ (United States))

    1991-08-01T23:59:59.000Z

    This paper presents a heat transfer model for equalization, activated sludge, and trickling filter unit processes than can be used to assess the effect of operating temperature on unit process selection, materials of construction selection, and heat retention and cooling requirements. In developing this model, the individual variables that affect the operating temperature of biological systems were first identified. Mathematical relationships were then developed to describe system behavior, based on conservation laws and rate equations. The heat transfer models were then used to developed a temperature profile of the two alternative WWTP configurations.

  5. QUANTIFYING THE COMBINED EFFECTS OF THE HEATING TIME,1 THE TEMPERATURE AND THE RECOVERY MEDIUM PH ON THE2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    QUANTIFYING THE COMBINED EFFECTS OF THE HEATING TIME,1 THE TEMPERATURE AND THE RECOVERY MEDIUM PH of the conditions of the heat treatment: temperature, duration15 and pH of the recovery medium. For a given heating Keywords: Bacillus cereus, heat treatment, lag time, recovery.29 30 1. Introduction31 32 Bacillus cereus

  6. 09/01/12 13:01:401 Quantifying the effects of heating temperature, and combined effects of heating medium2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    09/01/12 13:01:401 Quantifying the effects of heating temperature, and combined effects of heating medium2 pH and recovery medium pH on the heat resistance of Salmonella typhimurium3 4 I. Leguérinel1 *, I +33 02 98 90 85 4410 E mail address: guerinel@univ-brest.fr11 Abstract12 The influence of heating

  7. 7-106 A reversible heat pump is considered. The temperature of the source and the rate of heat transfer to the sink are to be determined.

    E-Print Network [OSTI]

    Bahrami, Majid

    7-39 7-106 A reversible heat pump is considered. The temperature of the source and the rate of heat transfer to the sink are to be determined. Assumptions The heat pump operates steadily. Analysis Combining.5¸ ¹ · ¨ © § ¸ ¸ ¹ · ¨ ¨ © § 1.6 1 1)K300( COP 1 1 maxHP, HL TT Based upon the definition of the heat pump coefficient

  8. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect (OSTI)

    Per F. Peterson

    2010-03-01T23:59:59.000Z

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  9. Experimental Investigation of Forced Convection Heat Transfer of Nanofluids in a Microchannel using Temperature Nanosensors

    E-Print Network [OSTI]

    Yu, Jiwon 1982-

    2012-12-03T23:59:59.000Z

    Experiments were performed to study forced convective heat transfer of de-ionized water (DI water) and aqueous nanofluids flowing in a microchannel. An array of temperature nanosensors, called “Thin Film Thermocouples (TFT)”, was utilized...

  10. HEAT ISLAND OF SAN ANTONIO, TEXAS DETECTED BY MODIS/AQUA TEMPERATURE PRODUCT

    E-Print Network [OSTI]

    Texas at San Antonio, University of

    by Chudnovsky et al. (2004) suggests that the best remote sensing for urban heat environment study shouldHEAT ISLAND OF SAN ANTONIO, TEXAS DETECTED BY MODIS/AQUA TEMPERATURE PRODUCT Hongjie Xie, Huade Guan, and Sandra Ytuarte Laboratory for Remote Sensing and Geoinformatics Department of Earth

  11. Simulating heat transport of harmonic temperature signals in the Earth's shallow subsurface: Lower-boundary sensitivities

    E-Print Network [OSTI]

    Smerdon, Jason E.

    Simulating heat transport of harmonic temperature signals in the Earth's shallow subsurface: Lower changes, freeze-thaw cycles, and hydrologic dynamics. It is uncertain, however, whether the reported atmospheric simulations. Citation: Smerdon, J. E., and M. Stieglitz (2006), Simulating heat transport

  12. Heat flow and subsurface temperature distributions in central and western New York. Volume 2

    SciTech Connect (OSTI)

    Hodge, D.S.; Fromm, K.A.

    1982-08-01T23:59:59.000Z

    Existing data in western and central New York indicates the possibility of a low-temperature, direct-use geothermal resource. This report evaluates the heat flow and provides a representation of temperatures at depth in this area. This has been done by: (1) analyzing known temperature distributions, (2) measuring the thermal conductivity of sedimentary rock units. Based on this information, areas of higher-than-normal heat flow and temperatures in possible geothermal source reservoirs are described to aid in targeting areas for the exploitation of geothermal energy in New York.

  13. Water heat pipe frozen startup and shutdown transients with internal temperature, pressure and visual observations

    E-Print Network [OSTI]

    Reinarts, Thomas Raymond

    1989-01-01T23:59:59.000Z

    with Internal Temperature, Pressure and Visual Observations. IDecember 1989) Thomas Raymond Reinarts, B. S. , Texas A8M University Chair of Advisory Committee: Dr. Frederick Best In a set of transient heat pipe experiments vapor space and wick... LIST OF TABLES Page Table 1. Outer Aluminum Wall Temperatures Observed and Predicted 79 Table 2. Summary of Measured Dryout, Rewet and Melting Front 126 Velocities LIST OF FIGURES Figure 1. Typical Heat Pipe Diagram Figure 2. Curvature of Vapor...

  14. Low-temperature waste-heat recovery in the food and paper industries

    SciTech Connect (OSTI)

    Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

    1980-11-01T23:59:59.000Z

    The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

  15. Low Temperature Heat Source Utilization Current and Advanced Technology

    SciTech Connect (OSTI)

    Anderson, James H. Jr.; Dambly, Benjamin W.

    1992-06-01T23:59:59.000Z

    Once a geothermal heat source has been identified as having the potential for development, and its thermal, physical, and chemical characteristics have been determined, a method of utilization must be decided upon. This compendium will touch upon some of these concerns, and hopefully will provide the reader with a better understanding of technologies being developed that will be applicable to geothermal development in East Africa, as well as other parts of the world. The appendices contain detailed reports on Down-the-Well Turbo Pump, The Vapor-Turbine Cycle for Geothermal Power Generation, Heat Exchanger Design for Geothermal Power Plants, and a Feasibility Study of Combined Power and Water Desalting Plant Using Hot Geothermal Water. [DJE-2005

  16. An Evaluation of Industrial Heat Pumps for Effective Low-Temperature Heat Utilization 

    E-Print Network [OSTI]

    Leibowitz, H. M.; Colosimo, D. D.

    1980-01-01T23:59:59.000Z

    The implementation of industrial heat pumps utilizing waste water from various industrial processes for the production of process steam is presented as a viable economic alternative to a conventional fossil-fired boiler and as an effective fuel...

  17. An Evaluation of Industrial Heat Pumps for Effective Low-Temperature Heat Utilization

    E-Print Network [OSTI]

    Leibowitz, H. M.; Colosimo, D. D.

    1980-01-01T23:59:59.000Z

    The implementation of industrial heat pumps utilizing waste water from various industrial processes for the production of process steam is presented as a viable economic alternative to a conventional fossil-fired boiler and as an effective fuel...

  18. A study of the minimum meniscus radius as a function of vapor temperature using heat pipes

    E-Print Network [OSTI]

    Sonnier, Ronald James

    1973-01-01T23:59:59.000Z

    /sec 2 latent heat of vaporization, BTU/lb m wick permeability, ft 2 length, ft molecular weight, ibm water parameter, hf pfof/uf fgff f pressure, lbf/ft 2 desorption pressure, lbf/ft 2 saturation pressure, lbf/ft 2 heat transfer rate, BTU... into Cosgrove's equation, assuming the temperature is uni- form inside the heat pipe, replacing the sum of the section lengths by the total length of the heat pipe, and combining the fluid prop- erties into one var1able there is obtained N = hf pfof/uf...

  19. High-Temperature Heat Treatment Study on a Large-Grain Nb Cavity

    SciTech Connect (OSTI)

    G. Ciovati, P. Dhakal, R. Myneni, P. Maheshwari, F.A. Stevie

    2011-07-01T23:59:59.000Z

    Improvement of the cavity performance by a high-temperature heat-treatment without subsequent chemical etching have been reported for large-grain Nb cavities treated by buffered chemical polishing, as well as for a fine-grain cavity treated by vertical electropolishing. Changes in the quality factor, Q{sub 0}, and maximum peak surface magnetic field achieved in a large-grain Nb single-cell cavity have been determined as a function of the heat treatment temperature, between 600 °C and 1200 °C. The highest Q{sub 0} improvement of about 30% was obtained after heat-treatment at 800 °C-1000 °C. Measurements by secondary ion mass spectrometry on large-grain samples heat-treated with the cavity showed large reduction of hydrogen concentration after heat treatment.

  20. DERIVATION OF A HOMOGENIZED TWO-TEMPERATURE MODEL FROM THE HEAT EQUATION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , FRANC¸OIS GOLSE, AND VALERIA RICCI Abstract. This work studies the heat equation in a two-phase material of the temperature of each phase at a macroscopic level of description. The coupling terms describing the ex- change) of the background material and the temperature field (t, x) of the dispersed phase (i.e. the inclusions) satisfy

  1. ORIGINALS ORIGINALARBEITEN The effect of log heating temperature on the peeling process

    E-Print Network [OSTI]

    Boyer, Edmond

    with deeper and more spaced checks than high temperatures when checks are closer and less deep, becoming even by soaking--immersing the whole logs in hot water basins--or by steaming them in vats. These traditionalORIGINALS ORIGINALARBEITEN The effect of log heating temperature on the peeling process and veneer

  2. Heat capacity of adsorbed Helium-3 at ultra-low temperatures

    E-Print Network [OSTI]

    Boyer, Edmond

    Heat capacity of adsorbed Helium-3 at ultra-low temperatures J. Elbs, C. Winkelmann, Yu. M. Bunkov of monolayers of 3He adsorbed on the surface of a cell filled with superfluid 3He. We found that at ultra low in the limit of ultra low temperatures. 1. INTRODUCTION A closed cell with a small orifice, immersed

  3. High Operating Temperature Liquid Metal Heat Transfer Fluids (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01T23:59:59.000Z

    The University of California, Los Angeles, the University of California, Berkeley, and Yale University is one of the 2012 SunShot CSP R&D awardees for their Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids. This fact sheet explains the motivation, description, and impact of the project.

  4. Investigating Methods of Heat Recovery from Low-Temperature PEM Fuel Cells in CHP Applications

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A. A.

    2004-01-01T23:59:59.000Z

    Heat recovery from low-temperature proton exchange membrane (PEM) fuel cells poses a number of challenges. In response to these challenges, thermodynamic assessments of proposed heat recovery methods are studied in the context of combined heat and power (CHP) for building applications. Preheating combustion air in conjunction with desiccant dehumidification and absorption cooling technologies is one of the two strategies examined in this study. The other approach integrates the PEM fuel cell with a water-loop heat pump (WLHP) for direct heat recovery. As the primary objective, energy-saving potentials of the adopted heat recovery strategies are estimated with respect to various benchmarks. The quantified energy-saving potentials are translated into effective CHP performance indices and compared with those typically specified by the manufacturers for service hot water applications. The need for developing CHP performance protocols is also discussed in light of the proposed energy recovery techniques - thereby, accomplishing the secondary objective.

  5. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    DOE Patents [OSTI]

    Im, Kwan H. (Naperville, IL); Ahluwalia, Rajesh K. (Burr Ridge, IL)

    1994-01-01T23:59:59.000Z

    A radiative heat transfer mechanism in a furnace having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits.

  6. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    DOE Patents [OSTI]

    Im, K.H.; Ahluwalia, R.K.

    1994-10-18T23:59:59.000Z

    A radiative heat transfer mechanism in a furnace is described having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits. 7 figs.

  7. Regeneration tests of a room temperature magnetic refrigerator and heat pump

    E-Print Network [OSTI]

    Brown, G V

    2014-01-01T23:59:59.000Z

    A magnetic heat pump apparatus consisting of a solid magnetic refrigerant, gadolinium, and a liquid regenerator column of ethanol and water has been tested. Utilizing a 7T field, it produced a maximum temperature span of 80 K, and in separate tests, a lowest temperature of 241 K and a highest temperature of 328 K. Thermocouples, placed at intervals along the regenerator tube, permitted measurement of the temperature distribution in the regenerator fluid. No attempt was made to extract refrigeration from the device, but analysis of the temperature distributions shows that 34 watts of refrigeration was produced.

  8. Heat shock, an exposure to high but sublethal temperature, protects cells, tissues and organisms from a subsequent

    E-Print Network [OSTI]

    Robertson, Meldrum

    contraction by (i) increasing the upper temperature limit for failure, (ii) improving recovery following heatHeat shock, an exposure to high but sublethal temperature, protects cells, tissues and organisms that the induced thermoprotection acts via a natural cellular stress mechanism mediated by upregulation of heat

  9. Scaling Laws and Temperature Profiles for Solar and Stellar Coronal Loops with Non-uniform Heating

    E-Print Network [OSTI]

    P. C. H. Martens

    2008-04-16T23:59:59.000Z

    The bulk of solar coronal radiative loss consists of soft X-ray emission from quasi-static loops at the cores of Active Regions. In order to develop diagnostics for determining the heating mechanism of these loops from observations by coronal imaging instruments, I have developed analytical solutions for the temperature structure and scaling laws of loop strands for a wide range of heating functions, including footpoint heating, uniform heating, and heating concentrated at the loop apex. Key results are that the temperature profile depends only weakly on the heating distribution -- not sufficiently to be of significant diagnostic value -- and that the scaling laws survive for this wide range of heating distributions, but with the constant of proportionality in the RTV scaling law ($P_{0}L \\thicksim T_{max}^3$) depending on the specific heating function. Furthermore, quasi-static analytical solutions do not exist for an excessive concentration of heating near the loop footpoints, a result in agreement with recent numerical simulations. It is demonstrated that a generalization of the solutions to the case of a strand with a variable diameter leads to only relatively small correction factors in the scaling laws and temperature profiles for constant diameter loop strands. A quintet of leading theoretical coronal heating mechanisms is shown to be captured by the formalism of this paper, and the differences in thermal structure between them may be verified through observations. Preliminary results from full numerical simulations demonstrate that, despite the simplifying assumptions, the analytical solutions from this paper are stable and accurate.

  10. Selecting the Design Entering Water Temperature for Vertical Geothermal Heat Pumps in Cooling-Dominated Applications

    SciTech Connect (OSTI)

    Shonder, John A [ORNL; Thornton, Jeff W. [Thermal Energy Systems Specialists, Inc.; Hughes, Patrick [ORNL

    2001-01-01T23:59:59.000Z

    At a military base in the Southeastern United States, an energy services company (ESCO) has proposed to retrofit more than 1,000 family residences with geothermal heat pumps as part of an energy savings performance contract (ESPC). Each residence is to have one heat pump with its own ground heat exchanger consisting of two or more vertical bores. A design firm hired by the ESCO sized the heat pumps to meet peak cooling loads, and sized the borefields to limit the maximum entering water temperature (EWT) to the heat pumps to 95 F (35 C). Because there is some disagreement in the geothermal heat pump industry over the peak temperature to be used for design (some designers and design manuals recommend temperatures as low as 85 F [29 C], while equipment manufacturers and others specify temperatures of 100 F [38 C] or higher) the authors were requested to examine the designs in detail to determine whether the 95 F (35 C) limit was adequate to ensure occupant comfort, efficient operation, and low capital and operating costs. It was found that three of the designer's assumptions made the borefield designs more conservative (i.e., longer) than the 95 F (35 C) limit would indicate. In fact, the analysis indicates that with more realistic assumptions about system operation, the maximum entering water temperature at the modeled residence will be about 89 F (32 C). Given the implications of a borefield that is shorter than required, it is likely that other designers are using similarly conservative assumptions to size vertical borefields for geothermal heat pumps. This implies that unless all of the design assumptions are examined, blanket recommendations to limit the entering water temperature to a specific value (such as 90 F [32 C]) may result in borefields that are significantly oversized.

  11. Selecting the Design Entering Water Temperature for Vertical Geothermal Heat Pumps in Cooling-Dominated Applications

    SciTech Connect (OSTI)

    Shonder, J.A.

    2001-07-12T23:59:59.000Z

    At a military base in the Southeastern US, an energy services company (ESCO) has proposed to retrofit more than 1,000 family residences with geothermal heat pumps as part of an energy savings performance contract (ESPC). Each residence is to have one heat pump with its own ground heat exchanger consisting of two or more vertical bores. A design firm hired by the ESCO sized the heat pumps to meet peak cooling loads, and sized the borefields to limit the maximum entering water temperature (EWT) to the heat pumps to 95 F (35 C). Because there is some disagreement in the geothermal heat pump industry over the peak temperature to be used for design (some designers and design manuals recommend temperatures as low as 85 F [29 C], while equipment manufacturers and others specify temperatures of 100 F [38 C] or higher) the authors were requested to examine the designs in detail to determine whether the 95 F (35 C) limit was adequate to ensure occupant comfort, efficient operation, and low capital and operating costs. It was found that three of the designer's assumptions made the borefield designs more conservative (i.e., longer) than the 95 F (35 C) limit would indicate. In fact, the analysis indicates that with more realistic assumptions about system operation, the maximum entering water temperature at the modeled residence will be about 89 F (32 C). Given the implications of a borefield that is shorter than required, it is likely that other designers are using similarly conservative assumptions to size vertical borefields for geothermal heat pumps. This implies that unless all of the design assumptions are examined, blanket recommendations to limit the entering water temperature to a specific value (such as 90 F [32 C]) may result in borefields that are significantly oversized.

  12. Determination of heat conductivity and thermal diffusivity of waste glass melter feed: Extension to high temperatures

    SciTech Connect (OSTI)

    Rice, Jarrett A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Pokorny, Richard [Inst. of Chemical Technology, Prague (Czech Republic); Schweiger, Michael J. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Hrma, Pavel R. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Pohang Univ. of Science and Technology (Korea, Republic of)

    2014-06-01T23:59:59.000Z

    The heat conductivity ({lambda}) and the thermal diffusivity (a) of reacting glass batch, or melter feed, control the heat flux into and within the cold cap, a layer of reacting material floating on the pool of molten glass in an all-electric continuous waste glass melter. After previously estimating {lambda} of melter feed at temperatures up to 680 deg C, we focus in this work on the {lambda}(T) function at T > 680 deg C, at which the feed material becomes foamy. We used a customized experimental setup consisting of a large cylindrical crucible with an assembly of thermocouples, which monitored the evolution of the temperature field while the crucible with feed was heated at a constant rate from room temperature up to 1100°C. Approximating measured temperature profiles by polynomial functions, we used the heat transfer equation to estimate the {lambda}(T) approximation function, which we subsequently optimized using the finite-volume method combined with least-squares analysis. The heat conductivity increased as the temperature increased until the feed began to expand into foam, at which point the conductivity dropped. It began to increase again as the foam turned into a bubble-free glass melt. We discuss the implications of this behavior for the mathematical modeling of the cold cap.

  13. HEATS OF COMBUSTION OF HIGH TEMPERATURE POLYMERS Richard N. Walters*, Stacey M. Hackett* and Richard E. Lyon

    E-Print Network [OSTI]

    Laughlin, Robert B.

    1 HEATS OF COMBUSTION OF HIGH TEMPERATURE POLYMERS Richard N. Walters*, Stacey M. Hackett Creek Avenue, Building C Egg Harbor Township, New Jersey 08234 ABSTRACT The heats of combustion to thermochemical calculations of the net heat of combustion from oxygen consumption and the gross heat

  14. Heat transfer in ice hockey halls: measurements, energy analysis and analytical ice pad temperature profile

    E-Print Network [OSTI]

    Andrea Ferrantelli; Klaus Viljanen

    2015-06-30T23:59:59.000Z

    We consider heat transfer processes in an ice hockey hall, during operating conditions, with a bottom-up approach based upon on-site measurements. Detailed temperature data of both the ice pad and the air above the ice rink are used for a heat balance calculation in the steady-state regime, which quantifies the impact of each single heat source. We solve the heat equation in the ice slab in transient regime, and obtain a general analytical formula for the temperature profile. This solution is then applied to the resurfacing process by using our measurements as (time-dependent) boundary conditions (b.c.), and compared to an analogous numerical computation with good agreement. Our analytical formula is given with implicit initial condition and b.c., therefore it can be used not only in ice halls, but in a large variety of engineering applications.

  15. Heat transfer in ice hockey halls: measurements, energy analysis and analytical ice pad temperature profile

    E-Print Network [OSTI]

    Ferrantelli, Andrea

    2015-01-01T23:59:59.000Z

    We consider heat transfer processes in an ice hockey hall, during operating conditions, with a bottom-up approach based upon on-site measurements. Detailed temperature data of both the ice pad and the air above the ice rink are used for a heat balance calculation in the steady-state regime, which quantifies the impact of each single heat source. We solve the heat equation in the ice slab in transient regime, and obtain a general analytical formula for the temperature profile. This solution is then applied to the resurfacing process by using our measurements as (time-dependent) boundary conditions (b.c.), and compared to an analogous numerical computation with good agreement. Our analytical formula is given with implicit initial condition and b.c., therefore it can be used not only in ice halls, but in a large variety of engineering applications.

  16. Reproducibility of High-Q SRF Cavities by High Temperature Heat Treatment

    SciTech Connect (OSTI)

    Dhakal, Pashupati [JLAB; Ciovati, Gianluigi [JLAB; Kneisel, Peter [JLAB; Myneni, Ganapati Rao [JLAB

    2014-07-01T23:59:59.000Z

    Recent work on high-temperature (> 600 °C) heat treatment of ingot Nb cavities in a customized vacuum furnace for several hours showed the possibility of achieving Q0-values of up to ~5×1010 at 2.0 K, 1.5 GHz and accelerating gradients of ~20 MV/m. This contribution presents results on further studies of the heat treatment process to produce cavities with high Q0 values for continuous-wave accelerator application. Single-cell cavities of different Nb purity have been processed through few cycles of heat-treatments and chemical etching. Measurements of Q0 as a function of temperature at low RF field and of Q0 as a function of the RF field at or below 2.0 K have been made after each treatment. Measurements by TOF-SIMS of the impurities? depth profiles were made on samples heat treated with the cavities.

  17. Use of cooling-temperature heat for sustainable food production

    E-Print Network [OSTI]

    CERN. Geneva

    2013-01-01T23:59:59.000Z

    Food production and energy are undoubtedly interlinked. However, at present food production depends almost exclusively on direct use of stored energy sources, may they be nuclear-, petroleum- or bio-based. Furthermore, non-storage based “renewable” energy systems, like wind and solar, need development before bering able to contribute at a significant level. This presentation will point towards surplus heat as a way to bridge the gap between today’s food systems and truly sustainable ones, suitable to be performed in urban and peri-urban areas. Considering that arable land and fresh water resources are the base for our present food systems, but are limited, in combination with continued urbanisation, such solutions are urgently needed. By combining the use of surplus energy with harvest of society’s organic side flows, like e.g. food waste and aquatic based cash crops, truly sustainable and urban close food systems are possible at a level of significance also for global food security.

  18. Inverse three-dimensional method for fast evaluation of temperature and heat flux fields during rolling process

    E-Print Network [OSTI]

    Boyer, Edmond

    is therefore needed. Therefore highly heterogeneous temperature fields and heat fluxes can be evaluating. Asymptotic developments enable to take into account variations of thermal properties depending on temperatureInverse three-dimensional method for fast evaluation of temperature and heat flux fields during

  19. Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace

    SciTech Connect (OSTI)

    Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

    2014-01-01T23:59:59.000Z

    This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

  20. Method of coverning the working gas temperature of a solar heated hot gas engine

    SciTech Connect (OSTI)

    Almstrom, S.-H.; Nelving, H.G.

    1984-07-03T23:59:59.000Z

    A closed-cycle hot gas engine heated by solar radiation is provided with a governing system varying the working gas pressure so as to vary the power output at a constant high temperature level of the working gas and-at least partly-at a constant engine speed.

  1. Method of governing the working gas temperature of a solar heated hot gas engine

    SciTech Connect (OSTI)

    Almstrom, S.H.; Nelving, H.G.

    1984-07-03T23:59:59.000Z

    A closed-cycle hot gas engine heated by solar radiation is provided with a governing system varying the working gas pressure so as to vary the power output at a constant high temperature level of the working gas and-at least partly-at a constant engine speed.

  2. Effects of weld preheat temperature and heat input on type IV failure

    E-Print Network [OSTI]

    Cambridge, University of

    Effects of weld preheat temperature and heat input on type IV failure J. A. Francis*1 , G. M. D of a welded joint due to an enhanced rate of creep void formation in the fine grained or intercritically standpoint, and comparatively little effort has been directed at understanding the effects of welding

  3. Scanning electron microscopy study of carbon nanotubes heated at high temperatures in air

    E-Print Network [OSTI]

    . INTRODUCTION Because of their remarkable physical and electronic properties, carbon nanotubes are promising nanotubes in air,3,4 in an oxygen stream,5 or under a flow of carbon dioxide gas.6 Thinning of nanotubesScanning electron microscopy study of carbon nanotubes heated at high temperatures in air Xuekun Lu

  4. Voltage breakdown limits at a high material temperature for rapid pulse heating in a vacuum

    SciTech Connect (OSTI)

    Pincosy, P A; Speer, R

    1999-06-07T23:59:59.000Z

    The proposed Advanced Hydro Facility (AHF) is required to produce multi-pulse radiographs. Electron beam pulse machines with sub-microsecond repetition are not yet available to test the problem of electron beam propagation through the hydro-dynamically expanding plasma from the nearby previously heated target material. A proposed test scenario includes an ohmically heated small volume of target material simulating the electron beam heating, along with an actual electron beam pulse impinging on nearby target material. A pulse power heating circuit was tested to evaluate the limits of pulse heating a small volume of material to tens of kilo-joules per gram. The main pulse heating time (50 to 100 ns) was to simulate the electron beam heating of a converter target material. To avoid skin heating non-uniformity a longer time scale pulse of a few microseconds first heats the target material to a few thousand degrees near the liquid to vapor transition. Under this state the maximum electric field that the current carrying conductor can support is the important parameter for insuring that the 100 ns heating pulse can deposit sufficient power. A small pulse power system was built for tests of this limit. Under cold conditions the vacuum electric field hold-off limit has been quoted as high as many tens of kilovolts per centimeter. The tests for these experiments found that the vacuum electric field hold-off was limited to a few kilovolts per centimeter when the material approached melting temperatures. Therefore the proposed test scenario for AHF was not achievable.*

  5. Testing of Crystallization Temperature of a New Working Fluid for Absorption Heat Pump Systems

    SciTech Connect (OSTI)

    Wang, Kai [ORNL] [ORNL; Kisari, Padmaja [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Vineyard, Edward Allan [ORNL] [ORNL

    2010-01-01T23:59:59.000Z

    Lithium bromide/water (LiBr/water) absorption systems are potential candidates for absorption heat pump water heating applications since they have been widely commercialized for cooling applications. One drawback to LiBr/water absorption water heater systems is that they are unable to operate at typical water heating temperatures due to solution crystallization hazards. Binary or ternary mixtures, serving as working fluids, were reported (Ally, 1988; Herold et al., 1991; Iyoki and Uemura, 1981; Yasuhide Nemoto et al., 2010; Zogg et al., 2005) to help improve the absorption performance or avoid crystallization of absorption heat pump systems. A recent development (De Lucas et al., 2007) investigated the use of a ternary mixture of aqueous mixture of lithium bromide and sodium formate (CHO2Na). The new working fluid composition maintains a ratio of LiBr/CHO2Na of 2 by weight. This new working fluid is a potential competitor to aqueous LiBr solution in absorption system due to higher water vapor absorption rates and lower generation temperature needed (De Lucas et al., 2004). There exists data on equilibrium performance and other physical properties of this new working fluid. However, there is no available data on crystallization behavior. Crystallization temperature is crucial for the design of absorption heat pump water heater in order to avoid crystallization hazards during operation. We have therefore conducted a systematic study to explore the crystallization temperature of LiBr/CHO2Na water solution and compared it against aqueous LiBr solutions. These results were then used to evaluate the feasibility of using the new working fluid in water heating applications showing limited potential.

  6. Heat flow and subsurface temperature distributions in central and western New York. Final report

    SciTech Connect (OSTI)

    Hodge, D.S.; Fromm, K.

    1984-01-01T23:59:59.000Z

    Initiation of a geothermal energy program in western and central New York requires knowledge of subsurface temperatures for targeting areas of potential resources. The temperature distribution in possible geothermal reservoirs, calculated from heat flow measurements and modeling techniques, shows that a large area of New York can be considered for exploitation of geothermal resources. Though the temperatures at currently accessible depths show the availability of only a low-temperature (less than 100/sup 0/C), direct-use resource, this can be considered as an alternative for the future energy needs of New York State. From analysis of bottom-hole-temperature data and direct heat flow measurements, estimates of temperatures in the Cambrian Sandstones provide the basis of the economic evaluation of the reservoir. This reservoir contains the extractable fluids needed for targeting a potential geothermal well site in the low-temperature geothermal target zone. In the northern section of the Appalachian basin, reservoir temperatures in the Cambrian are below 50/sup 0/C but may be over 80/sup 0/C in the deeper parts of the basin in southern New York State. Using a minimum of 50/sup 0/C as a useful reservoir temperature, temperatures in excess of this value are encountered in the Theresa Formation at depths in excess of 1300 meters. Considering a maximum depth for economical drilling to be 2500 meters with present technology, the 2500 meters to the Theresa (sea level datum) forms the lower limit of the geothermal resource. Temperatures in the range of 70/sup 0/C to 80/sup 0/C are predicted for the southern portion of New York State.

  7. CHARACTERIZATION OF ELEVATED TEMPERATURE PROPERTIES OF HEAT EXCHANGER AND STEAM GENERATOR ALLOYS

    SciTech Connect (OSTI)

    J.K. Wright; L.J. Carroll; C.J. Cabet; T. Lillo; J.K. Benz; J.A. Simpson; A. Chapman; R.N. Wright

    2012-10-01T23:59:59.000Z

    The Next Generation Nuclear Plant project is considering Alloy 800H and Alloy 617 for steam generator and intermediate heat exchangers. It is envisioned that a steam generator would operate with reactor outlet temperatures from 750 to 800 C, while an intermediate heat exchanger for primary to secondary helium would operate up to an outlet temperature of 950 C. Although both alloys are of interest due in part to their technical maturity, a number of specific properties require further characterization for design of nuclear components. Strain rate sensitivity of both alloys has been characterized and is found to be significant above 600 C. Both alloys also exhibit dynamic strain aging, characterized by serrated flow, over a wide range of temperatures and strain rates. High temperature tensile testing of Alloy 617 has been conducted over a range of temperatures. Dynamic strain aging is a concern for these materials since it is observed to result in reduced ductility for many solid solution alloys. Creep, fatigue, and creep-fatigue properties of Alloy 617 have been measured as well, with the goal of determining the influence of the temperature, strain rate and atmosphere on the creep fatigue life of Alloy 617. Elevated temperature properties and implications for codification of the alloys will be described.

  8. Fabrication and Design Aspects of High-Temperature Compact Diffusion Bonded Heat Exchangers

    SciTech Connect (OSTI)

    Mylavarapu, Sai K. [Ohio State University; Sun, Xiaodong [Ohio State University; Christensen, Richard N. [Ohio State University; Glosup, Richard E. [Ohio State University; Unocic, Raymond R [ORNL

    2012-01-01T23:59:59.000Z

    The very high temperature reactor (VHTR), using gas-cooled reactor technology, is one of the six reactor concepts selected by the Generation IV International Forum and is anticipated to be the reactor type for the next generation nuclear plant (NGNP). In this type of reactor with an indirect power cycle system, a high-temperature and high integrity intermediate heat exchanger (IHX) with high effectiveness is required to efficiently transfer the core thermal output to secondary fluid for electricity production, process heat, or hydrogen cogeneration. The current Technology Readiness Level status issued by NGNP to all components associated with the IHX for reactor core outlet temperatures of 750-800oC is 3 on a scale of 1 to 10 with 10 being the most ready. At present, there is no proven high-temperature IHX concept for VHTRs. Amongst the various potential IHX concepts available, diffusion bonded heat exchangers (henceforth called printed circuit heat exchangers, or PCHEs) appear promising for NGNP applications. The design and fabrication of this key component of NGNP is the primary focus of this paper. In the current study, two PCHEs were fabricated using Alloy 617 plates and will be experimentally investigated for their thermal-hydraulic performance in a high-temperature helium test facility (HTHF). The HTHF was primarily designed and constructed to test the thermal-hydraulic performance of PCHEs The test facility is primarily of Alloy 800H construction and is designed to facilitate experiments at temperatures and pressures up to 800oC and 3 MPa, respectively. The PCHE fabrication related processes, i.e., photochemical machining and diffusion bonding are briefly discussed for Alloy 617 plates. Diffusion bonding of Alloy 617 plates with and without a Ni interlayer is discussed. Furthermore, preliminary microstructural and mechanical characterization studies of representative diffusion bonded Alloy 617 specimens are presented.

  9. Heat treatment temperature influence on ASTM A890 GR 6A super duplex stainless steel microstructure

    SciTech Connect (OSTI)

    Martins, Marcelo [SULZER BRASIL S/A - FUNDINOX DIVISION (Brazil); Centro Universitario Salesiano de Sao Paulo (Brazil); E-mail: marcelo.martins@sulzer.com; Casteletti, Luiz Carlos [Materials, Aeronautics and Automobiles Engineering Department at the Sao Carlos Engineering School of the Sao Paulo University (USP) (Brazil)

    2005-09-15T23:59:59.000Z

    Duplex and super duplex stainless steels are ferrous alloys with up to 26% chromium, 8% nickel, 5% molybdenum and 0.3% nitrogen, which are largely used in applications in media containing ions from the halogen family, mainly the chloride ion (Cl{sup -}). The emergence of this material aimed at substituting Copper-Nickel alloys (Cupro-Nickel) that despite presenting good corrosion resistance, has mechanical properties quite inferior to steel properties. The metallurgy of duplex and super duplex stainless steel is complex due to high sensitiveness to sigma phase precipitation that becomes apparent, due to the temperatures they are exposed on cooling from solidification as well as from heat treatment processes. The objective of this study was to verify the influence of heat treating temperatures on the microstructure and hardness of ASTM A890/A890M Gr 6A super duplex stainless steel type. Microstructure control is of extreme importance for castings, as the chemical composition and cooling during solidification inevitably provide conditions for precipitation of sigma phase. Higher hardness in these materials is directly associated to high sigma phase concentration in the microstructure, precipitated in the ferrite/austenite interface. While heat treatment temperature during solution treatment increases, the sigma phase content in the microstructure decreases and consequently, the material hardness diminishes. When the sigma phase was completely dissolved by the heat treatment, the material hardness was influenced only due to ferrite and austenite contents in the microstructure.

  10. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power: High-Temperature Static Experiments

    SciTech Connect (OSTI)

    Bell, Jason R [ORNL; Joseph III, Robert Anthony [ORNL; McFarlane, Joanna [ORNL; Qualls, A L [ORNL

    2012-05-01T23:59:59.000Z

    Concentrating solar power (CSP) may be an alternative to generating electricity from fossil fuels; however, greater thermodynamic efficiency is needed to improve the economics of CSP operation. One way of achieving improved efficiency is to operate the CSP loop at higher temperatures than the current maximum of about 400 C. ORNL has been investigating a synthetic polyaromatic oil for use in a trough type CSP collector, to temperatures up to 500 C. The oil was chosen because of its thermal stability and calculated low vapor and critical pressures. The oil has been synthesized using a Suzuki coupling mechanism and has been tested in static heating experiments. Analysis has been conducted on the oil after heating and suggests that there may be some isomerization taking place at 450 C, but the fluid appears to remain stable above that temperature. Tests were conducted over one week and further tests are planned to investigate stabilities after heating for months and in flow configurations. Thermochemical data and thermophysical predictions indicate that substituted polyaromatic hydrocarbons may be useful for applications that run at higher temperatures than possible with commercial fluids such as Therminol-VP1.

  11. Method for determining temperatures and heat transfer coefficients with a superconductive sample

    SciTech Connect (OSTI)

    Gentile, D.; Hassenzahl, W.; Polak, M.

    1980-05-01T23:59:59.000Z

    The method that is described here uses the current-sharing characteristic of a copper-stabilized, superconductive NbTi wire to determine the temperature. The measurements were made for magnetic fields up to 6 T and the precision actually attained with this method is about 0.1 K. It is an improvement over one that has been used at 4.2 K to measure transient heat transfer in that all the parameters of the sample are well known and the current in the sample is measured directly. The response time of the probe is less than 5 ..mu..s and it has been used to measure temperatures during heat pulses as short as 20 ..mu..s. Temperature measurements between 1.6 and 8.5 K are described. An accurate formula based on the current and electric field along the sample has been developed for temperatures between 2.5 K and the critical temperature of the conductor, which, of course, depends on the applied field. Also described is a graphical method that must be used below 2.5 K, where the critical current is not a linear function of temperature.

  12. SCALE RESISTANT HEAT EXCHANGER FOR LOW TEMPERATURE GEOTHERMAL BINARY CYCLE POWER PLANT

    SciTech Connect (OSTI)

    HAYS, LANCE G

    2014-11-18T23:59:59.000Z

    Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 ºF. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures as low as 125 ºF, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 ºF brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the “piggyback” demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required process conditions for the TGH demonstration. Operation of the TGH with and without the ABS system will demonstrate an increase in geothermal resource productivity for the VPC from 1 MW/(million lb) of brine to 1.75 MW/(million lb) of brine, a 75% increase.

  13. What is Wind Chill Temperature? It is the temperature it "feels like" outside and is based on the rate of heat loss

    E-Print Network [OSTI]

    What is Wind Chill Temperature? It is the temperature it "feels like" outside and is based on the rate of heat loss from exposed skin caused by the effects of wind and cold. As the wind increases, the body is cooled at a faster rate causing the skin temperature to drop. Wind Chill does not impact

  14. Two component absorption/phase separation chemical heat pump to provide temperature amplification to waste heat streams

    DOE Patents [OSTI]

    Scott, T.C.; Kaplan, S.I.

    1987-09-04T23:59:59.000Z

    A chemical heat pump that utilizes liquid/liquid phase separation rather than evaporation to separate two components in a heat of mixing chemical heat pump process. 3 figs.

  15. High temperature solid lubricant materials for heavy duty and advanced heat engines

    SciTech Connect (OSTI)

    DellaCorte, C.; Wood, J.C.

    1994-10-01T23:59:59.000Z

    Advanced engine designs incorporate higher mechanical and thermal loading to achieve efficiency improvements. This approach often leads to higher operating temperatures of critical sliding elements (e.g. piston ring/cylinder wall contacts and valve guides) which compromise the use of conventional and even advanced synthetic liquid lubricants. For these applications solid lubricants must be considered. Several novel solid lubricant composites and coatings designated PS/PM200 have been employed to dry and marginally oil lubricated contacts in advanced heat engines. These applications include cylinder kits of heavy duty diesels, and high temperature sterling engines, sidewall seals of rotary engines and various exhaust valve and exhaust component applications. The following paper describes the tribological and thermophysical properties of these tribomaterials and reviews the results of applying them to engine applications. Other potential tribological materials and applications are also discussed with particular emphasis to heavy duty and advanced heat engines.

  16. Low-Temperature Heat Capacity and Localized Vibrational Modes in Natural and Synthetic Tetrahedrites

    SciTech Connect (OSTI)

    Lara-Curzio, Edgar [ORNL] [ORNL; May, Andrew F [ORNL] [ORNL; Delaire, Olivier A [ORNL] [ORNL; McGuire, Michael A [ORNL] [ORNL; Lu, Xu [Michigan State University] [Michigan State University; Li, Cheng-Yun [Michigan State University] [Michigan State University; Case, Eldon D [Michigan State University, East Lansing] [Michigan State University, East Lansing; Morelli, Donold [Michigan State University, East Lansing] [Michigan State University, East Lansing

    2014-01-01T23:59:59.000Z

    The heat capacity of natural (Cu12-x (Fe, Zn, Ag)x(Sb, As)4S13) and synthetic (Cu12-xZnxSb4S13 with x=0, 1, 2) tetrahedrite compounds was measured between 2K and 380K. It was found that the temperature dependence of the heat capacity can be described using a Debye term and three Einstein oscillators with characteristic temperatures that correspond to energies of ~1.0 meV, ~2.8 meV and ~8.4 meV. The existence of localized vibration modes, which are assigned to the displacements of the trigonally coordinated Cu atoms in the structure, is discussed in the context of anharmonicity and its effect on the low lattice thermal conductivity exhibited by these compounds.

  17. A Prototype Roof Deck Designed to Self-Regulate Deck Temperature and Reduce Heat Transfer

    SciTech Connect (OSTI)

    Miller, William A [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    A prototype roof and attic assembly exploits the use of radiation, convection and insulation controls to reduce its peak day heat transfer by almost 85 percent of the heat transfer crossing a conventional roof and attic assembly. The assembly exhibits attic air temperatures that do not exceed the maximum daily outdoor ambient temperature. The design includes a passive ventilation scheme that pulls air from the soffit and attic into an inclined air space above the roof deck. The design complies with fire protection codes because the air intake is internal and closed to the elements. Field data were benchmarked against an attic computer tool and simulations made for new and retrofit constructions in hot, moderate and cold climates to gauge the cost of energy savings and potential payback.

  18. A Prototype Roof Deck Designed to Self-Regulate Deck Temperature and Reduce Heat Transfer

    SciTech Connect (OSTI)

    Miller, William A [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    A prototype roof and attic assembly exploits the use of radiation, convection and insulation controls to reduce the heat transfer penetrating its roof deck by almost 85% of the heat transfer crossing a conventional roof and attic assembly. The assembly exhibited attic air temperatures that did not exceed the peak day outdoor ambient temperature. The design includes a passive ventilation scheme that pulls air from the soffit and attic into an inclined air space above the deck. The design complies with fire protection codes because the air intake is internal and closed to the elements. Field data were benchmarked against an attic computer tool and simulations made for new and retrofit home constructions in hot, moderate and cold climates to access economics for the assembly.

  19. Low-temperature heat capacity and localized vibrational modes in natural and synthetic tetrahedrites

    SciTech Connect (OSTI)

    Lara-Curzio, E., E-mail: laracurzioe@ornl.gov; May, A. F.; Delaire, O.; McGuire, M. A. [Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, Tennessee 37831 (United States); Lu, X.; Liu, Cheng-Yun; Case, E. D.; Morelli, D. T. [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824 (United States)

    2014-05-21T23:59:59.000Z

    The heat capacity of natural (Cu{sub 12?x} (Fe, Zn, Ag){sub x}(Sb, As){sub 4}S{sub 13}) and synthetic (Cu{sub 12?x}Zn{sub x}Sb{sub 4}S{sub 13} with x?=?0, 1, 2) tetrahedrite compounds was measured between 2?K and 380?K. It was found that the temperature dependence of the heat capacity can be described using a Debye term and three Einstein oscillators with characteristic temperatures that correspond to energies of ?1.0?meV, ?2.8?meV, and ?8.4?meV. The existence of localized vibrational modes, which are assigned to the displacements of the trigonally coordinated Cu atoms in the structure, is discussed in the context of anharmonicity and its effect on the low lattice thermal conductivity exhibited by these compounds.

  20. Technology Development Roadmap for the Advanced High Temperature Reactor Secondary Heat Exchanger

    SciTech Connect (OSTI)

    P. Sabharwall; M. McCllar; A. Siahpush; D. Clark; M. Patterson; J. Collins

    2012-09-01T23:59:59.000Z

    This Technology Development Roadmap (TDRM) presents the path forward for deploying large-scale molten salt secondary heat exchangers (MS-SHX) and recognizing the benefits of using molten salt as the heat transport medium for advanced high temperature reactors (AHTR). This TDRM will aid in the development and selection of the required heat exchanger for: power production (the first anticipated process heat application), hydrogen production, steam methane reforming, methanol to gasoline production, or ammonia production. This TDRM (a) establishes the current state of molten salt SHX technology readiness, (b) defines a path forward that systematically and effectively tests this technology to overcome areas of uncertainty, (c) demonstrates the achievement of an appropriate level of maturity prior to construction and plant operation, and (d) identifies issues and prioritizes future work for maturing the state of SHX technology. This study discusses the results of a preliminary design analysis of the SHX and explains the evaluation and selection methodology. An important engineering challenge will be to prevent the molten salt from freezing during normal and off-normal operations because of its high melting temperature (390°C for KF ZrF4). The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The need for efficiency, compactness, and safety challenge the capabilities of existing heat exchanger technology. The description of potential heat exchanger configurations or designs (such as printed circuit, spiral or helical coiled, ceramic, plate and fin, and plate type) were covered in an earlier report (Sabharwall et al. 2011). Significant future work, much of which is suggested in this report, is needed before the benefits and full potential of the AHTR can be realized. The execution of this TDRM will focuses research efforts on the near-term qualification, selection, or maturation strategy as detailed in this report. Development of the integration methodology feasibility study, along with research and development (R&D) needs, are ongoing tasks that will be covered in the future reports as work progresses. Section 2 briefly presents the integration of AHTR technology with conventional chemical industrial processes., See Idaho National Laboratory (INL) TEV-1160 (2011) for further details

  1. Subsurface Temperature, Moisture, Thermal Conductivity and Heat Flux, Barrow, Area A, B, C, D

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cable, William; Romanovsky, Vladimir

    Subsurface temperature data are being collected along a transect from the center of the polygon through the trough (and to the center of the adjacent polygon for Area D). Each transect has five 1.5m vertical array thermistor probes with 16 thermistors each. This dataset also includes soil pits that have been instrumented for temperature, water content, thermal conductivity, and heat flux at the permafrost table. Area C has a shallow borehole of 2.5 meters depth is instrumented in the center of the polygon.

  2. Temperature inversion on the surface of externally heated optically thick multigrain dust clouds

    E-Print Network [OSTI]

    Dejan Vinkovic

    2006-12-01T23:59:59.000Z

    It was recently discovered that the temperature in the surface layer of externally heated optically thick gray dust clouds increases with the optical depth for some distance from the surface, as opposed to the normal decrease in temperature with distance in the rest of the cloud. This temperature inversion is a result of efficient absorption of diffuse flux from the cloud interior by the surface dust exposed to the external radiation. A micron or bigger size grains experience this effect when the external flux is of stellar spectrum. We explore what happens to the effect when dust is a mixture of grain sizes (multigrain). Two possible boundary conditions are considered: i) a constant external flux without constrains on the dust temperature, and ii) the maximum dust temperature set to the sublimation temperature. We find that the first condition allows small grains to completely suppress the temperature inversion of big grains if the overall opacity is dominated by small grains. The second condition enables big grains to maintain the inversion even when they are a minor contributor to the opacity. In reality, the choice of boundary condition depends on the dust dynamics. When applied to the physics of protoplanetary disks, the temperature inversion leads to a previously unrecognized disk structure where optically thin dust can exist inside the dust destruction radius of an optically thick disk. We conclude that the transition between the dusty disk and the gaseous inner clearing is not a sharp edge, but rather a large optically thin region.

  3. ECUT energy data reference series: high-temperature materials for advanced heat engines

    SciTech Connect (OSTI)

    Abarcar, R.B.; Hane, G.J.; Johnson, D.R.

    1984-07-01T23:59:59.000Z

    Information that describes the use of high-temperature materials in advanced heat engines for ground transportation applications is summarized. Applications discussed are: automobiles, light trucks, and medium and heavy trucks. The information provided on each of these modes includes descriptions of the average conversion efficiency of the engine, the capital stock, the amount of energy used, and the activity level as measured in ton-miles.

  4. Uncertainty in calculated surface temperature and surface heat flux of THTF heater rods

    SciTech Connect (OSTI)

    Childs, K.W.

    1980-12-01T23:59:59.000Z

    This report presents a procedure for determining the uncertainty in the output of a complex computer code resulting from uncertainties in its input variables. This method is applied to ORINC (Oak Ridge Inverse Code) to estimate the uncertainty in the calculated surface temperature and surface heat flux of a THTF heater during a blowdown transient. The significant input variables are identified and 95% confidence bands are calculated for the code outputs based on the uncertainty in these input variables. 21 refs., 43 figs.

  5. Uncertainty in calculated surface temperature and surface heat flux of THTF heater rods

    SciTech Connect (OSTI)

    Childs, K.W.

    1980-12-01T23:59:59.000Z

    The report presents a procedure for determining the uncertainty in the output of a complex computer code resulting from uncertainties in its input variables. This method is applied to ORINC (Oak Ridge Inverse Code) to estimate the uncertainty in the calculated surface temperature and surface heat flux of a THTF heater during a blowdown transient. The significant input variables are identified and 95% confidence bands are calculated for the code outputs based on the uncertainty in these input variables.

  6. The Organic Rankine Cycle System, Its Application to Extract Energy From Low Temperature Waste Heat

    E-Print Network [OSTI]

    Sawyer, R. H.; Ichikawa, S.

    1980-01-01T23:59:59.000Z

    in a Rankine Cycle to extract The theoretical Rankine Cycle efficiency (~R) is energy from low temperature waste heat. By 1968, a defined as: 3.8 megawatt unit using R-11 refrigerant was placed in commercial operation in Japan (2) and currently ?ZR.... Figure 2 compares the theo The basic Organic Rankine Cycle may be described retical Rankine efficiency for several hydrocarbons, using the Pressure-Enthalpy Diagram of a typical fluorocarbons and water within the evaporating working fluid (R-11). (See...

  7. Fabrication and Design Aspects of High-Temperature Compact Diffusion Bonded Heat Exchangers

    SciTech Connect (OSTI)

    Sai K. Mylavarapu; Richard N. Christensen; Raymond R. Unocic; Richard E. Glosup; Mike W. Patterson

    2012-08-01T23:59:59.000Z

    The Very High Temperature Reactor (VHTR) using gas-cooled reactor technology is anticipated to be the reactor type for the Next Generation Nuclear Plant (NGNP). In this reactor concept with an indirect power cycle system, a high-temperature and high integrity Intermediate Heat Exchanger (IHX) with high effectiveness is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation, hydrogen production, and/or industrial process heat applications. At present, there is no proven IHX concept for VHTRs. The current Technology Readiness Level (TRL) status issued by NGNP to all components associated with the IHX for reduced nominal reactor outlet temperatures of 750–800 degrees C is 3 on a 1–10 scale, with 10 indicating omplete technological maturity. Among the various potential IHX concepts available, diffusion bonded heat exchangers (henceforth called printed circuit heat exchangers, or PCHEs) appear promising for NGNP applications. The design and fabrication of this key component of NGNP with Alloy 617, a candidate high-temperature structural material for NGNP applications, are the primary focus of this paper. In the current study, diffusion bonding of Alloy 617 has been demonstrated, although the optimum diffusion bonding process parameters to engineer a quasi interface-free joint are yet to be determined. The PCHE fabrication related processes, i.e., photochemical etching and diffusion bonding are discussed for Alloy 617 plates. In addition, the authors’ experiences with these non-conventional machining and joining techniques are discussed. Two PCHEs are fabricated using Alloy 617 plates and are being experimentally investigated for their thermal-hydraulic performance in a High-Temperature Helium Facility (HTHF). The HTHF is primarily of Alloy 800H construction and is designed to facilitate experiments at temperatures and pressures up to 800 degrees C and 3 MPa, respectively. Furthermore, some preliminary microstructural and mechanical property characterization studies of representative diffusion bonded Alloy 617 specimens are presented. The characterization studies are restricted and less severe from an NGNP perspective but provide sufficient confidence to ensure safe operation of the heat exchangers in the HTHF. The test results are used to determine the design operating conditions for the PCHEs fabricated.

  8. MODEL FOR ALFVEN WAVE TURBULENCE IN SOLAR CORONAL LOOPS: HEATING RATE PROFILES AND TEMPERATURE FLUCTUATIONS

    SciTech Connect (OSTI)

    Asgari-Targhi, M.; Van Ballegooijen, A. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS-15, Cambridge, MA 02138 (United States)

    2012-02-10T23:59:59.000Z

    It has been suggested that the solar corona may be heated by dissipation of Alfven waves that propagate up from the solar photosphere. According to this theory, counterpropagating Alfven waves are subject to nonlinear interactions that lead to turbulent decay of the waves and heating of the chromospheric and coronal plasma. To test this theory, better models for the dynamics of Alfven waves in coronal loops are required. In this paper, we consider wave heating in an active region observed with the Solar Dynamics Observatory in 2010 May. First a three-dimensional (3D) magnetic model of the region is constructed, and ten magnetic field lines that match observed coronal loops are selected. For each loop we construct a 3D magnetohydrodynamic model of the Alfven waves near the selected field line. The waves are assumed to be generated by footpoint motions inside the kilogauss magnetic flux elements at the two ends of the loop. Based on such models, we predict the spatial and temporal profiles of the heating along the selected loops. We also estimate the temperature fluctuations resulting from such heating. We find that the Alfven wave turbulence model can reproduce the observed characteristics of the hotter loops in the active region core, but the loops at the periphery of the region have large expansion factors and are predicted to be thermally unstable.

  9. Heats of vaporization of room temperature ionic liquids by tunable vacuum ultraviolet photoionization

    SciTech Connect (OSTI)

    Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; To, Albert; Koh, Christine; Strasser, Daniel; Kostko, Oleg; Leone, Stephen R.

    2009-11-25T23:59:59.000Z

    The heats of vaporization of the room temperature ionic liquids (RTILs) N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide, N-butyl-N-methylpyrrolidinium dicyanamide, and 1-butyl-3-methylimidazolium dicyanamide are determined using a heated effusive vapor source in conjunction with single photon ionization by a tunable vacuum ultraviolet synchrotron source. The relative gas phase ionic liquid vapor densities in the effusive beam are monitored by clearly distinguished dissociative photoionization processes via a time-of-flight mass spectrometer at a tunable vacuum ultraviolet beamline 9.0.2.3 (Chemical Dynamics Beamline) at the Advanced Light Source synchrotron facility. Resulting in relatively few assumptions, through the analysis of both parent cations and fragment cations, the heat of vaporization of N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide is determined to be Delta Hvap(298.15 K) = 195+-19 kJ mol-1. The observed heats of vaporization of 1-butyl-3-methylimidazolium dicyanamide (Delta Hvap(298.15 K) = 174+-12 kJ mol-1) and N-butyl-N-methylpyrrolidinium dicyanamide (Delta Hvap(298.15 K) = 171+-12 kJ mol-1) are consistent with reported experimental values using electron impact ionization. The tunable vacuum ultraviolet source has enabled accurate measurement of photoion appearance energies. These appearance energies are in good agreement with MP2 calculations for dissociative photoionization of the ion pair. These experimental heats of vaporization, photoion appearance energies, and ab initio calculations corroborate vaporization of these RTILs as intact cation-anion ion pairs.

  10. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOE Patents [OSTI]

    Berry, Gregory F. (Naperville, IL); Minkov, Vladimir (Skokie, IL); Petrick, Michael (Joliet, IL)

    1988-01-01T23:59:59.000Z

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  11. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOE Patents [OSTI]

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02T23:59:59.000Z

    A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  12. Solid State Joining of High Temperature Alloy Tubes for USC and Heat-Exchanger Systems

    SciTech Connect (OSTI)

    Bimal Kad

    2011-12-31T23:59:59.000Z

    The principal objective of this project was to develop materials enabling joining technologies for use in forward looking heat-exchanger fabrication in Brayton cycle HIPPS, IGCC, FutureGen concepts capable of operating at temperatures in excess of 1000{degree}C as well as conventional technology upgrades via Ultra Super-Critical (USC) Rankine-cycle boilers capable of operating at 760{degree}C (1400F)/38.5MPa (5500psi) steam, while still using coal as the principal fossil fuel. The underlying mission in Rankine, Brayton or Brayton-Rankine, or IGCC combined cycle heat engine is a steady quest to improving operating efficiency while mitigating global environmental concerns. There has been a progressive move to higher overall cycle efficiencies, and in the case of fossil fuels this has accelerated recently in part because of concerns about greenhouse gas emissions, notably CO{sub 2}. For a heat engine, the overall efficiency is closely related to the difference between the highest temperature in the cycle and the lowest temperature. In most cases, efficiency gains are prompted by an increase in the high temperature, and this in turn has led to increasing demands on the materials of construction used in the high temperature end of the systems. Our migration to new advanced Ni-base and Oxide Dispersion Strengthened (ODS) alloys poses significant fabrication challenges, as these materials are not readily weldable or the weld performs poorly in the high temperature creep regime. Thus the joining challenge is two-fold to a) devise appropriate joining methodologies for similar/dissimilar Ni-base and ODS alloys while b) preserving the near baseline creep performance in the welded region. Our program focus is on solid state joining of similar and dissimilar metals/alloys for heat exchanger components currently under consideration for the USC, HIPPS and IGCC power systems. The emphasis is to manipulate the joining methods and variables available to optimize joint creep performance compared to the base material creep performance. Similar and dissimilar butt joints were fabricated of MA956, IN740 alloys and using inertia welding techniques. We evaluated joining process details and heat treatments and its overall effect on creep response. Fixed and incrementally accelerated temperature creep tests were performed for similar and dissimilar joints and such incremental creep life data is compiled and reported. Long term MA956-MA556 joint tests indicate a firm 2Ksi creep stress threshold performance at 850{degree}C with a maximum exposure of over 9725 hours recorded in the current program. A Larsen Miller Parameter (LMP) of 48.50 for a 2Ksi test at 850{degree}C was further corroborated with tests at 2Ksi stress at 900{degree}C yielding a LMP=48.80. Despite this threshold the joints exhibit immense temperature sensitivity and fail promptly when test temperature raised above 900{degree}C. In comparison the performance of dissimilar joints was inferior, perhaps dictated by the creep characteristics of the mating nickel-base alloys. We describe a parametric window of joint development, and post weld heat treatment (PWHT) in dissimilar joints with solid solution (IN601, IN617) and precipitate strengthened (IN740) materials. Some concerns are evident regarding the diffusion of aluminum in dissimilar joints during high temperature recrystallization treatments. It is noted that aggressive treatments rapidly deplete the corrosion protecting aluminum reservoir in the vicinity of the joint interface. Subsequently, the impact of varying PWHT has been evaluated in the context on ensuing creep performance.

  13. Flexible Macroscopic Models for Dense-Fluid Shockwaves: Partitioning Heat and Work; Delaying Stress and Heat Flux; Two-Temperature Thermal Relaxation

    E-Print Network [OSTI]

    Wm. G. Hoover; Carol G. Hoover; Francisco J. Uribe

    2010-05-10T23:59:59.000Z

    Macroscopic models which distinguish the longitudinal and transverse temperatures can provide improved descriptions of the microscopic shock structures as revealed by molecular dynamics simulations. Additionally, we can include three relaxation times in the models, two based on Maxwell's viscoelasticity and its Cattaneo-equation analog for heat flow, and a third thermal, based on the Krook-Boltzmann equation. This approach can replicate the observed lags of stress (which lags behind the strain rate) and heat flux (which lags behind the temperature gradient), as well as the eventual equilibration of the two temperatures. For profile stability the time lags cannot be too large. By partitioning the longitudinal and transverse contributions of work and heat and including a tensor heat conductivity and bulk viscosity, all the qualitative microscopic features of strong simple-fluid shockwave structures can be reproduced.

  14. Electron temperature measurements during electron cyclotron heating on PDX using a ten channel grating polychromator

    SciTech Connect (OSTI)

    Cavallo, A.; Hsuan, H.; Boyd, D.; Grek, B.; Johnson, D.; Kritz, A.; Mikkelsen, D.; LeBlanc, B.; Takahashi, H.

    1984-10-01T23:59:59.000Z

    During first harmonic electron cyclotron heating (ECH) on the Princeton Divertor Experiment (PDX) (R/sub 0/ = 137 cm, a = 40 cm), electron temperature was monitored using a grating polychromator which measured second harmonic electron cyclotron emission from the low field side of the tokamak. Interference from the high power heating pulse on the broadband detectors in the grating instrument was eliminated by using a waveguide filter in the transmission line which brought the emission signal to the grating instrument. Off-axis (approx. 4 cm) location of the resonance zone resulted in heating without sawtooth or m = 1 activity. However, heating with the resonance zone at the plasma center caused very large amplitude sawteeth accompanied by strong m = 1 activity: ..delta..T/T/sub MAX/ approx. = 0.41, sawtooth period approx. = 4 msec, m = 1 period approx. = 90 ..mu.. sec, (11 kHz). This is the first time such intense MHD activity driven by ECH has been observed. (For both cases there was no sawtooth activity in the ohmic phase of the discharge before ECH.) At very low densities there is a clear indication that a superthermal electron population is created during ECH.

  15. Low temperature barriers with heat interceptor wells for in situ processes

    DOE Patents [OSTI]

    McKinzie, II, Billy John (Houston, TX)

    2008-10-14T23:59:59.000Z

    A system for reducing heat load applied to a frozen barrier by a heated formation is described. The system includes heat interceptor wells positioned between the heated formation and the frozen barrier. Fluid is positioned in the heat interceptor wells. Heat transfers from the formation to the fluid to reduce the heat load applied to the frozen barrier.

  16. Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb and heat sink grease respectively). The dynamics of thermal effects is also presented. PACS 42.55.Xi (Diode-pumped in a diode-end-pumped Yb:YAG crystal, using a calibrated infrared camera, with a 60-µm spatial resolution

  17. A parametric study of shock jump chemistry, electron temperature, and radiative heat transfer models in hypersonic flows

    E-Print Network [OSTI]

    Greendyke, Robert Brian

    1988-01-01T23:59:59.000Z

    A PARAMETRIC STUDY OF SHOCK JUMP CHEMISTRY, ELECTRON TEMPERATURE, AND RADIATIVE HEAT TRANSFER MODELS IN HYPERSONIC FLOWS A Thesis by ROBERT BRIAN GREENDYKE Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1988 Major Subject: Aerospace Engineering A PARAMETRIC STUDY OF SHOCK JUMP CHEMISTRY, ELECTRON TEMPERATURE, AND RADIATIVE HEAT TRANSFER MODELS IN HYPERSONIC FLOWS A Thesis by ROBERT BRIAN...

  18. Convective heating analysis of an IFE target in a high temperature, low Reynolds number xenon environment

    E-Print Network [OSTI]

    Holdener, Dain Steffen

    2011-01-01T23:59:59.000Z

    OF THE THESIS Convective Heating Analysis of an IFE Targetto reduce the convective heating to the LEH windows and fuelpoint for more forceful heating simulations, placing less

  19. KEY DESIGN REQUIREMENTS FOR THE HIGH TEMPERATURE GAS-COOLED REACTOR NUCLEAR HEAT SUPPLY SYSTEM

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01T23:59:59.000Z

    Key requirements that affect the design of the high temperature gas-cooled reactor nuclear heat supply system (HTGR-NHSS) as the NGNP Project progresses through the design, licensing, construction and testing of the first of a kind HTGR based plant are summarized. These requirements derive from pre-conceptual design development completed to-date by HTGR Suppliers, collaboration with potential end users of the HTGR technology to identify energy needs, evaluation of integration of the HTGR technology with industrial processes and recommendations of the NGNP Project Senior Advisory Group.

  20. Efficient Heat Storage Materials: Metallic Composites Phase-Change Materials for High-Temperature Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2011-11-21T23:59:59.000Z

    HEATS Project: MIT is developing efficient heat storage materials for use in solar and nuclear power plants. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun’s not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. MIT is designing nanostructured heat storage materials that can store a large amount of heat per unit mass and volume. To do this, MIT is using phase change materials, which absorb a large amount of latent heat to melt from solid to liquid. MIT’s heat storage materials are designed to melt at high temperatures and conduct heat well—this makes them efficient at storing and releasing heat and enhances the overall efficiency of the thermal storage and energy-generation process. MIT’s low-cost heat storage materials also have a long life cycle, which further enhances their efficiency.

  1. Design of a continuous fiber ceramic composite heat exchanger for high-temperature, high-pressure applications

    SciTech Connect (OSTI)

    Cho, S.M.; Seltzer, A.H.; Narayanan, T.V. [Foster Wheeler Development Corp., Livingston, NJ (United States); Shah, A.C.; Weddell, J.K. [DuPont Lanxide Composites Inc., Newark, DE (United States)

    1996-12-31T23:59:59.000Z

    A conceptual design of a continuous fiber ceramic composite (CFCC) heat exchanger for high-temperature, high-pressure applications is presented. The CFCC materials under consideration are SiC reinforced with SiC fibers manufactured using the continuous vapor infiltration process and alumina reinforced with SiC or alumina fibers manufactured using the directed metal oxidation process. These composite materials are highly resistant to high-temperature corrosive environment and possess a greater creep strength than metallic materials. Heat exchangers constructed of CFCC material may be utilized for high-temperature, high-pressure applications such as air/gas heaters in advanced energy systems and high-temperature energy recovery systems. This paper presents a design of a gas-to-air CFCC heat exchanger for the high temperature advanced furnace (HITAF) in the high-performance power system (HIPPS). The 1.38 MPa (200 psia) air is heated from 760 C (1,400 F) to 982 C (1,800 F) using the combustion products at 1,650 C (3,000 F). The heat exchanger is of a cross-parallel/counter flow type in which the tube-side air flow makes a combined parallel and counter flow arrangement with a cross-flowing combustion gas in such a way that the maximum CFCC tube temperature will not exceed a 1,260 C (2,300 F) design limit. The main heat transfer mechanism from the external hot gas to the tube-side air is that of gaseous radiation for the first few rows of the tubes, followed by convective heat transfer across the remainder of the tube bundle. The design characteristics of this high-temperature, high-pressure CFCC heat exchanger with supporting thermal, flow, structural, and vibrational analyses are presented in detail in the paper.

  2. Heat exchanger temperature response for duty-cycle transients in the NGNP/HTE.

    SciTech Connect (OSTI)

    Vilim, R. B.; Nuclear Engineering Division

    2009-03-12T23:59:59.000Z

    Control system studies were performed for the Next Generation Nuclear Plant (NGNP) interfaced to the High Temperature Electrolysis (HTE) plant. Temperature change and associated thermal stresses are important factors in determining plant lifetime. In the NGNP the design objective of a 40 year lifetime for the Intermediate Heat Exchanger (IHX) in particular is seen as a challenge. A control system was designed to minimize temperature changes in the IHX and more generally at all high-temperature locations in the plant for duty-cycle transients. In the NGNP this includes structures at the reactor outlet and at the inlet to the turbine. This problem was approached by identifying those high-level factors that determine temperature rates of change. First are the set of duty cycle transients over which the control engineer has little control but which none-the-less must be addressed. Second is the partitioning of the temperature response into a quasi-static component and a transient component. These two components are largely independent of each other and when addressed as such greater understanding of temperature change mechanisms and how to deal with them is achieved. Third is the manner in which energy and mass flow rates are managed. Generally one aims for a temperature distribution that minimizes spatial non-uniformity of thermal expansion in a component with time. This is can be achieved by maintaining a fixed spatial temperature distribution in a component during transients. A general rule of thumb for heat exchangers is to maintain flow rate proportional to thermal power. Additionally the product of instantaneous flow rate and heat capacity should be maintained the same on both sides of the heat exchanger. Fourth inherent mechanisms for stable behavior should not be compromised by active controllers that can introduce new feedback paths and potentially create under-damped response. Applications of these principles to the development of a plant control strategy for the reference NGNP/HTE plant can be found in the body of this report. The outcome is an integrated plant/control system design. The following conclusions are drawn from the analysis: (1) The plant load schedule can be managed to maintain near-constant hot side temperatures over the load range in both the nuclear and chemical plant. (2) The reactor open-loop response is inherently stable resulting mainly from a large Doppler temperature coefficient compared to the other reactivity temperature feedbacks. (3) The typical controller used to manage reactor power production to maintain reactor outlet temperature at a setpoint introduces a feedback path that tends to destabilize reactor power production in the NGNP. (4) A primary loop flow controller that forces primary flow to track PCU flow rate is effective in minimizing spatial temperature differentials within the IHX. (5) Inventory control in both the primary and PCU system during ramp load change transients is an effective means of maintaining high NGNP thermal efficiency while at reduced electric load. (6) Turbine bypass control is an effective means for responding to step changes in generator load when equipment capacity limitations prevent inventory control from being effective. (7) Turbine bypass control is effective in limiting PCU shaft over speed for the loss of generator load upset event. (8) The proposed control strategy is effective in limiting time variation of the differential spatial temperature distribution in the IHX during transients. Essentially the IHX can be made to behave in a manner where each point in the IHX experiences approximately the same temperature rate of change during a transient. (9) The stability of the closed-loop Brayton cycle was found to be sensitive to where one operates on the turbo-machine performance maps. There are competing interests: more stable operation means operating on the curves at points that reduce overall cycle efficiency. Future work should address in greater detail elements that came to light in the course of this work. Specifically: (1) A stability analysi

  3. Insensitivity of the rate of ion motional heating to trap-electrode material over a large temperature range

    E-Print Network [OSTI]

    Chiaverini, John

    We present measurements of trapped-ion motional-state heating rates in niobium and gold surface-electrode ion traps over a range of trap-electrode temperatures from approximately 4 K to room temperature (295 K) in a single ...

  4. The Pseudo Specific Heat in SU(2) Gauge Theory Finite Size Dependence and Finite Temperature Effects

    E-Print Network [OSTI]

    Engels, J

    1997-01-01T23:59:59.000Z

    We investigate the pseudo specific heat of SU(2) gauge theory near the crossover point on $4^4$ to $16^4$ lattices. Several different methods are used to determine the specific heat. The curious finite size dependence of the peak maximum is explained from the interplay of the crossover phenomenon with the deconfinement transition occurring due to the finite extension of the lattice. We find, that for lattices of size $8^4$ and larger the crossover peak is independent of lattice size at $\\beta_{co}=2.23(2)$ and has a peak height of $C_{V,co}=1.685(10)$. We conclude therefore that the crossover peak is not the result of an ordinary phase transition. Further, the contributions to $C_V$ from different plaquette correlations are calculated. We find, that at the peak and far outside the peak the ratio of contributions from orthogonal and parallel plaquette correlations is different. To estimate the finite temperature influence on symmetric lattices far off the deconfinement transition point we calculate the modulus...

  5. CONSTRAINTS ON THE HEATING OF HIGH-TEMPERATURE ACTIVE REGION LOOPS: OBSERVATIONS FROM HINODE AND THE SOLAR DYNAMICS OBSERVATORY

    SciTech Connect (OSTI)

    Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Brooks, David H. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, VP 62, Huntsville, AL 35812 (United States)

    2011-06-20T23:59:59.000Z

    We present observations of high-temperature emission in the core of a solar active region using instruments on Hinode and the Solar Dynamics Observatory (SDO). These multi-instrument observations allow us to determine the distribution of plasma temperatures and follow the evolution of emission at different temperatures. We find that at the apex of the high-temperature loops the emission measure distribution is strongly peaked near 4 MK and falls off sharply at both higher and lower temperatures. Perhaps most significantly, the emission measure at 0.5 MK is reduced by more than two orders of magnitude from the peak at 4 MK. We also find that the temporal evolution in broadband soft X-ray images is relatively constant over about 6 hr of observing. Observations in the cooler SDO/Atmospheric Imaging Assembly (AIA) bandpasses generally do not show cooling loops in the core of the active region, consistent with the steady emission observed at high temperatures. These observations suggest that the high-temperature loops observed in the core of an active region are close to equilibrium. We find that it is possible to reproduce the relative intensities of high-temperature emission lines with a simple, high-frequency heating scenario where heating events occur on timescales much less than a characteristic cooling time. In contrast, low-frequency heating scenarios, which are commonly invoked to describe nanoflare models of coronal heating, do not reproduce the relative intensities of high-temperature emission lines and predict low-temperature emission that is approximately an order of magnitude too large. We also present an initial look at images from the SDO/AIA 94 A channel, which is sensitive to Fe XVIII.

  6. CONTAINMENT VESSEL TEMPERATURE FOR PU-238 HEAT SOURCE CONTAINER UNDER AMBIENT, FREE CONVECTION AND LOW EMISSIVITY COOLING CONDITIONS

    SciTech Connect (OSTI)

    Gupta, N.; Smith, A.

    2011-02-14T23:59:59.000Z

    The EP-61 primary containment vessel of the 5320 shipping package has been used for storage and transportation of Pu-238 plutonium oxide heat source material. For storage, the material in its convenience canister called EP-60 is placed in the EP-61 and sealed by two threaded caps with elastomer O-ring seals. When the package is shipped, the outer cap is seal welded to the body. While stored, the EP-61s are placed in a cooling water bath. In preparation for welding, several containers are removed from storage and staged to the welding booth. The significant heat generation of the contents, and resulting rapid rise in component temperature necessitates special handling practices. The test described here was performed to determine the temperature rise with time and peak temperature attained for an EP-61 with 203 watts of internal heat generation, upon its removal from the cooling water bath.

  7. HIGH-TEMPERATURE HEAT EXCHANGER TESTING IN A PILOT-SCALE SLAGGING FURNACE SYSTEM

    SciTech Connect (OSTI)

    Michael E. Collings; Bruce A. Dockter; Douglas R. Hajicek; Ann K. Henderson; John P. Hurley; Patty L. Kleven; Greg F. Weber

    1999-12-01T23:59:59.000Z

    The University of North Dakota Energy & Environmental Research Center (EERC), in partnership with United Technologies Research Center (UTRC) under a U.S. Department of Energy (DOE) contract, has designed, constructed, and operated a 3.0-million Btu/hr (3.2 x 10{sup 6} kJ/hr) slagging furnace system (SFS). Successful operation has demonstrated that the SFS meets design objectives and is well suited for testing very high-temperature heat exchanger concepts. Test results have shown that a high-temperature radiant air heater (RAH) panel designed and constructed by UTRC and used in the SFS can produce a 2000 F (1094 C) process air stream. To support the pilot-scale work, the EERC has also constructed laboratory- and bench-scale equipment which was used to determine the corrosion resistance of refractory and structural materials and develop methods to improve corrosion resistance. DOE projects that from 1995 to 2015, worldwide use of electricity will double to approach 20 trillion kilowatt hours. This growth comes during a time of concern over global warming, thought by many policy makers to be caused primarily by increases from coal-fired boilers in carbon dioxide (CO{sub 2}) emissions through the use of fossil fuels. Assuming limits on CO{sub 2} emissions from coal-fired boilers are imposed in the future, the most economical CO{sub 2} mitigation option may be efficiency improvements. Unless efficiency improvements are made in coal-fired power plants, utilities may be forced to turn to more expensive fuels or buy CO{sub 2} credits. One way to improve the efficiency of a coal-fired power plant is to use a combined cycle involving a typical steam cycle along with an indirectly fired turbine cycle using very high-temperature but low-pressure air as the working fluid. At the heart of an indirectly fired turbine combined-cycle power system are very high-temperature heat exchangers that can produce clean air at up to 2600 F (1427 C) and 250 psi (17 bar) to turn an aeroderivative turbine. The overall system design can be very similar to that of a typical pulverized coal-fired boiler system, except that ceramics and alloys are used to carry the very high-temperature air rather than steam. This design makes the combined-cycle system especially suitable as a boiler-repowering technology. With the use of a gas-fired duct heater, efficiencies of 55% can be achieved, leading to reductions in CO{sub 2} emissions of 40% as compared to today's coal-fired systems. On the basis of work completed to date, the high-temperature advanced furnace (HITAF) concept appears to offer a higher-efficiency technology option for coal-fired power generation systems than conventional pulverized coal firing. Concept analyses have demonstrated the ability to achieve program objectives for emissions (10% of New Source Performance Standards, i.e., 0.003 lb/MMBtu of particulate), efficiency (47%-55%), and cost of electricity (10%-25% below today's cost). Higher-efficiency technology options for new plants as well as repowering are important to the power generation industry in order to conserve valuable fossil fuel resources, reduce the quantity of pollutants (air and water) and solid wastes generated per MW, and reduce the cost of power production in a deregulated industry. Possibly more important than their potential application in a new high-temperature power system, the RAH panel and convective air heater tube bank are potential retrofit technology options for existing coal-fired boilers to improve plant efficiencies. Therefore, further development of these process air-based high-temperature heat exchangers and their potential for commercial application is directly applicable to the development of enabling technologies in support of the Vision 21 program objectives. The objective of the work documented in this report was to improve the performance of the UTRC high-temperature heat exchanger, demonstrate the fuel flexibility of the slagging combustor, and test methods for reducing corrosion of brick and castable refractory in such combustion environments. Specif

  8. Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility

    SciTech Connect (OSTI)

    Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup; Richard N. Christensen; Michael W. Patterson

    2014-04-01T23:59:59.000Z

    In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750–800 °C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot and 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 °C/1.0–2.7 MPa for the cold side and 208–790 °C/1.0–2.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various hydrodynamic entrance region parameters, such as incremental pressure drop number, apparent Fanning friction factor, and hydrodynamic entrance length in a semicircular duct have been numerically estimated.

  9. Coal plasticity at high heating rates and temperatures. Final technical progress report

    SciTech Connect (OSTI)

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.

    1995-05-01T23:59:59.000Z

    Plastic coals are important feedstocks in coke manufacture, coal liquefaction, gasification, and combustion. During these processes, the thermoplastic behavior of these coals is also important since it may contribute to desirable or undesirable characteristics. For example, during liquefaction, the plastic behavior is desired since it leads to liquid-liquid reactions which are faster than solid-liquid reactions. During gasification, the elastic behavior is undesired since it leads to caking and agglomeration of coal particles which result in bed bogging in fixed or fluidized bed gasifiers. The plastic behavior of different coals was studied using a fast-response plastometer. A modified plastometer was used to measure the torque required to turn at constant angular speed a cone-shaped disk embedded in a thin layer of coal. The coal particles were packed between two metal plates which are heated electrically. Heating rates, final temperatures, pressures, and durations of experiment ranged from 200--800 K/s, 700--1300 K, vacuum-50 atm helium, and 0--40 s, respectively. The apparent viscosity of the molten coal was calculated from the measured torque using the governing equation of the cone-and-plate viscometer. Using a concentrated suspension model, the molten coal`s apparent viscosity was related to the quantity of the liquid metaplast present during pyrolysis. Seven coals from Argonne National Laboratory Premium Coal Sample Bank were studied. Five bituminous coals, from high-volatile to low-volatile bituminous, were found to have very good plastic behavior. Coal type strongly affects the magnitude and duration of plasticity. Hvb coals were most plastic. Mvb and lvb coals, though the maximum plasticity and plastic period were less. Low rank coals such as subbituminous and lignite did not exhibit any plasticity in the present studies. Coal plasticity is moderately well correlated with simple indices of coal type such as the elemental C,O, and H contents.

  10. PDO-Related Heat and Temperature Budget Changes in a Model of the North Pacific JORDAN T. DAWE

    E-Print Network [OSTI]

    Thompson, LuAnne

    in the Pacific. The PDO index shows significant correlations with a wide variety of climate indices, including between a variety of Indian and Pacific tropical climate indices and the PDO. Since atmospheric signalsPDO-Related Heat and Temperature Budget Changes in a Model of the North Pacific JORDAN T. DAWE

  11. Comparison of the thermal performances of two nanofluids at low temperature in a plate heat Thierry Mar *a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Comparison of the thermal performances of two nanofluids at low temperature in a plate heat water based nanofluid. The Pôle Cristal of Dinan that has contributed to this study is also gratefully of this study is to compare experimentally the thermal performances of two types of commercial nanofluids

  12. Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams

    E-Print Network [OSTI]

    Latcham, Jacob G. (Jacob Greco)

    2009-01-01T23:59:59.000Z

    An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue gas streams to electricity. The NTU-effectiveness method, exergy, and ...

  13. CRITICAL FIELD FOR SUPERCONDUCTIVITY AND LOW-TEMPERATURE NORMAL-STATE HEAT CAPACITY OF TUNGSTEN

    E-Print Network [OSTI]

    Triplett, B.B.

    2008-01-01T23:59:59.000Z

    NORMAL-STATE HEAT CAPACITY OF TUNGSTEN B. B. Triplett, N. E.State Heat Capacity of Tungsten* B. n. Triplett,t N. E.I. ;\\feasurement Properties of tungsten sa~ples. ~feasured

  14. Spatially resolved temperature and heat flux measurements for slow evaporating droplets heated by a microfabricated heater array 

    E-Print Network [OSTI]

    Paik, Sokwon

    2006-08-16T23:59:59.000Z

    The evaporation phenomenon of a liquid droplet was investigated by using microfabricated heaters. All 32 microheaters were designed to have the same resistance. Gold microheaters worked both as temperature indicators and ...

  15. PTG exam 9 April 2014 short answers 123. Heat given off = surface * heat transfer coefficient * temperature = A * h * T

    E-Print Network [OSTI]

    Zevenhoven, Ron

    depends on Grnumber Gr = gL3 T/2 = 1,09109 , with given (~ 1/T), and L = 0.75 m. GrPr = 0,78109 > 108 . Nu (average for surface) = 0,13(GrPr)1/3 = 119 gives h (average for surface) = 4,14 W/m2 K Finally this gives with A = 2,25 m2 , heat given off = 186,3 W. 124. Using the steam tables

  16. Spatially resolved temperature and heat flux measurements for slow evaporating droplets heated by a microfabricated heater array

    E-Print Network [OSTI]

    Paik, Sokwon

    2006-08-16T23:59:59.000Z

    flux datum per one droplet. No spatial or temporal heat flux information was given. Klassen et al. [12] and di Marzo et al. [13] were the first to use an infrared thermography technique to attempt to measure the spatially and temporally resolved... infrared thermography. Because of the aforementioned limitation of the IR thermography, measurements were only possible outside of the droplets. Michiyoshi and Makino [15] used a dual beam synchroscope to measure the variation of the heater supply...

  17. A View of Compatible Heat-Resistant Alloy and Coating Systems at High-Temperatures

    SciTech Connect (OSTI)

    Narita, Toshio [Specially Promoted Research Laboratory of Advanced Coatings, Hokkaido University, Kite-13 Nishi-8, Kita-Ku, Sapporo 060-8628 (Japan)

    2009-09-14T23:59:59.000Z

    Conventional and advanced coatings were reviewed, and it was pointed out that the coated Ni-base superalloys decreased their creep rupture life significantly at higher temperatures, and the advanced high strength superalloy became more remarkably. Concept of diffusion barrier coating system (DBC system) and their formation process was introduced, and the results obtained for several heat-resistant alloys, stainless steel (SUS310S), Ni-Mo base alloy (Hastelloy-X), and 4{sup th} generation single crystal superalloy (TMS-138) were given. It was noted that creep-rupture life of the SUS310S and Hastelloy-X with the DBC system became longer than those of the bare alloys with or without conventional {beta}-NiAl coatings. This is due to slow creep-deformation of the Re-base alloy layer as the diffusion barrier. A novel concept based on combination of superalloys and coatings was proposed, by taking both the materials science and corrosion science into consideration.

  18. The 1983 Temperature Gradient and Heat Flow Drilling Project for the State of Washington

    SciTech Connect (OSTI)

    Korosec, Michael A.

    1983-11-01T23:59:59.000Z

    During the Summer of 1983, the Washington Division of Geology and Earth Resources carried out a three-hole drilling program to collect temperature gradient and heat flow information near potential geothermal resource target areas. The project was part of the state-coupled US Department of Energy Geothermal Program. Richardson Well Drilling of Tacoma, Washington was subcontracted through the State to perform the work. The general locations of the project areas are shown in figure 1. The first hole, DNR 83-1, was located within the Green River valley northwest of Mount St. Helens. This site is near the Green River Soda Springs and along the projection of the Mount St. Helens--Elk Lake seismic zone. The other two holes were drilled near Mount Baker. Hole DNR 83-3 was sited about 1/4 km west of the Baker Hot Springs, 10.5 km east of Mount Baker, while hole DNR 83-5 was located along Rocky Creek in the Sulphur Creek Valley. The Rocky Creek hole is about 10 km south-southwest of the peak. Two other holes, DNR 83-2 and DNR 83-4, were located on the north side of the Sulphur Creek Valley. Both holes were abandoned at early stages of drilling because of deep overburden and severe caving problems. The sites were apparently located atop old landslide deposits.

  19. Heat Transfer -2 A pure platinum wire with diameter D = 3 mm and length L = 20 mm is placed outside on a day when air temperature

    E-Print Network [OSTI]

    Virginia Tech

    Heat Transfer - 2 A pure platinum wire with diameter D = 3 mm and length L = 20 mm is placed outside on a day when air temperature T = 10o C. The heat transfer coefficient at the wire's surface h equation that includes all heat transfer mechanisms involved in this problem. Write this energy balance

  20. Development of nondestructive evaluation techniques for high-temperature ceramic heat exchanger components. Tenth quarterly report, January-March 1980

    SciTech Connect (OSTI)

    Kupperman, D.S.; Yuhas, D.; Caines, M.J.

    1980-04-01T23:59:59.000Z

    The effectiveness of several conventional and unconventional NDE techniques for specific high-temperature ceramic components was determined. Techniques under study at ANL include dye-enhanced radiography, acoustic microscopy, conventional ultrasonic testing, acoustic-emission detection, acoustic impact testing, holography, interferometry, infrared scanning, internal friction measurements, and overload proof testing. The current effort involves SiC heat-exchanger tubes; previous ceramic NDE efforts at ANL have involved silicon-nitride gas-turbine rotors. Recent results on inspection of SiC heat-exchanger tubing by means of ultrasonic acoustic microscopy techniques and efforts initiated and planned for NDE of ceramic joints are discussed.

  1. City of Twenty-Nine Palms Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Palms Sector Geothermal energy Type Space Heating Location Twenty-Nine Palms, California Coordinates 34.1355582, -116.0541689 Loading map... "minzoom":false,"mappingservice":"...

  2. Feasibility Study of Secondary Heat Exchanger Concepts for the Advanced High Temperature Reactor

    SciTech Connect (OSTI)

    Piyush Sabharwall

    2011-09-01T23:59:59.000Z

    The work reported herein represents a significant step in the preliminary design of heat exchanger options (material options, thermal design, selection and evaluation methodology with existing challenges). The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production using either a subcritical or supercritical Rankine cycle.

  3. Measurement of the electronic thermal conductance channels and heat capacity of graphene at low temperature

    E-Print Network [OSTI]

    Measurement of the electronic thermal conductance channels and heat capacity of graphene at low, Gwf , test the Wiedemann-Franz (wf) law, and infer the electronic heat capacity, with a minimum value of a Coulomb-interacting electron-hole plasma may result in deviations from the Fermi-liquid values of the Mott

  4. Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho

    SciTech Connect (OSTI)

    Nathenson, M.; Urban, T.C.; Diment, W.H.; Nehring, N.L.

    1980-01-01T23:59:59.000Z

    The Raft River area of Idaho contains a geothermal system of intermediate temperatures (approx. = 150/sup 0/C) at depths of about 1.5 km. Outside of the geothermal area, temperature measurements in three intermediate-depth drill holes (200 to 400 m) and one deep well (1500 m) indicate that the regional conductive heat flow is about 2.5 ..mu..cal/cm/sup 2/ sec or slightly higher and that temperature gradients range from 50/sup 0/ to 60/sup 0/C/km in the sediments, tuffs, and volcanic debris that fill the valley. Within and close to the geothermal system, temperature gradients in intermediate-depth drill holes (100 to 350 m) range from 120/sup 0/ to more than 600/sup 0/C/km, the latter value found close to an artesian hot well that was once a hot spring. Temperatures measured in three deep wells (1 to 2 km) within the geothermal area indicate that two wells are in or near an active upflow zone, whereas one well shows a temperature reversal. Assuming that the upflow is fault controlled, the flow is estimated to be 6 liter/sec per kilometer of fault length. From shut-in pressure data and the estimated flow, the permeability times thickness of the fault is calculated to be 2.4 darcy m. Chemical analyses of water samples from old flowing wells, recently completed intermediate-depth drill holes, and deep wells show a confused pattern. Geothermometer temperatures of shallow samples suggest significant re-equilibration at temperatures below those found in the deep wells. Silica geothermometer temperatures of water samples from the deep wells are in reasonable agreement with measured temperatures, whereas Na-K-Ca temperatures are significantly higher than measured temperatures. The chemical characteristics of the water, as indicated by chloride concentration, are extremely variable in shallow and deep samples. Chloride concentrations of the deep samples range from 580 to 2200 mg/kg.

  5. An Evaluation of the Impact of Surface Coatings on the Heat Transfer in High Temperature Ceramic Recuperators

    E-Print Network [OSTI]

    Guerrero, P. S.; Rebello, W. J.; Federer, J. I.

    AN EVALUATION OF THE IMPACT OF SURFACE COATINGS ON THE HEAT TRANSFER IN HIGH TEMPERATURE CERAMIC RECUPERATORS PABLO S. GUERRERO WILFRED J. REBELLO PAR Enterprises, Inc., Fairfax, VA and J. I. FEDERER Oak Ridge National Laboratory, Oak... these furnaces may contain sodium, potassium, halides, etc. that may attack SiC. protective coatings, such as alumina. zirconia and others, have been investigated as a means of increasing the life and reliability of these SiC recuperators. The objective...

  6. Local wall heat flux/temperature meter for convective flow and method of utilizing same

    DOE Patents [OSTI]

    Boyd, Ronald D.; Ekhlassi, Ali; Cofie, Penrose

    2004-11-30T23:59:59.000Z

    According to one embodiment of the invention, a method includes providing a conduit having a fluid flowing therethrough, disposing a plurality of temperature measurement devices inside a wall of the conduit, positioning at least some of the temperature measurement devices proximate an inside surface of the wall of the conduit, positioning at least some of the temperature measurement devices at different radial positions at the same circumferential location within the wall, measuring a plurality of temperatures of the wall with respective ones of the temperature measurement devices to obtain a three-dimensional temperature topology of the wall, determining the temperature dependent thermal conductivity of the conduit, and determining a multi-dimensional thermal characteristic of the inside surface of the wall of the conduit based on extrapolation of the three-dimensional temperature topology and the temperature dependent thermal conductivities.

  7. Estimation of turbulent surface heat fluxes using sequences of remotely sensed land surface temperature

    E-Print Network [OSTI]

    Bateni, Sayed Mohyeddin

    2011-01-01T23:59:59.000Z

    Fluxes of heat and moisture at the land-surface play a significant role in the climate system. These fluxes interact with the overlying atmosphere and influence the characteristics of the planetary boundary layer (e.g. ...

  8. A PC simulation of heat transfer and temperature distribution in a circulating wellbore

    E-Print Network [OSTI]

    Pierce, Robert Duane

    1987-01-01T23:59:59.000Z

    for Varying Drill Pipe 59 Outer Diameter TABLE 4 - Well Data Summary For Varying Mud Flow Rate TABLE 5 ? Mell Data Summary For Varying Heat Transfer 60 62 Coefficient (Pipe) 65 TABLE 6 ? Well Data Summary For Varying Heat Transfer Coefficient (Annulus.... 2 - Introductory menu of program Fig. 3 - Program master menu Fig. 4 ? Change/view parameters menu Fig. 5 ? Drilling fluid parameters menu Fig. 6 ? Drill pipe parameters menu Fig. 7 ? Mellbore/formation parameters menu Fig. 8 - Casing...

  9. Low-Temperature Enhanced Geothermal System using Carbon Dioxide as the Heat-Transfer Fluid

    SciTech Connect (OSTI)

    Eastman, Alan D. [GreenFire Energy

    2014-07-24T23:59:59.000Z

    This report describes work toward a supercritical CO2-based EGS system at the St. Johns Dome in Eastern Arizona, including a comprehensive literature search on CO2-based geothermal technologies, background seismic study, geological information, and a study of the possible use of metal oxide heat carriers to enhance the heat capacity of sCO2. It also includes cost estimates for the project, and the reasons why the project would probably not be cost effective at the proposed location.

  10. A PC simulation of heat transfer and temperature distribution in a circulating wellbore 

    E-Print Network [OSTI]

    Pierce, Robert Duane

    1987-01-01T23:59:59.000Z

    for Varying Drill Pipe 59 Outer Diameter TABLE 4 - Well Data Summary For Varying Mud Flow Rate TABLE 5 ? Mell Data Summary For Varying Heat Transfer 60 62 Coefficient (Pipe) 65 TABLE 6 ? Well Data Summary For Varying Heat Transfer Coefficient (Annulus.... 2 - Introductory menu of program Fig. 3 - Program master menu Fig. 4 ? Change/view parameters menu Fig. 5 ? Drilling fluid parameters menu Fig. 6 ? Drill pipe parameters menu Fig. 7 ? Mellbore/formation parameters menu Fig. 8 - Casing...

  11. Pulsed-laser heating: a tool for studying degradation of materials subjected to repeated high-temperature excursions

    SciTech Connect (OSTI)

    Goldberg, A.; Cornell, R.H.

    1980-08-21T23:59:59.000Z

    The use of pulsed-laser heating was evaluated as a means to obtain high cyclic peak temperatures with short rise times. A two-stage neodymium glass laser was used which produces a 600-..mu..s pulse with energy outputs of up to 100 J. Small disk-shaped samples of AISI 4340 steel served as targets. Some of these were coated with a tungsten deposit. The rear face of some of the targets was instrumented for evaluation of temperature, strain, and stress response. Post-shot metallographic evaluations were made on a number of targets. We saw evidence of surface melting, cracking, and phase transformation. Surface damage was related to differences in the number of pulse cycles and input energy level, variables in the target materials, and the extent of strain-induced stresses. These experiments were performed in air at 1 atm and ambient laboratory temperature. 36 figures.

  12. Using Thermally-Degrading, Partitioning, and Nonreactive Tracers to Determine Temperature Distribution and Fracture/Heat Transfer Surface Area in Geothermal Reservoirs

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Project Summary. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate quantitative characterization of temperature distributions and surface area available for heat transfer in EGS.

  13. Characterization of Low Temperature Ferrite/Austenite Transformations in the Heat Affected Zone of 2205 Duplex Stainless Steel Arc Welds

    SciTech Connect (OSTI)

    Palmer, T A; Elmer, J W; Babu, S S; Vitek, J M

    2003-08-20T23:59:59.000Z

    Spatially Resolved X-Ray Diffraction (SRXRD) has been used to identify a previously unobserved low temperature ferrite ({delta})/austenite({gamma}) phase transformation in the heat affected zone (HAZ) of 2205 Duplex Stainless Steel (DSS) welds. In this ''ferrite dip'' transformation, the ferrite transforms to austenite during heating to peak temperatures on the order of 750 C, and re-transforms to ferrite during cooling, resulting in a ferrite volume fraction equivalent to that in the base metal. Time Resolved X-Ray Diffraction (TRXRD) and laser dilatometry measurements during Gleeble{reg_sign} thermal simulations are performed in order to verify the existence of this low temperature phase transformation. Thermodynamic and kinetic models for phase transformations, including both local-equilibrium and para-equilibrium diffusion controlled growth, show that diffusion of substitutional alloying elements does not provide a reasonable explanation for the experimental observations. On the other hand, the diffusion of interstitial alloying elements may be rapid enough to explain this behavior. Based on both the experimental and modeling results, two mechanisms for the ''ferrite dip'' transformation, including the formation and decomposition of secondary austenite and an athermal martensitic-type transformation of ferrite to austenite, are considered.

  14. Heat engines and heat pumps in a hydrostatic atmosphere: How surface pressure and temperature control wind power output and circulation cell size

    E-Print Network [OSTI]

    Makarieva, A M; Nefiodov, A V; Sheil, D; Nobre, A D; Shearman, P L; Li, B -L

    2015-01-01T23:59:59.000Z

    The gross spatial features of the atmospheric kinetic energy budget are analytically investigated. Kinetic energy generation is evaluated in a hydrostatic atmosphere where the axisymmetric circulation cells are represented by Carnot cycles. The condition that kinetic energy generation is positive in the lower atmosphere is shown to limit the poleward cell extension via a relationship between the meridional differences in surface pressure and temperature $\\Delta p_s$ and $\\Delta T_s$: an upper limit to cell size exists when $\\Delta p_s$ increases sublinearly with $\\Delta T_s$. This is the case for the Hadley cells as demonstrated here using data from MERRA re-analysis. The limited cell size necessitates the appearance of heat pumps -- circulation cells with negative work output where the low-level air moves towards colder areas. These cells consume the positive work output of heat engines -- cells where the low-level air moves towards the warmer areas -- and can in principle drive the global efficiency of atmo...

  15. 176 Conservation of Mass 5.8 Temperature Control in a Heated Cham-

    E-Print Network [OSTI]

    Chicone, Carmen

    for simplicity will be called the heater. Basic modeling with heat transfer and PID control will be considered. This problem is encountered in industrial process control (for Thermometer Heater Chamber PID Controller Power Supply Figure 5.40: Schematic of control system. example, in furnaces and tank reactors

  16. Heat removal from high temperature tubular solid oxide fuel cells utilizing product gas from coal gasifiers.

    SciTech Connect (OSTI)

    Parkinson, W. J. (William Jerry),

    2003-01-01T23:59:59.000Z

    In this work we describe the results of a computer study used to investigate the practicality of several heat exchanger configurations that could be used to extract heat from tubular solid oxide fuel cells (SOFCs) . Two SOFC feed gas compositions were used in this study. They represent product gases from two different coal gasifier designs from the Zero Emission Coal study at Los Alamos National Laboratory . Both plant designs rely on the efficient use of the heat produced by the SOFCs . Both feed streams are relatively rich in hydrogen with a very small hydrocarbon content . One feed stream has a significant carbon monoxide content with a bit less hydrogen . Since neither stream has a significant hydrocarbon content, the common use of the endothermic reforming reaction to reduce the process heat is not possible for these feed streams . The process, the method, the computer code, and the results are presented as well as a discussion of the pros and cons of each configuration for each process .

  17. Generated using version 3.0 of the official AMS LATEX template The seasonal cycle of atmospheric heating and temperature1

    E-Print Network [OSTI]

    Battisti, David

    heating and temperature1 Aaron Donohoe Massachusetts Institute of Technology, Cambridge, Massachusetts 2 Institute of Technology, Dept. of Earth, Atmospheric and Planetary Sciences, Room Number 54-918, 77 to download Manuscript (non-LaTeX): seasonal_heating_1revision.pdf #12;ABSTRACT4 The seasonal cycle

  18. Generated using version 3.0 of the official AMS LATEX template The seasonal cycle of atmospheric heating and temperature1

    E-Print Network [OSTI]

    Battisti, David

    heating and temperature1 Aaron Donohoe Massachusetts Institute of Technology, Cambridge, Massachusetts 2 Institute of Technology, Dept. of Earth, Atmospheric and Planetary Sciences, Room Number 54-918, 77 of the heating of the atmosphere is divided into a component due to direct5 solar absorption in the atmosphere

  19. Generated using version 3.1 of the official AMS LATEX template The seasonal cycle of atmospheric heating and temperature1

    E-Print Network [OSTI]

    Battisti, David

    heating and temperature1 Aaron Donohoe Massachusetts Institute of Technology, Cambridge, Massachusetts 2 Institute of Technology, Dept. of Earth, Atmospheric and Planetary Sciences, Room Number 54-918, 77 of the heating of the atmosphere is divided into a component due to direct5 solar absorption in the atmosphere

  20. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy

    E-Print Network [OSTI]

    Banerjee, Debjyoti

    Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali nanoparticles at 1% mass concentration. The specific heat capacity of the nanofluid was enhanced by 14 of nanoparticles at min- ute concentrations are termed as ``nanofluids'' [1­3]. Nanoparticles are defined

  1. Comprehensive Compressor Calorimeter Testing of Lower-GWP Alternative Refrigerants for Heat Pump and Medium Temperature Refrigeration Applications

    SciTech Connect (OSTI)

    Shrestha, Som S [ORNL] [ORNL; Sharma, Vishaldeep [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. This paper reports one of the Oak Ridge National Laboratory (ORNL) contributions to AREP. It compares performance of alternative refrigerants to that of R-410A and R-404A for heat pump and medium temperature applications, respectively. The alternatives reported in this paper are: R-32, DR-5, and L-41a for R-410A and ARM-31a, D2Y-65, L-40, and a mixture of R-32 and R-134a for R-404A. All performance comparison tests were conducted using scroll compressors of ~1.85 tons (6.5 kW) cooling capacity. Tests were conducted over a range of combinations of saturation suction and saturation discharge temperatures for both compressors. The tests showed that, in general, energy efficiency ratio (EER) and cooling capacity of R-410A alternative refrigerants were slightly lower than that of the baseline refrigerant with a moderate increases in discharge temperature. On the other hand, R-404A alternative refrigerants showed relative performance dependence on saturation suction and saturation discharge temperatures and larger increases in discharge temperature than for the R-410A alternatives. This paper summarizes the relative performance of all alternative refrigerants compared to their respective baseline.

  2. JOURNAL DE PHYSIQUE Colloque C4, supplment au n" 4, Tome 40, avril 1979, page C4-140 Low temperature specific heat of rocksalt thorium compounds

    E-Print Network [OSTI]

    Boyer, Edmond

    temperature specific heat of rocksalt thorium compounds V. Maurice, J. L. Boutard C) and D. Abbe ( n ) SESI with vacancy content in ThC,^x and is minimal for ThC06N04 compared to ThC and ThN. 1. Introduction. -- Thorium://dx.doi.org/10.1051/jphyscol:1979445 #12;LOW TEMPERATURE SPECIFIC HEAT OF ROCKSALT THORIUM COMPOUNDS C4-141 have

  3. Temperature, Temperature, Earth, geotherm for

    E-Print Network [OSTI]

    Treiman, Allan H.

    Temperature, Temperature, Earth, geotherm for total global heat flow Venus, geotherm for total global heat flow, 500 Ma #12;Temperature, Temperature, #12;Earth's modern regional continental geotherms Venusian Geotherms, 500 Ma Temperature, Temperature, After Blatt, Tracy, and Owens Petrology #12;Ca2Mg5Si8

  4. Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Sandberg, Chester Ledlie (Palo Alto, CA)

    2010-11-09T23:59:59.000Z

    A heating system for a subsurface formation is described. The heating system includes a first heater, a second heater, and a third heater placed in an opening in the subsurface formation. Each heater includes: an electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer. The electrical conductor is electrically coupled to the sheath at a lower end portion of the heater. The lower end portion is the portion of the heater distal from a surface of the opening. The first heater, the second heater, and the third heater are electrically coupled at the lower end portions of the heaters. The first heater, the second heater, and the third heater are configured to be electrically coupled in a three-phase wye configuration.

  5. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    E-Print Network [OSTI]

    Martin, Gregory T

    Background: Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. ...

  6. HTGR high temperature process heat design and cost status report. Volume II. Appendices

    SciTech Connect (OSTI)

    None

    1981-12-01T23:59:59.000Z

    Information is presented concerning the 850/sup 0/C IDC reactor vessel; primary cooling system; secondary helium system; steam generator; heat cycle evaluations for the 850/sup 0/C IDC plant; 950/sup 0/C DC reactor vessel; 950/sup 0/C DC steam generator; direct and indirect cycle reformers; methanation plant; thermochemical pipeline; methodology for screening candidate synfuel processes; ECCG process; project technical requirements; process gas explosion assessment; HTGR program economic guidelines; and vendor respones.

  7. Plasma Heating to Super-Hot Temperatures (>30 MK) in the August 9, 2011 Solar Flare

    E-Print Network [OSTI]

    Sharykin, I N; Zimovets, I V

    2015-01-01T23:59:59.000Z

    We investigate the August 9, 2011 solar flare of X-ray class X6.9, the "hottest" flare from 2000 to 2012, with a peak plasma temperature according to GOES data of 32.5 MK. Our goal is to determine the cause of such an anomalously high plasma temperature and to investigate the energy balance in the flare region with allowance made for the presence of a super-hot plasma (>30 MK). We analyze the RHESSI, GOES, AIA/SDO, and EVE/SDO data and discuss the spatial structure of the flare region and the results of our spectral analysis of its X-ray emission. Our analysis of the RHESSI X-ray spectra is performed in the one-temperature and two-temperature approximations by taking into account the emission of hot (20 MK) and super-hot (45 MK) plasmas. The hard X-ray spectrum in both models is fitted by power laws. The observed peculiarities of the flare are shown to be better explained in terms of the two-temperature model, in which the super-hot plasma is located at the flare loop tops (or in the magnetic cusp region). Th...

  8. Results of temperature gradient and heat flow in Santiam Pass Area, Oregon, Volume 1

    SciTech Connect (OSTI)

    Cox, B.L.; Gardner, M.C.; Koenig, J.B.

    1981-08-01T23:59:59.000Z

    The conclusions of this report are: (1) There is a weakly defined thermal anomaly within the area examined by temperature-gradient holes in the Santiam Pass area. This is a relict anomaly showing differences in permeability between the High Cascades and Western Cascades areas, more than a fundamental difference in shallow crustal temperatures. (2) The anomaly as defined by the 60 F isotherms at 400 feet follows a north-south trend immediately westward of the Cascade axis in the boundary region. It is clear that all holes spudded into High Cascades rocks result in isothermal and reversal gradients. Holes spudded in Western Cascades rocks result in positive gradients. (3) Cold groundwater flow influences and masks temperature gradients in the High Cascades to a depth of at least 700 feet, especially eastward from the major north-south trending faults. Pleistocene and Holocene rocks are very permeable aquifers. (4) Shallow gradient drilling in the lowlands westward of the faults provides more interpretable information than shallow drilling in the cold-water recharge zones. Topographic and climatological effects can be filtered out of the temperature gradient results. (5) The thermal anomaly seems to have 2 centers: one in the Belknap-Foley area, and one northward in the Sand Mountain area. The anomalies may or may not be connected along a north-south trend. (6) A geothermal effect is seen in holes downslope of the Western-High Cascade boundary. Mixing with cold waters is a powerful influence on temperature gradient data. (7) The temperature-gradient program has not yet examined and defined the geothermal resources potential of the area eastward of the Western Cascades-High Cascades boundary. Holes to 1500-2000 feet in depth are required to penetrate the high permeability-cold groundwater regime. (8) Drilling conditions are unfavorable. There are very few accessible level drill sites. Seasonal access problems and environmental restrictions together with frequent lost circulation results in very high costs per foot drilled.

  9. Osmotic Heat Engine for Energy Production from Low Temperature Geothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy8OrganicOsmotic Heat Engine for Energy

  10. Solar production of intermediate temperature process heat. Phase I design. Final report. [For sugarcane processing plant in Hawaii

    SciTech Connect (OSTI)

    None

    1980-08-01T23:59:59.000Z

    This report is the final effort in the Phase I design of a solar industrial process heat system for the Hilo Coast Processing Company (HCPC) in Pepeekeo, Hawaii. The facility is used to wash, grind and extract sugar from the locally grown sugarcane and it operates 24 hours a day, 305 days per year. The major steam requirements in the industrial process are for the prime movers (mill turbines) in the milling process and heat for evaporating water from the extracted juices. Bagasse (the fibrous residue of milled sugarcane) supplied 84% of the fuel requirement for steam generation in 1979, while 65,000 barrels of No. 6 industrial fuel oil made up the remaining 16%. These fuels are burned in the power plant complex which produces 825/sup 0/F, 1,250 psi superheated steam to power a turbogenerator set which, in addition to serving the factory, generates from 7 to 16 megawatts of electricity that is exported to the local utility company. Extracted steam from the turbo-generator set supplies the plant's process steam needs. The system consists of 42,420 ft./sup 2/ of parabolic trough, single axis tracking, concentrating solar collectors. The collectors will be oriented in a North-South configuration and will track East-West. A heat transfer fluid (Gulf Synfluid 4cs) will be circulated in a closed loop fashion through the solar collectors and a series of heat exchangers. The inlet and outlet fluid temperatures for the collectors are 370/sup 0/F and 450/sup 0/F respectively. It is estimated that the net useable energy delivered to the industrial process will be 7.2 x 10/sup 9/ Btu's per year. With an HCPC boiler efficiency of 78% and 6.2 x 10/sup 6/ Btu's per barrel of oil, the solar energy system will displace 1489 barrels of oil per year. (WHK)

  11. Numerical Study of Spatial Surface Temperature and Nucleation Site Density At High Heat Flux Pool Boiling

    E-Print Network [OSTI]

    Maruyama, Shigeo

    the problem domain comprised of the macrolayer and heater and associated with the individual behavior of nucleation sites on the heater surface. They revealed that surface-averaged temperatures had nonlinear period are assigned randomly by satisfying the conditions in step (2). The simulated cavities were assigned a

  12. Temperatures, heat flow, and water chemistry from drill holes in the Raft

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:HoldingsTechint Spa JumpTVCEtTemperature" Showing

  13. High-Temperature Components for Rankine-Cycle-Based Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p p a a r rRanchoTemperature

  14. Analysis of ferrite heating of the LHC injection kickers and proposals for future reduction of temperature

    E-Print Network [OSTI]

    Barnes, M J; Garrel, N; Goddard, B; Mertens, V; Weterings, W

    2012-01-01T23:59:59.000Z

    The two LHC injection kicker magnet (MKI) systems must produce a kick of 1.3 T.m with a flat top duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. A beam screen is placed in the aperture of the magnets: the screen consists of a ceramic tube with conductors on the inner wall. The conductors provide a path for the image current of the high intensity LHC beam and screen the ferrite against wake fields. The conductors initially used gave adequately low beam coupling impedance however screen conductor discharges occurred during pulsing of the magnet; hence an alternative design with fewer screen conductors was implemented to meet the often conflicting requirements for low beam coupling impedance, fast magnetic field rise-time and good high voltage behaviour. During 2011 the LHC was operated with high intensity beam, coasting for many hours at a time, resulting in heating of the ferrite yoke of the MKIs. This paper presents an analysis of thermal measurement dat...

  15. Dealing with big circulation flow, small temperature difference based on verified dynamic model simulations of a hot water district heating system

    E-Print Network [OSTI]

    Zhong, L.

    2014-01-01T23:59:59.000Z

    DEALING WITH “BIG CIRCULATION FLOW RATE, SMALL TEMPERATURE DIFFERENCE” BASED ON VERIFIED DYNAMIC MODEL SIMULATIONS OF A HOT WATER DISTRICT HEATING SYSTEM Li Lian Zhong, Senior Sales Consultant, Danfoss Automatic Controls Management (Shanghai...) Co.,Ltd, Anshan, China ABSTRACT Dynamic models of an indirect hot water district heating system were developed based on the first principle of thermodynamics. The ideal model was verified by using measured operational data. The ideal...

  16. Time evolution of the ion temperature in the T-10 tokamak during simultaneous pellet injection and electron-cyclotron resonance heating

    SciTech Connect (OSTI)

    Gott, Yu. V.; Pavlov, Yu. D.; Borshchagovskii, A. A.; Gorbunov, E. P.; Dremin, M. M.; Ishevskii, O. V.; Kislov, A. Ya.; Krylov, S. V.; Matveev, V. V.; Prut, V. V.; Roi, I. N.; Ryzhakov, D. V.; Skosyrev, Yu. V.; Trukhin, V. M.; Khramenkov, A. V.; Chistyakov, V. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

    2007-12-15T23:59:59.000Z

    Results are presented from studies of the time evolution of the ion temperature in the T-10 tokamak in the course of injection of several (up to five) deuterium pellets into a deuterium plasma the electron component of which is heated at the second harmonic of the electron gyrofrequency. It is shown that, at an electron cyclotron heating power of 900 kW, the injection of five pellets is accompanied by an increase in the ion temperature to 1200 keV, which is a record value for T-10. It is noted that energy exchange between the electron and ion components in these experiments is a purely classical, Coulomb process.

  17. Heating induced structural and chemical behavior of KD{sub 2}PO{sub 4} in the 25 °C–215 °C temperature range

    SciTech Connect (OSTI)

    Botez, Cristian E., E-mail: cbotez@utep.edu; Morris, Joshua L.; Encerrado Manriquez, Andres J.; Anchondo, Adan

    2013-09-15T23:59:59.000Z

    We have used powder x-ray diffraction (XRD) to investigate the structural and chemical modifications undergone by KD{sub 2}PO{sub 4} (DKDP) upon heating from room temperature to 215 °C. Full-profile (Le Bail) analysis of our temperature-resolved data shows no evidence of polymorphic structural transitions or deuterium–hydrogen isotope exchange occurring below T{sub s} = 185 °C. The lattice parameters of DKDP vary smoothly upon heating to T{sub s} and are 0.2% to 0.6% greater than those of its isostructural hydrogenated counterpart KH{sub 2}PO{sub 4} (KDP). In addition, XRD isotherms collected at T{sub s} demonstrate the structural and chemical stability of the title compound at this temperature over a 10.5 h time period. Upon further heating, however, the tetragonal DKDP phase becomes unstable, as evidenced by its transition to a monoclinic DKDP modification and eventual chemical decomposition via dehydration. - Highlights: • Structural and chemical behavior of KD{sub 2}PO{sub 4} is investigated upon heating to 215 °C • No polymorphic transitions or deuterium-hydrogen isotope exchange below T{sub s} = 185 °C • KD{sub 2}PO{sub 4} is structurally and chemically stable at T{sub s} over a 10.5 h time period • KD{sub 2}PO{sub 4} chemically decomposes via dehydration upon heating above T{sub d} = 195 °C.

  18. AN EXPERIMENTAL INVESTIGATION OF THE HEAT TRANSFER FROM A BUOYANT GAS PLUME TO A

    E-Print Network [OSTI]

    Winfree, Erik

    Temperature E. Heat Transfer Model 1. Determining the Ceiling Heat Transfer 2. Ceiling Heat Transfer

  19. Two-dimensional model of the air flow and temperature distribution in a cavity-type heat receiver of a solar stirling engine

    SciTech Connect (OSTI)

    Makhkamov, K.K.; Ingham, D.B.

    1999-11-01T23:59:59.000Z

    A theoretical study on the air flow and temperature in the heat receiver, affected by free convection, of a Stirling Engine for a Dish/Stirling Engine Power System is presented. The standard {kappa}-{epsilon} turbulence model for the fluid flow has been used and the boundary conditions employed were obtained using a second level mathematical model of the Stirling Engine working cycle. Physical models for the distribution of the solar insolation from the Concentrator on the bottom and side walls of the cavity-type heat receiver have been taken into account. The numerical results show that most of the heat losses in the receiver are due to re-radiation from the cavity and conduction through the walls of the cavity. It is in the region of the boundary of the input window of the heat receiver where there is a sensible reduction in the temperature in the shell of the heat exchangers and this is due to the free convection of the air. Further, the numerical results show that convective heat losses increase with decreasing tilt angle.

  20. Will heat from the pipeline affect groundwater and surface water? Response by Professor James Goeke The temperature of a pipeline buried 4 feet would

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    of the pipeline as a way to check for leaks? Do you have any specific concerns regarding oil or natural gas1 Water Will heat from the pipeline affect groundwater and surface water? Response by Professor James Goeke ­ The temperature of a pipeline buried 4 feet would probably affect surface water

  1. absorption heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat... Erickson, D. C. 1983-01-01 26...

  2. A new predictive dynamic model describing the effect of1 the ambient temperature and the convective heat transfer2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Ratkowsky "square root" model and a simplified two-parameter20 heat transfer model regarding an infinite

  3. Economic Options for Upgrading Waste Heat 

    E-Print Network [OSTI]

    Erickson, D. C.

    1983-01-01T23:59:59.000Z

    There are at least six major types of equipment that upgrade waste heat: (1) thermocompressor; (2) electric drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat...

  4. Economic Options for Upgrading Waste Heat

    E-Print Network [OSTI]

    Erickson, D. C.

    1983-01-01T23:59:59.000Z

    There are at least six major types of equipment that upgrade waste heat: (1) thermocompressor; (2) electric drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat...

  5. JOURNAL DE PHYSIQUE Colloque C6, supplment au n" 8, Tome 39, aot 1978, page C6-982 PHONON SCATTERING AND THE LINEAR SPECIFIC HEAT TERM IN EPOXY-RESINS AT LOW TEMPERATURES

    E-Print Network [OSTI]

    Boyer, Edmond

    SCATTERING AND THE LINEAR SPECIFIC HEAT TERM IN EPOXY-RESINS AT LOW TEMPERATURES S. Kelham and H.M. Rosenberg. Abstract.- The specific heat and the thermal conductivity of an epoxy--resin has been measured from 0 on the thermal conductivity and speci- fic heat of an epoxy-resin in the range 0.1 to 80 K in which

  6. Heating system

    SciTech Connect (OSTI)

    Nishman, P.J.

    1983-03-08T23:59:59.000Z

    A heating system utilizing solar panels and buried ground conduits to collect and store heat which is delivered to a heatpump heat exchanger. A heat-distribution fluid continuously circulates through a ground circuit to transfer heat from the ground to the heat exchanger. The ground circuit includes a length of buried ground conduit, a pump, a check valve and the heat exchanger. A solar circuit, including a solar panel and a second pump, is connected in parallel with the check valve so that the distribution fluid transfers solar heat to the heat exchanger for utilization and to the ground conduit for storage when the second pump is energized. A thermostatically instrumented control system energizes the second pump only when the temperature differential between the solar panel inlet and outlet temperatures exceeds a predetermined value and the ground temperature is less than a predetermined value. Consequently, the distribution fluid flows through the solar panel only when the panel is capable of supplying significant heat to the remainder of the system without causing excessive drying of the ground.

  7. Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P.

    2011-01-11T23:59:59.000Z

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K/s) using differential scanning calorimetry (DSC) traces to 725ºC. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 105 K/s) in high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (Tmax) are largely independent of foil chemistry at 0.6 ± 0.1 m/s and 1220 ± 50 K, respectively, and that the measured Tmax is more than 200 K lower than predicted adiabatic temperatures (Tad). The difference between Tmax and Tad is explained by the prediction that transformation to the final intermetallic phases occurs after Tmax and results in the release of 20-30 % of the total heat of reaction and a delay in rapid cooling.

  8. Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P.

    2011-01-11T23:59:59.000Z

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K/s) using differential scanning calorimetry (DSC) traces to 725ºC. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 105 K/s) inmore »high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (Tmax) are largely independent of foil chemistry at 0.6 ± 0.1 m/s and 1220 ± 50 K, respectively, and that the measured Tmax is more than 200 K lower than predicted adiabatic temperatures (Tad). The difference between Tmax and Tad is explained by the prediction that transformation to the final intermetallic phases occurs after Tmax and results in the release of 20-30 % of the total heat of reaction and a delay in rapid cooling.« less

  9. Improved efficiency and precise temperature control of low-frequency induction-heating pure iron vapor source on ECR ion source

    SciTech Connect (OSTI)

    Kato, Y.; Takenaka, T.; Yano, K.; Kiriyama, R.; Kurisu, Y.; Nozaki, D.; Muramatsu, M.; Kitagawa, A.; Uchida, T.; Yoshida, Y.; Sato, F.; Iida, T. [Osaka Univ., 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan); National Institute of Radiological Science (NIRS), 4-9-1 Anagawa, Inage, Chiba, 263-8555 (Japan); Bio-Nano Electronics Research Centre, Toyo Univ., 2100 Kuzirai, Kawagoe, Saitama, 350-8585 (Japan); Osaka Univ., 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan)

    2012-11-06T23:59:59.000Z

    Multiply charged ions to be used prospectively are produced from solid pure material in an electron cyclotron resonance ion source (ECRIS). Recently a pure iron source is also required for the production of caged iron ions in the fullerene in order to control cells in vivo in bio-nano science and technology. We adopt directly heating iron rod by induction heating (IH) because it has non-contact with insulated materials which are impurity gas sources. We choose molybdenum wire for the IH coils because it doesn't need water cooling. To improve power efficiency and temperature control, we propose to the new circuit without previously using the serial and parallel dummy coils (SPD) for matching and safety. We made the circuit consisted of inductively coupled coils which are thin-flat and helix shape, and which insulates the IH power source from the evaporator. This coupling coils circuit, i.e. insulated induction heating coil transformer (IHCT), can be move mechanically. The secondary current can be adjusted precisely and continuously. Heating efficiency by using the IHCT is much higher than those of previous experiments by using the SPD, because leakage flux is decreased and matching is improved simultaneously. We are able to adjust the temperature in heating the vapor source around melting point. And then the vapor pressure can be controlled precisely by using the IHCT. We can control {+-}10K around 1500 Degree-Sign C by this method, and also recognize to controlling iron vapor flux experimentally in the extreme low pressures. Now we come into next stage of developing induction heating vapor source for materials with furthermore high temperature melting points above 2000K with the IHCT, and then apply it in our ECRIS.

  10. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, R.R.

    1984-07-16T23:59:59.000Z

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  11. Effect of high temperature heat treatments on the quality factor of a large-grain superconducting radio-frequency niobium cavity

    SciTech Connect (OSTI)

    Dhakal, P; Myneni, G R; Gray, K E; Groll, N; Maheshwari, P; McRae, D M; Pike, R; Proslier, T; Stevie, F; Walsh, R P; Yang, Q

    2013-04-01T23:59:59.000Z

    Large-grain Nb has become a viable alternative to fine-grain Nb for the fabrication of superconducting radio-frequency cavities. In this contribution we report the results from a heat treatment study of a large-grain 1.5 GHz single-cell cavity made of “medium purity” Nb. The baseline surface preparation prior to heat treatment consisted of standard buffered chemical polishing. The heat treatment in the range 800–1400°C was done in a newly designed vacuum induction furnace. Q{sub 0} values of the order of 2×10{sup 10} at 2.0 K and peak surface magnetic field (B{sub p}) of 90 mT were achieved reproducibly. A Q{sub 0} value of (5±1)×10{sup 10} at 2.0 K and B{sub p}=90??mT was obtained after heat treatment at 1400°C. This is the highest value ever reported at this temperature, frequency, and field. Samples heat treated with the cavity at 1400°C were analyzed by secondary ion mass spectrometry, x-ray photoelectron spectroscopy, energy dispersive x ray, point-contact tunneling, and x-ray diffraction, and revealed a complex surface composition which includes titanium oxide, increased carbon, and nitrogen content but reduced hydrogen concentration compared to a non-heat-treated sample.

  12. Convective Heat Transfer and Reference Free-stream Temperature Determination near the Casing of an Axial Flow

    E-Print Network [OSTI]

    Camci, Cengiz

    of an Axial Flow Turbine B. Gumusel 2 and C. Camci 1 Turbomachinery Aero-Heat Transfer Laboratory Department on the casing of an axial flow turbine. The goal is to develop an accurate steady-state heat transfer method for the comparison of various casing surface and tip designs used for turbine performance improvements. The free

  13. Thermal-Hydraulic Analyses of Heat Transfer Fluid Requirements and Characteristics for Coupling A Hydrogen Production Plant to a High-Temperature Nuclear Reactor

    SciTech Connect (OSTI)

    C. B. Davis; C. H. Oh; R. B. Barner; D. F. Wilson

    2005-06-01T23:59:59.000Z

    The Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the hightemperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant, may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. Seven possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermalhydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermalhydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The evaluations determined which configurations and coolants are the most promising from thermal-hydraulic and efficiency points of view. These evaluations also determined which configurations and options do not appear to be feasible at the current time.

  14. A parametric study of shock jump chemistry, electron temperature, and radiative heat transfer models in hypersonic flows 

    E-Print Network [OSTI]

    Greendyke, Robert Brian

    1988-01-01T23:59:59.000Z

    will examine the radiance model and various step models in order to determine their appropriateness to the flight regime of the AOTV. The final area to be investigated will be the effect of nonequilibrium corrections on the radiative heat transfer models... of T and e T will be valid as long as there is a reasonable amount vNs of nitrogen molecules in the flow. Radiative Heat Transfer Models For this study, four radiative heat transfer models were examined. One of these models is an optically thin radiance...

  15. Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    SciTech Connect (OSTI)

    Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P.

    2011-01-11T23:59:59.000Z

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K/s) using differential scanning calorimetry (DSC) traces to 725ºC. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 105 K/s) in high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (Tmax) are largely independent of foil chemistry at 0.6 ± 0.1 m/s and 1220 ± 50 K, respectively, and that the measured Tmax is more than 200 K lower than predicted adiabatic temperatures (Tad). The difference between Tmax and Tad is explained by the prediction that transformation to the final intermetallic phases occurs after Tmax and results in the release of 20-30 % of the total heat of reaction and a delay in rapid cooling.

  16. JOURNAL DE PHYSIQUE Colloque C4, supplment au n 4, Tome 40, avril 1979, page C4-138 Superconducting critical field and low temperature heat capacity of ameri-

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to a sapphire platform that was ther- mally weakly-tied to a 1.38 K liquid helium bath. The heat capacity-138 Superconducting critical field and low temperature heat capacity of ameri- cium (*) J. L. Smith, G. R. Stewart, C on the superconductor americium yield an electronic heat capacity coefficient of y = 2 ±2 mJ/mole · K2 and a critical

  17. original temperature and pressure, and all absorbed heat (or even more in non-ideal cycle) has to be removed out from the cyclic medium in order to complete the cycle, see

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    it will not be possible to produce (cyclic) mechanical work from heat of fuel. In ideal reversible cycles, the exhaust), and vice versa. TABLE 1. Carnot cycle with ideal gas as working medium (see Figs. 2 & 7). Process Conditionoriginal temperature and pressure, and all absorbed heat (or even more in non-ideal cycle) has

  18. Influence of frequency, grade, moisture and temperature on Green River oil shale dielectric properties and electromagnetic heating processes

    SciTech Connect (OSTI)

    Hakala, J. Alexandra [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Stanchina, William [Univ. of Pittsburgh, PA (United States); National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Soong, Yee [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Hedges, Sheila [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2011-01-01T23:59:59.000Z

    Development of in situ electromagnetic (EM) retorting technologies and design of specific EM well logging tools requires an understanding of various process parameters (applied frequency, mineral phases present, water content, organic content and temperature) on oil shale dielectric properties. In this literature review on oil shale dielectric properties, we found that at low temperatures (<200° C) and constant oil shale grade, both the relative dielectric constant (?') and imaginary permittivity (?'') decrease with increased frequency and remain constant at higher frequencies. At low temperature and constant frequency, ?' decreases or remains constant with oil shale grade, while ?'' increases or shows no trend with oil shale grade. At higher temperatures (>200º C) and constant frequency, epsilon' generally increases with temperature regardless of grade while ?'' fluctuates. At these temperatures, maximum values for both ?' and ?'' differ based upon oil shale grade. Formation fluids, mineral-bound water, and oil shale varve geometry also affect measured dielectric properties. This review presents and synthesizes prior work on the influence of applied frequency, oil shale grade, water, and temperature on the dielectric properties of oil shales that can aid in the future development of frequency- and temperature-specific in situ retorting technologies and oil shale grade assay tools.

  19. Design and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air or Liquid Heat Integration

    E-Print Network [OSTI]

    Berning, Torsten

    of burner temperature and the aspects of implementing advanced modeling based control approaches using], auxiliary and uninterruptible power systems [13, 14, 15, 16, 17, 18, 19]. Polymer electrolyte membrane fuelDesign and Control of High Temperature PEM Fuel Cell Systems using Methanol Reformers with Air

  20. A HIGH TEMPERATURE GAS RECEIVER UTILIZING SMALL PARTICLES

    E-Print Network [OSTI]

    Hunt, Arlon

    2012-01-01T23:59:59.000Z

    field of high temperature solar process heat. The ultimateof solar applications including industrial process heat and

  1. The microcanonical thermodynamics of finite systems: The microscopic origin of condensation and phase separations; and the conditions for heat flow from lower to higher temperatures

    E-Print Network [OSTI]

    D. H. E. Gross; J. F. Kenney

    2005-03-24T23:59:59.000Z

    Microcanonical thermodynamics allows the application of statistical mechanics both to finite and even small systems and also to the largest, self-gravitating ones. However, one must reconsider the fundamental principles of statistical mechanics especially its key quantity, entropy. Whereas in conventional thermostatistics, the homogeneity and extensivity of the system and the concavity of its entropy are central conditions, these fail for the systems considered here. For example, at phase separation, the entropy, S(E), is necessarily convex to make exp[S(E)-E/T] bimodal in E. Particularly, as inhomogeneities and surface effects cannot be scaled away, one must be careful with the standard arguments of splitting a system into two subsystems, or bringing two systems into thermal contact with energy or particle exchange. Not only the volume part of the entropy must be considered. As will be shown here, when removing constraints in regions of a negative heat capacity, the system may even relax under a flow of heat (energy) against a temperature slope. Thus the Clausius formulation of the second law: ``Heat always flows from hot to cold'', can be violated. Temperature is not a necessary or fundamental control parameter of thermostatistics. However, the second law is still satisfied and the total Boltzmann entropy increases. In the final sections of this paper, the general microscopic mechanism leading to condensation and to the convexity of the microcanonical entropy at phase separation is sketched. Also the microscopic conditions for the existence (or non-existence) of a critical end-point of the phase-separation are discussed. This is explained for the liquid-gas and the solid-liquid transition.

  2. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA); Hansen, Leif J. (Berkeley, CA); Evans, David B. (Orinda, CA)

    1985-01-01T23:59:59.000Z

    A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  3. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29T23:59:59.000Z

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  4. A study of substitution solvents in asphalt fume extraction and the effects of heating duration and temperature

    E-Print Network [OSTI]

    Curry, Noel Thomas

    1981-01-01T23:59:59.000Z

    (denoted Dl). Duration two ( D2) ran from time 60 minutes to time 90 minutes, Dl and DZ were separated by a 30 minute period in wh i ch no sampling occurred. The total time of heati ng at this temperature range was 90 minutes, which was near the limit... of the filter to hold it in position, and the cassette cap was placed on top of this. 3oth ends were then plugged. (Figure 2) After a warming period of approximately 30 minutes, the temperature of the liquid asphalt was raised to 250 C. iihen it reached...

  5. Complex Compound Chemical Heat Pumps 

    E-Print Network [OSTI]

    Rockenfeller, U.; Langeliers, J.; Horn, G.

    1987-01-01T23:59:59.000Z

    Complex-compound solid-vapor fluid pairs can be used in heat of reaction heat pumps for temperature amplifier (TA) as well as heat amplifier (HA) cycle configurations. This report describes the conceptual hardware design for complex compound...

  6. Complex Compound Chemical Heat Pumps

    E-Print Network [OSTI]

    Rockenfeller, U.; Langeliers, J.; Horn, G.

    Complex-compound solid-vapor fluid pairs can be used in heat of reaction heat pumps for temperature amplifier (TA) as well as heat amplifier (HA) cycle configurations. This report describes the conceptual hardware design for complex compound...

  7. Heat and corrosion resistant cast CN-12 type stainless steel with improved high temperature strength and ductility

    DOE Patents [OSTI]

    Mazias, Philip J. (Oak Ridge, TN); McGreevy, Tim (Morton, IL); Pollard,Michael James (East Peoria, IL); Siebenaler, Chad W. (Peoria, IL); Swindeman, Robert W. (Oak Ridge, TN)

    2007-08-14T23:59:59.000Z

    A cast stainless steel alloy and articles formed therefrom containing about 0.5 wt. % to about 10 wt. % manganese, 0.02 wt. % to 0.50 wt. % N, and less than 0.15 wt. % sulfur provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. Alloys of the present invention also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon. Such solution strengthening enhances the high temperature precipitation-strengthening benefits of fine dispersions of NbC. Such solid solution effects also enhance the stability of the austenite matrix from resistance to excess sigma phase or chrome carbide formation at higher service temperatures. The presence of sulfides is substantially eliminated.

  8. High-resolution spatial mapping of the temperature distribution of a Joule self-heated graphene nanoribbon

    E-Print Network [OSTI]

    Kim, Philip

    signal, which is proportional to the local temperature change of the thermal probe. In order to cal) with a spatial resolution finer than 100 nm by scanning thermal microscopy (SThM). The SThM probe is calibrated using the Raman G mode Stokes/anti-Stokes intensity ratio as a function of electric power applied

  9. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, C.W.

    1994-11-01T23:59:59.000Z

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  10. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  11. Research and Development of a New Field Enhanced Low Temperature Thermionic Cathode that Enables Fluorescent Dimming and Loan Shedding without Auxiliary Cathode Heating

    SciTech Connect (OSTI)

    Feng Jin

    2009-01-07T23:59:59.000Z

    This is the final report for project entitled 'Research and development of a new field enhanced low temperature thermionic cathode that enables fluorescent dimming and load shedding without auxiliary cathode heating', under Agreement Number: DE-FC26-04NT-42329. Under this project, a highly efficient CNT based thermionic cathode was demonstrated. This cathode is capable of emitting electron at a current density two order of magnitude stronger then a typical fluorescent cathode at same temperatures, or capable of emitting at same current density but at temperature about 300 C lower than that of a fluorescent cathode. Detailed fabrication techniques were developed including CVD growth of CNTs and sputter deposition of oxide thin films on CNTs. These are mature technologies that have been widely used in industry for large scale materials processing and device fabrications, thus, with further development work, the techniques developed in this project can be scaled-up in manufacturing environment. The prototype cathodes developed in this project were tested in lighting plasma discharge environment. In many cases, they not only lit and sustain the plasma, but also out perform the fluorescent cathodes in key parameters such like cathode fall voltages. More work will be needed to further evaluate more detailed and longer term performance of the prototype cathode in lighting plasma.

  12. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    e l Atmosphere ceiling, back panel roof, exposed roof insideSAN DIEGO Photovoltaic Roof Heat Flux A Thesis submitted i no n Convection Exposed Roof Temperature Seasonal Temperature

  13. Heat and corrosion resistant cast CF8C stainless steel with improved high temperature strength and ductility

    DOE Patents [OSTI]

    Maziasz, Philip J. (Oak Ridge, TN); McGreevy, Tim (Washington, IL); Pollard, Michael James (Peoria, IL); Siebenaler, Chad W. (Dunlap, IL); Swindeman, Robert W. (Oak Ridge, TN)

    2010-08-17T23:59:59.000Z

    A CF8C type stainless steel alloy and articles formed therefrom containing about 18.0 weight percent to about 22.0 weight percent chromium and 11.0 weight percent to about 14.0 weight percent nickel; from about 0.05 weight percent to about 0.15 weight percent carbon; from about 2.0 weight percent to about 10.0 weight percent manganese; and from about 0.3 weight percent to about 1.5 weight percent niobium. The present alloys further include less than 0.15 weight percent sulfur which provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. The disclosed alloys also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon.

  14. Heat and corrosion resistant cast CF8C stainless steel with improved high temperature strength and ductility

    DOE Patents [OSTI]

    Maziasz, Philip J.; McGreevy, Tim; Pollard, Michael James; Siebenaler, Chad W.; Swindeman, Robert W.

    2006-12-26T23:59:59.000Z

    A CF8C type stainless steel alloy and articles formed therefrom containing about 18.0 weight percent to about 22.0 weight percent chromium and 11.0 weight percent to about 14.0 weight percent nickel; from about 0.05 weight percent to about 0.15 weight percent carbon; from about 2.0 weight percent to about 10.0 weight percent manganese; and from about 0.3 weight percent to about 1.5 weight percent niobium. The present alloys further include less than 0.15 weight percent sulfur which provides high temperature strength both in the matrix and at the grain boundaries without reducing ductility due to cracking along boundaries with continuous or nearly-continuous carbides. The disclosed alloys also have increased nitrogen solubility thereby enhancing strength at all temperatures because nitride precipitates or nitrogen porosity during casting are not observed. The solubility of nitrogen is dramatically enhanced by the presence of manganese, which also retains or improves the solubility of carbon thereby providing additional solid solution strengthening due to the presence of manganese and nitrogen, and combined carbon.

  15. Automatic temperature adjustment apparatus

    DOE Patents [OSTI]

    Chaplin, James E. (66 Overlook Rd., Bloomingdale, NJ 07403)

    1985-01-01T23:59:59.000Z

    An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.

  16. Acoustic Heating Peter Ulmschneider

    E-Print Network [OSTI]

    Ulmschneider, Peter

    mechanisms. 1. The acoustic heating theory Only a few years after Edlen's (1941) discovery that the solar acoustic wave radiation- · b. field acoustic wave Figure 1. Panel a: Acoustic heating in late-type stars: effective temperature TeJ f, gravity g and mixing length parameter fr. Panel b: Acoustic heating in early

  17. Fluidized bed heat treating system

    DOE Patents [OSTI]

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06T23:59:59.000Z

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  18. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

    1984-01-01T23:59:59.000Z

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  19. Heat rejection system

    DOE Patents [OSTI]

    Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

    1980-01-01T23:59:59.000Z

    A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

  20. absorption cycle heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat... Erickson, D. C. 1983-01-01 First Page...

  1. IEA HPP Annex 41 Cold Climate Heat

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    of Air-Source Heat Pumps Van D. Baxter Oak Ridge National Laboratory European Heat Pump Summit Nuremberg ­ Cold Climate Heat Pumps Improving low ambient temperature performance of air-source heat pumps as having large number of hours with OD temperature -7 °C (19 °F). Air-source heat pumps (ASHP

  2. Industrial Waste Heat Recovery

    E-Print Network [OSTI]

    Ward, M. E.; Solomon, N. G.; Tabb, E. S.

    1980-01-01T23:59:59.000Z

    INDUSTRIAL WASTE HEAT RECOVREY M. E. Ward and N. G. Solomon E. S. Tabb Solar Turbines International and Gas Research Institute San Diego, California Chicago, Illinois ABSTRACT i I One hundred fifty reports were reviewed along with interviews... tests, promising low temperature heat exchanger tube alloys and coated surfaces were identified. 1INTROUCTION of advanced technology heat recovery techniques 1_ Recovering waste heat from the flue gases of the pr~ary objective. Specific objectives...

  3. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    SciTech Connect (OSTI)

    University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

    2014-06-23T23:59:59.000Z

    A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

  4. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations

    E-Print Network [OSTI]

    Kirol, L. D.

    for water and gas connections, and temperature variations. Recent work on heat pump cycles using complex compound reactions includes development of energy storage systems at laboratories in Europe (11) and the United States (12), and residential...ABSTRACT Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, hl~a: driven heat pumps in which either heat engine or heat pump working fluid...

  5. Geothermal heating

    SciTech Connect (OSTI)

    Aureille, M.

    1982-01-01T23:59:59.000Z

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  6. Heating-compensated constant-temperature tunneling measurements on stacks of Bi2Sr2CaCu2O8+x intrinsic junctions

    E-Print Network [OSTI]

    Lee, Hu-Jong

    measurements on a stack of intrinsic junctions IJs in a high-bias range are often susceptible to self-heating one to get rid of spurious tunneling effects arising from the self-heating. © 2005 American Institute. The poor thermal conductivity of the Bi-2212 IJs, how- ever, is known to cause serious local self-heating

  7. Low Level Heat Recovery Through Heat Pumps and Vapor Recompression 

    E-Print Network [OSTI]

    Gilbert, J.

    1980-01-01T23:59:59.000Z

    of each approach as a function of the source and sink temperatures and magnitude of heat flow. Generic heat pumps and vapor recompression designs are explained, costed, estimated in performance, and evaluated as a function of the economic parameters...

  8. Heat Integrate Heat Engines in Process Plants

    E-Print Network [OSTI]

    Hindmarsh, E.; Boland, D.; Townsend, D. W.

    ~C. T min Table 3. Problem Table Algorithm Applied to Petrochemicals Process Interval GJ ltiour 'Temperatures ! C! 2 ) ? ~ Cold. Hot Aecumulated Heat Heat FJ.owa Interval Streams StrePlS Deficit. Input OUtput -OUtt!utInput. 20 30 -2... of heat which can be passed on in this manner is performed in column 2 and column 3 of Table 3. It is initially assumed that the heat input from external utilities is zero. This is represented in Table 3 by a zero input to the top interval. Having...

  9. Heat Recovery from Coal Gasifiers

    E-Print Network [OSTI]

    Wen, H.; Lou, S. C.

    1981-01-01T23:59:59.000Z

    This paper deals with heat recovery from pressurized entrained and fixed bed coal gasifiers for steam generation. High temperature waste heat, from slagging entrained flow coal gasifier, can be recovered effectively in a series of radiant...

  10. Solar steam generation by heat localization

    E-Print Network [OSTI]

    Ghasemi, Hadi

    Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated ...

  11. Geothermal Heat Pumps | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it work? A geothermal heat pump uses the constant below ground temperature of soil or water to heat and cool your home. Geothermal heat pumps (GHPs), sometimes referred to as...

  12. Absorptive Recycle of Distillation Waste Heat 

    E-Print Network [OSTI]

    Erickson, D. C.; Lutz, E. J., Jr.

    1982-01-01T23:59:59.000Z

    When the heat source available to a distillation process is at a significantly higher temperature than the reboiler temperature, there is unused availability (ability to perform work) in the heat supplied to the reboiler. Similarly, if the reflux...

  13. Convective heat flow probe

    DOE Patents [OSTI]

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09T23:59:59.000Z

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  14. Liquid Phase Heating Systems

    E-Print Network [OSTI]

    Mordt, E. H.

    1979-01-01T23:59:59.000Z

    Temperature Water (HTW) central district heating systems are far superior to steam systems in large, spread out installations such as airports, universities and office complexes. Water, pressurized to keep it in the liquid state, is distributed at 400o...

  15. Composite heat damage assessment

    SciTech Connect (OSTI)

    Janke, C.J.; Wachter, E.A. [Oak Ridge National Lab., TN (United States); Philpot, H.E. [Oak Ridge K-25 Site, TN (United States); Powell, G.L. [Oak Ridge Y-12 Plant, TN (United States)

    1993-12-31T23:59:59.000Z

    The effects of heat damage were determined on the residual mechanical, physical, and chemical properties of IM6/3501-6 laminates, and potential nondestructive techniques to detect and assess material heat damage were evaluated. About one thousand preconditioned specimens were exposed to elevated temperatures, then cooled to room temperature and tested in compression, flexure, interlaminar shear, shore-D hardness, weight loss, and change in thickness. Specimens experienced significant and irreversible reduction in their residual properties when exposed to temperatures exceeding the material upper service temperature of this material (350{degrees}F). The Diffuse Reflectance Infrared Fourier Transform and Laser-Pumped Fluorescence techniques were found to be capable of rapid, in-service, nondestructive detection and quantitation of heat damage in IM6/3501- 6. These techniques also have the potential applicability to detect and assess heat damage effects in other polymer matrix composites.

  16. Mechanical Compression Heat Pumps 

    E-Print Network [OSTI]

    Apaloo, T. L.; Kawamura, K.; Matsuda, J.

    1986-01-01T23:59:59.000Z

    to develop, design and test compressors built to meet the needs of the mechanically demanding industrial heat pump applications which often require high compression ratios and temperatures in excess of 200 degrees F. This paper will review the theoretical...

  17. Optimization of the Heating System Operation

    E-Print Network [OSTI]

    Xu, W.; Mao, S.

    2006-01-01T23:59:59.000Z

    on the basis of the variation of outdoor temperature, and in this way, the heating system can be optimized....

  18. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect (OSTI)

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01T23:59:59.000Z

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.

  19. ambient temperature secondary: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ambient Environmental Sciences and Ecology Websites Summary: heat production, Q heat loss, C conductance, Tb body temperature, and Ta ambient temperature...

  20. ambient temperature comportement: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ambient Environmental Sciences and Ecology Websites Summary: heat production, Q heat loss, C conductance, Tb body temperature, and Ta ambient temperature...

  1. ambient temperature creep: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ambient Environmental Sciences and Ecology Websites Summary: heat production, Q heat loss, C conductance, Tb body temperature, and Ta ambient temperature...

  2. ambient temperatures conditions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ambient Environmental Sciences and Ecology Websites Summary: heat production, Q heat loss, C conductance, Tb body temperature, and Ta ambient temperature...

  3. ambient temperature cured: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ambient Environmental Sciences and Ecology Websites Summary: heat production, Q heat loss, C conductance, Tb body temperature, and Ta ambient temperature...

  4. ambient temperature lithium: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ambient Environmental Sciences and Ecology Websites Summary: heat production, Q heat loss, C conductance, Tb body temperature, and Ta ambient temperature...

  5. ambient temperature grown: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ambient Environmental Sciences and Ecology Websites Summary: heat production, Q heat loss, C conductance, Tb body temperature, and Ta ambient temperature...

  6. ambient temperature rechargeable: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ambient Environmental Sciences and Ecology Websites Summary: heat production, Q heat loss, C conductance, Tb body temperature, and Ta ambient temperature...

  7. Low and high Temperature Dual Thermoelectric Generation Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery...

  8. Design, construction, operation, and evaluation of solar systems for industrial process-heat applications in the intermediate-temperature range (212/sup 0/F to 550/sup 0/F). Environmental assessment

    SciTech Connect (OSTI)

    none,

    1982-01-01T23:59:59.000Z

    The environmental impacts are assessed for a proposed 50,000 square foot field of single axis tracking, concentrating solar collectors along the Ohio River in southern Ohio. The facility is planned to produce process steam for use in the production of polystyrene. Absorbed solar energy would heat an aliphatic hydrocarbon synthetic heat transfer fluid to a maximum temperature of 500/sup 0/F. The existing environment is briefly described, particularly regarding air quality. The potential environmental impacts of the solar process heat system on the air, water, soil, endangered species and archaeological and historical resources are examined, including risks due to flood and glare and a comparison of alternatives. Also included are a Consent Judgment relating to two coal-fired boilers in violation of EPA regulations, property data of Gulf Synfluid 4CS (a candidate heat transfer fluid), piping and instrumentation diagrams and schematics, site grade and drainage plan, geological survey map, subsurface soil investigation, Ohio endangered species list, Ohio Archaeological Counsel certification list, and a study of heat transfer fluids and their properties. (LEW)

  9. Active microchannel heat exchanger

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

    2001-01-01T23:59:59.000Z

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  10. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P. (Idaho Falls, ID)

    1992-01-01T23:59:59.000Z

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  11. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-08-04T23:59:59.000Z

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  12. Optimization of Heat Exchangers

    SciTech Connect (OSTI)

    Ivan Catton

    2010-10-01T23:59:59.000Z

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  13. The effects of airflow modulation and multi-stage defrost on the performance of an air source heat pump

    E-Print Network [OSTI]

    Payne, William Vance

    1992-01-01T23:59:59.000Z

    . This transfer of heat energy from a low temperature ambient to the high temperature conditioned space is accomplished by the input of electrical energy to the compressor. During the heating season, the heat pump transfers heat energy from the low temperature... pump refrigeration circuit includes a compressor, an indoor heat exchanger, an outdoor heat exchanger, an expansion device, and fans to transfer heat energy from a low temperature heat energy source to a higher temperature heat energy sink...

  14. The stable fly: prediction of larval temperature

    E-Print Network [OSTI]

    Foerster, Kenneth Wayne

    1978-01-01T23:59:59.000Z

    of the manure and to develop a dynamic heat transfer model, Larval migration behavior was observed in simulated sections of a manure mound. From these data a dynamic, temperature-dependent, larval migration model was developed. The results indicate... Of The Stable Fly Response To Temperature Heat Transfer Model III. EXPERIMENTAL PROCEDURE AND MATERIALS Manure Mound Temperature Distribution Temperature Measurement Thermodynamic Model Heat Transfer in the Mound Convective Heat Transfer Heat Transfer...

  15. A Cross-Flow Ceramic Heat Recuperator for Industrial Heat Recovery 

    E-Print Network [OSTI]

    Gonzalez, J. M.; Cleveland, J. J.; Kohnken, K. H.; Rebello, W. J.

    1980-01-01T23:59:59.000Z

    performance criteria and demonstrate a cross-flow ceramic heat recuperator for high temperature industrial heat recovery applications. The immediate goals of the ceramic recuperator project were to demonstrate a heat exchanger capable of handling high...

  16. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  17. The deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes

    E-Print Network [OSTI]

    Shiralkar, B. S.

    1968-01-01T23:59:59.000Z

    At slightly supercritical pressure and in the neighborhood of the pseudo-critical temperature (defined as the temperature corresponding to the peak in specific heat at the operating pressure), the heat transfer coefficient ...

  18. Heat pump with freeze-up prevention

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX)

    1981-01-01T23:59:59.000Z

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid prevents freeze up of the second heat exchanger by keeping the temperature above the dew point; and, optionally, provides heat for efficient operation.

  19. Absorption-heat-pump system

    DOE Patents [OSTI]

    Grossman, G.; Perez-Blanco, H.

    1983-06-16T23:59:59.000Z

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  20. Summer HeatSummer Heat Heat stress solutions

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    occur (then drink a lightly salted beverage like a sports drink). The water's temperature should be cool How should gardeners avoid becoming a safety threat to themselves and others when it's hot? Start to the heat. Become a weather watcher. Set up a small weather station (with a high/low thermom eter, rain

  1. State of the Art of Air-source Heat Pump for Cold Regions

    E-Print Network [OSTI]

    Tian, C.; Liang, N.

    2006-01-01T23:59:59.000Z

    that the COP of this heat pump system is over 2, the compressor discharge temperature under 120, and the heating capacity can meet the heating load needed when the condensing temperature is 50 and outdoor air temperature is over -18....

  2. Cast heat-resistant austenitic steel with improved temperature creep properties and balanced alloying element additions and methodology for development of the same

    DOE Patents [OSTI]

    Pankiw, Roman I; Muralidharan, Govindrarajan; Sikka, Vinod Kumar; Maziasz, Philip J

    2012-11-27T23:59:59.000Z

    The present invention addresses the need for new austenitic steel compositions with higher creep strength and higher upper temperatures. The new austenitic steel compositions retain desirable phases, such as austenite, M.sub.23C.sub.6, and MC in its microstructure to higher temperatures. The present invention also discloses a methodology for the development of new austenitic steel compositions with higher creep strength and higher upper temperatures.

  3. Application and Technology Requirements for Heat Pumps at the Process Industries 

    E-Print Network [OSTI]

    Priebe, S.; Chappell, R.

    1987-01-01T23:59:59.000Z

    There are basically three categories of equipment used to manage heat energy flows in an industrial process. First, heat exchangers are used to move heat through the process down the temperature gradient. Second, heat pumps are used to move heat...

  4. Direct numerical simulation of turbulent heat transfer in annuli: effect of heat flux ratio.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Direct numerical simulation of turbulent heat transfer in annuli: effect of heat flux ratio. M-la-Vall´ee cedex 2, France (Dated: October 23, 2008) Abstract Fully developed turbulent flow and heat transfer square (rms) of temperature fluctuations, turbulent heat fluxes, heat transfer, ...). To validate

  5. The Earth Institute, Columbia University14 Annual Donor Report 2009 15 Heat waves are on the rise as the climate changes and average temperatures increase.

    E-Print Network [OSTI]

    The Earth Institute, Columbia University14 Annual Donor Report 2009 15 Heat waves are on the rise University and Barnard College. Known as the Columbia Green Roof Consortium, it is led by a team of two Earth solutions in a responsible and scientific way--and Columbia had plenty of roof space to work with. "They

  6. Microchannel heat sink assembly

    DOE Patents [OSTI]

    Bonde, W.L.; Contolini, R.J.

    1992-03-24T23:59:59.000Z

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

  7. Application of Reversible Chemical Reactions for Temperature Amplification

    E-Print Network [OSTI]

    Ally, M. R.; Rebello, W. J.; Suciu, D. F.

    temperature thermal energy, mechanical and absorption type heat pumps have been proposed and developed so far. This paper addresses itself to the concept of a heat reaction chemical heat pump (HRCHP). The HRCHP concept is aimed to upgrade low temperature...

  8. Impact of External Heat-shielding Techniques on Shell Surface...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    External Heat-shielding Techniques on Shell Surface Temperatures and Dynamic Shell Thermal Deformation of Diesel Engine Emission Control Systems Impact of External Heat-shielding...

  9. Industrial Heat Pumps--Types and Costs

    E-Print Network [OSTI]

    Chappell, R. N.; Bliem, C. J.; Mills, J. I.; Demuth, O. J.; Plaster, D. S.

    workings. from the waste heat flowing toward the cooling The three categories are: (a) electrically driven, utility. In practice, achieving. this objective (b) prime heat driven, and (c) waste heat driven. requires both proper integration of' the heat... shown in Figure 2 still holds except that the low temperature or waste heat is split, with part, Qb, going to the heat pump to be boosted to a higher temperature and part, Qd, going to the driver to drive the heat pump. The COP is defined as: COP...

  10. Method for heating a glass sheet

    DOE Patents [OSTI]

    Boaz, Premakaran Tucker (Livonia, MI)

    1998-01-01T23:59:59.000Z

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed.

  11. Method for heating a glass sheet

    DOE Patents [OSTI]

    Boaz, P.T.

    1998-07-21T23:59:59.000Z

    A method for heating a glass sheet includes the steps of heating a glass sheet to a first predetermined temperature and applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature to allow the glass sheet to be formed. 5 figs.

  12. Temperature and heat flux datasets of a complex object in a fire plume for the validation of fire and thermal response codes.

    SciTech Connect (OSTI)

    Jernigan, Dann A.; Blanchat, Thomas K.

    2010-09-01T23:59:59.000Z

    It is necessary to improve understanding and develop temporally- and spatially-resolved integral scale validation data of the heat flux incident to a complex object in addition to measuring the thermal response of said object located within the fire plume for the validation of the SIERRA/FUEGO/SYRINX fire and SIERRA/CALORE codes. To meet this objective, a complex calorimeter with sufficient instrumentation to allow validation of the coupling between FUEGO/SYRINX/CALORE has been designed, fabricated, and tested in the Fire Laboratory for Accreditation of Models and Experiments (FLAME) facility. Validation experiments are specifically designed for direct comparison with the computational predictions. Making meaningful comparison between the computational and experimental results requires careful characterization and control of the experimental features or parameters used as inputs into the computational model. Validation experiments must be designed to capture the essential physical phenomena, including all relevant initial and boundary conditions. This report presents the data validation steps and processes, the results of the penlight radiant heat experiments (for the purpose of validating the CALORE heat transfer modeling of the complex calorimeter), and the results of the fire tests in FLAME.

  13. Heat transfer probe

    DOE Patents [OSTI]

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10T23:59:59.000Z

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  14. Thermodynamic Advantages of Low Temperature Combustion Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Low Temperature Combustion Engines Including the Use of Low Heat Rejection Concepts Thermodynamic Advantages of Low Temperature Combustion Engines Including the Use...

  15. High-Temperature Thermoelectric Materials Characterization for...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  16. High Temperature Thermoelectric Materials Characterization for...

    Broader source: Energy.gov (indexed) [DOE]

    High Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  17. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste...

  18. Experimental Research of Air Source Heat Pump Frosting and Defrosting in a Double Stage-Coupling Heat Pump

    E-Print Network [OSTI]

    Wang, Z.; Gu, J.; Lu, Z.

    2006-01-01T23:59:59.000Z

    In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 13~20 ? low temperature water is supplied to the water loop heat pump unit. The water loop heat pump can extract heat from the water and heat the indoor air...

  19. Experimental Research of Air Source Heat Pump Frosting and Defrosting in a Double Stage-Coupling Heat Pump 

    E-Print Network [OSTI]

    Wang, Z.; Gu, J.; Lu, Z.

    2006-01-01T23:59:59.000Z

    In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 13~20 ? low temperature water is supplied to the water loop heat pump unit. The water loop heat pump can extract heat from the water and heat the indoor air...

  20. 1.12.2014bo Akademi Univ -Thermal and Flow Engineering Piispankatu 8, 20500 Turku 1/24 8. Heat pumps, heat pipes,

    E-Print Network [OSTI]

    Zevenhoven, Ron

    of low-temperature (waste) heat, replacing sources of (unnecessarily) high temperature heat (and, 3) outside water heat and 4) heat from another indoor space, or 5) waste heat from a process1.12.2014Åbo Akademi Univ - Thermal and Flow Engineering Piispankatu 8, 20500 Turku 1/24 8. Heat

  1. Temperature Data Evaluation

    SciTech Connect (OSTI)

    Gillespie, David

    2003-03-01T23:59:59.000Z

    Groundwater temperature is sensitive to the competing processes of heat flow from below the advective transport of heat by groundwater flow. Because groundwater temperature is sensitive to conductive and advective processes, groundwater temperature may be utilized as a tracer to further constrain the uncertainty of predictions of advective radionuclide transport models constructed for the Nevada Test Site (NTS). Since heat transport, geochemical, and hydrologic models for a given area must all be consistent, uncertainty can be reduced by devaluing the weight of those models that do not match estimated heat flow. The objective of this study was to identify the quantity and quality of available heat flow data at the NTS. One-hundred-forty-five temperature logs from 63 boreholes were examined. Thirteen were found to have temperature profiles suitable for the determination of heat flow values from one or more intervals within the boreholes. If sufficient spatially distributed heat flow values are obtained, a heat transport model coupled to a hydrologic model may be used to reduce the uncertainty of a nonisothermal hydrologic model of the NTS.

  2. Heat treatment furnace

    DOE Patents [OSTI]

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21T23:59:59.000Z

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  3. Molecular heat pump

    E-Print Network [OSTI]

    Dvira Segal; Abraham Nitzan

    2005-10-11T23:59:59.000Z

    We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

  4. Integrating preconcentrator heat controller

    DOE Patents [OSTI]

    Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

    2007-10-16T23:59:59.000Z

    A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

  5. Low substrate temperature fabrication of high-performance metal oxide thin-film by magnetron sputtering with target self-heating

    SciTech Connect (OSTI)

    Yang, W. F. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117576 (Singapore) [Department of Materials Science and Engineering, National University of Singapore, Singapore 117576 (Singapore); Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); Liu, Z. G. [Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002 (China)] [Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002 (China); Wu, Z. Y. [Department of Physics, Xiamen University, Xiamen 361005 (China)] [Department of Physics, Xiamen University, Xiamen 361005 (China); Hong, M. H. [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)] [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Wang, C. F.; Lee, Alex Y. S. [Du Pont Apollo Limited, No. 8 Science Park West Ave., Hong Kong Science Park, Pak Shek Kok, New Territories (Hong Kong)] [Du Pont Apollo Limited, No. 8 Science Park West Ave., Hong Kong Science Park, Pak Shek Kok, New Territories (Hong Kong); Gong, H. [Department of Materials Science and Engineering, National University of Singapore, Singapore 117576 (Singapore)] [Department of Materials Science and Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2013-03-18T23:59:59.000Z

    Al-doped ZnO (AZO) films with high transmittance and low resistivity were achieved on low temperature substrates by radio frequency magnetron sputtering using a high temperature target. By investigating the effect of target temperature (T{sub G}) on electrical and optical properties, the origin of electrical conduction is verified as the effect of the high T{sub G}, which enhances crystal quality that provides higher mobility of electrons as well as more effective activation for the Al dopants. The optical bandgap increases from 3.30 eV for insulating ZnO to 3.77 eV for conducting AZO grown at high T{sub G}, and is associated with conduction-band filling up to 1.13 eV due to the Burstein-Moss effect.

  6. THE EFFECTS OF SOLVENTS ON SUB-BITUMINOUS COAL BELOW ITS PYROLYSIS TEMPERATURE

    E-Print Network [OSTI]

    Grens III., Edward A.

    2013-01-01T23:59:59.000Z

    resistance heaters, with heat input adjusted to con- trolfix temperature) and the heat input adjusted to give reflux

  7. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01T23:59:59.000Z

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  8. Optimization of the Heating System Operation 

    E-Print Network [OSTI]

    Xu, W.; Mao, S.

    2006-01-01T23:59:59.000Z

    A new regulation method of the heating system is presented, which is based on the variation of outdoor temperature, to improve the economical efficiency and the timing regulation of the heating system. A function is put forward between the energy...

  9. Effects of urban land cover modifications in a mesoscale meteorological model on surface temperature and heat fluxes in the Phoenix metropolitan area.

    E-Print Network [OSTI]

    Hall, Sharon J.

    in the modeling domain was calculated as part of the energy balance equation according to: E = a C CuM[qs(Tg) -qs MM5. The single urban category in the existing 25-category United States Geological Survey (USGS surface energy fluxes and ground temperature. Planetary boundary layer processes were included via the MRF

  10. Heat Pump Application- An Industrial Case Study

    E-Print Network [OSTI]

    Shukla, D.; Umoh, R.

    of additional compressor work required to lift thermal energy from a low source temperature to a high sink temperature. A reduction of this work improves the heat pump economics. This paper presents the results of a heat pump study conducted by TENSA... technology and by making some process modifications, the compressor work can be reduced significantly. INTRODUCTION Heat pumps, used in conjunction with conventional heat exchangers networks (HEN) provide an effective means for reducing the energy...

  11. Hot Water Heating System Operation and Energy Conservation 

    E-Print Network [OSTI]

    Shao, Z.; Chen, H.; Wei, P.

    2006-01-01T23:59:59.000Z

    heating period, and temperature-flow adjustment with frequency control. The study shows the most energy efficient operating method is a variable flow heating system, which should be popularized to the heating field....

  12. adsorption heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Condensator 12;12 Low-temperature heat sources Geothermal source Ambient air Solar adsorption heat pump, but the use of the source for hot water or direct heating can be...

  13. air heat pumps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Pump Texas A&M University - TxSpace Summary: In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 1320 ? low temperature water...

  14. air source heat pumps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Pump Texas A&M University - TxSpace Summary: In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 1320 ? low temperature water...

  15. air heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 1320 ? low temperature water is supplied to the water loop heat pump unit....

  16. Esimation of field-scale thermal conductivities of unsaturated rocks from in-situ temperature data

    E-Print Network [OSTI]

    Mukhopadhyay, Sumit; Tsang, Yvonne W.; Birkholzer, Jens T.

    2008-01-01T23:59:59.000Z

    vicinity of the heat source, and rock temperature exceededand the dry rock near the heat source. The other differencesources, heat transfer takes place through the wet rock (see

  17. Frostless heat pump having thermal expansion valves

    DOE Patents [OSTI]

    Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN)

    2002-10-22T23:59:59.000Z

    A heat pump system having an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant and further having a compressor, an interior heat exchanger, an exterior heat exchanger, a heat pump reversing valve, an accumulator, a thermal expansion valve having a remote sensing bulb disposed in heat transferable contact with the refrigerant piping section between said accumulator and said reversing valve, an outdoor temperature sensor, and a first means for heating said remote sensing bulb in response to said outdoor temperature sensor thereby opening said thermal expansion valve to raise suction pressure in order to mitigate defrosting of said exterior heat exchanger wherein said heat pump continues to operate in a heating mode.

  18. Low to moderate temperature nanolaminate heater

    DOE Patents [OSTI]

    Eckels, J. Del (Livermore, CA); Nunes, Peter J. (Danville, CA); Simpson, Randall L. (Livermore, CA); Hau-Riege, Stefan (Fremont, CA); Walton, Chris (Oakland, CA); Carter, J. Chance (Livermore, CA); Reynolds, John G. (San Ramon, CA)

    2011-01-11T23:59:59.000Z

    A low to moderate temperature heat source comprising a high temperature energy source modified to output low to moderate temperatures wherein the high temperature energy source modified to output low to moderate temperatures is positioned between two thin pieces to form a close contact sheath. In one embodiment the high temperature energy source modified to output low to moderate temperatures is a nanolaminate multilayer foil of reactive materials that produces a heating level of less than 200.degree. C.

  19. Cascade heat recovery with coproduct gas production

    DOE Patents [OSTI]

    Brown, William R. (Zionsville, PA); Cassano, Anthony A. (Allentown, PA); Dunbobbin, Brian R. (Allentown, PA); Rao, Pradip (Allentown, PA); Erickson, Donald C. (Annapolis, MD)

    1986-01-01T23:59:59.000Z

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange.

  20. Cascade heat recovery with coproduct gas production

    DOE Patents [OSTI]

    Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

    1986-10-14T23:59:59.000Z

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

  1. Heat Pump Cycle with Solution Circuit and Internal Heat Exchange

    E-Print Network [OSTI]

    Radermacher, R.

    Vapor compression heat pumps which employ working fluid mixtures rather than pure substances offer significant advantages leading to larger temperature lifts at low pressure ratios or to completely new applications. The main feature of such cycles...

  2. Critical heat flux test apparatus

    DOE Patents [OSTI]

    Welsh, Robert E. (West Mifflin, PA); Doman, Marvin J. (McKeesport, PA); Wilson, Edward C. (West Mifflin, PA)

    1992-01-01T23:59:59.000Z

    An apparatus for testing, in situ, highly irradiated specimens at high temperature transients is provided. A specimen, which has a thermocouple device attached thereto, is manipulated into test position in a sealed quartz heating tube by a robot. An induction coil around a heating portion of the tube is powered by a radio frequency generator to heat the specimen. Sensors are connected to monitor the temperatures of the specimen and the induction coil. A quench chamber is located below the heating portion to permit rapid cooling of the specimen which is moved into this quench chamber once it is heated to a critical temperature. A vacuum pump is connected to the apparatus to collect any released fission gases which are analyzed at a remote location.

  3. The Analysis and Assessment on Heating Energy Consumption of SAT 

    E-Print Network [OSTI]

    Zhang, J.

    2006-01-01T23:59:59.000Z

    The article introduced the fuel-energy consumption and outdoor temperatures of three heating terms from year 1999 to 2002 of SAT's fuel-boiler heating system. It demonstrated the relationship between the consumption and the temperatures by using...

  4. The Analysis and Assessment on Heating Energy Consumption of SAT

    E-Print Network [OSTI]

    Zhang, J.

    2006-01-01T23:59:59.000Z

    The article introduced the fuel-energy consumption and outdoor temperatures of three heating terms from year 1999 to 2002 of SAT's fuel-boiler heating system. It demonstrated the relationship between the consumption and the temperatures by using...

  5. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  6. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  7. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  8. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  9. Overshooting by differential heating

    E-Print Network [OSTI]

    Andrássy, R

    2015-01-01T23:59:59.000Z

    On the long nuclear time scale of stellar main-sequence evolution, even weak mixing processes can become relevant for redistributing chemical species in a star. We investigate a process of "differential heating," which occurs when a temperature fluctuation propagates by radiative diffusion from the boundary of a convection zone into the adjacent radiative zone. The resulting perturbation of the hydrostatic equilibrium causes a flow that extends some distance from the convection zone. We study a simplified differential-heating problem with a static temperature fluctuation imposed on a solid boundary. The astrophysically relevant limit of a high Reynolds number and a low P\\'eclet number (high thermal diffusivity) turns out to be interestingly non-intuitive. We derive a set of scaling relations for the stationary differential heating flow. A numerical method adapted to a high dynamic range in flow amplitude needed to detect weak flows is presented. Our two-dimensional simulations show that the flow reaches a sta...

  10. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1992-01-01T23:59:59.000Z

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  11. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-09-01T23:59:59.000Z

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  12. Thermal response of a flat heat pipe sandwich structure to a localized heat flux

    E-Print Network [OSTI]

    Wadley, Haydn

    The temperature distribution across a flat heat pipe sandwich structure, subjected to an intense localized thermal metal foam wick and distilled water as the working fluid. Heat was applied via a propane torch and radiative heat transfer. A novel method was developed to estimate experimentally, the heat flux distribution

  13. Combined Heat and Power Research and Development

    Broader source: Energy.gov (indexed) [DOE]

    system performance e.g., effect of low-temperature combustion strategies, improved turbo-machinery, etc on process heat production and system efficiency Fuel flexibility...

  14. Analysis of Energy-Rescued Potential of a Hot Water Heating Network 

    E-Print Network [OSTI]

    Han, J.; Wang, D.; Tian, G.

    2006-01-01T23:59:59.000Z

    and electricity factory in Jinan, we analyze the energy waste caused by hydraulic power maladjustment and improper control of heating temperature in heating season. We conclude that proper adjustment of the heating network and controlling the heating supply...

  15. Development of a 500 Watt High Temperature Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Development of a 100-Watt High Temperature Thermoelectric Generator Automotive Waste Heat Conversion to Power Program Automotive Waste Heat Conversion to Power Program...

  16. An Analysis of the Use of Fluidized-Bed Heat Exchangers for Heat Recovery

    E-Print Network [OSTI]

    Vogel, G. J.; Grogan, P. J.

    1980-01-01T23:59:59.000Z

    The principles of fluidized-bed operation and the factors affecting the performance of a fluidized-bed waste heat boiler (FBWHB) are discussed in detail. Factors included in the discussion are bed temperature and pressure, heat transfer coefficient...

  17. Dual Heating and Cooling Sorption Heat Pump for a Food Plant

    E-Print Network [OSTI]

    Rockenfeller, U.; Dooley, B.

    Complex compound sorption reactions are ideally suited for use in high temperature lift industrial heat pump cycles. Complex compound heat pumping and refrigeration provides a number of energy-saving advantages over present vapor compression systems...

  18. Heat Pump Application- An Industrial Case Study 

    E-Print Network [OSTI]

    Shukla, D.; Umoh, R.

    1990-01-01T23:59:59.000Z

    The economics of heat pumping across a distillation column is usually dependent on the amount of additional compressor work required to lift thermal energy from a low source temperature to a high sink temperature. A reduction of this work improves...

  19. 4. Heat exchangers; Steam, steam processes

    E-Print Network [OSTI]

    Zevenhoven, Ron

    pictures: KJ05 Temperature distributions of fluid in (a) counterflow, (b) parallel flow, and (c) 1 shell pass and 2 tubes passes. #12;7/74 Heat exchangers: Geometries /3 Temperature distribution in a counter

  20. Heat exchanger with ceramic elements

    DOE Patents [OSTI]

    Corey, John A. (North Troy, NY)

    1986-01-01T23:59:59.000Z

    An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

  1. Liquid metal heat exchanger for efficient heating of soils and geologic formations

    DOE Patents [OSTI]

    DeVault, Robert C. (Knoxville, TN) [Knoxville, TN; Wesolowski, David J. (Kingston, TN) [Kingston, TN

    2010-02-23T23:59:59.000Z

    Apparatus for efficient heating of subterranean earth includes a well-casing that has an inner wall and an outer wall. A heater is disposed within the inner wall and is operable within a preselected operating temperature range. A heat transfer metal is disposed within the outer wall and without the inner wall, and is characterized by a melting point temperature lower than the preselected operating temperature range and a boiling point temperature higher than the preselected operating temperature range.

  2. Groundwater and geothermal: urban district heating applications

    SciTech Connect (OSTI)

    Mounts, R.; Frazier, A.; Wood, E.; Pyles, O.

    1982-01-01T23:59:59.000Z

    This report describes how several cities use groundwater and geothermal energy in district heating systems. It begins with groundwater, introducing the basic technology and techniques of development, and describing two case studies of cities with groundwater-based district heating systems. The second half of the report consists of three case studies of cities with district heating systems using higher temperature geothermal resources.

  3. Hybrid Heat Pump Design and Application 

    E-Print Network [OSTI]

    Wagner, J. R.; Koebberman, W. F.

    1985-01-01T23:59:59.000Z

    The Hybrid Heat Pump (HHP) converts industrial waste heat into process steam. Waste heat at temperatures as low as approximately 200°F can be used. Steam output covers a range between 12,000 Ib/h and 50,000 Ib/h, depending on the application...

  4. Heating 7. 2 user's manual

    SciTech Connect (OSTI)

    Childs, K.W.

    1993-02-01T23:59:59.000Z

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

  5. High-temperature ceramic receivers

    SciTech Connect (OSTI)

    Jarvinen, P. O.

    1980-01-01T23:59:59.000Z

    An advanced ceramic dome cavity receiver is discussed which heats pressurized gas to temperatures above 1800/sup 0/F (1000/sup 0/C) for use in solar Brayton power systems of the dispersed receiver/dish or central receiver type. Optical, heat transfer, structural, and ceramic material design aspects of the receiver are reported and the development and experimental demonstration of a high-temperature seal between the pressurized gas and the high-temperature silicon carbide dome material is described.

  6. Development of a Computer Heating Monitoring System and Its Applications

    E-Print Network [OSTI]

    Chen, H.; Li, D.; Shen, L.

    2006-01-01T23:59:59.000Z

    to computer and monitor. Calculations of heating load, accumulative heat supply, etc. are carried out by the computer established with professional software programmed by C computer language. ??? ???? ??? ??? ??? ???? ??? ??? ??? ? ? ? ? ? Supply water... of supply and return water temperature, indoor and outdoor temperature, circulating flow, heating load, and accumulative heat supply. It can save and print the data and figures for checking and study. 3. APPLICATIONS The application of heating...

  7. Advanced Fluidized Bed Waste Heat Recovery Systems

    E-Print Network [OSTI]

    Peterson, G. R.

    ADVANCED FLUIDIZED BED WASTE HEAT RECOVERY SYSTEMS G. R. PETERSON Project Manager U.S. Department of Energy, Idaho Operations Office Idaho Falls, Idaho ABSTRACT The U.S. Department of Energy, Office of Industri al Programs, has sponsored... the development of a Fluidized Bed Waste Heat Recovery System (FBWHRS) and a higher temperature variant, the Ceramic Tubular Distributor Plate (CTOP) Fluidized Bed Heat Exchanger (FBHX) system. Both systems recover energy from high-temperature flue gases...

  8. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L. (Annandale, VA)

    1989-01-01T23:59:59.000Z

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  9. San Bernardino District Heating District Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSalton Sea Geothermal Area JumpPlanAugustineSan

  10. Kethcum District Heating District Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInteriasIowa:Washington: EnergyFacility | Open Energy Information

  11. Pagosa Springs District Heating District Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York:Ozark,Pacific GasPage" ShowingFacility |

  12. Philip District Heating District Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy Resources JumpPfhotonika Jump to:

  13. Susanville District Heating District Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co Ltd Place:Mclaren, 2010) ||Surya JyotiMSM

  14. Elko District Heat District Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest,Energy Information Elkhorn Hot Springs Pool &Open Energy

  15. Midland District Heating District Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee| OpenMickeyDelaware: Energy ResourcesTexas:

  16. Boise City Geothermal District Heating District Heating Low Temperature

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |BleckleyMotionBoca Del Mar, Florida:InBohemia,

  17. City of Klamath Falls District Heating District Heating Low Temperature

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCityJonesville, Louisiana (Utility

  18. The Homopolar Pulse Billet Heating Process

    E-Print Network [OSTI]

    Keith, R. E.; Weldon, W. F.

    1982-01-01T23:59:59.000Z

    - or gas-fired furnace machine. (7) Also during 1981, under the heating. Although most billet heating sponsorship of the Electric Power Research today is done using fuel-fired furnaces, Institute (EPRI), CEM-UT carried out a electric heating... obtained frDm Electromechanics at The University of Texas the EPRI study. at Austin (CEM-UT) has been engaged in research on large pulsed power supplies for use in experiments leading to controlled TEMPERATURE GRADIENTS IN BILLET HEATING...

  19. Dissipative heat engine is thermodynamically inconsistent

    E-Print Network [OSTI]

    A. M. Makarieva; V. G. Gorshkov

    2009-10-05T23:59:59.000Z

    A heat engine operating on the basis of the Carnot cycle is considered, where the mechanical work performed is dissipated within the engine at the temperature of the warmer isotherm and the resulting heat is added to the engine together with an external heat input. The resulting work performed by the engine per cycle is increased at the expense of dissipated work produced in the previous cycle. It is shown that such a dissipative heat engine is thermodynamically inconsistent violating the first and second laws of thermodynamics. The existing physical models employing the dissipative heat engine concept, in particular, the heat engine model of hurricane development, are physically invalid.

  20. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A. (Santa Cruz, NM)

    1984-01-01T23:59:59.000Z

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  1. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29T23:59:59.000Z

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  2. Gelling by Heating

    E-Print Network [OSTI]

    Sandalo Roldan-Vargas; Frank Smallenburg; Walter Kob; Francesco Sciortino

    2013-03-11T23:59:59.000Z

    We introduce a simple model, a binary mixture of patchy particles, which has been designed to form a gel upon heating. Due to the specific nature of the particle interactions, notably the number and geometry of the patches as well as their interaction energies, the system is a fluid both at high and at low temperatures, whereas at intermediate temperatures the system forms a solid-like disordered open network structure, i.e. a gel. Using molecular dynamics we investigate the static and dynamic properties of this system.

  3. IntroductiontoProcessEngineering(PTG) 4. Heat exchangers;

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Temperature distributions of fluid in (a) counterflow, (b) parallel flow, and (c) 1 shell pass and 2 tubes Temperature distribution in a counter-flow heat exchanger. Note: the exit temperature TC,o of the cold stream

  4. air temperature air: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air temperatures... conditions. The design of this study was based on the relation- ship of four parameters: air temperature, air velocity, radiant heat, and globe...

  5. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for...

  6. Application and Technology Requirements for Heat Pumps at the Process Industries

    E-Print Network [OSTI]

    Priebe, S.; Chappell, R.

    APPLICATION AND TECHNOLOGY REQUIREMENTS FOR HEAT PUMPS AT THE PROCESS INDUSTRIESl Stephen Priebe Engineering Specialist EG&G Idaho, Inc. Idaho Falls, ID There are basically three categories of equip ment used to manage heat energy flows... in an indus trial process. First, heat exchangers are used to move heat through the process down the temperature gradient. Second, heat pumps are used to move heat through the process up the temperature gra dient. Third, heat engines are used to convert...

  7. The quality assurance of heat fused thermoplastic pipeline joints

    E-Print Network [OSTI]

    Earles, Larry Lee

    1982-01-01T23:59:59.000Z

    with no Heating Pressure 23 6 Temperature Distribution in Drisco 6500 with 25 psi Heating Pressure 7 Three-Dimensional Temperature Distribution in Drisco 6500 During the Fusion Cycle (Heating Time = 30 sec) 8 Heat Transfer Nodel Used to Nodel the Heating... of Temperature on Joint Strength from the Latin Square Using Drisco 8000 with the Bead Removed 52 25 Effect of Heating Time on Joint Strength From the Latin Square Using Drisco 8000 with the Bead Removed 53 26 Effect of Fusion Pressure on Joint Strength...

  8. Estimation of Biomass Heat Storage Using Thermal Infrared Imagery: Application to a Walnut Orchard

    E-Print Network [OSTI]

    Garai, Anirban; Kleissl, Jan; Llewellyn Smith, Stefan G.

    2010-01-01T23:59:59.000Z

    NOTE Estimation of Biomass Heat Storage Using Thermalmethod to estimate tree biomass heat storage from thermalinfrared (TIR) imaging of biomass surface temperature is

  9. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01T23:59:59.000Z

    heating a high temperature working fluid to power a remoteand heating for a significant portion of the developed and developing world, including those in remote

  10. E-Print Network 3.0 - address heat tolerance Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    greenhouses... temperature and flows are suggested for spas and pools, space and district heating, greenhouse and aquaculture... pond heating, and industrial applications....

  11. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, James F. (Bonneville County, ID); Koenig, John F. (Idaho Falls, ID)

    1985-01-01T23:59:59.000Z

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  12. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, J.F.; Koenig, J.F.

    1984-05-29T23:59:59.000Z

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  13. Climate change and health: Indoor heat exposure in vulnerable populations

    SciTech Connect (OSTI)

    White-Newsome, Jalonne L., E-mail: jalonne@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 109 S. Observatory, SPH II, Rm. M6314, Ann Arbor, MI 48109 (United States); Sanchez, Brisa N., E-mail: brisa@umich.edu [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Jolliet, Olivier, E-mail: ojolliet@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 6622 SPH tower, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States)] [University of Michigan School of Public Health, Environmental Health Sciences Department, 6622 SPH tower, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Zhang, Zhenzhen, E-mail: zhzh@umich.edu [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States)] [University of Michigan School of Public Health, Biostatistics Department, M4164 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Parker, Edith A., E-mail: Edith-Parker@uiowa.edu [University of Michigan School of Public Health, Health Behavior and Health Education Department, 1415 Washington Heights, Ann Arbor, MI 48109-2029 (United States); Timothy Dvonch, J., E-mail: dvonch@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 1415 Washington Heights, 6642 SPH Tower, Ann Arbor, MI 48109 (United States); O'Neill, Marie S., E-mail: marieo@umich.edu [University of Michigan School of Public Health, Environmental Health Sciences Department, 6631 SPH Tower, 1415 Washington Heights, Ann Arbor, MI 48109 (United States)

    2012-01-15T23:59:59.000Z

    Introduction: Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods: We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 in Detroit, MI. We used mixed linear regression to model indoor temperatures' responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results: Average maximum indoor temperature for all locations was 34.85 Degree-Sign C, 13.8 Degree-Sign C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions: Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings to improve heat exposure assessment for epidemiological investigations. Weatherizing homes and modifying home surroundings could mitigate indoor heat exposure among the elderly.

  14. Energy Saving Guidelines for Portland State University Heating and Ventilation

    E-Print Network [OSTI]

    Caughman, John

    Energy Saving Guidelines for Portland State University Heating and Ventilation Conditioned spaces will be heated to a temperature range of 67-70 in the winter and cooled, where applicable, to a temperature range will not be allowed, unless approval from FPM has been granted for cases where spaces cannot otherwise be heated

  15. Emerging Heat Exchanger Technologies for the Mitigation of Fouling in Crude Oil Pre-Heat Trains

    E-Print Network [OSTI]

    Polley, G. T.; Pugh, S. J.; King, D. C.

    -heat train exchangers foul is controlled by fluid velocity and by wall temperature. Technologies which promote the heat transfer on the crude oil side of an exchanger are therefore favoured. (Note: promotion of the heat transfer on the hot side of the unit...

  16. Heating System Specification Specification of Heating System

    E-Print Network [OSTI]

    Day, Nancy

    Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

  17. The Sun-Earth Connection The Temperature of the Earth

    E-Print Network [OSTI]

    Walter, Frederick M.

    AST248 The Sun-Earth Connection #12;The Temperature of the Earth The Earth is in equilibrium ­ the heat absorbed from the Sun with ­ the heat radiated by the Earth. Heat in = heat out #12;Heat constant) ­ L is the solar luminosity ­ d is the distance from the Earth to the Sun, 1AU ­ The solar

  18. High-flux magnetorheology at elevated temperatures

    E-Print Network [OSTI]

    Ocalan, Murat

    Commercial applications of magnetorheological (MR) fluids often require operation at elevated temperatures as a result of surrounding environmental conditions or intense localized viscous heating. Previous experimental ...

  19. NOTES AND DISCUSSIONS Note on thermal heating efficiency

    E-Print Network [OSTI]

    Rodriguez, Carlos

    ; but there is a dual theorem about the maximum efficiency with which heat at one temperature can be converted into heat part of the world's energy resources are actually used for heating rather than production of work if the engine is reversible. In the latter case the ``wasted energy'' Q1 Carnot Q2 T1 T2 2 is delivered as heat

  20. Temperature, heat flow maps and temperature gradient holes | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <Maintained ByManagement Inc Place:InformationTelluricConventions

  1. Method and apparatus for fuel gas moisturization and heating

    DOE Patents [OSTI]

    Ranasinghe, Jatila (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

    2002-01-01T23:59:59.000Z

    Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

  2. Ash reduction system using electrically heated particulate matter filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16T23:59:59.000Z

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  3. High-temperature thermocouples and related methods

    DOE Patents [OSTI]

    Rempe, Joy L. (Idaho Falls, ID); Knudson, Darrell L. (Firth, ID); Condie, Keith G. (Idaho Falls, ID); Wilkins, S. Curt (Idaho Falls, ID)

    2011-01-18T23:59:59.000Z

    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

  4. Transition boiling heat transfer from a horizontal surface

    E-Print Network [OSTI]

    Berenson Paul Jerome

    1960-01-01T23:59:59.000Z

    An experiment, utilising a condensing fluid as the heat source, was performed to determine the heat flux vs. temperature difference curve for transition pool boiling from a horisontal surface. The boiling cure was determined ...

  5. Hot Water Heating System Operation and Energy Conservation

    E-Print Network [OSTI]

    Shao, Z.; Chen, H.; Wei, P.

    2006-01-01T23:59:59.000Z

    Based on an example of the reconstruction of a hot water heating system, this paper provides an analysis and comparison of the operations of hot water heating systems, including supply water temperature adjustment, flow adjustment during each...

  6. Industrial Heat Recovery with Organic Rankine Cycles

    E-Print Network [OSTI]

    Hnat, J. G.; Patten, J. S.; Cutting, J. C.; Bartone, L. M.

    1982-01-01T23:59:59.000Z

    to examine a specific application of the use of an ORC heat recovery system and compare it to a stear), Rankine cycle heat recovery system. The particular application ~ssumed is heat recovery from diesel engine exhaust gas at a temPErature of 700F. Figure...,vaporized and superheated ina flue gas heat recovery su bsystem. he super heated fluid is expanded through a turbine for power p oduction, condensed in a water cooled condenser and return d to the vaporizer via feed pu mps. In the steam cycle, a port n of the Figure 1...

  7. High-power ELF radiation generated by modulated HF heating of the ionosphere can cause Earthquakes, Cyclones and localized heating

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    transmitter radiates a strong beam of high- frequency (HF) waves modulated at ELF. This HF heating modulates-frequency (HF) radiation in the megahertz range [7]. This heating modulates the electron's temperature in the D

  8. Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System

    E-Print Network [OSTI]

    Zheng, X.; Dong, Z.

    2006-01-01T23:59:59.000Z

    A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different...

  9. Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System 

    E-Print Network [OSTI]

    Zheng, X.; Dong, Z.

    2006-01-01T23:59:59.000Z

    A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different...

  10. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    E-Print Network [OSTI]

    Wetter, Michael

    2010-01-01T23:59:59.000Z

    a model with prescribed heat input into the medium, i.e. ,heat and towers. The air inlet temperature is obtained from an inputan input signal. There is also a constant effectiveness heat

  11. HEATING 7. 1 user's manual

    SciTech Connect (OSTI)

    Childs, K.W.

    1991-07-01T23:59:59.000Z

    HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

  12. Heat exchanger for fuel cell power plant reformer

    DOE Patents [OSTI]

    Misage, Robert (Manchester, CT); Scheffler, Glenn W. (Tolland, CT); Setzer, Herbert J. (Ellington, CT); Margiott, Paul R. (Manchester, CT); Parenti, Jr., Edmund K. (Manchester, CT)

    1988-01-01T23:59:59.000Z

    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  13. Heat Treatment Procedure Qualification for Steel Castings

    SciTech Connect (OSTI)

    Professor Robert C. Voigt

    2003-02-02T23:59:59.000Z

    The science of heat treatment has been well studied and is the basis from which existing specifications and practices for the heat treatment of steel castings have been developed. Although these existing specifications address the general needs of steel castings to be heat-treated, they do not take into account the variability in the parameters that govern the processes. The need for a heat treatment qualification procedure that accounts for this variability during heat treatment is an important step toward heat treatment quality assurance. The variability in temperatures within a heat treatment furnace is one such variable that a foundry has to contend with in its day-to-day activity. Though specifications indicate the temperatures at which a particular heat treatment has to be conducted, heat treatment specifications do not adequately account for all aspects of heat treatment quality assurance. The heat treatment qualification procedure will comprise of a robust set of rules and guidelines that ensure that foundries will still be able to operate within the set of constraints imposed on them by non-deterministic elements within the processes.

  14. Radiative heat transfer in porous uranium dioxide

    SciTech Connect (OSTI)

    Hayes, S.L. [Texas A and M Univ., College Station, TX (United States)] [Texas A and M Univ., College Station, TX (United States)

    1992-12-01T23:59:59.000Z

    Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.

  15. Method for heating and forming a glass sheet

    DOE Patents [OSTI]

    Boaz, Premakaran Tucker (Livonia, MI)

    1997-01-01T23:59:59.000Z

    A method for heating and forming a glass sheet includes the steps of heating a glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, cooling an outer surface of the glass sheet to at least a third predetermined temperature and forming the glass sheet using forming rollers to a predetermined configuration.

  16. Method for heating, forming and tempering a glass sheet

    DOE Patents [OSTI]

    Boaz, Premakaran Tucker (Livonia, MI); Sitzman, Gary W. (Walled Lake, MI)

    1998-01-01T23:59:59.000Z

    A method for heating, forming and tempering a glass sheet including the steps of heating at least one glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, forming the glass sheet to a predetermined configuration, and cooling an outer surface of the glass sheet to at least a third predetermined temperature to temper the glass sheet.

  17. Heat recirculating cooler for fluid stream pollutant removal

    DOE Patents [OSTI]

    Richards, George A. (Morgantown, WV); Berry, David A. (Morgantown, WV)

    2008-10-28T23:59:59.000Z

    A process by which heat is removed from a reactant fluid to reach the operating temperature of a known pollutant removal method and said heat is recirculated to raise the temperature of the product fluid. The process can be utilized whenever an intermediate step reaction requires a lower reaction temperature than the prior and next steps. The benefits of a heat-recirculating cooler include the ability to use known pollutant removal methods and increased thermal efficiency of the system.

  18. Method for heating, forming and tempering a glass sheet

    DOE Patents [OSTI]

    Boaz, P.T.; Sitzman, G.W.

    1998-10-27T23:59:59.000Z

    A method for heating, forming and tempering a glass sheet is disclosed including the steps of heating at least one glass sheet to at least a first predetermined temperature, applying microwave energy to the glass sheet to heat the glass sheet to at least a second predetermined temperature, forming the glass sheet to a predetermined configuration, and cooling an outer surface of the glass sheet to at least a third predetermined temperature to temper the glass sheet. 2 figs.

  19. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  20. Analysis of radial fin assembly heat transfer with dehumidification

    SciTech Connect (OSTI)

    Rosario, L.; Rahman, M.M. [Univ. of South Florida, Tampa, FL (United States). Dept. of Mechanical Engineering

    1996-12-31T23:59:59.000Z

    The aim of this paper is the analysis of heat transfer in a radial fin assembly during the process of dehumidification. An individual finned tube geometry is a reasonable representation of heat exchangers used in air conditioning. The condensation process involves both heat and mass transfer and the cooling takes place by the removal of sensible as well as latent heat. The ratio of sensible to total heat is an important quantity that defines the heat transfer process during a dehumidifier operation. A one-dimensional model for heat transfer in the fin and the heat exchanger block is developed to study the effects of condensation on the fin surface. The combined heat and mass transfer process is modeled by incorporating the ratio of sensible to total heat in the formulation. The augmentation of heat transfer due to fin was established by comparing heat transfer rate with and without fins under the same operating conditions. Numerical calculations were carried out to study the effects of relative humidity and dry bulb temperature of the incoming air, and cold fluid temperature inside the coil on the performance of the heat exchanger. Results were compared to those published for rectangular fin under humid condition showed excellent agreement when the present model was used to compute that limiting condition. It was found that the heat transfer rate increased with increment in both dry bulb temperature and relative humidity of the air. The augmentation factor, however, decreased with increment in relative humidity and the dry bulb temperature.

  1. Water and Space Heating Heat Pumps 

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  2. Water and Space Heating Heat Pumps

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  3. Industrial Waste Heat Recovery Using Heat Pipes 

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  4. Finite element analysis of conjugate heat transfer in axisymmetric pipe flows 

    E-Print Network [OSTI]

    Fithen, Robert Miller

    1987-01-01T23:59:59.000Z

    with no axial fluid conduction, such as liquid water at a moderate to high Reynolds number. Detailed fluid ? solid interface heat flux, Nusselt number, wall, and bulk temperatures for each case are presented. The results indicate axial wall conduction is very... model for a circular tube Comparison for constant heat flux case Comparison for constant temperature case Heat flux for Pe=5, constant heat flux case Heat flux for Pe=50, constant heat flux case Heat flux for Pe=200, constant heat flux case Heat...

  5. Inverse estimation of surface heating condition in a three-dimensional object using conjugate gradient method

    E-Print Network [OSTI]

    Zhang, Yuwen

    heat conduction Laser Gaussian profile Conjugate gradient method a b s t r a c t Temperature and heat gradient method Jianhua Zhou, Yuwen Zhang *, J.K. Chen, Z.C. Feng Department of Mechanical and Aerospace gradient method (CGM) with temperature and heat flux measured on back surface (opposite to the heated

  6. HEATING7.3. 1,2, or 3-d Heat Conduction Program

    SciTech Connect (OSTI)

    Childs, K.W. [Oak Ridge National Lab, TN (United States)

    1998-05-01T23:59:59.000Z

    HEATING7.2I and 7.3 is the most recent developmant in a series of heat-transfer codes and obsoletes all previous versions. HEATING can solve steady-state and/or transient heat conduction problems in one, two, or three-dimensional Cartesian, cylindrical coordinates or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time and temperature dependent. The thermal conductivity can be anisotropic. Materials may undergo a change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time and position dependent. The boundary conditions, which may be surface to environment or surface to surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time-and/or temperature dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a run time memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input.

  7. Sources of CO and UHC Emissions in Low-Temperature Diesel Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    Premixed Late Injection HCLI, Homogeneous Charge Late Injection HPLI HCLI Injec ion Heat Release Heat Release Injection TDC Low-temperature combustion systems are attractive...

  8. Elevated temperature forming method and preheater apparatus

    DOE Patents [OSTI]

    Krajewski, Paul E; Hammar, Richard Harry; Singh, Jugraj; Cedar, Dennis; Friedman, Peter A; Luo, Yingbing

    2013-06-11T23:59:59.000Z

    An elevated temperature forming system in which a sheet metal workpiece is provided in a first stage position of a multi-stage pre-heater, is heated to a first stage temperature lower than a desired pre-heat temperature, is moved to a final stage position where it is heated to a desired final stage temperature, is transferred to a forming press, and is formed by the forming press. The preheater includes upper and lower platens that transfer heat into workpieces disposed between the platens. A shim spaces the upper platen from the lower platen by a distance greater than a thickness of the workpieces to be heated by the platens and less than a distance at which the upper platen would require an undesirably high input of energy to effectively heat the workpiece without being pressed into contact with the workpiece.

  9. THE MULTI-USE STEINEL VARIABLE TEMPERATURE

    E-Print Network [OSTI]

    Kleinfeld, David

    THE MULTI-USE STEINEL VARIABLE TEMPERATURE ELECTRONICALLY CONTROLLED HEAT GUNTEMPERATURE RANGE 212 at the outlet nozzle will bum flesh. Do not tum on Heat Gun with hand in front of nozzle. DO NOT USE NEAR equipment Specifications Temperature Variable from 212" F to 1100° F Watts 1500W Weight 1.5 lbs. Supply

  10. THE MULTI-USE STEINEL VARIABLE TEMPERATURE

    E-Print Network [OSTI]

    Kleinfeld, David

    THE MULTI-USE STEINEL VARIABLE TEMPERATURE ELECTRONICALLY CONTROLLED HEAT GUNTEMPERATURE RANGE 212 at the outlet nozzle will bum flesh. Do not tum on Heat Gun with hand in front of nozzle. DO NOT USE NEAR equipment Specifications Temperature Variable from 212° F to 1100° F Watts 1500W Weight 1.5 lbs. Supply

  11. Absorptive Recycle of Distillation Waste Heat

    E-Print Network [OSTI]

    Erickson, D. C.; Lutz, E. J., Jr.

    1982-01-01T23:59:59.000Z

    ABSORPTIVE RECYCLE OF DISTILLATION WASTE HEAT Donald C. Erickson and Edward J. Lutz Jr. Energy Concepts Company Annapolis, Maryland ABSTRACT When the heat source available to a distillation process is at a significantly higher temperature... which conserve 60 to 70%. Also, there are ver sions which incorporate separate low tem perature waste heat streams and thereby conserve over 90% of the required dis tillation energy. The main limitations of the R/AHP are the need for sufficient...

  12. Waste Heat Recovery – Submerged Arc Furnaces (SAF)

    E-Print Network [OSTI]

    O'Brien, T.

    2008-01-01T23:59:59.000Z

    Waste Heat Recovery- Submerged Arc Furnaces (SAF) Thomas O?Brien Recycled Energy Development, LLC tobrien@recycled-energy.com Submerged Arc Furnaces are used to produce high temperature alloys. These furnaces typically run at 3000oF using...

  13. East Middle School and Cayuga Community College Space Heating...

    Open Energy Info (EERE)

    Middle School and Cayuga Community College Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name East Middle School and Cayuga Community College Space...

  14. advanced absorption heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    usually a gas flame, is applied to the generator and low temperature heat is absorbed... Pressure - enthalpy path of ammonia in example problem CHAPTER U CONCLUSIONS ANO...

  15. Roosevelt Warm Springs Institute for Rehab. Space Heating Low...

    Open Energy Info (EERE)

    Jump to: navigation, search Name Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature Geothermal Facility Facility Roosevelt Warm Springs Institute for...

  16. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26T23:59:59.000Z

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  17. Temperature programmable microfabricated gas chromatography column

    DOE Patents [OSTI]

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2003-12-23T23:59:59.000Z

    A temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by the integration of a resistive heating element and temperature sensing on the microfabricated column. Additionally, means are provided to thermally isolate the heated column from their surroundings. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.

  18. Enhanced heat transfer for thermionic power modules

    SciTech Connect (OSTI)

    Johnson, D.C.

    1981-07-01T23:59:59.000Z

    The thermionic power module is capable of operating at very high heat fluxes, which in turn serve to reduce capital costs. The most efficient operation also requires uniform heat fluxes. The development of enhanced heat transfer systems is required to meet the demand for high heat fluxes (>20 w/cm/sup 2/) at high temperatures (>1500K) which advanced thermionic power modules place upon combustion systems. Energy transfer from the hot combustion gases may take place by convection, radiation, or a combination of radiation and convection. Enhanced convective heat transfer with a jet impingement system has been demonstrated in a thermionic converter. The recently-developed cellular ceramic radiative heat transfer system has also been applied to a thermionic converter. By comparing the jet impingement and cellular ceramic radiative heat transfer systems, an appropriate system may be selected for utilization in advanced thermionic power modules. Results are reported.

  19. Method for controlling exhaust gas heat recovery systems in vehicles

    DOE Patents [OSTI]

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11T23:59:59.000Z

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  20. Dead heat

    SciTech Connect (OSTI)

    Oppenheimer, M.; Boyle, R.H.

    1990-01-01T23:59:59.000Z

    This paper reports on the prospect of global warming. This paper proposes a workable solution, and a road map for getting there. The author explains how we became addicted to fossil fuels and evokes a bleak picture should this dependence continue. But the book also explores how industry can become a vehicle for solving, instead of precipitating, the global environmental crisis. The decoupling of energy from pollution can be accomplished without sacrificing prosperity by powering the economy with solar energy. Dead Heat takes us step by step to a greenhouse-friendly world fueled only by the sun.

  1. Testing and analysis of immersed heat exchangers

    SciTech Connect (OSTI)

    Farrington, R.B.; Bingham, C.E.

    1986-08-01T23:59:59.000Z

    The objectives were to determine the performance of four immersed, ''supply-side'' heat exchangers used in solar domestic-hot-water systems; to examine the effects of flow rate, temperature difference, and coil configuration on performance; and to develop a simple model to predict the performance of immersed heat exchangers. We tested four immersed heat exchangers: a smooth coil, a finned spiral, a single-wall bayonet, and a double-wall bayonet. We developed two analyticl models and a simple finite difference model. We experimentally verified that the performance of these heat exchangers depends on the flow rate through them; we also showed that the temperature difference between the heat exchanger's inlet and the storage tank can strongly affect a heat exchanger's performance. We also compared the effects of the heat exchanger's configuration and correlated Nusselt and Rayleigh numbers for each heat exchanger tested. The smooth coil had a higher effectiveness than the others, while the double-wall bayonet had a very low effectiveness. We still do not know the long-term effectiveness of heat exchangers regarding scale accumulation, nor do we know the effects of very low flow rates on a heat exchanger's performance.

  2. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

    1982-01-01T23:59:59.000Z

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  3. Segmented heat exchanger

    DOE Patents [OSTI]

    Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

    2010-12-14T23:59:59.000Z

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  4. Demagnetized Electron Heating at Collisionless Shocks

    E-Print Network [OSTI]

    Sundkvist, David

    2013-01-01T23:59:59.000Z

    Seventy measurements of electron heating at the Earth's quasi-perpendicular bow shock are analyzed in terms of Maxwellian-temperatures obtained from fits to the core electrons that separate thermal heating from supra-thermal acceleration. The perpendicular temperatures are both greater and lesser than expected for adiabatic compression. The average parallel and perpendicular heating is the same. These results are explained because, over the electron gyroradius, $\\delta B/B\\sim 1$ and $e\\delta \\phi/T_e\\sim 1$, so electron trajectories are more random and chaotic than adiabatic. Because density fluctuations are also large, trapping and wave growth in density holes may be important.

  5. Geothermal heat pumps for heating and cooling

    SciTech Connect (OSTI)

    Garg, S.C.

    1994-03-01T23:59:59.000Z

    Naval Facilities Engineering Service Center (NFESC) has been tasked by Naval Shore Facilities Energy Office to evaluate the NAS Patuxent River ground-source heat pump (GHP) installation. A large part of a building`s energy consumption consists of heating and air conditioning for occupant comfort. The space heating requirements are normally met by fossil-fuel-fired equipment or electric resistance heating. Cooling is provided by either air conditioners or heat pumps, both using electricity as an energy source.

  6. Modelling Heat Transfer of Carbon Nanotubes

    E-Print Network [OSTI]

    Yang, Xin-She

    2010-01-01T23:59:59.000Z

    Modelling heat transfer of carbon nanotubes is important for the thermal management of nanotube-based composites and nanoelectronic device. By using a finite element method for three-dimensional anisotropic heat transfer, we have simulated the heat conduction and temperature variations of a single nanotube, a nanotube array and a part of nanotube-based composite surface with heat generation. The thermal conductivity used is obtained from the upscaled value from the molecular simulations or experiments. Simulations show that nanotube arrays have unique cooling characteristics due to its anisotropic thermal conductivity.

  7. Heat loss from an open cavity

    SciTech Connect (OSTI)

    McDonald, C.G. [California State Polytechnic Univ., Pomona, CA (United States). Coll. of Engineering

    1995-12-01T23:59:59.000Z

    Cavity type receivers are used extensively in concentrating solar thermal energy collecting systems. The Solar Total Energy Project (STEP) in Shenandoah, Georgia is a large scale field test for the collection of solar thermal energy. The STEP experiment consists of a large field array of solar collectors used to supplement the process steam, cooling and other electrical power requirements of an adjacent knitwear manufacturing facility. The purpose of the tests, conducted for this study, was to isolate and quantify the radiative, conductive, and convective components of total heat loss, and to determine the effects of operating temperature, receiver angle, and aperture size on cavity heat loss. An analytical model for radiative heat loss was developed and compared with two other methods used to determine radiative heat loss. A proposed convective heat loss correlation, including effects of aperture size, receiver operating temperature, and receiver angle is presented. The resulting data is a source to evaluate the STEP measurements.

  8. Heat transfer from nanoparticles: a corresponding state analysis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    temperatures using laser heating of nanoparticles [8, 9, 10], even reaching the melting point of gold particles is relevant to experiments in which a fluid is locally heated using selective absorption of radiation by solid surfaces, lo- cal heating of fluids by selective absorption from nanoparti- cles, with possible biomedical

  9. Heat exchanger support apparatus in a fluidized bed

    DOE Patents [OSTI]

    Lawton, Carl W. (West Hartford, CT)

    1982-01-01T23:59:59.000Z

    A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.

  10. Heat Recovery and Indirect Evaporative Cooling for Energy Conservation

    E-Print Network [OSTI]

    Buckley, C. C.

    1984-01-01T23:59:59.000Z

    Two thirds of the waste heat sources in the U.S. are in the low temperature range of less than 200 deg F. A primary contributor of this heat is building exhaust. Heat pipe exchangers are ideally suited for recovering this waste. Plant comfort air...

  11. Modeling and Analysis of Non-Uniform Substrate Temperature Effects in High Performance VLSI

    E-Print Network [OSTI]

    Pedram, Massoud

    to the electromigration (EM) phenomenon, although Joule heating (self-heating) is another important contributor to the interconnect reliability degradation. More precisely, the self-heating effect results in a temperature rise

  12. Geothermal heating for Caliente, Nevada

    SciTech Connect (OSTI)

    Wallis, F.; Schaper, J.

    1981-02-01T23:59:59.000Z

    Utilization of geothermal resources in the town of Caliente, Nevada (population 600) has been the objective of two grants. The first grant was awarded to Ferg Wallis, part-owner and operator of the Agua Caliente Trailer Park, to assess the potential of hot geothermal water for heating the 53 trailers in his park. The results from test wells indicate sustainable temperatures of 140/sup 0/ to 160/sup 0/F. Three wells were drilled to supply all 53 trailers with domestic hot water heating, 11 trailers with space heating and hot water for the laundry from the geothermal resource. System payback in terms of energy cost-savings is estimated at less than two years. The second grant was awarded to Grover C. Dils Medical Center in Caliente to drill a geothermal well and pipe the hot water through a heat exchanger to preheat air for space heating. This geothermal preheater served to convert the existing forced air electric furnace to a booster system. It is estimated that the hospital will save an average of $5300 in electric bills per year, at the current rate of $.0275/KWH. This represents a payback of approximately two years. Subsequent studies on the geothermal resource base in Caliente and on the economics of district heating indicate that geothermal may represent the most effective supply of energy for Caliente. Two of these studies are included as appendices.

  13. Heat transfer assembly for a fluorescent lamp and fixture

    DOE Patents [OSTI]

    Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

    1992-12-29T23:59:59.000Z

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

  14. Heat transfer assembly for a fluorescent lamp and fixture

    SciTech Connect (OSTI)

    Siminovitch, Michael J. (Richmond, CA); Rubenstein, Francis M. (Berkeley, CA); Whitman, Richard E. (Richmond, CA)

    1992-01-01T23:59:59.000Z

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.

  15. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations 

    E-Print Network [OSTI]

    Kirol, L. D.

    1986-01-01T23:59:59.000Z

    Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, heat driven heat pumps in which either heat engine or heat pump working fluid is reactive...

  16. Design and simulation of a heat pump for simultaneous heating and cooling using HFC or CO2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    subcooling vol volumetric w water 1. Context and objectives Nowadays, global warming being a major concern and the large temperature glide at heat rejection used for DHW production. Keywords: design, simulation, heating;2 NOMENCLATURE c relative clearance volume (-) C electricity consumption (Wh) Cp specific heat (J kg-1 K-1 ) h

  17. Temperature determination using pyrometry

    DOE Patents [OSTI]

    Breiland, William G. (Albuquerque, NM); Gurary, Alexander I. (Bridgewater, NJ); Boguslavskiy, Vadim (Princeton, NJ)

    2002-01-01T23:59:59.000Z

    A method for determining the temperature of a surface upon which a coating is grown using optical pyrometry by correcting Kirchhoff's law for errors in the emissivity or reflectance measurements associated with the growth of the coating and subsequent changes in the surface thermal emission and heat transfer characteristics. By a calibration process that can be carried out in situ in the chamber where the coating process occurs, an error calibration parameter can be determined that allows more precise determination of the temperature of the surface using optical pyrometry systems. The calibration process needs only to be carried out when the physical characteristics of the coating chamber change.

  18. Heat transfer model of above and underground insulated piping systems

    SciTech Connect (OSTI)

    Kwon, K.C.

    1998-07-01T23:59:59.000Z

    A simplified heat transfer model of above and underground insulated piping systems was developed to perform iterative calculations for fluid temperatures along the entire pipe length. It is applicable to gas, liquid, fluid flow with no phase change. Spreadsheet computer programs of the model have been developed and used extensively to perform the above calculations for thermal resistance, heat loss and core fluid temperature.

  19. Air Quality and Emissions Impacts of Heat Island Mitigation Strategies

    E-Print Network [OSTI]

    Air Quality and Emissions Impacts of Heat Island Mitigation Strategies ENVIRONMENTAL AREA RESEARCH the temperature of the ground surface and the ambient air. This situation creates areas called urban heat summertime temperatures reduces electricity demand for air conditioning, which lowers air pollution levels

  20. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  1. Use Remote Sensing Data (selected visible and infrared spectrums) to locate high temperature ground anomalies in Colorado. Confirm heat flow potential with on-site surveys to drill deep resource wells

    Broader source: Energy.gov [DOE]

    DOE Geothermal Technologies Peer Review 2010 - Presentation. Project Objectives: A cost effective three (3) Phased Program to locate and confirm up to Five (5) commercial geothermal resources in Colorado. The heat resources to be prioritized will be those able to support a minimum electrical generation capacity of 10 MW by location.

  2. The gas temperature in circumstellar disks: effects of dust settling

    E-Print Network [OSTI]

    Zadelhoff, Gerd-Jan van

    Example of the cooling and heating terms for a model with dust depletion in the surface Work in progress systems. One of the central questions concerning these disks are their density and temperature temperature is calculated solving the heating-cooling balance. Dust temperature Density distribution [cm ] -3

  3. Heating remote rooms in passive solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01T23:59:59.000Z

    Remote rooms can be effectively heated by convection through a connecting doorway. A simple steady-state equation is developed for design purposes. Validation of a dynamic model is achieved using data obtained over a 13-day period. Dynamic effects are investigated using a simulation analysis for three different cases of driving temperature; the effect is to reduce the temperature difference between the driving room and the remote room compared to the steady-state model. For large temperature swings in the driving room a strategy which uses the intervening door in a diode mode is effective. The importance of heat-storing mass in the remote room is investigated.

  4. Visual investigation on the heat dissipation process of a heat sink by using digital holographic interferometry

    SciTech Connect (OSTI)

    Wu, Bingjing; Zhao, Jianlin, E-mail: jlzhao@nwpu.edu.cn; Wang, Jun; Di, Jianglei; Chen, Xin; Liu, Junjiang [Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072 (China)

    2013-11-21T23:59:59.000Z

    We present a method for visually and quantitatively investigating the heat dissipation process of plate-fin heat sinks by using digital holographic interferometry. A series of phase change maps reflecting the temperature distribution and variation trend of the air field surrounding heat sink during the heat dissipation process are numerically reconstructed based on double-exposure holographic interferometry. According to the phase unwrapping algorithm and the derived relationship between temperature and phase change of the detection beam, the full-field temperature distributions are quantitatively obtained with a reasonably high measurement accuracy. And then the impact of heat sink's channel width on the heat dissipation performance in the case of natural convection is analyzed. In addition, a comparison between simulation and experiment results is given to verify the reliability of this method. The experiment results certify the feasibility and validity of the presented method in full-field, dynamical, and quantitative measurement of the air field temperature distribution, which provides a basis for analyzing the heat dissipation performance of plate-fin heat sinks.

  5. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    SciTech Connect (OSTI)

    Mittereder, N.; Poerschke, A.

    2013-11-01T23:59:59.000Z

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

  6. Heat Exchanger Network Targeting, Design and Analysis: The MIDAS Package

    E-Print Network [OSTI]

    Barton, I.; Jones, D. H.; Smith, G. J.

    are: o Improved utility targeting for constrained problems and wide range utilities. . o Advanced heat exchanger network area targeting. o Optimization of temperature driving forces for minimum total cost. o Automated HEN design using a... counter current conditions. 2. Finite temperature driving forces are required for heat transfer in any real system~ A minimum driving force of l'ITmln is assumed to prevail within the network, i.e. a stream giving up heat (said to be "hot...

  7. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  8. Variable temperature seat climate control system

    DOE Patents [OSTI]

    Karunasiri, Tissa R. (Van Nuys, CA); Gallup, David F. (Pasadena, CA); Noles, David R. (Glendale, CA); Gregory, Christian T. (Alhambra, CA)

    1997-05-06T23:59:59.000Z

    A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.

  9. E-Print Network 3.0 - automatic temperature control Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Connecticut Collection: Engineering 42 Predictive control of supply temperature in district heating systems Summary: Predictive control of supply temperature in district...

  10. Chemical heat pump and chemical energy storage system

    DOE Patents [OSTI]

    Clark, Edward C. (Woodinville, WA); Huxtable, Douglas D. (Bothell, WA)

    1985-08-06T23:59:59.000Z

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  11. Heat Pump for High School Heat Recovery 

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01T23:59:59.000Z

    The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

  12. Industrial Waste Heat Recovery Using Heat Pipes

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    -expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat...

  13. Estimation of the distributed temperature of a SI engine catalyst for light-off strategy

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    recent works, this heat supply is shown here to be equivalent to an inlet temperature entering the system

  14. Waste heat driven absorption refrigeration process and system

    DOE Patents [OSTI]

    Wilkinson, William H. (Columbus, OH)

    1982-01-01T23:59:59.000Z

    Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.

  15. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  16. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  17. Locating Heat Recovery Opportunities 

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  18. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  19. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    transient the heat transfer model. T h i s required the roofto develop and calibrate heat transfer models to be able toE S station, the heat transfer models described i n sections

  20. A mathematical model for the estimation of flue temperature in a coke oven

    SciTech Connect (OSTI)

    Choi, K.I.; Kim, S.Y.; Suo, J.S.; Hur, N.S.; Kang, I.S.; Lee, W.J.

    1997-12-31T23:59:59.000Z

    The coke plants at the Kwangyang works has adopted an Automatic Battery Control (ABC) system which consists of four main parts, battery heating control, underfiring heat and waste gas oxygen control, pushing and charging schedule and Autotherm-S that measures heating wall temperature during pushing. The measured heating wall temperature is used for calculating Mean Battery Temperature (MBT) which is average temperature of flues for a battery, but the Autotherm-S system can not provide the flue temperatures of an oven. This work attempted to develop mathematical models for the estimation of the flue temperature using the measured heating wall temperature and to examine fitness of the mathematical model for the coke plant operation by analysis of raw gas temperature at the stand pipe. Through this work it is possible to reflect heating wall temperature in calculating MBT for battery heating control without the interruption caused by a maintenance break.