National Library of Energy BETA

Sample records for temperature heat transfer

  1. High Operating Temperature Liquid Metal Heat Transfer Fluids...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Operating Temperature Liquid Metal Heat Transfer Fluids High Operating Temperature Liquid Metal Heat Transfer Fluids This fact sheet describes a UCLA-led solar project to ...

  2. A transient heat transfer model for high temperature solar thermochemi...

    Office of Scientific and Technical Information (OSTI)

    Search Results Journal Article: A transient heat transfer model for high temperature solar ... Title: A transient heat transfer model for high temperature solar thermochemical reactors ...

  3. DOE MURI: Hig-Operating Temperature Heat Transfer Fluids for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Operating Temperature Liquid Metal Heat Transfer Fluids - FY13 Q2 High Operating Temperature Heat Transfer Fluids for Solar Thermal Power Generation FY13 Q1 Corrosion in Very ...

  4. Project Profile: High Operating Temperature Liquid Metal Heat Transfer Fluids

    Broader source: Energy.gov [DOE]

    The University of California, Los Angeles (UCLA), along with partners at the University of California, Berkeley, and Yale University, under the 2012 Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids funding opportunity, is investigating the use of metal alloys as a heat transfer fluid (HTF) in concentrating solar power (CSP) systems operating at temperatures in excess of 800°C. By allowing higher temperature operation, CSP systems can achieve greater efficiencies and thereby reduce the overall cost of electricity production.

  5. High Operating Temperature Liquid Metal Heat Transfer Fluids

    Broader source: Energy.gov [DOE]

    This fact sheet describes a UCLA-led solar project to investigate high operating temperature liquid metal heat transfer fluids, funded by the SunShot initiative. The project team is using a combination of modeling along with a variety of property measurement and validation studies to demonstrate that the metal alloys identified can meet all the needs of a concentrating solar power plant. A successful candidate fluid would allow for the reduction of the levelized cost of energy by increasing the operating temperature for the CSP plant power cycle, which would increase thermal-to-electric conversion efficiency.

  6. DOE MURI: Hig-Operating Temperature Heat Transfer Fluids for CSD

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy DOE MURI: Hig-Operating Temperature Heat Transfer Fluids for CSD Applications DOE MURI: Hig-Operating Temperature Heat Transfer Fluids for CSD Applications This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. csp_review_meeting_042513_ju.pdf (3.41 MB) More Documents & Publications High Operating Temperature Liquid Metal Heat Transfer Fluids - FY13 Q2 High

  7. Heat transfer system

    DOE Patents [OSTI]

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  8. Heat transfer system

    DOE Patents [OSTI]

    McGuire, Joseph C.

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  9. Development of advanced low-temperature heat transfer fluids for district heating and cooling, final report

    SciTech Connect (OSTI)

    Cho, Y.I.; Lorsch, H.G.

    1991-03-31

    The feasibility of adding phase change materials (PCMS) and surfactants to the heat transfer fluids in district cooling systems was investigated. It increases the thermal capacity of the heat transfer fluid and therefore decreases the volume that needs to be pumped. It also increases the heat transfer rate, resulting in smaller heat exchangers. The thermal behavior of two potential PCMS, hexadecane and tetradecane paraffin wax, was experimentally evaluated. The heat of fusion of these materials is approximately 60% of that of ice. They exhibit no supercooling and are stable under repeated thermal cycling. While test results for laboratory grade materials showed good agreement with data in the literature, both melting point and heat of fusion for commercial grade hexadecane were found to be considerably lower than literature values. PCM/water mixtures were tested in a laboratory-scale test loop to determine heat transfer and flow resistance properties. For 10% and 25% PCM/water slurries, the heat transfer enhancement was found to be approximately 18 and 30 percent above the value for water, respectively. Within the turbulent region, there is only a minor pumping penalty from the addition of up to 25% PCM to the water. Research is continuing on these fluids in order to determine their behavior in large-size loops and to arrive at optimum formulations.

  10. High Operating Temperature Liquid Metal Heat Transfer Fluids (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    The University of California, Los Angeles, the University of California, Berkeley, and Yale University is one of the 2012 SunShot CSP R&D awardees for their Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids. This fact sheet explains the motivation, description, and impact of the project.

  11. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    DOE Patents [OSTI]

    Im, K.H.; Ahluwalia, R.K.

    1994-10-18

    A radiative heat transfer mechanism in a furnace is described having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits. 7 figs.

  12. Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger

    DOE Patents [OSTI]

    Im, Kwan H.; Ahluwalia, Rajesh K.

    1994-01-01

    A radiative heat transfer mechanism in a furnace having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits.

  13. Conjugate natural convection heat transfer through a conductive partition separating two reservoirs at different temperatures

    SciTech Connect (OSTI)

    Kimura, Shigeo; Darie, Emanuel; Kiwata, Takahiro; Okajima, Atsushi

    1999-07-01

    A simple one-dimensional theory regarding the heat transfer through a thermally conductive partition that separates two fluid reservoirs at different temperatures has been developed. According to the theory a unique nondimensional (Biot number-like) parameter to characterize the problem is identified; the parameter is defined by the geometric aspect ratio of the partition, the fluid-to-partition thermal conductivity ratio and the Rayleigh number based on the temperature difference between the two reservoirs. The theory predicts the average temperatures of both sides of the partition and the overall Nusselt number. The theory has the strength due to its simplicity and the fact that the unique Biot number-like parameter contains all the conditions necessary to describe the problem. In order to test the proposed one-dimensional theory a series of experiments have been conducted using an apparatus that consists of two water chambers and a partition separating the two. The one chamber, which is filled with water, is heated by electric heaters and the other is cooled by a serpentine copper pipe. Three different materials, i.e., copper, stainless steel and ceramics, are employed for the partition. The heat transfer rates across the partition are measured by the electric power dissipated at the heaters. The reservoir temperatures and the partition temperatures are monitored by thermocouples. The Rayleigh number defined by the partition height and the temperature difference of the two reservoirs is around 10{sup 8}. a pH indicator method to visualize convecting flows shows a presence of velocity boundary layers along both sides of the vertical partition. The temperature measurements in the reservoirs show a strong temperature stratification in the core region, where the water is largely stagnant and sandwiched by two counter-advancing horizontal jets at the top and bottom. The experimentally-obtained average heat transfer rates and partition surface temperatures are well

  14. Heat transfer probe

    DOE Patents [OSTI]

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  15. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    SciTech Connect (OSTI)

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.

  16. Intermediate Heat Transfer Loop Study for High Temperature Gas-Cooled Reactor

    SciTech Connect (OSTI)

    C. H. Oh; C. Davis; S. Sherman

    2008-08-01

    A number of possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermal-hydraulic and cycleefficiency evaluations of the different configurations and coolants. The thermal-hydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. This paper also includes a portion of stress analyses performed on pipe configurations.

  17. Max Phase Materials And Coatings For High Temperature Heat Transfer Applications

    SciTech Connect (OSTI)

    Martinez-Rodriguez, M.; Garcia-Diaz, B.; Olson, L.; Fuentes, R.; Sindelar, R.

    2015-10-19

    Molten salts have been used as heat transfer fluids in a variety of applications within proposed Gen IV nuclear designs and in advanced power system such as Concentrating Solar Power (CSP). However, operating at elevated temperatures can cause corrosion in many materials. This work developed coating technologies for MAX phase materials on Haynes-230 and characterized the corrosion of the coatings in the presence of commercial MgCl2-KCl molten salt. Cold spraying of Ti2AlC and physical vapor deposition (PVD) of Ti2AlC or Zr2AlC were tested to determine the most effective form of coating MAX phases on structural substrates. Corrosion testing at 850°C for 100 hrs showed that 3.9 μm Ti2AlC by PVD was slightly protective while 117 μm Ti2AlC by cold spray and 3.6 μm Zr2AlC by PVD were completely protective. None of the tests showed decomposition of the coating (Ti or Zr) into the salt

  18. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating Solar Power: High-Temperature Static Experiments

    SciTech Connect (OSTI)

    Bell, Jason R; Joseph III, Robert Anthony; McFarlane, Joanna; Qualls, A L

    2012-05-01

    Concentrating solar power (CSP) may be an alternative to generating electricity from fossil fuels; however, greater thermodynamic efficiency is needed to improve the economics of CSP operation. One way of achieving improved efficiency is to operate the CSP loop at higher temperatures than the current maximum of about 400 C. ORNL has been investigating a synthetic polyaromatic oil for use in a trough type CSP collector, to temperatures up to 500 C. The oil was chosen because of its thermal stability and calculated low vapor and critical pressures. The oil has been synthesized using a Suzuki coupling mechanism and has been tested in static heating experiments. Analysis has been conducted on the oil after heating and suggests that there may be some isomerization taking place at 450 C, but the fluid appears to remain stable above that temperature. Tests were conducted over one week and further tests are planned to investigate stabilities after heating for months and in flow configurations. Thermochemical data and thermophysical predictions indicate that substituted polyaromatic hydrocarbons may be useful for applications that run at higher temperatures than possible with commercial fluids such as Therminol-VP1.

  19. Heat transfer and heat exchangers reference handbook

    SciTech Connect (OSTI)

    Not Available

    1991-01-15

    The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

  20. Heat transfer fluids containing nanoparticles

    DOE Patents [OSTI]

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  1. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  2. HEAT TRANSFER METHOD

    DOE Patents [OSTI]

    Gambill, W.R.; Greene, N.D.

    1960-08-30

    A method is given for increasing burn-out heat fluxes under nucleate boiling conditions in heat exchanger tubes without incurring an increase in pumping power requirements. This increase is achieved by utilizing a spinning flow having a rotational velocity sufficient to produce a centrifugal acceleration of at least 10,000 g at the tube wall. At this acceleration the heat-transfer rate at burn out is nearly twice the rate which can be achieved in a similar tube utilizing axial flow at the same pumping power. At higher accelerations the improvement over axial flow is greater, and heat fluxes in excess of 50 x 10/sup 6/ Btu/hr/sq ft can be achieved.

  3. Low-Temperature Enhanced Geothermal System using Carbon Dioxide as the Heat-Transfer Fluid

    SciTech Connect (OSTI)

    Eastman, Alan D.

    2014-07-24

    This report describes work toward a supercritical CO2-based EGS system at the St. Johns Dome in Eastern Arizona, including a comprehensive literature search on CO2-based geothermal technologies, background seismic study, geological information, and a study of the possible use of metal oxide heat carriers to enhance the heat capacity of sCO2. It also includes cost estimates for the project, and the reasons why the project would probably not be cost effective at the proposed location.

  4. Handbook of heat transfer fundamentals

    SciTech Connect (OSTI)

    Rohsenow, W.M.; Hartnett, J.P.; Ganic, E.N.

    1985-01-01

    This handbook is on the fundamentals of heat transfer. It provides coverage on conduction, convection, and radiation and on thermophysical properties of materials.

  5. Tubing for augmented heat transfer

    SciTech Connect (OSTI)

    Yampolsky, J.S.; Pavlics, P.

    1983-08-01

    The objectives of the program reported were: to determine the heat transfer and friction characteristics on the outside of spiral fluted tubing in single phase flow of water, and to assess the relative cost of a heat exchanger constructed with spiral fluted tubing with one using conventional smooth tubing. An application is examined where an isolation water/water heat exchanger was used to transfer the heat from a gaseous diffusion plant to an external system for energy recovery. (LEW)

  6. Molten Salt Heat Transfer Fluid (HTF) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Molten Salt Heat Transfer Fluid (HTF) Sandia National ... Sandia has developed a heat transfer fluid (HTF) for use at elevated temperatures that has ...

  7. Heat Transfer Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transfer Laboratory Materials in solids or fluid forms play an important role in a ... Argonne's Heat Transfer Laboratory enables researchers to: Synthesize and prepare heat ...

  8. HEAT TRANSFER MEANS

    DOE Patents [OSTI]

    Fraas, A.P.; Wislicenus, G.F.

    1961-07-11

    A heat exchanger is adapted to unifomly cool a spherical surface. Equations for the design of a spherical heat exchanger hav~g tubes with a uniform center-to-center spining are given. The heat exchanger is illustrated in connection with a liquid-fueled reactor.

  9. Passive heat transfer means for nuclear reactors

    DOE Patents [OSTI]

    Burelbach, James P.

    1984-01-01

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  10. Effects of turbulence model on convective heat transfer of coolant flow in a prismatic very high temperature reactor core

    SciTech Connect (OSTI)

    Lee, S. N.; Tak, N. I.; Kim, M. H.; Noh, J. M.

    2012-07-01

    The existing study of Spall et al. shows that only {nu}{sup 2}-f turbulence model well matches with the experimental data of Shehata and McEligot which were obtained under strongly heated gas flows. Significant over-predictions in those literatures were observed in the convective heat transfer with the other famous turbulence models such as the k-{epsilon} and k-{omega} models. In spite of such good evidence about the performance of the{nu}{sup 2}-f model, the application of the {nu}{sup 2}-f model to the thermo-fluid analysis of a prismatic core is very rare. In this paper, therefore, the convective heat transfer of the coolant flow in a prismatic core has been investigated using the {nu}{sup 2}-f model. Computational fluid dynamics (CFD) calculations have been carried out for the typical unit cell geometry of a prismatic fuel column with typical operating conditions of prismatic designs. The tested Reynolds numbers of the coolant flow are 10,000, 20,000, 30,000 and 50,000. The predicted Nusselt numbers with the {nu}{sup 2}-f model are compared with the results by the other turbulence models (k-{epsilon} and SST) as well as the empirical correlations. (authors)

  11. Heat Transfer Fluids Containing Nanoparticles | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transfer Fluids Containing Nanoparticles Technology available for licensing: A stable, nonreactive nanofluid that exhibits enhanced heat transfer properties with only a minimal ...

  12. recuperative heat transfer within the Brayton cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recuperative heat transfer within the Brayton cycle - Sandia Energy Energy Search Icon ... SunShot Grand Challenge: Regional Test Centers recuperative heat transfer within the ...

  13. Enhanced heat transfer using nanofluids

    DOE Patents [OSTI]

    Choi, Stephen U. S.; Eastman, Jeffrey A.

    2001-01-01

    This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

  14. Check Heat Transfer Surfaces | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Transfer Surfaces Check Heat Transfer Surfaces This tip sheet discusses the importance of checking heat transfer surfaces in process heating systems. PROCESS HEAT TIP SHEET #4 Check Heat Transfer Surfaces (September 2005) (330.85 KB) More Documents & Publications Improving Process Heating System Performance: A Sourcebook for Industry, Second Edition Check Burner Air to Fuel Ratios Process Heating Assessment and Survey Tool (PHAST) Introduction

  15. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer

  16. FED. Zoning for TRUMP Heat Transfer Code

    SciTech Connect (OSTI)

    Elrod, D.

    1987-10-23

    FED reduces the effort required to obtain the necessary geometric input for problems which are to be solved using the heat-transfer code, TRUMP. TRUMP calculates transient and steady-state temperature distributions in multidimensional systems. FED can properly zone any body of revolution in one, two, or three dimensions.

  17. Heat transfer assembly for a fluorescent lamp and fixture

    DOE Patents [OSTI]

    Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

    1992-12-29

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

  18. Heat transfer assembly for a fluorescent lamp and fixture

    DOE Patents [OSTI]

    Siminovitch, Michael J.; Rubenstein, Francis M.; Whitman, Richard E.

    1992-01-01

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.

  19. Thermal-Hydraulic Analyses of Heat Transfer Fluid Requirements and Characteristics for Coupling A Hydrogen Production Plant to a High-Temperature Nuclear Reactor

    SciTech Connect (OSTI)

    C. B. Davis; C. H. Oh; R. B. Barner; D. F. Wilson

    2005-06-01

    The Department of Energy is investigating the use of high-temperature nuclear reactors to produce hydrogen using either thermochemical cycles or high-temperature electrolysis. Although the hydrogen production processes are in an early stage of development, coupling either of these processes to the hightemperature reactor requires both efficient heat transfer and adequate separation of the facilities to assure that off-normal events in the production facility do not impact the nuclear power plant. An intermediate heat transport loop will be required to separate the operations and safety functions of the nuclear and hydrogen plants. A next generation high-temperature reactor could be envisioned as a single-purpose facility that produces hydrogen or a dual-purpose facility that produces hydrogen and electricity. Early plants, such as the proposed Next Generation Nuclear Plant, may be dual-purpose facilities that demonstrate both hydrogen and efficient electrical generation. Later plants could be single-purpose facilities. At this stage of development, both single- and dual-purpose facilities need to be understood. Seven possible configurations for a system that transfers heat between the nuclear reactor and the hydrogen and/or electrical generation plants were identified. These configurations included both direct and indirect cycles for the production of electricity. Both helium and liquid salts were considered as the working fluid in the intermediate heat transport loop. Methods were developed to perform thermalhydraulic and cycle-efficiency evaluations of the different configurations and coolants. The thermalhydraulic evaluations estimated the sizes of various components in the intermediate heat transport loop for the different configurations. The relative sizes of components provide a relative indication of the capital cost associated with the various configurations. Estimates of the overall cycle efficiency of the various configurations were also determined. The

  20. Heat Transfer in Complex Fluids

    SciTech Connect (OSTI)

    Mehrdad Massoudi

    2012-01-01

    (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an

  1. Heat transfer analysis in Stirling engine heat input system

    SciTech Connect (OSTI)

    Chung, W.; Kim, S.

    1995-12-31

    One of the major factor in commercialization of Stirling engine is mass productivity, and the heat input system including tubular heater is one of the obstacles to mass production because of its complexity in shape and difficulty in manufacturing, which resulted from using oxidation-resistant, low-creep alloys which are not easy to machine and weld. Therefore a heater heat exchanger which is very simple in shape and easy to make has been devised, and a burner system appropriate to this heater also has been developed. In this paper specially devised heat input system which includes a heater shell shaped like U-cup and a flame tube located in the heater shell is analyzed in point of heat transfer processes to find optimum heat transfer. To enhance the heat transfer from the flame tube to the heater shell wall, it is required that the flame tube diameter be enlarged as close to the heater shell diameter as possible, and the flame tube temperature be raised as high as possible. But the enlargement of the flame tube diameter should be restricted by the state of combustion affected by hydraulic resistance of combustion gas, and the boost of the flame tube temperature should be considered carefully in the aspects of the flame tube`s service life.

  2. Advanced Heat Transfer and Thermal Storage Fluids

    SciTech Connect (OSTI)

    Moens, L.; Blake, D.

    2005-01-01

    The design of the next generation solar parabolic trough systems for power production will require the development of new thermal energy storage options with improved economics or operational characteristics. Current heat-transfer fluids such as VP-1?, which consists of a eutectic mixture of biphenyl and diphenyl oxide, allow a maximum operating temperature of ca. 300 C, a limit above which the vapor pressure would become too high and would require pressure-rated tanks. The use of VP-1? also suffers from a freezing point around 13 C that requires heating during cold periods. One of the goals for future trough systems is the use of heat-transfer fluids that can act as thermal storage media and that allow operating temperatures around 425 C combined with lower limits around 0 C. This paper presents an outline of our latest approach toward the development of such thermal storage fluids.

  3. The Development of an INL Capability for High Temperature Flow, Heat Transfer, and Thermal Energy Storage with Applications in Advanced Small Modular Reactors, High Temperature Heat Exchangers, Hybrid Energy Systems, and Dynamic Grid Energy Storage C

    SciTech Connect (OSTI)

    Sun, Xiaodong; Zhang, Xiaoqin; Kim, Inhun; O'Brien, James; Sabharwall, Piyush

    2014-10-01

    The overall goal of this project is to support Idaho National Laboratory in developing a new advanced high temperature multi fluid multi loop test facility that is aimed at investigating fluid flow and heat transfer, material corrosion, heat exchanger characteristics and instrumentation performance, among others, for nuclear applications. Specifically, preliminary research has been performed at The Ohio State University in the following areas: 1. A review of fluoride molten salts’ characteristics in thermal, corrosive, and compatibility performances. A recommendation for a salt selection is provided. Material candidates for both molten salt and helium flow loop have been identified. 2. A conceptual facility design that satisfies the multi loop (two coolant loops [i.e., fluoride molten salts and helium]) multi purpose (two operation modes [i.e., forced and natural circulation]) requirements. Schematic models are presented. The thermal hydraulic performances in a preliminary printed circuit heat exchanger (PCHE) design have been estimated. 3. An introduction of computational methods and models for pipe heat loss analysis and cases studies. Recommendations on insulation material selection have been provided. 4. An analysis of pipe pressure rating and sizing. Preliminary recommendations on pipe size selection have been provided. 5. A review of molten fluoride salt preparation and chemistry control. An introduction to the experience from the Molten Salt Reactor Experiment at Oak Ridge National Laboratory has been provided. 6. A review of some instruments and components to be used in the facility. Flowmeters and Grayloc connectors have been included. This report primarily presents the conclusions drawn from the extensive review of literatures in material selections and the facility design progress at the current stage. It provides some useful guidelines in insulation material and pipe size selection, as well as an introductory review of facility process and components.

  4. Heat Transfer Fluids for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks...

  5. Heat transfer panel and method

    SciTech Connect (OSTI)

    Clark, P.C.

    1984-09-25

    A durable, low-cost, heat transfer panel of the type typically employed as a solar energy collector is disclosed. The panel includes a flow channel defining structure, preferably formed as a corrugated sheet and a superimposed flexible membrane, to which manifolds or headers are secured. The manifolds have mating corrugated surfaces that are interengaged with the corrugations on the panel sheet to provide transverse rigidity to the overall panel structure as well as distribution of heat transfer fluid to and from the panel. Modified forms of the panel are disclosed in which the panel includes a selective absorber and a venting structure. A method for blow-molding the manifold into mating interengagement with the corrugated support sheet of the panel is also disclosed.

  6. Nonlinear Heat Transfer 2d Structure

    Energy Science and Technology Software Center (OSTI)

    1987-09-01

    DOT-BPMD is a general-purpose, finite-element, heat-transfer program used to predict thermal environments. The code considers linear and nonlinear transient or steady-state heat conduction in two-dimensional planar or axisymmetric representations of structures. Capabilities are provided for modeling anisotropic heterogeneous materials with temperature-dependent thermal properties and time-dependent temperature, heat flux, convection and radiation boundary conditions, together with time-dependent internal heat generation. DOT-BPMD may be used in the evaluation of steady-state geothermal gradients as well as in themore » transient heat conduction analysis of repository and waste package subsystems. Strengths of DOT-BPMD include its ability to account for a wide range of possible boundary conditions, nonlinear material properties, and its efficient equation solution algorithm. Limitations include the lack of a three-dimensional analysis capability, no radiative or convective internal heat transfer, and the need to maintain a constant time-step in each program execution.« less

  7. BWR Core Heat Transfer Code System.

    Energy Science and Technology Software Center (OSTI)

    1999-04-27

    Version 00 MOXY is used for the thermal analysis of a planar section of a boiling water reactor (BWR) fuel element during a loss-of-coolant accident (LOCA). The code emplyoys models that describe heat transfer by conduction, convection, and thermal radiation, and heat generation by metal-water reaction and fission product decay. Models are included for considering fuel-rod swelling and rupture, energy transport across the fuel-to-cladding gap, and the thermal response of the canister. MOXY requires thatmore » time-dependent data during the blowdown process for the power normalized to the steady-state power, for the heat-transfer coefficient, and for the fluid temperature be provided as input. Internal models provide these parameters during the heatup and emergency cooling phases.« less

  8. 3-D Finite Element Heat Transfer

    Energy Science and Technology Software Center (OSTI)

    1992-02-01

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  9. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  10. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

  11. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  12. Low-melting point heat transfer fluid

    DOE Patents [OSTI]

    Cordaro, Joseph Gabriel; Bradshaw, Robert W.

    2010-11-09

    A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.

  13. Heat exchanger device and method for heat removal or transfer

    DOE Patents [OSTI]

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  14. Heat exchanger device and method for heat removal or transfer

    DOE Patents [OSTI]

    Koplow, Jeffrey P.

    2012-07-24

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  15. Heat exchanger device and method for heat removal or transfer

    SciTech Connect (OSTI)

    Koplow, Jeffrey P

    2015-03-24

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  16. Heat exchanger device and method for heat removal or transfer

    SciTech Connect (OSTI)

    Koplow, Jeffrey P.

    2015-12-08

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  17. Porous media heat transfer for injection molding

    DOE Patents [OSTI]

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  18. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  19. Halide and Oxy-Halide Eutectic Systems for High-Performance, High-Temperature Heat Transfer Fluids (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    The University of Arizona, Arizona Statue University (ASU), and Georgia Institute of Technology is one of the 2012 SunShot CSP R&D awardees for their Multidisciplinary University Research Initiative (MURI): High Operating Temperature (HOT) Fluids. This fact sheet explains the motivation, description, and impact of the project.

  20. Check Heat Transfer Services; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    slag on the heat transfer surfaces should be avoided. Contamination from Flue Gas and Heating Medium Problem areas from flue gas include soot, scale or oxides, sludge, and slag. ...

  1. heat transfer | OpenEI Community

    Open Energy Info (EERE)

    ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer...

  2. Halide and Oxy-Halide Eutectic Systems for High-Performance, High-Temperature Heat Transfer Fluids

    Broader source: Energy.gov [DOE]

    This fact sheet details a SunShot-funded solar project led by the University of Arizona to using ab initio computational modeling along with rapid material screening methods to identify halide salt mixtures with a melting point below 250°C that are stable at temperatures well above 800°C. This research has the potential to help concentrating solar power systems achieve greater efficiencies and reduce overall costs.

  3. Fourier analysis of conductive heat transfer for glazed roofing materials

    SciTech Connect (OSTI)

    Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah; Zakaria, Nor Zaini

    2014-07-10

    For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.

  4. Self supporting heat transfer element

    DOE Patents [OSTI]

    Story, Grosvenor Cook (Livermore, CA); Baldonado, Ray Orico (Livermore, CA)

    2002-01-01

    The present invention provides an improved internal heat exchange element arranged so as to traverse the inside diameter of a container vessel such that it makes good mechanical contact with the interior wall of that vessel. The mechanical element is fabricated from a material having a coefficient of thermal conductivity above about 0.8 W cm.sup.-1.degree. K.sup.-1 and is designed to function as a simple spring member when that member has been cooled to reduce its diameter to just below that of a cylindrical container or vessel into which it is placed and then allowed to warm to room temperature. A particularly important application of this invention is directed to a providing a simple compartmented storage container for accommodating a hydrogen absorbing alloy.

  5. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect (OSTI)

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  6. Comparison of Methods for Calculating Radiative Heat Transfer

    SciTech Connect (OSTI)

    Schock, Alfred; Abbate, M J

    2012-01-19

    Various approximations for calculating radioactive heat transfer between parallel surfaces are evaluated. This is done by applying the approximations based on total emissivities to a special case of known spectral emissivities, for which exact heat transfer calculations are possible. Comparison of results indicates that the best approximation is obtained by basing the emissivity of the receiving surface primarily on the temperature of the emitter. A specific model is shown to give excellent agreement over a very wide range of values.

  7. Phenylnaphthalene Derivatives as Heat Transfer Fluids for Concentrating

    Office of Scientific and Technical Information (OSTI)

    Solar Power: Loop Experiments and Final Report (Technical Report) | SciTech Connect Technical Report: Phenylnaphthalene Derivatives as Heat Transfer Fluids for Concentrating Solar Power: Loop Experiments and Final Report Citation Details In-Document Search Title: Phenylnaphthalene Derivatives as Heat Transfer Fluids for Concentrating Solar Power: Loop Experiments and Final Report ORNL and subcontractor Cool Energy completed an investigation of higher-temperature, organic thermal fluids for

  8. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-08-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  9. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-01-01

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  10. Heat transfer characteristics of igniter output plumes

    SciTech Connect (OSTI)

    Evans, N.A.; Durand, N.A.

    1989-01-01

    Seven types of pyrotechnic igniters were each mounted at one end of a closed cylindrical bore hole representative of the center hole in a thermal battery. Measurements of local bore wall temperature, T/sub w/, using commercially available, fast response (10 /mu/sec) sheathed chromel-constantan thermocouples allowed calculation of local heat transfer rates, q, and wall heat flows, Q. The principal charge constituents of all these igniters were titanium and potassium perchlorate, while three types also contained barium styphnate as an ignition sensitizer. Igniter closure disc materials included glass-ceramic, glass, metal (plain, scored, with and without capture cone), and kapton/RTV. All igniters produced the lowest values of T/sub w/ and q at the beginning of the bore, and, except for the igniter with the kapton/RTV closure disc, these quantities increased with distance along the bore. For igniters containing only titanium/potassium perchlorate, the rates of increase of Q along the bore length, compared with those for T/sub w/ and q, were generally lower and more variable. The inclusion of barium styphnate produced rates of change in Q that were essentially constant to the end of the bore. The highest overall average wall temperatures were achieved by two igniter types with metal closure discs and no capture cone. No clear correlation was established between peak bore pressure and maximum wall temperature. 3 refs., 8 figs., 1 tab.

  11. DESIGN OF A COMPACT HEAT EXCHANGER FOR HEAT RECUPERATION FROM A HIGH TEMPERATURE ELECTROLYSIS SYSTEM

    SciTech Connect (OSTI)

    G. K. Housley; J.E. O'Brien; G.L. Hawkes

    2008-11-01

    Design details of a compact heat exchanger and supporting hardware for heat recuperation in a high-temperature electrolysis application are presented. The recuperative heat exchanger uses a vacuum-brazed plate-fin design and operates between 300 and 800C. It includes corrugated inserts for enhancement of heat transfer coefficients and extended heat transfer surface area. Two recuperative heat exchangers are required per each four-stack electrolysis module. The heat exchangers are mated to a base manifold unit that distributes the inlet and outlet flows to and from the four electrolysis stacks. Results of heat exchanger design calculations and assembly details are also presented.

  12. High Temperature Heat Exchanger Project

    SciTech Connect (OSTI)

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  13. Low-melting point heat transfer fluid

    DOE Patents [OSTI]

    Cordaro, Joseph G.; Bradshaw, Robert W.

    2011-04-12

    A low-melting point, heat transfer fluid comprising a mixture of LiNO.sub.3, NaNO.sub.3, KNO.sub.3, NaNO.sub.2 and KNO.sub.2 salts where the Li, Na and K cations are present in amounts of about 20-33.5 mol % Li, about 18.6-40 mol % Na, and about 40-50.3 mol % K and where the nitrate and nitrite anions are present in amounts of about 36-50 mol % NO.sub.3, and about 50-62.5 mol % NO.sub.2. These compositions can have liquidus temperatures between 70.degree. C. and 80.degree. C. for some compositions.

  14. Clean Boiler Waterside Heat Transfer Surfaces

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  15. Nanoparticle enhanced ionic liquid heat transfer fluids

    DOE Patents [OSTI]

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  16. Litchfield Correctional Center District Heating Low Temperature...

    Open Energy Info (EERE)

    Litchfield Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature...

  17. Lakeview Residences Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Lakeview Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lakeview Residences Space Heating Low Temperature Geothermal Facility...

  18. Manzanita Estates District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Manzanita Estates District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Manzanita Estates District Heating Low Temperature Geothermal Facility...

  19. Savings Project: Lower Water Heating Temperature | Department...

    Energy Savers [EERE]

    Lower Water Heating Temperature Savings Project: Lower Water Heating Temperature Addthis Project Level Easy Energy Savings 12-30 annually for each 10F reduction Time to ...

  20. Heat Transfer Fluids for Solar Water Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Water Heaters » Heat Transfer Fluids for Solar Water Heating Systems Heat Transfer Fluids for Solar Water Heating Systems Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks in solar water heating systems. When selecting a heat-transfer fluid, you and your solar heating contractor should consider the following criteria: Coefficient of expansion - the fractional

  1. Molten salt heat transfer fluids and thermal storage technology...

    Office of Scientific and Technical Information (OSTI)

    Molten salt heat transfer fluids and thermal storage technology. Citation Details In-Document Search Title: Molten salt heat transfer fluids and thermal storage technology. No ...

  2. Characterization and Development of Advanced Heat Transfer Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Development of Advanced Heat Transfer Technologies Characterization and Development of Advanced Heat Transfer Technologies 2009 DOE Hydrogen Program and Vehicle Technologies ...

  3. Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for CSP Generation Advanced Heat Transfer ... Concepts for Concentrating Solar Power (CSP) Generation funding ...

  4. Indirect evaporative coolers with enhanced heat transfer

    DOE Patents [OSTI]

    Kozubal, Eric; Woods, Jason; Judkoff, Ron

    2015-09-22

    A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.

  5. Two-dimensional heat transfer from earth-sheltered buildings

    SciTech Connect (OSTI)

    Krarti, M. (Steven Winter Associates, Inc., Norwalk, CT (US)); Claridge, D.E. (Texas A and M Univ., College Station, TX (USA). Dept. of Mechanical Engineering)

    1990-02-01

    This paper describes use of the interzone temperature profile estimation (or ITPE) technique, an analytical calculation procedure to predict heat transfer within earth in contact with a structure. The solutions governing steady-state and steady-periodic heat conduction are derived for rectangular earth-sheltered buildings. The procedure accepts continuously variable values of geometric dimensions, insulation levels, and constant soil thermal characteristics and considers the presence of a finite water table level. Soil temperature profiles are shown for both steady-state and steady periodic conditions. The effects of insulation and water table depth on the heat losses from an earth-sheltered building envelope are discussed.

  6. Method of measuring heat influx of a cryogenic transfer system

    DOE Patents [OSTI]

    Niemann, Ralph C.; Zelipsky, Steven A.; Rezmer, Ronald R.; Smelser, Peter

    1981-01-01

    A method is provided for measuring the heat influx of a cryogenic transfer system. A gaseous phase of the cryogen used during normal operation of the system is passed through the system. The gaseous cryogen at the inlet to the system is tempered to duplicate the normal operating temperature of the system inlet. The temperature and mass flow rate of the gaseous cryogen is measured at the outlet of the system, and the heat capacity of the cryogen is determined. The heat influx of the system is then determined from known thermodynamic relationships.

  7. Low-temperature central heating

    SciTech Connect (OSTI)

    Colonna, A.; Dore, B.

    1982-01-01

    As more efficient condensing boilers are introduced and as more homeowners install effective insulation, engineers should consider two possibilities when designing new central-heating systems - the use of properly sized radiators operating at moderate water temperatures (100-120/sup 0/F) and the installation of heating systems under the floor, which ensures that the space heat is evenly distributed. In field tests, low-temperature radiators performed better than conventional models, with no significant adverse effect on comfort levels. G.D.F. also examined floating-late floor heaters, which incorporate an insulated concrete plate supporting a coiled, imbedded network of tubes with a floating concrete plate on top. Their essential advantages is the freeing of more living space to the occupants. Their use is recommended in multifamily dwelling rather than individual homes.

  8. Three-dimensional nonsteady heat-transfer analysis of an indirect heating furnace

    SciTech Connect (OSTI)

    Ito, H.; Umeda, Y.; Nakamura, Y.; Wantanabe, T.; Mitutani, T. ); Arai, N.; Hasatani, M. )

    1991-01-01

    This paper reports on an accurate design method for industrial furnaces from the viewpoint of heat transfer. The authors carried out a three-dimensional nonsteady heat-transfer analysis for a practical-size heat- treatment furnace equipped with radiant heaters. The authors applied three software package programs, STREAM, MORSE, and TRUMP, for the analysis of the combined heat-transfer problems of radiation, conduction, and convection. The authors also carried out experiments of the heating of a charge consisting of packed bolts. The authors found that the air swirled inside the furnace. As for the temperature in each part in the furnace, analytical results were generally in close agreement with the experimental ones. This suggests that our analytical method is useful for a fundamental heat- transfer-based design of a practical-size industrial furnace with an actual charge such as packed bolts. As for the temperature distribution inside the bolt charge (work), the analytical results were also in close agreement with the experimental ones. Consequently, it was found that the heat transfer in the bolt charge could be described with an effective thermal conductivity.

  9. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    DOE Patents [OSTI]

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  10. Splice connector with internal heat transfer jacket

    DOE Patents [OSTI]

    Silva, Frank A.; Mayer, Robert W.

    1977-01-01

    A heat transfer jacket is placed over the terminal portions of the conductors of a pair of high voltage cables which are connected in a splice connection wherein a housing surrounds the connected conductor portions, the heat transfer jacket extending longitudinally between the confronting ends of a pair of adaptor sleeves placed upon the insulation of the cables to engage and locate the adaptor sleeves relative to one another, and laterally between the conductors and the housing to provide a path of relatively high thermal conductivity between the connected conductor portions and the housing.

  11. Evaporative heat transfer in beds of sensible heat pellets

    SciTech Connect (OSTI)

    Arimilli, R.V.; Moy, C.A.

    1989-03-01

    An experimental study of boiling/evaporative heat transfer from heated spheres in vertical packed beds with downward liquid-vapor flow of Refrigerant-113 was conducted. Surface superheats of 1 to 50{degrees}C, mass flow rates of 1.7 to 5.6 Kg/min, sphere diameters of 1.59 and 2.54 cm, quality (i.e., mass fraction of vapor) of the inlet flow of 0.02 to 1.0, and two surface conditions were considered. Instrumented smooth and rough aluminum spheres were used to measure the heat transfer coefficients under steady state conditions. Heat transfer coefficients were independently determined for each sphere at three values three values of surface superheat. The quantitative results of this extensive experimental study are successfully correlated. The correlation equation for the boiling heat transfer coefficients is presented in terms of a homogeneous model. The correlation may be used in the development of numerical models to simulate the transient thermal performance of packed bed thermal energy storage unit while operating as an evaporator. The boiling of the liquid-vapor flow around the spheres in the packed bed was visually observed with a fiber-optic baroscope and recorded on a videotape. The visualization results showed qualitatively the presence of four distinct flow regimes. One of these occurs under saturated inlet conditions and are referred to as the Low-quality, Medium-quality, and High-quality Regimes. The regimes are discussed in detail in this paper.

  12. Subcooled Flow Boiling Heat Transfer to Water and Ethylene Glycol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subcooled Flow Boiling Heat Transfer to Water and Ethylene GlycolWater Mixtures in a Bottom-Heated Tube Title Subcooled Flow Boiling Heat Transfer to Water and Ethylene Glycol...

  13. Experimental investigation of a reticulated porous alumina heat exchanger for high temperature gas heat recovery

    SciTech Connect (OSTI)

    Banerjee, A; Chandran, RB; Davidson, JH

    2015-01-22

    The present study presents an experimental study of a prototype counter-flow heat exchanger designed to recover sensible heat from inert and reactive gases flowing through a high temperature solar reactor for splitting CO2. The tube-in-tube heat exchanger is comprised of two concentric alumina tubes, each filled with reticulated porous alumina with a nominal porosity of 80% and pore density of 5 pores per inch (ppi). The RPC provides high heat transfer surface area per unit volume (917 m(-1)) with low pressure drop. Measurements include the permeability, inertial coefficient, overall heat transfer coefficient, effectiveness and pressure drop. For laminar flow and an inlet gas temperature of 1240 K, the overall heat transfer coefficients are 36-41 W m(-2) K-1. The measured performance is in good agreement with a prior CFD model of the heat exchanger. (C) 2014 Elsevier Ltd. All rights reserved.

  14. Enhanced convective and film boiling heat transfer by surface gas injection

    SciTech Connect (OSTI)

    Duignan, M.R.; Greene, G.A. ); Irvine, T.F., Jr. . Dept. of Mechanical Engineering)

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured (0 to 8.5 cm/s), the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  15. Enhanced convective and film boiling heat transfer by surface gas injection

    SciTech Connect (OSTI)

    Duignan, M.R.; Greene, G.A.; Irvine, T.F., Jr.

    1992-04-01

    Heat transfer measurements were made for stable film boiling of water over a horizontal, flat stainless steel plate from the minimum film boiling point temperature, T{sub SURFACE} {approximately}500K, to T{sub SURFACE} {approximately}950K. The pressure at the plate was approximately 1 atmosphere and the temperature of the water pool was maintained at saturation. The data were compared to the Berenson film-boiling model, which was developed for minimum film-boiling-point conditions. The model accurately represented the data near the minimum film-boiling point and at the highest temperatures measured, as long it was corrected for the heat transferred by radiation. On the average, the experimental data lay within {plus_minus}7% of the model. Measurements of heat transfer were made without film boiling for nitrogen jetting into an overlying pool of water from nine 1-mm- diameter holes, drilled in the heat transfer plate. The heat flux was maintained constant at approximately 26.4 kW/m{sup 2}. For water-pool heights of less than 6cm the heat transfer coefficient deceased linearly with a decrease in heights. Above 6cm the heat transfer coefficient was unaffected. For the entire range of gas velocities measured [0 to 8.5 cm/s], the magnitude of the magnitude of the heat transfer coefficient only changed by approximately 20%. The heat transfer data bound the Konsetov model for turbulent pool heat transfer which was developed for vertical heat transfer surfaces. This agreement suggests that surface orientation may not be important when the gas jets do not locally affect the surface heat transfer. Finally, a database was developed for heat transfer from the plate with both film boiling and gas jetting occurring simultaneously, in a pool of water maintained at its saturation temperature. The effect of passing nitrogen through established film boiling is to increase the heat transfer from that surface. 60 refs.

  16. Cooperative heat transfer and ground coupled storage system

    DOE Patents [OSTI]

    Metz, P.D.

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  17. Cooperative heat transfer and ground coupled storage system

    DOE Patents [OSTI]

    Metz, Philip D.

    1982-01-01

    A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

  18. Temperature control system for a J-module heat exchanger

    DOE Patents [OSTI]

    Basdekas, Demetrios L.; Macrae, George; Walsh, Joseph M.

    1978-01-01

    The level of primary fluid is controlled to change the effective heat transfer area of a heat exchanger utilized in a liquid metal nuclear power plant to eliminate the need for liquid metal control valves to regulate the flow of primary fluid and the temperature of the effluent secondary fluid.

  19. A simplified model for heat transfer in heat exchangers and stack plates for thermoacoustic devices

    SciTech Connect (OSTI)

    Chen, Y.; Herman, C.

    1999-07-01

    A simplified model of heat transfer in heat exchangers and stack plates of thermoacoustic devices was developed. The model took advantage of previous results regarding the thermal behavior of the thermoacoustic core for investigations of the performance of heat exchangers attached to the core. Geometrical and operational parameters as well as thermophysical properties of the heat exchangers, the plate, and the working medium were organized into dimensionless groups that allowed to account for their impact on the performance of the heat exchangers. Numerical simulations with the model were carried out. Nonlinear temperature distributions and heat fluxes near the edge of the stack plate were observed. Effects of different parameters on the thermal performance of the heat exchangers were investigated.

  20. Ch. VII, Temperature, heat flow maps and temperature gradient...

    Open Energy Info (EERE)

    Report: Ch. VII, Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation...

  1. Temperature, heat flow maps and temperature gradient holes |...

    Open Energy Info (EERE)

    to library Report: Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Organization Colorado Geological Survey in Cooperation with the U.S....

  2. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measure the thermophysical properties of heat transfer fluids and storage materials to ... measure the melting point, boiling point, heat capacity, density, viscosity, and phase- ...

  3. Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids

    SciTech Connect (OSTI)

    Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert

    2013-07-22

    Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.

  4. Heat Transfer Boundary Conditions in the RELAP5-3D Code

    SciTech Connect (OSTI)

    Richard A. Riemke; Cliff B. Davis; Richard R. Schultz

    2008-05-01

    The heat transfer boundary conditions used in the RELAP5-3D computer program have evolved over the years. Currently, RELAP5-3D has the following options for the heat transfer boundary conditions: (a) heat transfer correlation package option, (b) non-convective option (from radiation/conduction enclosure model or symmetry/insulated conditions), and (c) other options (setting the surface temperature to a volume fraction averaged fluid temperature of the boundary volume, obtaining the surface temperature from a control variable, obtaining the surface temperature from a time-dependent general table, obtaining the heat flux from a time-dependent general table, or obtaining heat transfer coefficients from either a time- or temperature-dependent general table). These options will be discussed, including the more recent ones.

  5. Modeling of Heat and Mass Transfer in Fusion Welding (Book) ...

    Office of Scientific and Technical Information (OSTI)

    Book: Modeling of Heat and Mass Transfer in Fusion Welding Citation Details In-Document Search Title: Modeling of Heat and Mass Transfer in Fusion Welding In fusion welding, parts...

  6. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

  7. Heat Transfer Fluids Containing Nanoparticles (08-066) - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Return to Search Heat Transfer Fluids Containing Nanoparticles (08-066) Argonne National Laboratory Contact ANL About This Technology

     

    Caption: Heat transfer ...

  8. 2D FEM Heat Transfer & E&M Field Code

    Energy Science and Technology Software Center (OSTI)

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation.more » By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  9. 2D FEM Heat Transfer & E&M Field Code

    Energy Science and Technology Software Center (OSTI)

    1992-04-02

    TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation.moreBy implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.less

  10. Industrial Steam System Heat-Transfer Solutions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat-Transfer Solutions Industrial Steam System Heat-Transfer Solutions This brief provides an overview of considerations for selecting the best heat-transfer equipment for various steam systems and applications. Industrial Steam System Heat-Transfer Solutions (June 2003) (442.68 KB) More Documents & Publications Industrial Steam System Process-Control Schemes Considerations When Selecting a Condensing Economizer Steam Pressure Reduction: Opportunities and Issues

  11. Molten salt as a heat transfer fluid for heating a subsurface formation

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2010-11-16

    A heating system for a subsurface formation includes a conduit located in an opening in the subsurface formation. An insulated conductor is located in the conduit. A material is in the conduit between a portion of the insulated conductor and a portion of the conduit. The material may be a salt. The material is a fluid at operating temperature of the heating system. Heat transfers from the insulated conductor to the fluid, from the fluid to the conduit, and from the conduit to the subsurface formation.

  12. Modeling of Heat and Mass Transfer in Fusion Welding

    SciTech Connect (OSTI)

    Zhang, Wei [ORNL

    2011-01-01

    In fusion welding, parts are joined together by melting and subsequent solidification. Although this principle is simple, complex transport phenomena take place during fusion welding, and they determine the final weld quality and performance. The heat and mass transfer in the weld pool directly affect the size and shape of the pool, the solidification microstructure, the formation of weld defects such as porosity and humping, and the temperature distribution in the fusion zone and heat-affected zone (HAZ). Furthermore, the temperature evolution affects the kinetics and extent of various solid-state phase transformations, which in turn determine the final weld microstructure and mechanical properties. The formation of residual stresses and distortion originates from the thermal expansion and contraction during welding heating and cooling, respectively.

  13. Advances in refrigeration and heat transfer engineering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    2015-05-13

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been themore » most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).« less

  14. Advances in refrigeration and heat transfer engineering

    SciTech Connect (OSTI)

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    2015-05-13

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been the most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).

  15. Advances in refrigeration and heat transfer engineering

    SciTech Connect (OSTI)

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    2015-01-01

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been the most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).

  16. Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor

    SciTech Connect (OSTI)

    Piyush Sabharwall; Ali Siahpush; Michael McKellar; Michael Patterson; Eung Soo Kim

    2012-06-01

    The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangers—helical coiled heat exchanger and printed circuit heat exchanger—as possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.

  17. HEAT TRANSFER ANALYSIS FOR NUCLEAR WASTE SOLIDIFICATION CONTAINER

    SciTech Connect (OSTI)

    Lee, S.

    2009-06-01

    The Nuclear Nonproliferation Programs Design Authority is in the design stage of the Waste Solidification Building (WSB) for the treatment and solidification of the radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility (PDCF) and Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The waste streams will be mixed with a cementitious dry mix in a 55-gallon waste container. Savannah River National Laboratory (SRNL) has been performing the testing and evaluations to support technical decisions for the WSB. Engineering Modeling & Simulation Group was requested to evaluate the thermal performance of the 55-gallon drum containing hydration heat source associated with the current baseline cement waste form. A transient axi-symmetric heat transfer model for the drum partially filled with waste form cement has been developed and heat transfer calculations performed for the baseline design configurations. For this case, 65 percent of the drum volume was assumed to be filled with the waste form, which has transient hydration heat source, as one of the baseline conditions. A series of modeling calculations has been performed using a computational heat transfer approach. The baseline modeling results show that the time to reach the maximum temperature of the 65 percent filled drum is about 32 hours when a 43 C initial cement temperature is assumed to be cooled by natural convection with 27 C external air. In addition, the results computed by the present model were compared with analytical solutions. The modeling results will be benchmarked against the prototypic test results. The verified model will be used for the evaluation of the thermal performance for the WSB drum. Detailed results and the cases considered in the calculations will be discussed here.

  18. TRANSIENT HEAT TRANSFER MODEL FOR SRS WASTE TANK OPERATIONS

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R

    2007-03-27

    A transient heat balance model was developed to assess the impact of a Submersible Mixer Pump (SMP) on waste temperature during the process of waste mixing and removal for the Type-I Savannah River Site (SRS) tanks. The model results will be mainly used to determine the SMP design impacts on the waste tank temperature during operations and to develop a specification for a new SMP design to replace existing long-shaft mixer pumps used during waste removal. The model will also be used to provide input to the operation planning. This planning will be used as input to pump run duration in order to maintain temperature requirements within the tank during SMP operation. The analysis model took a parametric approach. A series of the modeling analyses was performed to examine how submersible mixer pumps affect tank temperature during waste removal operation in the Type-I tank. The model domain included radioactive decay heat load, two SMP's, and one Submersible Transfer Pump (STP) as heat source terms. The present model was benchmarked against the test data obtained by the tank measurement to examine the quantitative thermal response of the tank and to establish the reference conditions of the operating variables under no SMP operation. The results showed that the model predictions agreed with the test data of the waste temperatures within about 10%. Transient modeling calculations for two potential scenarios of sludge mixing and removal operations have been made to estimate transient waste temperatures within a Type-I waste tank. When two 200-HP submersible mixers and 12 active cooling coils are continuously operated in 100-in tank level and 40 C initial temperature for 40 days since the initiation of mixing operation, waste temperature rises about 9 C in 48 hours at a maximum. Sensitivity studies for the key operating variables were performed. The sensitivity results showed that the chromate cooling coil system provided the primary cooling mechanism to remove process

  19. Transient critical heat flux and blowdown heat-transfer studies

    SciTech Connect (OSTI)

    Leung, J.C.

    1980-05-01

    Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.

  20. Situ soil sampling probe system with heated transfer line

    DOE Patents [OSTI]

    Robbat, Jr., Albert

    2002-01-01

    The present invention is directed both to an improved in situ penetrometer probe and to a heated, flexible transfer line. The line and probe may be implemented together in a penetrometer system in which the transfer line is used to connect the probe to a collector/analyzer at the surface. The probe comprises a heater that controls a temperature of a geologic medium surrounding the probe. At least one carrier gas port and vapor collection port are located on an external side wall of the probe. The carrier gas port provides a carrier gas into the geologic medium, and the collection port captures vapors from the geologic medium for analysis. In the transfer line, a flexible collection line that conveys a collected fluid, i.e., vapor, sample to a collector/analyzer. A flexible carrier gas line conveys a carrier gas to facilitate the collection of the sample. A system heating the collection line is also provided. Preferably the collection line is electrically conductive so that an electrical power source can generate a current through it so that the internal resistance generates heat.

  1. Submersible pumping system with heat transfer mechanism

    DOE Patents [OSTI]

    Hunt, Daniel Francis Alan; Prenger, F. Coyne; Hill, Dallas D; Jankowski, Todd Andrew

    2014-04-15

    A submersible pumping system for downhole use in extracting fluids containing hydrocarbons from a well. In one embodiment, the pumping system comprises a rotary induction motor, a motor casing, one or more pump stages, and a cooling system. The rotary induction motor rotates a shaft about a longitudinal axis of rotation. The motor casing houses the rotary induction motor such that the rotary induction motor is held in fluid isolation from the fluid being extracted. The pump stages are attached to the shaft outside of the motor casing, and are configured to impart fluid being extracted from the well with an increased pressure. The cooling system is disposed at least partially within the motor casing, and transfers heat generated by operation of the rotary induction motor out of the motor casing.

  2. Characterization and Development of Advanced Heat Transfer Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Development of Advanced Heat Transfer Technologies Characterization and Development of Advanced Heat Transfer Technologies 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ape_11_kelly.pdf (1.49 MB) More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies Advanced Power Electronics and Electric Machines Air Cooling Technology

  3. Sensitivity Analysis of the Gap Heat Transfer Model in BISON.

    SciTech Connect (OSTI)

    Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard; Perez, Danielle

    2014-10-01

    This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.

  4. Comparison of Alternatives to the 2004 Vacuum Vessel Heat Transfer...

    Office of Scientific and Technical Information (OSTI)

    as well as including a small safety-rated pump and HX in parallel to the main circulation pump and HX. The Vacuum Vessel (VV) Primary Heat Transfer System (PHTS) removes heat...

  5. Heat and mass transfer in open-cycle OTEC systems

    SciTech Connect (OSTI)

    Bharathan, D.; Kreith, F.; Owens, W.L.; Schlepp, D.

    1984-01-01

    The temperature difference between surface and deep water in the oceans represents a vast resource of thermal energy. A promising method of harnessing this resource is the open-cycle ocean thermal energy conversion (OC-OTEC) system, which utilizes steam evaporated from the surface water to power the turbine. In this paper the state of the art of heat and mass transfer related to evaporation and condensation of steam at low pressures in OC-OTEC is summarized and relevant research issues are discussed.

  6. Low-melting point inorganic nitrate salt heat transfer fluid

    DOE Patents [OSTI]

    Bradshaw, Robert W.; Brosseau, Douglas A.

    2009-09-15

    A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

  7. Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Clean Firetube Boiler Waterside Heat Transfer Surfaces The prevention of scale formation in fretube boilers can result in substantial energy savings. Scale deposits occur when ...

  8. Steam Technical Brief: Industrial Steam System Heat-Transfer Solutions

    SciTech Connect (OSTI)

    2010-06-25

    This BestPractices Steam Technical Brief provides an overview of considerations for selecting the best heat-transfer solution for various applications.

  9. Clean Boiler Waterside Heat Transfer Surfaces | Department of...

    Energy Savers [EERE]

    STEAM TIP SHEET 7 Clean Boiler Waterside Heat Transfer Surfaces (April 2012) (395.4 KB) More Documents & Publications Consider Installing Turbulators on Two- and Three-Pass ...

  10. Project Profile: Dual-Purpose Heat Transfer Fluids for CSP |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne logo Argonne National Laboratory, under an ARRA CSP Award, is developing advanced heat transfer fluids (HTFs) by incorporating multifunctional engineered nanoparticles in ...

  11. Characterization and Development of Advanced Heat Transfer Technologies (Presentation)

    SciTech Connect (OSTI)

    Kelly, K.

    2009-05-01

    This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

  12. Correlation of heat transfer in a cylinder containing uranium hexafluoride engulfed in a fire

    SciTech Connect (OSTI)

    Anderson, J.C.

    1994-08-01

    Transient heat transfer/stress analysis models are currently being developed to evaluate the response of cylinders containing uranium hexafluoride (UF{sub 6}) to fire accident scenarios. In order to accurately predict temperatures within the cylinder, and ultimately elapsed time to failure, the heat transfer to and within the cylinder must be well characterized. This report contains a complete set of heat transfer correlations required for such a model. Correlations are presented for predicting heat transfer rates over the cylinder exterior (radiative exchange and natural convection), from the cylinder interior to the various phases of UF{sub 6} (solid, liquid, and vapor) in the cylinder, between UF{sub 6} phases in the cylinder, and during UF{sub 6} liquid boiling. The heat transfer coefficients predicted by these correlations were chosen based on best engineering judgement and have not yet been compared to data from actual cylinder fire tests.

  13. Design manual. [High temperature heat pump for heat recovery system

    SciTech Connect (OSTI)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  14. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOE Patents [OSTI]

    Phillips, Benjamin A.; Zawacki, Thomas S.

    1996-12-03

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. A combination of weak and rich liquor working solution is used as the heat transfer medium.

  15. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOE Patents [OSTI]

    Phillips, Benjamin A.; Zawacki, Thomas S.; Marsala, Joseph

    1994-11-29

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium.

  16. Theoretical Design of Thermosyphon for Process Heat Transfer from NGNP to Hydrogen Plant

    SciTech Connect (OSTI)

    Piyush Sabharwall; Mike Patterson; Fred Gunnerson

    2008-09-01

    The Next Generation Nuclear Plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ~ 1300K) and industrial scale power transport (=50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via pumping a fluid, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization / condensing process. The condensate is further returned to the hot source by gravity, i.e. without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) or vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  17. Buoyancy-driven heat transfer and flow between a wetted heat source and an isothermal cube

    SciTech Connect (OSTI)

    Close, D.J.; Peck, M.K.; White, R.F.; Mahoney, K.J. )

    1991-05-01

    This paper describes flow visualization and heat transfer experiments conducted with a heat source inside an isothermal cube filled with a saturated or near-saturated gas/vapor mixture. The mixture was formed by vaporizing liquid from the surface of the heat source, and allowing it to condense on the surfaces of the cube, which was initially filled with a noncondensing gas. Visualization studies showed that for air and ethanol below 35C, and for air and water, the flow patterns were similar with the hot plume rising from the source. For air and ethanol above 35C the flow pattern reversed with the hot plume flowing downward. For temperatures spanning 35C, which is the zero buoyancy temperature for the ethanol/water azeotrope and air, no distinct pattern was observed. Using water, liquid droplets fell like rain throughout the cube. Using ethanol, a fog of droplets moved with the fluid flow. Heat transfer experiments were made with water and air, and conductances between plate and cube of around 580 W{center dot}m{sup {minus}2}{center dot}K{sup {minus}1} measured. Agreement between the similarity theory developed for saturated gas/vapor mixtures, and correlations for single component fluids only, was very good. Together with qualitative support from the visualization experiments, the theory developed in a earlier paper deriving a similarity relationship between single fluids and gas/vapor mixtures has been validated.

  18. Drift apex temperature distributions due to cylindrical heat sources

    SciTech Connect (OSTI)

    Culbreth, W.G.; Ventresca, J.J.

    1996-12-01

    Experiments were conducted to determine the rate of convective heat transfer from cylindrical waste packages in a model of a drift. Thermocouples were used to measure the temperatures on the waste package surface and on the drift wall as a function of the Rayleigh number, Ra{sub f}, for the buoyancy-induced flow. The results, presented in terms of dimensionless temperatures, showed variations in drift wall apex temperature. Curvefits of apex temperatures as a function of the drift centerline axial position were computed.

  19. Dual circuit embossed sheet heat transfer panel

    DOE Patents [OSTI]

    Morgan, G.D.

    1984-02-21

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet. 6 figs.

  20. Dual circuit embossed sheet heat transfer panel

    DOE Patents [OSTI]

    Morgan, Grover D.

    1984-01-01

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.

  1. New flow boiling heat transfer model for hydrocarbons evaporating inside horizontal tubes

    SciTech Connect (OSTI)

    Chen, G. F.; Gong, M. Q.; Wu, J. F.; Zou, X.; Wang, S.

    2014-01-29

    Hydrocarbons have high thermodynamic performances, belong to the group of natural refrigerants, and they are the main components in mixture Joule-Thomson low temperature refrigerators (MJTR). New evaluations of nucleate boiling contribution and nucleate boiling suppression factor in flow boiling heat transfer have been proposed for hydrocarbons. A forced convection heat transfer enhancement factor correlation incorporating liquid velocity has also been proposed. In addition, the comparisons of the new model and other classic models were made to evaluate its accuracy in heat transfer prediction.

  2. Secondary heat exchanger design and comparison for advanced high temperature reactor

    SciTech Connect (OSTI)

    Sabharwall, P.; Kim, E. S.; Siahpush, A.; McKellar, M.; Patterson, M.

    2012-07-01

    Next generation nuclear reactors such as the advanced high temperature reactor (AHTR) are designed to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. This study considers two different types of heat exchangers - helical coiled heat exchanger and printed circuit heat exchanger - as possible options for the AHTR secondary heat exchangers with distributed load analysis and comparison. Comparison is provided for all different cases along with challenges and recommendations. (authors)

  3. Wiesbaden Motel & Health Resort Space Heating Low Temperature...

    Open Energy Info (EERE)

    Heating Low Temperature Geothermal Facility Facility Wiesbaden Motel & Health Resort Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates...

  4. Enhanced two phase flow in heat transfer systems

    DOE Patents [OSTI]

    Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D

    2013-12-03

    A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.

  5. SCDAP/RELAP5 Modeling of Heat Transfer and Flow Losses in Lower Head Porous Debris

    SciTech Connect (OSTI)

    Siefken, Larry James; Coryell, Eric Wesley; Paik, Seungho; Kuo, Han Hsiung

    1999-07-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate manner. Designs are described for models to calculate the flow losses and interphase drag of fluid flowing through the interstices of the porous debris, and to apply these variables in the momentum equations in the RELAP5 part of the code. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region.

  6. Study on the heat transfer of heat exchangers for the Stirling Engine

    SciTech Connect (OSTI)

    Kanzaka, M. ); Iwabuchi, M. )

    1991-01-01

    This paper reports that heat-transfer characteristics in heated tubes under periodically reversing flow conditions have been investigated experimentally using a test apparatus that simulates the heat exchangers for the actual Sterling engine. It was shown that the heat-transfer characteristics under these conditions were greatly affected by the piston phase-angle difference that generates the reversing flow of the working gas, and this phenomenon was proper to the heat transfer under the periodically reversing flow and was different from conventional heat transfer in steady flow. The experimental correlation considering the influence of the piston phase-angle difference for the heat-transfer coefficient has been induced by the use of the working gas velocity evaluated from the Schmidt cycle model which is one of the ideal Sterling cycles.

  7. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    SciTech Connect (OSTI)

    Canaan, R.E.

    1995-12-01

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  8. Canon City Area Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Canon City Area Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Canon City Area Space Heating Low Temperature Geothermal Facility Facility Canon...

  9. Warren Estates District Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Warren Estates District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warren Estates District Heating Low Temperature Geothermal Facility Facility...

  10. Elko County School District District Heating Low Temperature...

    Open Energy Info (EERE)

    Elko County School District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko County School District District Heating Low Temperature...

  11. Idaho Capitol Mall District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Idaho Capitol Mall District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Idaho Capitol Mall District Heating Low Temperature Geothermal Facility...

  12. Fort Boise Veteran's Hospital District Heating Low Temperature...

    Open Energy Info (EERE)

    Fort Boise Veteran's Hospital District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fort Boise Veteran's Hospital District Heating Low Temperature...

  13. Jackson Well Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Well Springs Space Heating Low Temperature Geothermal Facility Facility Jackson Well...

  14. Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility Jackson...

  15. Klamath County Shops Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Shops Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath County Shops Space Heating Low Temperature Geothermal Facility Facility Klamath...

  16. Hunters Hot Spring Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Hot Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hunters Hot Spring Space Heating Low Temperature Geothermal Facility Facility Hunters...

  17. Modoc High School Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modoc High School Space Heating Low Temperature Geothermal Facility Facility Modoc...

  18. Medical Center Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Medical Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Medical Center Space Heating Low Temperature Geothermal Facility Facility Medical...

  19. Corral Space Heating Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Corral Space Heating Low Temperature Geothermal Facility Facility Corral Sector Geothermal energy...

  20. The Wilderness Lodge Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name The Wilderness Lodge Space Heating Low Temperature Geothermal Facility Facility The Wilderness...

  1. Boulder Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boulder Hot Springs Space Heating Low Temperature Geothermal Facility Facility Boulder Hot...

  2. Manley Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Manley Hot Springs Space Heating Low Temperature Geothermal Facility Facility Manley Hot Springs...

  3. Jump Steady Resort Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Jump Steady Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jump Steady Resort Space Heating Low Temperature Geothermal Facility Facility...

  4. Circle Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Circle Hot Springs Space Heating Low Temperature Geothermal Facility Facility Circle Hot Springs...

  5. Klamath Schools (7) Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Schools (7) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Schools (7) Space Heating Low Temperature Geothermal Facility Facility...

  6. Health Spa Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Spa Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Health Spa Space Heating Low Temperature Geothermal Facility Facility Glenwood Springs Health...

  7. Desert Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Desert Hot Springs Space Heating Low Temperature Geothermal Facility Facility Desert Hot...

  8. Vale Residences Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vale Residences Space Heating Low Temperature Geothermal Facility Facility Vale...

  9. Twin Peaks Motel Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Peaks Motel Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Twin Peaks Motel Space Heating Low Temperature Geothermal Facility Facility Twin...

  10. Lava Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lava Hot Springs Space Heating Low Temperature Geothermal Facility Facility Lava Hot Springs...

  11. Hot Sulphur Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Sulphur Springs Space Heating Low Temperature Geothermal Facility Facility Hot Sulphur...

  12. Medical Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Medical Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Medical Hot Springs Space Heating Low Temperature Geothermal Facility...

  13. Klamath Residence (500) Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Residence (500) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Residence (500) Space Heating Low Temperature Geothermal Facility...

  14. Van Norman Residences Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Norman Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Van Norman Residences Space Heating Low Temperature Geothermal Facility...

  15. Cottonwood Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cottonwood Hot Springs Space Heating Low Temperature Geothermal Facility Facility...

  16. Stroppel Hotel Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Stroppel Hotel Space Heating Low Temperature Geothermal Facility Facility Stroppel Hotel Sector...

  17. Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility Facility Tecopa Hot Springs...

  18. Walley's Hot Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Walley's...

  19. Vale Slaughter House Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Slaughter House Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vale Slaughter House Space Heating Low Temperature Geothermal Facility Facility...

  20. Arrowhead Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Arrowhead Hot Springs Space Heating Low Temperature Geothermal Facility Facility...

  1. Box Canyon Motel Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Canyon Motel Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Box Canyon Motel Space Heating Low Temperature Geothermal Facility Facility Box...

  2. Melozi Space Heating Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Melozi Space Heating Low Temperature Geothermal Facility Facility Melozi Sector Geothermal energy...

  3. Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Fairmont...

  4. Maywood Industries of Oregon Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Maywood Industries of Oregon Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Maywood Industries of Oregon Space Heating Low Temperature...

  5. Lolo Hot Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Lolo Hot...

  6. Henley High School Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Henley High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Henley High School Space Heating Low Temperature Geothermal Facility Facility...

  7. Vichy Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Facility Vichy Hot Springs...

  8. Buckhorn Mineral Wells Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Buckhorn Mineral Wells Space Heating Low Temperature Geothermal Facility Facility Buckhorn...

  9. Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Motel & Trailer Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal...

  10. Baranof Space Heating Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Baranof Space Heating Low Temperature Geothermal Facility Facility Baranof Sector Geothermal...

  11. Steamboat Villa Hot Springs Spa Space Heating Low Temperature...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal Facility Facility...

  12. White Sulphur Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Sulphur Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name White Sulphur Springs Space Heating Low Temperature Geothermal Facility Facility...

  13. Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal Facility Facility Waunita Hot...

  14. Twin Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Twin Springs Resort Space Heating Low Temperature Geothermal Facility Facility Twin Springs...

  15. Pagosa Springs Private Wells Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Private Wells Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs Private Wells Space Heating Low Temperature Geothermal Facility...

  16. Merle West Medical Center Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Merle West Medical Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Merle West Medical Center Space Heating Low Temperature Geothermal...

  17. Olene Gap Space Heating Low Temperature Geothermal Facility ...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Olene Gap Space Heating Low Temperature Geothermal Facility Facility Olene Gap Sector Geothermal...

  18. Homestead Resort Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Homestead Resort Space Heating Low Temperature Geothermal Facility Facility Homestead...

  19. Chico Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Chico Hot Springs Space Heating Low Temperature Geothermal Facility Facility Chico Hot Springs...

  20. Bell Island Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Bell Island Space Heating Low Temperature Geothermal Facility Facility Bell Island Sector...

  1. Mount Princeton Area Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Area Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Mount Princeton Area Space Heating Low Temperature Geothermal Facility Facility Mount...

  2. LDS Wardhouse Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Wardhouse Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name LDS Wardhouse Space Heating Low Temperature Geothermal Facility Facility LDS Wardhouse...

  3. Reno-Moana Area (300) Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility...

  4. Saratoga Springs Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Saratoga Springs Resort Space Heating Low Temperature Geothermal Facility Facility Saratoga...

  5. Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility...

  6. Hillbrook Nursing Home Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility...

  7. Indian Valley Hospital Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Valley Hospital Space Heating Low Temperature Geothermal Facility Facility Indian...

  8. Chena Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Chena Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Chena Hot Springs Space Heating Low Temperature Geothermal Facility Facility...

  9. Ft Bidwell Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Ft Bidwell Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ft Bidwell Space Heating Low Temperature Geothermal Facility Facility Ft Bidwell...

  10. Breitenbush Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Breitenbush Hot Springs Space Heating Low Temperature Geothermal Facility Facility...

  11. Bozeman Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility Facility Bozeman Hot...

  12. Pinkerton Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Pinkerton Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pinkerton Hot Springs Space Heating Low Temperature Geothermal Facility...

  13. Senior Citizens' Center Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Senior Citizens' Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Senior Citizens' Center Space Heating Low Temperature Geothermal Facility...

  14. Warm Springs State Hospital Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility...

  15. Langel Valley Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Langel Valley Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Langel Valley Space Heating Low Temperature Geothermal Facility Facility Langel...

  16. LDS Church Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    LDS Church Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name LDS Church Space Heating Low Temperature Geothermal Facility Facility LDS Church...

  17. Klamath County Jail Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Jail Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath County Jail Space Heating Low Temperature Geothermal Facility Facility Klamath...

  18. Jemez Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jemez Springs Space Heating Low Temperature Geothermal Facility Facility Jemez Springs Sector...

  19. YMCA Space Heating Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    YMCA Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name YMCA Space Heating Low Temperature Geothermal Facility Facility YMCA Sector Geothermal...

  20. Utah State Prison Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Prison Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Utah State Prison Space Heating Low Temperature Geothermal Facility Facility Utah State...

  1. Warner Springs Ranch Resort Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Ranch Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility...

  2. Surprise Valley Hospital Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Surprise Valley Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Surprise Valley Hospital Space Heating Low Temperature Geothermal...

  3. Del Rio Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Rio Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Del Rio Hot Springs Space Heating Low Temperature Geothermal Facility Facility...

  4. Miracle Hot Spring Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Miracle Hot Spring Space Heating Low Temperature Geothermal Facility Facility Miracle Hot...

  5. St. Mary's Hospital Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name St. Mary's Hospital Space Heating Low Temperature Geothermal Facility Facility St....

  6. Cotulla High School Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Cotulla High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cotulla High School Space Heating Low Temperature Geothermal Facility...

  7. Ouray Municipal Pool Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Municipal Pool Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Facility...

  8. Miracle Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Miracle Hot Springs Space Heating Low Temperature Geothermal Facility Facility Miracle Hot...

  9. Marlin Hospital Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Marlin Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Marlin Hospital Space Heating Low Temperature Geothermal Facility Facility Marlin...

  10. Radium Hot Springs Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Radium Hot Springs Space Heating Low Temperature Geothermal Facility Facility Radium Hot Springs...

  11. Summer Lake Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Facility Summer Lake...

  12. Banbury Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Banbury Hot Springs Space Heating Low Temperature Geothermal Facility Facility Banbury Hot...

  13. Peppermill Hotel Casino Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Peppermill Hotel Casino Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Peppermill Hotel Casino Space Heating Low Temperature Geothermal Facility...

  14. Modesto Memorial Hospital Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Memorial Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modesto Memorial Hospital Space Heating Low Temperature Geothermal Facility...

  15. Indian Springs School Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Springs School Space Heating Low Temperature Geothermal Facility Facility Indian...

  16. Geronimo Springs Museum Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility...

  17. Ophir Creek Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Ophir Creek Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ophir Creek Space Heating Low Temperature Geothermal Facility Facility Ophir Creek...

  18. Burgdorf Hot Springs Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Burgdorf Hot Springs Space Heating Low Temperature Geothermal Facility Facility Burgdorf Hot...

  19. Hot Springs National Park Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    National Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs National Park Space Heating Low Temperature Geothermal Facility...

  20. Hi-Tech Fisheries Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hi-Tech Fisheries Space Heating Low Temperature Geothermal Facility Facility Hi-Tech Fisheries...

  1. Osmotic Heat Engine for Energy Production from Low Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Osmotic Heat Engine for Energy Production from Low Temperature Geothermal Resources Osmotic Heat Engine for Energy Production from Low Temperature Geothermal Resources Project ...

  2. Agua Calientes Trailer Park Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility Facility Agua...

  3. Klamath Churches (5) Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Churches (5) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Churches (5) Space Heating Low Temperature Geothermal Facility Facility...

  4. Hot Lake RV Park Space Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Lake RV Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Lake RV Park Space Heating Low Temperature Geothermal Facility Facility Hot Lake...

  5. New Mexico State University District Heating Low Temperature...

    Open Energy Info (EERE)

    Heating Low Temperature Geothermal Facility Jump to: navigation, search Name New Mexico State University District Heating Low Temperature Geothermal Facility Facility New...

  6. Warm Springs Water District District Heating Low Temperature...

    Open Energy Info (EERE)

    Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal...

  7. Study of condensation heat transfer following a main steam line break inside containment

    SciTech Connect (OSTI)

    Cho, J.H.; Elia, F.A. Jr.; Lischer, D.J.

    1995-09-01

    An alternative model for calculating condensation heat transfer following a main stream line break (MSLB) accident is proposed. The proposed model predictions and the current regulatory model predictions are compared to the results of the Carolinas Virginia Tube Reactor (CVTR) test. The very conservative results predicted by the current regulatory model result from: (1) low estimate of the condensation heat transfer coefficient by the Uchida correlation and (2) neglecting the convective contribution to the overall heat transfer. Neglecting the convection overestimates the mass of steam being condensed and does not permit the calculation of additional convective heat transfer resulting from superheated conditions. In this study, the Uchida correlation is used, but correction factors for the effects of convection an superheat are derived. The proposed model uses heat and mass transfer analogy methods to estimate to convective fraction of the total heat transfer and bases the steam removal rate on the condensation heat transfer portion only. The results predicted by the proposed model are shown to be conservative and more accurate than those predicted by the current regulatory model when compared with the results of the CVTR test. Results for typical pressurized water reactors indicate that the proposed model provides a basis for lowering the equipment qualification temperature envelope, particularly at later times following the accident.

  8. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    DOE Patents [OSTI]

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  9. Project Profile: Heat Transfer and Latent Heat Storage in Inorganic Molten

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Salts for CSP Plants | Department of Energy Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants Project Profile: Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants Terrafore logo Terrafore, under the Thermal Storage FOA, is developing an economically feasible thermal energy storage (TES) system based on phase change materials (PCMs), for CSP plants. Approach This diagram shows how Terrafore is using a molten salt slurry to improve the

  10. Radiation Heat Transfer in 3 Dimensions for Semi-Transparent Materials....

    Energy Science and Technology Software Center (OSTI)

    2010-12-02

    The RAD3D software solves the critical heat transfer mechanisms that occur in production glass furnaces. The code includes state-of-the-art solution algorithms for efficient radiant interaction of the heating elements, furnace walls and internal furnace components. The code specifically solves the coupled radiative and conductive heating of semi-transparent materials such as glass to calculate the temperature distribution in the glass during processing.

  11. Downflow heat transfer in a heated ribbed vertical annulus with a cosine power profile

    SciTech Connect (OSTI)

    Anderson, J.L.; Condie, K.G.; Larson, T.K.

    1991-10-01

    Experiments designed to investigate downflow heat transfer in a heated, ribbed annulus test section simulating one of the annular coolant channels of a Savannah River Plant production reactor Mark 22 fuel assembly have been conducted at the Idaho National Engineering Laboratory. The inner surface of the annulus was constructed of aluminum and was electrically heated to provide an axial cosine power profile and a flat azimuthal power shape. Data presented in this report are from the ECS-2c series, which was a follow on series to the ECS-2b series, conducted specifically to provide additional data on the effect of different powers at the same test conditions, for use in evaluation of possible power effects on the aluminum temperature measurements. Electrical powers at 90%, 100%, and 110% of the power required to result in the maximum aluminum temperature at fluid saturation temperature were used at each set of test conditions previously used in the ECS-2b series. The ECS-2b series was conducted in the same test rig as the previous ECS-2b series. Data and experimental description for the ECS-2b series is provided in a previous report. 18 refs., 25 figs., 3 tabs.

  12. Vibration damping and heat transfer using material phase changes

    DOE Patents [OSTI]

    Kloucek, Petr; Reynolds, Daniel R.

    2009-03-24

    A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.

  13. Physical and computational aspects of convective heat transfer

    SciTech Connect (OSTI)

    Cebeci, T.; Bradshaw, P.

    1984-01-01

    This volume is concerned with the transport of thermal energy in flows of practical significance. Conservation equations for mass, momentum, and energy are examined, and boundary layer equations are discussed, taking into account uncoupled flows, estimates of density fluctuations in coupled turbulent flows, equations for coupled turbulent flows, integral equations, boundary conditions, and thin-shear-layer equations. Uncoupled laminar boundary layers are considered along with uncoupled laminar duct flows, uncoupled turbulent boundary layers, uncoupled turbulent duct flows, free shear flows, buoyant flows, buoyant flows, coupled laminar boundary layers, coupled turbulent boundary layers, coupled duct flows, the finite-difference solution of boundary-layer equations, and applications of a computer program to heat-transfer problems. Attention is given to a review of numerical methods for boundary-layer equations, the solution of the energy equation for internal flows with fully developed velocity profile, and the mixing layer between two uniform streams at different temperatures. 155 references.

  14. Heat Transfer in GE Jet Engines | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transfer in GE Jet Engines Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on ...

  15. Heat transfer model of above and underground insulated piping...

    Office of Scientific and Technical Information (OSTI)

    the above calculations for thermal resistance, heat loss and core fluid temperature. ... Resource Relation: Conference: 1998 international joint power generation conference, ...

  16. Heat Transfer Fluids for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    a high boiling point. Viscosity and thermal capacity determine the amount of pumping energy required. A fluid with low viscosity and high specific heat is easier to pump, because...

  17. Literature survey of heat transfer enhancement techniques in refrigeration applications

    SciTech Connect (OSTI)

    Jensen, M.K.; Shome, B.

    1994-05-01

    A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

  18. Conjugate heat transfer analysis using the Calore and Fuego codes.

    SciTech Connect (OSTI)

    Francis, Nicholas Donald, Jr.

    2007-09-01

    Full coupling of the Calore and Fuego codes has been exercised in this report. This is done to allow solution of general conjugate heat transfer applications that require more than a fluid flow analysis with a very simple conduction region (solved using Fuego alone) or more than a complex conduction/radiation analysis using a simple Newton's law of cooling boundary condition (solved using Calore alone). Code coupling allows for solution of both complex fluid and solid regions, with or without thermal radiation, either participating or non-participating. A coupled physics model is developed to compare to data taken from a horizontal concentric cylinder arrangement using the Penlight heating apparatus located at the thermal test complex (TTC) at Sandia National Laboratories. The experimental set-up requires use of a conjugate heat transfer analysis including conduction, nonparticipating thermal radiation, and internal natural convection. The fluids domain in the model is complex and can be characterized by stagnant fluid regions, laminar circulation, a transition regime, and low-level turbulent regions, all in the same domain. Subsequently, the fluids region requires a refined mesh near the wall so that numerical resolution is achieved. Near the wall, buoyancy exhibits its strongest influence on turbulence (i.e., where turbulence conditions exist). Because low-Reynolds number effects are important in anisotropic natural convective flows of this type, the {ovr {nu}{sup 2}}-f turbulence model in Fuego is selected and compared to results of laminar flow only. Coupled code predictions are compared to temperature measurements made both in the solid regions and a fluid region. Turbulent and laminar flow predictions are nearly identical for both regions. Predicted temperatures in the solid regions compare well to data. The largest discrepancies occur at the bottom of the annulus. Predicted temperatures in the fluid region, for the most part, compare well to data. As before

  19. THERMOPHYSICAL PROPERTIES OF NANOPARTICLE-ENHANCED IONIC LIQUIDS HEAT TRANSFER FLUIDS

    SciTech Connect (OSTI)

    Fox, E.

    2013-04-15

    An experimental investigation was completed on nanoparticle enhanced ionic liquid heat transfer fluids as an alternative to conventional organic based heat transfer fluids (HTFs). These nanoparticle-based HTFs have the potential to deliver higher thermal conductivity than the base fluid without a significant increase in viscosity at elevated temperatures. The effect of nanoparticle morphology and chemistry on thermophysical properties was examined. Whisker shaped nanomaterials were found to have the largest thermal conductivity temperature dependence and were also less likely to agglomerate in the base fluid than spherical shaped nanomaterials.

  20. Investigation of Abnormal Heat Transfer and Flow in a VHTR Reactor Core

    SciTech Connect (OSTI)

    Kawaji, Masahiro; Valentin, Francisco I.; Artoun, Narbeh; Banerjee, Sanjoy; Sohal, Manohar; Schultz, Richard; McEligot, Donald M.

    2015-12-21

    The main objective of this project was to identify and characterize the conditions under which abnormal heat transfer phenomena would occur in a Very High Temperature Reactor (VHTR) with a prismatic core. High pressure/high temperature experiments have been conducted to obtain data that could be used for validation of VHTR design and safety analysis codes. The focus of these experiments was on the generation of benchmark data for design and off-design heat transfer for forced, mixed and natural circulation in a VHTR core. In particular, a flow laminarization phenomenon was intensely investigated since it could give rise to hot spots in the VHTR core.

  1. Using Solid Particles as Heat Transfer Fluid for use in Concentrating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) ...

  2. Finite Element Heat & Mass Transfer Code

    Energy Science and Technology Software Center (OSTI)

    1996-10-10

    FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; andmoredouble porosity and double porosity/double permeability capabilities.less

  3. Finite Element Heat & Mass Transfer Code

    Energy Science and Technology Software Center (OSTI)

    1996-10-10

    FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; andmore » double porosity and double porosity/double permeability capabilities.« less

  4. Heating tar sands formations to visbreaking temperatures

    DOE Patents [OSTI]

    Karanikas, John Michael; Colmenares, Tulio Rafael; Zhang, Etuan; Marino, Marian; Roes, Augustinus Wilhelmus Maria; Ryan, Robert Charles; Beer, Gary Lee; Dombrowski, Robert James; Jaiswal, Namit

    2009-12-22

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat may be controlled so that at least a majority of the section reaches an average temperature of between 200.degree. C. and 240.degree. C., which results in visbreaking of at least some hydrocarbons in the section. At least some visbroken hydrocarbon fluids may be produced from the formation.

  5. Stagnation region heat transfer augmentation at very high turbulence levels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kingery, Joseph E.; Ames, Forrest E.

    2016-08-01

    Current land-based gas turbines are growing in size producing higher approach flow Reynolds numbers at the leading edge of turbine nozzles. These vanes are subjected to high intensity large scale turbulence. This present paper reports on the research which significantly expands the parameter range for stagnation region heat transfer augmenta-tion due to high intensity turbulence. Heat transfer measurements were acquired over two constant heat flux test surfaces with large diameter leading edges (10.16 cm and 40.64 cm). The test surfaces were placed downstream from a new high intensity (17.4%) mock combustor and tested over an eight to one range inmore » approach flow Reynolds number for each test surface. Stagnation region heat transfer augmentation for the smaller (ReD = 15,625–125,000) and larger (ReD = 62,500–500,000) leading edge regions ranged from 45% to 81% and 80% to 136%, respectively. Furthermore, these data also include heat transfer distributions over the full test surface compared with the earlier data acquired at six additional inlet turbulence conditions. These surfaces exhibit continued but more moderate acceleration downstream from the stagnation regions and these data are expected to be useful in testing bypass transition predictive approaches. This database will be useful to gas turbine heat transfer design engineers. [DOI: 10.1115/1.4032677]« less

  6. Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels

    SciTech Connect (OSTI)

    Nix, Andrew Carl

    2015-03-23

    The focus of this program was to experimentally investigate advanced gas turbine cooling schemes and the effects of and factors that contribute to surface deposition from particulate matter found in coal syngas exhaust flows on turbine airfoil heat transfer and film cooling, as well as to characterize surface roughness and determine the effects of surface deposition on turbine components. The program was a comprehensive, multi-disciplinary collaborative effort between aero-thermal and materials faculty researchers and the Department of Energy, National Energy Technology Laboratory (NETL). The primary technical objectives of the program were to evaluate the effects of combustion of syngas fuels on heat transfer to turbine vanes and blades in land-based power generation gas turbine engines. The primary questions to be answered by this investigation were; What are the factors that contribute to particulate deposition on film cooled gas turbine components? An experimental program was performed in a high-temperature and pressure combustion rig at the DOE NETL; What is the effect of coal syngas combustion and surface deposition on turbine airfoil film cooling? Deposition of particulate matter from the combustion gases can block film cooling holes, decreasing the flow of the film coolant and the film cooling effectiveness; How does surface deposition from coal syngas combustion affect turbine surface roughness? Increased surface roughness can increase aerodynamic losses and result in decreased turbine hot section efficiency, increasing engine fuel consumption to maintain desired power output. Convective heat transfer is also greatly affected by the surface roughness of the airfoil surface; Is there any significant effect of surface deposition or erosion on integrity of turbine airfoil thermal barrier coatings (TBC) and do surface deposits react with the TBC in any way to decrease its thermal insulating capability? Spallation and erosion of TBC is a persistent problem in

  7. Mixed convection heat transfer to and from a horizontal cylinder in cross-flow with heating from below.

    SciTech Connect (OSTI)

    Greif, Ralph (University of California, Berkeley, CA); Evans, Gregory Herbert; Kearney, Sean Patrick (Sandia National Laboratories, Albuquerque, NM); Laskowski, Gregory Michael

    2006-02-01

    Heat transfer to and from a circular cylinder in a cross-flow of water at low Reynolds number was studied both experimentally and numerically. The experiments were carried out in a high aspect ratio water channel. The test section inflow temperature and velocity, channel lower surface temperature and cylinder surface temperature were controlled to yield either laminar or turbulent flow for a desired Richardson number. When the lower surface was unheated, the temperatures of the lower surface and water upstream of the cylinder were maintained approximately equal and the flow was laminar. When the lower surface was heated, turbulence intensities as high as 20% were measured several cylinder diameters upstream of the cylinder due to turbulent thermal plumes produced by heating the lower surface. Variable property, two-dimensional simulations were undertaken using a variant of the u{sup 2}-f turbulence model with buoyancy production of turbulence accounted for by a simple gradient diffusion model. Predicted and measured heat flux distributions around the cylinder are compared for values of the Richardson number, Gr{sub d}/Re{sub d}{sup 2} from 0.3 to 9.3. For laminar flow, the predicted and measured heat flux results agreed to within the experimental uncertainty. When the lower surface was heated, and the flow was turbulent, there was qualitative agreement between predicted and measured heat flux distributions around the cylinder. However the predicted spatially averaged Nusselt number was from 37% to 53% larger than the measured spatially averaged Nusselt number. Additionally, spatially averaged Nusselt numbers are compared to correlations in the literature for mixed convection heat transfer to/from cylinders in cross-flow. The results presented here are larger than the correlation values. This is believed to be due to the effects of buoyancy-induced turbulence resulting from heating the lower surface and the proximity of the cylinder to that surface.

  8. Method of measuring heat influx of a cryogenic transfer system. [Patent application

    DOE Patents [OSTI]

    Niemann, R.C.; Zelipsky, S.A.; Rezmer, R.R.; Smelser, P.

    1980-10-29

    A method is provided for measuring the heat influx of a cryogenic transfer system. A gaseous phase of the cryogen used during normal operation of the system is passed through the system. The gaseous cryogen at the inlet to the system is tempered to duplicate the normal operating temperature of the system inlet. The temperature and mass flow rate of the gaseous cryogen is measured at the outlet of the system, and the heat capacity of the cryogen is determined. The heat influx of the system is then determined from known thermodynamic relationships.

  9. Effect of Channel Configurations for Tritium Transfer in Printed Circuit Heat Exchangers

    SciTech Connect (OSTI)

    Chang Oh; Eung Kim; Robert Shrake; Mike Patterson

    2009-05-01

    The Next Generation Nuclear Plant (NGNP), a very High temperature Gas-Cooled Reactor (VHTR) concept, will provide the first demonstration of a closed-loop Brayton cycle at a commercial scale of a few hundred megawatts electric and hydrogen production. The power conversion system (PCS) for the NGNP will take advantage of the significantly higher reactor outlet temperatures of the VHTR to provide higher efficiencies than can be achieved in the current generation of light water reactors. Besides demonstrating a system design that can be used directly for subsequent commercial deployment, the NGNP will demonstrate key technology elements that can be used in subsequent advanced power conversion systems for other Generation IV reactors. In anticipation of the design, development and procurement of an advanced power conversion system for the NGNP, the system integration of the NGNP and hydrogen plant was initiated to identify the important design and technology options that must be considered in evaluating the performance of the proposed NGNP. In the VHTR system, an intermediate heat exchanger (IHX), which transfers heat from the reactor core to the electricity or hydrogen production system is one key component, and its effectiveness is directly related to the system overall efficiency. In the VHTRs, the gas fluids used for coolant generally have poor heat transfer capability, so it requires very large surface area for a given condition. For this reason, a compact heat exchanger (CHE), which is widely used in industry especially for gasto-gas or gas-to-liquid heat exchange is considered as a potential candidate for an IHX replacing the classical shell and tube type heat exchanger. A compact heat exchanger is arbitrary referred to be a heat exchanger having a surface area density greater than 700 m2/m3. The compactness is usually achieved by fins and micro-channels, and leads to the enormous heat transfer enhancement and size reduction. The surface area density is the

  10. Numerical study of oscillatory flow and heat transfer in a loaded thermoacoustic stack

    SciTech Connect (OSTI)

    Worlikar, A.S.; Knio, O.M.

    1999-01-01

    A thermoacoustic refrigerator may be idealized as consisting of a straight resonance tube housing a stack of parallel plates and heat exchangers, and an acoustic source. Among the advantages of thermoacoustic refrigerators are the simplicity of their design and the fact that they naturally avoid the need for harmful refrigerants such as chlorofluorocarbons (CFCs). The operation of these devices is based on exploiting the well-known thermoacoustic effect to induce a temperature difference across the stack and to transport heat from one end of the plate to the other. Heat exchangers are then used to transfer energy from the thermoacoustic refrigerator to hot and cold reservoirs. A two-dimensional, low-Mach-number computational model is used to analyze the unsteady flow and temperature fields in the neighborhood of an idealized stack/heat exchanger configuration. The model relies on a vorticity-based formulation of the mass, momentum, and energy equations in the low-Mach-number, short-stack limit. The stack and heat exchangers are assumed to consist of flat plates of equal thickness. The heat exchanger plates are assumed isothermal and in perfect thermal contact with the stack plates. The simulations are used to study the effect of heat exchanger size and operating conditions on the heat transfer and stack performance. Computed results show that optimum stack performance is achieved when the length of the heat exchanger is nearly equal to the peak-to-peak particle displacement. Numerical estimates of the mean enthalpy flux within the channel are in good agreement with the predictions of linear theory. However, the results reveal that a portion of the heat exchangers is ineffective due to reverse heat transfer. Details of the energy flux density around the heat exchangers are visualized, and implications regarding heat exchanger design and model extension are discussed.

  11. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L; Harvey, Karen; Ferrada, Juan J

    2011-02-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  12. Heat transfer and flow of an impinged plate with an elliptic jet

    SciTech Connect (OSTI)

    Matsuda, Shoichi; Yaga, Minoru; Oyakawa, Kenyu

    1999-07-01

    The time and spatial temperature profiles on a jet impingement plate were measured using an infrared radiometer with a two-dimensional array of Indium-Antimony (In Sb) sensors for various nozzle exit-to-plate spaces for when the jet being issued from an elliptic nozzle impinges on the target plate. The isotherms of infrared images as well as heat transfer coefficients were obtained by measurement data. The heat transfer coefficients were also measured by using thermocouples. In order to compare the isotherms and heat transfer contours with flow patterns, the flows on the plate were visualized by the oil-film method, and the velocity and the turbulence intensity were measured by a hot wire anemometer. The phenomena of axes switching which are caused by the differences in self-induced velocity in non-circular vortices and have been the typical behaviors of free jets were observed on the impingement plate. The distribution of the isotherm and iso-heat transfer coefficients for the center portion were shorted in the major direction with an increase of the space between nozzle exit and impingement plate and elongated in the minor direction. The isotherms from the infrared image corresponded closely to the distribution of iso-heat transfer coefficients by using thermocouples. The shapes of flow patterns also corresponded to both the shape of the isotherms and the iso-heat transfer contours. In the twice length of nozzle diameter downstream from nozzle exit, the oil film pattern was elongated in the major axis direction for the center portion, which corresponded to both the lower temperature and higher heat transfer coefficient.

  13. Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels

    SciTech Connect (OSTI)

    Ames, Forrest; Kingery, Joseph E.

    2015-06-17

    A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edge test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs

  14. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOE Patents [OSTI]

    Phillips, B.A.; Zawacki, T.S.

    1998-07-21

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration. 5 figs.

  15. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOE Patents [OSTI]

    Phillips, Benjamin A.; Zawacki, Thomas S.

    1998-07-21

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration.

  16. Broadwater Athletic Club & Hot Springs Space Heating Low Temperature...

    Open Energy Info (EERE)

    Broadwater Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Athletic Club & Hot Springs Space Heating Low...

  17. Cedarville Elementary & High School Space Heating Low Temperature...

    Open Energy Info (EERE)

    Cedarville Elementary & High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cedarville Elementary & High School Space Heating Low...

  18. Salida Hot Springs (Poncha Spring) Space Heating Low Temperature...

    Open Energy Info (EERE)

    Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs (Poncha Spring) Space Heating Low...

  19. Klamath Apartment Buildings (13) Space Heating Low Temperature...

    Open Energy Info (EERE)

    (13) Space Heating Low Temperature Geothermal Facility Facility Klamath Apartment Buildings (13) Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon...

  20. Convective heat transfer inside passive solar buildings

    SciTech Connect (OSTI)

    Jones, R.W.; Balcomb, J.D.; Yamaguchi, K.

    1983-11-01

    Natural convection between spaces in a building which play a major role in energy transfer are discussed. Two situations are investigated: Convection through a single doorway into a remote room, and a convective loop in a two story house with a south sunspace where a north stairway serves as the return path. A doorway sizing equation is given for the single door case. Data from airflow monitoring in one two-story house and summary data for five others are presented. The nature of the airflow and design guidelines are presented.

  1. Convective heat transfer inside passive solar buildings

    SciTech Connect (OSTI)

    Jones, R.W.; Balcomb, J.D.; Yamaguchi, K.

    1983-01-01

    Natural convection between spaces in a building can play a major role in energy transfer. Two situations are investigated: convection through a single doorway into a remote room, and a convective loop in a two-story house with a south sunspace where a north stairway serves as the return path. A doorway-sizing equation is given for the single-door case. Detailed data are given from the monitoring of airflow in one two-story house and summary data are given for five others. Observations on the nature of the airflow and design guidelines are presented.

  2. Experimental research on heat transfer of natural convection in vertical rectangular channels with large aspect ratio

    SciTech Connect (OSTI)

    Lu, Qing; Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Ye, Zhonghao

    2010-01-15

    This work presents the experimental research on the steady laminar natural convection heat transfer of air in three vertical thin rectangular channels with different gap clearance. The much higher ratio of width to gap clearance (60-24) and the ratio of length to gap clearance (800-320) make the rectangular channels similar with the coolant flow passage in plate type fuel reactors. The vertical rectangular channels were composed of two stainless steal plates and were heated by electrical heating rods. The wall temperatures were detected with the K-type thermocouples which were inserted into the blind holes drilled in the steal plates. Also the air temperatures at the inlet and outlet of the channel were detected. The wall heat fluxes added to the air flow were calculated by the Fourier heat conduction law. The heat transfer characteristics were analyzed, and the average Nusselt numbers in all the three channels could be well correlated with the Rayleigh number or the modified Rayleigh number in a uniform correlation. Furthermore, the maximum wall temperatures were investigated, which is a key parameter for the fuel's integrity during some accidents. It was found that even the wall heat flux was up to 1500 W/m{sup 2}, the maximum wall temperature was lower than 350 C. All this work is valuable for the plate type reactor's design and safety analysis. (author)

  3. Mixed convection heat transfer from thermal sources mounted on horizontal and vertical surfaces

    SciTech Connect (OSTI)

    Tewari, S.S.; Jaluria, Y. )

    1990-11-01

    An experimental study is carried out on the fundamental aspects of the conjugate, mixed convective heat transfer from two finite width heat sources, which are of negligible thickness, have a uniform heat flux input at the surface, and are located on a flat plate in a horizontal or the vertical orientation. The heat sources are wide in the transverse direction and, therefore, a two-dimensional flow circumstance is simulated. The mixed convection parameter is varied over a fairly wide range to include the buoyancy-dominated and the mixed convection regimes. The circumstances of pure natural convection are also investigated. The convective mechanisms have been studied in detail by measuring the surface temperatures and determining the heat transfer coefficients for the two heated strips, which represent isolated thermal sources. Experimental results indicate that a stronger upstream heat source causes an increase in the surface temperature of a relatively weaker heat source, located downstream, by reducing it convective heat transfer coefficient. The influence of the upstream source is found to be strongly dependent on the surface orientation, especially in the pure natural convection and the buoyancy dominated regimes. The two heat sources are found to be essentially independent on the surface orientation, especially in the pure natural convection and the buoyancy dominated regimes. The two heat sources are found to be essentially independent of each other, in terms of thermal effects, at a separation distance of more than about three strip widths for both the orientations. The results obtained are relevant to many engineering applications, such as the cooling of electronic systems, positioning of heating elements in furnaces, and safety considerations in enclosure fires.

  4. Nuclear reactor fuel element having improved heat transfer

    DOE Patents [OSTI]

    Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.

    1982-03-03

    A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.

  5. Low heat transfer, high strength window materials

    DOE Patents [OSTI]

    Berlad, Abraham L.; Salzano, Francis J.; Batey, John E.

    1978-01-01

    A multi-pane window with improved insulating qualities; comprising a plurality of transparent or translucent panes held in an essentially parallel, spaced-apart relationship by a frame. Between at least one pair of panes is a convection defeating means comprising an array of parallel slats or cells so designed as to prevent convection currents from developing in the space between the two panes. The convection defeating structures may have reflective surfaces so as to improve the collection and transmittance of the incident radiant energy. These same means may be used to control (increase or decrease) the transmittance of solar energy as well as to decouple the radiative transfer between the interior surfaces of the transparent panes.

  6. EXPERIMENTAL INVESTIGATION OF NATURAL CONVECTION HEAT TRANSFER OF IONIC LIQUID IN A RECTANGULAR ENCLOSURE HEATED FROM BELOW

    SciTech Connect (OSTI)

    Fox, E.; Visser, A.; Bridges, N.

    2011-07-18

    This paper presents an experimental study of natural convection heat transfer for an Ionic Liquid. The experiments were performed for 1-butyl-2, 3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide, ([C{sub 4}mmim][NTf{sub 2}]) at a Raleigh number range of 1.26 x 10{sup 7} to 8.3 x 10{sup 7}. In addition to determining the convective heat transfer coefficients, this study also included experimental determination of thermophysical properties of [C{sub 4}mmim][NTf{sub 2}] such as, density, viscosity, heat capacity, and thermal conductivity. The results show that the density of [C{sub 4}mmim][NTf{sub 2}] varies from 1.437-1.396 g/cm{sup 3} within the temperature range of 10-50 C, the thermal conductivity varies from 0.105-0.116 W/m.K between a temperature of 10 to 60 C, the heat capacity varies from 1.015 J/g.K - 1.760 J/g.K within temperature range of 25-340 C and the viscosity varies from 18cp-243cp within temperature range 10-75 C. The results for density, thermal conductivity, heat capacity, and viscosity were in close agreement with the values in the literature. Measured dimensionless Nusselt number was observed to be higher for the ionic liquid than that of DI water. This is expected as Nusselt number is the ratio of heat transfer by convection to conduction and the ionic liquid has lower thermal conductivity (approximately 18%) than DI water.

  7. Radiative heat transfer in 2D Dirac materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.

    2015-05-12

    We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

  8. Combined heat and mass transfer device for improving separation process

    DOE Patents [OSTI]

    Tran, T.N.

    1999-08-24

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.

  9. Combined heat and mass transfer device for improving separation process

    DOE Patents [OSTI]

    Tran, Thanh Nhon

    1999-01-01

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.

  10. Heat Transfer and Fluid Transport of Supercritical CO2 in Enhanced Geothermal System with Local Thermal Non-equilibrium Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Le; Luo, Feng; Xu, Ruina; Jiang, Peixue; Liu, Huihai

    2014-12-31

    The heat transfer and fluid transport of supercritical CO2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity of volumetricmore » heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.« less

  11. Osmotic Heat Engine for Energy Production from Low Temperature Geothemal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources | Department of Energy Osmotic Heat Engine for Energy Production from Low Temperature Geothemal Resources Osmotic Heat Engine for Energy Production from Low Temperature Geothemal Resources Osmotic Heat Engine for Energy Production from Low Temperature Geothemal Resources presentation at the April 2013 peer review meeting held in Denver, Colorado. osmotic_heat_engine_low_temp_peer2013.pdf (706.39 KB) More Documents & Publications Osmotic Heat Engine for Energy Production from

  12. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect (OSTI)

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  13. Convective heat transfer in the laminar-turbulent transition region with molten salt in a circular tube

    SciTech Connect (OSTI)

    Yu-ting, Wu; Bin, Liu; Chong-fang, Ma; Hang, Guo [Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing municipality, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China)

    2009-10-15

    In order to understand the heat transfer characteristics of molten salt and testify the validity of the well-known empirical convective heat transfer correlations, experimental study on transition convective heat transfer with molten salt in a circular tube was conducted. Molten salt circulations were realized and operated in a specially designed system over 1000 h. The average forced convective heat transfer coefficients of molten salt were determined by least-squares method based on the measured data of flow rates and temperatures. Finally, a heat transfer correlation of transition flow with molten salt in a circular tube was obtained and good agreement was observed between the experimental data of molten salt and the well-known correlations presented by Hausen and Gnielinski, respectively. (author)

  14. On the multidimensional modeling of fluid flow and heat transfer in SCWRS

    SciTech Connect (OSTI)

    Gallaway, T.; Antal, S. P.; Podowski, M. Z.

    2012-07-01

    The Supercritical Water Reactor (SCWR) has been proposed as one of the six Generation IV reactor design concepts under consideration. The key feature of the SCWR is that water at supercritical pressures is used as the reactor coolant. Although at such pressures, fluids do not undergo phase change as they are heated, the fluid properties experience dramatic variations throughout what is known as the pseudo-critical region. Highly nonuniform temperature and fluid property distributions are expected in the reactor core, which will have a significant impact on turbulence and heat transfer in future SCWRs. The goal of the present work has been to understand and predict the effects of these fluid property variations on turbulence and heat transfer throughout the reactor core. Spline-type property models have been formulated for water at supercritical pressures in order to include the dependence of properties on both temperature and pressure into a numerical solver. New models of turbulence and heat transfer for variable-property fluids have been developed and implemented into the NPHASE-CMFD software. The results for these models have been compared to experimental data from the Korea Atomic Energy Research Inst. (KAERI) for various heat transfer regimes. It is found that the Low-Reynolds {kappa}-{epsilon} model performs best at predicting the experimental data. (authors)

  15. Passive heat-transfer means for nuclear reactors. [LMFBR

    DOE Patents [OSTI]

    Burelbach, J.P.

    1982-06-10

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  16. A comparison of the heat transfer capabilities of two manufacturing methods for high heat flux water-cooled devices

    SciTech Connect (OSTI)

    McKoon, R.H.

    1986-10-01

    An experimental program was undertaken to compare the heat transfer characteristics of water-cooled copper devices manufactured via conventional drilled passage construction and via a technique whereby molten copper is cast over a network of preformed cooling tubes. Two similar test blocks were constructed; one using the drilled passage technique, the other via casting copper over Monel pipe. Each test block was mounted in a vacuum system and heated uniformly on the top surface using a swept electron beam. From the measured absorbed powers and resultant temperatures, an overall heat transfer coefficient was calculated. The maximum heat transfer coefficient calculated for the case of the drilled passage test block was 2534 Btu/hr/ft/sup 2///sup 0/F. This corresponded to an absorbed power density of 320 w/cm/sup 2/ and resulted in a maximum recorded copper temperature of 346/sup 0/C. Corresponding figures for the cast test block were 363 Btu/hr/ft/sup 2///sup 0/F, 91 w/cm/sup 2/, and 453/sup 0/C.

  17. Special heat transfer monitor (HTM) for the Trane Company OTEC heat exchanger

    SciTech Connect (OSTI)

    Kuzay, T.M.; Panchal, C.B.; Gavin, A.P.

    1981-02-01

    A Heat Transfer Monitor (HTM) is a sensitive device which quantifies development of biofouling in the OTEC heat exchanger surfaces in terms of degrading heat transfer coefficient as biofouling progresses. The Carnegie-Mellon University (CMU) type HTM has been successfully utilized to date for plain circular OTEC heat exchanger tubes. With the development of compact heat exchangers for OTEC with non-circular and/or complex tube geometries, a device independent HTM (Universal Monitor) concept is being sought. For the meantime, however, novel methods have been developed to extend the principles of the CMU type HTM to noncircular tube geometries. The theory, formulation, analytical solutions and laboratory test results are presented for the novel use of the CMU HTM concept with such a special tube for the Trane Company heat exchanger for OTEC.

  18. Enhanced heat transfer surface for cast-in-bump-covered cooling surfaces and methods of enhancing heat transfer

    DOE Patents [OSTI]

    Chiu, Rong-Shi Paul; Hasz, Wayne Charles; Johnson, Robert Alan; Lee, Ching-Pang; Abuaf, Nesim

    2002-01-01

    An annular turbine shroud separates a hot gas path from a cooling plenum containing a cooling medium. Bumps are cast in the surface on the cooling side of the shroud. A surface coating overlies the cooling side surface of the shroud, including the bumps, and contains cooling enhancement material. The surface area ratio of the cooling side of the shroud with the bumps and coating is in excess of a surface area ratio of the cooling side surface with bumps without the coating to afford increased heat transfer across the element relative to the heat transfer across the element without the coating.

  19. Convective heat transfer correlations for fenestration glazing cavities: A review

    SciTech Connect (OSTI)

    Zhao, Y.; Curcija, D.; Goss, W.P.

    1999-07-01

    Convective heat transfer in insulated glazing unit (IGU) cavities is a major component of the overall heat transfer in fenestration systems. Accurately quantifying the heat-transfer coefficient within the cavity is of great significance in calculating the center-of-glass U factor, the edge-of-glass U factor, and therefore the overall U factor. Over the past 40 years, along with the rapid development of experimental techniques and numerical methods as well as the powerful computer systems, the heat-transfer correlations have been updated either from experimental data or from numerical data from time to time. The literature reviewed here covers correlations based on simplified analytical studies, on the experimental data, and on the numerical results. In addition, most of the correlation equations cover the typical design range of fenestration glazing cavities, e.g., Ra < 20,000. Inconsistencies and discrepancies existing between different experimental observations, and between derived numerical/analytical correlations and available experimental data, are discussed.

  20. Integration of Heat Transfer, Stress, and Particle Trajectory Simulation

    SciTech Connect (OSTI)

    Thuc Bui; Michael Read; Lawrence ives

    2012-05-17

    Calabazas Creek Research, Inc. developed and currently markets Beam Optics Analyzer (BOA) in the United States and abroad. BOA is a 3D, charged particle optics code that solves the electric and magnetic fields with and without the presence of particles. It includes automatic and adaptive meshing to resolve spatial scales ranging from a few millimeters to meters. It is fully integrated with CAD packages, such as SolidWorks, allowing seamless geometry updates. The code includes iterative procedures for optimization, including a fully functional, graphical user interface. Recently, time dependent, particle in cell capability was added, pushing particles synchronically under quasistatic electromagnetic fields to obtain particle bunching under RF conditions. A heat transfer solver was added during this Phase I program. Completed tasks include: (1) Added a 3D finite element heat transfer solver with adaptivity; (2) Determined the accuracy of the linear heat transfer field solver to provide the basis for development of higher order solvers in Phase II; (3) Provided more accurate and smoother power density fields; and (4) Defined the geometry using the same CAD model, while maintaining different meshes, and interfacing the power density field between the particle simulator and heat transfer solvers. These objectives were achieved using modern programming techniques and algorithms. All programming was in C++ and parallelization in OpenMP, utilizing state-of-the-art multi-core technology. Both x86 and x64 versions are supported. The GUI design and implementation used Microsoft Foundation Class.

  1. Experimental investigation on impingement heat transfer of gas-solid suspension flow

    SciTech Connect (OSTI)

    Yokomine, Takenhiko; Shimizu, Akihiko

    1999-07-01

    This paper aims to demonstrate experimentally the heat transfer performance of dense gas-solid suspension impinging jet for diverter cooling of the fusion power reactor. Prior to the experimental study, a tentative goal of 20 kW/m{sup 2}K was set as the heat transfer coefficient based on the expected temperature level of both coolant and diverter plate materials. Figure A-1 summarizes the results of experiments, where H/D is non-dimensional space between nozzle exit and impingement plate. The ranges of examined nozzle Reynolds number Re{sub N} and thermal loading ratio {Gamma}{sub th} were 5.5 x 10{sup 4} {<=} Re{sub N} {<=} 2.4 x 10{sup 5} and 0 {<=} {Gamma}{sub th} {<=} 8.55, respectively. When the glassy-carbon (G-C) particles with 26{micro}m in diameter were used, the maximum heat transfer coefficient could not reach the target value because the solid flow rate was restricted by the crucial erosion damage of test plate and a strong vibration observed in the test line. On the other hand, in the case that the fine graphite particles (10{micro}m in diameter) were used, the maximum heat transfer coefficient of 20 kW/m{sup 2}K was obtained at relatively dilute condition of solid loading ratio, which is considered to be due to the additive production of turbulence by particles' wake. Furthermore, the following consideration can be obtained. (1) Changing the particle from hard glassy carbon to soft and fine graphite is effective not only for anti-erosion but also for heat transfer enhancement by increasing heat capacity. (2) Turbulence augmentation by particles is also important for heat transfer enhancement in addition to the increased heat capacity. However, increasing the solid loading is likely to lead to the saturation of heat transfer enhancement effect, on the contrary, to the attenuation of turbulence. (3) If soft and fine particle, like graphite of 10{micro}m diameter employed in present study, is used as suspended particle in coolant for anti-erosion, the

  2. Analytical and numerical solution of one- and two-dimensional steady heat transfer in a coldplate

    SciTech Connect (OSTI)

    Jones, G.F.; Bennett, G.A.; Bultman, D.H.

    1987-01-01

    We develop analytical models for steady-state, one- and two-dimensional heat transfer in a single-material, flat-plate coldplate. Discrete heat sources are mounted on one side of the plate and heat transfer to a flowing fluid occurs on the other. The models are validated numerically using finite differences. We propose a simple procedure for estimating maximum coldplate temperature at the location of each heat source which includes thermal interaction among the sources. Results from one model are compared with data obtained for a composite coldplate operated in the laboratory. We demonstrate the utility of the models as diagnostic tools to be used for predicting the existence and extent of void volumes and delaminations in the composite material that can occur with coldplates of this type. Based on our findings, recommendations for effective coldplate design are given.

  3. Improving computer simulations of heat transfer for projecting fenestration products: Using radiation view-factor models

    SciTech Connect (OSTI)

    Griffith, B.; Tuerler, D.; Arasteh, D.K.; Curcija, D.

    1998-10-01

    The window well formed by the concave surface on the warm side of skylights and garden windows can cause surface heat-flow rates to be different for these projecting types of fenestration products than for normal planar windows. Current methods of simulating fenestration thermal conductance (U-factor) use constant boundary condition values for overall surface heat transfer. Simulations that account for local variations in surface heat transfer rates (radiation and convection) may be more accurate for rating and labeling window products whose surfaces project outside a building envelope. This paper, which presents simulation and experimental results for one projecting geometry, is the first step in documenting the importance of these local effects. A generic specimen, called the foam garden window, was used in simulations and experiments to investigate heat transfer of projecting surfaces. Experiments focused on a vertical cross section (measurement plane) located at the middle of the window well on the warm side of the specimen. The specimen was placed between laboratory thermal chambers that were operated at American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) winter heating design conditions. Infrared thermography was used to map surface temperatures. Air temperature and velocity were mapped throughout the measurement plane using a mechanical traversing system. Finite-element computer simulations that directly modeled element-to-element radiation were better able to match experimental data than simulations that used fixed coefficients for total surface heat transfer. Air conditions observed in the window well suggest that localized convective effects were the reason for the difference between actual and modeled surface temperatures. U-value simulation results were 5% to 10% lower when radiation was modeled directly.

  4. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Mathur, Anoop

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during

  5. RELAP5-3D Modeling of Heat Transfer Components (Intermediate Heat Exchanger and Helical-Coil Steam Generator) for NGNP Application

    SciTech Connect (OSTI)

    N. A. Anderson; P. Sabharwall

    2014-01-01

    The Next Generation Nuclear Plant project is aimed at the research and development of a helium-cooled high-temperature gas reactor that could generate both electricity and process heat for the production of hydrogen. The heat from the high-temperature primary loop must be transferred via an intermediate heat exchanger to a secondary loop. Using RELAP5-3D, a model was developed for two of the heat exchanger options a printed-circuit heat exchanger and a helical-coil steam generator. The RELAP5-3D models were used to simulate an exponential decrease in pressure over a 20 second period. The results of this loss of coolant analysis indicate that heat is initially transferred from the primary loop to the secondary loop, but after the decrease in pressure in the primary loop the heat is transferred from the secondary loop to the primary loop. A high-temperature gas reactor model should be developed and connected to the heat transfer component to simulate other transients.

  6. Osmotic Heat Engine for Energy Production from Low Temperature Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources | Department of Energy Osmotic Heat Engine for Energy Production from Low Temperature Geothermal Resources Osmotic Heat Engine for Energy Production from Low Temperature Geothermal Resources Project objective: to demonstrate the economic viability of an Osmotic Heat Engine for electricity production from extremely low-grade geothermal resources. low_mcginnis_osmotic_heat_engine.pdf (327.23 KB) More Documents & Publications Osmotic Heat Engine for Energy Production from Low

  7. Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C—hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

  8. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOE Patents [OSTI]

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02

    A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  9. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOE Patents [OSTI]

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1988-01-01

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  10. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOE Patents [OSTI]

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1988-01-05

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  11. Numerical study on coupled fluid flow and heat transfer process in parabolic trough solar collector tube

    SciTech Connect (OSTI)

    Tao, Y.B.; He, Y.L.

    2010-10-15

    A unified two-dimensional numerical model was developed for the coupled heat transfer process in parabolic solar collector tube, which includes nature convection, forced convection, heat conduction and fluid-solid conjugate problem. The effects of Rayleigh number (Ra), tube diameter ratio and thermal conductivity of the tube wall on the heat transfer and fluid flow performance were numerically analyzed. The distributions of flow field, temperature field, local Nu and local temperature gradient were examined. The results show that when Ra is larger than 10{sup 5}, the effects of nature convection must be taken into account. With the increase of tube diameter ratio, the Nusselt number in inner tube (Nu{sub 1}) increases and the Nusselt number in annuli space (Nu{sub 2}) decreases. With the increase of tube wall thermal conductivity, Nu{sub 1} decreases and Nu{sub 2} increases. When thermal conductivity is larger than 200 W/(m K), it would have little effects on Nu and average temperatures. Due to the effect of the nature convection, along the circumferential direction (from top to down), the temperature in the cross-section decreases and the temperature gradient on inner tube surface increases at first. Then, the temperature and temperature gradients would present a converse variation at {theta} near {pi}. The local Nu on inner tube outer surface increases along circumferential direction until it reaches a maximum value then it decreases again. (author)

  12. Experimental investigation of piston heat transfer under conventional diesel and reactivity-controlled compression ignition combustion regimes

    SciTech Connect (OSTI)

    Splitter, Derek A; Hendricks, Terry Lee; Ghandhi, Jaal B

    2014-01-01

    The piston of a heavy-duty single-cylinder research engine was instrumented with 11 fast-response surface thermocouples, and a commercial wireless telemetry system was used to transmit the signals from the moving piston. The raw thermocouple data were processed using an inverse heat conduction method that included Tikhonov regularization to recover transient heat flux. By applying symmetry, the data were compiled to provide time-resolved spatial maps of the piston heat flux and surface temperature. A detailed comparison was made between conventional diesel combustion and reactivity-controlled compression ignition combustion operations at matched conditions of load, speed, boost pressure, and combustion phasing. The integrated piston heat transfer was found to be 24% lower, and the mean surface temperature was 25 C lower for reactivity-controlled compression ignition operation as compared to conventional diesel combustion, in spite of the higher peak heat release rate. Lower integrated piston heat transfer for reactivity-controlled compression ignition was found over all the operating conditions tested. The results showed that increasing speed decreased the integrated heat transfer for conventional diesel combustion and reactivity-controlled compression ignition. The effect of the start of injection timing was found to strongly influence conventional diesel combustion heat flux, but had a negligible effect on reactivity-controlled compression ignition heat flux, even in the limit of near top dead center high-reactivity fuel injection timings. These results suggest that the role of the high-reactivity fuel injection does not significantly affect the thermal environment even though it is important for controlling the ignition timing and heat release rate shape. The integrated heat transfer and the dynamic surface heat flux were found to be insensitive to changes in boost pressure for both conventional diesel combustion and reactivity-controlled compression ignition

  13. SCDAP/RELAP5 modeling of heat transfer and flow losses in lower head porous debris. Revision 1

    SciTech Connect (OSTI)

    Siefken, L.J.; Coryell, E.W.; Paik, S.; Kuo, H.

    1999-05-01

    Designs are described for implementing models for calculating the heat transfer and flow losses in porous debris in the lower head of a reactor vessel. The COUPLE model in SCDAP/RELAP5 represents both the porous and nonporous debris that results from core material slumping into the lower head. Currently, the COUPLE model has the capability to model convective and radiative heat transfer from the surfaces of nonporous debris in a detailed manner and to model only in a simplistic manner the heat transfer from porous debris. In order to advance beyond the simplistic modeling for porous debris, designs are developed for detailed calculations of heat transfer and flow losses in porous debris. Correlations are identified for convective heat transfer in porous debris for the following modes of heat transfer; (1) forced convection to liquid, (2) forced convection to gas, (3) nucleate boiling, (4) transition boiling, and (5) film boiling. Interphase heat transfer is modeled in an approximate ma nner. Designs are described for models to calculate the flow losses and interphase drag of fluid flowing through the interstices of the porous debris, and to apply these variables in the momentum equations in the RELAP5 part of the code. Since the models for heat transfer and flow losses in porous debris in the lower head are designed for general application, a design is also described for implementation of these models to the analysis of porous debris in the core region. A test matrix is proposed for assessing the capability of the implemented models to calculate the heat transfer and flow losses in porous debris. The implementation of the models described in this report is expected to improve the COUPLE code calculation of the temperature distribution in porous debris and in the lower head that supports the debris. The implementation of these models is also expected to improve the calculation of the temperature and flow distribution in porous debris in the core region.

  14. MODELING HEAT TRANSFER IN SPENT FUEL TRANSFER CASK NEUTRON SHIELDS A CHALLENGING PROBLEM IN NATURAL CONVECTION

    SciTech Connect (OSTI)

    Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.

    2010-07-18

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not

  15. High temperature absorption heat pump for industrial usage

    SciTech Connect (OSTI)

    Bugarel, R.; Morillon, R.

    1982-01-01

    A theoretical and experimental study has demonstrated that an absorption heat pump with a water-lithium bromide thermodynamic couple has a practical coefficient of performance of 1.4-1.6 when providing a 280/sup 0/F heat source. The ability to serve as a high-temperature heat source makes this heat pump suitable for certain industrial processes such as drying.

  16. Numerical simulation of supercritical heat transfer under severe axial density gradient in a narrow vertical tube

    SciTech Connect (OSTI)

    Bae, Y. Y.; Hong, S. D.; Kim, Y. W.

    2012-07-01

    A number of computational works have been performed so far for the simulation of heat transfer in a supercritical fluid. The simulations, however, faced a lot of difficulties when heat transfer deteriorates due either to buoyancy or by acceleration. When the bulk temperature approaches the pseudo-critical temperature the fluid experiences a severe axial density gradient on top of a severe radial one. Earlier numerical calculations showed, without exception, unrealistic over-predictions, as soon as the bulk temperature exceeded the pseudo-critical temperature. The over-predictions might have been resulted from an inapplicability of widely-used turbulence models. One of the major causes for the difficulties may probably be an assumption of a constant turbulent Prandtl number. Recent research, both numerical and experimental, indicates that the turbulent Prandtl number is never a constant when the gradient of physical properties is significant. This paper describes the applicability of a variable turbulent Prandtl number to the numerical simulation of heat transfer in supercritical fluids flowing in narrow vertical tubes. (authors)

  17. Experimental study of mixed convection heat transfer in vertical helically coiled tube heat exchangers

    SciTech Connect (OSTI)

    Ghorbani, N. [School of Mechanical Engineering, University of Leeds, Leeds, England (United Kingdom); Taherian, H. [Department of Engineering Technology and Industrial Distribution, Texas A and M University, College Station, TX (United States); Gorji, M. [Department of Mechanical Engineering, Babol Noushirvani University of Technology, Babol (Iran); Mirgolbabaei, H. [Department of Mechanical Engineering, Islamic Azad University, Jouybar branch, Jouybar (Iran)

    2010-10-15

    In this study the mixed convection heat transfer in a coil-in-shell heat exchanger for various Reynolds numbers, various tube-to-coil diameter ratios and different dimensionless coil pitch was experimentally investigated. The experiments were conducted for both laminar and turbulent flow inside coil. Effects of coil pitch and tube diameters on shell-side heat transfer coefficient of the heat exchanger were studied. Different characteristic lengths were used in various Nusselt number calculations to determine which length best fits the data and several equations were proposed. The particular difference in this study in comparison with the other similar studies was the boundary conditions for the helical coils. The results indicate that the equivalent diameter of shell is the best characteristic length. (author)

  18. Nonaqueous purification of mixed nitrate heat transfer media

    DOE Patents [OSTI]

    Fiorucci, Louis C.; Morgan, Michael J.

    1983-12-20

    A nonaqueous, in-line method for removing carbonate and hydroxide contamination from a molten mixed sodium nitrate/potassium nitrate heat transfer salt. The method comprises dissolving a stoichiometric quantity of anhydrous Ca(NO.sub.3).sub.2 in the melt whereby an insoluble CaCO.sub.3 and Ca(OH).sub.2 precipitate is formed. The precipitate can be removed by settling, filtration or floatation techniques.

  19. Coupling radiative heat transfer in participating media with other heat transfer modes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tencer, John; Howell, John R.

    2015-09-28

    The common methods for finding the local radiative flux divergence in participating media through solution of the radiative transfer equation are outlined. The pros and cons of each method are discussed in terms of their speed, ability to handle spectral properties and scattering phenomena, as well as their accuracy in different ranges of media transport properties. The suitability of each method for inclusion in the energy equation to efficiently solve multi-mode thermal transfer problems is discussed. Lastly, remaining topics needing research are outlined.

  20. Local Mass and Heat Transfer on a Turbine Blade Tip

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jin, P.; Goldstein, R. J.

    2003-01-01

    Locmore » al mass and heat transfer measurements on a simulated high-pressure turbine blade-tip surface are conducted in a linear cascade with a nonmoving tip endwall, using a naphthalene sublimation technique. The effects of tip clearance (0.86–6.90% of chord) are investigated at various exit Reynolds numbers (4–7 × 10 5 ) and turbulence intensities (0.2 and 12.0%). The mass transfer on the tip surface is significant along its pressure edge at the smallest tip clearance. At the two largest tip clearances, the separation bubble on the tip surface can cover the whole width of the tip on the second half of the tip surface. The average mass-transfer rate is highest at a tip clearance of 1.72% of chord. The average mass-transfer rate on the tip surface is four and six times as high as on the suction and the pressure surface, respectively. A high mainstream turbulence level of 12.0% reduces average mass-transfer rates on the tip surface, while the higher mainstream Reynolds number generates higher local and average mass-transfer rates on the tip surface.« less

  1. Schutz's Hot Spring Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    of Technology's Geo-Heat Center Retrieved from "http:en.openei.orgwindex.php?titleSchutz%27sHotSpringSpaceHeatingLowTemperatureGeothermalFacility&oldid305547" ...

  2. Effects of heat and mass transfer on the kinetics of CO oxidation...

    Office of Scientific and Technical Information (OSTI)

    Effects of heat and mass transfer on the kinetics of CO oxidation over RuO2(110) catalyst Citation Details In-Document Search Title: Effects of heat and mass transfer on the ...

  3. Measurement of Heat Flux and Heat Transfer Coefficient Due to Spray Application for the Die Casting Process

    SciTech Connect (OSTI)

    Sabau, Adrian S

    2007-01-01

    Lubricant spray application experiments were conducted for the die casting process. The heat flux was measured in situ using a differential thermopile sensor for three application techniques. First, the lubricant was applied under a constant flowrate while the nozzle was held in the same position. Second, the lubricant was applied in a pulsed, static manner, in which the nozzle was held over the same surface while it was turned on and off several times. Third, the lubricant was applied in a sweeping manner, in which the nozzle was moved along the die surface while it was held open. The experiments were conducted at several die temperatures and at sweep speeds of 20, 23, and 68 cm/s. The heat flux data, which were obtained with a sensor that was located in the centre of the test plate, were presented and discussed. The sensor can be used to evaluate lubricants, monitor the consistency of die lubrication process, and obtain useful process data, such as surface temperature, heat flux, and heat transfer coefficients. The heat removed from the die surface during lubricant application is necessary for (a) designing the cooling channels in the die, i.e. their size and placement, and (b) performing accurate numerical simulations of the die casting process.

  4. TRANSIENT HEAT TRANSFER ANALYSIS FOR SRS RADIOACTIVE TANK OPERATION

    SciTech Connect (OSTI)

    Lee, S.

    2013-06-27

    The primary objective of the present work is to perform a heat balance study for type-I waste tank to assess the impact of using submersible mixer pumps during waste removal. The temperature results calculated by the model will be used to evaluate the temperatures of the slurry waste under various tank operating conditions. A parametric approach was taken to develop a transient model for the heat balance study for type-I waste tanks such as Tank 11, during waste removal by SMP. The tank domain used in the present model consists of two SMP?s for sludge mixing, one STP for the waste removal, cooling coil system with 36 coils, and purge gas system. The sludge waste contained in Tank 11 also has a decay heat load of about 43 W/m{sup 3} mainly due to the emission of radioactive gamma rays. All governing equations were established by an overall energy balance for the tank domain, and they were numerically solved. A transient heat balance model used single waste temperature model, which represents one temperature for the entire waste liquid domain contained in the tank at each transient time.

  5. Regressed relations for forced convection heat transfer in a direct injection stratified charge rotary engine

    SciTech Connect (OSTI)

    Lee, C.M.; Schock, H.J.

    1988-01-01

    Currently, the heat transfer equation used in the rotary combustion engine (RCE) simulation model is taken from piston engine studies. These relations have been empirically developed by the experimental input coming from piston engines whose geometry differs considerably from that of the RCE. The objective of this work was to derive equations to estimate heat transfer coefficients in the combustion chamber of an RCE. This was accomplished by making detailed temperature and pressure measurements in a direct injection stratified charge (DISC) RCE under a range of conditions. For each specific measurement point, the local gas velocity was assumed equal to the local rotor tip speed. Local physical properties of the fluids were then calculated. Two types of correlation equations were derived and are described in this paper. The first correlation expresses the Nusselt number as a function of the Prandtl number, Reynolds number, and characteristic temperature ratio; the second correlation expresses the forced convection heat transfer coefficient as a function of fluid temperature, pressure and velocity. 10 references.

  6. Project Profile: High-Temperature Particle Heat Exchanger for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in a turbine to generate electricity. Industry experience with similar heat exchangers is limited to lower pressures, lower temperatures, or alternative fluids like steam or ...

  7. Osmotic Heat Engine for Energy Production from Low Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    Heat Engine for Energy Production from Low Temperature Geothemal Resources presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon osmoticheatengine...

  8. Gila Hot Springs District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Facility Gila Hot Springs Sector Geothermal energy Type District Heating Location Gila Hot Springs, New Mexico Coordinates Show Map...

  9. Experimental investigation on heat transfer and frictional characteristics of vertical upward rifled tube in supercritical CFB boiler

    SciTech Connect (OSTI)

    Yang, Dong; Pan, Jie; Zhu, Xiaojing; Bi, Qincheng; Chen, Tingkuan; Zhou, Chenn Q.

    2011-02-15

    Water wall design is a key issue for supercritical Circulating Fluidized Bed (CFB) boiler. On account of the good heat transfer performance, rifled tube is applied in the water wall design of a 600 MW supercritical CFB boiler in China. In order to investigate the heat transfer and frictional characteristics of the rifled tube with vertical upward flow, an in-depth experiment was conducted in the range of pressure from 12 to 30 MPa, mass flux from 230 to 1200 kg/(m{sup 2} s), and inner wall heat flux from 130 to 720 kW/m{sup 2}. The wall temperature distribution and pressure drop in the rifled tube were obtained in the experiment. The normal, enhanced and deteriorated heat transfer characteristics were also captured. In this paper, the effects of pressure, inner wall heat flux and mass flux on heat transfer characteristics are analyzed, the heat transfer mechanism and the frictional resistance performance are discussed, and the corresponding empirical correlations are presented. The experimental results show that the rifled tube can effectively prevent the occurrence of departure from nucleate boiling (DNB) and keep the tube wall temperature in a permissible range under the operating condition of supercritical CFB boiler. (author)

  10. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    66.20x109 Btuyr 19.40 GWhyr Delat T 53.00 F Load Factor 0.07 Contact Kent Johnson; 208-384-3926 References Oregon Institute of Technology's Geo-Heat Center1 Boise...

  11. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Annual Generation 75.00x109 Btuyr 22.00 GWhyr Delat T 24.00 F Load Factor 0.20 Start Up Date 1983 Contact 909-384-5298 References Oregon Institute of Technology's Geo-Heat...

  12. City of Klamath Falls District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Annual Generation 35.00x109 Btuyr 10.30 GWhyr Delat T 32.00 F Load Factor 0.25 Start Up Date 1981 Contact 541-883-5316 References Oregon Institute of Technology's Geo-Heat...

  13. Light weight and economical exhaust heat exchanger for waste heat recovery using mixed radiant and convective heat transfer

    Broader source: Energy.gov [DOE]

    A hybrid heat exchanger is designed to keep highly stressed materials around the working fluid at a moderate temperature so that it can operate at higher working fluid pressure.

  14. THE INTEGRATION OF PROCESS HEAT APPLICATIONS TO HIGH TEMPERATURE GAS REACTORS

    SciTech Connect (OSTI)

    Michael G. McKellar

    2011-11-01

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  15. Recent Heat Transfer Improvements to the RELAP5-3D Code

    SciTech Connect (OSTI)

    Riemke, Richard A; Davis, Cliff B; Oh, Chang

    2007-05-01

    The heat transfer section of the RELAP5-3D computer program has been recently improved. The improvements are as follows: (1) the general cladding rupture model was modified (more than one heat structure segment connected to the hydrodynamic volume and heat structure geometry’s internal gap pressure), (2) the cladding rupture model was modified for reflood, and (3) the heat transfer minor edits/plots were extended to include radiation/enclosure heat flux and generation (internal heat source).

  16. Boiler heat transfer modeling using CEMS data with application to fouling analysis

    SciTech Connect (OSTI)

    Zibas, S.J.; Idem, S.A.

    1996-12-31

    A mathematical boiler heat transfer simulation for coal-fired plants is described. Required model input includes boiler geometry, fuel composition, and limited CEMS data that are typically available. Radiation heat transfer in the furnace is calculated using curve-fits to the Hottel charts. The model employs empirical heat transfer coefficient correlations to evaluate convection heat transfer to various boiler component surfaces. Fouling/slagging can be accounted for by including fouling resistance in the calculation of the overall heat transfer coefficient of each component. Model performance predictions are compared to cases available in the literature. Results from parametric studies are presented.

  17. Conjugate heat and mass transfer in the lattice Boltzmann equation method

    SciTech Connect (OSTI)

    Li, LK; Chen, C; Mei, RW; Klausner, JF

    2014-04-22

    An interface treatment for conjugate heat and mass transfer in the lattice Boltzmann equation method is proposed based on our previously proposed second-order accurate Dirichlet and Neumann boundary schemes. The continuity of temperature (concentration) and its flux at the interface for heat (mass) transfer is intrinsically satisfied without iterative computations, and the interfacial temperature (concentration) and their fluxes are conveniently obtained from the microscopic distribution functions without finite-difference calculations. The present treatment takes into account the local geometry of the interface so that it can be directly applied to curved interface problems such as conjugate heat and mass transfer in porous media. For straight interfaces or curved interfaces with no tangential gradient, the coupling between the interfacial fluxes along the discrete lattice velocity directions is eliminated and thus the proposed interface schemes can be greatly simplified. Several numerical tests are conducted to verify the applicability and accuracy of the proposed conjugate interface treatment, including (i) steady convection-diffusion in a channel containing two different fluids, (ii) unsteady convection-diffusion in the channel, (iii) steady heat conduction inside a circular domain with two different solid materials, and (iv) unsteady mass transfer from a spherical droplet in an extensional creeping flow. The accuracy and order of convergence of the simulated interior temperature (concentration) field, the interfacial temperature (concentration), and heat (mass) flux are examined in detail and compared with those obtained from the "half-lattice division" treatment in the literature. The present analysis and numerical results show that the half-lattice division scheme is second-order accurate only when the interface is fixed at the center of the lattice links, while the present treatment preserves second-order accuracy for arbitrary link fractions. For curved

  18. Code System to Calculate Heat and Mass Transfer In Concrete

    Energy Science and Technology Software Center (OSTI)

    1999-05-26

    Version 00 This version is designated USINTC and was developed to model the thermal response of concrete to very high heating rates such as might occur from sodium spills on concrete surfaces in a breeder reactor. The major phenomena treated are conductive energy transport; chemical decomposition of concrete; and two-phase, three-component heat and mass transfer of the decomposition products: steam, liquid water, and carbon dioxide. The USINT model provides for porosity to increase as watermore » and carbon-dioxide are formed from the concrete. The concrete is treated generally as divided into two basic regions, wet and dry. In the wet region, steam, carbon-dioxide, and liquid water may co-exist, but in the dry region, there is no liquid water. There is also the possibility of a third region in which there is only liquid water and no gases.« less

  19. Heat transfer research for ocean thermal energy conversion

    SciTech Connect (OSTI)

    Kreith, F.; Bharathan, D.

    1988-02-01

    In this lecture an overview of the heat and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems, are briefly discussed.

  20. Heat transfer research for ocean thermal energy conversion

    SciTech Connect (OSTI)

    Kreith, F.; Bharathan, D.

    1987-03-01

    In this lecture an overview of the heat- and mass-transfer phenomena of importance in ocean thermal energy conversion (OTEC) is presented with particular emphasis on open-cycle OTEC systems. Also included is a short historical review of OTEC developments in the past century and a comparison of open- and closed-cycle thermodynamics. Finally, results of system analyses, showing the effect of plant size on cost and the near-term potential of using OTEC for combined power production and desalination systems are briefly discussed.

  1. A meshless method for modeling convective heat transfer

    SciTech Connect (OSTI)

    Carrington, David B

    2010-01-01

    A meshless method is used in a projection-based approach to solve the primitive equations for fluid flow with heat transfer. The method is easy to implement in a MATLAB format. Radial basis functions are used to solve two benchmark test cases: natural convection in a square enclosure and flow with forced convection over a backward facing step. The results are compared with two popular and widely used commercial codes: COMSOL, a finite element model, and FLUENT, a finite volume-based model.

  2. Nanoparticles for heat transfer and thermal energy storage

    DOE Patents [OSTI]

    Singh, Dileep; Cingarapu, Sreeram; Timofeeva, Elena V.; Moravek, Michael

    2015-07-14

    An article of manufacture and method of preparation thereof. The article of manufacture and method of making the article includes an eutectic salt solution suspensions and a plurality of nanocrystalline phase change material particles having a coating disposed thereon and the particles capable of undergoing the phase change which provides increase in thermal energy storage. In addition, other articles of manufacture can include a nanofluid additive comprised of nanometer-sized particles consisting of copper decorated graphene particles that provide advanced thermal conductivity to heat transfer fluids.

  3. Heat transfer head for a Stirling cycle machine

    SciTech Connect (OSTI)

    Emigh, S.G.; Noble, J.E.; Lehmann, G.A.

    1991-12-31

    This patent describes a two cylinder opposed Stirling cycle machine. It comprises a pair of coaxially aligned cylinders; a pair of displacers, the displacers being movably supported along a common axis within the respective cylinders for equal and opposite reciprocating motion with respect to one another between an expansion space at an inner end of each cylinder and a compression space at its outer end in a Stirling cycle mode of operation; a common heat acceptor located adjacent to the inner ends of the cylinders; and duct means in separate fluid communication with the respective expansion spaces of the two cylinders for confining the movement of working fluid in two fluid paths that respectively extend between the expansion space of one cylinder and the compression space of the other and through the common heat acceptor for effecting heat transfer between moving working fluid and the heat acceptor; the duct means comprising: two sets of channels formed within radial ribs circumferentially arranged in angularly spaced locations about the common axis of the cylinders in an alternating interleaved axial pattern communicating respectively with the expansion space of one cylinder or the other.

  4. Low exhaust temperature electrically heated particulate matter filter system

    DOE Patents [OSTI]

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2012-02-14

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  5. Experimental investigation on heat transfer for two-phase flow under natural convection

    SciTech Connect (OSTI)

    Amizic, Milan; Guyez, Estelle; Seiler, Jean-Marie

    2012-07-01

    In the frame of severe accident research for the second and the third generation of nuclear power plants, some aspects of the concrete cavity ablation during the molten corium - concrete interaction are still remaining issues. The determination of heat transfer along the interfacial region between the molten corium pool and the ablating basemat concrete is crucial for the assessment of concrete ablation progression and eventually the basemat melt-through. For the purpose of experimental investigation of thermal-hydraulics inside a liquid pool agitated by gas bubbles, the CLARA project has been launched jointly by CEA, EDF, IRSN, GDF-Suez and SARNET. The CLARA experiments are performed using simulant materials and they reveal the influence of superficial gas velocity, liquid viscosity and pool geometry on the heat transfer coefficient between the internally heated liquid pool and vertical and horizontal pool walls maintained at uniform temperature. The first test campaign has been conducted with the smallest pool configuration (50 cm x 25 cm x 25 cm). The tests have been performed with liquids covering a wide range of dynamic viscosity from approximately 1 mPa s to 10000 mPa s. This paper presents some preliminary conclusions deduced from the experiments which involve a liquid pool with the gas injection only from the bottom plate. A comparison with existing models for the assessment of heat transfer has also been carried out. (authors)

  6. ACHILLES: Heat Transfer in PWR Core During LOCA Reflood Phase

    Energy Science and Technology Software Center (OSTI)

    2013-11-01

    1. NAME AND TITLE OF DATA LIBRARY ACHILLES -Heat Transfer in PWR Core During LOCA Reflood Phase. 2. NAME AND TITLE OF DATA RETRIEVAL PROGRAMS N/A 3. CONTRIBUTOR AEA Technology, Winfrith Technology Centre, Dorchester DT2 8DH United Kingdom through the OECD Nuclear Energy Agency Data Bank, Issy-les-Moulineaux, France. 4. DESCRIPTION OF TEST FACILITY The most important features of the Achilles rig were the shroud vessel, which contained the test section, and the downcomer. These maymore » be thought of as representing the core barrel and the annular downcomer in the reactor pressure vessel. The test section comprises a cluster of 69 rods in a square array within a circular shroud vessel. The rod diameter and pitch (9.5 mm and 12.6 mm) were typical of PWR dimensions. The internal diameter of the shroud vessel was 128 mm. Each rod was electrically heated over a length of 3.66 m, which is typical of the nuclear heated length in a PWR fuel rod, and each contained 6 internal thermocouples. These were arranged in one of 8 groupings which concentrated the thermocouples in different axial zones. The spacer grids were at prototypic PWR locations. Each grid had two thermocouples attached to its trailing edge at radial locations. The axial power profile along the rods was an 11 step approximation to a "chopped cosine". The shroud vessel had 5 heating zones whose power could be independently controlled. 5. DESCRIPTION OF TESTS The Achilles experiments investigated the heat transfer in the core of a Pressurized Water Reactor during the re-flood phase of a postulated large break loss of coolant accident. The results provided data to validate codes and to improve modeling. Different types of experiments were carried out which included single phase cooling, re-flood under low flow conditions, level swell and re-flood under high flow conditions. Three series of experiments were performed. The first and the third used the same test section but the second used another test section

  7. ACHILLES: Heat Transfer in PWR Core During LOCA Reflood Phase

    SciTech Connect (OSTI)

    2013-11-01

    1. NAME AND TITLE OF DATA LIBRARY ACHILLES -Heat Transfer in PWR Core During LOCA Reflood Phase. 2. NAME AND TITLE OF DATA RETRIEVAL PROGRAMS N/A 3. CONTRIBUTOR AEA Technology, Winfrith Technology Centre, Dorchester DT2 8DH United Kingdom through the OECD Nuclear Energy Agency Data Bank, Issy-les-Moulineaux, France. 4. DESCRIPTION OF TEST FACILITY The most important features of the Achilles rig were the shroud vessel, which contained the test section, and the downcomer. These may be thought of as representing the core barrel and the annular downcomer in the reactor pressure vessel. The test section comprises a cluster of 69 rods in a square array within a circular shroud vessel. The rod diameter and pitch (9.5 mm and 12.6 mm) were typical of PWR dimensions. The internal diameter of the shroud vessel was 128 mm. Each rod was electrically heated over a length of 3.66 m, which is typical of the nuclear heated length in a PWR fuel rod, and each contained 6 internal thermocouples. These were arranged in one of 8 groupings which concentrated the thermocouples in different axial zones. The spacer grids were at prototypic PWR locations. Each grid had two thermocouples attached to its trailing edge at radial locations. The axial power profile along the rods was an 11 step approximation to a "chopped cosine". The shroud vessel had 5 heating zones whose power could be independently controlled. 5. DESCRIPTION OF TESTS The Achilles experiments investigated the heat transfer in the core of a Pressurized Water Reactor during the re-flood phase of a postulated large break loss of coolant accident. The results provided data to validate codes and to improve modeling. Different types of experiments were carried out which included single phase cooling, re-flood under low flow conditions, level swell and re-flood under high flow conditions. Three series of experiments were performed. The first and the third used the same test section but the second used another test section, similar in

  8. Modeling and Simulation of the ITER First Wall/Blanket Primary Heat Transfer System

    SciTech Connect (OSTI)

    Ying, Alice; Popov, Emilian L

    2011-01-01

    ITER inductive power operation is modeled and simulated using a thermal-hydraulics system code (RELAP5) integrated with a 3-D CFD (SC-Tetra) code. The Primary Heat Transfer System (PHTS) functions are predicted together with the main parameters operational ranges. The control algorithm strategy and derivation are summarized as well. The First Wall and Blanket modules are the primary components of PHTS, used to remove the major part of the thermal heat from the plasma. The modules represent a set of flow channels in solid metal structure that serve to absorb the radiation heat and nuclear heating from the fusion reactions and to provide shield for the vacuum vessel. The blanket modules are water cooled. The cooling is forced convective with constant blanket inlet temperature and mass flow rate. Three independent water loops supply coolant to the three blanket sectors. The main equipment of each loop consists of a pump, a steam pressurizer and a heat exchanger. A major feature of ITER is the pulsed operation. The plasma does not burn continuously, but on intervals with large periods of no power between them. This specific feature causes design challenges to accommodate the thermal expansion of the coolant during the pulse period and requires active temperature control to maintain a constant blanket inlet temperature.

  9. Measurement and computation of heat transfer in high-pressure compressor drum geometries with axial throughflow

    SciTech Connect (OSTI)

    Long, C.A.; Morse, A.P.; Tucker, P.G.

    1997-01-01

    This paper makes comparisons between CFD computations and experimental measurements of heat transfer for the axial throughflow of cooling air in a high-pressure compressor spool rig and a plane cavity rig. The heat transfer measurements are produced using fluxmeters and by the conduction solution method from surface temperature measurements. Numerical predictions are made by solving the Navier-Stokes equations in a full three-dimensional, time-dependent form using the finite-volume method. Convergence is accelerated using a multigrid algorithm and turbulence modeled using a simple mixing length formulation. Notwithstanding systematic differences between the measurements and the computations, the level of agreement can be regarded as promising in view of the acknowledged uncertainties in the experimental data, the limitations of the turbulence model and, perhaps more importantly, the modest grid densities used for the computations.

  10. Heat transfer modelling of the saltstone pouring and curing process. Task Number: 93-016-0

    SciTech Connect (OSTI)

    Shadday, M.A. Jr.

    1993-11-01

    A byproduct of the in tank precipitation, ITP, process will be 25 million gallons of low-level salt solution. This salt solution will be mixed with cement and a flyash/slag mixture and solidified in surface vaults in the Z-area Saltstone Facility. The curing process of saltstone involves exothermic reactions, and there is a maximum temperature limit of 90{degree}C for the curing saltstone. If this temperature limit is exceeded, the physical properties of the saltstone can be degraded. A heat transfer model of the saltstone pouring and curing process has been developed that predicts transient temperature distributions in the curing saltstone. The purpose of this model is to predict peak temperatures as functions of the several independent variables in this process: pour temperature, the pour schedule, and seasonal variations in the ambient temperature. The peak temperature of the saltstone is very sensitive to the internal heat generation that accompanies the curing process. Most of the energy is released over a short period of several hours, and the balance is released slowly over a period of time that can be in excess of a month. This long term low level internal heat generation is difficult to measure in laboratory calorimetry tests, and it can significantly influence the peak temperature in the saltstone. Due to the low thermal conductivity of the saltstone, the central region of the poured saltstone will essentially heat up adiabatically. The time dependence of the internal heat generation rate was determined from an analysis of the 1991 pilot pour test. With a pour schedule of eight hours a day and five days a week in the summer, the model predicts that the saltstone will have a peak temperature of 98 C with a pour temperature of 45 C, and a peak temperature of 88 C with a pour temperature of 30 C. With a pour schedule of three days a week, the peak temperature will be 88{degree}C with a pour temperature of 45 C, and 80 C with a pour temperature of 30 C.

  11. A Reduced-Boundary-Function Method for Convective Heat Transfer With Axial Heat Conduction and Viscous Dissipation

    SciTech Connect (OSTI)

    Zhijie Xu

    2012-07-01

    We introduce a new method of solution for the convective heat transfer under forced laminar flow that is confined by two parallel plates with a distance of 2a or by a circular tube with a radius of a. The advection-conduction equation is first mapped onto the boundary. The original problem of solving the unknown field T(x,r,t) is reduced to seek the solutions of T at the boundary (r = a or r = 0, r is the distance from the centerline shown in Fig. 1), i.e., the boundary functions T{sub a}(x,t) {triple_bond} T(x,r=a,t) and/or T{sub 0}(x,t) {triple_bond} T(x,r=0,t). In this manner, the original problem is significantly simplified by reducing the problem dimensionality from 3 to 2. The unknown field T(x,r,t) can be eventually solved in terms of these boundary functions. The method is applied to the convective heat transfer with uniform wall temperature boundary condition and with heat exchange between flowing fluids and its surroundings that is relevant to the geothermal applications. Analytical solutions are presented and validated for the steady-state problem using the proposed method.

  12. A Reduced-Boundary-Function Method for Convective Heat Transfer with Axial Heat Conduction and Viscous Dissipation

    SciTech Connect (OSTI)

    Xu, Zhijie

    2012-07-01

    We introduce a method of solution for the convective heat transfer under forced laminar flow that is confined by two parallel plates with a distance of 2a or by a circular tube with a radius of a. The advection-conduction equation is first mapped onto the boundary. The original problem of solving the unknown field is reduced to seek the solutions of T at the boundary (r=a or r=0, r is the distance from the centerline shown in Fig. 1), i.e. the boundary functions and/or . In this manner, the original problem is significantly simplified by reducing the problem dimensionality from 3 to 2. The unknown field can be eventually solved in terms of these boundary functions. The method is applied to the convective heat transfer with uniform wall temperature boundary condition and with heat exchange between flowing fluids and its surroundings that is relevant to the geothermal applications. Analytical solutions are presented and validated for the steady state problem using the proposed method.

  13. Studies of Deteriorated Heat Transfer in Prismatic Cores Stemming from Irradiation-Induced Geometry Distortion

    SciTech Connect (OSTI)

    Williams, Brian G.; Schultz, Richard R.; McEligot, Don M.; McCreery, Glenn

    2015-08-31

    A reference design for the Next Generation Nuclear Plant (NGNP) is to use General Atomics Modular High Temperature Gas-cooled Reactor (MHTGR). For such a configuration in normal operation, the helium coolant flow proceeds from the upper plenum to the lower plenum principally through the core coolant channels and the interstitial gaps (bypass flow) that separate the prismatic blocks from one another. Only the core prismatic blocks have coolant channels. The interstitial gaps are present throughout the core, the inner reflector region, and the out reflector region. The bypass flows in a prismatic gas-cooled reactor (GCR) are of potential concern because they reduce the desired flow rates in the coolant channels and, thereby, can increase outlet gas temperatures and maximum fuel temperatures. Consequently, it is appropriate to account for bypass flows in reactor thermal gas dynamic analyses. The objectives of this project include the following: fundamentally understand bypass flow and heat transfer at scaled, undistorted conditions and with geometry distortions; develop improved estimates of associated loss coefficients, surface friction and heat transfer for systems and network codes; and obtain related data for validation of CFD (computational fluid dynamic) or system (e.g., RELAP5) codes which can be employed in predictions for a GCR for normal power, reduced power, and residual heat removal operations.

  14. RELAP5 Model of the Vacuum Vessel Primary Heat Transfer System

    SciTech Connect (OSTI)

    Carbajo, Juan J; Yoder Jr, Graydon L; Kim, Seokho H

    2010-07-01

    This report describes the RELAP5 models that have been developed for the Vacuum Vessel (VV) Primary Heat Transfer System (PHTS). The models are intended to be used to examine the transient performance of the VV PHTS, and evaluate control schemes necessary to maintain parameters within acceptable limits during transients. Some preliminary results are presented to show the maturity of the models and to examine general VV PHTS transient behavior. The models can be used as a starting point to develop transient modeling capability in several directions including control system modeling, safety evaluations, etc, and are not intended to represent the final VV PHTS design. Preliminary calculations using the models indicate that during normal pulsed operation, heat exchanger control may not be necessary, and that temperatures within the vacuum vessel during decay heat operation remain low.

  15. TOPAZ2D heat transfer code users manual and thermal property data base

    SciTech Connect (OSTI)

    Shapiro, A.B.; Edwards, A.L.

    1990-05-01

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.

  16. RELAP5 MODEL OF THE DIVERTOR PRIMARY HEAT TRANSFER SYSTEM

    SciTech Connect (OSTI)

    Popov, Emilian L; Yoder Jr, Graydon L; Kim, Seokho H

    2010-08-01

    This report describes the RELAP5 model that has been developed for the divertor primary heat transfer system (PHTS). The model is intended to be used to examine the transient performance of the divertor PHTS and evaluate control schemes necessary to maintain parameters within acceptable limits during transients. Some preliminary results are presented to show the maturity of the model and examine general divertor PHTS transient behavior. The model can be used as a starting point for developing transient modeling capability, including control system modeling, safety evaluations, etc., and is not intended to represent the final divertor PHTS design. Preliminary calculations using the models indicate that during normal pulsed operation, present pressurizer controls may not be sufficient to keep system pressures within their desired range. Additional divertor PHTS and control system design efforts may be required to ensure system pressure fluctuation during normal operation remains within specified limits.

  17. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    SciTech Connect (OSTI)

    Ghosh, Somnath; Friedrich, Rainer

    2015-05-15

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case.

  18. Heat Transfer Characteristics of the Wet Thermal Insulator with Multi-layer

    SciTech Connect (OSTI)

    Jong-Won Kim; Goon-Cherl Park; Tae-Wan Kim; Doo-Jeong Lee

    2006-07-01

    SMART developed in KAERI is an integral type nuclear cogeneration reactor. SMART uses a nitrogen-filled gas pressurizer so that the steam partial pressure should be minimized and the pressurizer should be under low temperature condition. To sustain the low temperature condition, the wet thermal insulator and pressurizer cooler are installed in the pressurizer. Since the performance of wet thermal insulator is an important parameter to determine the size of the pressurizer cooler, it is important to evaluate the insulation performance of the wet thermal insulator. The wet thermal insulators with 20 layers are installed in SMART. In the design of SMART, the empirical correlation by Adamovich was used to estimate the thermal resistance of the wet thermal insulator. However, the experimental condition and results are not clear so that this correlation should be verified. To analyze the heat transfer characteristics of the multi-layer wet thermal insulator, natural convective heat transport through horizontal and vertical water-filled layers is investigated. Experiments and numerical analyses have been performed to evaluate the heat transfer rates through multi-layer and verify Adamovich correlation. In addition, a new multi-layer correlation was obtained. (authors)

  19. FEHMN 1.0: Finite element heat and mass transfer code; Revision 1

    SciTech Connect (OSTI)

    Zyvoloski, G.; Dash, Z.; Kelkar, S.

    1992-05-01

    A computer code is described which can simulate non-isothermal multi-phase multicomponent flow in porous media. It is applicable to natural-state studies of geothermal systems and groundwater flow. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved sing the finite element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat and mass transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. A summary of the equations in the model and the numerical solution procedure are provided in this report. A user`s guide and sample problems are also included. The FEHMN (Finite Element Heat and Mass Nuclear) code, described in this report, is a version of FEHM (Finite Element Heat and Mass, Zyvoloski et al., 1988) developed for the Yucca Mountain Site Characterization Project (YMP). The main use of FEHMN will be to assist in the understanding of flow fields in the saturated zone below the potential Yucca Mountain repository.

  20. Thermoacoustic sensor for nuclear fuel temperaturemonitoring and heat transfer enhancement

    SciTech Connect (OSTI)

    James A. Smith; Dale K. Kotter; Randall A. Alli; Steven L. Garrett

    2013-05-01

    A new acoustical sensing system for the nuclear power industry has been developed at The Pennsylvania State University in collaboration with Idaho National Laboratories. This sensor uses the high temperatures of nuclear fuel to convert a nuclear fuel rod into a standing-wave thermoacoustic engine. When a standing wave is generated, the sound wave within the fuel rod will be propagated, by acoustic radiation, through the cooling fluid within the reactor or spent fuel pool and can be monitored a remote location external to the reactor. The frequency of the sound can be correlated to an effective temperature of either the fuel or the surrounding coolant. We will present results for a thermoacoustic resonator built into a Nitonic-60 (stainless steel) fuel rod that requires only one passive component and no heat exchangers.

  1. Temperatures, heat flow, and water chemistry from drill holes...

    Open Energy Info (EERE)

    Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

  2. Phenylnaphthalene Derivatives as Heat Transfer Fluids for Concentrating Solar Power: Loop Experiments and Final Report

    SciTech Connect (OSTI)

    McFarlane, Joanna; Bell, Jason R; Felde, David K; Joseph III, Robert Anthony; Qualls, A L; Weaver, Samuel P

    2013-02-01

    ORNL and subcontractor Cool Energy completed an investigation of higher-temperature, organic thermal fluids for solar thermal applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C showed that the material isomerized at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components such as the waste heat rejection exchanger may become coated or clogged and loop performance will decrease. Thus, pure 1-phenylnaphthalene does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the increased temperatures of interest. Hence a decision was made not to test the ORNL fluid in the loop at Cool Energy Inc. Instead, Cool Energy tested and modeled power conversion from a moderate-temperature solar loop using coupled Stirling engines. Cool Energy analyzed data collected on third and fourth generation SolarHeart Stirling engines operating on a rooftop solar field with a lower temperature (Marlotherm) heat transfer fluid. The operating efficiencies of the Stirling engines were determined at multiple, typical solar conditions, based on data from actual cycle operation. Results highlighted the advantages of inherent thermal energy storage in the power conversion system.

  3. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect (OSTI)

    Johnson, R. K.

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  4. High temperature thermographic measurements of laser heated silica

    SciTech Connect (OSTI)

    Elhadj, S; Yang, S T; Matthews, M J; Cooke, D J; Bude, J D; Johnson, M; Feit, M; Draggoo, V; Bisson, S E

    2009-11-02

    In situ spatial and temporal surface temperature profiles of CO{sub 2} laser-heated silica were obtained using a long wave infrared (LWIR) HgCdTe camera. Solutions to the linear diffusion equation with volumetric and surface heating are shown to describe the temperature evolution for a range of beam powers, over which the peak surface temperature scales linearly with power. These solutions were used with on-axis steady state and transient experimental temperatures to extract thermal diffusivity and conductivity for a variety of materials, including silica, spinel, sapphire, and lithium fluoride. Experimentally-derived thermal properties agreed well with reported values and, for silica, thermal conductivity and diffusivity are shown to be approximately independent of temperature between 300 and 2800K. While for silica our analysis based on a temperature independent thermal conductivity is shown to be accurate, for other materials studied this treatment yields effective thermal properties that represent reasonable approximations for laser heating. Implementation of a single-wavelength radiation measurement in the semi-transparent regime is generally discussed, and estimates of the apparent temperature deviation from the actual outer surface temperature are also presented. The experimental approach and the simple analysis presented yield surface temperature measurements that can be used to validate more complex physical models, help discriminate dominant heat transport mechanisms, and to predict temperature distribution and evolution during laser-based material processing.

  5. Heat Transfer and Fluid Transport of Supercritical CO2 in Enhanced Geothermal System with Local Thermal Non-equilibrium Model

    SciTech Connect (OSTI)

    Zhang, Le; Luo, Feng; Xu, Ruina; Jiang, Peixue; Liu, Huihai

    2014-12-31

    The heat transfer and fluid transport of supercritical CO2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity of volumetric heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.

  6. Industrial Steam System Heat-Transfer SolutionsL: A BestPractices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... standards with fouling on the heat- transfer surface. The fouling factor is typically a modest additional cost compared to the value it can provide to the process operation. ...

  7. Experimental analysis of heat transfer characteristics and pressure drop through screen regenerative heat exchangers. Master's thesis

    SciTech Connect (OSTI)

    Wiese, J.L.

    1993-12-01

    This study investigated the effect on heat transfer and friction characteristics for screen regenerative heat exchangers with the screen thickness reduced by rolling. The experiments were performed on 250 and 325 mesh, 304 stainless steel screen using helium gas. Reynolds numbers, based on hydraulic radius, Re, were between 10 and 100. Both the Colburn factor, StPr(2/3), and friction factor, f, decreased as the screen thickness was reduced. A correlation was found for predicting friction factor, f. The drag coefficient per screen remained nearly unchanged for thicknesses reduced not more than 30 percent. The decrease in Colburn factor was significant for Re less than 40. For Re between 40 and 100 the decrease in Colburn factor was less than the experimental uncertainty. Regenerative Cooling, Regenerators, Cryogenic Engines, Screens (Woven Materials), Mesh, Stirling Cycle.

  8. Project Profile: High Temperature Heat Pipe Receiver for Parabolic Trough

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collectors (SuNLaMP) | Department of Energy High Temperature Heat Pipe Receiver for Parabolic Trough Collectors (SuNLaMP) Project Profile: High Temperature Heat Pipe Receiver for Parabolic Trough Collectors (SuNLaMP) Funding Program: SuNLaMP SunShot Subprogram: CSP Location: Los Alamos National Laboratory, Los Alamos, NM SunShot Award Amount: $3,000,000 This project, done in partnership with Norwich Technologies, focuses on the development of heat pipe receiver technology for use with

  9. An experimental study of convective heat transfer with microencapsulated phase change material suspension: Laminar flow in a circular tube under constant heat flux

    SciTech Connect (OSTI)

    Chen, Binjiao; Wang, Xin; Zeng, Ruolang; Zhang, Yinping; Di, Hongfa [Department of Building Science, Tsinghua University, Beijing 100084 (China); Wang, Xichun; Niu, Jianlei [Department of Building Service Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Li, Yi [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China)

    2008-09-15

    By contrast with the conventional heat transfer fluid (water), the microencapsulated phase change material (MPCM) suspension, with a small temperature difference between storing and releasing heat, is of much larger apparent specific heat and much higher thermal energy storage capacity. It has been suggested to serve as a dual-functional medium for thermal energy transport and/or storage. The heat transfer characteristics of a kind of MPCM suspension, formed by microencapsulating industrial-grade 1-bromohexadecane (C{sub 16}H{sub 33}Br) as phase change material, were experimentally studied for laminar flow in a circular tube under constant heat flux. A new expression of Ste is put forward in the paper, according to the physical definition of Stefan number. The results in the experiments show: (a) the dimensionless internal wall temperature of the MPCM suspension is lower than pure water, and the decrease can be up to 30% of that of water; (b) the heat transfer enhancement ratio can be 1.42 times of that of water at x{sup +} = 4.2 x 10{sup -2} for 15.8 wt% MPCM suspension, which is not as much as in some references; and (c) the pump consumption of the MPCM suspension system decrease greatly for the larger heat transfer rate compared with water, due to phase change, the decrease can be up to 67.5% of that of water at q = 750 W (15.8 wt%). The kind of MPCM suspension has good application feasibility in practice. (author)

  10. Determining heat fluxes from temperature measurements made in massive walls

    SciTech Connect (OSTI)

    Balcomb, J.D.; Hedstrom, J.C.

    1980-01-01

    A technique is described for determining heat fluxes at the surfaces of masonry walls or floors using temperature data measured at two points within the wall, usually near the surfaces. The process consists of solving the heat diffusion equation in one dimension using finite difference techniques given two measured temperatures as input. The method is fast and accurate and also allows for an in-situ measurement of wall thermal diffusivity if a third temperature is measured. The method is documented in sufficient detail so that it can be readily used by the reader. Examples are given for heat flow through walls. Annual results for two cases are presented. The method has also been used to determine heat flow into floors.

  11. Low temperature barriers with heat interceptor wells for in situ processes

    DOE Patents [OSTI]

    McKinzie, II, Billy John

    2008-10-14

    A system for reducing heat load applied to a frozen barrier by a heated formation is described. The system includes heat interceptor wells positioned between the heated formation and the frozen barrier. Fluid is positioned in the heat interceptor wells. Heat transfers from the formation to the fluid to reduce the heat load applied to the frozen barrier.

  12. Modeling and Analysis of Alternative Concept of ITER Vacuum Vessel Primary Heat Transfer System

    SciTech Connect (OSTI)

    Carbajo, Juan J; Yoder Jr, Graydon L; Dell'Orco, Giovanni; Curd, Warren; Kim, Seokho H

    2010-01-01

    A RELAP5-3D model of the ITER (Latin for the way ) vacuum vessel (VV) primary heat transfer system has been developed to evaluate a proposed design change that relocates the heat exchangers (HXs) from the exterior of the tokamak building to the interior. This alternative design protects the HXs from external hazards such as wind, tornado, and aircraft crash. The proposed design integrates the VV HXs into a VV pressure suppression system (VVPSS) tank that contains water to condense vapour in case of a leak into the plasma chamber. The proposal is to also use this water as the ultimate sink when removing decay heat from the VV system. The RELAP5-3D model has been run under normal operating and abnormal (decay heat) conditions. Results indicate that this alternative design is feasible, with no effects on the VVPSS tank under normal operation and with tank temperature and pressure increasing under decay heat conditions resulting in a requirement to remove steam generated if the VVPSS tank low pressure must be maintained.

  13. Application of the TEMPEST computer code to canister-filling heat transfer problems

    SciTech Connect (OSTI)

    Farnsworth, R.K.; Faletti, D.W.; Budden, M.J.

    1988-03-01

    Pacific Northwest Laboratory (PNL) researchers used the TEMPEST computer code to simulate thermal cooldown behavior of nuclear waste glass after it was poured into steel canisters for long-term storage. The objective of this work was to determine the accuracy and applicability of the TEMPEST code when used to compute canister thermal histories. First, experimental data were obtained to provide the basis for comparing TEMPEST-generated predictions. Five canisters were instrumented with appropriately located radial and axial thermocouples. The canister were filled using the pilot-scale ceramic melter (PSCM) at PNL. Each canister was filled in either a continous or a batch filling mode. One of the canisters was also filled within a turntable simulant (a group of cylindrical shells with heat transfer resistances similar to those in an actual melter turntable). This was necessary to provide a basis for assessing the ability of the TEMPEST code to also model the transient cooling of canisters in a melter turntable. The continous-fill model, Version M, was found to predict temperatures with more accuracy. The turntable simulant experiment demonstrated that TEMPEST can adequately model the asymmetric temperature field caused by the turntable geometry. Further, TEMPEST can acceptably predict the canister cooling history within a turntable, despite code limitations in computing simultaneous radiation and convection heat transfer between shells, along with uncertainty in stainless-steel surface emissivities. Based on the successful performance of TEMPEST Version M, development was initiated to incorporate 1) full viscous glass convection, 2) a dynamically adaptive grid that automatically follows the glass/air interface throughout the transient, and 3) a full enclosure radiation model to allow radiation heat transfer to non-nearest neighbor cells. 5 refs., 47 figs., 17 tabs.

  14. Natural convection heat transfer on two horizontal cylinders in liquid sodium

    SciTech Connect (OSTI)

    Hata, K.; Shiotsu, M.; Takeuchi, Y.

    1995-09-01

    Natural convection heat transfer on two horizontal 7.6 mm diameter test cylinders assembled with the ratio of the distance between each cylinder axis to the cylinder diameter, S/D, of 2 in liquid sodium was studied experimentally and theoretically. The heat transfer coefficients on the cylinder surface due to the same heat inputs ranging from 1.0 X 10{sup 7} to 1.0 x 10{sup 9} W/m{sup 3} were obtained experimentally for various setting angeles, {gamma}, between vertical direction and the plane including both of these cylinder axis over the range of zero to 90{degrees}. Theoretical equations for laminar natural convection heat transfer from the two horizontal cylinders were numerically solved for the same conditions as the experimental ones considering the temperature dependence of thermophysical properties concerned. The average Nusselt numbers, Nu, values on the Nu versus modified Rayleigh number, R{sub f}, graph. The experimental values of Nu for the upper cylinder are about 20% lower than those for the lower cylinder at {gamma} = 0{degrees} for the range of R{sub f} tested here. The value of Nu for the upper cylinder becomes higher and approaches that for the lower cylinder with the increase in {gamma} over range of 0 to 90{degrees}. The values of Nu for the lower cylinder at each {gamma} are almost in agreement with those for a single cylinder. The theoretical values of Nu on two cylinders except those for R{sub f}<4 at {gamma} = 0{degrees} are in agreement with the experimental data at each {gamma} with the deviations less than 15%. Correlations for Nu on the upper and lower cylinders were obtained as functions of S/D and {gamma} based n the theoretical solutions for the S/D ranged over 1.5 to 4.0.

  15. Transient heat transfer in helium II due to a sudden vacuum break

    SciTech Connect (OSTI)

    Bosque, Ernesto S.; Dhuley, Ram C.; Van Sciver, Steven W.

    2014-01-29

    To ensure future cryogenic devices meet safety and operational specifications, significant value is gained from a developed understanding of the transient heat fluxes that result from failure of an insulating vacuum jacket around a helium II (He II)-cooled device. A novel, one-dimensional experiment is successfully performed examining the phenomena immediately following a vacuum rupture onto a cryosurface. In the experiment, a fast-opening (∼10 ms) valve isolates a rigid container of ultra high purity nitrogen (N{sub 2}) gas kept at room temperature and adjustable pressure from a vertically oriented, highly evacuated (∼10{sup −3} Pa) tube roughly 1 m in length. The bottom of the evacuated tube is sealed via a 2.54 mm thick copper disk, whose bottom surface is in intimate contact with an open column of He II (∼1.8 K). The evacuated tube, disk, and He II column share a diameter of 24 mm. Opening the valve results in a vacuum rupture. N{sub 2} gas is immediately drawn into the evacuated space and cryopumped onto the disk as a growing layer of solid cryodeposit. Various coupled transient heat transfer processes proceed as the internal energy of the warm gas is transferred through the growing layer of solid N{sub 2}, through the copper disk, and into the He II column. This work examines the qualitative nature of these transient phenomena and the magnitude of the heat fluxes present through each of the series of thermal resistances.

  16. Plasma heating power dissipation in low temperature hydrogen plasmas

    SciTech Connect (OSTI)

    Komppula, J. Tarvainen, O.

    2015-10-15

    A theoretical framework for power dissipation in low temperature plasmas in corona equilibrium is developed. The framework is based on fundamental conservation laws and reaction cross sections and is only weakly sensitive to plasma parameters, e.g., electron temperature and density. The theory is applied to low temperature atomic and molecular hydrogen laboratory plasmas for which the plasma heating power dissipation to photon emission, ionization, and chemical potential is calculated. The calculated photon emission is compared to recent experimental results.

  17. A two-dimensional model for the heat transfer on the external circuit of a Stirling engine for a dish/Stirling system

    SciTech Connect (OSTI)

    Makhkamov, K.K.; Ingham, D.B.

    1998-07-01

    In this paper the {kappa}-{var{underscore}epsilon} turbulent model for the incompressible fluid flow has been used to describe the heat transfer and gas dynamical processes on the external circuit of a Stirling Engine as used on a Solar Dish/Stirling System. The problem considered, in this work for a cavity-type heat receiver of the Stirling Engine, is that of the heat transfer in the body of the shell of the heat exchangers of the engine due to the thermal conductivity, the convective heat transfer between the working fluid and the walls of the engine internal gas circuit and the heat transfer due to the forced convection of the air in the cavity and in the attached air domain. The boundary conditions employed on the engines internal circuit were obtained using the developed one-dimensional second level mathematical model of the engine working cycle. Physical models for the distribution of the solar insolation on the bottom and side walls of the heat receiver have been taken into account and the temperature fields for the heat receiver and the air velocity have been obtained for the case when the heat receiver is affected by wind. The numerical results show that it is in the region of the boundary of the input window of the heat receiver where there is the largest reduction in the temperature in the shell of the heat exchangers and this is due to the convection of the air.

  18. Dual-circuit embossed-sheet heat-transfer panel

    DOE Patents [OSTI]

    Morgan, G.D.

    1982-08-23

    A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed for form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.

  19. Pressure drop and heat transfer characteristics of boiling water in sub-hundred micron channel

    SciTech Connect (OSTI)

    Bhide, R.R.; Singh, S.G.; Sridharan, Arunkumar; Duttagupta, S.P.; Agrawal, Amit [Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

    2009-09-15

    The current work focuses on the pressure drop, heat transfer and stability in two phase flow in microchannels with hydraulic diameter of less than one hundred microns. Experiments were conducted in smooth microchannels of hydraulic diameter of 45, 65 {mu}m, and a rough microchannel of hydraulic diameter of 70 {mu}m, with deionised water as the working fluid. The local saturation pressure and temperature vary substantially over the length of the channel. In order to correctly predict the local saturation temperature and subsequently the heat transfer characteristics, numerical techniques have been used in conjunction with the conventional two phase pressure drop models. The Lockhart-Martinelli (liquid-laminar, vapour-laminar) model is found to predict the two phase pressure drop data within 20%. The instability in two phase flow is quantified; it is found that microchannels of smaller hydraulic diameter have lesser instabilities as compared to their larger counterparts. The experiments also suggest that surface characteristics strongly affect flow stability in the two phase flow regime. The effect of hydraulic diameter and surface characteristics on the flow characteristics and stability in two phase flow is seldom reported, and is of considerable practical relevance. (author)

  20. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

    SciTech Connect (OSTI)

    Dechant, Lawrence; Smith, Justin

    2016-01-01

    Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by

  1. Bibliography of US patents on augmentation of convective heat and mass transfer

    SciTech Connect (OSTI)

    Webb, R.L.; Junkhan, G.H.; Bergles, A.E.

    1980-09-01

    Granted patents are an important source of information on the potential commercialization of augmented heat transfer technology. This report presents a bibliography of US patents pertinent to that technology. The total number of patents cited is 321. They are presented in three separate lists: by patent number, alphabetically by first inventor, and by augmentation techniques (with secondary arrangement according to mode of heat transfer).

  2. RELAP5 Model of the First Wall/Blanket Primary Heat Transfer System

    SciTech Connect (OSTI)

    Popov, Emilian L; Yoder Jr, Graydon L; Kim, Seokho H

    2010-06-01

    ITER inductive power operation is modeled and simulated using a system level computer code to evaluate the behavior of the Primary Heat Transfer System (PHTS) and predict parameter operational ranges. The control algorithm strategy and derivation are summarized in this report as well. A major feature of ITER is pulsed operation. The plasma does not burn continuously, but the power is pulsed with large periods of zero power between pulses. This feature requires active temperature control to maintain a constant blanket inlet temperature and requires accommodation of coolant thermal expansion during the pulse. In view of the transient nature of the power (plasma) operation state a transient system thermal-hydraulics code was selected: RELAP5. The code has a well-documented history for nuclear reactor transient analyses, it has been benchmarked against numerous experiments, and a large user database of commonly accepted modeling practices exists. The process of heat deposition and transfer in the blanket modules is multi-dimensional and cannot be accurately captured by a one-dimensional code such as RELAP5. To resolve this, a separate CFD calculation of blanket thermal power evolution was performed using the 3-D SC/Tetra thermofluid code. A 1D-3D co-simulation more realistically models FW/blanket internal time-dependent thermal inertia while eliminating uncertainties in the time constant assumed in a 1-D system code. Blanket water outlet temperature and heat release histories for any given ITER pulse operation scenario are calculated. These results provide the basis for developing time dependent power forcing functions which are used as input in the RELAP5 calculations.

  3. City of Twenty-Nine Palms Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Twenty-Nine Palms Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Twenty-Nine Palms Space Heating Low Temperature Geothermal Facility...

  4. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  5. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  6. Development of a UF{sub 6} cylinder transient heat transfer/stress analysis model

    SciTech Connect (OSTI)

    Williams, W.R.

    1991-12-31

    A heat transfer/stress analysis model is being developed to simulate the heating to a point of rupture of a cylinder containing UF{sub 6} when it is exposed to a fire. The assumptions underlying the heat transfer portion of the model, which has been the focus of work to date, will be discussed. A key aspect of this model is a lumped parameter approach to modeling heat transfer. Preliminary results and future efforts to develop an integrated thermal/stress model will be outlined.

  7. Heat transfer between stratified immiscible liquid layers driven by gas bubbling across the interface

    SciTech Connect (OSTI)

    Greene, G.A.; Irvine, T.F. Jr.

    1988-01-01

    The modeling of molten core debris in the CORCON and VANESA computer codes as overlying, immiscible liquid layers is discussed as it relates to the transfer of heat and mass between the layers. This initial structure is identified and possible configurations are discussed. The stratified, gas-sparged configuration that is presently employed in CORCON and VANESA is examined and the existing literature for interlayer heat transfer is assessed. An experiment which was designed to measure interlayer heat transfer with gas sparging is described. The results are presented and compared to previously existing models. A dimensionless correlation for stratified, interlayer heat transfer with gas sparging is developed. This relationship is recommended for inclusion in CORCON-MOD2 for heat transfer between stratified, molten liquid layers. 12 refs., 6 figs., 3 tabs.

  8. Effect of heat treatment temperature on nitinol wire

    SciTech Connect (OSTI)

    Cai, S.; Schaffer, J. E.; Daymond, M. R.; Yu, C.; Ren, Y.

    2014-08-18

    In-situ synchrotron X-ray diffraction has been used to study the influence of the heat treatment temperature on the subsequent micromechanical behavior of nitinol wire. It was found that increase in the heat treatment temperature rotated the austenite texture from the (332){sub B2} fiber towards the (111){sub B2} fiber, and the texture of the Stress-Induced Martensite phase changed from the (1{sup ¯}40){sub B19'} to the (1{sup ¯}20){sub B19'} fiber accordingly. Heat treatment at a low temperature reduces the internal residual strains in the austenite during super-elastic deformation and therefore improves the materials fatigue performance. The development of internal residual strains in austenite is controlled by transformation induced plasticity and the reversal martensite to austenite transformation.

  9. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part I: Experimental study

    SciTech Connect (OSTI)

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    Two-phase flow pattern and heat transfer characteristics of refrigerant-oil mixture flow boiling inside small tubes with inside diameters of 6.34 mm and 2.50 mm are investigated experimentally. The test condition of nominal oil concentration is from 0% to 5%, mass flux from 200 to 400 kg m{sup -2} s{sup -1}, heat flux from 3.2 to 14 kW m{sup -2}, evaporation temperature of 5 C, inlet quality from 0.1 to 0.8, and quality change from 0.1 to 0.2. Wavy, wavy-annular, annular and mist-annular flow pattern in 6.34 mm tube are observed, while only slug-annular and annular flow pattern are observed in 2.50 mm tube. Oil presence can make annular flow to form early and to retard to diminish in quality direction at nominal oil concentration {>=}3%. Augmentation effect of oil on heat transfer coefficient becomes weakened or even diminishes for small diameter tube while detrimental effect of oil on small tube performance becomes more significant than large tube. For both test tubes, variation of heat transfer coefficient and enhanced factor with oil concentration is irregular. Two-phase heat transfer multiplier with refrigerant-oil mixture properties increases consistently and monotonically with local oil concentration at different vapor quality. (author)

  10. Convection Heat Transfer in Three-Dimensional Turbulent Separated/Reattached Flow

    SciTech Connect (OSTI)

    Bassem F. Armaly

    2007-10-31

    . Infrared thermography is utilized to measure the wall temperature and that information is used to determine the local convective heat transfer coefficient. FLUENT CFD code is used as the platform in the simulation effort and User Defined Functions are developed for incorporating advanced turbulence models into this simulation code. Predictions of 3-D turbulent convection in separated flow, using the developed simulation capabilities under this grant, compared well with measured results. Results from the above research can be found in the seventeen refereed journal articles, and thirteen refereed publications and presentations in conference proceedings that have been published by the PI during the this grant period. The research effort is still going on and several publications are being prepared for reporting recent results.

  11. Low Temperature Heat Release Behavior of Conventional and Alternative Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in a Motored Engine | Department of Energy Heat Release Behavior of Conventional and Alternative Fuels in a Motored Engine Low Temperature Heat Release Behavior of Conventional and Alternative Fuels in a Motored Engine Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_szybist.pdf (525.23 KB) More Documents & Publications Low Temperature Autoignition of C8H16O2

  12. Apparatus and method for controlling heat transfer between a fluidized bed and tubes immersed therein

    DOE Patents [OSTI]

    Hodges, James L. (3 Hilltop Ave., Vernon, CT 06066); Cerkanowicz, Anthony E. (8 Fieldstone Dr., Livingston, NJ 07039)

    1983-01-01

    In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.

  13. Apparatus and method for controlling heat transfer between a fluidized bed and tubes immersed therein

    DOE Patents [OSTI]

    Hodges, James L. (3 Hilltop Ave., Vernon, CT 06066); Cerkanowicz, Anthony E. (8 Fieldstone Dr., Livingston, NJ 07039)

    1982-01-01

    In a fluidized bed of solid particles having one or more heat exchange tubes immersed therein, the rate of heat transfer between the fluidized particles and a fluid flowing through the immersed heat exchange tubes is controlled by rotating an arcuate shield apparatus about each tube to selectively expose various portions of the tube to the fluidized particles.

  14. Generator-Absorber heat exchange transfer apparatus and method using an intermediate liquor

    DOE Patents [OSTI]

    Phillips, Benjamin A.; Zawacki, Thomas S.

    1996-11-05

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium where the working solution has an intermediate liquor concentration.

  15. New correlation to predict the heat transfer coefficient in-tube cooling of supercritical CO{sub 2} in horizontal macro-tubes

    SciTech Connect (OSTI)

    Oh, Hoo-Kyu; Son, Chang-Hyo

    2010-11-15

    The heat transfer coefficient during gas cooling process of supercritical CO{sub 2} without lubricating oil in horizontal macro-tubes has experimentally investigated. Investigation has done on two stainless steel circular tubes having inside-diameter of 4.55 mm and 7.75 mm and carried out for CO{sub 2} mass fluxes of 200-600 kg/m{sup 2} s, inlet fluid pressures of 7.5-10.0 MPa, and the inlet fluid temperatures of 90-100 C. The experimental results indicate that the gas cooling pressure, the inner tube diameter, the mass flux and the temperature of CO{sub 2} have significant effects on the heat transfer coefficient, especially near pseudo-critical region. The heat transfer coefficient decreases as the cooling pressure increases otherwise increases as mass flux increases. At any temperatures, smaller inner tube diameter shows higher heat transfer coefficient. In comparison between present experimental data and existing correlations from references, most of supercritical heat transfer correlations show large deviations with this present experimental data. Therefore, based on experimental data obtained in this present work, a new correlation is proposed to predict more accurate heat transfer coefficient of supercritical CO{sub 2} in horizontal macro-tubes under cooling conditions. The majority of the experimental values are within 13% of the values predicted by the new correlation. (author)

  16. Fourier analysis of conductive heat transfer for glazed roofing...

    Office of Scientific and Technical Information (OSTI)

    Journal Volume: 1605; Journal Issue: 1; Conference: ... sciences education and research towards global ... THEORY; HARMONICS; HEAT; MATERIALS; NATURAL CONVECTION; ...

  17. Heat removal (wetting, heat transfer, T/H, secondary circuit, code validation etc.)

    SciTech Connect (OSTI)

    Dury, T.; Siman-Tov, M.

    1996-06-01

    This working group provided a comprehensive list of feasibility and uncertainty issues. Most of the issues seem to fall into the `needed but can be worked out` category. They feel these can be worked out as the project develops. A few issues can be considered critical or feasibility issues (that must be proven to be feasible). Those include: (1) Thermal shock and its mitigation (>1 MW); how to inject the He bubbles (if used) - back pressure into He lines - mercury traces in He lines; how to maintain proper bubble distribution and size (static and dynamic; if used); vibrations and fatigue (dynamic); possibility of cavitation from thermal shock. (2) Wetting and/or non-wetting of mercury on containment walls with or without gases and its effect on heat transfer (and materials). (3) Prediction capabilities in the CFD code; bubbles behavior in mercury (if used) - cross stream turbulence (ESS only) - wetting/non-wetting effects. (4) Cooling of beam `windows`; concentration of local heat deposition at center, especially if beam is of parabolic profile.

  18. AN EXPERIMENT TO STUDY PEBBLE BED LIQUID-FLUORIDE-SALT HEAT TRANSFER

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L; Aaron, Adam M; Heatherly, Dennis Wayne; Holcomb, David Eugene; Kisner, Roger A; McCarthy, Mike; Peretz, Fred J; Wilgen, John B; Wilson, Dane F

    2011-01-01

    A forced-convection liquid-fluoride-salt loop is being constructed at Oak Ridge National Laboratory (ORNL). This loop was designed as a versatile experimental facility capable of supporting general thermal/fluid/corrosion testing of liquid fluoride salts. The initial test configuration is designed to support the Pebble Bed Advanced High-Temperature Reactor and incorporates a test section designed to examine the heat transfer behavior of FLiNaK salt in a heated pebble bed. The loop is constructed of Inconel 600 and is capable of operating at up to 700oC. It contains a total of 72 kg of FLiNaK salt and uses an overhung impeller centrifugal sump pump that can provide FLiNaK flow at 4.5 kg/s with a head of 0.125 MPa. The test section is made of silicon carbide (SiC) and contains approximately 600 graphite spheres, 3 cm in diameter. The pebble bed is heated using a unique inductive technique. A forced induction air cooler removes the heat added to the pebble bed. The salt level within the loop is maintained by controlling an argon cover gas pressure. Salt purification is performed in batch mode by transferring the salt from the loop into a specially made nickel crucible system designed to remove oxygen, moisture and other salt impurities. Materials selection for the loop and test section material was informed by 3 months of Inconel 600 and SiC corrosion testing as well as tests examining subcomponent performance in the salt. Several SiC-to-Inconel 600 mechanical joint designs were considered before final salt and gas seals were chosen. Structural calculations of the SiC test section were performed to arrive at a satisfactory test section configuration. Several pump vendors provided potential loop pump designs; however, because of cost, the pump was designed and fabricated in-house. The pump includes a commercial rotating dry gas shaft seal to maintain loop cover gas inventory. The primary instrumentation on the loop includes temperature, pressure, and loop flow rate

  19. 3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL

    SciTech Connect (OSTI)

    Grant L. Hawkes; James E. O'Brien; Greg Tao

    2011-11-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal

  20. Comparison of the high temperature heat flux sensor to traditional heat flux gages under high heat flux conditions.

    SciTech Connect (OSTI)

    Blanchat, Thomas K.; Hanks, Charles R.

    2013-04-01

    Four types of heat flux gages (Gardon, Schmidt-Boelter, Directional Flame Temperature, and High Temperature Heat Flux Sensor) were assessed and compared under flux conditions ranging between 100-1000 kW/m2, such as those seen in hydrocarbon fire or propellant fire conditions. Short duration step and pulse boundary conditions were imposed using a six-panel cylindrical array of high-temperature tungsten lamps. Overall, agreement between all gages was acceptable for the pulse tests and also for the step tests. However, repeated tests with the HTHFS with relatively long durations at temperatures approaching 1000%C2%B0C showed a substantial decrease (10-25%) in heat flux subsequent to the initial test, likely due to the mounting technique. New HTHFS gages have been ordered to allow additional tests to determine the cause of the flux reduction.

  1. Sensible heat transfer receiver for solar dynamic space power system

    SciTech Connect (OSTI)

    Perez-davis, M.E.; Gaier, J.R.; Petrefski, C.

    1991-01-01

    A sensible heat receiver considered in this study uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage media and was designed for a 7 kW Brayton engine. The proposed heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7 kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.

  2. Remote high-temperature insulatorless heat-flux gauge

    DOE Patents [OSTI]

    Noel, Bruce W. (Espanola, NM)

    1993-01-01

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge.

  3. Remote high-temperature insulatorless heat-flux gauge

    DOE Patents [OSTI]

    Noel, B.W.

    1993-12-28

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge. 3 figures.

  4. Chemistry control and corrosion mitigation of heat transfer salts for the fluoride salt reactor (FHR)

    SciTech Connect (OSTI)

    Kelleher, B. C.; Sellers, S. R.; Anderson, M. H.; Sridharan, K.; Scheele, R. D.

    2012-07-01

    The Molten Salt Reactor Experiment (MSRE) was a prototype nuclear reactor which operated from 1965 to 1969 at Oak Ridge National Laboratory. The MSRE used liquid fluoride salts as a heat transfer fluid and solvent for fluoride based {sup 235}U and {sup 233}U fuel. Extensive research was performed in order to optimize the removal of oxide and metal impurities from the reactor's heat transfer salt, 2LiF-BeF{sub 2} (FLiBe). This was done by sparging a mixture of anhydrous hydrofluoric acid and hydrogen gas through the FLiBe at elevated temperatures. The hydrofluoric acid reacted with oxides and hydroxides, fluorinating them while simultaneously releasing water vapor. Metal impurities such as iron and chromium were reduced by hydrogen gas and filtered out of the salt. By removing these impurities, the corrosion of reactor components was minimized. The Univ. of Wisconsin - Madison is currently researching a new chemical purification process for fluoride salts that make use of a less dangerous cleaning gas, nitrogen trifluoride. Nitrogen trifluoride has been predicted as a superior fluorinating agent for fluoride salts. These purified salts will subsequently be used for static and loop corrosion tests on a variety of reactor materials to ensure materials compatibility for the new FHR designs. Demonstration of chemistry control methodologies along with potential reduction in corrosion is essential for the use of a fluoride salts in a next generator nuclear reactor system. (authors)

  5. FEHMN 1.0: Finite element heat and mass transfer code

    SciTech Connect (OSTI)

    Zyvoloski, G.; Dash, Z.; Kelkar, S.

    1991-04-01

    A computer code is described which can simulate non-isothermal multiphase multicomponent flow in porous media. It is applicable to natural-state studies of geothermal systems and ground-water flow. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved using the finite element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat and mass transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. A summary of the equations in the model and the numerical solution procedure are provided in this report. A user`s guide and sample problems are also included. The main use of FEHMN will be to assist in the understanding of flow fields in the saturated zone below the proposed Yucca Mountain Repository. 33 refs., 27 figs., 12 tabs.

  6. A Validation Study of Pin Heat Transfer for MOX Fuel Based on the IFA-597 Experiments

    SciTech Connect (OSTI)

    Phillippe, Aaron M; Clarno, Kevin T; Banfield, James E; Ott, Larry J; Philip, Bobby; Berrill, Mark A; Sampath, Rahul S; Allu, Srikanth; Hamilton, Steven P

    2014-01-01

    Abstract The IFA-597 (Integrated Fuel Assessment) experiments from the International Fuel Performance Experiments (IFPE) database were designed to study the thermal behavior of mixed oxide (MOX) fuel and the effects of an annulus on fission gas release in light-water-reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for MOX fuel systems was performed, with a focus on the first 20 time steps ( 6 GWd/MT(iHM)) for explicit comparison between the codes. In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole, dish, and chamfer. The analysis demonstrated relative agreement for both solid (rod 1) and annular (rod 2) fuel in the experiment, demonstrating the accuracy of the codes and their underlying material models for MOX fuel, while also revealing a small energy loss artifact in how gap conductance is currently handled in Exnihilo for chamfered fuel pellets. The within-pellet power shape was shown to significantly impact the predicted centerline temperatures. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for MOX fuel with respect to a well-validated nuclear fuel performance code.

  7. Mathematical modeling of sulfide flash smelting process. Part 2; Quantitative analysis of radiative heat transfer

    SciTech Connect (OSTI)

    Hahn, Y.B. ); Sohn, H.Y. )

    1990-12-01

    This paper reports on a mathematical model developed to describe the rate processes in an axisymmetric copper flash smelting furnace shaft. A particular feature of the model is the incorporation of the four-flux model to describe the radiative heat transfer by combining the absorbing, emitting, and anisotropic scattering phenomena. The importance of various subprocesses of the radiative heat transfer in a flash smelting furnace has been studied. Model predictions showed that the radiation from the furnace walls and between the particles and the surrounding is the dominant mode of heat transfer in a flash smelting furnace.

  8. DOE Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects For Up to $67.6 Million | Department of Energy 15 New Projects to Develop Solar Power Storage and Heat Transfer Projects For Up to $67.6 Million DOE Funds 15 New Projects to Develop Solar Power Storage and Heat Transfer Projects For Up to $67.6 Million September 19, 2008 - 3:43pm Addthis WASHINGTON - U.S. Department of Energy (DOE) today announced selections for negotiations of award under the Funding Opportunity Announcement (FOA), Advanced Heat Transfer Fluids and Novel Thermal

  9. Effect of lubricant on spray evaporation heat transfer performance of R-134a and R-22 in tube bundles

    SciTech Connect (OSTI)

    Moeykens, S.A.; Pate, M.B.

    1996-11-01

    This study evaluates the effects of lubricant on spray evaporation heat transfer performance. Tests were conducted with refrigerant R-134a and triangular-pitch tube bundles made from enhanced-condensation, enhanced-boiling, low-finned, and plain-surface tubes. A 340-SUS polyol-ester (POE) oil was used for the R-134a testing because this lubricant is being integrated into industry for use with this refrigerant. Refrigerant was sprayed onto the tube bundles with low-pressure-drop, wide-angle nozzles located directly above the bundle. Collector testing was conducted with both R-134a and R-22 to determine the percentage of refrigerant contacting the tue bundle. It was found that small concentrations of the polyol-ester lubricant yielded significant improvement in the heat transfer performance of R-134a. The shell-side heat transfer coefficient was more dependent on lubricant concentration than on film-feed supply rate within the range of the respective parameters evaluated in this study. As expected, pure R-22 results show higher heat transfer coefficients than those obtained with pure R-134a at the same saturation temperature of 2.0 C (35.6 F).

  10. Modeling of coupled heat transfer and reactive transport processesin...

    Office of Scientific and Technical Information (OSTI)

    heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water ...

  11. Heat transfer and flow resistance of a shell and plate-type evaporator

    SciTech Connect (OSTI)

    Uehara, H.; Stuhltraeger, E.; Miyara, A.; Murakami, H.; Miyazaki, K.

    1997-05-01

    The performance test of a shell-and-plate-type evaporator designed for OTEC plants, geothermal power plants, and heat pump systems is reported. This evaporator contains 30 plates with a unit area of 0.813 m{sup 2}, coated with aluminum powder on the working fluid side. Freon 22 is used as working fluid. Results show an overall heat transfer coefficient of about 5,000 W/(m{sup 2}K) when the heating water velocity is 1M/s. The mean boiling heat transfer coefficient is compared with a precious correlation proposed by Nakaoka and Uehara (1988). The water-side pressure loss is also reported.

  12. Use of Multiple Reheat Helium Brayton Cycles to Eliminate the Intermediate Heat Transfer Loop for Advanced Loop Type SFRs

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Samuel E. Bays

    2009-05-01

    The sodium intermediate heat transfer loop is used in existing sodium cooled fast reactor (SFR) plant design as a necessary safety measure to separate the radioactive primary loop sodium from the water of the steam Rankine power cycle. However, the intermediate heat transfer loop significantly increases the SFR plant cost and decreases the plant reliability due to the relatively high possibility of sodium leakage. A previous study shows that helium Brayton cycles with multiple reheat and intercooling for SFRs with reactor outlet temperature in the range of 510°C to 650°C can achieve thermal efficiencies comparable to or higher than steam cycles or recently proposed supercritical CO2 cycles. Use of inert helium as the power conversion working fluid provides major advantages over steam or CO2 by removing the requirement for safety systems to prevent and mitigate the sodium-water or sodium-CO2 reactions. A helium Brayton cycle power conversion system therefore makes the elimination of the intermediate heat transfer loop possible. This paper presents a pre-conceptual design of multiple reheat helium Brayton cycle for an advanced loop type SFR. This design widely refers the new horizontal shaft distributed PBMR helium power conversion design features. For a loop type SFR with reactor outlet temperature 550°C, the design achieves 42.4% thermal efficiency with favorable power density comparing with high temperature gas cooled reactors.

  13. RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES

    SciTech Connect (OSTI)

    Smith, A

    2008-12-31

    The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

  14. Estimating Heat and Mass Transfer Processes in Green Roof Systems: Current Modeling Capabilities and Limitations (Presentation)

    SciTech Connect (OSTI)

    Tabares Velasco, P. C.

    2011-04-01

    This presentation discusses estimating heat and mass transfer processes in green roof systems: current modeling capabilities and limitations. Green roofs are 'specialized roofing systems that support vegetation growth on rooftops.'

  15. Clean Boiler Water-side Heat Transfer Surfaces - Steam Tip Sheet #7

    SciTech Connect (OSTI)

    2012-01-31

    This revised AMO tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  16. Application Of A Spherical-Radial Heat Transfer Model To Calculate...

    Open Energy Info (EERE)

    A Spherical-Radial Heat Transfer Model To Calculate Geothermal Gradients From Measurements In Deep Boreholes Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  17. Indium tin oxide nanowires as hyperbolic metamaterials for near-field radiative heat transfer

    SciTech Connect (OSTI)

    Chang, Jui-Yung; Basu, Soumyadipta Wang, Liping

    2015-02-07

    We investigate near-field radiative heat transfer between Indium Tin Oxide (ITO) nanowire arrays which behave as type 1 and 2 hyperbolic metamaterials. Using spatial dispersion dependent effective medium theory to model the dielectric function of the nanowires, the impact of filling fraction on the heat transfer is analyzed. Depending on the filling fraction, it is possible to achieve both types of hyperbolic modes. At 150?nm vacuum gap, the heat transfer between the nanowires with 0.5 filling fraction can be 11 times higher than that between two bulk ITOs. For vacuum gaps less than 150?nm the heat transfer increases as the filling fraction decreases. Results obtained from this study will facilitate applications of ITO nanowires as hyperbolic metamaterials for energy systems.

  18. Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for CSP Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    In 2008, DOE issued the Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for Concentrating Solar Power (CSP) Generation funding opportunity announcement (FOA) managed by the SunShot Initiative. The following projects were selected under this competitive solicitation.

  19. Numerical Analysis of Coolant Flow and Heat Transfer in ITER Diagnostic First Wall

    SciTech Connect (OSTI)

    Khodak, A.; Loesser, G.; Zhai, Y.; Udintsev, V.; Klabacha, J.; Wang, W.; Johnson, D.; Feder, R.

    2015-07-24

    We performed numerical simulations of the ITER Diagnostic First Wall (DFW) using ANSYS workbench. During operation DFW will include solid main body as well as liquid coolant. Thus thermal and hydraulic analysis of the DFW was performed using conjugated heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously fluid dynamics analysis was performed only in the liquid part. This approach includes interface between solid and liquid part of the systemAnalysis was performed using ANSYS CFX software. CFX software allows solution of heat transfer equations in solid and liquid part, and solution of the flow equations in the liquid part. Coolant flow in the DFW was assumed turbulent and was resolved using Reynolds averaged Navier-Stokes equations with Shear Stress Transport turbulence model. Meshing was performed using CFX method available within ANSYS. The data cloud for thermal loading consisting of volumetric heating and surface heating was imported into CFX Volumetric heating source was generated using Attila software. Surface heating was obtained using radiation heat transfer analysis. Our results allowed us to identify areas of excessive heating. Proposals for cooling channel relocation were made. Additional suggestions were made to improve hydraulic performance of the cooling system.

  20. Numerical Analysis of Coolant Flow and Heat Transfer in ITER Diagnostic First Wall

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khodak, A.; Loesser, G.; Zhai, Y.; Udintsev, V.; Klabacha, J.; Wang, W.; Johnson, D.; Feder, R.

    2015-07-24

    We performed numerical simulations of the ITER Diagnostic First Wall (DFW) using ANSYS workbench. During operation DFW will include solid main body as well as liquid coolant. Thus thermal and hydraulic analysis of the DFW was performed using conjugated heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously fluid dynamics analysis was performed only in the liquid part. This approach includes interface between solid and liquid part of the systemAnalysis was performed using ANSYS CFX software. CFX software allows solution of heat transfer equations in solid and liquid part, and solution ofmore » the flow equations in the liquid part. Coolant flow in the DFW was assumed turbulent and was resolved using Reynolds averaged Navier-Stokes equations with Shear Stress Transport turbulence model. Meshing was performed using CFX method available within ANSYS. The data cloud for thermal loading consisting of volumetric heating and surface heating was imported into CFX Volumetric heating source was generated using Attila software. Surface heating was obtained using radiation heat transfer analysis. Our results allowed us to identify areas of excessive heating. Proposals for cooling channel relocation were made. Additional suggestions were made to improve hydraulic performance of the cooling system.« less

  1. A WSRC-MS-g8-00318 Heat Transfer Model of Above and Underground...

    Office of Scientific and Technical Information (OSTI)

    MEETING 8 , INTERNATIONAL JOINT POWER GENERATION CONFERENCE 1998 at Baltimore, MA, USA ... the above calculations for thermal resistance, heat loss and core fluid temperature. ...

  2. Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power (CSP) Plants | Department of Energy Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. csp_review_meeting_042413_ma2.pdf (742.39 KB) More Documents & Publications CX-009561: Categorical Exclusion

  3. An experimental study of pool boiling heat transfer in reduced gravity

    SciTech Connect (OSTI)

    Shatto, D.P.; Renzi, K.I.; Peterson, G.P.; Morris, T.K.; Aaron, J.W.

    1996-12-31

    Experiments were performed in which pool boiling of pure water at reduced pressures was observed for behavior of the critical heatflux (CHF) and nucleate boiling heat transfer coefficients in a reduced gravitational environment. The experiments took place while alternating between microgravity and g/g{sub o} = 1.8 during parabolic flights aboard the NASA 930 (KC-135A). Heat transfer data were also obtained at Martian gravity levels (g/g{sub o} = 1/3). Parts of the test chamber were constructed of transparent materials to allow viewing and recording of the various boiling regimes encountered during the experiments. Results indicate that the onset of nucleate boiling occurred at lower heat fluxes in reduced gravity, resulting in higher two-phase heat transfer coefficients for g/g{sub o} < 1 than for g/g{sub o} = 1.8. In addition, the results indicate a significant reduction in the critical heat flux under reduced gravity conditions.

  4. PBMR as an Ideal Heat Source for High-Temperature Process Heat Applications

    SciTech Connect (OSTI)

    Correia, Michael; Greyvenstein, Renee; Silady, Fred; Penfield, Scott

    2006-07-01

    The Pebble Bed Modular Reactor (PBMR) is an advanced helium-cooled, graphite-moderated High Temperature Gas-cooled Reactor (HTGR). A 400 MWt PBMR Demonstration Power Plant (DPP) for the production of electricity is being developed in South Africa. This PBMR technology is also an ideal heat source for process heat applications, including Steam Methane Reforming, steam for Oil Sands bitumen recovery, Hydrogen Production and co-generation (process heat and/or electricity and/or process steam) for petrochemical industries. The cycle configuration used to transport the heat of the reactor to the process plant or to convert the reactor's heat into electricity or steam directly influences the cycle efficiency and plant economics. The choice of cycle configuration depends on the process requirements and is influenced by practical considerations, component and material limitations, maintenance, controllability, safety, performance, risk and cost. This paper provides an overview of the use of a PBMR reactor for process applications and possible cycle configurations are presented for applications which require high temperature process heat and/or electricity. (authors)

  5. Comparison of Alternatives to the 2004 Vacuum Vessel Heat Transfer...

    Office of Scientific and Technical Information (OSTI)

    heat from the VV itself and from the structurescomponents attached to the VV (first wall, blanket, and divertor approx0.48 MW peak). Therefore, the VV PHTS has two safety...

  6. Collisionless inter-species energy transfer and turbulent heating in drift wave turbulence

    SciTech Connect (OSTI)

    Zhao, L.; Diamond, P. H.

    2012-08-15

    We reconsider the classic problems of calculating 'turbulent heating' and collisionless inter-species transfer of energy in drift wave turbulence. These issues are of interest for low collisionality, electron heated plasmas, such as ITER, where collisionless energy transfer from electrons to ions is likely to be significant. From the wave Poynting theorem at steady state, a volume integral over an annulus r{sub 1}heating as {integral}{sub r{sub 1}} {sup r{sub 2}} dr=-S{sub r}|{sub r{sub 1}{sup r{sub 2}}}{ne}0. Here S{sub r} is the wave energy density flux in the radial direction. Thus, a wave energy flux differential across an annular region indeed gives rise to a net heating, in contrast to previous predictions. This heating is related to the Reynolds work by the zonal flow, since S{sub r} is directly linked to the zonal flow drive. In addition to net heating, there is inter-species heat transfer. For collisionless electron drift waves, the total turbulent energy source for collisionless heat transfer is due to quasilinear electron cooling. Subsequent quasilinear ion heating occurs through linear ion Landau damping. In addition, perpendicular heating via ion polarization currents contributes to ion heating. Since at steady state, Reynolds work of the turbulence on the zonal flow must balance zonal flow frictional damping ({approx}{nu}{sub ii}{sup 2}{approx}|(e{phi}(tilde sign)/T)|{sup 4}), it is no surprise that zonal flow friction appears as an important channel for ion heating. This process of energy transfer via zonal flow has not previously been accounted for in analyses of energy transfer. As an application, we compare the rate of turbulent energy transfer in a low collisionality plasma with the rate of the energy transfer by collisions. The result shows that the collisionless turbulent energy transfer is a significant energy coupling process for ITER plasma.

  7. THE POTENTIAL OF NANOPARTICLE ENHANCED IONIC LIQUIDS (NEILS) AS ADVANCED HEAT TRANSFER FLUIDS

    SciTech Connect (OSTI)

    Fox, E.; Bridges, N.; Visser, A.

    2011-09-14

    Interest in capturing the energy of the sun is rising as demands for renewable energy sources increase. One area of developing research is the use of concentrating solar power (CSP), where the solar energy is concentrated by using mirrors to direct the sunlight towards a collector filled with a heat transfer fluid (HTF). The HTF transfers the collected energy into pressurized steam, which is used to generate energy. The greater the energy collected by the HTF, the more efficent the electrical energy production is, thus the overall efficiency is controlled by the thermal fluid. Commercial HTFs such as Therminol{reg_sign} (VP-1), which is a blend of biphenyl and diphenyl oxide, have a significant vapor pressure, especially at elevated temperatures. In order for these volatile compounds to be used in CSP systems, the system either has to be engineered to prevent the phase change (i.e., volatilization and condensation) through pressurization of the system, or operate across the phase change. Over thirty years ago, a class of low-melting organic compounds were developed with negligible vapor pressure. These compounds are referred to as ionic liquids (ILs), which are organic-based compounds with discrete charges that cause a significant decrease in their vapor pressure. As a class, ILs are molten salts with a melting point below 100 C and can have a liquidus range approaching 400 C, and in several cases freezing points being below 0 C. Due to the lack of an appreciable vapor pressure, volatilization of an IL is not possible at atmospheric pressure, which would lead to a simplification of the design if used as a thermal fluid and for energy storage materials. Though the lack of a vapor pressure does not make the use of ILs a better HTF, the lack of a vapor pressure is a compliment to their higher heat capacity, higher volummetric density, and thus higher volumetric heat capacity. These favorable physical properties give ILs a pontential advantage over the current

  8. Fabrication and Design Aspects of High-Temperature Compact Diffusion Bonded Heat Exchangers

    SciTech Connect (OSTI)

    Mylavarapu, Sai K.; Sun, Xiaodong; Christensen, Richard N.; Glosup, Richard E.; Unocic, Raymond R

    2012-01-01

    The very high temperature reactor (VHTR), using gas-cooled reactor technology, is one of the six reactor concepts selected by the Generation IV International Forum and is anticipated to be the reactor type for the next generation nuclear plant (NGNP). In this type of reactor with an indirect power cycle system, a high-temperature and high integrity intermediate heat exchanger (IHX) with high effectiveness is required to efficiently transfer the core thermal output to secondary fluid for electricity production, process heat, or hydrogen cogeneration. The current Technology Readiness Level status issued by NGNP to all components associated with the IHX for reactor core outlet temperatures of 750-800oC is 3 on a scale of 1 to 10 with 10 being the most ready. At present, there is no proven high-temperature IHX concept for VHTRs. Amongst the various potential IHX concepts available, diffusion bonded heat exchangers (henceforth called printed circuit heat exchangers, or PCHEs) appear promising for NGNP applications. The design and fabrication of this key component of NGNP is the primary focus of this paper. In the current study, two PCHEs were fabricated using Alloy 617 plates and will be experimentally investigated for their thermal-hydraulic performance in a high-temperature helium test facility (HTHF). The HTHF was primarily designed and constructed to test the thermal-hydraulic performance of PCHEs The test facility is primarily of Alloy 800H construction and is designed to facilitate experiments at temperatures and pressures up to 800oC and 3 MPa, respectively. The PCHE fabrication related processes, i.e., photochemical machining and diffusion bonding are briefly discussed for Alloy 617 plates. Diffusion bonding of Alloy 617 plates with and without a Ni interlayer is discussed. Furthermore, preliminary microstructural and mechanical characterization studies of representative diffusion bonded Alloy 617 specimens are presented.

  9. Buoyancy effects on conjugate heat transfer due to a laminar impinging jet: Preliminary results

    SciTech Connect (OSTI)

    Altieri, G.; De Luca, V.; Ruocco, G.

    1999-07-01

    A numerical analysis for fluid flow and conjugate conduction/convection heat transfer from a laminar, planar gas jet impingement (JI) on a finite thickness, discretely heated substrate is performed, which includes the effect of buoyancy. The competition between transfer of heat by conduction in the plate and by convection in the fluid is examined. A combination of assisting or opposing mixed convection is modeled, and the related flow field as well as local heat transfer rate is studied as a function of the mixed convection parameter, the Richardson number, for a given geometry and a thermal-fluid base-case. Preliminary evaluations of the heat transfer rate are presented as local Nusselt number distributions, for nonbuoyant, assisted and opposed impinging jets, along the impinged substrate. The complex, non-monotonic progresses of these results justify the inclusion of the conduction mechanism in the substrate, in order to correctly quantify the driving parameters for the heat transfer control. The presented calculations are in fair accordance with existing literature which is limited to pure fluid jet impingement. The inclusion of the conduction mechanism confirms the absence of the conjugate effect when an opposing cooling jet configuration is realized.

  10. Application of Analytical Heat Transfer Models of Multi-layered...

    Office of Scientific and Technical Information (OSTI)

    multi-layered cylindrical solution to simulate the temperature response of a deep geologic radioactive waste repository with multi-layered natural and engineered...

  11. Bibliography on augmentation of convective heat and mass transfer-II

    SciTech Connect (OSTI)

    Bergles, A.E.; Nirmalan, V.; Junkhan, G.H.; Webb, R.L.

    1983-12-01

    Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. This report presents and updated bibliography of world literature on augmentation. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fifteen techniques are grouped in terms of their applications to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 3045, including 135 surveys of various techniques and 86 papers on performance evaluation of passive techniques. Patents are not included, as they are the subject of a separate bibliographic report.

  12. Three-dimensional modeling of heat transfer from slab floors. Final report

    SciTech Connect (OSTI)

    Bahnfleth, W.P.

    1989-07-01

    Earth-coupled heat-transfer processes have been recognized in recent years as a potential source of significant energy savings in both conventional and earth-sheltered designs, Because of the complexity of the building/soil/atmosphere interaction, however, important aspects of earth-coupled heat transfer are not well understood. There is a particular lack of three-dimensional foundation heat-loss data. In this study, a detailed three-dimensional finite-difference model of a slab floor was used to generate 93 annual simulations in parametric groups focusing on effects of size and shape, soil properties, boundary conditions, climate, insulation, and building shadow. These results indicate that soil thermal conductivity, ground surface conditions, foundation design, and floor shape/size are essential elements of a general change in heat-transfer rate.

  13. Advances in two-phase flow and heat transfer fundamentals and applications volumes I and II

    SciTech Connect (OSTI)

    Kakac, S.; Ishil, M.

    1983-01-01

    Two-phase flow applications are found in a wide range of engineering systems, such as nuclear and conventional power plants, evaporators of refrigeration systems and a wide variety of evaporative and condensive heat exchangers in the chemical industry. This publication is based on the invited lectures presented at the NATO Advanced Research Workshop on the Advances in Two-Phase Flow and Heat Transfer. Leading scientists and practicing engineers from NATO and non-NATO countries convened to discuss two-phase flow and heat transfer and formulated recommendations for future research directions. These two volumes incorporate a systematic approach to two-phase flow analysis, and present both basic and applied information. The volumes identify the unresolved problem areas and provide suggestions for priority research topics in the field of two-phase flow and heat transfer.

  14. Effective-medium model of wire metamaterials in the problems of radiative heat transfer

    SciTech Connect (OSTI)

    Mirmoosa, M. S. Nefedov, I. S. Simovski, C. R.; Rüting, F.

    2014-06-21

    In the present work, we check the applicability of the effective medium model (EMM) to the problems of radiative heat transfer (RHT) through so-called wire metamaterials (WMMs)—composites comprising parallel arrays of metal nanowires. It is explained why this problem is so important for the development of prospective thermophotovoltaic (TPV) systems. Previous studies of the applicability of EMM for WMMs were targeted by the imaging applications of WMMs. The analogous study referring to the transfer of radiative heat is a separate problem that deserves extended investigations. We show that WMMs with practically realizable design parameters transmit the radiative heat as effectively homogeneous media. Existing EMM is an adequate tool for qualitative prediction of the magnitude of transferred radiative heat and of its effective frequency band.

  15. Transient heat and mass transfer analysis in a porous ceria structure of a novel solar redox reactor

    SciTech Connect (OSTI)

    Chandran, RB; Bader, R; Lipinski, W

    2015-06-01

    Thermal transport processes are numerically analyzed for a porous ceria structure undergoing reduction in a novel redox reactor for solar thermochemical fuel production. The cylindrical reactor cavity is formed by an array of annular reactive elements comprising the porous ceria monolith integrated with gas inlet and outlet channels. Two configurations are considered, with the reactor cavity consisting of 10 and 20 reactive elements, respectively. Temperature dependent boundary heat fluxes are obtained on the irradiated cavity wall by solving for the surface radiative exchange using the net radiation method coupled to the heat and mass transfer model of the reactive element. Predicted oxygen production rates are in the range 40-60 mu mol s(-1) for the geometries considered. After an initial rise, the average temperature of the reactive element levels off at 1660 and 1680 K for the two geometries, respectively. For the chosen reduction reaction rate model, oxygen release continues after the temperature has leveled off which indicates that the oxygen release reaction is limited by chemical kinetics and/or mass transfer rather than by the heating rate. For a fixed total mass of ceria, the peak oxygen release rate is doubled for the cavity with 20 reactive elements due to lower local oxygen partial pressure. (C) 2015 Elsevier Masson SAS. All rights reserved.

  16. Enhancement of Heat Transfer with Pool and Spray Impingement Boiling on Microporous and Nanowire Surface Coatings

    SciTech Connect (OSTI)

    Thiagarajan, S. J.; Wang, W.; Yang, R.; Narumanchi, S.; King, C.

    2010-09-01

    The DOE National Renewable Energy Laboratory (NREL) is leading a national effort to develop next-generation cooling technologies for hybrid vehicle electronics. The goal is to reduce the size, weight, and cost of power electronic modules that convert direct current from batteries to alternating current for the motor, and vice versa. Aggressive thermal management techniques help to increase power density and reduce weight and volume, while keeping chip temperatures within acceptable limits. The viability of aggressive cooling schemes such as spray and jet impingement in conjunction with enhanced surfaces is being explored. Here, we present results from a series of experiments with pool and spray boiling on enhanced surfaces, such as a microporous layer of copper and copper nanowires, using HFE-7100 as the working fluid. Spray impingement on the microporous coated surface showed an enhancement of 100%-300% in the heat transfer coefficient at a given wall superheat with respect to spray impingement on a plain surface under similar operating conditions. Critical heat flux also increased by 7%-20%, depending on flow rates.

  17. A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields

    SciTech Connect (OSTI)

    Zigh, Ghani; Solis, Jorge; Fort, James A.

    2011-01-14

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 5-10 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper presents results for a simple 2-D problem that is an effective numerical analog for the neutron shield application. Because it is 2-D, solutions can be obtained relatively quickly allowing a comparison and assessment of sensitivity to model parameter changes. Turbulence models are considered as

  18. Investigation of Heat Transfer at the Mold/Metal Interface in Permanent Mold Casting of Light Alloys

    SciTech Connect (OSTI)

    Robert D. Pehlke; John T. Berry

    2005-12-16

    Accurate modeling of the metal casting process prior to creating a mold design demands reliable knowledge of the interfacial heat transfer coefficient at the mold metal interface as a function of both time and location. The phenomena concerned with the gap forming between the mold and the solidifying metal are complex but need to be understood before any modeling is attempted. The presence of mold coatings further complicates the situation. A commercial casting was chosen and studied in a gravity permanent mold casting process. The metal/mold interfacial heat transfer coefficient (IHTC) was the focus of the research. A simple, direct method has been used to evaluate the IHTC. Both the simulation and experiments have shown that a reasonably good estimate of the heat transfer coefficient could be made in the case studied. It has been found that there is a good agreement between experiments and simulations in the temperature profiles during the solidification process, given that the primary mechanism of heat transfer across the gap in permanent mold casting of light alloys is by conduction across the gap. The procedure utilized to determine the interfacial heat transfer coefficient can be applied to other casting processes. A recently completed project involving The University of Michigan and Mississippi State University, together with several industrial partners, which was supported by the USDOE through the Cast Metals Coalition, examined a number of cases of thermal contact. In an investigation which gave special consideration to the techniques of measurement, several mold coatings were employed and results presented as a function of time. Realistic conditions of coating thickness and type together with an appropriate combination of mold preheat and metal pouring temperature were strictly maintained throughout the investigation. Temperature sensors, in particular thermocouples, play an important part in validating the predictions of solidification models. Cooling

  19. Impingement heat transfer within arrays of circular jets including the effect of crossflow

    SciTech Connect (OSTI)

    Matsumoto, Ryosuke; Ishihara, Isao; Yabe, Toshiaki; Ikeda, Keita; Kikkawa, Shinzo; Senda, Mamoru

    1999-07-01

    The purpose of this work is to investigate the heat transfer and the flow characteristics for the arrays of impingement jets taking into consideration the effect of the crossflow. In this experiment, two types of the crossflow schemes, referred to as the minimum crossflow and the maximum crossflow by the Obot et al. (1987), were examined. In the case of the maximum crossflow, the exhaust air was restricted by the side wall to leave through one side of the jet array. In the case of the minimum crossflow, the side wall was removed, and the exhaust air flowed away through all four edges of the jet array. To examine the flow pattern of the exhaust air, the flow visualization by the smoke flow was carried out. The air after impinging to the target surface was entrained into the downstream adjacent jet. The exhaust air was discharged to the outside of array through two ways: One was that the air was discharged to outside by entraining into the downstream adjacent jet. The other was that the exhaust air was discharged along the endwall surface on the mid-span of adjacent jets. The thermosensitive liquid crystal sheet was applied to measure the temperature distributions and to obtain the local heat transfer coefficients on the impingement surface. The local Nusselt number distribution for the maximum crossflow was hardly decreased in the downstream rows, although the velocity of the exhaust air increased. In the downstream row, however, the distribution of the local Nusselt number is non-circular shape because of the exhaust air. The averaged Nusselt number for the maximum crossflow was slightly lower than that in the case of minimum crossflow.

  20. Phenylnaphthalene as a Heat Transfer Fluid for Concentrating...

    Office of Scientific and Technical Information (OSTI)

    trough type CSP collector, to temperatures up to 500 C. The oil was chosen because of its thermal stability and calculated low vapor and critical pressures. The oil has been...

  1. High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    SciTech Connect (OSTI)

    Tarau, Calin; Walker, Kara L.; Anderson, William G.

    2009-03-16

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

  2. Modeling of dissociation and energy transfer in shock-heated nitrogen flows

    SciTech Connect (OSTI)

    Munafò, A.; Liu, Y.; Panesi, M.

    2015-12-15

    This work addresses the modeling of dissociation and energy transfer processes in shock heated nitrogen flows by means of the maximum entropy linear model and a newly proposed hybrid bin vibrational collisional model. Both models aim at overcoming two of the main limitations of the state of the art non-equilibrium models: (i) the assumption of equilibrium between rotational and translational energy modes of the molecules and (ii) the reliance on the quasi-steady-state distribution for the description of the population of the internal levels. The formulation of the coarse-grained models is based on grouping the energy levels into bins, where the population is assumed to follow a Maxwell-Boltzmann distribution at its own temperature. Different grouping strategies are investigated. Following the maximum entropy principle, the governing equations are obtained by taking the zeroth and first-order moments of the rovibrational master equations. The accuracy of the proposed models is tested against the rovibrational master equation solution for both flow quantities and population distributions. Calculations performed for free-stream velocities ranging from 5 km/s to 10 km/s demonstrate that dissociation can be accurately predicted by using only 2-3 bins. It is also shown that a multi-temperature approach leads to an under-prediction of dissociation, due to the inability of the former to account for the faster excitation of high-lying vibrational states.

  3. Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Developing a low and high temperature dual thermoelectric generation waste heat recovery system for light-duty vehicles.

  4. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    SciTech Connect (OSTI)

    Li, Q.; Kang, Q. J.; Francois, M. M.; He, Y. L.; Luo, K. H.

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic features and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.

  5. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Q.; Kang, Q. J.; Francois, M. M.; He, Y. L.; Luo, K. H.

    2015-03-03

    A hybrid thermal lattice Boltzmann (LB) model is presented to simulate thermal multiphase flows with phase change based on an improved pseudopotential LB approach (Li et al., 2013). The present model does not suffer from the spurious term caused by the forcing-term effect, which was encountered in some previous thermal LB models for liquid–vapor phase change. Using the model, the liquid–vapor boiling process is simulated. The boiling curve together with the three boiling stages (nucleate boiling, transition boiling, and film boiling) is numerically reproduced in the LB community for the first time. The numerical results show that the basic featuresmore » and the fundamental characteristics of boiling heat transfer are well captured, such as the severe fluctuation of transient heat flux in the transition boiling and the feature that the maximum heat transfer coefficient lies at a lower wall superheat than that of the maximum heat flux. Moreover, the effects of the heating surface wettability on boiling heat transfer are investigated. It is found that an increase in contact angle promotes the onset of boiling but reduces the critical heat flux, and makes the boiling process enter into the film boiling regime at a lower wall superheat, which is consistent with the findings from experimental studies.« less

  6. The local heat transfer mathematical model between vibrated fluidized beds and horizontal tubes

    SciTech Connect (OSTI)

    Zhu, Xuejun; Ye, Shichao; Pan, Xiaoheng

    2008-05-15

    A dimensionless mathematical model is proposed to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes, and the effects of the thickness of gas film and the contact time of particle packets are well considered. Experiments using the glass beads (the average diameter bar d{sub p}=1.83mm) were conducted in a two-dimensional vibrated fluidized bed (240 mm x 80 mm). The local heat transfer law between vibrated fluidized bed and horizontal tube surface has been investigated. The results show that the values of theoretical prediction are in good agreement with experimental data, so the model is able to predict the local heat transfer coefficients between vibrated fluidized beds and immersed horizontal tubes reasonably well, and the error is in range of {+-}15%. The results can provide references for future designing and researching on the vibrated fluidized beds with immersed horizontal tubes. (author)

  7. Heat transfer including radiation and slag particles evolution in MHD channel-I

    SciTech Connect (OSTI)

    Im, K.H.; Ahluwalia, R.K.

    1980-01-01

    Accurate estimates of convective and radiative heat transfer in the magnetohydrodynamic channel are provided. Calculations performed for a base load-size channel indicate that heat transfer by gas radiation almost equals that by convection for smooth walls, and amounts to 70% as much as the convective heat transfer for rough walls. Carbon dioxide, water vapor, and potassium atoms are the principal participating gases. The evolution of slag particles by homogeneous nucleation and condensation is also investigated. The particle-size spectrum so computed is later utilized to analyze the radiation enhancement by slag particles in the MHD diffuser. The impact of the slag particle spectrum on the selection of a workable and design of an efficient seed collection system is discussed.

  8. Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films

    SciTech Connect (OSTI)

    Basu, Soumyadipta Yang, Yue; Wang, Liping

    2015-01-19

    In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC. By careful tuning of the optical properties of metamaterial, it is possible to excite electrical and magnetic resonances for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

  9. HEAT TRANSFER ANALYSIS FOR ION-EXCHANGE COLUMN SYSTEM

    SciTech Connect (OSTI)

    Lee, S.; King, W.

    2011-05-23

    Models have been developed to simulate the thermal characteristics of Crystalline Silicotitanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. The SCIX design includes CST columns inserted and supported in the tank top risers for cesium removal. Temperature distributions and maximum temperatures across the column were calculated with a focus on process upset conditions. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. The current full-scale design for the CST column includes one central cooling pipe and four outer cooling tubes. Most calculations assumed that the fluid within the column was stagnant (i.e. no buoyancy-induced flow) for a conservative estimate. A primary objective of these calculations was to estimate temperature distributions across packed CST beds immersed in waste supernate or filled with dry air under various accident scenarios. Accident scenarios evaluated included loss of salt solution flow through the bed, inadvertent column drainage, and loss of active cooling in the column. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature.

  10. Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility

    SciTech Connect (OSTI)

    Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup; Richard N. Christensen; Michael W. Patterson

    2014-04-01

    In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750800 C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot and 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 C/1.02.7 MPa for the cold side and 208790 C/1.02.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various hydrodynamic

  11. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    SciTech Connect (OSTI)

    Gustavsen, Arild; Arasteh, Dariush; Jelle, Bjorn Petter; Curcija, Charlie; Kohler, Christian

    2008-09-11

    While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows that incorporate very low-conductance glazing. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames. We conclude that the near-term priorities for improving the modeling of heat transfer through low-conductance frames are: (1) Add 2D view-factor radiation to standard modeling and examine the current practice of averaging surface emissivity based on area weighting and the process of making an equivalent rectangular frame cavity. (2) Asses 3D radiation effects in frame cavities and develop recommendation for inclusion into the design fenestration tools. (3) Assess existing correlations for convection in vertical cavities using CFD. (4) Study 2D and 3D natural convection heat transfer in frame cavities for cavities that are proven to be deficient from item 3 above. Recommend improved correlations or full CFD modeling into ISO standards and design fenestration tools, if appropriate. (5) Study 3D hardware short-circuits and propose methods to ensure that these effects are incorporated into ratings. (6) Study the heat transfer effects of ventilated frame cavities and propose updated correlations.

  12. High-pressure three-phase fluidization: Hydrodynamics and heat transfer

    SciTech Connect (OSTI)

    Luo, X.; Jiang, P.; Fan, L.S.

    1997-10-01

    High-pressure operations are common in industrial applications of gas-liquid-solid fluidized-bed reactors for resid hydrotreating, Fischer-Tropsch synthesis, coal methanation, methanol synthesis, polymerization, and other reactions. The phase holdups and the heat-transfer behavior were studied experimentally in three-phase fluidized beds over a pressure range of 0.1--15.6 MPa. Bubble characteristics in the bed are examined by direct flow visualization. Pressure effects on the bubble coalescence and breakup are analyzed mechanistically. The study indicates that the pressure affects the hydrodynamics and heat-transfer properties of a three-phase fluidized bed significantly. The average bubble size decreases and the bubble-size distribution becomes narrower with an increase in pressure. The bubble-size reduction leads to an increase in the transition gas velocity from the dispersed bubble regime to the coalesced bubble regime, an increase in the gas holdup, and a decrease in the liquid and solids holdups. The pressure effect is insignificant above 6 MPa. The heat-transfer coefficient between an immersed surface and the bed increases to a maximum at pressure 6--8 MPa and then decreases with an increase in pressure at a given gas and liquid flow rate. This variation is attributed to the pressure effects on phase holdups and physical properties of the gas and liquid phases. A mechanistic analysis revealed that the major heat-transfer resistance in high-pressure three-phase fluidized beds resides in a liquid film surrounding the heat-0transfer surface. An empirical correlation is proposed to predict the heat-transfer coefficient under high-pressure conditions.

  13. A new absorption chiller to establish combined cold, heat, and power generation utilizing low-temperature heat

    SciTech Connect (OSTI)

    Schweigler, C.J.; Riesch, P.; Demmel, S.; Alefeld, G.

    1996-11-01

    Presently available absorption machines for air conditioning are driven with heat of a minimum of 80 C (176 F). A combination of the standard single-effect and a double-lift process has been identified as a new cycle that can use driving heat down to return temperatures of about 55 C (131 F) and permits temperature glides in generation of more than 30 K (54 F). Thus a larger cooling capacity can be produced from the same heat source compared to a single-effect chiller run with the same heat carrier supply temperature and mass flow. According to the estimated heat exchanger area, competitive machine costs for this new chiller can be expected. This single-effect/double-lift absorption chiller can be operated with waste heat from industrial processes, as well as with low-temperature heat (e.g., heat from solar collectors) as driving heat for air conditioning. The large temperature glide and the low return temperature especially fit the operating conditions in district heating networks during the summer. The cycle will be presented, followed by a discussion of suitable operating conditions.

  14. Geothermal technology transfer for direct heat applications: Final report, 1983--1988

    SciTech Connect (OSTI)

    Lienau, P.J.; Culver, G.

    1988-01-01

    This report describes a geothermal technology transfer program, performed by Oregon Institute of Technology's Geo-Heat Center, used to aid in the development of geothermal energy for direct heat applications. It provides a summary of 88 technical assistance projects performed in 10 states for space heating, district heating, green-houses, aquaculture, industrial processing, small scale binary electric power generation and heat pump applications. It describes an inventory compiled for over 100 direct heat projects that contains information on project site, resource and engineering data. An overview of information services is provided to users of the program which includes; advisory, referrals, literature distribution, geothermal technology library, quarterly Bulletin, training programs, presentations and tours, and reporting of activities for the USDOE Geothermal Progress Monitor.

  15. Evaluation of multi-phase heat transfer and droplet evaporation in petroleum cracking flows

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Petrick, M.; Zhou, C.Q.

    1996-04-01

    A computer code ICRKFLO was used to simulate the multiphase reacting flow of fluidized catalytic cracking (FCC) riser reactors. The simulation provided a fundamental understanding of the hydrodynamics and heat transfer processes in an FCC riser reactor, critical to the development of a new high performance unit. The code was able to make predictions that are in good agreement with available pilot-scale test data. Computational results indicate that the heat transfer and droplet evaporation processes have a significant impact on the performance of a pilot-scale FCC unit. The impact could become even greater on scale-up units.

  16. Evaluation of multi-phase heat transfer and droplet evaporation in petroleum cracking flows

    SciTech Connect (OSTI)

    Chang, S.L.; Lottes, S.A.; Petrick, M.; Zhou, C.Q.

    1996-12-31

    A computer code ICRKFLO was used to simulate the multi-phase reacting flow of fluidized catalytic cracking (FCC) riser reactors. The simulation provided a fundamental understanding of the hydrodynamics and heat transfer processes in an FCC riser reactor, critical to the development of a new high performance unit. The code was able to make predictions that in good agreement with available pilot-scale test data. Computational results indicate that the heat transfer and droplet evaporation processes have a significant impact on the performance of a pilot-scale FCC unit. The impact could become even greater on scale-up units.

  17. Direct numerical simulations of fluid flow, heat transfer and phase changes

    SciTech Connect (OSTI)

    Juric, D.; Tryggvason, G.; Han, J.

    1997-04-01

    Direct numerical simulations of fluid flow, heat transfer, and phase changes are presented. The simulations are made possible by a recently developed finite difference/front tracking method based on the one-field formulation of the governing equations where a single set of conservation equations is written for all the phases involved. The conservation equations are solved on a fixed rectangular grid, but the phase boundaries are kept sharp by tracking them explicitly by a moving grid of lower dimension. The method is discussed and applications to boiling heat transfer and the solidification of drops colliding with a wall are shown.

  18. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 2

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.

  19. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 1

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.

  20. DOE Fundamentals Handbook: Thermodynamics, Heat Transfer, and Fluid Flow, Volume 3

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The Thermodynamics, Heat Transfer, and Fluid Flow Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of the thermal sciences. The handbook includes information on thermodynamics and the properties of fluids; the three modes of heat transfer -- conduction, convection, and radiation; and fluid flow, and the energy relationships in fluid systems. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility fluid systems.

  1. Ultrasonic effect on the bubble nucleation and heat transfer of oscillating nanofluid

    SciTech Connect (OSTI)

    Zhao, Nannan; Fu, Benwei; Ma, H. B.

    2014-06-30

    Ultrasonic sound effect on bubble nucleation, oscillating motion activated by bubble formation, and its heat transfer enhancement of nanofluid was experimentally investigated. Nanofluid consists of distilled water and dysprosium (III) oxide (Dy{sub 2}O{sub 3}) nanoparticles with an average size of 98?nm and a mass ratio of 0.5%. Visualization results demonstrate that when the nanoparticles are added in the fluid influenced by the ultrasonic sound, bubble nucleation can be significantly enhanced. The oscillating motion initiated by the bubble formation of nanofluid under the influence of ultrasonic sound can significantly enhance heat transfer of nanofluid in an interconnected capillary loop.

  2. Graphene-assisted near-field radiative heat transfer between corrugated polar materials

    SciTech Connect (OSTI)

    Liu, X. L.; Zhang, Z. M.

    2014-06-23

    Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.

  3. Review of current status of high flux heat transfer techniques. Volume I. Text + Appendix A

    SciTech Connect (OSTI)

    Bauer, W.H.; Gordon, H.S.; Lackner, H.; Mettling, J.R.; Miller, J.E.

    1980-09-01

    The scope of this work comprised two tasks. The first was to review high heat flux technology with consideration given to heat transfer panel configuration, diagnostics techniques and coolant supply. The second task was to prepare a report describing the findings of the review, to recommend the technology offering the least uncertainty for scale-up for the MFTF-B requirement and to recommend any new or perceived requirements for R and D effort.

  4. Heat-transfer limitations on pellets used in ICF reaction chambers

    SciTech Connect (OSTI)

    Pitts, J.H.

    1981-10-12

    A spherically-symmetric, transient heat-transfer analysis conducted on a cryogenic multiple-shelled laser-driven pellet shows that injection velocities of 300 m/s are required. Support mechanisms for the inner shells must be able not only to withstand the maximum pellet acceleration but also to dissipate the heat generated in the frozen D-T fuel. Manufacturing, storage, and acceleration of pellets are also examined and found to require a cryogenic environment.

  5. Advanced Heat Transfer Technologies Increase Vehicle Performance and Reliability; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describes NREL's work with heat transfer technologies to keep hybrid electric and all-electric vehicle power electronic components cool.

  6. Convective Heat Transfer Coefficients of Automatic Transmission Fluid Jets with Implications for Electric Machine Thermal Management: Preprint

    SciTech Connect (OSTI)

    Bennion, Kevin; Moreno, Gilberto

    2015-09-29

    Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures were varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.

  7. A Validation Study of Pin Heat Transfer for UO2 Fuel Based on the IFA-432 Experiments

    SciTech Connect (OSTI)

    Phillippe, Aaron M; Clarno, Kevin T; Banfield, James E; Ott, Larry J; Philip, Bobby; Berrill, Mark A; Sampath, Rahul S; Allu, Srikanth; Hamilton, Steven P

    2014-01-01

    The IFA-432 (Integrated Fuel Assessment) experiments from the International Fuel Performance Experiments (IFPE) database were designed to study the effects of gap size, fuel density, and fuel densification on fuel centerline temperature in light-water-reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for uranium dioxide (UO$_2$) fuel systems was performed, with a focus on the densification stage (2.2 \\unitfrac{GWd}{MT(UO$_{2}$)}). In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole. The analysis demonstrated excellent agreement for rods 1, 2, 3, and 5 (varying gap thicknesses and density with traditional fuel), demonstrating the accuracy of the codes and their underlying material models for traditional fuel. For rod 6, which contained unstable fuel that densified an order of magnitude more than traditional, stable fuel, the magnitude of densification was over-predicted and the temperatures were outside of the experimental uncertainty. The radial power shape within the fuel was shown to significantly impact the predicted centerline temperatures, whereas modeling the fuel at the thermocouple location as either annular or solid was relatively negligible. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for UO$_2$ fuel with respect to a well-validated nuclear fuel performance code.

  8. Technology Development Roadmap for the Advanced High Temperature Reactor Secondary Heat Exchanger

    SciTech Connect (OSTI)

    P. Sabharwall; M. McCllar; A. Siahpush; D. Clark; M. Patterson; J. Collins

    2012-09-01

    This Technology Development Roadmap (TDRM) presents the path forward for deploying large-scale molten salt secondary heat exchangers (MS-SHX) and recognizing the benefits of using molten salt as the heat transport medium for advanced high temperature reactors (AHTR). This TDRM will aid in the development and selection of the required heat exchanger for: power production (the first anticipated process heat application), hydrogen production, steam methane reforming, methanol to gasoline production, or ammonia production. This TDRM (a) establishes the current state of molten salt SHX technology readiness, (b) defines a path forward that systematically and effectively tests this technology to overcome areas of uncertainty, (c) demonstrates the achievement of an appropriate level of maturity prior to construction and plant operation, and (d) identifies issues and prioritizes future work for maturing the state of SHX technology. This study discusses the results of a preliminary design analysis of the SHX and explains the evaluation and selection methodology. An important engineering challenge will be to prevent the molten salt from freezing during normal and off-normal operations because of its high melting temperature (390°C for KF ZrF4). The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The need for efficiency, compactness, and safety challenge the capabilities of existing heat exchanger technology. The description of potential heat exchanger configurations or designs (such as printed circuit, spiral or helical coiled, ceramic, plate and fin, and plate type) were covered in an earlier report (Sabharwall et al. 2011). Significant future work, much of which is suggested in this report, is needed before the benefits and full potential of the AHTR can be realized. The execution of this TDRM will focuses

  9. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    DOE Patents [OSTI]

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  10. Fabrication and Design Aspects of High-Temperature Compact Diffusion Bonded Heat Exchangers

    SciTech Connect (OSTI)

    Sai K. Mylavarapu; Richard N. Christensen; Raymond R. Unocic; Richard E. Glosup; Mike W. Patterson

    2012-08-01

    The Very High Temperature Reactor (VHTR) using gas-cooled reactor technology is anticipated to be the reactor type for the Next Generation Nuclear Plant (NGNP). In this reactor concept with an indirect power cycle system, a high-temperature and high integrity Intermediate Heat Exchanger (IHX) with high effectiveness is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation, hydrogen production, and/or industrial process heat applications. At present, there is no proven IHX concept for VHTRs. The current Technology Readiness Level (TRL) status issued by NGNP to all components associated with the IHX for reduced nominal reactor outlet temperatures of 750800 degrees C is 3 on a 110 scale, with 10 indicating omplete technological maturity. Among the various potential IHX concepts available, diffusion bonded heat exchangers (henceforth called printed circuit heat exchangers, or PCHEs) appear promising for NGNP applications. The design and fabrication of this key component of NGNP with Alloy 617, a candidate high-temperature structural material for NGNP applications, are the primary focus of this paper. In the current study, diffusion bonding of Alloy 617 has been demonstrated, although the optimum diffusion bonding process parameters to engineer a quasi interface-free joint are yet to be determined. The PCHE fabrication related processes, i.e., photochemical etching and diffusion bonding are discussed for Alloy 617 plates. In addition, the authors experiences with these non-conventional machining and joining techniques are discussed. Two PCHEs are fabricated using Alloy 617 plates and are being experimentally investigated for their thermal-hydraulic performance in a High-Temperature Helium Facility (HTHF). The HTHF is primarily of Alloy 800H construction and is designed to facilitate experiments at temperatures and pressures up to 800 degrees C and 3 MPa, respectively. Furthermore, some preliminary microstructural and

  11. Heat Transfer Characteristics of Mark 15 Slugs for Different Bonding Conditions

    SciTech Connect (OSTI)

    McAllister, J.E. Jr.

    2001-08-13

    A numerical heat transfer model based on the HEATING53 conduction code was developed to analyze poor bonding around the endcap of the outer Mark 15 slug. An analytical model could not be developed because of non-uniform heat generation in the core and the arrangement of the various materials in the cylindrical geometry. Results for air gaps are also included; however, they are not considered reasonable poor bond cases because the 300 area inspection tests can detect slugs with air gaps. This reports discusses the test results.

  12. The Correlation of Coupled Heat and Mass Transfer Experimental Data for Vertical Falling Film Absorption

    SciTech Connect (OSTI)

    Keyhani, M; Miller, W A

    1999-11-14

    Absorption chillers are gaining global acceptance as quality comfort cooling systems. These machines are the central chilling plants and the supply for cotnfort cooling for many large commercial buildings. Virtually all absorption chillers use lithium bromide (LiBr) and water as the absorption fluids. Water is the refrigerant. Research has shown LiBr to he one of the best absorption working fluids because it has a high affinity for water, releases water vapor at relatively low temperatures, and has a boiling point much higher than that of water. The heart of the chiller is the absorber, where a process of simultaneous heat and mass transfer occurs as the refrigerant water vapor is absorbed into a falling film of aqueous LiBr. The more water vapor absorbed into the falling film, the larger the chiller's capacity for supporting comfort cooling. Improving the performance of the absorber leads directly to efficiency gains for the chiller. The design of an absorber is very empirical and requires experimental data. Yet design data and correlations are sparse in the open literature. The experimental data available to date have been derived at LiBr concentrations ranging from 0.30 to 0.60 mass fraction. No literature data are readily available for the design operating conditions of 0.62 and 0.64 mass fraction of LiBr and absorber pressures of 0.7 and 1.0 kPa.

  13. Investigation of heat transfer and combustion in the advanced fluidized bed combustor (FBC)

    SciTech Connect (OSTI)

    Dr. Seong W. Lee

    1998-10-01

    The objective of this project is to predict the heat transfer and combustion performance in newly-designed fluidized bed combustor (FBC) and to provide the design guide lines and innovative concept for small-scale boiler and furnace. The major accomplishments are summarized.

  14. User's Manual for the FEHM Application-A Finite-Element Heat- and Mass-Transfer Code

    SciTech Connect (OSTI)

    George A. Zyvoloski; Bruce A. Robinson; Zora V. Dash; Lynn L. Trease

    1997-07-07

    This document is a manual for the use of the FEHM application, a finite-element heat- and mass-transfer computer code that can simulate nonisothermal multiphase multicomponent flow in porous media. The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved in the FEHM application by using the finite-element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat- and mass-transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. In fact, FEHM is capable of describing flow that is dominated in many areas by fracture and fault flow, including the inherently three-dimensional flow that results from permeation to and from faults and fractures. The code can handle coupled heat and mass-transfer effects, such as boiling, dryout, and condensation that can occur in the near-field region surrounding the potential repository and the natural convection that occurs through Yucca Mountain due to seasonal temperature changes. The code is also capable of incorporating the various adsorption mechanisms, ranging from simple linear relations to nonlinear isotherms, needed to describe the very complex transport processes at Yucca Mountain. This report outlines the uses and capabilities of the FEHM application, initialization of code variables, restart procedures, and error processing. The report describes all the data files, the input data

  15. User`s manual for the FEHM application -- A finite-element heat- and mass-transfer code

    SciTech Connect (OSTI)

    Zyvoloski, G.A.; Robinson, B.A.; Dash, Z.V.; Trease, L.L.

    1997-07-01

    The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved in the FEHM application by using the finite-element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat- and mass-transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. In fact, FEHM is capable of describing flow that is dominated in many areas by fracture and fault flow, including the inherently three-dimensional flow that results from permeation to and from faults and fractures. The code can handle coupled heat and mass-transfer effects, such as boiling, dryout, and condensation that can occur in the near-field region surrounding the potential repository and the natural convection that occurs through Yucca Mountain due to seasonal temperature changes. This report outlines the uses and capabilities of the FEHM application, initialization of code variables, restart procedures, and error processing. The report describes all the data files, the input data, including individual input records or parameters, and the various output files. The system interface is described, including the software environment and installation instructions.

  16. Gen Purpose 1-D Finite Element Network Fluid Flow Heat Transfer System Simulator

    Energy Science and Technology Software Center (OSTI)

    1993-08-02

    SAFSIM (System Analysis Flow Simulator) is a FORTRAN computer program to simulate the integrated performance of systems involving fluid mechanics, heat transfer, and reactor dynamics. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a one-dimensional finite element fluid mechanicsmore » module with multiple flow network capability; (2) a one-dimensional finite element structure heat transfer module with multiple convection and radiation exchange capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems.« less

  17. Influence of surface contamination on the wettability of heat transfer surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng; Dombrowski, David

    2015-08-08

    In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which ismore » then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.« less

  18. Influence of surface contamination on the wettability of heat transfer surfaces

    SciTech Connect (OSTI)

    Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng; Dombrowski, David

    2015-08-08

    In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which is then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.

  19. NEW MODEL AND MEASUREMENT PRINCIPLE OF FLOWING AND HEAT TRANSFER CHARACTERISTICS OF REGENERATOR

    SciTech Connect (OSTI)

    Chen, Y. Y.; Luo, E. C.; Dai, W.

    2008-03-16

    Regenerators play key role in oscillating-flow cryocoolers or thermoacoustic heat engine systems. However, their flowing and heat transfer mechanism is still not well understood. The complexities of the oscillating flow regenerator make traditional method of heat transfer research become difficult or helpless. In this paper, a model for porous media regenerator was given based on the linear thermoacoustic theory. Then the correlations for characteristic parameters were obtained by deducing universal expressions for thermoacoustic viscous function F{sub v} and thermal function F{sub T}. A simple acoustical method and experimental system to get F{sub v} and F{sub T} via measurements of isothermal regenerators were presented. Some measurements of packed stainless screen regenerators were performed, and preliminary experimental results for flow and convective coefficients were derived, which showing flowing friction factor is approximately within 132/Re to 173/Re.

  20. Direct-contact closed-loop heat exchanger

    DOE Patents [OSTI]

    Berry, Gregory F. (Naperville, IL); Minkov, Vladimir (Skokie, IL); Petrick, Michael (Joliet, IL)

    1984-01-01

    A high temperature heat exchanger with a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.

  1. High Temperature Fuel Cell Tri-Generation of Power, Heat & H2...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tri-Generation of Power, Heat & H2 from Biogas High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas Success story about using waste water treatment gas for ...

  2. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part II: Correlations

    SciTech Connect (OSTI)

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    The predictive ability of the available state-of-the-art heat transfer correlations of refrigerant-oil mixture is evaluated with the present experiment data of small tubes with inside diameter of 6.34 mm and 2.50 mm. Most of these correlations can be used to predict the heat transfer coefficient of 6.34 mm tube, but none of them can predict heat transfer coefficient of 2.50 mm tube satisfactorily. A new correlation of two-phase heat transfer multiplier with local properties of refrigerant-oil mixture is developed. This correlation approaches the actual physical mechanism of flow boiling heat transfer of refrigerant-oil mixture and can reflect the actual co-existing conditions of refrigerant and lubricant oil. More than 90% of the experiment data of both test tubes have less than {+-}20% deviation from the prediction values of the new correlations. (author)

  3. Effect of translucence of engineering ceramics on heat transfer in diesel engines. Final report

    SciTech Connect (OSTI)

    Wahiduzzaman, S.; Morel, T.

    1992-04-01

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  4. Effect of translucence of engineering ceramics on heat transfer in diesel engines

    SciTech Connect (OSTI)

    Wahiduzzaman, S.; Morel, T. )

    1992-04-01

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  5. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    SciTech Connect (OSTI)

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  6. Transient PVT measurements and model predictions for vessel heat transfer. Part II.

    SciTech Connect (OSTI)

    Felver, Todd G.; Paradiso, Nicholas Joseph; Winters, William S., Jr.; Evans, Gregory Herbert; Rice, Steven F.

    2010-07-01

    Part I of this report focused on the acquisition and presentation of transient PVT data sets that can be used to validate gas transfer models. Here in Part II we focus primarily on describing models and validating these models using the data sets. Our models are intended to describe the high speed transport of compressible gases in arbitrary arrangements of vessels, tubing, valving and flow branches. Our models fall into three categories: (1) network flow models in which flow paths are modeled as one-dimensional flow and vessels are modeled as single control volumes, (2) CFD (Computational Fluid Dynamics) models in which flow in and between vessels is modeled in three dimensions and (3) coupled network/CFD models in which vessels are modeled using CFD and flows between vessels are modeled using a network flow code. In our work we utilized NETFLOW as our network flow code and FUEGO for our CFD code. Since network flow models lack three-dimensional resolution, correlations for heat transfer and tube frictional pressure drop are required to resolve important physics not being captured by the model. Here we describe how vessel heat transfer correlations were improved using the data and present direct model-data comparisons for all tests documented in Part I. Our results show that our network flow models have been substantially improved. The CFD modeling presented here describes the complex nature of vessel heat transfer and for the first time demonstrates that flow and heat transfer in vessels can be modeled directly without the need for correlations.

  7. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    SciTech Connect (OSTI)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  8. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    SciTech Connect (OSTI)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  9. Study for radionuclide transfer ratio of aerosols generated during heat cutting

    SciTech Connect (OSTI)

    Iguchi, Yukihiro; Baba, Tsutomu; Kawakami, Hiroto; Kitahara, Takashi; Watanabe, Atsushi; Kodama, Mitsuhiro

    2007-07-01

    The metallic elements with a low melting point and high vapor pressure seemed to transfer in aerosols selectively at dismantling reactor internals using heat cutting. Therefore, the arc melting tests of neutron irradiated zirconium alloy were conducted to investigate the radionuclide transfer behavior of aerosols generated during the heat cutting of activated metals. The arc melting test was conducted using a tungsten inert gas welding machine in an inert gas or air atmosphere. The radioactive aerosols were collected by filter and charcoal filter. The test sample was obtained from Zry-2 fuel cladding irradiated in a Japanese boiling water reactor for five fuel cycles. The activity analysis, chemical composition measurement and scanning electron microscope observation of aerosols were carried out. Some radionuclides were enriched in the aerosols generated in an inert gas atmosphere and the radionuclide transfer ratio did not change remarkably by the presence of air. The transfer ratio of Sb-125 was almost the same as that of Co-60. It was expected that Sb-125 was enriched from other elements since Sb is an element with a low melting point and high vapor pressure compared with the base metal (Zr). In the viewpoint of the environmental impact assessment, it became clear that the influence if Sb-125 is comparable to Co-60. The transfer ratio of Mn-54 was one order higher compared with other radionuclides. The results were discussed on the basis of thermal properties and oxide formation energy of the metallic elements. (authors)

  10. Liquid Salts as Media for Process Heat Transfer from VHTR's: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating

    SciTech Connect (OSTI)

    Sridharan, Kumar; Anderson, Mark; Allen, Todd; Corradini, Michael

    2012-01-30

    The goal of this NERI project was to perform research on high temperature fluoride and chloride molten salts towards the long-term goal of using these salts for transferring process heat from high temperature nuclear reactor to operation of hydrogen production and chemical plants. Specifically, the research focuses on corrosion of materials in molten salts, which continues to be one of the most significant challenges in molten salts systems. Based on the earlier work performed at ORNL on salt properties for heat transfer applications, a eutectic fluoride salt FLiNaK (46.5% LiF-11.5%NaF-42.0%KF, mol.%) and a eutectic chloride salt (32%MgCl2-68%KCl, mole %) were selected for this study. Several high temperature candidate Fe-Ni-Cr and Ni-Cr alloys: Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H, were exposed to molten FLiNaK with the goal of understanding corrosion mechanisms and ranking these alloys for their suitability for molten fluoride salt heat exchanger and thermal storage applications. The tests were performed at 850C for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion was noted to occur predominantly from dealloying of Cr from the alloys, an effect that was particularly pronounced at the grain boundaries Alloy weight-loss due to molten fluoride salt exposure correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. The alloys weight-loss was also found to correlate to the concentration of carbon present for the nominally 20% Cr containing alloys, due to the formation of chromium carbide phases at the grain boundaries. Experiments involving molten salt exposures of Incoloy-800H in Incoloy-800H crucibles under an argon cover gas showed a significantly lower corrosion for this alloy than when tested in a graphite crucible. Graphite significantly accelerated alloy corrosion due to the reduction of Cr from solution by graphite and formation

  11. Heat Capacity Uncertainty Calculation for the Eutectic Mixture of Biphenyl/Diphenyl Ether Used as Heat Transfer Fluid: Preprint

    SciTech Connect (OSTI)

    Gomez, J. C.; Glatzmaier, G. C.; Mehos, M.

    2012-09-01

    The main objective of this study was to calculate the uncertainty at 95% confidence for the experimental values of heat capacity of the eutectic mixture of biphenyl/diphenyl ether (Therminol VP-1) determined from 300 to 370 degrees C. Twenty-five samples were evaluated using differential scanning calorimetry (DSC) to obtain the sample heat flow as a function of temperature. The ASTM E-1269-05 standard was used to determine the heat capacity using DSC evaluations. High-pressure crucibles were employed to contain the sample in the liquid state without vaporizing. Sample handling has a significant impact on the random uncertainty. It was determined that the fluid is difficult to handle, and a high variability of the data was produced. The heat capacity of Therminol VP-1 between 300 and 370 degrees C was measured to be equal to 0.0025T+0.8672 with an uncertainty of +/- 0.074 J/g.K (3.09%) at 95% confidence with T (temperature) in Kelvin.

  12. Temperature distribution in a flowing fluid heated in a microwave resonant cavity

    SciTech Connect (OSTI)

    Thomas, J.R. Jr. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Nelson, E.M.; Kares, R.J.; Stringfield, R.M. [Los Alamos National Lab., NM (United States)

    1996-04-01

    This paper presents results of an analytical study of microwave heating of a fluid flowing through a tube situated along the axis of a cylindrical microwave applicator. The interaction of the microwave field pattern and the fluid velocity profiles is illustrated for both laminar and turbulent flow. Resulting temperature profiles are compared with those generated by conventional heating through a surface heat flux. It is found that microwave heating offers several advantages over conventional heating.

  13. Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2011-10-01

    Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients Dan Wendt, Greg Mines Idaho National Laboratory The use of mixed working fluids in binary power plants can provide significant increases in plant performance, provided the heat exchangers are designed to take advantage of these fluids non-isothermal phase changes. In the 1980's testing was conducted at DOE's Heat Cycle Research Facility (HCRF) where mixtures of different compositions were vaporized at supercritical pressures and then condensed. This testing had focused on using the data collected to verify that Heat Transfer Research Incorporated (HTRI) codes were suitable for the design of heat exchangers that could be used with mixtures. The HCRF data includes mixture compositions varying from 0% to 40% isopentane and condenser tube orientations of 15{sup o}, 60{sup o}, and 90{sup o} from horizontal. Testing was performed over a range of working fluid and cooling fluid conditions. Though the condenser used in this testing was water cooled, the working fluid condensation occurred on the tube-side of the heat exchanger. This tube-side condensation is analogous to that in an air-cooled condenser. Tube-side condensing heat transfer coefficient information gleaned from the HCRF testing is used in this study to assess the suitability of air-cooled condenser designs for use with mixtures. Results of an air-cooled binary plant process model performed with Aspen Plus indicate that that the optimal mixture composition (producing the maximum net power for the scenario considered) is within the range of compositions for which data exist. The HCRF data is used to assess the impact of composition, tube orientation, and process parameters on the condensing heat transfer coefficients. The sensitivity of the condensing coefficients to these factors is evaluated and the suitability of air-cooled condenser designs with mixtures is assessed. This paper summarizes the evaluation of the HCRF

  14. Liquid Metal Bond for Improved Heat Transfer in LWR Fuel Rods

    SciTech Connect (OSTI)

    Donald Olander

    2005-08-24

    A liquid metal (LM) consisting of 1/3 weight fraction each of Pb, Sn, and Bi has been proposed as the bonding substance in the pellet-cladding gap in place of He. The LM bond eliminates the large AT over the pre-closure gap which is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond. The HEATING 7.3 heat transfer code indicates that these void spaces lead to local fuel hot spots.

  15. Influence of district heating water temperatures on the fuel saving and reduction of ecological cost of the heat generation

    SciTech Connect (OSTI)

    Portacha, J.; Smyk, A.; Zielinski, A.; Misiewicz, L.

    1998-07-01

    Results of examinations carried out on the district heating water temperature influence in the cogeneration plant with respect to both the fuel economy and the ecological cost reduction of heat generation for the purposes of heating and hot service water preparation are presented in this paper. The decrease of water return temperature effectively contributes to the increase of fuel savings in all the examined cases. The quantitative savings depend on the outlet water temperature of the cogeneration plant and on the fuel type combusted at the alternative heat generating plant. A mathematical model and a numerical method for calculations of annual cogeneration plant performance, e.g. annual heat and electrical energy produced in cogeneration mode, and the annual fuel consumption, are also discussed. In the discussed mathematical model, the variable operating conditions of cogeneration plant vs. outside temperature and method of control can be determined. The thermal system of cogeneration plant was decomposed into subsystems so as to set up the mathematical model. The determination of subsystem tasks, including a method of convenient aggregation thereof is an essential element of numerical method for calculations of a specific cogeneration plant thermal system under changing conditions. Costs of heat losses in the environment, resulting from the pollutants emission, being formed in the fuel combustion process in the heat sources, were defined. In addition, the environment quantitative and qualitative pollution characteristics were determined both for the heat generation in a cogeneration plant and for an alternative heat-generating plant. Based on the calculations, a profitable decrease of ecological costs is achieved in the cogeneration economy even if compared with the gas-fired heat generating plant. Ecological costs of coal-fired heat generating plant are almost three time higher than those of the comparable cogeneration plant.

  16. Convective heat transfer with buoyancy effects from thermal sources on a flat plate

    SciTech Connect (OSTI)

    Tewari, S.S.; Jaluria, Y. )

    1991-06-01

    An experimental study is carried out on the thermal interaction between two finite-size heat sources, located on a flat plate that is well insulated on the back. Both the horizontal and the vertical orientations of the surface are studied by measuring the flow velocities, the temperature field, and the local heat flux. The investigation is directed at the pure natural convection circumstance (no forced flow velocity) and the buoyancy-dominated mixed-convection circumstance (presence of a relatively small forced flow velocity). Large temperature gradients occur in the vicinity of the heat sources, resulting in a substantial diffusion of heat along the plate length. However, the effect of conduction is found to be highly localized. The orientation of the surface has a very strong effect on the interaction of the wakes from the heat sources for the circumstances considered. An upstream source is found to have a very strong influence on the temperature of a downstream source in the vertical surface orientation but has a much weaker influence in the horizontal orientation. In the latter circumstance the presence of a small forced flow velocity may actually increase the temperature of a downstream source by tilting the wake from the upstream source toward the downstream source. 25 refs.

  17. Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage

    SciTech Connect (OSTI)

    Drost, Kevin; Jovanovic, Goran; Paul, Brian

    2015-09-30

    The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).

  18. Single-Phase, Turbulent Heat-Transfer Friction-Factor Data Base Flow Enhanced Tb

    Energy Science and Technology Software Center (OSTI)

    1994-01-21

    Heat-exchanger designers need to know what type of performance improvement can be obtained before they will consider enhanced tubes. In particular, they need access to the heat-transfer coefficients and friction-factor values of enhanced tube types that are commercially available. To compile these data from the numerous publications and reports in the open literature is a formidable task that can discourage the designer from using them. A computer program that contains a comprehensive data base withmore » a search feature would be a handy tool for the designer to obtain an estimate of the performance improvement that can be obtained with a particular enhanced tube geometry. In addition, it would be a valuable tool for researchers who are developing and/or validating new prediction methods. This computer program can be used to obtain friction-factor and/or heat-transfer data for a broad range of internally enhanced tube geometries with forced-convective turbulent flow. The program has search features; that is the user can select data for tubes with a particular enhancement geometry range or data obtained from a particular source or publication. The friction factor data base contains nearly 5,000 points and the heat-transfer data base contains more than 4,700 points. About 360 different tube geometries are included from the 36 different sources. Data for tubes with similar geometries and the same and/or different types can be easily extracted with the sort feature of this data base and compared. Users of the program are heat-exchanger designers, enhanced tubing suppliers, and research organizations or academia who are developing or validating prediction methods.« less

  19. Method and system for simulating heat and mass transfer in cooling towers

    DOE Patents [OSTI]

    Bharathan, Desikan; Hassani, A. Vahab

    1997-01-01

    The present invention is a system and method for simulating the performance of a cooling tower. More precisely, the simulator of the present invention predicts values related to the heat and mass transfer from a liquid (e.g., water) to a gas (e.g., air) when provided with input data related to a cooling tower design. In particular, the simulator accepts input data regarding: (a) cooling tower site environmental characteristics; (b) cooling tower operational characteristics; and (c) geometric characteristics of the packing used to increase the surface area within the cooling tower upon which the heat and mass transfer interactions occur. In providing such performance predictions, the simulator performs computations related to the physics of heat and mass transfer within the packing. Thus, instead of relying solely on trial and error wherein various packing geometries are tested during construction of the cooling tower, the packing geometries for a proposed cooling tower can be simulated for use in selecting a desired packing geometry for the cooling tower.

  20. Low Temperature Direct Use Space Heating Geothermal Facilities...

    Open Energy Info (EERE)

    Space Heating Geothermal Facilities Jump to: navigation, search Loading map... "format":"googlemaps3","type":"ROADMAP","types":"ROADMAP","SATELLITE","HYBRID","TERRAIN","limit":8...