Powered by Deep Web Technologies
Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Field Investigations And Temperature-Gradient Drilling At Marine Corps  

Open Energy Info (EERE)

Investigations And Temperature-Gradient Drilling At Marine Corps Investigations And Temperature-Gradient Drilling At Marine Corps Air-Ground Combat Center (Mcagcc), Twenty-Nine Palms, Ca Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Field Investigations And Temperature-Gradient Drilling At Marine Corps Air-Ground Combat Center (Mcagcc), Twenty-Nine Palms, Ca Details Activities (4) Areas (1) Regions (0) Abstract: The U.S. Navy's Geothermal Program Office (GPO) has been conducting geothermal exploration activities in the Camp Wilson area of Marine Corps Air-Ground Combat Center (MCAGCC), Twenty-nine Palms, CA, for almost two years. Work has included self-potential (SP) surveys, fault structure analyses using LiDAR surveys, and drilling and assessment of five (5) temperature-gradient holes. For several decades the GPO has worked

2

The 1983 Temperature Gradient and Heat Flow Drilling Project for the State of Washington  

SciTech Connect (OSTI)

During the Summer of 1983, the Washington Division of Geology and Earth Resources carried out a three-hole drilling program to collect temperature gradient and heat flow information near potential geothermal resource target areas. The project was part of the state-coupled US Department of Energy Geothermal Program. Richardson Well Drilling of Tacoma, Washington was subcontracted through the State to perform the work. The general locations of the project areas are shown in figure 1. The first hole, DNR 83-1, was located within the Green River valley northwest of Mount St. Helens. This site is near the Green River Soda Springs and along the projection of the Mount St. Helens--Elk Lake seismic zone. The other two holes were drilled near Mount Baker. Hole DNR 83-3 was sited about 1/4 km west of the Baker Hot Springs, 10.5 km east of Mount Baker, while hole DNR 83-5 was located along Rocky Creek in the Sulphur Creek Valley. The Rocky Creek hole is about 10 km south-southwest of the peak. Two other holes, DNR 83-2 and DNR 83-4, were located on the north side of the Sulphur Creek Valley. Both holes were abandoned at early stages of drilling because of deep overburden and severe caving problems. The sites were apparently located atop old landslide deposits.

Korosec, Michael A.

1983-11-01T23:59:59.000Z

3

1983 temperature gradient and heat flow drilling project for the State of Washington  

SciTech Connect (OSTI)

During the Summer of 1983, a three-hole drilling program was carried out to collect temperature gradient and heat flow information near potential geothermal resource target areas. The general locations of the project areas are shown. The first hole, DNR 83-1, was located within the Green River valley northwest of Mount St. Helens. This site is near the Green River Soda Springs and along the projection of the Mount St. Helens - Elk Lake seismic zone. The other two holes were drilled near Mount Baker. Hole DNR 83-3 was sited about 1/4 km west of the Baker Hot Springs, 10.5 km east of Mount Baker, while hole DNR 83-5 was located along Rocky Creek in the Sulphur Creek Valley. The Rocky Creek hole is about 10 km south-southwest of the peak. Two other holes, DNR 83-2 and DNR 83-4, were located on the north side of the Sulphur Creek Valley. Both holes were abandoned at early stages of drilling because of deep overburden and severe caving problems. The sites were apparently located atop old landslide deposits.

Korosec, M.A.

1983-11-01T23:59:59.000Z

4

Potential use of hollow spheres in dual gradient drilling  

E-Print Network [OSTI]

The increasing number of significant deepwater discoveries has pushed the operator and service oil companies to focus their efforts on developing new technologies to drill in deeper water. Dual gradient drilling (DGD) will allow reaching deeper...

Vera Vera, Liliana

2012-06-07T23:59:59.000Z

5

Evaluation of liquid lift approach to dual gradient drilling  

E-Print Network [OSTI]

the mudline to the rig floor so as to maintain the bottom hole pressure. Several methods have been developed to achieve the dual gradient drilling principle. For this research project, we paid more attention to the liquid lift, dual gradient drilling (riser...

Okafor, Ugochukwu Nnamdi

2008-10-10T23:59:59.000Z

6

Downhole Temperature Prediction for Drilling Geothermal Wells  

SciTech Connect (OSTI)

Unusually high temperatures are encountered during drilling of a geothermal well. These temperatures affect every aspect of drilling, from drilling fluid properties to cement formulations. Clearly, good estimates of downhole temperatures during drilling would be helpful in preparing geothermal well completion designs, well drilling plans, drilling fluid requirements, and cement formulations. The thermal simulations in this report were conducted using GEOTEMP, a computer code developed under Sandia National Laboratories contract and available through Sandia. Input variables such as drilling fluid inlet temperatures and circulation rates, rates of penetration, and shut-in intervals were obtained from the Imperial Valley East Mesa Field and the Los Alamos Hot Dry Rock Project. The results of several thermal simulations are presented, with discussion of their impact on drilling fluids, cements, casing design, and drilling practices.

Mitchell, R. F.

1981-01-01T23:59:59.000Z

7

Hot Pot Contoured Temperature Gradient Map  

SciTech Connect (OSTI)

Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

Lane, Michael

2013-06-28T23:59:59.000Z

8

Hot Pot Contoured Temperature Gradient Map  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

Lane, Michael

9

High Temperature 300C Directional Drilling System  

Broader source: Energy.gov [DOE]

Project objective: provide a directional drilling system that can be used at environmental temperatures of up to 300C; and at depths of 10; 000 meters.

10

Temperatures, heat flow, and water chemistry from drill holes in the Raft  

Open Energy Info (EERE)

Temperatures, heat flow, and water chemistry from drill holes in the Raft Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River area of Idaho contains a geothermal system of intermediate temperatures (approx. = 150 0C) at depths of about 1.5 km. Outside of the geothermal area, temperature measurements in three intermediate-depth drill holes (200 to 400 m) and one deep well (1500 m) indicate that the regional conductive heat flow is about 2.5 mucal/cm 2 sec or slightly higher and that temperature gradients range from 50 0 to 60

11

Temperature, heat flow maps and temperature gradient holes |...  

Open Energy Info (EERE)

Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Organization Colorado Geological Survey in Cooperation with the U.S. Department of Energy...

12

Ch. VII, Temperature, heat flow maps and temperature gradient...  

Open Energy Info (EERE)

Ch. VII, Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation with the...

13

High Temperature 300C Directional Drilling System  

Broader source: Energy.gov (indexed) [DOE]

300C Directional Drilling System John Macpherson Baker Hughes Oilfield Operations DE-EE0002782 May 19, 2010 This presentation does not contain any proprietary confidential, or...

14

Top hole drilling with dual gradient technology to control shallow hazards  

E-Print Network [OSTI]

3.2 Riserless Dual Gradient Drilling Technology Description .........................36 3.2.1 Kick Detection.............................................................................37 3.2.2 Well Control ?Modified Driller?s Method... ? PRESSURE @ TOP OF KICK GRAPHS ? SET #1..........................140 ix Page APPENDIX F ? PRESSURE @ TOP OF KICK GRAPHS ? SET #2 ..........................159 VITA...

Elieff, Brandee Anastacia Marie

2006-10-30T23:59:59.000Z

15

Ballistic dispersion in temperature gradient focusing  

E-Print Network [OSTI]

regime is the most familiar regime in microfluidic systems, an oft-overlooked regime is that of purely kinematic (or ballistic) dispersion. In most microfluidic systems, this dispersion regime is transient systems. Keywords: microfluidics; temperature gradient focusing; kinematic dispersion; Taylor

Santiago, Juan G.

16

Temperatures, heat flow, and water chemistry from drill holes...  

Open Energy Info (EERE)

Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

17

Proposed Drill Sites  

SciTech Connect (OSTI)

Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

Lane, Michael

2013-06-28T23:59:59.000Z

18

Proposed Drill Sites  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

Lane, Michael

19

Thermoporoelastic Effects of Drilling Fluid Temperature on Rock Drillability at Bit/Formation Interface  

E-Print Network [OSTI]

effects of the drilling fluid temperature on near-wellbore stresses. At the bottomhole area, a cool drilling fluid reduces the radial and tangential effective stresses in formation, whereas the vertical effective stress increases. The outcome is a possible...

Thepchatri, Kritatee 1984-

2012-10-26T23:59:59.000Z

20

The Hadley Circulation and the Weak Temperature Gradient Approximation  

Science Journals Connector (OSTI)

The weak temperature gradient (WTG) approximation is applied to simple shallow-water models of the Hadley circulation. While it is difficult to formally justify the use of the WTG approximation for this problem, the derived WTG solutions are ...

L. M. Polvani; A. H. Sobel

2002-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Development of a High-Temperature Diagnostics-While-Drilling...  

Office of Environmental Management (EM)

HT tool are provided. htdwdtools.pdf More Documents & Publications A History or Geothermal Energy Research and Development in the United States: Drilling 1976-2006 DOE-HDBK-1017...

22

Experimental Analysis of Water Based Drilling Fluid Aging Processes at High Temperature and High Pressure Conditions  

E-Print Network [OSTI]

! ! EXPERIMENTAL ANALYSIS OF WATER BASED DRILLING FLUID AGING PROCESSES AT HIGH TEMPERATURE AND HIGH PRESSURE CONDITIONS A Thesis by BRANDON SCOTT ZIGMOND Submitted to the Office of Graduate Studies of Texas A&M University... Temperature and High Pressure Conditions Copyright 2012 Brandon Scott Zigmond ! ! EXPERIMENTAL ANALYSIS OF WATER BASED DRILLING FLUID AGING PROCESSES AT HIGH TEMPERATURE AND HIGH PRESSURE CONDITIONS A Thesis by BRANDON SCOTT ZIGMOND Submitted...

Zigmond, Brandon

2012-10-19T23:59:59.000Z

23

Experimental Assessment of Water Based Drilling Fluids in High Pressure and High Temperature Conditions  

E-Print Network [OSTI]

coming into effect, it becomes necessary to examine and understand the behavior of water based drilling fluids - which are cheaper and less polluting than their oil based counterpart - under extreme temperature and pressure conditions. In most...

Ravi, Ashwin

2012-10-19T23:59:59.000Z

24

Geology and Temperature Gradient Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Geology and Temperature Gradient Surveys Blue Mountain Geothermal Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Abstract Triassic argillite and sandstone of the Grass Valley Formation and phyllitic mudstone of the overlying Raspberry Formation, also of Triassic age, host a blind geothermal system under exploration by Blue Mountain Power Company Inc. with assistance from the Energy & Geoscience Institute. Geologically young, steeply dipping, open fault sets, striking N50-60°E,N50-60°W, and N-S intersect in the geothermal zone providing deep permeability over a wide area. Extensive silicification andhydro

25

An evaluation of subsea pump technologies that can be used to achieve dual gradient drilling  

E-Print Network [OSTI]

involves installing a subsea booster pump at the seafloor with the aim of returning the drilling fluid back to the rig. The pump will manage annular pressures in the wellbore as circulation rates and mud weights vary and will permit early detection...

Oluwadairo, Tolulope

2009-05-15T23:59:59.000Z

26

Temperature gradients in a portion of Michigan: a review of the usefulness of data from the AAPG geothermal survey of North America  

SciTech Connect (OSTI)

Temperature gradient data derived from drill holes in an east-west zone through the center of the southern peninsula of Michigan are analyzed. The purpose of this work is to investigate possible problems in utilizing the American Association of Petroleum Geologists data base. Michigan was chosen because a review of that State's geothermal potential shows inconsistencies between gradients from shallow wells and nearby deeper wells and because the geology of the State is relativey simple. The structure and stratigraphy are discussed because an understanding of Michigan basin geology makes it easier to predict the influence of lithology on the basin's geothermal gradients. Explanations for elevated gradients are reviewed. (MHR)

Vaught, T.L.

1980-08-01T23:59:59.000Z

27

Temperature histories in geothermal wells: survey of rock thermomechanical properties and drilling, production, and injection case studies  

SciTech Connect (OSTI)

Thermal and mechanical properties for geothermal formations are tabulated for a range of temperatures and stress conditions. Data was obtained from the technical literature and direct contacts with industry. Thermal properties include heat capacity, conductivity, and diffusivity. Undisturbed geothermal profiles are also presented. Mechanical properties include Youngs modulus and Poisson ratio. GEOTEMP thermal simulations of drilling, production and injection are reported for two geothermal regions, the hot dry rock area near Los Alamos and the East Mesa field in the Imperial Valley. Actual drilling, production, and injection histories are simulated. Results are documented in the form of printed GEOTEMP output and plots of temperatures versus depth, radius, and time. Discussion and interpretation of the results are presented for drilling and well completion design to determine: wellbore temperatures during drilling as a function of depth; bit temperatures over the drilling history; cement temperatures from setting to the end of drilling; and casing and formation temperatures during drilling, production, and injection.

Goodman, M.A.

1981-07-01T23:59:59.000Z

28

Oil displacement through a porous medium with a temperature gradient  

E-Print Network [OSTI]

We investigate the effect of a temperature gradient on oil recovery in a two-dimensional pore-network model. The oil viscosity depends on temperature as, $\\mu_o=exp(B/T)$, where $B$ is a physico-chemical parameter depending on the type of oil, and $T$ is the temperature. A temperature gradient is applied across the medium in the flow direction. Initially, the porous medium is saturated with oil and, then, another fluid is injected. We have considered two cases representing different injection strategies. In the first case, the invading fluid viscosity is constant (finite viscosity ratio) while in the second one, the invading fluid is inviscid (infinite viscosity ratio). Our results show that, for the case of finite viscosity ratio, recovery increases with $\\Delta T$ independently on strength or sign of the gradient. For an infinite viscosity ratio, a positive temperature gradient is necessary to enhance recovery. Moreover, we show that, for $\\Delta T>0$, the percentage of oil recovery generally decreases (inc...

Oliveira, C L N; Herrmann, H J

2011-01-01T23:59:59.000Z

29

The Temperature Prediction in Deepwater Drilling of Vertical Well  

E-Print Network [OSTI]

.................................................................................................. 30 3.4 Geothermal Gradient ................................................................................ 30 3.5 Overall Heat Transfer Coefficient ............................................................ 30... ............................................................................................ 47 vii ? Page 5.2 Conservation Of Energy ........................................................................... 47 5.3 Steady-state Heat Transfer Model...

Feng, Ming

2012-07-16T23:59:59.000Z

30

Development of a High-Temperature Diagnostics-While-Drilling Tool  

Broader source: Energy.gov [DOE]

This report documents work performed in the second phase of the Diagnostics-While-Drilling (DWD) project in which a high-temperature (HT) version of the phase 1 low-temperature (LT) proof-of-concept (POC) DWD tool was built and tested. Descriptions of the design, fabrication and field testing of the HT tool are provided.

31

Considerations of ion-temperature-gradient-driven turbulence  

SciTech Connect (OSTI)

The ion-temperature-gradient-driven instability is considered in this paper. Physical pictures are presented to clarify the nature of the instability. The saturation of a single eddy is modeled by a simple nonlinear equation. It is shown that eddies that are elongated in the direction of the temperature gradient are the most unstable and have the highest saturation amplitudes. In a sheared magnetic field, such elongated eddies twist with the field lines. This structure is shown to be an alternative to the usual Fourier mode picture in which the mode is localized around the surface where {ital k}{sub {parallel}} =0. These elongated twisting eddies, which are an integral part of the ballooning mode'' structure, could survive in a torus. The elongated eddies are shown to be unstable to secondary instabilities that are driven by the large gradients in the long eddy. It is argued that the mixing length'' is affected by this nonlinear process, and is unlikely to be a linear eigenmode width.

Cowley, S.C.; Kulsrud, R.M. (Princeton Plasma Physics Laboratory, Princeton, New Jersey (USA)); Sudan, R. (Cornell University, Ithaca, New York (USA))

1991-10-01T23:59:59.000Z

32

High-Temperature Downhole MWD Tools for Directional Drilling | Open Energy  

Open Energy Info (EERE)

MWD Tools for Directional Drilling MWD Tools for Directional Drilling Jump to: navigation, search Geothermal ARRA Funded Projects for High-Temperature Downhole MWD Tools for Directional Drilling Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

33

Acoustical power amplification and damping by temperature gradients  

Science Journals Connector (OSTI)

Ceperley proposed a concept of a traveling wave heat engine [A pistonless Stirling engineThe traveling wave heat engine J. Acoust. Soc. Am. 66 15081513 (1979).] that provided a starting point of thermoacoustics today. This paper verifies experimentally his idea through observation of amplification and strong damping of a plane acoustic traveling wave as it passes through axial temperature gradients. The acoustic power gain is shown to obey a universal curve specified by a dimensionless parameter ???; ? is the angular frequency and ?? is the relaxation time for the gas to thermally equilibrate with channel walls. As an application of his idea a three-stage acoustic power amplifier is developed which attains the gain up to 10 with a moderate temperature ratio of 2.3.

Tetsushi Biwa; Ryo Komatsu; Taichi Yazaki

2011-01-01T23:59:59.000Z

34

Ion temperature gradient driven turbulence with strong trapped ion resonance  

SciTech Connect (OSTI)

A theory to describe basic characterization of ion temperature gradient driven turbulence with strong trapped ion resonance is presented. The role of trapped ion granulations, clusters of trapped ions correlated by precession resonance, is the focus. Microscopically, the presence of trapped ion granulations leads to a sharp (logarithmic) divergence of two point phase space density correlation at small scales. Macroscopically, trapped ion granulations excite potential fluctuations that do not satisfy dispersion relation and so broaden frequency spectrum. The line width from emission due only to trapped ion granulations is calculated. The result shows that the line width depends on ion free energy and electron dissipation, which implies that non-adiabatic electrons are essential to recover non-trivial dynamics of trapped ion granulations. Relevant testable predictions are summarized.

Kosuga, Y., E-mail: kosuga@riam.kyushu-u.ac.jp [Institute for Advanced Study, Kyushu University, Fukuoka (Japan); Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan); Itoh, S.-I. [Research Center for Plasma Turbulence, Kyushu University, Fukuoka (Japan); Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan); Diamond, P. H. [CASS and CMTFO, University of California at San Diego, La Jolla, California 92093 (United States); WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon (Korea, Republic of); Itoh, K. [National Institute for Fusion Science, Gifu (Japan); Research Center for Plasma Turbulence, Kyushu University, Fukuoka (Japan); Lesur, M. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka (Japan)

2014-10-15T23:59:59.000Z

35

Coherent structures in ion temperature gradient turbulence-zonal flow  

SciTech Connect (OSTI)

Nonlinear stationary structure formation in the coupled ion temperature gradient (ITG)-zonal flow system is investigated. The ITG turbulence is described by a wave-kinetic equation for the action density of the ITG mode, and the longer scale zonal mode is described by a dynamic equation for the m?=?n?=?0 component of the potential. Two populations of trapped and untrapped drift wave trajectories are shown to exist in a moving frame of reference. This novel effect leads to the formation of nonlinear stationary structures. It is shown that the ITG turbulence can self-consistently sustain coherent, radially propagating modulation envelope structures such as solitons, shocks, and nonlinear wave trains.

Singh, Rameswar, E-mail: rameswar.singh@lpp.polytechnique.fr [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India); Singh, R. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India); WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kaw, P. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India); Grcan, . D. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Diamond, P. H. [WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); CMTFO and CASS, University of California, San Diego, California 92093 (United States)

2014-10-15T23:59:59.000Z

36

Development of a high-temperature diagnostics-while-drilling tool.  

SciTech Connect (OSTI)

The envisioned benefits of Diagnostics-While-Drilling (DWD) are based on the principle that high-speed, real-time information from the downhole environment will promote better control of the drilling process. Although in practice a DWD system could provide information related to any aspect of exploration and production of subsurface resources, the current DWD system provides data on drilling dynamics. This particular set of new tools provided by DWD will allow quicker detection of problems, reduce drilling flat-time and facilitate more efficient drilling (drilling optimization) with the overarching result of decreased drilling costs. In addition to providing the driller with an improved, real-time picture of the drilling conditions downhole, data generated from DWD systems provides researchers with valuable, high fidelity data sets necessary for developing and validating enhanced understanding of the drilling process. Toward this end, the availability of DWD creates a synergy with other Sandia Geothermal programs, such as the hard-rock bit program, where the introduction of alternative rock-reduction technologies are contingent on the reduction or elimination of damaging dynamic effects. More detailed descriptions of the rationale for the program and early development efforts are described in more detail by others [SAND2003-2069 and SAND2000-0239]. A first-generation low-temperature (LT) DWD system was fielded in a series of proof-of-concept tests (POC) to validate functionality. Using the LT system, DWD was subsequently used to support a single-laboratory/multiple-partner CRADA (Cooperative Research and Development Agreement) entitled Advanced Drag Bits for Hard-Rock Drilling. The drag-bit CRADA was established between Sandia and four bit companies, and involved testing of a PDC bit from each company [Wise, et al., 2003, 2004] in the same lithologic interval at the Gas Technology Institute (GTI) test facility near Catoosa, OK. In addition, the LT DWD system has been fielded in cost-sharing efforts with an industrial partner to support the development of new generation hard-rock drag bits. Following the demonstrated success of the POC DWD system, efforts were initiated in FY05 to design, fabricate and test a high-temperature (HT) capable version of the DWD system. The design temperature for the HT DWD system was 225 C. Programmatic requirements dictated that a HT DWD tool be developed during FY05 and that a working system be demonstrated before the end of FY05. During initial design discussions regarding a high-temperature system it was decided that, to the extent possible, the HT DWD system would maintain functionality similar to the low temperature system, that is, the HT DWD system would also be designed to provide the driller with real-time information on bit and bottom-hole-assembly (BHA) dynamics while drilling. Additionally, because of time and fiscal constraints associated with the HT system development, the design of the HT DWD tool would follow that of the LT tool. The downhole electronics package would be contained in a concentrically located pressure barrel and the use of externally applied strain gages with thru-tool connectors would also be used in the new design. Also, in order to maximize the potential wells available for the HT DWD system and to allow better comparison with the low-temperature design, the diameter of the tool was maintained at 7-inches. This report discusses the efforts associated with the development of a DWD system capable of sustained operation at 225 C. This report documents work performed in the second phase of the Diagnostics-While-Drilling (DWD) project in which a high-temperature (HT) version of the phase 1 low-temperature (LT) proof-of-concept (POC) DWD tool was built and tested. Descriptions of the design, fabrication and field testing of the HT tool are provided. Background on prior phases of the project can be found in SAND2003-2069 and SAND2000-0239.

Chavira, David J.; Huey, David (Stress Engineering Services, Inc.); Hetmaniak, Chris (Stress Engineering Services, Inc.); Polsky, Yarom; King, Dennis K.; Jacobson, Ronald David; Blankenship, Douglas Alan; Knudsen, Steven Dell; Henfling, Joseph Anthony; Mansure, Arthur James

2009-01-01T23:59:59.000Z

37

Supercurrent-Induced Temperature Gradient across a Nonequilibrium SNS Josephson Junction M. S. Crosser,1  

E-Print Network [OSTI]

Supercurrent-Induced Temperature Gradient across a Nonequilibrium SNS Josephson Junction M. S direction. The feature represents an effective temperature gradient across the SNS Josephson junction Josephson junction (SNS JJ) into a `` junction'' by driving the electron energy distribution far from

Birge, Norman

38

DEVELOPMENT OF A MUD-PULSE HIGH-TEMPERATURE MEASUREMENT-WHILE-DRILLING (MWD) SYSTEM  

SciTech Connect (OSTI)

The overall program objective is to develop a mud-pulse measurement-while-drilling (MWD) tool for oil and gas drilling operations that can be used where downhole temperatures are as high as 195 C (383 F). The work was planned to be completed in two phases: Phase I and an optional Phase II. The objectives of Phase I were first to identify critical components of existing MWD systems that can or cannot operate at 195 C. For components not able to meet the higher standard, one of several strategies was pursued: (1) locate high-temperature replacement components, (2) develop new designs that eliminate the unavailable components, or (3) use cooling to keep components at acceptable operating temperatures (under 195 C). New designs and components were then tested under high temperatures in the laboratory. The final goal of Phase I was to assemble two high-temperature MWD prototype tools and test each in at least one low-temperature well to verify total system performance. Phase II was also envisioned as part of this development. Its objective would be to test the two new high-temperature MWD prototype tools in wells being drilled in the United States where the bottom-hole temperatures were 195 C (or the highest temperatures attainable). The high-temperature MWD tool is designed to send directional and formation data to the surface via mud pulses, to aid in the drilling of guided wellbores. The modules that comprise the tool are housed in sealed barrels that protect the electronics from exposure to down-hole fluids and pressures. These pressure barrels are hung inside a non-magnetic collar located above the drilling assembly. A number of significant accomplishments were achieved during the course of the Phase I project, including: (1) Tested two MWD strings for function in an oven at 195 C; (2) Conducted field test of prototype 195 C MWD tool (at well temperatures up to 140-180 C); (3) Tested ELCON hybrid chip with processor, clock, and memory in a custom package for 700 hours at 200 C; (4) Contracted with APS Technology to conduct study of thermoelectric cooling of downhole electronics; (5) Conducted successful Peltier cooling test with APS Technology; (6) Tested and improved the electronics of Sperry Sun's Geiger Muller-based gamma detector for operation at 195 C; (7) Developed two high-temperature magnetometers (one in-house, one with Tensor); and (8) Encouraged outside source to develop lithium/magnesium high-temperature batteries (operating temperature of 125 to 215 C). One of this project's greatest achievements was improvement in Sperry Sun's current tool with changes made as a direct result of work performed under this project. These improvements have resulted in longer life and a more robust MWD tool at the previous temperature rating of 175 C, as well as at higher temperatures. A field test of two prototype 195 C MWD tools was conducted in Lavaca County, Texas. The purpose of this operation was to provide directional services on a sidetrack of a straight hole. The sidetrack was to intersect the formation up-dip above the water/gas interface. In addition, the gamma tool provided formation data including seam tops and thickness. Results from these field tests indicate progress in the development of a 195 C tool. Although the pulsers failed downhole in both tools, failure of the pulsers was determined to be from mechanical rather than electrical causes. Analysis of the economics of the 195 C tool highlights the greatest obstacle to future commercialization. Costs to screen individual components, then subassemblies, and finally completed tools for high-temperature operations are very high. Tests to date also show a relatively short life for high-temperature tools--on the order of 300 hours. These factors mean that the daily cost of the tool will be higher (3 to 5 times more) than a conventional tool.

John H. Cohen; Greg Deskins; William Motion; Jay Martin

2002-01-01T23:59:59.000Z

39

Determining circulating fluid temperature in drilling, workover, and well-control operations  

SciTech Connect (OSTI)

Estimation of fluid temperature in both flow conduits (drillpipe or tubing and the annulus) is required to ascertain the fluid density and viscosity and, in turn, to calculate the pressure drop or the maximum allowable pumping rate for a number of operations. These operations include drilling, workover, and well control. The fluid temperature estimation becomes critical for high-temperature or geothermal reservoirs where significant heat exchange occurs or when fluid properties are temperature sensitive, such as for a non-Newtonian fluid. In this work, the authors present an analytical model for the flowing fluid temperature in the drillpipe/tubing and in the annulus as a function of well depth and circulation time. The model is based on an energy balance between the formation and the fluid in the drillpipe.tubing and annulus. Steady-state heat transfer is assumed in the wellbore while transient heat transfer takes place in the formation. solutions are obtained for two possible scenarios: (1) the fluid flows down the annulus and up the drillpipe/tubing, and (2) the fluid flows down the tubing and up the annulus. The analytic model developed is cast in a set of simple algebraic equations for rapid implementation. The authors also show that the maximum temperature occurs not at the well bottom, but at some distance higher from the bottom for flow up the annulus.

Kabir, C.S. [Chevron Overseas Petroleum Technology Co. (Kuwait); Hasan, A.R.; Ameen, M.M. [Univ. of North Dakota, Grand Forks, ND (United States); Kouba, G.E.

1996-06-01T23:59:59.000Z

40

Rheological properties of oil-based drilling fluids at high temperature and high pressure  

Science Journals Connector (OSTI)

The rheological properties of two kinds of oil-based drilling fluids with typically composition were studied at ... The major factor influencing the rheological properties of oil-based drilling fluids is temperat...

Sheng-ying Zhao ???; Jie-nian Yan ???

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Geothermal drilling technology update  

SciTech Connect (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

42

Nonlinear Gyrokinetic Simulations of Ion-Temperature-Gradient Turbulence for the Optimized Wendelstein 7-X Stellarator  

SciTech Connect (OSTI)

Ion-temperature-gradient turbulence constitutes a possibly dominant transport mechanism for optimized stellarators, in view of the effective suppression of neoclassical losses characterizing these devices. Nonlinear gyrokinetic simulation results for the Wendelstein 7-X stellarator [G. Grieger et al., in Proceedings of the IAEA Conference on Plasma Physics and Controlled Nuclear Fusion Research, 1990 (IAEA, Vienna, 1991) Vol. 3, p. 525]--assuming an adiabatic electron response--are presented. Several fundamental features are discussed, including the role of zonal flows for turbulence saturation, the resulting flux-gradient relationship, and the coexistence of ion-temperature-gradient modes with trapped ion modes in the saturated state.

Xanthopoulos, P. [Max-Planck-Institut fuer Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Merz, F.; Goerler, T.; Jenko, F. [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany)

2007-07-20T23:59:59.000Z

43

Erosion-oxidation of mild steel in a temperature gradient  

SciTech Connect (OSTI)

Thinning of heat-exchanger tubes by erosion-corrosion has been a problem in fluidized bed combustors (FBCs), particularly at lower metal temperatures where thicker, mechanically protective oxide scales are unable to form. Many laboratory-scale tests have shown a decrease in material loss at higher temperatures, similar to that observed in FBC boilers, but also show a decrease in wastage at low temperatures (e.g., 200 C) which has not been detected in boilers. It has been suggested that this difference is due to the laboratory tests being carried out isothermally, whereas in a FBC boiler the fluidized bed is considerably hotter than the surface of the metal heat exchanger tubing. In this laboratory study the simulation was therefore improved by internally cooling one of the two low carbon steel specimens which were rotated in a horizontal plane within a lightly fluidized bed with relative particle velocities of 1.3 to 2.5 ms{sup {minus}1}. Tests were carried out at a bed temperature of 500 C and specimens were cooled to a wear scar surface temperature as low as 250 C. No significant difference in the wastage rate was detected between the cooled and isothermally exposed specimens when measured at the same, accurately determined, metal surface temperatures.

Howes, T.E.; Rogers, P.M.; Little, J.A.; Hutchings, I.M. [Univ. of Cambridge (United Kingdom). Dept. of Materials Science and Metallurgy

1998-12-31T23:59:59.000Z

44

Heat conductance in nonlinear lattices at small temperature gradients  

E-Print Network [OSTI]

This paper proposes a new methodological framework within which the heat conductance in 1D lattices can be studied. The total process of heat conductance is separated into two parts where the first one is the equilibrium process at equal temperatures $T$ of both ends and the second one -- non-equilibrium with the temperature $\\Delta T$ of one end and zero temperature of the other. This approach allows significant decrease of computational time at $\\Delta T \\to 0$. The threshold temperature $T_{\\rm thr}$ is found which scales $T_{\\rm thr}(N) \\sim N^{-3}$ with the lattice size $N$ and by convention separates two mechanisms of heat conductance: phonon mechanism dominates at $T T_{\\rm thr}$. Solitons and breathers are directly visualized in numerical experiments. The problem of heat conductance in non-linear lattices in the limit $\\Delta T \\to 0$ can be reduced to the heat conductance of harmonic lattice with time-dependent stochastic rigidities determined by the equilibrium process at temperature $T$. The detailed analysis is done for the $\\beta$-FPU lattice though main results are valid for one-dimensional lattices with arbitrary potentials.

T. Yu. Astakhova; V. N. Likhachev; G. A. Vinogradov

2010-06-09T23:59:59.000Z

45

Probing plasma turbulence by modulating the electron temperature gradient  

E-Print Network [OSTI]

The local value of a/L[subscript Te], a turbulence drive term, was modulated with electron cyclotron heating in L-mode discharges on DIII-D [ J. L. Luxon, Nucl. Fusion 42, 614 (2002) ] and the density and electron temperature ...

DeBoo, J. C.

46

Ab initio calculation of the temperature dependence of the electric field gradient in Be  

Science Journals Connector (OSTI)

Using the orthogonalized-plane-wave procedure, the band structure, Fermi surface, and conduction-electron wave functions of Be have been calculated as a function of temperature. The electric field gradients calculated from first principles obey the T32 behavior and are negative throughout the temperature range studied.

P. Jena and J. Rath

1981-04-15T23:59:59.000Z

47

Finite ballooning angle effects on ion temperature gradient driven mode in gyrokinetic flux tube simulations  

SciTech Connect (OSTI)

This paper presents effects of finite ballooning angles on linear ion temperature gradient (ITG) driven mode and associated heat and momentum flux in Gyrokinetic flux tube simulation GENE. It is found that zero ballooning angle is not always the one at which the linear growth rate is maximum. The ITG mode acquires a short wavelength (SW) branch (k{sub ?}?{sub i}?>?1) when growth rates maximized over all ballooning angles are considered. However, the SW branch disappears on reducing temperature gradient showing characteristics of zero ballooning angle SWITG in case of extremely high temperature gradient. Associated heat flux is even with respect to ballooning angle and maximizes at nonzero ballooning angle while the parallel momentum flux is odd with respect to the ballooning angle.

Singh, Rameswar, E-mail: rameswar.singh@lpp.polytechnique.fr [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India) [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India); Laboratoire de Physique des Plasmas, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Brunner, S. [CRPP, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)] [CRPP, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Ganesh, R. [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India)] [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India); Jenko, F. [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)] [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

2014-03-15T23:59:59.000Z

48

Investigation on the effects of ultra-high pressure and temperature on the rheological properties of oil-based drilling fluids  

E-Print Network [OSTI]

Designing a fit-for-purpose drilling fluid for high-pressure, high-temperature (HP/HT) operations is one of the greatest technological challenges facing the oil and gas industry today. Typically, a drilling fluid is subjected to increasing...

Ibeh, Chijioke Stanley

2009-05-15T23:59:59.000Z

49

Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal  

E-Print Network [OSTI]

Electron velocity distribution function in a plasma with temperature gradient and in the presence of suprathermal electrons: application to incoherent-scatter plasma lines P. Guio1 , J. Lilensten2 , W. Kofman2 arbitrary velocity distribution function with cylindrical symmetry along the magnetic ®eld. The electron

Paris-Sud XI, Université de

50

Water transport inside a single-walled carbon nanotube driven by temperature gradient  

E-Print Network [OSTI]

Water transport inside a single-walled carbon nanotube driven by temperature gradient J. Shiomi mass transport of a water cluster inside a single-walled carbon nanotube (SWNT) with the diameter of about 1.4 nm. The influence of the non-equilibrium thermal environment on the confined water cluster has

Maruyama, Shigeo

51

Use of Rapid Temperature Measurements at a 2-Meter Depth to Augment Deeper  

Open Energy Info (EERE)

Use of Rapid Temperature Measurements at a 2-Meter Depth to Augment Deeper Use of Rapid Temperature Measurements at a 2-Meter Depth to Augment Deeper Temperature Gradient Drilling Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Use of Rapid Temperature Measurements at a 2-Meter Depth to Augment Deeper Temperature Gradient Drilling Abstract Temperature gradient drilling has historically been a key tool in the exploration for geothermal resources in the Great Basin, USA, but regulatory, environmental, and accessibility issues, as well as the expense of drilling, are increasingly limiting its use. In cases where thermal groundwater is not overlain by near-surface cold aquifers, it is possible to augment temperature gradient drilling with temperatures measured from a 2-meter depth. We discuss the development of a rapid, efficient, and

52

Temperature gradients, and search for non-Boussinesq effects, in the interior of turbulent Rayleigh-Bnard convection  

E-Print Network [OSTI]

Temperature gradients, and search for non-Boussinesq effects, in the interior of turbulent Rayleigh.1209/0295-5075/80/14001 Temperature gradients, and search for non-Boussinesq effects, in the interior of turbulent Rayleigh symmetry-breaking deviations from the Oberbeck-Boussinesq approximation even under conditions where

Haller, Gary L.

53

Self-organized profile relaxation by ion temperature gradient instability in toroidal plasmas  

SciTech Connect (OSTI)

Toroidal effects on the ion-temperature gradient mode are found to dictate the temperature evolution and the subsequent relaxed profile realization according to our toroidal particle simulation. Both in the strongly unstable fluid regime as well as in the near-marginal kinetic regime we observe that the plasma maintains an exponential temperature profile and forces the heat flux to be radially independent. The self-organized critical relaxed state is sustained slightly above the marginal stability, where the weak wave growth balances the wave decorrelation.

Kishimoto, Y.; Tajima, T.; LeBrun, M.J.; Gray, M.G.; Kim, J.Y.; Horton, W.

1993-02-01T23:59:59.000Z

54

New Environmentally Friendly Dispersants for High Temperature Invert-Emulsion Drilling Fluids Weighted by Manganese Tetraoxide  

E-Print Network [OSTI]

filtration. 3. Specific fluid weight is required to hydrostatically balance formation pressures and to control the well column. The desired fluid density is attained by addition of weighting agents like barite and calcium carbonate. OBMs are water...) minimized drilling problems related to water-sensitive shales. Also, Bennett (1984) mentioned that mineral-oil based invert-emulsion fluids have greater tolerance to the contaminants such as carbonates, hydrogen sulfide, anhydrite, salt, or cement...

Rehman, Abdul

2012-02-14T23:59:59.000Z

55

Gyrokinetic and Gyrofluid Models for Zonal Flow Dynamics in Ion and Electron Temperature Gradient Turbulence  

SciTech Connect (OSTI)

Collisionless time evolution of zonal flows in ion and electron temperature gradient turbulence in toroidal plasmas is investigated. The responses of the zonal-flow potential to the initial perturbation and to the turbulence source are determined from the gyrokinetic equations combined with the Poisson equation, A novel gyrofluid model is presented, which properly describes the zonal-flow time evolution and reproduces the same residual zonal-flow levels as predicted by the gyrokinetic model.

Sugama, H.; Watanabe, T.-H. [National Institute for Fusion Science, Toki, Gifu, 509-5292 (Japan); Graduate University for Advanced Studies, Toki, Gifu, 509-5292 (Japan); Ferrando i Margalet, S. [National Institute for Fusion Science, Toki, Gifu, 509-5292 (Japan)

2006-11-30T23:59:59.000Z

56

Influences of Sea Surface Temperature Gradients and Surface Roughness Changes on the Motion of Surface Oil: A Simple Idealized Study  

Science Journals Connector (OSTI)

The authors' modeling shows that changes in sea surface temperature (SST) gradients and surface roughness between oil-free water and oil slicks influence the motion of the slick. Physically significant changes occur in surface wind speed, surface ...

Yangxing Zheng; Mark A. Bourassa; Paul Hughes

2013-07-01T23:59:59.000Z

57

Calculation of the Electron Velocity Distribution Function in a Plasma Slab with Large Temperature and Density Gradients  

Science Journals Connector (OSTI)

...velocity. The distribution function for the...calculate the distribution function as a...region of the quiet Sun using several data-sets for temperature and density gradients...high-velocity tail of the distribution function. The...

1990-01-01T23:59:59.000Z

58

Comparison of analytical models for zonal flow generation in ion-temperature-gradient mode turbulence  

SciTech Connect (OSTI)

During the past years the understanding of the multi scale interaction problems have increased significantly. However, at present there exists a flora of different analytical models for investigating multi scale interactions and hardly any specific comparisons have been performed among these models. In this work two different models for the generation of zonal flows from ion-temperature-gradient (ITG) background turbulence are discussed and compared. The methods used are the coherent mode coupling model and the wave kinetic equation model (WKE). It is shown that the two models give qualitatively the same results even though the assumption on the spectral difference is used in the (WKE) approach.

Anderson, J.; Miki, K.; Uzawa, K.; Li, J.; Kishimoto, Y. [Dept. Fundamental Energy Science, School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto, 611-0011 (Japan)

2006-11-30T23:59:59.000Z

59

Gyrokinetic-Vlasov simulations of the ion temperature gradient turbulence in tokamak and helical systems  

SciTech Connect (OSTI)

Recent progress of the gyrokinetic-Vlasov simulations on the ion temperature gradient (ITG) turbulence in tokamak and helical systems is reported, where the entropy balance is checked as a reference for the numerical accuracy. The tokamak ITG turbulence simulation carried out on the Earth Simulator clearly captures a nonlinear generation process of zonal flows. The tera-flops and tera-bytes scale simulation is also applied to a helical system with the same poloidal and toroidal periodicities of L = 2 and M = 10 as in the Large Helical Device.

Watanabe, T.-H.; Sugama, H. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Graduate University for Advanced Studies (Sokendai), Toki, Gifu 509-5292 (Japan); Ferrando i Margalet, S. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

2006-11-30T23:59:59.000Z

60

TEMPERATURE-GRADIENT INCUBATOR FOR DETERMINING THE TEMPERATURE RANGE OF GROWTH OF MICROORGANISMS  

Science Journals Connector (OSTI)

...temperatures at each end, and with insulation to prevent heat transfer...of compressed glass fiber. Insulation for the sides is rigid polyure...Centi- meter scale. thane foam poured in situ and permanently...sterilization, the top and side insulation, as well as heaters, thermoregula...

R. Paul Elliott

1963-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fine-Scale Zonal Flow Suppression of Electron Temperature Gradient Turbulence  

SciTech Connect (OSTI)

It is found in collisionless Electron Temperature Gradient (ETG) turbulence simulations that, while zonal flows are weak at early times, the zonal flows continue to grow algebraically (proportional to time). These fine-scale zonal flows have a radial wave number such that kr{rho}i > 1 and kr{rho}e < 1. Eventually, the zonal flows grow to a level that suppresses the turbulence due to ExB shearing. The final electron energy flux is found to be relatively low. These conclusions are based on particle convergence studies with adiabatic ion electrostatic flux-tube gyrokinetic {delta}f particle simulations run for long times. The Rosenbluth-Hinton random walk mechanism is given as an explanation for the long time build up of the zonal flow in ETG turbulence and it is shown that the generation is (k perpendicular {rho}e)2 smaller than for isomorphic Ion Temperature Gradient (ITG) problem. This mechanism for zonal flow generation here is different than the modulational instability mechanism for ITG turbulence. These results are important because previous results indicated zonal flows were unimportant for ETG turbulence. Weak collisional damping of the zonal flow is also shown to be a n important effect.

Parker, S. E.; Kohut, J. J.; Chen, Y. [Center for Integrated Plasma Studies, University of Colorado, Boulder, C0 (United States); Lin, Z. [University of Californian, Irvine, CA (United States); Hinton, F. L. [Hinton Associates, Escondido, CA (United States); Lee, W. W. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States)

2006-11-30T23:59:59.000Z

62

Grain-scale thermoelastic stresses and spatiotemporal temperature gradients on airless bodies, implications for rock breakdown  

E-Print Network [OSTI]

Thermomechanical processes such as fatigue and shock have been suggested to cause and contribute to rock breakdown on Earth, and on other planetary bodies, particularly airless bodies in the inner solar system. In this study, we modeled grain-scale stresses induced by diurnal temperature variations on simple microstructures made of pyroxene and plagioclase on various solar system bodies. We found that a heterogeneous microstructure on the Moon experiences peak tensile stresses on the order of 100 MPa. The stresses induced are controlled by the coefficient of thermal expansion and Young's modulus of the mineral constituents, and the average stress within the microstructure is determined by relative volume of each mineral. Amplification of stresses occurs at surface-parallel boundaries between adjacent mineral grains and at the tips of pore spaces. We also found that microscopic spatial and temporal surface temperature gradients do not correlate with high stresses, making them inappropriate proxies for investig...

Molaro, Jamie L; Langer, Steve A

2015-01-01T23:59:59.000Z

63

Ion-temperature-gradient sensitivity of the hydrodynamic instability caused by shear in the magnetic-field-aligned plasma flow  

SciTech Connect (OSTI)

The cross-magnetic-field (i.e., perpendicular) profile of ion temperature and the perpendicular profile of the magnetic-field-aligned (parallel) plasma flow are sometimes inhomogeneous for space and laboratory plasma. Instability caused either by a gradient in the ion-temperature profile or by shear in the parallel flow has been discussed extensively in the literature. In this paper, (1) hydrodynamic plasma stability is investigated, (2) real and imaginary frequency are quantified over a range of the shear parameter, the normalized wavenumber, and the ratio of density-gradient and ion-temperature-gradient scale lengths, and (3) the role of inverse Landau damping is illustrated for the case of combined ion-temperature gradient and parallel-flow shear. We find that increasing the ion-temperature gradient reduces the instability threshold for the hydrodynamic parallel-flow shear instability, also known as the parallel Kelvin-Helmholtz instability or the D'Angelo instability. We also find that a kinetic instability arises from the coupled, reinforcing action of both free-energy sources. For the case of comparable electron and ion temperature, we illustrate analytically the transition of the D'Angelo instability to the kinetic instability as (a) the shear parameter, (b) the normalized wavenumber, and (c) the ratio of density-gradient and ion-temperature-gradient scale lengths are varied and we attribute the changes in stability to changes in the amount of inverse ion Landau damping. We show that near a normalized wavenumber k{sub ?}?{sub i} of order unity (i) the real and imaginary values of frequency become comparable and (ii) the imaginary frequency, i.e., the growth rate, peaks.

Mikhailenko, V. V., E-mail: vladimir@pusan.ac.kr [Plasma Research Center, Pusan National University, Busan 609-735 (Korea, Republic of); Mikhailenko, V. S. [School of Physics and Technology, V.N. Karazin Kharkiv National University, 61108 Kharkiv (Ukraine); Faculty of Transportation Systems, Kharkiv National Automobile and Highway University, 61002 Kharkiv (Ukraine); Lee, Hae June, E-mail: haejune@pusan.ac.kr [Department of Electrical Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koepke, M. E. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506 (United States)

2014-07-15T23:59:59.000Z

64

Thermal Gradient Holes At Lightning Dock Area (Warpinski, Et Al., 2004) |  

Open Energy Info (EERE)

Thermal Gradient Holes At Lightning Dock Area Thermal Gradient Holes At Lightning Dock Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Lightning Dock Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes The awardee conducted seismic, gravity, resistivity, and airborne magnetic surveys, drilled temperature-gradient wells, and selected a location for a test well (52-7). The test well was drilled to a total depth of 770 m during 2003. Maximum temperatures approached 140degrees C and a short flow test suggested that a production well could be drilled to 600 m and produce economic volumes of 130-140degrees C fluid. A final assessment of the resource is currently being performed. References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J.

65

Laboratory measurements of acoustic scattering from a temperature and salinity gradient  

Science Journals Connector (OSTI)

Recently developed theoretical scattering models predict that acoustic scattering from temperature and salinity microstructure at high frequencies (10 kHz1 MHz) can be significant under certain oceanographic conditions. The results of this theoretical work suggest that it may be possible to use acoustic scattering techniques in combination with the scattering models to estimate oceanographic parameters such as the dissipation rate of turbulent kinetic energy. In addition quantification of the scattering contributions from temperature and salinity microstructure can play an important role in correctly interpreting acoustic surveys of marine life since recent field data indicate that the acoustic returns from zooplankton and microstructure can be of similar strength. Acoustic backscatter from a sharp temperature and salinity gradient was measured in a tank capable of generating and sustaining a thin double?diffusive layer (12 cm thick) between two water masses (cold fresh residing above warm salty water). Vertical shear temperature and salinity profiles were measured during the experiment to provide input to the acoustic scattering models. Backscatter was measured at frequencies between 24 kHz and 500 kHz and as a function of range from the sharp interface as part of a program to measure the backscattering from microstructure. a)Currently at Southwest Fisheries Science Center La Jolla CA 92037.

2001-01-01T23:59:59.000Z

66

Evaluation of Low-Salinity Enhanced Oil Recovery Effects in Sandstone: Effects of the Temperature and pH Gradient  

Science Journals Connector (OSTI)

Evaluation of Low-Salinity Enhanced Oil Recovery Effects in Sandstone: Effects of the Temperature and pH Gradient ... (1-4) It was very interesting to see that the model compound, quinoline, and an asphaltenic crude oil responded similarly regarding adsorption/desorption from clays at different salinities and pH values. ... (3) Can the slopes of the pH gradients give information about the rate of desorption and adsorption of cations? ...

Hakan Aksulu; Dagny Hms; Skule Strand; Tina Puntervold; Tor Austad

2012-04-24T23:59:59.000Z

67

Thermal Gradient Holes At Chocolate Mountains Area (Alm, Et Al., 2010) |  

Open Energy Info (EERE)

Chocolate Mountains Area (Alm, Et Al., 2010) Chocolate Mountains Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Chocolate Mountains Area (Alm, Et Al., 2010) Exploration Activity Details Location Chocolate Mountains Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes "Shallow temperature gradient drilling began at the CMAGR in January of 2010. 13 temperature gradient holes were completed to a depth of 500' below ground surface. Sites were selected based on the compilation of previous exploration and resulting data is being integrated into the most recent geologic model. This model will form the basis for the selection of a deeper (2000'-4000') temperature gradient drilling campaign at the CMAGR in

68

Alphine 1/Federal: Drilling report. Final report, Part 1  

SciTech Connect (OSTI)

Regional geologic and geophysical surveys, shallow temperature-gradient drilling, and published reconnaissance geothermal studies infer possible hot dry rock (HDR) geothermal resources in the Alpine-Springerville area. This report discusses the results of a State of Arizona and US Department of Energy funded drilling project designed to gather the deep temperature and stratigraphic data necessary to determine if near-term HDR geothermal potential actually exists in this portion of the White Mountains region of Arizona. A 4505 feet deep slim-hole exploratory well, Alpiner/Federal, was drilled within the Apache-Sitgreaves National Forest at Alpine Divide near the Alpine Divide Camp Ground about 5 miles north of Alpine, Arizona in Apache County (Figure 1).

Witcher, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.; Pisto, L. [Tonto Drilling Services, Inc., Salt Lake City, UT (United States); Hahman, W.R. [Hahman (W. Richard), Las Cruces, NM (United States); Swanberg, C.A. [Swanberg (Chandler A.), Phoenix, AZ (United States)

1994-06-01T23:59:59.000Z

69

Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Exploration Drilling Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploration Drilling Details Activities (0) Areas (0) Regions (0) NEPA(15) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling‎ Parent Exploration Technique: Drilling Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole

70

Near-Term Developments in Geothermal Drilling  

SciTech Connect (OSTI)

The DOE Hard Rock Penetration program is developing technology to reduce the costs of drilling geothermal wells. Current projects include: R & D in lost circulation control, high temperature instrumentation, underground imaging with a borehole radar insulated drill pipe development for high temperature formations, and new technology for data transmission through drill pipe that can potentially greatly improve data rates for measurement while drilling systems. In addition to this work, projects of the Geothermal Drilling Organization are managed. During 1988, GDO projects include developments in five areas: high temperature acoustic televiewer, pneumatic turbine, urethane foam for lost circulation control, geothermal drill pipe protectors, an improved rotary head seals.

Dunn, James C.

1989-03-21T23:59:59.000Z

71

Effect of the drilling mud filtrate temperature on the resistivity of the stratum saturated by oil and gas  

Science Journals Connector (OSTI)

A mathematical model of the axisymmetric distribution of the phases in the zone of invasion of the water-based drilling mud into the productive stratum whose porous space can simultaneously contain three immiscib...

V. I. Penkovskii; N. K. Korsakova

2014-09-01T23:59:59.000Z

72

Standard Test Method for Measuring Heat Flux Using Flush-Mounted Insert Temperature-Gradient Gages  

E-Print Network [OSTI]

1.1 This test method describes the measurement of the net heat flux normal to a surface using gages inserted flush with the surface. The geometry is the same as heat-flux gages covered by Test Method E 511, but the measurement principle is different. The gages covered by this standard all use a measurement of the temperature gradient normal to the surface to determine the heat that is exchanged to or from the surface. Although in a majority of cases the net heat flux is to the surface, the gages operate by the same principles for heat transfer in either direction. 1.2 This general test method is quite broad in its field of application, size and construction. Two different gage types that are commercially available are described in detail in later sections as examples. A summary of common heat-flux gages is given by Diller (1). Applications include both radiation and convection heat transfer. The gages used for aerospace applications are generally small (0.155 to 1.27 cm diameter), have a fast time response ...

American Society for Testing and Materials. Philadelphia

2009-01-01T23:59:59.000Z

73

Steady-state nonequilibrium temperature gradients in hydrogen gasmetal systems: challenging the second law of thermodynamics  

Science Journals Connector (OSTI)

Differences in gas reaction rates between disparate surfaces have been proposed as a means to achieve steady-state pressure and temperature gradients within a single blackbody cavity, thereby challenging the second law of thermodynamics (Sheehan 1998 Phys. Rev. E 57 6660; Sheehan 2001 Phys. Lett. A 280 185; Capek and Sheehan 2005 Challenges to the Second Law of Thermodynamics (Theory and Experiment) (Fundamental Theories of Physics Series vol 146) (Dordrecht: Springer)). This paper reports on laboratory tests of this hypothesis; specifically, molecular hydrogen is found to dissociate preferentially on rhenium surfaces versus tungsten at identical elevated temperatures and reduced pressures (T?2100K; ). Steady-state nonequilibrium H/H2 ratios over the surfaces suggest that temperature gradients could be maintained under blackbody cavity conditions. Preliminary results from bimetallic blackbody cavity experiments are discussed.

D P Sheehan; J T Garamella; D J Mallin; W F Sheehan

2012-01-01T23:59:59.000Z

74

OM300 Direction Drilling Module  

SciTech Connect (OSTI)

OM300 Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1 Inclination and Tool Face, 0.5 Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

MacGugan, Doug

2013-08-22T23:59:59.000Z

75

Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009)  

Open Energy Info (EERE)

Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009) Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 2008 - 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis Vulcan increased exploration efforts in the summer and fall of 2008, during which time the company drilled two temperature gradient holes (86-15 O on Pad 1 and 17-16 O on Pad 3); conducted seismic, gravity and magnetotelluric surveys; and drilled deep exploration wells at Pads 6 and 8 and binary wells at Pads 1, 2, 4, and 7. Notes

76

An experimental investigaion of seawater/basalt interactions: the role of water/rock ratios and temperature gradients  

E-Print Network [OSTI]

of the quench pH data as a function of temperature in temperature-gradient experiments 38 40 LIST OF PLATES Plate Page Ia Ib I la IIb IIIa IIIb IVa Ivb Va Vb VIa Large euhedral anhydrite crystals surrounded by honeycomb-shaped smectite. Run... circulation. Metabasalts ranging from zeolite to amphibolite facies, with greenstones dominating, have been dredged from the ocean floor (Aumento et al. 1971; Miyashi ro et al. 1971; Melson and van Andel, 1966; Shi do et al. , 1974; Bonatti et al. ; 1975...

Archer, Paul Lawrence

1978-01-01T23:59:59.000Z

77

Large-scale spatial variability of riverbed temperature gradients in Snake River fall Chinook salmon spawning areas  

SciTech Connect (OSTI)

In the Snake River basin of the Pacific northwestern United States, hydroelectric dam operations are often based on the predicted emergence timing of salmon fry from the riverbed. The spatial variability and complexity of surface water and riverbed temperature gradients results in emergence timing predictions that are likely to have large errors. The objectives of this study were to quantify the thermal heterogeneity between the river and riverbed in fall Chinook salmon spawning areas and to determine the effects of thermal heterogeneity on fall Chinook salmon emergence timing. This study quantified river and riverbed temperatures at 15 fall Chinook salmon spawning sites distributed in two reaches throughout 160 km of the Snake River in Hells Canyon, Idaho, USA, during three different water years. Temperatures were measured during the fall Chinook salmon incubation period with self-contained data loggers placed in the river and at three different depths below the riverbed surface. At all sites temperature increased with depth into the riverbed, including significant differences (p<0.05) in mean water temperature of up to 3.8C between the river and the riverbed among all the sites. During each of the three water years studied, river and riverbed temperatures varied significantly among all the study sites, among the study sites within each reach, and between sites located in the two reaches. Considerable variability in riverbed temperatures among the sites resulted in fall Chinook salmon emergence timing estimates that varied by as much as 55 days, depending on the source of temperature data used for the estimate. Monitoring of riverbed temperature gradients at a range of spatial scales throughout the Snake River would provide better information for managing hydroelectric dam operations, and would aid in the design and interpretation of future empirical research into the ecological significance of physical riverine processes.

Hanrahan, Timothy P.

2007-02-01T23:59:59.000Z

78

On the nonlinear stability of a quasi-two-dimensional drift kinetic model for ion temperature gradient turbulence  

E-Print Network [OSTI]

We study a quasi-two-dimensional electrostatic drift kinetic system as a model for near-marginal ion temperature gradient (ITG) driven turbulence. A proof is given of the nonlinear stability of this system under conditions of linear stability. This proof is achieved using a transformation that diagonalizes the linear dynamics and also commutes with nonlinear $E\\times B$ advection. For the case when linear instability is present, a corollary is found that forbids nonlinear energy transfer between appropriately defined sets of stable and unstable modes. It is speculated that this may explain the preservation of linear eigenmodes in nonlinear gyrokinetic simulations. Based on this property, a dimensionally reduced ($\\infty\\times\\infty \\rightarrow 1$) system is derived that may be useful for understanding dynamics around the critical gradient of Dimits.

Plunk, G G

2015-01-01T23:59:59.000Z

79

Preliminary Drill Sites  

SciTech Connect (OSTI)

Preliminary locations for intermediate depth temperature gradient holes and/or resource confirmation wells based on compilation of geological, geophysical and geochemical data prior to carrying out the DOE-funded reflection seismic survey.

Lane, Michael

2013-06-28T23:59:59.000Z

80

Preliminary Drill Sites  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Preliminary locations for intermediate depth temperature gradient holes and/or resource confirmation wells based on compilation of geological, geophysical and geochemical data prior to carrying out the DOE-funded reflection seismic survey.

Lane, Michael

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The effect of temperature gradient on the transport phenomenon in roots of maize plants grown under salinity conditions. conductivity and filtration properties  

Science Journals Connector (OSTI)

An analysis of flows through primary root and first node root tissues of plants grown under conditions of salinity and nutrient deficiency induced by temperature gradients was carried out using. a mathematical mo...

J. Michalov

1989-07-01T23:59:59.000Z

82

The Effect of temperature gradient on the transport phenomenon in roots of maize plants grown under salinity conditions. substance, heat, and ion flows  

Science Journals Connector (OSTI)

The accumulation of nitrogen and potassium by plant cells at undesirable concentrations manifests itself in changes in the osmotic phenomenon and finally in the transport process. Temperature gradient is another ...

J. Michalov

1989-07-01T23:59:59.000Z

83

Thermal Gradient Holes At Chena Area (Erkan, Et. Al., 2008) | Open Energy  

Open Energy Info (EERE)

Chena Area (Erkan, Et. Al., Chena Area (Erkan, Et. Al., 2008) Exploration Activity Details Location Chena Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes MULTI-STAGE DRILLING Once a hole is drilled the natural-state pressure distribution with depth is essentially unrecoverable (Grant et al., 1982). One of the best ways to mitigate this effect is to use multi-stage drilling (White et al., 1975; Grant et al., 1982). This type of drilling was applied at Chena and its usefulness in understanding the natural flow regimes is demonstrated. Here, we illustrate how high-quality equilibrium temperature logs can often be used to identify permeable fractures. The independent interpretations of flow regimes based on temperature-depth curves and the

84

Parametric Excitation of Geodesic Acoustic Modes by Electron Drift Waves and Ion Temperature Gradient Modes in Tokamak Plasmas  

SciTech Connect (OSTI)

Geodesic Acoustic Modes (GAMs) have been predicted and subsequently observed in many toroidal plasma devices. Bicoherence studies on various devices have suggested three-wave mode coupling processes between GAMs and high frequency turbulence. Thus the parametric coupling of GAMS to drift waves and/or ion temperature gradient(ITG{r_brace} modes is a potential candidate for excitation of these modes. In this paper we discuss the resonant three-wave coupling mechanism for the excitation of GAMs by ITG and finite beta drift waves in homogeneous and inhomogeneous plasmas and compare theoretical predictions with observed characteristics of the GAMs.

Guzdar, P. N.; Kleva, R. G. [IREAP, University of Maryland, College Park, MD 20742 (United States); Chakrabarti, N. [SINP, Kolkata (India); Kaw, P. K.; Singh, R. [IPR, Gandhinagar, 308423 (India); Naulin, V.; Rasmussen, J. J. [EURATOM, Roskilde (Denmark)

2008-11-01T23:59:59.000Z

85

Thermal Gradient Holes At Hawthorne Area (Lazaro, Et Al., 2010) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Thermal Gradient Holes At Hawthorne Area (Lazaro, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hawthorne Area (Lazaro, Et Al., 2010) Exploration Activity Details Location Hawthorne Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes The Navy recently completed a temperature gradient hole (TGH) drilling campaign. Results suggest multiple resources may exist on HAD lands. To further define the shallow resource, the Navy will drill one or two

86

Generation of zonal flows by ion-temperature-gradient and related modes in the presence of neoclassical viscosity  

SciTech Connect (OSTI)

Generation of zonal flows by primary waves that are more complex than those considered in the standard drift-wave model is studied. The effects of parallel ion velocity and ion perturbed temperature and the part of the nonlinear mode interaction proportional to the ion pressure are taken into account. This generalization of the standard model allows the analysis of generation of zonal flows by a rather wide variety of primary modes, including ion temperature gradients, ion sound, electron drift, and drift-sound modes. All the listed effects, which are present in the slab geometry model, are complemented by effects of neoclassical viscosity inherent to toroidal geometry. We show that the electrostatic potential of secondary small-scale modes is expressed in terms of a nonlinear shift of the mode frequency and interpret this shift in terms of the perpendicular and parallel Doppler, nonlinear Kelvin-Helmholtz (KH), and nonlinear ion-pressure-gradient effects. A basic assumption of our model is that the primary modes form a nondispersive monochromatic wave packet. The analysis of zonal-flow generation is performed following an approach similar to that of convective-cell theory. Neoclassical zonal-flow instabilities are separated into fast and slow ones, and these are divided into two varieties. The first of them is independent of the nonlinear KH effect, while the second one is sensitive to it.

Mikhailovskii, A.B.; Smolyakov, A.I.; Kovalishen, E.A.; Shirokov, M.S.; Tsypin, V.S.; Galvao, R.M.O. [Institute of Nuclear Fusion, Russian Research Centre Kurchatov Institute, Kurchatov Sq., 1, Moscow 123182 (Russian Federation) and Nonlinear Physics Laboratory, Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi 141700, Moscow Region (Russian Federation); University of Saskatchewan, 116 Science Place, Saskatoon, S7N 5E2 (Canada) and Institute of Nuclear Fusion, Russian Research Centre Kurchatov Institute, Kurchatov Sq., 1, Moscow 123182 (Russian Federation); Nonlinear Physics Laboratory, Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi 141700, Moscow Region (Russian Federation) and Institute of Nuclear Fusion, Russian Research Centre Kurchatov Institute, Kurchatov Sq., 1, Moscow 123182 (Russian Federation); Institute of Nuclear Fusion, Russian Research Centre Kurchatov Institute, Kurchatov Sq., 1, Moscow 123182 (Russian Federation) and Moscow Engineering Physics Institute, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); Physics Institute, University of Sao Paulo, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Physics Institute, University of Sao Paulo, Cidade Universitaria, 05508-900 Sao Paulo (Brazil) and Brazilian Center for Research in Physics, Rua Xavier Sigaud, 150, 22290-180 Rio de Janeiro (Brazil)

2006-05-15T23:59:59.000Z

87

Critical temperature gradient length signatures in heat wave propagation across internal transport barriers in the Joint European Torus  

SciTech Connect (OSTI)

New results on electron heat wave propagation using ion cyclotron resonance heating power modulation in the Joint European Torus (JET) [P. H. Rebut et al., Nucl. Fusion 25, 1011 (1985)] plasmas characterized by internal transport barriers (ITBs) are presented. The heat wave generated outside the ITB, and traveling across it, always experiences a strong damping in the ITB layer, demonstrating a low level of transport and loss of stiffness. In some cases, however, the heat wave is strongly inflated in the region just outside the ITB, showing features of convective-like behavior. In other cases, a second maximum in the perturbation amplitude is generated close to the ITB foot. Such peculiar types of behavior can be explained on the basis of the existence of a critical temperature gradient length for the onset of turbulent transport. Convective-like features appear close to the threshold (i.e., just outside the ITB foot) when the value of the threshold is sufficiently high, with a good match with the theoretical predictions for the trapped electron mode threshold. The appearance of a second maximum is due to the oscillation of the temperature profile across the threshold in the case of a weak ITB. Simulations with an empirical critical gradient length model and with the theory based GLF23 [R. E. Waltz et al., Phys. Plasmas, 4, 2482 (1997)] model are presented. The difference with respect to previous results of cold pulse propagation across JET ITBs is also discussed.

Casati, Alessandro [Istituto di Fisica del Plasma 'P. Caldirola', Associazione Euratom-ENEA-CNR, Via Cozzi 53, 20125 Milano (Italy); Dipartimento di Ingegneria Nucleare, Politecnico di Milano, Via Ponzio 34/3, 20133 Milano (Italy); Mantica, P. [Istituto di Fisica del Plasma 'P. Caldirola', Associazione Euratom-ENEA-CNR, Via Cozzi 53, 20125 Milano (Italy); Eester, D. van [LPP-ERM/KMS, Association Euratom-Belgian State, TEC, B-1000 Brussels (Belgium); Hawkes, N.; De Vries, P. [Culham Science Centre, EURATOM/UKAEA Fusion Association, Abingdon OX14 3DB (United Kingdom); Imbeaux, F.; Joffrin, E. [Association Euratom-CEA, CEA-DSM-DRFC Cadarache, 13108, St. Paul-lez-Durance Cedex (France); Marinoni, A. [Association Euratom-Confederation Suisse, CRPP, EPFL, CH 1015, Lausanne (Switzerland); Ryter, F. [Max-Planck Insitut fur Plasmaphysik, Euratom Association, 85748 Garching (Germany); Salmi, A. [Helsinki University of Technology, Association Euratom-TEKES, P.O. Box 2200 (Finland); Tala, T. [Association Euratom-TEKES, VTT, P.O. Box 1000, FIN-02044 VTT (Finland)

2007-09-15T23:59:59.000Z

88

Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit & Blackwell,  

Open Energy Info (EERE)

Hot Creek Ranch Area (Benoit & Blackwell, Hot Creek Ranch Area (Benoit & Blackwell, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Exploration Activity Details Location Upper Hot Creek Ranch Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes Ten temperature gradient holes up to 500' deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400' encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The

89

SHORT-TERM PRECIPITATION AND TEMPERATURE TRENDS ALONG AN ELEVATION GRADIENT IN NORTHEASTERN PUERTO RICO  

Science Journals Connector (OSTI)

As is true of many tropical regions, Northeastern Puerto Rico is an ecologically sensitive area with biological life that is highly elevation-dependent on precipitation and temperature. Climate change has the potential to increase the risk of ...

Ashley E. Van Beusekom; Grizelle Gonzlez; Maria M. Rivera

90

Thermal Gradient Holes At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

Date 1978 - 1985 Usefulness useful DOE-funding Unknown Exploration Basis Thermal gradient drilling also continued during this period, consisting of several holes including: The...

91

Coupling of ion temperature gradient and trapped electron modes in the presence of impurities in tokamak plasmas  

SciTech Connect (OSTI)

The coupling of ion temperature gradient (ITG or ?{sub i}) mode and trapped electron mode (TEM) in the presence of impurity ions is numerically investigated in toroidal collisionless plasmas, using the gyrokinetic integral eigenmode equation. A framework for excitations of the ITG modes and TEMs with respect to their driving sources is formulated first, and then the roles of impurity ions played in are analyzed comprehensively. In particular, the characteristics of the ITG and TEM instabilities in the presence of impurity ions are emphasized for both strong and weak coupling (hybrid and coexistent) cases. It is found that the impurity ions with inwardly (outwardly) peaked density profiles have stabilizing (destabilizing) effects on the hybrid (namely the TE-ITG) modes in consistence with previous works. A new finding of this work is that the impurity ions have stabilizing effects on TEMs in small ?{sub i} (?{sub i}?1) regime regardless of peaking directions of their density profiles whereas the impurity ions with density gradient L{sub ez}=L{sub ne}/L{sub nz}>1 (L{sub ez}<1) destabilize (stabilize) the TEMs in large ?{sub i} (?{sub i}?1) regime. In addition, the dependences of the growth rate, real frequency, eigenmode structure, and wave spectrum on charge concentration, charge number, and mass of impurity ions are analyzed in detail. The necessity for taking impurity ion effects on the features of turbulence into account in future transport experimental data analyses is also discussed.

Du, Huarong; Wang, Zheng-Xiong, E-mail: zxwang@dlut.edu.cn [MOE Key Laboratory of Materials Modification by Beams, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [MOE Key Laboratory of Materials Modification by Beams, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Dong, J. Q. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China) [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Southwestern Institute of Physics, Chengdu 610041 (China); Liu, S. F. [School of Physics, Nankai University, Tianjin 300071 (China)] [School of Physics, Nankai University, Tianjin 300071 (China)

2014-05-15T23:59:59.000Z

92

Abstract : 2008 APS-DPP Temperature gradients are supported by cantori in chaotic fields  

E-Print Network [OSTI]

(s)+T(s, , ), where s is a radial coordinate. To(s) is generally a smoothed devil's staircase: flat across exceed 1010 . The temperature adapts to the fractal structure of the magnetic field. To show the connection between the fractal structure of the magnetic field and the near-fractal structure

Hudson, Stuart

93

Fundamental solution method for reconstructing past climate change from borehole temperature gradients  

Science Journals Connector (OSTI)

Abstract Deep borehole temperature profiles have successfully been used to reconstruct past ground surface temperature history and the results are dependent on the inversion methods. These methods are tedious and sometimes unstable in iterative computation. In this paper, we propose a new fundamental solution method to reconstruct the past ground surface temperature variation, which depends on the assumption that ground temperature field in a homogeneous region is governed by a one-dimensional heat conductive equation. To regularize the resultant ill-conditioned linear system of equations, we apply successfully both the Tikhonov regularization technique and the generalized cross validation parameter choice rule to obtain a stable approximation solution of the ill-posed inverse problem. Our new method is stable and meshless, and it does not require iteration. We conducted idealized simulations with good results. We also used in-situ borehole data of RU-Yakutia329 from Yakutia, Siberia and CN-XZ-naqu903 from Naqu, QinghaiXizang (Tibetan) Plateau to validate our new approach. Results from these borehole studies show a warming of 0.1 and 2.3C, respectively, in the past 450years. When comparing to the results from previous studies, the RU-Yakutia329 study has the same magnitude of warming, while the magnitude of warming at Naqu is slightly smaller.

Jia Liu; Tingjun Zhang

2014-01-01T23:59:59.000Z

94

Momentum transport in the vicinity of q{sub min} in reverse shear tokamaks due to ion temperature gradient turbulence  

SciTech Connect (OSTI)

We present an analytic study of momentum transport of tokamak plasmas in the vicinity of minimum safety factor (q) position in reversed magnetic shear configuration. Slab ion temperature gradient modes with an equilibrium flow profile are considered in this study. Quasi-linear calculations of momentum flux clearly show the novel effects of q-curvature on the generation of intrinsic rotation and mean poloidal flow without invoking reflectional symmetry breaking of parallel wavenumber (k{sub ?}). This q-curvature effect originates from the inherent asymmetry in k{sub ?} populations with respect to a rational surface due to the quadratic proportionality of k{sub ?} when q-curvature is taken into account. Discussions are made of possible implications of q-curvature induced plasma flows on internal transport barrier formation in reversed shear tokamaks.

Singh, Rameswar, E-mail: rameswar@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India) [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India); Laboratoire de Physique des Plasmas, Ecole Polytechnique route de Saclay, 91128 Palaiseau Cedex (France); Singh, R [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India) [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India); WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Jhang, Hogun [WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)] [WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Diamond, P. H. [WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of) [WCI Center for Fusion Theory, National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Center for Momentum Transport and Flow Organization, University of California, San Diego, California 92093 (United States); Center for Astrophysics and Space Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0424 (United States)

2014-01-15T23:59:59.000Z

95

Outgassing, Temperature Gradients and the Radiometer Effect in LISA: A Torsion Pendulum Investigation  

E-Print Network [OSTI]

Thermal modeling of the LISA gravitational reference sensor (GRS) includes such effects as outgassing from the proof mass and its housing and the radiometer effect. Experimental data in conditions emulating the LISA GRS are required to confidently predict the GRS performance. Outgassing and the radiometer effect are similar in characteristics and are difficult to decouple experimentally. The design of our torsion balance allows us to investigate differential radiation pressure, the radiometer effect, and outgassing on closely separated conducting surfaces with high sensitivity. A thermally controlled split copper plate is brought near a freely hanging plate-torsion pendulum.We have varied the temperature on each half of the copper plate and have measured the resulting forces on the pendulum. We have determined that to first order the current GRS model for the radiometer effect, outgassing, and radiation pressure are mostly consistent with our torsion balance measurements and therefore these thermal effects do not appear to be a large hindrance to the LISA noise budget. However, there remain discrepancies between the predicted dependence of these effects on the temperature of our apparatus.

Scott E Pollack; Stephan Schlamminger; Jens H Gundlach

2007-02-08T23:59:59.000Z

96

Influence of sintering temperature on the characteristics of shale brick containing oil well-derived drilling waste  

Science Journals Connector (OSTI)

The influence of sintering temperature on the physico-mechanical characteristics (such as water absorption, apparent porosity, bulk density, weight loss on ignition, firing shrinkage, and compressive strength), l...

Xiang-Guo Li; Yang Lv; Bao-Guo Ma

2011-11-01T23:59:59.000Z

97

The effect of gradients of temperature of the sea surface on moving groups of cumulus clouds  

E-Print Network [OSTI]

and 16N to 25N. Prom ship data, for the p . rticulax de+ca of inves;igat'on, i0, ", I, 'I2, nd 1H Inarch 1 9oH, a. map o f mean ai temperature v, as cons I ruc I? ed. . A map of sea-air temoerature differ ence vas ob- tained. Stabilii;y of . I...;he subclcud layer eras exam! ned. favorable areas and uafavorable a! cas f' or cloud dcv. i. lep- ment on the basis of' the sea-air Lemperaiure O'Lfference !vere de+ermined. Comparison?::ith an observed ?, . ? day com? posi+o cloud m . p shoved i irly good...

Stearns, John Robb

2012-06-07T23:59:59.000Z

98

Optimizing drilling performance using a selected drilling fluid  

DOE Patents [OSTI]

To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

Judzis, Arnis (Salt Lake City, UT); Black, Alan D. (Coral Springs, FL); Green, Sidney J. (Salt Lake City, UT); Robertson, Homer A. (West Jordan, UT); Bland, Ronald G. (Houston, TX); Curry, David Alexander (The Woodlands, TX); Ledgerwood, III, Leroy W. (Cypress, TX)

2011-04-19T23:59:59.000Z

99

petroleum-cut (drilling) mud  

Science Journals Connector (OSTI)

petroleum-cut (drilling) mud, oil cut (drilling) mud [Drilling mud unintentionally admixed with crude oil, may result from oil entering the mud while drilling or from a drill-stem test of an oil rese...

2014-08-01T23:59:59.000Z

100

HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING  

SciTech Connect (OSTI)

Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.

Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

2008-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

MIMO Control during Oil Well Drilling  

Science Journals Connector (OSTI)

Abstract A drilling system consists of a rotating drill string, which is placed into the well. The drill fluid is pumped through the drill string and exits through the choke valve. An important scope of the drill fluid is to maintain a certain pressure gradient along the length of the well. Well construction is a complex job in which annular pressures must be kept inside the operational window (limited by fracture and pore pressure). Monitoring bottom hole pressure to avoid fluctuations out of operational window limits is an extremely important job, in order to guarantee safe conditions during drilling. Under a conventional oil well drilling task, the pore pressure (minimum limit) and the fracture pressure (maximum limit) define mud density range and pressure operational window. During oil well drilling, several disturbances affect bottom hole pressure; for example, as the length of the well increases, the bottom hole pressure varies for growing hydrostatic pressure levels. In addition, the pipe connection procedure, performed at equal time intervals, stopping the drill rotation and mud injection, mounting a new pipe segment, restarting the drill fluid pump and rotation, causes severe fluctuations in well fluids flow, changing well pressure. Permeability and porous reservoir pressure governs native reservoir fluid well influx, affecting flow patterns inside the well and well pressure. In this work, a non linear mathematical model (gas-liquid-solid), representing an oil well drilling system, was developed, based on mass and momentum balances. Besides, for implementing classic control (PI), alternative control schemes were analyzed using mud pump flow rate, choke opening index and weight on bit as manipulated variables in order to control annulus bottomhole pressure and rate of penetration. Classic controller tuning was performed for servo and regulatory control studies, under MIMO frameworks.

Mrcia Peixoto Vega; Marcela Galdino de Freitas; Andr Leibsohn Martins

2014-01-01T23:59:59.000Z

102

Evaluation of liquid lift approach to dual gradient  

E-Print Network [OSTI]

the mudline to the rig floor so as to maintain the bottom hole pressure. Several methods have been developed to achieve the dual gradient drilling principle. For this research project, we paid more attention to the liquid lift, dual gradient drilling (riser...

Okafor, Ugochukwu Nnamdi

2009-05-15T23:59:59.000Z

103

Rotary blasthole drilling update  

SciTech Connect (OSTI)

Blasthole drilling rigs are the unsung heroes of open-pit mining. Recently manufacturers have announced new tools. Original equipment manufactures (OEMs) are making safer and more efficient drills. Technology and GPS navigation systems are increasing drilling accuracy. The article describes features of new pieces of equipment: Sandvik's DR460 rotary blasthole drill, P & H's C-Series drills and Atlas Copco's Pit Viper PV275 multiphase rotary blasthole drill rig. DrillNav Plus is a blasthole navigation system developed by Leica Geosystems. 5 photos.

Fiscor, S.

2008-02-15T23:59:59.000Z

104

Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) | Open  

Open Energy Info (EERE)

Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity Details Location Hot Springs Ranch Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley

105

Coiled tubing drilling with supercritical carbon dioxide  

DOE Patents [OSTI]

A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

Kolle , Jack J. (Seattle, WA)

2002-01-01T23:59:59.000Z

106

Gradient Resources | Open Energy Information  

Open Energy Info (EERE)

Resources Resources Jump to: navigation, search Logo: Gradient Resources Name Gradient Resources Address 9670 Gateway Drive, Suite 200 Place Reno, Nevada Zip 89521 Sector Geothermal energy Year founded 1991 Company Type For Profit Phone number (775) 284-8842 Website http://www.gradient.com/ Region Rockies Area References Gradient Resources Website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Gradient Resources is a company based in Reno, Nevada. Gradient Resources is engaged in the exploration and development of geothermal resources as well as the construction, ownership and operation of geothermal power plants. The Company is headquartered in Reno, Nevada with a regional office, drilling operations center, and well-cementing

107

Thermal Gradient Holes | Open Energy Information  

Open Energy Info (EERE)

Thermal Gradient Holes Thermal Gradient Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Gradient Holes Details Activities (50) Areas (39) Regions (4) NEPA(29) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling Parent Exploration Technique: Exploration Drilling Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Field wide fluid flow characteristics if an array of wells are drilled Thermal: Mapping and projecting thermal anomalies Cost Information Low-End Estimate (USD): 5.00500 centUSD 0.005 kUSD 5.0e-6 MUSD 5.0e-9 TUSD / foot Median Estimate (USD): 16.501,650 centUSD 0.0165 kUSD 1.65e-5 MUSD 1.65e-8 TUSD / foot High-End Estimate (USD): 50.005,000 centUSD

108

Design, prototyping, and testing of an apparatus for establishing a linear temperature gradient in experimental fish tanks  

E-Print Network [OSTI]

Immunology researchers require a new type of fish tank that provides a linear thermal gradient for experimental zebrafish in order to improve the accuracy and validity of their research. Zebrafish require the ability to ...

Kadri, Romi Sinclair

2014-01-01T23:59:59.000Z

109

Core Drilling Demonstration  

Broader source: Energy.gov [DOE]

Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...

110

Well drilling apparatus  

SciTech Connect (OSTI)

A drill rig for drilling wells having a derrick adapted to hold and lower a conductor string and drill pipe string. A support frame is fixed to the derrick to extend over the well to be drilled, and a rotary table, for holding and rotating drill pipe strings, is movably mounted thereon. The table is displaceable between an active position in alignment with the axis of the well and an inactive position laterally spaced therefrom. A drill pipe holder is movably mounted on the frame below the rotary table for displacement between a first position laterally of the axis of the well and a second position in alignment with the axis of the well. The rotary table and said drill pipe holder are displaced in opposition to each other, so that the rotary table may be removed from alignment with the axis of the well and said drill pipe string simultaneously held without removal from said well.

Prins, K.; Prins, R.K.

1982-09-28T23:59:59.000Z

111

Foam drilling simulator  

E-Print Network [OSTI]

Although the use of compressible drilling fluids is experiencing growth, the flow behavior and stability properties of drilling foams are more complicated than those of conventional fluids. In contrast with conventional mud, the physical properties...

Paknejad, Amir Saman

2007-04-25T23:59:59.000Z

112

DRILLING MACHINES GENERAL INFORMATION  

E-Print Network [OSTI]

or quill assembly. The head of the drill press is composed of the sleeve, spindle, electric motor, and feed

Gellman, Andrew J.

113

Thermal Gradient Holes At Hualalai Northwest Rift Area (Thomas, 1986) |  

Open Energy Info (EERE)

Hualalai Northwest Rift Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes Although not part of the current effort, two deep (approximately 2000 m) exploratory wells were drilled on the north flank of Hualalai near Puu Waawaa cinder cone. The geophysical data used for siting these wells were proprietary and hence unavailable for publication; however, the temperatures measured at the bottoms of the wells were reported to be below 20degrees C. Chemical analysis of water samples taken from these wells did not provide useful geothermal data due to contamination of the well water with drilling muds References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

114

HydroPulse Drilling  

SciTech Connect (OSTI)

Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

J.J. Kolle

2004-04-01T23:59:59.000Z

115

Technology Development and Field Trials of EGS Drilling Systems  

Broader source: Energy.gov (indexed) [DOE]

Bauer Sandia National Laboratories High Temperature Tools and Sensors, Down-hole Pumps and Drilling May 19, 2010 This presentation does not contain any proprietary...

116

Development of 2-Meter Soil Temperature Probes and Results of Temperature  

Open Energy Info (EERE)

Development of 2-Meter Soil Temperature Probes and Results of Temperature Development of 2-Meter Soil Temperature Probes and Results of Temperature Survey Conducted at Desert Peak, Nevada, USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Development of 2-Meter Soil Temperature Probes and Results of Temperature Survey Conducted at Desert Peak, Nevada, USA Abstract Temperature gradient drilling has historically been a key tool in the exploration for geothermal resources in the Great Basin, USA but regulatory, environmental, and accessibility issues, as well as the expense of drilling, are increasingly limiting its use. In cases where thermal groundwater is not overlain by near-surface cold aquifers, temperatures measured at a depth of 2-meters is an efficient method for mapping thermal anomalies at a high level of detail. This is useful for augmenting deeper

117

Development and Testing of Insulated Drill Pipe  

SciTech Connect (OSTI)

This project has comprised design, analysis, laboratory testing, and field testing of insulated drill pipe (IDP). This paper will briefly describe the earlier work, but will focus on results from the recently-completed field test in a geothermal well. Field test results are consistent with earlier analyses and laboratory tests, all of which support the conclusion that insulated drill pipe can have a very significant effect on circulating fluid temperatures. This will enable the use of downhole motors and steering tools in hot wells, and will reduce corrosion, deterioration of drilling fluids, and heat-induced failures in other downhole components.

Champness, T.; Finger, J.; Jacobson, R.

1999-07-07T23:59:59.000Z

118

A new type of whole oil-based drilling fluid  

Science Journals Connector (OSTI)

Abstract To meet the demand of ultra-deep well drilling and shale gas well drilling, organic clay and a oil-based filtrate reducer were developed and a whole oil-based drilling fluid formula was optimized. The performance of organic clay, oil-based filtrate reducer and the whole oil-based drilling fluid were evaluated in laboratory, and the whole oil-based drilling fluid was applied in drilling process for further test of its performance. Long carbon chain quaternary ammonium salt was used as modifying agents when synthesizing organobentonites. Oil-based filtrate reducer was synthesized with monomers of lignite and amine class. The laboratory tests show that the organic clay can effectively increase the viscosity of oil-based drilling fluid and the oil-based filtrate reducer can reduce the fluid loss. Their performances were better than additives of the same kind at home and abroad. The organic clay and oil-based filtrate reducer had great compatibility with the other additives in oil-based drilling fluid. Based on the optimal additives addition amount tests, the whole oil-based drilling fluid formula was determined and the test results show that the performances of the whole oil-based drilling fluids with various densities were great. The laboratory tests show that the oil-based drilling fluid developed was high temperature resistant, even at 200 C, as density varies from 0.90 to 2.0 g/cm3, it still held good performance with only a little fluid loss, good inhibition, great anti-pollution, and good reservoir protection performance. Field application result shows that the performance of the oil-based drilling fluid is stable with great ability to maintain wellbore stability and lower density than the water-based drilling fluid; drilling bits can be used much longer and the average penetration rate is increased; the oil-based drilling fluid can satisfy the drilling requirements.

Jiancheng LI; Peng YANG; Jian GUAN; Yande SUN; Xubing KUANG; Shasha CHEN

2014-01-01T23:59:59.000Z

119

Method of deep drilling  

DOE Patents [OSTI]

Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

1984-01-01T23:59:59.000Z

120

Geothermal Drilling Organization  

SciTech Connect (OSTI)

The Geothermal Drilling Organization (GDO), founded in 1982 as a joint Department of Energy (DOE)-Industry organization, develops and funds near-term technology development projects for reducing geothermal drilling costs. Sandia National Laboratories administers DOE funds to assist industry critical cost-shared projects and provides development support for each project. GDO assistance to industry is vital in developing products and procedures to lower drilling costs, in part, because the geothermal industry is small and represents a limited market.

Sattler, A.R.

1999-07-07T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Gel Evolution in Oil Based Drilling Fluids.  

E-Print Network [OSTI]

?? Drilling fluids make up an essential part of the drilling operation. Successful drilling operations rely on adequate drilling fluid quality. With the development of (more)

Sandvold, Ida

2012-01-01T23:59:59.000Z

122

Training and Drills  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The volume offers a framework for effective management of emergency response training and drills. Canceled by DOE G 151.1-3.

1997-08-21T23:59:59.000Z

123

Remote drill bit loader  

DOE Patents [OSTI]

A drill bit loader for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned.

Dokos, James A. (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

124

Remote drill bit loader  

DOE Patents [OSTI]

A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.

Dokos, J.A.

1997-12-30T23:59:59.000Z

125

Earth drill rig  

SciTech Connect (OSTI)

This patent describes an earth drill rig wherein an upwardly and downwardly moving drill-string-turning rotary table is rotated by a kelly bar connected at its lower end to a vertical drive shaft, the kelly bar being journalled for rotation in and fixed against axial movement with respect to a drill frame assembly and the rotary table being mounted for axial movement on and along the drill frame assembly. The drill frame assembly is pivotally mounted on a vehicle on a substantially horizontal axis for pivoting between an upright position and a substantially horizontal position for transportation. The improvement described here comprises the drill frame assembly pivot axis positioned below the lower end of the kelly bar and above the upper end of the vertical drive shaft, and a universal coupling connecting the lower end of the kelly bar and the vertical drive shaft the universal coupling comprising universal joints at opposite ends of an elongated slip joint connector and connected there-by for relative axial movement but driving coupling between the universal joints. The universal joints lie generally on a circle of which the drill frame assembly pivot axis is the center. The drill frame assembly can be moved between the upright and the substantially horizontal positions without disconnecting the kelly bar from the vertical drive shaft, the kelly bar being revolvable by the drive shaft through substantially the entire range of movement of the drill frame assembly.

Rassieur, C.L.

1987-01-27T23:59:59.000Z

126

Drilling Through Gas Hydrates Formations: Managing Wellbore Stability Risks  

E-Print Network [OSTI]

in this workflow were based on a real field case. The results provide an understanding of the effects of drilling through hydratebearing sediments and of the impact of drilling fluid temperature and BHP on changes in temperature and pore pressure within...

Khabibullin, Tagir R.

2010-10-12T23:59:59.000Z

127

Drilling optimization using drilling simulator software  

E-Print Network [OSTI]

equipment is being used on some rigs, adding more overall costs to the drilling operation. Other industries facing a similar dilemma-aerospace, airlines, utilities, and the military- have all resorted to sophisticated training and technology... and Gaebler3). Rotary Speed, RPM Weight on Bit, Klbs Rotary Speed, RPM Weight on Bit, Klbs Rotary Speed, RPM Weight on Bit, Klbs ROP,m/h 10 20 7 Fig. 3 shows the five basic processes encountered during the drilling of a well that account for more...

Salas Safe, Jose Gregorio

2004-09-30T23:59:59.000Z

128

Drilling continues upward momentum  

SciTech Connect (OSTI)

This paper discusses how the drilling recovery that began during the second half of 1989 is continuing into 1990. On top of this, the Iraqi invasion of Kuwait has caused disarray in oil markets, driving up oil prices, and disrupting access to oil supplies. Potentially, this upheaval could lead to an upward spike in worldwide drilling activity.

Moritis, G.

1990-09-24T23:59:59.000Z

129

Mobility for Offshore Drilling  

Science Journals Connector (OSTI)

Mobility for Offshore Drilling ... New type unit designed by Humble Oil to operate in Gulf of Mexico in 30 to 70 feet deep water ... HUMBLE OIL & REFINING is inviting bids on construction of a new type of mobile drilling platform to be used in offshore operations. ...

1956-03-26T23:59:59.000Z

130

OFFSHORE DRILLING REVISITED  

Science Journals Connector (OSTI)

OFFSHORE DRILLING REVISITED ... Congress and the Obama Administration weigh the benefits and risks of expanded OIL AND GAS PRODUCTION ... ENERGY INDUSTRY OFFICIALS, coastal states, and environmental activists are clashing over whether Congress and the Obama Administration should allow offshore drilling for oil and natural gas in federal waters that until last year were off limits to development. ...

GLENN HESS

2009-03-23T23:59:59.000Z

131

International guide: blasthole drills  

SciTech Connect (OSTI)

This survey is a comprehensive quick reference guide for surface mine operators. It details rotary blasthole drill rigs that are available around the world. More than 60 drills, each with a pulldown of about 125 kN, are included in the survey.

Chadwick, J.R.

1982-01-01T23:59:59.000Z

132

Drilling operations change gear  

SciTech Connect (OSTI)

Predicts that several technological developments (e.g. measurement-while-drilling tools, computer data-gathering systems, improved drill bits, muds, downhole mud motors, and more efficient rigs) will have a major effect on drilling operations in the not-too-distant future. While several companies manufacture MWD systems and most can boast of successful runs, the major problem with the MWD system is cost. Manufacturers continue to make advances in both turbine and positive displacement mud motors. As the life span of downhole mud motors improves, these motors can economically compete with a rotary rig in drilling certain straight-hole intervals. Prototype bit designs include the use of lasers, electronic beams, flames, sparks, explosives, rocket exhaust, chains, projectiles, abrasive jets, and high-pressure erosion. Because drilling fluids are taking a large share of the drilling budget, mud engineers are trying to optimize costs, while maintaining well bore stability and increasing penetration rates. Many companies are taking the strategy of designing the simplest mud program possible and increasing additives only as needed. Air and foam drilling techniques are gaining attention. Concludes that as crude oil prices increase and the rig count begins to rebound, attention will once again turn to drilling technology and methodology.

Moore, S.D.

1982-08-01T23:59:59.000Z

133

An attempt to minimize the temperature gradient along a plug-flow methane/steam reforming reactor by adopting locally controlled heating zones  

Science Journals Connector (OSTI)

Plug flow reactors are very common in the chemical process industry, including methane/steam reforming applications. Their operation presents many challenges, such as a strong dependence of temperature and composition distribution on the inlet conditions. The strongly endothermic methane/steam reforming reaction might result in a temperature drop at the inlet of the reactor and consequently the occurrence of large temperature gradients. The strongly non-uniform temperature distribution due to endothermic chemical reaction can have tremendous consequences on the operation of the reactor, such as catalyst degradation, undesired side reactions and thermal stresses. To avoid such unfavorable conditions, thermal management of the reactor becomes an important issue. To carry out thermal management properly, detailed modeling and corresponding numerical analyses of the phenomena occurring inside the reforming system is required. This paper presents experimental and numerical studies on the methane/steam reforming process inside a plug-flow reactor. To optimize the reforming reactors, detailed data about the entire reforming process is required. In this study the kinetics of methane/steam reforming on the Ni/YSZ catalyst was experimentally investigated. Measurements including different thermal boundary conditions, the fuel flow rate and the steam- to-methane ratios were performed. The reforming rate equation derived from experimental data was used in the numerical model to predict gas composition and temperature distribution along the steam-reforming reactor. Finally, an attempt was made to control the temperature distribution by adopting locally controlled heating zones.

M Mozdzierz; G Brus; A Sciazko; Y Komatsu; S Kimijima; J S Szmyd

2014-01-01T23:59:59.000Z

134

Fort Bliss exploratory slimholes: Drilling and testing  

SciTech Connect (OSTI)

During November/96 to April/97 Sandia National Laboratories provided consulation, data collection, analysis and project documentation to the U.S. Army for a series of four geothermal exploratory slimholes drilled on the McGregor Range approximately 25 miles north of El Paso, Texas. This drilling was directed toward evaluating a potential reservoir for geothermal power generation in this area, with a secondary objective of assessing the potential for direct use applications such as space heating or water de-salinization. This report includes: representative temperature logs from the wells; daily drilling reports; a narrative account of the drilling and testing; a description of equipment used; a summary and preliminary interpretation of the data; and recommendations for future work.

Finger, J.T.; Jacobson, R.D.

1997-12-01T23:59:59.000Z

135

Chapter 4 Drilling Engineering  

Science Journals Connector (OSTI)

Publisher Summary Drilling operations are essentially carried out during all stages of the project life cycle (PLC) and in all types of environments. The main objectives of these operations includes: the acquisition of information and the safeguarding of production. Since the expenditure for drilling represents a large fraction of the total project's capital expenditure, an understanding of the techniques, equipment, and cost of drilling is very significant. This chapter focuses on the drilling activities. The chapter also explores the interactions between the drilling team and the other exploration and production (E&P) functions. Specifically, an initial successful exploration well can establish the presence of a working petroleum system. Following this, the data gathered in the first well is evaluated and the results are documented. The next step includes the appraisal of the accumulation requiring more wells. Finally, if the project is subsequently moved forward, development wells then needs to be engineered.

F. Jahn; M. Cook; M. Grahm

2008-01-01T23:59:59.000Z

136

Advanced drilling systems study.  

SciTech Connect (OSTI)

This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

1996-05-01T23:59:59.000Z

137

Titanium for Offshore Oil Drilling  

Science Journals Connector (OSTI)

Current and future applications for titanium and its alloys for offshore drilling have been examined. Successful applications were shown ... chlorination systems. Future applications especially for deepwater drilling

Dennis F. Hasson; C. Robert Crowe

1982-01-01T23:59:59.000Z

138

Focus on rotary drill rigs  

SciTech Connect (OSTI)

This article discusses the drill rig, focusing on the rotary drill rigs. There are two principal drilling methods - rotary and percussion. In certain situations, percussion drilling is the most practical method, but for most applications, rotary drilling using the rotary-tricone bit with either steel-toothed cones or carbide inserts, is the common and accepted drilling technique. There are four principal reasons for a rotary drill rig: to provide power to the rotary-tricone bit; to provide air to clean the hole; to provide a life-support system for the rotary-tricone bits; and, to provide a stable and efficient platform from which to drill the hole.

Schivley, G.P. Jr.

1987-06-01T23:59:59.000Z

139

Case study of the Wendel-Amedee Exploration Drilling Project, Lassen County, California, User Coupled Confirmation Drilling Program  

SciTech Connect (OSTI)

The Wendel-Amedee KGRA is located in Honey Lake basin in Lassen County, California, on the boundary between the Modoc Plateau and the Basin and Range geologic provinces. A variety of geophysical surveys was performed over the project property. Geophysical data helped in establishing the regional structural framework, however, none of the geophysical data is sufficiently refined to be considered suitable for the purpose of siting an exploration drill hole. Drilling of reservoir confirmation well WEN-1 took place from August 1 to September 22, 1981. Pulse and long-term flow testing subjected the reservoir to a maximum flow of 680 gpm for 75 hours. At that rate, the well exhibited a productivity index of 21.6 gpm/psi; the reservoir transmissivity was 3.5 x 10/sup 6/ md-ft/cp. The maximum bottom-hole temperature recorded during testing was 251/sup 0/F. The conceptual model of the geothermal resource at Wendel Hot Springs calls on ground water, originating in the neighboring volcanic highlands, descending through jointed and otherwise permeable rocks into the granitic basement. Once in the basement, the fluid is heated as it continues its descent, and lateral movement as dictated by the hydrologic gradient. It then rises to the discharge point along transmissive faults. 45 refs., 28 figs., 3 tabs.

Zeisloft, J.; Sibbett, B.S.; Adams, M.C.

1984-09-01T23:59:59.000Z

140

Geothermal Energy for New Mexico: Assessment of Potential and Exploratory Drilling  

SciTech Connect (OSTI)

This report summarizes the drilling operations and subsequent interpretation of thermal and geochemical data from the New Mexico Tech NMT-2GT (OSE RG- 05276 POD) test well. This slim hole was drilled along an elongate heat-flow anomaly at the base of the Socorro Mountains to better assess the geothermal resource potential (Socorro Peak geothermal system) on the western side of the New Mexico Tech campus in Socorro, New Mexico. The reservoir depth, hydraulic properties, temperature and chemistry were unknown prior to drilling. The purpose of the NMT-2GT (OSE RG-05276 POD) well was to explore the feasibility of providing geothermal fluids for a proposed district space heating system on the New Mexico Tech campus. With DOE cost over runs funds we completed NMT-2GT to a depth of 1102 feet at the Woods Tunnel drill site. Temperatures were nearly constant (41 oC ) between a depth of 400???????????????????????????????¢????????????????????????????????????????????????????????????????1102 feet. Above this isothermal zone, a strong temperature gradient was observed (210 oC /km) beneath the water table consistent with vertical convective heat transfer. The existence of a groundwater upflow zone was further supported by measured vertical hydraulic head measurements which varied between about 258 feet at the water table to 155 feet at a depth of 1102 feet yielding a vertical hydraulic a gradient of about 0.1. If the upflow zone is 1 km deep, then a vertical flow rate is about 0.6 m/yr could have produced the observed curvature in the thermal profile. This would suggest that the deep bedrock permeability is about 20 mD. This is much lower than the permeability measured in a specific capacity aquifer test completed in 2009 within fracture Paleozoic sandstones near the water table (3000 D). Flow rates measured during drilling were measured using a v-notch weir. Flow rates were consistently around 1000 gpm. While the temperatures are lower than we had anticipated, this geothermal resource can still be developed to heat the NM Tech campus using heat pump technology.

Mark Person, Lara Owens, James Witcher

2010-02-17T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Drilling Waste Management Fact Sheet: Drilling Practices That Minimize  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Drilling Practices Drilling Practices Fact Sheet - Drilling Practices That Minimize Generation of Drilling Wastes How Are Wells Typically Drilled? The conventional process of drilling oil and gas wells uses a rotary drill bit that is lubricated by drilling fluids or muds. As the drill bit grinds downward through the rock layers, it generates large amounts of ground-up rock known as drill cuttings. This section of the Drilling Waste Management Information System website discusses several alternative drilling practices that result in a lower volume of waste being generated. Oil and gas wells are constructed with multiple layers of pipe known as casing. Traditional wells are not drilled from top to bottom at the same diameter but rather in a series of progressively smaller-diameter intervals. The top interval is drilled starting at the surface and has the largest diameter hole. Drill bits are available in many sizes to drill different diameter holes. The hole diameter can be 20" or larger for the uppermost sections of the well, followed by different combinations of progressively smaller diameters. Some of the common hole diameters are: 17.5", 14.75", 12.25", 8.5", 7.875", and 6.5".

142

Blast furnace taphole drill  

SciTech Connect (OSTI)

A blast furnace taphole drill has a flaring head with cutting edges at its cutting end formed by intersecting angled faces. A central bore carries cleaning air to the cutting end. To prevent blockage of the cleaning air bore by debris and possible jamming of the drill, the head has deep radial grooves formed at the bottoms of the valley shapes between the cutting edges. The grooves extend radially from the air bore and conduct the air so that it can get behind or under jammed debris. Reduced taphole drilling times can be achieved.

Gozeling, J.A.; de Boer, S.; Spiering, A.A.

1984-06-26T23:59:59.000Z

143

Drilling and production technology symposium  

SciTech Connect (OSTI)

This book presents the papers given at a conference on well drilling. Topics considered at the conference included ice island drilling structures, artificial intelligence, electric motors, mud pumps, bottom hole assembly failures, oil spills, corrosion, wear characteristics of drill bits, two-phase flow in marine risers, the training of drilling personnel, and MWD systems.

Welch, R.

1986-01-01T23:59:59.000Z

144

NETL: News Release - New Projects to Investigate Smart Drilling Options  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

February 20, 2004 February 20, 2004 New Projects to Investigate "Smart Drilling" Options Promise Lower Cost, More Reliable Gas Drilling Two additional projects have been selected under a Department of Energy solicitation designed to advance performance when drilling for natural gas. The projects are a key component of the Department's gas exploration and production research program, and support the President's National Energy Policy, which calls for boosting domestic production of natural gas to ensure an adequate future supply at reasonable prices. With shallow and conventional natural gas resources in the United States being depleted, drillers must reach for gas miles below the earth's surface, where temperatures run up to 450 EF and pressures are hundreds of times greater than atmospheric pressure. "Smart drilling" options can increase productivity, improve drilling safety, and lower costs when drilling for these hard-to-reach deep gas supplies.

145

Design and production of efficient current leads for 1500-A, 50-Hz service in a 77-4 K temperature gradient  

SciTech Connect (OSTI)

Two arrays of BSCCO 2223 bars were designed and produced for use in current leads for a power utility fault-current limiter operating at 4 K. Each conduction-cooled array, consisting of four parallel bars arranged within a 100-mm-diameter boundary, delivered 1,500 A peak, 50-Hz AC through a 77-4 K temperature gradient while dissipating < 0.2 W. The sinter-forged bars displayed DC critical current densities of 950--1,300 A/cm{sup 2} at 77 K and > 5,000 A/cm{sup 2} at 4 K. Magnetic field sensitivity was relatively low. Thermal conductivity tests showed values higher than literature values for polycrystalline BSCCO 2223 made by other processes.

Balachandran, U.; Youngdahl, C.A.; Lanagan, M.T. [and others

1994-10-01T23:59:59.000Z

146

Drill pipe with helical ridge for drilling highly angulated wells  

SciTech Connect (OSTI)

This patent describes a method for drilling a highly angulated wellbore with a rotary rig having a drill string terminated with a bit which method employs drilling fluid. The improvement comprises: employing a length of drill pipe in the highly angulated drill string which has a helical ridge disposed thereabout, wherein the flight of the helical ridge is wound in the same direction as the rotation of the drill string such as to move drill cuttings in a direction from the bit to the surface upon rotation, and wherein the height of the helical ridge above the circumferential surface of the length of the drill pipe is 1 to 15 percent of the diameter of the drill pipe.

Finnegan, J.E.; Williams, J.G.

1991-08-27T23:59:59.000Z

147

HYDRATE CORE DRILLING TESTS  

SciTech Connect (OSTI)

The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate formation comprised of coarse, large-grain sand in ice. Results with this core showed that the viscosity of the drilling fluid must also be carefully controlled. When coarse sand was being cored, the core barrel became stuck because the drilling fluid was not viscous enough to completely remove the large grains of sand. These tests were very valuable to the project by showing the difficulties in coring permafrost or hydrates in a laboratory environment (as opposed to a field environment where drilling costs are much higher and the potential loss of equipment greater). Among the conclusions reached from these simulated hydrate coring tests are the following: Frozen hydrate core samples can be recovered successfully; A spring-finger core catcher works best for catching hydrate cores; Drilling fluid can erode the core and reduces its diameter, making it more difficult to capture the core; Mud must be designed with proper viscosity to lift larger cuttings; and The bottom 6 inches of core may need to be drilled dry to capture the core successfully.

John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

2002-11-01T23:59:59.000Z

148

Thermal Gradient Holes At Cove Fort Area - Vapor (Warpinski, Et Al., 2002)  

Open Energy Info (EERE)

2) 2) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. Drilling of the test well was completed in the fall of 2001 and results are currently being evaluated. The total depth of the well is 598 m with a non-equilibrated maximum temperature probably in the range of 157degrees C and a very complicated geologic structure.

149

Proper planning improves flow drilling  

SciTech Connect (OSTI)

Underbalanced operations reduce formation damage, especially in horizontal wells where zones are exposed to mud for longer time periods. Benefits, risks, well control concerns, equipment and issues associated with these operations are addressed in this paper. Flow drilling raises many concerns, but little has been published on horizontal well control and flow drilling operations. This article covers planning considerations for flow drilling, but does not address horizontal ''overbalanced'' drilling because considerations and equipment are the same as in vertical overbalanced drilling and many references address that subject. The difference in well control between vertical and horizontal overbalanced drilling is fluid influx behavior and how that behavior affects kill operations.

Collins, G.J. (Marathon Oil Co., Houston, TX (United States))

1994-10-01T23:59:59.000Z

150

Analysis of effect of temperature gradients on surface-tension phenomena in gas-tungsten-arc welds  

SciTech Connect (OSTI)

Fluid motion directed by surface tension is considered as a contributor to heat penetration in a weld pool. The potential phenomena at the gas-liquid interface were analyzed, and the dependence of surface motion on temperature in the gas-tungsten-arc (GTA) welding process was examined. An existing heat-transfer model was used and was able to predict weld size to +- 50% of the actual value. A momentum-transfer equation was derived by considering the contribution of Lorentz force. The momentum boundary condition was developed and was able to predict the Marangoni effect. The magnitude of surface-tension-driven force is comparable to the gravitational force on one gram. An empirical approach was proposed to couple heat-transfer and momentum-transfer phenomena. A dimensional analysis identified the pertinent dimensionless groups as Reynolds, Weber, Froude, Peclet, and Power numbers and a dimensionless velocity. A simplified form of the correction was developed by combining dimensionless groups to yield a correlation with the Bond, Prandtl, and modified power numbers. Future experimental work was proposed to test the functionality of the dimensionless groups.

Lee, H.A.; Chien, P.S.J.

1982-10-01T23:59:59.000Z

151

EIA Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Drilling Productivity Report Drilling Productivity Report For Center on Global Energy Policy, Columbia University October 29, 2013 | New York, NY By Adam Sieminski, Administrator The U.S. has experienced a rapid increase in natural gas and oil production from shale and other tight resources Adam Sieminski, EIA Drilling Productivity Report October 29, 2013 2 0 5 10 15 20 25 30 35 2000 2002 2004 2006 2008 2010 2012 Rest of US Marcellus (PA and WV) Haynesville (LA and TX) Eagle Ford (TX) Bakken (ND) Woodford (OK) Fayetteville (AR) Barnett (TX) Antrim (MI, IN, and OH) 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 2000 2002 2004 2006 2008 2010 2012 Eagle Ford (TX) Bakken (MT & ND) Granite Wash (OK & TX) Bonespring (TX Permian) Wolfcamp (TX Permian) Spraberry (TX Permian) Niobrara-Codell (CO) Woodford (OK)

152

Recent Developments in Geothermal Drilling Fluids  

SciTech Connect (OSTI)

In the past, standard drilling muds have been used to drill most geothermal wells. However, the harsh thermal and chemical environment and the unique geothermal formations have led to such problems as excessive thickening of the fluid, formation damage, and lost circulation. This paper describes three recent development efforts aimed at solving some of these drilling fluid problems. Each of the efforts is at a different stage of development. The Sandia aqueous foam studies are still in the laboratory phase, NL Baroid's polymeric deflocculant is soon to be field tested, and the Mudtech high-temperature mud was field tested several months ago. Low density and the capability to suspend particles at low relative velocities are two factors which make foam an attractive drilling fluid. The stability of these foams and their material properties at high temperatures are presently unknown and this lack of information has precluded their use as a geothermal drilling fluid. The aqueous foam studies being conducted at Sandia are aimed at screening available surfactants for temperature and chemical stability. Approximately 100 surfactants have been tested at temperatures of 260 and 310 C (500 and 590 F), and several of these candidates appear very promising. NL Baroid has developed a polymeric deflocculant for water-based muds which shows promise in retarding thermal degradation effects and associated gelation. Formulations containing this new polymer have shown good rheological properties up to 260 C (500 F) in laboratory testing. A high-temperature mud consisting primarily of sepiolite, bentonite, and brown coal has been developed by Mudtech, Inc. A field test of this mud was conducted in a geothermal well in the Imperial Valley of California in May 1980. The fluid exhibited good hole-cleaning characteristics and good rheological properties throughout the test.

Kelsey, J. R.; Rand, P. B.; Nevins, M. J.; Clements, W. R.; Hilscher, L. W.; Remont, L. J.; Matula, G. W.; Balley, D. N.

1981-01-01T23:59:59.000Z

153

Marcellus Shale Drilling and Hydraulic Fracturing; Technicalities and  

E-Print Network [OSTI]

Pipe · Air Rotary Drilling Rig · Hydraulic Rotary Drilling Rig ­ Barite/Bentonite infused drilling muds A "Thumper Truck" #12;Rigging Up #12;Drilling · The Drill String ­ Diesel Powered ­ Drilling Bit ­ Drilling

Jiang, Huiqiang

154

Advanced Seismic While Drilling System  

SciTech Connect (OSTI)

A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

2008-06-30T23:59:59.000Z

155

Managed Pressure Drilling Candidate Selection  

E-Print Network [OSTI]

. Rodolphe Leschot invented and patented the earliest form of diamond core drills. T. F. Rowland patented an ?offshore rotary drilling rig?. Captain Lucas, with his Spindletop field wells, Earle Halliburton with his cementing service company, inventors... is the ancient water and brine wells drilled from the prehistoric eras to not so modern times. The second stage is the drilling of the earliest oil wells, and development of basic derricks, rigs, and cable tool rigs. The third stage is the development of rotary...

Nauduri, Anantha S.

2010-07-14T23:59:59.000Z

156

Naming chemical compounds: Calculator drill  

Science Journals Connector (OSTI)

36. Bits and pieces, 13. A calculator can be programmed to drill students on chemical compound naming rules.

David Holdsworth; Evelyn Lacanienta

1983-01-01T23:59:59.000Z

157

invert(ed) (oil) emulsion (drilling) mud  

Science Journals Connector (OSTI)

invert(ed) (oil) emulsion (drilling) mud, water-in-oil (drilling) mud ? Wasser-in-l-(Bohr)...m, (f)

2014-08-01T23:59:59.000Z

158

water-in-oil (drilling) mud  

Science Journals Connector (OSTI)

water-in-oil (drilling) mud, invert(ed) (oil) emulsion (drilling) mud ? Wasser-in-l-(Bohr)...m, (f)

2014-08-01T23:59:59.000Z

159

Drilling subsurface wellbores with cutting structures  

DOE Patents [OSTI]

A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

Mansure, Arthur James (Alburquerque, NM); Guimerans, Rosalvina Ramona (The Woodlands, TX)

2010-11-30T23:59:59.000Z

160

Slimhole Drilling, Logging, and Completion Technology - An Update  

SciTech Connect (OSTI)

Using slim holes (diameter < 15 cm) for geothermal exploration and small-scale power production can produce significant cost savings compared to conventional rotary-drilling methods. In addition, data obtained from slim holes can be used to lower the risks and costs associated with the drilling and completion of large-diameter geothermal wells. As a prime contractor to the U.S. Department of Energy (DOE), Sandia National Laboratories has worked with industry since 1992 to develop and promote drilling, testing, and logging technology for slim holes. This paper describes the current status of work done both in-house and contracted to industry. It focuses on drilling technology, case histories of slimhole drilling projects, data collection and rig instrumentation, and high-temperature logging tools.

FINGER,JOHN T.; JACOBSON,RONALD D.

1999-10-07T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Were Archaean continental geothermal gradients much steeper than today? (reply)  

Science Journals Connector (OSTI)

... -We did not intend to suggest that our gradients bore any relationship to near-surface geothermal gradients. It may have been clearer to have termed them average ... gradients. It may have been clearer to have termed them average geothermal gradients. Our purpose in quoting these gradients was simply to emphasise that the temperature ...

KEVIN BURKE; W. S. F. KIDD

1978-08-17T23:59:59.000Z

162

Development Drilling | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Development Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Development Drilling Details Activities (1) Areas (1) Regions (0) NEPA(9) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Development Drilling Parent Exploration Technique: Drilling Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

163

Cost effectiveness of sonic drilling  

SciTech Connect (OSTI)

Sonic drilling (combination of mechanical vibrations and rotary power) is an innovative environmental technology being developed in cooperation with DOE`s Arid-Site Volatile Organic Compounds Integrated Demonstration at Hanford and the Mixed Waste Landfill Integrated Demonstration at Sandia. This report studies the cost effectiveness of sonic drilling compared with cable-tool and mud rotary drilling. Benefit of sonic drilling is its ability to drill in all types of formations without introducing a circulating medium, thus producing little secondary waste at hazardous sites. Progress has been made in addressing the early problems of failures and downtime.

Masten, D.; Booth, S.R.

1996-03-01T23:59:59.000Z

164

Measurement-while-drilling (MWD) development for air drilling  

SciTech Connect (OSTI)

The objective of this program is to tool-harden and make commercially available an existing wireless MWD tool to reliably operate in an air, air-mist, or air-foam environment during Appalachian Basin oil and gas directional drilling operations in conjunction with downhole motors and/or (other) bottom-hole assemblies. The application of this technology is required for drilling high angle (holes) and horizontal well drilling in low-pressure, water sensitive, tight gas formations that require air, air-mist, and foam drilling fluids. The basic approach to accomplishing this objective was to modify GEC`s existing electromagnetic (e-m) ``CABLELESS``{trademark} MWD tool to improve its reliability in air drilling by increasing its tolerance to higher vibration and shock levels (hardening). Another important aim of the program is to provide for continuing availability of the resultant tool for use on DOE-sponsored, and other, air-drilling programs.

Rubin, L.A.; Harrison, W.H.

1992-06-01T23:59:59.000Z

165

Use of Clays as Drilling Fluids and Filters  

Science Journals Connector (OSTI)

In geotechnical engineering, drilling fluid is a fluid used to drill boreholes into the earth. In drilling rigs, drilling fluids help to do drill for exploration of oil and natural gas. Liquid drilling fluid is o...

Swapna Mukherjee

2013-01-01T23:59:59.000Z

166

Simulation of air and mist drilling for geothermal wells  

SciTech Connect (OSTI)

An improved method for calculating downhole temperatures, pressures, fluid densities and velocities during air drilling has been developed. The basic equations of fluid flow for a gas with cuttings and mist are presented along with a numerical method for their solution. Several applications of this calculational method are given, showing the effect of flow rate and standpipe pressures in typical air and mist drilling situations. 8 refs.

Mitchell, R.F.

1981-01-01T23:59:59.000Z

167

Drilling Systems | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Drilling Systems Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for Drilling Systems 2 Geothermal ARRA Funded Projects for Drilling Systems Geothermal Lab Call Projects for Drilling Systems Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

168

Drill Program Ensures Emergency Preparedness  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

underground event. Drill scenarios have included a full evacuation of the WIPP underground facility and responding to radiological incidents and a variety of emergencies on the...

169

Portable drilling mud system  

SciTech Connect (OSTI)

A portable well drilling mud storage and recirculation unit includes a mud storage tank mounted on an over-the-road semi-trailer having an engine driven circulating pump mounted onboard and adapted to withdraw mud from the tank for circulation to the well and for recirculation through a set of mud agitating nozzles disposed in the bottom of the tank. A mud degassing vessel, a solids separator unit and an additive blending unit are all mounted above the tank. The degassing vessel is supported by hydraulic cylinder actuators for movement between a retracted transport position and a vertically elevated working position.

Etter, R. W.; Briggs, J. M.

1984-10-02T23:59:59.000Z

170

Oil and Gas Drilling Bit Tribology  

Science Journals Connector (OSTI)

A drilling bit is used in petroleum exploration to drill a wellbore through various layers of rock formations to access oil or natural gas resources. It is engineered...1). A roller cone drill bit is categorized ...

Dr. Chih Lin Ph.D.

2013-01-01T23:59:59.000Z

171

oil-emulsion (rotary) drilling fluid  

Science Journals Connector (OSTI)

oil-emulsion (rotary) drilling fluid, oil-emulsion fluid [Used where low fluid-loss, very thin cake, and good lubrication of the drill pipe are of primary importance, such as in directional drilling ...

2014-08-01T23:59:59.000Z

172

oil-base(d) (rotary) drilling fluid  

Science Journals Connector (OSTI)

oil-base(d) (rotary) drilling fluid, oil-base(d) fluid [Used primarily for drilling-in or recomputing wells in formations subject ... with low formation pressures. See remark under drilling fluid] ...

2014-08-01T23:59:59.000Z

173

Managed pressure drilling techniques and tools  

E-Print Network [OSTI]

these problems, the economics of drilling the wells will improve, thus enabling the industry to drill wells that were previously uneconomical. Managed pressure drilling (MPD) is a new technology that enables a driller to more precisely control annular pressures...

Martin, Matthew Daniel

2006-08-16T23:59:59.000Z

174

Relating horsepower to drilling productivity  

SciTech Connect (OSTI)

Many technological advancements have been made in explosive products and applications over the last 15 years resulting in productivity and cost gains. However, the application of total energy (engine horsepower) in the majority of rotary drilling technology, has remained virtually unchanged over that period. While advancements have been made in components, efficiency, and types of hydraulic systems used on drills, the application of current hydraulic technology to improve drilling productivity has not been interactive with end users. This paper will investigate how traditional design assumptions, regarding typical application of horsepower in current rotary drill systems, can actually limit productivity. It will be demonstrated by numeric analysis how changing the partitioning of available hydraulic energy can optimize rotary drill productivity in certain conditions. Through cooperative design ventures with drill manufacturers, increased penetration rates ranging from 20% to 100% have been achieved. Productivity was increased initially on some rigs by careful selection of optional hydraulic equipment. Additional gains were made in drilling rates by designing the rotary hydraulic circuit to meet the drilling energies predicted by computer modeling.

Givens, R.; Williams, G.; Wingfield, B.

1996-12-31T23:59:59.000Z

175

February 2002 OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

February 2002 OCEAN DRILLING PROGRAM LEG 204 SCIENTIFIC PROSPECTUS DRILLING GAS HYDRATES ON HYDRATE 1000 Discovery Drive College Station TX 77845-9547 USA -------------------------------- Dr. Carl Drive College Station TX 77845-9547 USA #12;PUBLISHER'S NOTES Material in this publication may be copied

176

Thermal stress on bottom hole rock of gas drilling  

Science Journals Connector (OSTI)

Gas drilling has higher penetration than mud drilling. The greatest reason for this phenomenon with gas is that the gas is greatly cooled by expansion as it passes through the bit and thereby cools the bottom of the hole. The thermal stress at bottom-hole occurs during this process. The concept of thermal crushing of rocks is analysed in this study. The theoretical methods are developed to analyse thermal stresses and fragmentation induced by cooling of rock. Then, the numerical computation is conducted for the thermal stress equations with the numerical result simulated for the temperature field at the bottom hole to explain the reason of high drilling rates in gas drilling. Furthermore, an experiment was conducted to verify the theory. Therefore, the theories and simulated results in this paper have a guiding signification for best understand the technique and possibly to extend its economic advantage still further. [Received: September 23, 2011; Accepted: November 20, 2011

Shunji Yang; Gonghui Liu; Jun Li

2012-01-01T23:59:59.000Z

177

Drilling Methods | Open Energy Information  

Open Energy Info (EERE)

Drilling Methods Drilling Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Methods Details Activities (0) Areas (0) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Exploration Sub Group: None Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Drilling Methods: No definition has been provided for this term. Add a Definition References No exploration activities found. Document # Analysis Type Applicant Geothermal Area Lead Agency District Office Field Office Mineral Manager Surface Manager Development Phase(s) Techniques CA-170-02-15 EA Mammoth Pacific Long Valley Caldera Geothermal Area BLM BLM Central California District Office BLM Bishop Field Office BLM Geothermal/Exploration Drilling Methods

178

low-solids oil emulsion (drilling) mud  

Science Journals Connector (OSTI)

low-solids oil emulsion (drilling) mud, low-solids oil-in-water (drilling) mud ? l-in-Wasser-(Bohr)...m, (f) mit geringem Feststoffanteil

2014-08-01T23:59:59.000Z

179

Hydraulic Pulse Drilling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

REV DATE DESCRIPTION ORIGINATOR REVIEWED DATE REV DATE DESCRIPTION ORIGINATOR REVIEWED DATE 0 4/13/2004 Final Report Author: J. Kolle Hunter/Theimer 4/13/2004 Document No.: TR- 053 HydroPulse(tm) Drilling Final Report Prepared by J.J. Kolle April 2004 U.S. Department of Energy Cooperative Development Agreement No. DE-FC26-FT34367 Tempress Technologies, Inc. 18858 - 72 ND Ave S. Kent, WA 98032 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

180

1982 geothermal well drilling summary  

SciTech Connect (OSTI)

This summary lists all geothermal wells spudded in 1982, which were drilled to a depth of at least 2,000 feet. Tables 1 and 2 list the drilling information by area, operator, and well type. For a tabulation of all 1982 geothermal drilling activity, including holes less than 2,000 feet deep, readers are referred to the February 11, 1983, issue of Petroleum Information's ''National Geothermal Service.'' The number of geothermal wells drilled in 1982 to 2,000 feet or more decreased to 76 wells from 99 ''deep'' wells in 1981. Accordingly, the total 1982 footage drilled was 559,110 feet of hole, as compared to 676,127 feet in 1981. Most of the ''deep'' wells (49) completed were drilled for development purposes, mainly in The Geysers area of California. Ten field extension wells were drilled, of which nine were successful. Only six wildcat wells were drilled compared to 13 in 1980 and 20 in 1981, showing a slackening of exploration compared to earlier years. Geothermal drilling activity specifically for direct use projects also decreased from 1981 to 1982, probably because of the drastic reduction in government funding and the decrease in the price of oil. Geothermal power generation in 1982 was highlighted by (a) an increase of 110 Mw geothermal power produced at The Geysers (to a total of 1,019 Mw) by addition of Unit 17, and (b) by the start-up of the Salton Sea 10 Mw single flash power plant in the Imperial Valley, which brought the total geothermal electricity generation in this area to 31 Mw.

Parmentier, P.P.

1983-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Drilling Waste Management Fact Sheet: Slurry Injection of Drilling Wastes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Slurry Injection Slurry Injection Fact Sheet - Slurry Injection of Drilling Wastes Underground Injection of Drilling Wastes Several different approaches are used for injecting drilling wastes into underground formations for permanent disposal. Salt caverns are described in a separate fact sheet. This fact sheet focuses on slurry injection technology, which involves grinding or processing solids into small particles, mixing them with water or some other liquid to make a slurry, and injecting the slurry into an underground formation at pressures high enough to fracture the rock. The process referred to here as slurry injection has been given other designations by different authors, including slurry fracture injection (this descriptive term is copyrighted by a company that provides slurry injection services), fracture slurry injection, drilled cuttings injection, cuttings reinjection, and grind and inject.

182

Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Drilling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(20) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

183

REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN  

E-Print Network [OSTI]

REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY;PREFACE Attached is the "REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN" that will be used for ODP coring and drilling operations on legs where hydrogen sulfide is likely to be encountered. Prior

184

DRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto  

E-Print Network [OSTI]

;1. INTRODUCTION A drill-string is a slender structure used in oil wells to penetrate the soil in search of oilDRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto R. Sampaio thiagoritto Descartes, 77454 Marne-la-Vallée, France Abstract. The influence of the drilling fluid (or mud) on the drill

Boyer, Edmond

185

Hydrates represent gas source, drilling hazard  

SciTech Connect (OSTI)

Gas hydrates look like ordinary ice. However, if a piece of such ice is put into warm water its behavior will be different from the ordinary melting of normal ice. In contrast, gas hydrates cause bubbles in the warm water, which indicates the high content of gas in the hydrate crystals. The presence of four components is required: gas itself, water, high pressure, and low temperature. The paper discusses how hydrates form, hydrates stability, South Caspian hydrates, and hydrates hazards for people, ships, pipelines, and drilling platforms.

Bagirov, E. [Azerbaijan Academy of Sciences, Baku (Azerbaijan); Lerche, I. [Univ. of South Carolina, Columbia, SC (United States)

1997-12-01T23:59:59.000Z

186

Forecast of geothermal drilling activity  

SciTech Connect (OSTI)

The numbers of each type of geothermal well expected to be drilled in the United States for each 5-year period to 2000 AD are specified. Forecasts of the growth of geothermally supplied electric power and direct heat uses are presented. The different types of geothermal wells needed to support the forecasted capacity are quantified, including differentiation of the number of wells to be drilled at each major geothermal resource for electric power production. The rate of growth of electric capacity at geothermal resource areas is expected to be 15 to 25% per year (after an initial critical size is reached) until natural or economic limits are approached. Five resource areas in the United States should grow to significant capacity by the end of the century (The Geysers; Imperial Valley; Valles Caldera, NM; Roosevelt Hot Springs, UT; and northern Nevada). About 3800 geothermal wells are expected to be drilled in support of all electric power projects in the United States between 1981 and 2000 AD. Half of the wells are expected to be drilled in the Imperial Valley. The Geysers area is expected to retain most of the drilling activity for the next 5 years. By the 1990's, the Imperial Valley is expected to contain most of the drilling activity.

Brown, G.L.; Mansure, A.J.

1981-10-01T23:59:59.000Z

187

Tool Wear in Friction Drilling  

SciTech Connect (OSTI)

This study investigated the wear of carbide tools used in friction drilling, a nontraditional hole-making process. In friction drilling, a rotating conical tool uses the heat generated by friction to soften and penetrate a thin workpiece and create a bushing without generating chips. The wear of a hard tungsten carbide tool used for friction drilling a low carbon steel workpiece has been investigated. Tool wear characteristics were studied by measuring its weight change, detecting changes in its shape with a coordinate measuring machine, and making observations of wear damage using scanning electron microscopy. Energy dispersive spectroscopy was applied to analyze the change in chemical composition of the tool surface due to drilling. In addition, the thrust force and torque during drilling and the hole size were measured periodically to monitor the effects of tool wear. Results indicate that the carbide tool is durable, showing minimal tool wear after drilling 11000 holes, but observations also indicate progressively severe abrasive grooving on the tool tip.

Miller, Scott F [ORNL; Blau, Peter Julian [ORNL; Shih, Albert J. [University of Michigan

2007-01-01T23:59:59.000Z

188

Vibratory Drilling of Oil Wells  

Science Journals Connector (OSTI)

Vibratory drilling refers to the process of drilling into rock by vibrating the drilling tool at audio?frequencies. The basic mechanism of vibratory drilling was ascertained by preliminary laboratory experimentation to consist of a series of impacts on the rock at the frequency of vibration. A fundamental study of this basic mechanism made by dropping weighted chisels on rock showed that the primary parameter which determined the rate of penetration was the mechanical power input to the rock per unit cross section of hole; the values of the vibration frequency and of other variables were of minor consequence over wide ranges. A theoretical analysis was made of the vibration of an elongated magnetostrictiontransducer capable of generating the required power level taking into account the distributed nature of the generation of vibrations. Intermediate power transducers have been built and tested and a high?power transducer for down?hole operation is under construction. [The material for this presentation is based on work carried out at the Battelle Memorial Institute under the sponsorship of Drilling Research Inc. an organization formed by a group of major companies engaged in various phases of oil production for the purpose of investigating novel methods of rock drilling.

Ralph Simon

1956-01-01T23:59:59.000Z

189

Thermal Gradient Holes At Twenty-Nine Palms Area (Sabin, Et Al., 2010) |  

Open Energy Info (EERE)

Thermal Gradient Holes At Twenty-Nine Palms Area (Sabin, Et Al., 2010) Thermal Gradient Holes At Twenty-Nine Palms Area (Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Twenty-Nine Palms Geothermal Area (Sabin, Et Al., 2010) Exploration Activity Details Location Twenty-Nine Palms Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes The first and only Seabee drilling project was the installation of five TGHs at the Camp Wilson region of the MCAGCC Marine base near Twenty-Nine Palms, CA. While the program was a success and GPO identified an anomaly where a deep, slim hole is to be drilled in June, 2010, the Seabee rig was sent oversees soon after drilling was completed. If/when another rig

190

Drill bit having a failure indicator  

SciTech Connect (OSTI)

A lubrication system is described to indicate a decrease in lubricant volume below a predetermined level in a rotary drill bit having a bit body adapted to receive drilling fluid at a high first pressure from a suspended drill string, and adapted to discharge the drilling fluid therefrom in a void space between the bit body and an associated well bore with the drilling fluid in the space being at a low second pressure.

Daly, J.E.; Pastusek, P.E.

1986-09-09T23:59:59.000Z

191

Simulation of air and mist drilling for geothermal wells  

SciTech Connect (OSTI)

An air drilling model has been developed that accounts for cuttings and mist. Comparison of the model results with previous work shows this model to be more conservative. The equations developed are simple enough to be used in hand calculations, but the full capability of the model is more easily obtained with a computer program. Studies with the model show that volume requirements and standpipe pressures are significantly different for mist drilling compared with air drilling. An improved method for calculating downhole temperatures, pressures, fluid densities, and velocities during air drilling has been developed. Improvements on previous methods include the following. A fully transient thermal analysis of the wellbore and formation is used to determine the flowing temperatures. The effects of flow acceleration are included explicitly in the calculation. The slip velocity between the gas and the cuttings is determined by the use of a separate momentum equation for the cuttings. The possibility of critical flow in the wellbore is tested and appropriate changes in the volume flow rate and standpipe pressure are made automatically. The standpipe and flowing pressures are predicted. The analysis is conservative. The effect of the cuttings on the wellbore flow will tend to overpredict the required volume flow rates. In this paper, the basic equations of fluid flow for a gas with cuttings and mist are presented along with a numerical method for their solution. Several applications of this calculational method are given, showing the effect of flow rate and standpipe pressure in typical air and mist drilling situations.

Mitchell, R.F.

1983-11-01T23:59:59.000Z

192

Static Temperature Survey At Coso Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Static Temperature Survey At Coso Geothermal Area Static Temperature Survey At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Static Temperature Survey Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Temperature logs were taken during and after drilling: Results: Convective heat flow and temperatures greater than 350 F appear to occur only along an open fracture system encountered between depths of 1850 and 2775 feet. Temperature logs indicate a negative thermal gradient below 3000 feet. Water chemistry indicates that this geothermal resource is a hot-water rather than a vapor-dominated system. References Galbraith, R. M. (1 May 1978) Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA,

193

Microinstabilities in weak density gradient tokamak systems  

SciTech Connect (OSTI)

A prominent characteristic of auxiliary-heated tokamak discharges which exhibit improved (''H-mode type'') confinement properties is that their density profiles tend to be much flatter over most of the plasma radius. Depsite this favorable trend, it is emphasized here that, even in the limit of zero density gradient, low-frequency microinstabilities can persist due to the nonzero temperature gradient.

Tang, W.M.; Rewoldt, G.; Chen, L.

1986-04-01T23:59:59.000Z

194

JOIDES Resolution Drill Ship Drill into Indian Ridge MOHO Hole Cleaning Study  

E-Print Network [OSTI]

The Integrated Ocean Drilling Program (IODP) uses a variety of technology for use in its deep water scientific research, including the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) Resolution (JR) drill ship. The JR drill ship...

Lindanger, Catharina

2014-05-03T23:59:59.000Z

195

Solubilization of wellbore filtercakes formed from drill-in fluids  

E-Print Network [OSTI]

Research was performed to study the degradation of filtercakes formed by water-based drill-in fluids (DIF), primarily sized-salt (SS) and sized-calcium carbonate (SCC) DIFs. The experiments to degrade DIF filtercakes varied temperature (43?C to 71?...

Jepson, Richard Kendall

2000-01-01T23:59:59.000Z

196

Drill wear: its effect on the diameter of drilled holes  

E-Print Network [OSTI]

drills are made of oae of two differeat materials. The most common material in use today 1s aa 18-4-1 type of high speed steel. This steel contains about O. VS per cent carboa, 18. 00 per eeet tungstea, 4. 00 per cent chromium, and 1. 10 per eeet... vanadium. The primary advaatage of steel of this type is its ability to maintain its cutt1ng edge and haxdaess at high tempexatures. Besides beiag used for drills, this steel finds applicntioa in waay other tools such as willing cutters, taps, reamers...

Reichert, William Frederick

2012-06-07T23:59:59.000Z

197

April 25, 1997: Yucca Mountain exploratory drilling | Department...  

Office of Environmental Management (EM)

April 25, 1997: Yucca Mountain exploratory drilling April 25, 1997: Yucca Mountain exploratory drilling April 25, 1997: Yucca Mountain exploratory drilling April 25, 1997 Workers...

198

Geothermal low-temperature reservoir assessment in Dona Ana County, New Mexico. Final report  

SciTech Connect (OSTI)

Sixty-four shallow temperature gradient holes were drilled on the Mesilla Valley East Mesa (east of Interstate Highways 10 and 25), stretching from US Highway 70 north of Las Cruces to NM Highway 404 adjacent to Anthony, New Mexico. Using these data as part of the site selection process, Chaffee Geothermal, Ltd. of Denver, Colorado, drilled two low-temperature geothermal production wells to the immediate north and south of Tortugas Mountain and encountered a significant low-temperature reservoir, with a temperature of about 150{sup 0}F and flow rates of 750 to 1500 gallons per minute at depths from 650 to 1250 feet. These joint exploration activities resulted in the discovery and confirmation of a 30-square-mile low-temperature geothermal anomaly just a few miles to the east of Las Cruces that has been newly named as the Las Cruces east Mesa Geothermal Field. Elevated temperature and heat flow data suggest that the thermal anomaly is fault controlled and extends southward to the Texas border covering a 100-square-mile area. With the exception of some localized perturbations, the anomaly appears to decrease in temperature from the north to the south. Deeper drilling is required in the southern part of the anomaly to confirm the existence of commercially-exploitable geothermal waters.

Icerman, L.; Lohse, R.L.

1983-04-01T23:59:59.000Z

199

Smaller Footprint Drilling System for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-03NT15401 Final Report Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling Submitted by: TerraTek, A Schlumberger Company 1935 Fremont Drive Salt Lake City, UT 84104 Prepared for: United States Department of Energy National Energy Technology Laboratory 2 February 2010 Office of Fossil Energy Feasibility of Ultra-High Speed Diamond Drilling DE-FC26-03NT15401 ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or

200

RECIPIENT:Potter Drilling Inc  

Broader source: Energy.gov (indexed) [DOE]

Potter Drilling Inc Potter Drilling Inc u.s. DEPARTUEN T OF ENERG¥ EERE PROJECT MANAGEMENT CENT ER NEPA DEIERl\IINATION PROJECr TITLE: Development of a Hydrothermal Spallation Drilling System for EGS Page 1 0[2 STATE: CA Funding Opportunity Announ<:ement Number Procurement Instrument Number NEPA Control Number CID Number OE·PS36-09G099016 OE· EE0002746 ~FO . 10 - [r,,~ G02746 Based on my review of the information concerning the proposed action, as NEPA ComplianC:f Offkrr (authorized under DOE Order 451.IA), I have made the following determination: ex. EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited 10, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Thermal Gradient Holes At Tungsten Mountain Area (Kratt, Et Al., 2008) |  

Open Energy Info (EERE)

Kratt, Et Al., 2008) Kratt, Et Al., 2008) Exploration Activity Details Location Tungsten Mountain Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes twenty-three gold exploration holes were drilled by Newcrest Resources, Inc. during 2005 and 2006 along the range front. These holes approached or exceeded 300 m in depth and all holes encountered hot water and/or steam. Despite the high temperatures encountered at relatively shallow depths, there are no active geothermal features such as hot springs or steam vents at the surface. The presence of small outcrops of argillic alteration containing anomalous gold attracted the interest of exploration geologists. References Christopher Kratt, Mark Coolbaugh, Chris Sladek, Rick Zehner, Robin

202

Deep drilling data Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

drilling data Raft River geothermal area, Idaho drilling data Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep drilling data Raft River geothermal area, Idaho Details Activities (2) Areas (1) Regions (0) Abstract: Stratigraphy and geophysical logs of three petroleum test boreholes in the Raft River Valley are presented. The geophysical logs include: temperature, resistivity, spontaneous potential, gamma, caliper, and acoustic logs. Author(s): Oriel, S. S.; Williams, P. L.; Covington, H. R.; Keys, W. S.; Shaver, K. C. Published: DOE Information Bridge, 1/1/1978 Document Number: Unavailable DOI: 10.2172/6272996 Source: View Original Report Exploratory Well At Raft River Geothermal Area (1975) Exploratory Well At Raft River Geothermal Area (1976) Raft River Geothermal Area

203

Behavior of oil muds during drilling operations  

SciTech Connect (OSTI)

This paper presents an analysis of the behavior of diesel-oil-based muds with an advanced thermal and hydraulic wellbore mathematical simulator. Recent diesel-oil-mud rheological correlations have been incorporated into the model to account for viscosity and density variations of oil mud with temperature and pressure. As rheological correlations are developed for other oil-based muds, such as mineral-oil based muds, they can also be incorporated into the model. A specific deep-well application of the model illustrates the behavior of the oil-based muds and shows the differences between water-based mud and oil-mud for local fluid densities during drilling, circulating, and static conditions. Temperature and density profiles are presented for various operating conditions to show that modeling improves the understanding of oil-mud behavior downhole.

Galate, J.W.; Mitchell, R.F.

1986-04-01T23:59:59.000Z

204

Definition: Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search Dictionary.png Drilling Techniques There are a variety of drilling techniques which can be used to sink a borehole into the ground. Each has its advantages and disadvantages, in terms of the depth to which it can drill, the type of sample returned, the costs involved and penetration rates achieved. There are two basic types of drills: drills which produce rock chips, and drills which produce core samples.[1] View on Wikipedia Wikipedia Definition Well drilling is the process of drilling a hole in the ground for the extraction of a natural resource such as ground water, brine, natural gas, or petroleum, for the injection of a fluid from surface to a subsurface reservoir or for subsurface formations evaluation or monitoring.

205

Acoustic data transmission through a drill string  

DOE Patents [OSTI]

Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

Drumheller, D.S.

1988-04-21T23:59:59.000Z

206

Downhole drilling network using burst modulation techniques  

DOE Patents [OSTI]

A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

Hall; David R. (Provo, UT), Fox; Joe (Spanish Fork, UT)

2007-04-03T23:59:59.000Z

207

Advanced Drilling Systems for EGS  

Broader source: Energy.gov [DOE]

Project objectives: Apply Novateks Stinger and JackBit technology in the development of an innovative; durable fixed bladed bit and improved roller cone bit that will increase ROP by three times in drilling hard rock formations normally encountered in developing EGS resources.

208

Step-Out Drilling Results at Blue Mountain, Nevada | Open Energy  

Open Energy Info (EERE)

Step-Out Drilling Results at Blue Mountain, Nevada Step-Out Drilling Results at Blue Mountain, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Step-Out Drilling Results at Blue Mountain, Nevada Abstract Step-out drilling targets based on a detailed structural model at Blue Mt. Nevada have led to high permeability entries in a well offset 1.2 km west of the developing field at Blue Mountain,Nevada. This well, 58-15, targeted shallow and deep entries based on a model with faults in the hanging wall and in the underlying range front fault zone. Drilling results showed that both zones were permeable. The deep target showed up in several productive fractures at relatively high temperatures. This result supports the general conceptual model of upflow from depth on Piedmont faults. The purpose of

209

Microhole Drilling Tractor Technology Development  

SciTech Connect (OSTI)

In an effort to increase the U.S. energy reserves and lower costs for finding and retrieving oil, the USDOE created a solicitation to encourage industry to focus on means to operate in small diameter well-Microhole. Partially in response to this solicitation and because Western Well Tool's (WWT) corporate objective to develop small diameter coiled tubing drilling tractor, WWT responded to and was awarded a contract to design, prototype, shop test, and field demonstrate a Microhole Drilling Tractor (MDT). The benefit to the oil industry and the US consumer from the project is that with the MDT's ability to facilitate Coiled Tubing drilled wells to be 1000-3000 feet longer horizontally, US brown fields can be more efficiently exploited resulting in fewer wells, less environmental impact, greater and faster oil recovery, and lower drilling costs. Shortly after award of the contract, WWT was approached by a major oil company that strongly indicated that the specified size of a tractor of 3.0 inches diameter was inappropriate and that immediate applications for a 3.38-inch diameter tractor would substantially increase the usefulness of the tool to the oil industry. Based on this along with an understanding with the oil company to use the tractor in multiple field applications, WWT applied for and was granted a no-cost change-of-scope contract amendment to design, manufacture, assemble, shop test and field demonstrate a prototype a 3.38 inch diameter MDT. Utilizing existing WWT tractor technology and conforming to an industry developed specification for the tool, the Microhole Drilling Tractor was designed. Specific features of the MDT that increase it usefulness are: (1) Operation on differential pressure of the drilling fluid, (2) On-Off Capability, (3) Patented unique gripping elements (4) High strength and flexibility, (5) Compatibility to existing Coiled Tubing drilling equipment and operations. The ability to power the MDT with drilling fluid results in a highly efficient tool that both delivers high level of force for the pressure available and inherently increases downhole reliability because parts are less subject to contamination. The On-Off feature is essential to drilling to allow the Driller to turn off the tractor and pull back while circulating in cleanout runs that keep the hole clean of drilling debris. The gripping elements have wide contact surfaces to the formation to allow high loads without damage to the formation. As part of the development materials evaluations were conducted to verify compatibility with anticipated drilling and well bore fluids. Experiments demonstrated that the materials of the tractor are essentially undamaged by exposure to typical drilling fluids used for horizontal coiled tubing drilling. The design for the MDT was completed, qualified vendors identified, parts procured, received, inspected, and a prototype was assembled. As part of the assembly process, WWT prepared Manufacturing instructions (MI) that detail the assembly process and identify quality assurance inspection points. Subsequent to assembly, functional tests were performed. Functional tests consisted of placing the MDT on jack stands, connecting a high pressure source to the tractor, and verifying On-Off functions, walking motion, and operation over a range of pressures. Next, the Shop Demonstration Test was performed. An existing WWT test fixture was modified to accommodate operation of the 3.38 inch diameter MDT. The fixture simulated the tension applied to a tractor while walking (pulling) inside 4.0 inch diameter pipe. The MDT demonstrated: (1) On-off function, (2) Pulling forces proportional to available differential pressure up to 4000 lbs, (3) Walking speeds to 1100 ft/hour. A field Demonstration of the MDT was arranged with a major oil company operating in Alaska. A demonstration well with a Measured Depth of approximately 15,000 ft was selected; however because of problems with the well drilling was stopped before the planned MDT usage. Alternatively, functional and operational tests were run with the MDT insi

Western Well Tool

2007-07-09T23:59:59.000Z

210

Optical coherence tomography guided dental drill  

DOE Patents [OSTI]

A dental drill that has one or multiple single mode fibers that can be used to image in the vicinity of the drill tip. It is valuable to image below the surface being drilled to minimize damage to vital or normal tissue. Identifying the boundary between decayed and normal enamel (or dentine) would reduce the removal of viable tissue, and identifying the nerve before getting too close with the drill could prevent nerve damage. By surrounding a drill with several optical fibers that can be used by an optical coherence domain reflectometry (OCDR) to image several millimeters ahead of the ablation surface will lead to a new and improved dental treatment device.

DaSilva, Luiz B. (Danville, CA); Colston, Jr., Bill W. (Livermore, CA); James, Dale L. (Tracy, CA)

2002-01-01T23:59:59.000Z

211

Simplified modeling of liquid sodium medium with temperature and velocity gradient using real thermal-hydraulic data. Application to ultrasonic thermometry in sodium fast reactor  

SciTech Connect (OSTI)

In the framework of the French R and D program for the Generation IV reactors and specifically for the sodium cooled fast reactors (SFR), studies are carried out on innovative instrumentation methods in order to improve safety and to simplify the monitoring of fundamental physical parameters during reactor operation. The aim of the present work is to develop an acoustic thermometry method to follow up the sodium temperature at the outlet of subassemblies. The medium is a turbulent flow of liquid sodium at 550 Degree-Sign C with temperature inhomogeneities. To understand the effect of disturbance created by this medium, numerical simulations are proposed. A ray tracing code has been developed with Matlab Copyright-Sign in order to predict acoustic paths in this medium. This complex medium is accurately described by thermal-hydraulic data which are issued from a simulation of a real experiment in Japan. The analysis of these results allows understanding the effects of medium inhomogeneities on the further thermometric acoustic measurement.

Massacret, N.; Jeannot, J. P. [DEN/DTN/STPA/LIET, CEA Cadarache, Saint Paul Lez Durance (France); Moysan, J.; Ploix, M. A.; Corneloup, G. [Aix-Marseille Univ, LMA UPR 7051 CNRS, site LCND, 13625 Aix-en-Provence (France)

2013-01-25T23:59:59.000Z

212

Chemical Speciation of Chromium in Drilling Muds  

SciTech Connect (OSTI)

Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. We have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility.

Taguchi, Takeyoshi [X-ray Research Laboratory, RIGAKU Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666 (Japan); Yoshii, Mitsuru [Mud Technical Center, Telnite Co., Ltd., 1-2-14 Ohama, Sakata-shi, Yamagata 998-0064 (Japan); Shinoda, Kohzo [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577 (Japan)

2007-02-02T23:59:59.000Z

213

Drilling of wells with top drive unit  

SciTech Connect (OSTI)

Well drilling apparatus including a top drive drilling assembly having a motor driven stem adapted to be attached to the upper end of a drill string and drive it during a drilling operation, a torque wrench carried by the top drive assembly and movable upwardly and downwardly therewith and operable to break a threated connection between the drill string and the stem, and an elevator carried by and suspended from the top drive assembly and adapted to engage a section of drill pipe beneath the torque wrench in suspending relation. The torque wrench and elevator are preferably retained against rotation with the rotary element which drives the drill string, but may be movable vertically relative to that rotary element and relative to one another in a manner actuating the apparatus between various different operating conditions.

Boyadjieff, G.I.

1984-05-22T23:59:59.000Z

214

Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes The Lake City site, which is located in far northeastern California, consists of a previously identified geothermal site that has been explored with both geophysics and drilling (Hedel, 1981), but has not been characterized adequately to allow accurate siting or drilling of production wells. Some deep wells, several seismic lines, limited gravity surveys, and geochemical and geological studies have suggested that the geothermal

215

:- : DRILLING URANIUM BILLETS ON A  

Office of Legacy Management (LM)

'Xxy";^ ...... ' '. .- -- Metals, Ceramics, and Materials. : . - ,.. ; - . _ : , , ' z . , -, .- . >. ; . .. :- : DRILLING URANIUM BILLETS ON A .-... r .. .. i ' LEBLOND-CARLSTEDT RAPID BORER 4 r . _.i'- ' ...... ' -'".. :-'' ,' :... : , '.- ' ;BY R.' J. ' ANSEN .AEC RESEARCH AND DEVELOPMENT REPORT PERSONAL PROPERTY OF J. F. Schlltz .:- DECLASSIFIED - PER AUTHORITY OF (DAlE) (NhTI L (DATE)UE) FEED MATERIALS PRODUCTION CENTER NATIONAL LFE A COMPANY OF OHIO 26 1 3967 3035406 NLCO - 886 Metals, Ceramics and Materials (TID-4500, 22nd Ed.) DRILLING URANIUM BILLETS ON A LEBLOND-CARLSTEDT RAPID BORER By R. J. Jansen* TECHNICAL DIVISION NATIONAL LEAD COMPANY OF OHIO Date of Issuance: September 13, 1963 Approved By: Approved By: Technical Director Head, Metallurgical Department *Mr. Jansen is presently

216

A new approach to the borehole temperature relaxation method  

Science Journals Connector (OSTI)

......disturbance in a borehole may be generated...effects. The drilling process itself...conditions of the drilling process, and...available disturbed borehole temperature...to produce a large initial disturbance To in the borehole, to measure......

H. Wilhelm

1990-11-01T23:59:59.000Z

217

Thermal limitations on the use of PDC bits in geothermal drilling  

SciTech Connect (OSTI)

Factors affecting the potential for using polycrystalline diamond compact (PDC) drill bits in geothermal drilling are discussed. Pertinent results from previous laboratory and field tests are reviewed. The two predominant failure mechanisms, abrasive cutter wear and catastrophic loss of cutters, are discussed. A temperature activated mechanism for accelerating cutter wear is identified, and the implications for hard-rock drilling are investigated. An upper bound on drillable rock strength without causing thermally-accelerated wear is established for a variety of operating and environmental conditions.

Glowka, D.A.

1984-08-01T23:59:59.000Z

218

Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes Two separate phases of geothermal exploratory drilling have occurred on the lower East Rift. The first was essentially a wildcat venture with relatively little surface exploratory data having been gathered, whereas the second was initiated after somewhat more geoscience information had been acquired under the Hawaii Geothermal Project. The results of the successful exploratory drilling program on the Kilauea

219

Thermal Gradient Holes At Kilauea Summit Area (Keller, Et Al., 1979) | Open  

Open Energy Info (EERE)

Thermal Gradient Holes At Kilauea Summit Area (Keller, Et Al., 1979) Thermal Gradient Holes At Kilauea Summit Area (Keller, Et Al., 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Kilauea Summit Area (Keller, Et Al., 1979) Exploration Activity Details Location Kilauea Summit Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes A deep borehole was drilled at the summit of Kilauea volcano, Hawaii, between April 6 and July 9, 1973. The hole is located approximately 1 km south of the edge of Halemaumau crater (Figs. 1 and 2), a crater within the summit caldera of the volcano. The total depth of the hole is 1262 m (4141 ft) measured from the derrick floor at an altitude of 1102 m (3616 ft). A description of the drilling program and some of the results obtained have

220

Recent developments in geothermal drilling fluids  

SciTech Connect (OSTI)

Three recent development efforts are described, aimed at solving some of these drilling fluid problems. The Sandia aqueous foam studies are still in the laboratory phase; NL Baroid's polymeric deflocculant is being field tested; and the Mudtech high temperature mud was field tested several months ago. The aqueous foam studies are aimed at screening available surfactants for temperture and chemical stability. Approximately 100 surfactants have been tested at temperatures of 260/sup 0/C and 310/sup 0/C and several of these candidates appear very promising. A polymeric deflocculant was developed for water-based muds which shows promise in laboratory tests of retarding thermal degradation effects and associated gelation. Formulations containing this new polymer have shown good rheological properties up to 500/sup 0/F. A high temperature mud consisting primarily of sepiolite, bentonite, and brown coal has been developed. A field test of this mud was conducted in a geothermal well in the Imperial Valley of California in May of last year. The fluid exhibited good hole-cleaning characteristics and good rheological properties throughout the test. (MHR)

Kelsey, J.R.; Rand, P.B.; Nevins, M.J.; Clements, W.R.; Hilscher, L.W.; Remont, L.J.; Matula, G.W.; Bailey, D.N.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results. Final report  

SciTech Connect (OSTI)

The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California`s Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

Ross, H.P.; Forsgren, C.K. [eds.

1992-04-01T23:59:59.000Z

222

DEVELOPMENT AND TESTING OF UNDERBALANCED DRILLING PRODUCTS. Final Report, Oct 1995 - July 2001  

SciTech Connect (OSTI)

Underbalanced drilling is experiencing growth at a rate that rivals that of horizontal drilling in the mid-1980s and coiled-tubing drilling in the 1990s. Problems remain, however, for applying underbalanced drilling in a wider range of geological settings and drilling environments. This report addresses developments under this DOE project to develop products aimed at overcoming these problems. During Phase I of the DOE project, market analyses showed that up to 12,000 wells per year (i.e., 30% of all wells) will be drilled underbalanced in the U.S.A. within the next ten years. A user-friendly foam fluid hydraulics model (FOAM) was developed for a PC Windows environment during Phase I. FOAM predicts circulating pressures and flow characteristics of foam fluids used in underbalanced drilling operations. FOAM is based on the best available mathematical models, and was validated through comparison to existing models, laboratory test data and field data. This model does not handle two-phase flow or air and mist drilling where the foam quality is above 0.97. This FOAM model was greatly expanded during Phase II including adding an improved foam rheological model and a ''matching'' feature that allows the model to be field calibrated. During Phase I, a lightweight drilling fluid was developed that uses hollow glass spheres (HGS) to reduce the density of the mud to less than that of water. HGS fluids have several advantages over aerated fluids, including they are incompressible, they reduce corrosion and vibration problems, they allow the use of mud-pulse MWD tools, and they eliminate high compressor and nitrogen costs. Phase II tests showed that HGS significantly reduce formation damage with water-based drilling and completion fluids and thereby potentially can increase oil and gas production in wells drilled with water-based fluids. Extensive rheological testing was conducted with HGS drilling and completion fluids during Phase II. These tests showed that the HGS fluids act similarly to conventional fluids and that they have potential application in many areas, including underbalanced drilling, completions, and riserless drilling. Early field tests under this project are encouraging. These led to limited tests by industry (which are also described). Further field tests and cost analyses are needed to demonstrate the viability of HGS fluids in different applications. Once their effectiveness is demonstrated, they should find widespread application and should significantly reduce drilling costs and increase oil and gas production rates. A number of important oilfield applications for HGS outside of Underbalanced Drilling were identified. One of these--Dual Gradient Drilling (DGD) for deepwater exploration and development--is very promising. Investigative work on DGD under the project is reported, along with definition of a large joint-industry project resulting from the work. Other innovative products/applications are highlighted in the report including the use of HGS as a cement additive.

William C. Maurer; William J. McDonald; Thomas E. Williams; John H. Cohen

2001-07-01T23:59:59.000Z

223

AANNUALNNUAL RREPORTEPORT Integrated Ocean Drilling ProgramIntegrated Ocean Drilling Program  

E-Print Network [OSTI]

the earlier successes of the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP), programs for either the riserless or riser vessel, such as near the shoreline in shallow-water areas

224

drilling-tools | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

drilling-tools Publications KMD Contacts Project Summaries EPAct 2005 Arctic Energy Office Announcements Software Stripper Wells Tally II: Pipe Tally Sheet for Pocket PC allows...

225

Category:Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Category Edit History Facebook icon Twitter icon Category:Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the...

226

Offshore Drilling and Production: A Short History  

Science Journals Connector (OSTI)

Drilling in Louisianas marshes and shallow waters ... or worse the expanding presence of the oil and gas industry has changed everyones...

Joseph A. Tainter; Tadeusz W. Patzek

2012-01-01T23:59:59.000Z

227

International guide: blasthole drills. [For blastholes  

SciTech Connect (OSTI)

This survey is a comprehensive, quick reference guide for surface mine operators. It details what rotary blasthole drill rigs are available around the world. The survey covers over 60 drills, each with a pulldown of about 125 kilonewtons (27,500 pounds). They are manufactured by companies in eight different countries. Drill rigs continue to grow in size and power as larger diameter blastholes increase drilling economy. With a range of units costing from approximately $200,000 to over $1,000,000 each, careful selection based on the requirements of specific mines is essential.

Chadwick, J.R.

1982-01-01T23:59:59.000Z

228

Analysis of drill stem test data  

E-Print Network [OSTI]

constructed to illustrate the effects of changes in Kh/p, , well bore damage, and pro duction rate on the geometry of the drill stem test pressure buildup curve. To formulate the hypothetical drill stem test, certain reser- voir rock and fluid properties... constructed to illustrate the effects of changes in Kh/p, , well bore damage, and pro duction rate on the geometry of the drill stem test pressure buildup curve. To formulate the hypothetical drill stem test, certain reser- voir rock and fluid properties...

Zak, Albin Joseph

2012-06-07T23:59:59.000Z

229

Loaded Transducer Fpr Downhole Drilling Component  

DOE Patents [OSTI]

A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

Hall, David R. (Provo, UT); Hall, H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2005-07-05T23:59:59.000Z

230

Continental Scientific Drilling (CSD): Technology Barriers to Deep Drilling Studies in Thermal Regimes  

SciTech Connect (OSTI)

This report is the proceedings of a workshop. The primary thrust of these discussion was to identify the major key technology barriers to the Department of Energy (DOE) supported Thermal Regimes CSD projects and to set priorities for research and development. The major technological challenge is the high temperature to be encountered at depth. Specific problems derived from this issue were widely recognized among the participants and are reflected in this summary. A major concern for the projected Thermal Regimes CSD boreholes was the technology required for continuous coring, in contrast to that required for drilling without core or spot coring. Current commercial technology bases for these two techniques are quite different. The DOE has successfully fielded projects that used both technologies, i.e, shallow continuous coring (Inyo Domes and Valles Caldera) and deeper drilling with spot cores (Imperial Valley-SSSDP). It was concluded that future scientific objectives may still require both approaches, but continuous coring is the most likely requirement in the near term. (DJE-2005)

Kolstad, George A.; Rowley, John C.

1987-01-16T23:59:59.000Z

231

Phase 2 drilling operations at the Long Valley Exploratory Well (LVF 51--20)  

SciTech Connect (OSTI)

This report describes the second drilling phase, completed to a depth of 7588 feet in November 1991, of the Long Valley Exploratory Well near Mammoth Lakes, California. The well in Long Valley Caldera is planned to reach an ultimate depth of 20,000 feet or a bottomhole temperature of 500{degrees}C (whichever comes first). There will be four drilling phases, at least a year apart with scientific experiments in the wellbore between active drilling periods. Phase 1 drilling in 1989 was completed with 20 in. casing from surface to a depth of 2558 ft., and a 3.8 in. core hole was drilled below the shoe to a depth of 2754 in. Phase 2 included a 17-{1/2} in. hole out of the 20 in. shoe, with 13-3/8 in. casing to 6825 ft., and continuous wireline coring below that to 7588 ft. This document comprises a narrative log of the daily activities, the daily drilling reports, mud logger's reports, summary of drilling fluids used, and other miscellaneous records.

Finger, J.T.; Jacobson, R.D.

1992-06-01T23:59:59.000Z

232

Stress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation  

E-Print Network [OSTI]

known that drill pipe fatigue in oil-gas drilling operations represents more than 30% of the drill pipeStress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation Ngoc Ha Daoa, , Hedi Sellamia aMines ParisTech, 35 rue Saint-Honoré, 77305 Fontainebleau

Paris-Sud XI, Université de

233

Fast Self-Healing Gradients  

E-Print Network [OSTI]

We present CRF-Gradient, a self-healing gradient algorithm that provably reconfigures in O(diameter) time. Self-healing gradients are a frequently used building block for distributed self-healing systems, but previous ...

Beal, Jacob

234

Temperature-gradient calendering of recycled boxboard  

SciTech Connect (OSTI)

In this study, the TG calendering technique was applied to multi-ply boxboard samples made from 100% recycled fibers. The effects of the following three calendering techniques on the surface properties and bulk of the board are investigated: conventional calendering, two-sided TG calendering, and one-sided TG calendering.

Gratton, M.F. (Pulp and Paper Research Institute of Canada, Pointe Claire, Que. (CA))

1989-03-01T23:59:59.000Z

235

Laser Drilling - Drilling with the Power of Light  

SciTech Connect (OSTI)

Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and side tracking applications. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report has been prepared in two parts and each part may be treated as a stand-alone document. Part 1 (High Energy Laser Drilling) includes the general description of the concept and focuses on results from experiments under the ambient lab conditions. Part 2 (High Energy Laser Perforation and Completion Techniques) discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

2007-02-28T23:59:59.000Z

236

ESF Consortium for Ocean Drilling White Paper  

E-Print Network [OSTI]

ESF Consortium for Ocean Drilling (ECOD) White Paper An ESF Programme September 2003 #12;The Scotia in 1978 and had previously sailed the world as a top-class oil-exploration vessel. JOIDES, maintains the ship over a specific location while drilling into water depths up to 27,000 feet. A seven

Purkis, Sam

237

Status Report A Review of Slimhole Drilling  

SciTech Connect (OSTI)

This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

Zhu, Tao; Carroll, Herbert B.

1994-09-01T23:59:59.000Z

238

Record geothermal well drilled in hot granite  

Science Journals Connector (OSTI)

Record geothermal well drilled in hot granite ... Researchers there have completed the second of two of the deepest and hottest geothermal wells ever drilled. ... It may become the energy source for a small electrical generating power station serving nearby communities in New Mexico. ...

1981-09-07T23:59:59.000Z

239

OCEAN DRILLING PROGRAM LEG 157 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

." The source area, Gran Canaria, one of the best studied volcanic islands, has a 15-m.y.-long record the Miocene, Pliocene, and Quaternary compositionally evolved volcanic phases on Gran Canaria and neighboringOCEAN DRILLING PROGRAM LEG 157 SCIENTIFIC PROSPECTUS DRILLING INTO THE CLASTIC APRON OF GRAN

240

OCEAN DRILLING PROGRAM LEG 164 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 164 SCIENTIFIC PROSPECTUS GAS HYDRATE SAMPLING ON THE BLAKE RIDGE Drive College Station, Texas 77845-9547 U.S.A. Timothy J.G. Francis Acting Director ODP/TAMU Jack Drilling Program, Texas A&M University Research Park, 1000 Discovery Drive, College Station, Texas, 77845

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Comparative analysis of core drilling and rotary drilling in volcanic terrane  

SciTech Connect (OSTI)

Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr. (ed.)

1987-04-01T23:59:59.000Z

242

Core Hole Drilling And Testing At The Lake City, California Geothermal  

Open Energy Info (EERE)

Hole Drilling And Testing At The Lake City, California Geothermal Hole Drilling And Testing At The Lake City, California Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Core Hole Drilling And Testing At The Lake City, California Geothermal Field Details Activities (4) Areas (1) Regions (0) Abstract: Unavailable Author(s): Dick Benoit, Joe Moore, Colin Goranson, David Blackwell Published: GRC, 2005 Document Number: Unavailable DOI: Unavailable Core Analysis At Lake City Hot Springs Area (Benoit Et Al., 2005) Core Holes At Lake City Hot Springs Area (Benoit Et Al., 2005) Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Static Temperature Survey At Lake City Hot Springs Area (Benoit Et Al., 2005) Lake City Hot Springs Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Core_Hole_Drilling_And_Testing_At_The_Lake_City,_California_Geothermal_Field&oldid=389996

243

Laboratory study of acid stimulation of drilling-mud-damaged geothermal-reservoir materials. Final report  

SciTech Connect (OSTI)

Presented here are the results of laboratory testing performed to provide site specific information in support of geothermal reservoir acidizing programs. The testing program included laboratory tests performed to determine the effectiveness of acid treatments in restoring permeability of geologic materials infiltrated with hydrothermally altered sepiolite drilling mud. Additionally, autoclave tests were performed to determine the degree of hydrothermal alteration and effects of acid digestion on drilling muds and drill cuttings from two KGRA's. Four laboratory scale permeability/acidizing tests were conducted on specimens prepared from drill cuttings taken from two geothermal formations. Two tests were performed on material from the East Mesa KGRA Well No. 78-30, from a depth of approximately 5500 feet, and two tests were performed on material from the Roosevelt KGRA Well No. 52-21, from depths of approximately 7000 to 7500 feet. Tests were performed at simulated in situ geothermal conditions of temperature and pressure.

Not Available

1983-05-01T23:59:59.000Z

244

Alpine Geothermal Drilling | Open Energy Information  

Open Energy Info (EERE)

Geothermal Drilling Geothermal Drilling Jump to: navigation, search Logo: Alpine Geothermal Drilling Name Alpine Geothermal Drilling Address PO Box 141 Place Kittredge, Colorado Zip 80457 Sector Geothermal energy Product Geothermal drilling solutions, subsidiary of Rocky Mountain GeoExploration Inc Website http://www.alpinegeothermal.co Coordinates 39.64888°, -105.2984842° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.64888,"lon":-105.2984842,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

245

Salt Wells Geothermal Exploratory Drilling Program EA  

Open Energy Info (EERE)

Salt Wells Geothermal Exploratory Drilling Program EA Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Abstract No abstract available. Author Bureau of Land Management Published U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada, 09/14/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Citation Bureau of Land Management. Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) [Internet]. 09/14/2009. Carson City, NV. U.S. Department of the Interior- Bureau of Land Management,

246

Definition: Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Exploration Drilling Exploration Drilling Jump to: navigation, search Dictionary.png Exploration Drilling Exploratory drilling is the Initial phase of drilling for the purpose of determining the physical properties and boundaries of a reservoir. View on Wikipedia Wikipedia Definition Geothermal Exploration is the exploration of the subsurface in search of viable active geothermal regions with the goal of building a geothermal power plant, where hot fluids drive turbines to create electricity. Exploration methods include a broad range of disciplines including geology, geophysics, geochemistry and engineering. Geothermal regions with adequate heat flow to fuel power plants are found in rift zones, subduction zones and mantle plumes. Hot spots are characterized by four geothermal elements. An active region will have: Heat Source - Shallow

247

Innovative technology summary report: Cryogenic drilling  

SciTech Connect (OSTI)

Environmental drilling is used to conduct site investigations and to install monitoring and remediation wells. Employing conventional drilling techniques to conduct environmental investigations in unconsolidated soils can result in borehole collapse and may also lead to cross-contamination of aquifers and soil formations. For investigations in certain geologic conditions, there are currently no viable conventional drilling techniques available. Cryogenic drilling improves upon conventional air rotary drilling by replacing ambient air with cold nitrogen (either liquid or gas) as the circulating medium. The cold nitrogen gas stream freezes moisture in the ground surrounding the hole. The frozen zone prevents the collapse of the hole and prevents the movement of groundwater or contaminants through and along the hole. The technology, its performance, uses, cost, and regulatory issues are discussed.

NONE

1998-10-01T23:59:59.000Z

248

Bureau of Land Management - Geothermal Drilling Permit | Open...  

Open Energy Info (EERE)

Bureau of Land Management - Geothermal Drilling Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Bureau of Land Management - Geothermal Drilling...

249

Georgia Oil and Gas Deep Drilling act of 1975 (Georgia)  

Broader source: Energy.gov [DOE]

Georgia's Oil and Gas and Deep Drilling Act regulates oil and gas drilling activities to provide protection of underground freshwater supplies and certain "environmentally sensitive" areas. The...

250

WATERJETTING: A NEW DRILLING TECHNIQUE IN COALBED METHANE RESERVOIRS.  

E-Print Network [OSTI]

??WATERJETTING: A NEW DRILLING TECHNIQUE IN COALBED METHANE RESERVOIRS Applications of waterjeting to drill horizontal wells for the purpose of degassing coalbeds prior to mining (more)

Funmilayo, Gbenga M.

2010-01-01T23:59:59.000Z

251

Laser Drills Could Relight Geothermal Energy Dreams | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Laser Drills Could Relight Geothermal Energy Dreams Laser Drills Could Relight Geothermal Energy Dreams December 14, 2012 - 12:26pm Addthis Commercial-grade laser technology is...

252

Evaluation of Emerging Technology for Geothermal Drilling and...  

Broader source: Energy.gov (indexed) [DOE]

Technology for Geothermal Drilling and Logging Applications Technology Development and Field Trials of EGS Drilling Systems GEA Geothermal Summit Presentation Lauren Boyd...

253

Counter-Rotating Tandem Motor Drilling System  

SciTech Connect (OSTI)

Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.

Kent Perry

2009-04-30T23:59:59.000Z

254

Shallow Drilling In The Salton Sea Region, The Thermal Anomaly  

SciTech Connect (OSTI)

During two shallow thermal drilling programs, thermal measurements were obtained in 56 shallow (76.2 m) and one intermediate (457.3 m) depth holes located both onshore and offshore along the southern margin of the Salton Sea in the Imperial Valley, California. These data complete the surficial coverage of the thermal anomaly, revealing the shape and lateral extent of the hydrothermal system. The thermal data show the region of high thermal gradients to extend only a short distance offshore to the north of the Quaternary volcanic domes which are exposed along the southern shore of the Salton Sea. The thermal anomaly has an arcuate shape, about 4 km wide and 12 km long. Across the center of the anomaly, the transition zone between locations exhibiting high thermal gradients and those exhibiting regional thermal gradients is quite narrow. Thermal gradients rise from near regional (0.09 C/m) to extreme (0.83 C/m) in only 2.4 km. The heat flow in the central part of the anomaly is >600 mW/m{sup 2} and in some areas exceeds 1200 mW/m{sup 2}. The shape of the thermal anomaly is asymmetric with respect to the line of volcanoes previously thought to represent the center of the field, with its center line offset south of the volcanic buttes. There is no broad thermal anomaly associated with the magnetic high that extends offshore to the northeast from the volcanic domes. These observations of the thermal anomaly provide important constraints for models of the circulation of the hydrothermal system. Thermal budgets based on a simple model for this hydrothermal system indicate that the heat influx rate for local ''hot spots'' in the region may be large enough to account for the rate of heat flux from the entire Salton Trough.

Newmark, R. L.; Kasameyer, P. W.; Younker, L. W.

1987-01-01T23:59:59.000Z

255

Thermal Gradient Holes At Chocolate Mountains Area (Sabin, Et Al., 2010) |  

Open Energy Info (EERE)

Thermal Gradient Holes At Chocolate Mountains Area Thermal Gradient Holes At Chocolate Mountains Area (Sabin, Et Al., 2010) Exploration Activity Details Location Chocolate Mountains Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes In lieu of Seabee TGH drilling, GPO awarded a large IDIQ TGH drilling contract in December, 2009. Over the next two years, 90 500-ft TGHs will be installed at select sites in California and Nevada. Interim data from this campaign are already available for the Chocolate Mountains and Hawthorne. Results of these programs can be found in the Chocolate Mountains and Hawthorne papers also available in this volume. References Andrew Sabin, S. Bjornstad, M. Lazaro, D. Meade, C. Page, S. Alm, A. Tiedeman, W. C. Huang (2010) Navy's Geothermal Program Office: Overview

256

Attenuation of sound waves in drill strings  

Science Journals Connector (OSTI)

During drilling of deep wells digital data are often transmitted from sensors located near the drill bit to the surface. Development of a new communication system with increased data capacity is of paramount importance to the drilling industry. Since steel drill strings are used transmission of these data by elastic carrier waves traveling within the drill pipe is possible but the potential communication range is uncertain. The problem is complicated by the presence of heavy?threaded tool joints every 10 m which form a periodic structure and produce classical patterns of passbands and stop bands in the wave spectra. In this article field measurements of the attenuation characteristics of a drill string in the Long Valley Scientific Well in Mammoth Lakes California are presented. Wave propagation distances approach 2 km. A theoretical model is discussed which predicts the location width and attenuation of the passbands. Mode conversion between extensional and bending waves and spurious reflections due to deviations in the periodic spacings of the tool joints are believed to be the sources of this attenuation. It is estimated that attenuation levels can be dramatically reduced by rearranging the individual pipes in the drill string according to length.

Douglas S. Drumheller

1993-01-01T23:59:59.000Z

257

Ciliate diversity and distribution across an environmental and depth gradient in Long Island  

E-Print Network [OSTI]

Ciliate diversity and distribution across an environmental and depth gradient in Long Island Sound- trichia (Spirotrichea) and Choreotrichia (Spirotrichea) across an environmental gradient. We assessed SSU- tion showed any clear relationship to measured environmental parameters (temperature, salinity

Katz, Laura

258

Bakken shale typifies horizontal drilling success  

SciTech Connect (OSTI)

Given the favorable production response that has been obtained from horizontal drilling in vertical- fractured reservoirs such as the Bakken shale and, more recently, the Austin chalk, industry interest in this technology has mushroomed in the U.S. Indeed, it is difficult to find a good-sized oil company these days that is not involved in a horizontal drilling project or is giving it serious consideration. In response to growing evidence of successful field applications, the realization is dawning on the investment community that horizontal drilling represents a significant technological development with positive implications for both the exploration and production business, and the oilfield services industry.

Leibman, P.R. (Petrie Parkman and Co., Denver, CO (US))

1990-12-01T23:59:59.000Z

259

OCEAN DRILLING PROGRAM LEG 171B SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

on the World Wide Web at http://www-odp.tamu.edu/publications. D I S C L A I M E R This publication and the Pollution Prevention and Safety Panel. #12;Leg 171B Scientific Prospectus Page 3 ABSTRACT The origin of deep in which deep-water formation and global temperature gradients may have been much different from well

260

Recurrent policy gradients  

Science Journals Connector (OSTI)

......for recurrent neural networks Recurrent policy gradients Daan Wierstra Alexander Forster...POMDPs) is a challenge as it requires policies with an internal state. Traditional approaches...offer a natural framework for dealing with policy learning using hidden state and require......

Daan Wierstra; Alexander Frster; Jan Peters; Jrgen Schmidhuber

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Better practices and synthetic fluid improve drilling rates  

SciTech Connect (OSTI)

Improved drilling practices, combined with the use of olefin-based synthetic drilling fluids, have dramatically reduced drilling time and costs in a difficult drilling area in the Gulf of Mexico. In the South Pass area, Marathon Oil Co. and other operators have had wells with long drilling times and high costs. In addition to the two wells with record penetration rates, routine drilling rates have also increased from the use of synthetic mud and careful drilling practices. Through application of these improved drilling practices, 2,000--3,000 ft/day can be drilled routinely. Marathon achieves this goal by applying the experience gained on previous wells, properly training and involving the crews, and using innovative drilling systems. Improved drilling practices and systems are just one part of successful, efficient drilling. Rig site personnel are major contributors to safely and successfully drilling at high penetration rates for extended periods. The on site personnel must act as a team and have the confidence and proper mental attitude about what is going on downhole. The paper describes the drilling history in the South Pass area, the synthetic drilling fluid used, cuttings handling, hole cleaning, drilling practices, bottom hole assemblies, and lost circulation.

White, W. (Marathon Oil Co., Lafayette, LA (United States)); McLean, A.; Park, S. (M-I Drilling Fluids, Houston, TX (United States))

1995-02-20T23:59:59.000Z

262

Measuring while drilling apparatus mud pressure signal valve  

SciTech Connect (OSTI)

This patent describes a measurement while drilling system for borehole drilling having a downhole instrument connectable in a drill string of a rotary drilling rig including apparatus to sense geological and geophysical parameters and a valve apparatus to pulse modulate drilling fluid flowing in the drill string. A surface apparatus is connected to a drilling fluid flow conductor for extracting intelligence carrying information from the modulated drilling fluid. An improved valve apparatus is described comprising: (a) a drilling fluid flow pulse modulating pressure pulse valve member longitudinally, movably mounted in a body member and movable from a retracted position substantially removed from the drilling fluid flow and an extended position disposed at least partially within the drilling fluid flow thereby temporarily restricting drilling fluid flow within the drill string; and (b) the pulse valve member is a tubular member having a lower end portion displaceable from the body member into the drilling fluid and an upper end portion with opposed fluid pressure force areas thereon being in fluid communication with the drilling fluid flow such that forces due to the drilling fluid acting on the pressure pulse valve member are balanced in a longitudinal direction.

Peppers, J.M.; Shaikh, F.A.

1986-12-09T23:59:59.000Z

263

Limitations of extended reach drilling in deepwater  

E-Print Network [OSTI]

As the worldwide search for hydrocarbons continues into the deepwater of the oceans, drilling extended reach wells have helped to drain the fields in the most cost effective way, thus providing the oil and gas industry the cushion to cope...

Akinfenwa, Akinwunmi Adebayo

2012-06-07T23:59:59.000Z

264

Marine bearing for a downhole drilling apparatus  

SciTech Connect (OSTI)

A bearing supports a rotatable shaft in a fluid environment. The bearing can be utilized to support a drive shaft connected to a drill bit in a downhole drilling apparatus. The drive shaft extends through a housing in which drilling fluid is flowing. Preferably, the bearing includes an inner elastomeric sleeve and an outer rigid sleeve attached to the interior side wall of the housing. The drive shaft has a wear sleeve attached for rotation therewith. The wear sleeve is rotatably received in the bearing inner sleeve. The inner sleeve is relatively short as compared with the drive shaft and absorbs radial loads imposed on the drive shaft. The bearing is lubricated by a portion of the drilling fluid in the housing which flows between the exterior side wall of the wear sleeve and the interior side wall of the inner sleeve.

Beimgraben, H.W.

1984-07-31T23:59:59.000Z

265

Formation damage in underbalanced drilling operations  

E-Print Network [OSTI]

Formation damage has long been recognized as a potential source of reduced productivity and injectivity in both horizontal and vertical wells. From the moment that the pay zone is being drilled until the well is put on production, a formation...

Reyes Serpa, Carlos Alberto

2012-06-07T23:59:59.000Z

266

Handbook of Best Practices for Geothermal Drilling  

Broader source: Energy.gov [DOE]

This handbook focuses on the complex process of drilling a geothermal well, including techniques and hardware that have proven successful for both direct use and electricity generation around the world.

267

Thermal Gradient Holes At Lightning Dock Area (Cunniff & Bowers, 2005) |  

Open Energy Info (EERE)

Thermal Gradient Holes At Lightning Dock Area Thermal Gradient Holes At Lightning Dock Area (Cunniff & Bowers, 2005) Exploration Activity Details Location Lightning Dock Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes The two gradient holes were sited on federal geothermal leases owned by Lightning Dock Geothermal, Inc. and both were drilled into lakebed sediments some distance from the intense shallow geothermal anomaly located in the eastern half of Section 7, Township 25 South, Range 19 West. References Roy A. Cunniff, Roger L. Bowers (2005) Final Technical Report, Geothermal Resource Evaluation And Definitioni (Gred) Program-Phases I, Ii, And Iii For The Animas Valley, Nm Geothermal Resource Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Gradient_Holes_At_Lightning_Dock_Area_(Cunniff_%26_Bowers,_2005)&oldid=387460"

268

DEVELOPMENT OF NEW DRILLING FLUIDS  

SciTech Connect (OSTI)

The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.

David B. Burnett

2003-08-01T23:59:59.000Z

269

Microconvection effects at double?diffusive gradient zone boundaries  

Science Journals Connector (OSTI)

Microconvection in double?diffusive gradient zones is predicted to occur near the zone boundaries because of effects of boundary undulation and temperature modulation caused by impinging thermals in adjacent convecting zones. The equations that govern convective motion in a double?diffusive horizontal slab are solved for boundary conditions that incorporate these effects. Solution of these equations predicts a weakened salinity gradient near the gradient zone boundary between the rising thermals. When the salinity gradient is too weak instability occurs taking the form of descending plumes which are seen in experiments.

John R. Hull; Yojana Katti

1988-01-01T23:59:59.000Z

270

High-Temperature-High-Volume Lifting for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Norman Turnquist GE Global Research High Temperature Tools and Sensors, Down-hole Pumps and Drilling May 19, 2010 This presentation does not contain any proprietary...

271

HP-41CV applied drilling engineering manual  

SciTech Connect (OSTI)

Contents of this manual are as follows: average diameter of an open hole; pump cycle, pump factor, and annulus capacity; drilling-time and penetration rate predictions; nozzle selection; direction well survey; viscosity of drilling fluids; barite requirements with solids dilution; solids analysis and recommended flow properties; evaluation of hydrocyclones; frictional pressure loss; surge and swab pressures; pressure and average density of a gas column; cement additive requirements; kick tolerance, severity, length and density; and pump pressure schedule for well control operations.

Chenevert, M.; Williams, F.; Hekimian, H.

1983-01-01T23:59:59.000Z

272

Chapter 2 - Offshore Oil and Gas Drilling Engineering and Equipment  

Science Journals Connector (OSTI)

Abstract This chapter introduces the drilling engineering and equipment in the field of offshore oil and gas.It starts by introducing the drilling platform used in the offshore oil and gas. Then it presents the wellhead and wellhead devices used in the offshore oil and gas. After these two, it begins to introduce the drilling engineer including preparation, working procedure, well completion and so on. Finally, it roughly introduces the new technology in drilling and new drilling rig nowadays.

Huacan Fang; Menglan Duan

2014-01-01T23:59:59.000Z

273

Thermal Gradient Holes At Coso Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

Thermal Gradient Holes At Coso Geothermal Area (1976) Thermal Gradient Holes At Coso Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Coso Geothermal Area (1976) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1976 Usefulness useful DOE-funding Unknown Notes Temperatures have been obtained to depths up to 133 m in 22 boreholes with measurements being made at least four times in each borehole. Geothermal gradients ranged from 240C/km to 450 0C/km. References Combs, J. (1 December 1976) Heat flow determinations and implied thermal regime of the Coso geothermal area, California Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Gradient_Holes_At_Coso_Geothermal_Area_(1976)&oldid=511217"

274

ALTERNATE POWER AND ENERGY STORAGE/REUSE FOR DRILLING RIGS: REDUCED COST AND LOWER EMISSIONS PROVIDE LOWER FOOTPRINT FOR DRILLING OPERATIONS  

E-Print Network [OSTI]

on alternate drilling energy sources which can make entire drilling process economic and environmentally friendly. One of the major ways to reduce the footprint of drilling operations is to provide more efficient power sources for drilling operations...

Verma, Ankit

2010-07-14T23:59:59.000Z

275

Laser Drilling - Drilling with the Power of Light  

SciTech Connect (OSTI)

Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a recently acquired 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). The HPFL represents a potentially disruptive technology that, when compared to its competitors, is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on completion and perforation applications, although the results and techniques apply to well construction and other rock cutting applications. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation prototype tool. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

Brian C. Gahan; Samih Batarseh

2005-09-28T23:59:59.000Z

276

Static Temperature Survey At Lassen Volcanic National Park Area...  

Open Energy Info (EERE)

in volcanic rocks (Beall, 1981). Temperature-log profiles made 10 months after drilling completion show an abrupt temperature rise at 183 m, a maximum temperature of 176 degrees...

277

Method and apparatus of assessing down-hole drilling conditions  

DOE Patents [OSTI]

A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

Hall, David R. (Provo, UT); Pixton, David S. (Lehl, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Fox, Joe (Spanish Fork, UT)

2007-04-24T23:59:59.000Z

278

Dual, rotating stripper rubber drilling head  

SciTech Connect (OSTI)

In a drilling head for a well bore through which a tool string of varying outside diameter is run, the drilling head sealing against fluid flow past the tool string to divert such fluid through a side outlet port, said drilling head including a housing having an axial passageway through which the tool string is run and a bearing assembly to facilitate rotation of the tool string within the axial passageway, the improved drilling head comprising: first and second stripper rubbers rotatably mounted within the drilling head housing in seating contact with the tool string, said stripper rubbers having substantially identical inner diameters through which the tool string extends, said first stripper rubber formed of an abrasive resistant material to divert fluid flow from the axial passageway of the housing to the side outlet port and said second stripper rubber formed on a sealingly resilient material which maintains sealing contact with the tool string extending there through preventing fluid flow past said tool string; said first stripper rubber being corrected to clamping means associated with the bearing assembly through a first drive ring such that said first stripper rubber rotates with the tool string; and said second stripper rubber is rotatably connected to said clamping means associated with the bearing assembly through a second drive ring, said first and second drive rings coaxially mounted within the housing whereby said first stripper rubber is positioned axially below said second stripper rubber in sealing contact with the tool string.

Bailey, T.F.; Campbell, J.E.

1993-05-25T23:59:59.000Z

279

Support for Offshore Oil and Gas Drilling among the California Public  

E-Print Network [OSTI]

of support for offshore oil drilling that accompanied thein Support for Offshore Oil Drilling The earliest FieldPoll question about offshore oil drilling was asked in 1977.

Smith, Eric R.A.N.

2003-01-01T23:59:59.000Z

280

Public Support for Oil and Gas Drilling in California's Forests and Parks  

E-Print Network [OSTI]

Abstract: Offshore oil drilling has been controversial inCalifornia for decades. Oil drilling in national forests hasopinion regarding oil drilling in California's forests. We

Smith, Eric R.A.N.; Carlisle, Juliet; Michaud, Kristy

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Electron profile stiffness and critical gradient studies  

SciTech Connect (OSTI)

Electron profile stiffness was studied in DIII-D L-mode discharges by systematically varying the heat flux in a narrow region with electron cyclotron heating and measuring the local change produced in {nabla}T{sub e}. Electron stiffness was found to slowly increase with toroidal rotation velocity. A critical inverse temperature gradient scale length 1/L{sub C} {approx} 3 m{sup -1} was identified at {rho}=0.6 and found to be independent of rotation. Both the heat pulse diffusivity and the power balance diffusivity, the latter determined by integrating the measured dependence of the heat pulse diffusivity on -{nabla}T{sub e}, were fit reasonably well by a model containing a critical inverse temperature gradient scale length and varying linearly with 1/L{sub T} above the threshold.

DeBoo, J. C.; Petty, C. C.; Burrell, K. H.; Smith, S. P. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); White, A. E. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Doyle, E. J.; Hillesheim, J. C.; Rhodes, T. L.; Schmitz, L.; Wang, G.; Zeng, L. [University of California-Los Angeles, Los Angeles, California 90095-7099 (United States); Holland, C. [University of California-San Diego, La Jolla, California 92093-0417 (United States); McKee, G. R. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

2012-08-15T23:59:59.000Z

282

Precision micro drilling with copper vapor lasers  

SciTech Connect (OSTI)

The authors have developed a copper vapor laser based micro machining system using advanced beam quality control and precision wavefront tilting technologies. Micro drilling has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratio up to 1:40 have been consistently drilled on a variety of metals with good quality. For precision trepanned holes, the hole-to-hole size variation is typically within 1% of its diameter. Hole entrance and exit are both well defined with dimension error less than a few microns. Materialography of sectioned holes shows little (sub-micron scale) recast layer and heat affected zone with surface roughness within 1--2 microns.

Chang, J.J.; Martinez, M.W.; Warner, B.E.; Dragon, E.P.; Huete, G.; Solarski, M.E.

1994-09-02T23:59:59.000Z

283

Drop pressure optimization in oil well drilling  

Science Journals Connector (OSTI)

In this research work we are interested in minimizing losses existing when drilling an oil well. This would essentially improve the load losses by acting on the rheological parameters of the hydraulic and drilling mud. For this rheological tests were performed using a six-speed rotary viscometer (FANN 35). We used several rheological models to accurately describe the actual rheological behavior of drilling mud oil-based according to the Pearson's coefficient and to the standard deviation. To model the problem we established a system of equations that describe the essential to highlight purpose and various constraints that allow for achieving this goal. To solve the problem we developed a computer program that solves the obtained equations in Visual Basic language system. Hydraulic and rheological calculation was made for in situ application. This allowed us to estimate the distribution of losses in the well.

2014-01-01T23:59:59.000Z

284

Data transmission element for downhole drilling components  

DOE Patents [OSTI]

A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

2006-01-31T23:59:59.000Z

285

Directional Drilling Systems | Open Energy Information  

Open Energy Info (EERE)

Directional Drilling Systems Directional Drilling Systems Jump to: navigation, search Geothermal ARRA Funded Projects for Directional Drilling Systems Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":14,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

286

NETL: News Release - DOE-Funded "Smart" Drilling Prototype On Track for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September 13, 2004 September 13, 2004 DOE-Funded "Smart" Drilling Prototype On Track for Commercialization A Department of Energy-sponsored technology that allows natural gas and oil explorers to drill safer, more productive wells by using a high-speed, down-hole communications system has crossed a major milestone: A prototype is being successfully tested in a full-scale commercial well for the first time, putting it on the fast track to commercialization. MORE INFO Read about the June, 2003 IntellipipeTM field test The technology, called Intellipipe(TM), is able to transmit large bits of data to the surface as a well is being drilled. About 1 million bits of information-including temperature, geology, pressure, and rate of penetration-can be transmitted in a single second, which is

287

Energy in density gradient  

E-Print Network [OSTI]

Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindric configuration. This is of practical importance for drift wave instability in various plasmas, and in particular in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit ...

Vranjes, J

2015-01-01T23:59:59.000Z

288

Independent Statistics & Analysis Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Independent Statistics & Analysis Independent Statistics & Analysis Drilling Productivity Report The six regions analyzed in this report accounted for nearly 90% of domestic oil production growth and virtually all domestic natural gas production growth during 2011-12. December 2013 For key tight oil and shale gas regions U.S. Energy Information Administration Contents Year-over-year summary 2 Bakken 3 Eagle Ford 4 Haynesville 5 Marcellus 6 Niobrara 7 Permian 8 Explanatory notes 9 Sources 10 Bakken Marcellus Niobrara Haynesville Eagle Ford Permian U. S. Energy Information Administration | Drilling Productivity Report 0 400 800 1,200 1,600 2,000 Bakken Eagle Ford Haynesville

289

Delaware-Val Verde gas drilling busy  

SciTech Connect (OSTI)

Deep and not so deep exploration is under way in the southeastern Delaware and northwestern Val Verde basins in West Texas. Northern Terrell County is seeing a good agenda of Permian Wolfcamp development drilling in spite of testy gas prices. This paper reports that none of the drilling appears to be targeted to Ouachita facies along the Marathon portion of the Ouachita Overthrust, although oil production from several of those fields has been respectable. And a number of exploratory tests to 20,000 ft and deeper are under way or on tap in eastern Pecos County and Terrell County.

Petzet, G.A.

1992-01-13T23:59:59.000Z

290

Oil and gas drilling despoils Alaska environment  

Science Journals Connector (OSTI)

Oil and gas drilling despoils Alaska environment ... Oil and gas development on Alaska's North Slope is causing "alarming environmental problems," accompanied by "a disturbing record of industry compliance with environmental laws and regulations," charges a report just released jointly by Trustees for Alaska, the Natural Resources Defense Council, and the National Wildlife Federation. ... Further oil development in the Arctic should be frozen until the environment is safeguarded, NRDC says, rather than yielding to lobbying in Congress to open the Arctic National Wildlife Refuge to drilling. ...

1988-02-01T23:59:59.000Z

291

Dictionary of petroleum exploration, drilling, and production  

SciTech Connect (OSTI)

This book contains more than 20,000 definitions of oil exploration, drilling, and production terms, making this dictionary mandatory for both the experienced industry professional and the nontechnical person. Completing this comprehensive reference are more than 500 detailed illustrations. Appendices include a rotary rig diagram, a cable tool drilling rig, a beam pumping unit, giant oil fields of the world, giant oil, and gas fields of the United States and Canada, a geological time chart, geological map symbols, conversion factors, the Greek alphabet atomic weights and numbers, charts of the geological features of the United States and Canada, plus much, much more.

Hyne, N.J.

1991-01-01T23:59:59.000Z

292

Drilling slated to resume in Honduras  

SciTech Connect (OSTI)

Considered to have major oil reserve potential, yet sparsely explored, the onshore Mosquitia basin and its offshore sector are attracting operators back to Honduras who may drill on a level not seen since the mid-1970s. Exploratory drilling is scheduled to resume after a five-hear hiatus. After concluding seismic shooting on its Brus Laguna concession is eastern Honduras, Houston-based Bonavista Oil and Mining Corporation plans to spud the first of three wildcats to test the Mosquitia by next summer.

Kaya, W.; Abraham, K.S.

1989-01-01T23:59:59.000Z

293

Thermal Gradient Holes At Hawthorne Area (Sabin, Et Al., 2010) | Open  

Open Energy Info (EERE)

Sabin, Et Al., 2010) Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hawthorne Area (Sabin, Et Al., 2010) Exploration Activity Details Location Hawthorne Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes In lieu of Seabee TGH drilling, GPO awarded a large IDIQ TGH drilling contract in December, 2009. Over the next two years, 90 500-ft TGHs will be installed at select sites in California and Nevada. Interim data from this campaign are already available for the Chocolate Mountains and Hawthorne. Results of these programs can be found in the Chocolate Mountains and Hawthorne papers also available in this volume. References Andrew Sabin, S. Bjornstad, M. Lazaro, D. Meade, C. Page, S. Alm, A.

294

Thermal Gradient Holes At Cove Fort Area (Warpinski, Et Al., 2002) | Open  

Open Energy Info (EERE)

Et Al., 2002) Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Cove Fort Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not indicated DOE-funding Unknown Notes The project at Cove Fort/Sulphurdale in Utah, T26S R6/7W, is concerned with locating and drilling a 900-meter well to explore the western extension of the Cove Fort-Sulphurdale geothermal area. The geophysical exploration consisted of resistivity, ground magnetic, and microgravity surveys that were made to site the well in an optimum location. Drilling of the test well was completed in the fall of 2001 and results are currently being evaluated. The total depth of the well is 598 m with a

295

Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)  

SciTech Connect (OSTI)

This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

2000-02-01T23:59:59.000Z

296

Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas  

SciTech Connect (OSTI)

A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger, and out through the holes in the bottom of the auger into the potentially hazardous area.

McCormick, S.H.; Pigott, W.R.

1998-04-01T23:59:59.000Z

297

Thermal Gradient Holes At Twenty-Nine Palms Area (Page, Et Al., 2010) |  

Open Energy Info (EERE)

Thermal Gradient Holes At Twenty-Nine Palms Thermal Gradient Holes At Twenty-Nine Palms Geothermal Area (Page, Et Al., 2010) Exploration Activity Details Location Twenty-Nine Palms Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes From November 2008 to March 2009, Seabees from the Naval Construction Division (NCD) successfully completed fivetemperature gradient holes for the GPO. Samples taken from each hole were similar in nature; mixtures of sand and conglomerates with the occasional granite sections were typically encountered. Each hole varied slightly in depth, ranging from 600ft to 1,000ft; however, each hole has been completed to acceptable standards of the GPO. Upon completion of drilling, 3" metal tubing was inserted to

298

Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.  

SciTech Connect (OSTI)

Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

Goranson, Colin

2005-03-01T23:59:59.000Z

299

Development of a High-Temperature Diagnostics-While-Drilling...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

contributor to sample failure was the occurrence of "frac outs" where entrapped gases (air or other products of off-gassing) rapidly escaped during curing, causing a split,...

300

Oil-Based Drilling Fluids: Are they an Environmental Risk?  

Science Journals Connector (OSTI)

The use of oil-based drilling fluids has been discouraged in hydrocarbon exploration ... and production in the marine environment but these drilling fluids are presently being used to a ... Sea have demonstrated ...

F. Payne Jerry; L. Fancey; J. Kiceniuk

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

RECENT DEVELOPMkNTS 1N GEOTHERMAC DRILLING FLUIDS  

Office of Scientific and Technical Information (OSTI)

logging Trouble-free drilling was experience 7,916 feet where a twist-off occurred. The fish was recovered without difficulty and drilling resumed. Mud circul ed from the bottom of...

302

DOE and Navy Collaborate on Geothermal Drilling Technology |...  

Energy Savers [EERE]

PDC drill bit is being re-evaluated and improved to reduce the cost of drilling for geothermal energy. To read the Sandia Labs news release, click on the link below:...

303

Geotechnical Drilling in New-Zealand | Open Energy Information  

Open Energy Info (EERE)

Zealand Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Geotechnical Drilling in New-Zealand Author SonicSampDrill Published Publisher Not Provided,...

304

NNSA Small Business Week Day 2: United Drilling, Inc. | National...  

National Nuclear Security Administration (NNSA)

Inc., a small minority-owned business based in Roswell, N.M. United Drilling drills oil, gas, water, geothermal, and environmental wells throughout the southwestern U.S. The...

305

Oil and Gas Well Drilling | Open Energy Information  

Open Energy Info (EERE)

Not Provided Check for DOI availability: http:crossref.org Online Internet link for Oil and Gas Well Drilling Citation Jeff Tester. 2011. Oil and Gas Well Drilling. NA. NA....

306

Low temperature barrier wellbores formed using water flushing  

DOE Patents [OSTI]

A method of forming an opening for a low temperature well is described. The method includes drilling an opening in a formation. Water is introduced into the opening to displace drilling fluid or indigenous gas in the formation adjacent to a portion of the opening. Water is produced from the opening. A low temperature fluid is applied to the opening.

McKinzie, II; John, Billy [Houston, TX; Keltner, Thomas Joseph [Spring, TX

2009-03-10T23:59:59.000Z

307

Hierarchically deflated conjugate gradient  

E-Print Network [OSTI]

We present a multi-level algorithm for the solution of five dimensional chiral fermion formulations, including domain wall and Mobius Fermions. The algorithm operates on the red-black preconditioned Hermitian operator, and directly accelerates conjugate gradients on the normal equations. The coarse grid representation of this matrix is next-to-next-to-next-to-nearest neighbour and multiple algorithmic advances are introduced, which help minimise the overhead of the coarse grid. The treatment of the coarse grids is purely four dimensional, and the bulk of the coarse grid operations are nearest neighbour. The intrinsic cost of most of the coarse grid operations is therefore comparable to those for the Wilson case. We also document the implementation of this algorithm in the BAGEL/Bfm software package and report on the measured performance gains the algorithm brings to simulations at the physical point on IBM BlueGene/Q hardware.

P A Boyle

2014-02-11T23:59:59.000Z

308

Evaluation of high rotary speed drill bit performance  

E-Print Network [OSTI]

of this research was to develop a drilling model which would more accurately predict penetration rates with standard drilling parameters. An accurate model was developed using laboratory drilling performance. A secondary result of this research was a qualitative... analysis showed that the model may be used to qualita- tivelyy match drilled formations to offset well logs. The ratio of actual to predicted penetration rate was used in conjunction with the gamma ray log to correlate the location of formations. iv...

Ray, Randy Wayne

2012-06-07T23:59:59.000Z

309

Technology Development and Field Trials of EGS Drilling Systems  

Broader source: Energy.gov [DOE]

Project objective: Development of drilling systems based upon rock penetration technologies not commonly employed in the geothermal industry.

310

Blind shaft drilling: The state of the art  

SciTech Connect (OSTI)

This report discusses the ``Art`` of blind shaft drilling which has been in a continual state of evolution at the Nevada Test Site (NTS) since the start of underground testing in 1957. Emplacement holes for nuclear devices are still being drilled by the rotary drilling process, but almost all the hardware and systems have undergone many changes during the intervening years. Blind shaft drilling and tunnel construction technologies received increased emphasis with the signing of the LTBT in 1963.

Rowe, P.A.

1993-04-20T23:59:59.000Z

311

OCEAN DRILLING PROGRAM LEG 178 PRELIMINARY REPORT  

E-Print Network [OSTI]

A I M E R This publication was prepared by the Ocean Drilling Program, Texas A&M University, USA, Internet: cowanea@appstate.edu) James Daniels, Sedimentologist (School of Earth Sciences, California 94025, USA, Internet: carlota@octopus.wr.usgs.gov) Andrew J. Evans, Physical Properties Specialist

312

Drill pipe management extends drillstring life  

SciTech Connect (OSTI)

Better handling procedures and frequent drill pipe inspections prolong the life of a drillstring. Crews taught to make quick visual inspections during rig moves and tripping can spot problem pipe early, thus preventing downtime or extensive repairs. Because of escalating costs of drillstring repair and replacement, Global Marine Drilling Co. organized a task force in March 1989 to define problem areas and establish new handling and maintenance procedures. The task force estimated that one 20,000-ft drillstring costs abut $600,000 and has a 7-year life span. Assuming the average rig life is 21 years, each rig will wear out three strings, totaling $1.8 million. The addition of $30,000/year for full rack inspections, repairs and downhole loss brings the total to approximately $2.4 million/rig over the 21 years. A contractor with a fleet of 25 rigs could expend $60 million on drill pipe-the construction cost of a well-equipped, 300-ft jack up rig. The task force reported on in this paper identifies four basic caused of drill pipe failures: Tool joint and tube OD wear, Internal corrosion, Fatigue cracking in the slip and internal upset areas, Physical damage to the tool joint threads and shoulders, and the tube.

Shepard, J.S. (Global Marine Drilling Co., Houston, TX (US))

1991-10-28T23:59:59.000Z

313

OCEAN DRILLING PROGRAM LEG 162 PRELIMINARY REPORT  

E-Print Network [OSTI]

Jansen Co-Chief Scientist, Leg 162 Department of Geology, Section B University of Bergen Allegaten 41 N Drilling Program: Eystein Jansen, Co-Chief Scientist (Department of Geology, University of Bergen, Allegaten 41, N-5007 Bergen, Norway; E-mail: eystein.jansen@geol.uib.no) Maureen Raymo, Co-Chief Scientist

314

Optimising the reward of appraisal drilling  

SciTech Connect (OSTI)

Management of the uncertainties associated with the development of a hydrocarbon resource is essential to minimize economic risk. In many instances these uncertainties can only be reduced by appraisal drilling. This presentation illustrates the efforts being made to manage uncertainty by determining its impact on overall project profitability. The Value of Information (VOI) approach is described. VOI aims at quantifying the benefits of appraisal by determining its economic reward in terms of its contribution to a development plan which is economically robust over the uncertainty range. Appraisal drilling costs can be reduced by combining appraisal and development objectives in one well. The growing use of horizontal drilling technology has resulted in novel approaches to appraisal. As examples, in the Osprey and Brent Fields (UK North Sea) wells were designed to satisfy both appraisal and development objectives. In Osprey, a well was drilled from a central production platform to provide water injection support in a satellite structure while at the same time appraising the saddle area between the two structures. In Brent, horizontal wells are used to appraise and develop the so called slump blocks, characterized by being highly faulted and compartmentalized. Another increasingly common application of horizontal wells is for the flank appraisal of hydrocarbon bearing structure. Examples from the Rabi Field (Gabon) and Batan Field (Nigeria) show how appraisal was achieved by extending the reach of horizontal development wells from the central core of the structures.

Gdula, J.

1996-12-31T23:59:59.000Z

315

Optimising the reward of appraisal drilling  

SciTech Connect (OSTI)

Management of the uncertainties associated with the development of a hydrocarbon resource is essential to minimize economic risk. In many instances these uncertainties can only be reduced by appraisal drilling. This presentation illustrates the efforts being made to manage uncertainty by determining its impact on overall project profitability. The Value of Information (VOI) approach is described. VOI aims at quantifying the benefits of appraisal by determining its economic reward in terms of its contribution to a development plan which is economically robust over the uncertainty range. Appraisal drilling costs can be reduced by combining appraisal and development objectives in one well. The growing use of horizontal drilling technology has resulted in novel approaches to appraisal. As examples, in the Osprey and Brent Fields (UK North Sea) wells were designed to satisfy both appraisal and development objectives. In Osprey, a well was drilled from a central production platform to provide water injection support in a satellite structure while at the same time appraising the saddle area between the two structures. In Brent, horizontal wells are used to appraise and develop the so called slump blocks, characterized by being highly faulted and compartmentalized. Another increasingly common application of horizontal wells is for the flank appraisal of hydrocarbon bearing structure. Examples from the Rabi Field (Gabon) and Batan Field (Nigeria) show how appraisal was achieved by extending the reach of horizontal development wells from the central core of the structures.

Gdula, J.

1996-01-01T23:59:59.000Z

316

Method of drilling and casing a well  

SciTech Connect (OSTI)

A well drilling rig having a rotary table for driving a drill string rotatively and having jacking mechanism for lowering casing into the well after drilling, with the jacking mechanism including fluid pressure actuated piston and cylinder means which may be left in the rig during drilling and which are positioned low enough in the rig to avoid interference with operation of the rotary table. The jacking mechanism also includes a structure which is adapted to be connected to the piston and cylinder means when the casing or other well pipe is to be lowered and which is actuable upwardly and downwardly and carries one of two pipe gripping units for progressively jacking the pipe downwardly by vertical reciprocation of that structure. The reciprocating structure may take the form of a beam extending between two pistons and actuable thereby, with a second beam being connected to cylinders within which the pistons are contained and being utilized to support the second gripping element. In one form of the invention, the rotary table when in use is supported by this second beam.

Boyadjieff, G.I.; Campbell, A.B.

1983-12-20T23:59:59.000Z

317

Russian techniques for more productive core drilling  

SciTech Connect (OSTI)

This is a short discussion of the trends and technology being used in Russia to increase the production of core drilling. The currently used rigs are given with the plans for improvement in drive methods and to reduce trip time in the recovery of cores. The recommendations by the Russians to improve the core recovery quality and quantity are also given.

Not Available

1984-09-01T23:59:59.000Z

318

OCEAN DRILLING PROGRAM LEG 160 PRELIMINARY REPORT  

E-Print Network [OSTI]

of this report can be found on the ODP Publications Home Page on the World Wide Web at http Consortium for the Ocean Drilling Program (Belgium, Denmark, Finland, Greece, Iceland, Italy, The Netherlands, Budapestlaan 4, 3584 CD Utrecht, The Netherlands; E-mail: gdelange@earth.ruu.nl) Enrico Di Stefano (De

319

Impedance-matched drilling telemetry system  

DOE Patents [OSTI]

A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

Normann, Randy A. (Edgewood, NM); Mansure, Arthur J. (Albuquerque, NM)

2008-04-22T23:59:59.000Z

320

Gradient Sliding for Composite Optimization  

E-Print Network [OSTI]

Noname manuscript No. (will be inserted by the editor). Gradient Sliding for Composite Optimization. Guanghui Lan the date of receipt and acceptance should...

2014-06-11T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Surface control bent sub for directional drilling of petroleum wells  

DOE Patents [OSTI]

Directional drilling apparatus for incorporation in a drill string, wherein a lower apparatus section is angularly deviated from vertical by cam action and wherein rotational displacement of the angularly deviated apparatus section is overcome by additional cam action, the apparatus being operated by successive increases and decreases of internal drill string pressure.

Russell, Larry R. (6025 Edgemoor, Suite C, Houston, TX 77081)

1986-01-01T23:59:59.000Z

322

KNOWLEDGE-BASED DECISION SUPPORT IN OIL WELL DRILLING  

E-Print Network [OSTI]

KNOWLEDGE-BASED DECISION SUPPORT IN OIL WELL DRILLING Combining general and case-specific knowledge of Computer and Information Science. agnar.aamodt@idi.ntnu.no Abstract: Oil well drilling is a complex process. This is followed, in section 3, by an oil well drilling scenario and an example from a problem solving session

Aamodt, Agnar

323

Applications of CBR in oil well drilling "A general overview"  

E-Print Network [OSTI]

Applications of CBR in oil well drilling "A general overview" Samad Valipour Shokouhi1,3 , Agnar successfully. Keywords: Case-based reasoning, oil well drilling 1 Introduction Case-based reasoning (CBR provide to the oil and gas drilling industry. The number of publications on the application of CBR

Aamodt, Agnar

324

Integrated Ocean Drilling Program U.S. Implementing Organization  

E-Print Network [OSTI]

successes of the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP), programs the shoreline in shallow- water areas and in climatically sensitive or ice-covered regions. Three implementing the riserless drilling vessel JOIDES Resolution, Japan's Center for Deep Earth Exploration (CDEX) for the riser

325

RESEARCH PAPER Compaction bands induced by borehole drilling  

E-Print Network [OSTI]

: boreholes are often drilled deep into weak porous sandstone formations for the purpose of extracting oil Introduction Boreholes drilled into the Earth's crust for facilitating the extraction of water, oil, naturalRESEARCH PAPER Compaction bands induced by borehole drilling R. Katsman ? E. Aharonov ? B. C

Einat, Aharonov

326

Los Alamos Drills to Record-breaking Depths  

Broader source: Energy.gov [DOE]

LOS ALAMOS, N.M. The EM-supported Environmental Programs at Los Alamos National Laboratory is pushing the limits of drilling technology with the use of a sonic drill rig to drill coreholes more than 1,100 feet deep in support of a chromium remediation project.

327

A New Method for Calculating the Equivalent Circulating Density of Drilling Fluid in Deepwater Drilling for Oil and Gas  

Science Journals Connector (OSTI)

We have developed a simple and accurate method for calculating the equivalent circulating density for drilling fluid which can be used for deepwater drilling calculations. The calculation takes into account de...

Hui Zhang; Tengfei Sun; Deli Gao

2013-11-01T23:59:59.000Z

328

Black Warrior: Sub-soil Gas and Fluid Inclusion Exploration and...  

Open Energy Info (EERE)

identified by reconnaissance temperature gradient drilling in the 1980s by Philips Petroleum but was never tested through deep exploration drilling. Although the 10 square miles...

329

Liability issues surrounding oil drilling mud sumps  

SciTech Connect (OSTI)

This presentation examines liability issues surrounding oil drilling mud sumps and discusses them in relation to two recent cases that arose in Ventura County, California. Following a brief history of regulatory interest in oil drilling mud and its common hazardous substances, various cause of action arising from oil drilling mud deposits are enumerated, followed by defenses to these causes of action. Section 8002 (m) of the Resource Conservation and Recovery Act is mentioned, as are constituents of oil and gas waste not inherent in petroleum and therefore not exempt from regulation under the petroleum exclusion in the Comprehensive Environmental Response, Compensation and Recovery Act. Key legal words such as hazardous substance, release, public and private nuisance, trespass, responsible parties, joint and several liability, negligence, and strict liability are explained. The effects on liability of knowledge of the deposits, duty to restore land to its original condition, consent to the deposit of oil drilling mud, and noncompliance and compliance with permit conditions are analyzed. The state-of-the-art defense and research to establish this defense are mentioned. The newly created cause of action for fear of increased risk of cancer is discussed. Issues on transfer of property where oil drilling mud has been deposited are explored, such as knowledge of prior owners being imputed to later owners, claims of fraudulent concealment, and as is' clauses. The effects on the oil and gas industry of the California Court of Appeals for the Second District rulings in Dolan v. Humacid-MacLeod and Stevens v. McQueen are speculated.

Dillon, J.J.

1994-04-01T23:59:59.000Z

330

NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program  

E-Print Network [OSTI]

large volumes of borehole fluids, and initiate a cross-hole hydrogeologic experiment usingNUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program No.13,April2012 ScientificDrilling ISSN: 1816-8957 Exp. 327: Juan de Fuca Ridge

Fisher, Andrew

331

State-of-the-art in coalbed methane drilling fluids  

SciTech Connect (OSTI)

The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

2008-09-15T23:59:59.000Z

332

Alterations in bottom sediment physical and chemical Characteristics at the terra nova offshore oil development over ten Years of Drilling on the grand Banks of Newfoundland, Canada.  

Science Journals Connector (OSTI)

Abstract This paper describes sediment composition at the Terra Nova offshore oil development. The Terra Nova Field is located on the Grand Banks approximately 350km southeast of Newfoundland, Canada, at an approximate water depth of 100m. Surface sediment samples (upper 3cm) were collected for chemical and particle size analyses at the site pre-development (1997) and in 2000, 2001, 2002, 2004, 2006, 2008 and 2010. Approximately 50 stations have been sampled in each program year, with stations extending from less than 1km to a maximum of 20km from source (drill centres) along five gradients, extending to the southeast, southwest, northeast, northwest and east of Terra Nova. Results show that Terra Nova sediments were contaminated with >C10-C21 hydrocarbons and barium - the two main constituents of synthetic-based drilling muds used at the site. Highest levels of contamination occurred within 1 to 2km from source, consistent with predictions from drill cuttings dispersion modelling. The strength of distance gradients for >C10-C21 hydrocarbons and barium, and overall levels, generally increased as drilling progressed but decreased from 2006 to 2010, coincident with a reduction in drilling. As seen at other offshore oil development sites, metals other than barium, sulphur and sulphide levels were elevated and sediment fines content was higher in the immediate vicinity (less than 0.5km) of drill centres in some sampling years; but there was no strong evidence of project-related alterations of these variables. Overall, sediment contamination at Terra Nova was spatially limited and only the two major constituents of synthetic-based drilling muds used at the site, >C10-C21 hydrocarbons and barium, showed clear evidence of project-related alternations.

Elisabeth M. DeBlois; Michael D. Paine; Bruce W. Kilgour; Ellen Tracy; Roger Crowley; Urban P. Williams; G.Gregory Janes

2014-01-01T23:59:59.000Z

333

Global energy gradients and size in colonial organisms: Worker mass and worker number  

E-Print Network [OSTI]

Global energy gradients and size in colonial organisms: Worker mass and worker number in ant size varies globally is a key challenge to ecology. Solar energy may shape gradients of body size by its effects on local temperature and net primary productivity (16­20). Rising global temperatures (21

Kaspari, Mike

334

GRR/Section 5 - Drilling Overview | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 5 - Drilling Overview GRR/Section 5 - Drilling Overview < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 5 - Drilling Overview 05DrillingPermittingOverview.pdf Click to View Fullscreen Contact Agencies BLM Regulations & Policies 30 USC § 1001 Triggers None specified On top of acquiring the correct drilling permits a developer needs to consider issues such as land and mineral ownership and right of way access. 05DrillingPermittingOverview.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative 5.1 - Review Potential Construction Permits In addition to drilling permits, the developer may require other

335

NEPA COMPLIANCE SURVEY Project Information Project Title: Liner Drilling Date:  

Broader source: Energy.gov (indexed) [DOE]

Liner Drilling Date: Liner Drilling Date: 4-5-10 DOE Code: 71092 Cont ractor Code: 8067-766 Project Lead: Frank Ingham Project Overview Nothing out of the ordinary for drilling an existing location 1. What are the environmental impacts? NE SW Sec 21 , T39N, R78W (45-3-X-21 well) 2. What is the legal location? 3. What is the duration of the project? Approximately a week 4 . What major equipment will be used if any (work over rig, drilling rig, Drilling Rig etc.)? Will Drill out of 9 5/8 caslng with liner drillng assembly. After drilling approximately 750 to 1000 ft, will test liner hanging assembly set and retrieve multiple times. The table b elow is to be completed by the Project Lead and reviewed by the Environmental Specialis t and the DOE NEPA Compliance Officer. NOTE: If Change of Scope occurs, Project Lead must submit a new NEPA Compliance Survey a

336

Preliminary report on shallow research drilling in the Salton Sea region  

SciTech Connect (OSTI)

During two shallow thermal drilling programs, thermal measurements were obtained in 56 shallow (76.2 m) and one intermediate (457.3 m) depth holes located both onshore and offshore along the southern margin of the Salton Sea in the Imperial Valley, California. These data complete the surficial coverage of the thermal anomaly, revealing the shape and lateral extent of the hydrothermal system. The thermal data show the region of high thermal gradients to extend only a short distance offshore to the north of the Quaternary volcanic domes which are exposed along the southern shore of the Salton Sea. The central thermal anomaly has an arcuate shape, about 4 km wide and 12 km long. Across the center of the anomaly, the transition zone between locations exhibiting high thermal gradients and those exhibiting regional thermal gradients is quite narrow. Thermal gradients rise from near regional (0.09/degree/C/m) to extreme (0.83/degree/C/m) in only 2.4 km. The heat flow in the central part of the anomaly is greater than 600 mW/m/sup 2/ and in some areas exceeds 1200 mW/m/sup 2/. The shape of the thermal anomaly is asymmetric with respect to the line of volcanoes previously thought to represent the center of the field, with its center line offset south of the volcanic buttes. There is no broad thermal anomaly associated with the magnetic high that extends offshore to the northeast from the volcanic domes.

Newmark, R.L.; Kasameyer, P.W.; Younker, L.W.

1988-01-14T23:59:59.000Z

337

Mathematical modeling of thixotropic drilling mud and crude oil flow in wells and pipelinesA review  

Science Journals Connector (OSTI)

Many drilling muds and crude oils are known to be thixotropic. Under a wide range of pressures, temperatures and flow regimes, they display unusual complex flow properties when flowing through wells (crude oils and drilling muds) and during storage and pipeline transportation (crude oils). Understanding and modeling the deviation from Newtonian behavior of drilling muds and crude oils are essential in accurately and optimally designing the flow systems associated with these fluids. Despite an impressive amount of experimental and rheological modeling studies concerning the non-Newtonian drilling mud and crude oil behavior, mathematical modeling studies taking into account their thixotropic properties are rare. In addition, there was no literature review of the knowledge gained to date. Thus, a review paper on studies addressing the mathematical modeling of thixotropic drilling mud and crude oil flow in wells and pipelines will pinpoint the challenges and limitations encountered in such studies. This will hopefully trigger further development and new research topics. This review paper focuses mainly on mathematical modeling studies concerning the well and pipeline flow of thixotropic drilling muds and crude oils. After describing how thixotropy is understood today inside and outside of the petroleum industry community, several mathematical models available in the literature are examined. Finally, challenges, limitations, and potential areas for the development of these models are presented.

S. Livescu

2012-01-01T23:59:59.000Z

338

Temperatures and Natural Gamma-Ray Logs Obtained in 1986 from...  

Open Energy Info (EERE)

Changes in temperature logs run in July and September appear to result from fluid loss to the formation during and following drilling and possibly to ground shaking...

339

High-Temperature Circuit Boards for Use in Geothermal Well Monitoring...  

Broader source: Energy.gov (indexed) [DOE]

Composite Technology Development, Inc. High-Temperature Tools and Sensors, Downhole Pumps and Drilling May 19, 2010 This presentation does not contain any proprietary...

340

Four rigs refurbished for West Africa drilling  

SciTech Connect (OSTI)

In April and May 1990, Shell Petroleum Development Co. of Nigeria Ltd. awarded Noble Drilling West Africa Inc. four separate contracts to drill oil and gas wells in the inland waterways of Nigeria. The contracted rigs included a shallow water jack up, the NN-1, and three posted barges, the Gene Rosser, the Chuck Syring, and the Lewis Dugger. The jack up was built in 1978, and the three posted barges are 1980s vintage. Three of the rigs have been idle for a number of years. The Shell Nigeria contracts required major modifications to the rigs before putting them into international service. Noble replaced or refurbished all major pieces of equipment in the drilling, power, and service systems on the rigs. Rig crews serviced all other equipment. A significant amount of general service piping and electrical wiring was replaced. Each rig also required additional motor control centers to support the new drilling and mud processing equipment. Alfa-Laval waste-heat water desalination plants and new sewage treatment units were installed on all four rigs. Because of the tidal variances and high silt conditions expected in the African waterways, all engine cooling systems were converted from heat exchangers to radiators. Rotary tables were made common on all rigs at 37 1/2 in. Noble had all traveling equipment completely inspected and modified as necessary. Strict attention was paid to certification and documentation of all equipment. Safety upgrades conformed to both Shell and Noble standards. Fire and gas detection systems were installed throughout each rig. Water and foam deluge systems were installed in the wellhead areas, and new foam systems and monitors were installed on the helldecks.

Not Available

1991-06-10T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Drilling deep in South Pole Ice  

E-Print Network [OSTI]

To detect the tiny flux of ultra-high energy neutrinos from active galactic nuclei or from interactions of highest energy cosmic rays with the microwave background photons needs target masses of the order of several hundred cubic kilometers. Clear Antarctic ice has been discussed as a favorable material for hybrid detection of optical, radio and acoustic signals from ultra-high energy neutrino interactions. To apply these technologies at the adequate scale hundreds of holes have to be drilled in the ice down to depths of about 2500 m to deploy the corresponding sensors. To do this on a reasonable time scale is impossible with presently available tools. Remote drilling and deployment schemes have to be developed to make such a detector design reality. After a short discussion of the status of modern hot water drilling we present here a design of an autonomous melting probe, tested 50 years ago to reach a depth of about 1000 m in Greenland ice. A scenario how to build such a probe today with modern technologies...

Karg, Timo

2014-01-01T23:59:59.000Z

342

Estimation of the equilibrium formation temperature in the presence of bore fluid invasion  

Science Journals Connector (OSTI)

......the formation and borehole, and the dynamics of the circulating drilling fluid. Different...3 C on measured borehole temperatures. The...2; Fig. 2). Borehole temperatures were...disturbance from the drilling operations has fully...BHTs, a relatively large temperature difference......

Sren Erbs Poulsen; Sren Bom Nielsen; Niels Balling

2012-09-01T23:59:59.000Z

343

High field gradient particle accelerator  

DOE Patents [OSTI]

A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

Nation, J.A.; Greenwald, S.

1989-05-30T23:59:59.000Z

344

High field gradient particle accelerator  

DOE Patents [OSTI]

A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

Nation, John A. (Ithaca, NY); Greenwald, Shlomo (Haifa, IL)

1989-01-01T23:59:59.000Z

345

Development of a Hydrothermal Spallation Drilling System for EGS Geothermal  

Open Energy Info (EERE)

Hydrothermal Spallation Drilling System for EGS Geothermal Hydrothermal Spallation Drilling System for EGS Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development of a Hydrothermal Spallation Drilling System for EGS Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Drilling Systems Project Description Potter Drilling has recently demonstrated hydrothermal spallation drilling in the laboratory. Hydrothermal spallation drilling creates boreholes using a focused jet of superheated water, separating individual grains ("spalls") from the rock surface without contact between the rock and the drill head. This process virtually eliminates the need for tripping. Previous tests of flame-jet spallation achieved ROP of 50 ft/hr and higher in hard rock with minimal wear on the drilling assembly, but operating this technology in an air-filled borehole created challenges related to cuttings transport and borehole stability. The Potter Drilling system uses a water based jet technology in a fluid-filled borehole and as a result has the potential to achieve similarly high ROP that is uncompromised by stability or cuttings transport issues.

346

Development and Manufacture of Cost Effective Composite Drill Pipe  

SciTech Connect (OSTI)

This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2004 through September 30, 2005 and contains the following discussions: (1) Qualification Testing; (2) Prototype Development and Testing of ''Smart Design'' Configuration; (3) Field Test Demonstration; and (4) Commercial order for SR-CDP from Torch International. The objective of this contract is to develop and demonstrate ''cost effective'' Composite Drill Pipe. It is projected that this drill pipe will weigh less than half of its steel counter part. The resultant weight reduction will provide enabling technology that will increase the lateral distance that can be reached from an offshore drilling platform and the depth of water in which drilling and production operations can be carried out. Further, composite drill pipe has the capability to carry real time signal and power transmission within the pipe walls. CDP can also accommodate much shorter drilling radius than is possible with metal drill pipe. As secondary benefits, the lighter weight drill pipe can increase the storage capability of floating off shore drilling platforms and provide substantial operational cost savings.

James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Steve Loya

2006-02-20T23:59:59.000Z

347

Wear mechanisms for polycrystalline-diamond compacts as utilized for drilling in geothermal environments. Final report  

SciTech Connect (OSTI)

The work, which was performed in the period from 12/6/79 to 9/30/81 included: (1) rock cutting experiments with single point polycrystalline sintered diamond compact (PDC) cutters to quantitatively determine cutter wear rates and identify wear modes, (2) PDC rock cutting experiments to measure temperatures developed and examine the effects of tool wear, cutting parameters and coolant flow rates on temperature generation, (3) assisting in performing full scale laboratory drilling experiments with PDC bits, using preheated air to simulate geothermal drilling conditions, and in analyzing and reporting the experimental results, and (4) acting in a consulting role with the purpose of establishing design specifications for geothermal hard matrix PDC bits to be procured by Sandia Laboratories for test purposes.

Hibbs, L.E. Jr.; Sogoian, G.C.

1983-05-01T23:59:59.000Z

348

Drilling Optimization Utilizing Surface Instrumentaton for Downhole Event Recognition  

SciTech Connect (OSTI)

This DOE project was undertaken to develop and test an instrumented data-acquisition sub that is mounted in a drill string below the top drive and used to detect downhole events. Data recorded at the surface during drilling operations would then be processed and presented to the driller to discern undesirable drilling conditions and help optimize drilling rates and maximize the life of components in the BHA. This instrumented sub was originally conceived and developed solely as a single-point collection center for rig data that would be used in a number of Noble's products. The sub was designed to collect hook load, rotary torque, rotary speed, rotary position, drill pipe pressure, mud temperature, triaxial vibration, and triaxial magnetometer data. The original design and fabrication was by Sandia National Labs under Noble's direction, which was then tested with Sandia's diagnostics-while-drilling downhole package. After initial results were analyzed, the team surmised that important information describing performance and condition of the bottom-hole assembly (BHA) was embedded in the data recorded by the instrumented sub, and began investigating the potential of using surface measurements from the sub to highlight problems occurring downhole before they could be discerned by the driller. Later, a proposal was submitted to DOE for funding to more broadly investigate use of the system for detecting downhole problems while drilling. Soon after DOE awarded this contract, the Noble team responsible for the previous developments was disbanded and their work terminated (due to factors unrelated to the sub development). This change halted the complementary work that Noble had planned to conduct during the DOE project, and necessitated that all the development work be completed by the DOE project. More effort was expended on the project to develop a field-ready prototype than was originally foreseen. The sub's design had to be significantly modified during the project based on results of field tests. The original slip ring for communication was replaced with a radio link, which makes the sub easier to move to different rigs and simplifies the set-up process. In addition, the sub's previous design would prevent it being used on oil and gas rigs due to potential explosion hazard. The sub was redesigned so that during operation all electrical components on the sub are under a blanket of nitrogen. A pressure switch is used so that, should a leak develop, the sub will shut itself down until any problems are repaired. A total of four series of field tests were conducted. The first (mentioned above) was part of the original Noble-sponsored program and in conjunction with Sandia's diagnostics-while-drilling system. Although these tests highlighted important problems, they showed significant promise for the concept, and the sub was returned to Sandia for early repairs and modifications. After the DOE project took possession of the sub, it was tested three more times in the field. The first two DOE tests had the same objective, which was to establish that the sub could function correctly on the rig and deliver usable data, and to develop procedures for setting up and operating the sub and support computer on a rig. During the first test most of the time was spent troubleshooting the sub. Several significant problems were revealed, demonstrating that the current design was not robust enough to survive typical oil field operations. The sub was then redesigned to increase its robustness and allow it to run safely in areas where explosive gases might be present. Once these changes were implemented, the sub was sent to a second shake-down field test. The new design was found to be greatly improved. The sub operated throughout the test, and quality of the data was significantly higher. Near the end of this project, a final field test was conducted with the objective of creating (or simulating) specific problem conditions and recording data to determine if signatures could be recorded and identified that, after analysis, might signify particula

John H. Cohen; Greg Deskins

2006-02-01T23:59:59.000Z

349

Correlated Knowledge Gradients: Example alternatives  

E-Print Network [OSTI]

Correlated Knowledge Gradients: Example -4 -2 0 2 4 alternatives value 0 10 20 30 -10 -8 -6 -4 -2 0;Correlated Knowledge Gradients: Example -4 -2 0 2 4 alternatives value 0 10 20 30 -10 -8 -6 -4 -2 0 num measurements log(KGfactor) 0 10 20 30 0 0.5 1 1.5 2 num measurements opportunitycost #12;Correlated Knowledge

Keinan, Alon

350

Solar energy storage by salinity gradient solar pond: Pilot plant construction and gradient control  

Science Journals Connector (OSTI)

An experimental solar pond pilot plant was constructed in Solvay-Martorell, facilities, Catalonia (NE part of the Iberian Peninsula) to capture and store solar energy. The body of the pond is a cylindrical reinforced concrete tank, 3m height, 8m diameter and total area of 50m2. Salinity and thermal gradient were properly established by using the salinity distribution methodology. The gradient in the pond was maintained by feeding salt (NaCl) through a cylindrical salt charger to the bottom at a height of 80cm from the pond floor. Continuous surface washing using tap water supply maintained the salinity of the top convective layer at a low level and compensate loses by evaporation. An acidification method by addition of \\{HCl\\} at different heights was used to control the clarity of the pond. The salinity gradient was fully established on 30 September 2009 and has been maintained until the date. After winter time (February 2010), the pond warms up and the temperature increased continuously until it reached its maximum (55C) in August 2010. The salinity gradient observed great stability after one year of continuous control and maintenance and under different weather conditions.

Csar Valderrama; Oriol Gibert; Jordina Arcal; Pau Solano; Aliakbar Akbarzadeh; Enric Larrotcha; Jos Luis Cortina

2011-01-01T23:59:59.000Z

351

Noise removal from measurements while drilling an oil well  

Science Journals Connector (OSTI)

Systems to acquire borehole data during the drilling of oil and gas wells make use of measurement while drilling (MWD). One feature of this system is that it is able to do real?time measuring from a borehole; therefore there has been a lot of MWD use on drilling sites in recent years. There are a few types of MWD. Mud pulse?type MWD which uses a drilling circuit fluid is superior to the rest because of its reliability accuracy of data and less disturbance of the drilling schedule. The drilling circuit fluid is raised to a high pressure by a mud pump; borehole data which are recorded by the surface measuring system are contaminated by the pumping noise. Therefore it is necessary to remove the pumping noise to get objective data. This report describes the pumping noise removal system and the method used for the telemetry system from 2000 m depth.

Kazuho Hosono; Haruki Moriyama

1996-01-01T23:59:59.000Z

352

Drop in drilling hurts oil-field chemicals market  

Science Journals Connector (OSTI)

Drop in drilling hurts oil-field chemicals market ... But events in the past few years have proven that notion faulty, and oil-field chemicals have fallen on hard times as drilling activity declines. ... The consumption of oil-field chemicals is directly related to drilling activity, and two new studies point out how far that market has declined and where opportunities still exist. ...

1985-11-18T23:59:59.000Z

353

Evaluation of potential kick scenarios in riserless drilling  

E-Print Network [OSTI]

when drilling conventionally is somewhat different from the procedures when drilling riserless. The two most common methods of kick killing utilized in conventional drilling, are the "Driller's Method" and the "Wait and Weight Method" (also referred... to as the "Engineers Method" )' . The basic procedure utilized by the Driller's Method is to shut in the well, measure stabilized shut-in drillpipe pressure (SIDPP), shut-in casing pressure (SICP), and pit gain. Circulate the kick up the annulus and out...

Seland, Stig

1999-01-01T23:59:59.000Z

354

Stress analysis of a hybrid composite drilling riser  

E-Print Network [OSTI]

. Validation and Verification of the Model. . . 33 35 38 RESULTS AND DISCUSSION . . 43 SUMMARY 49 Current Analysis . Future Work 49 50 REFERENCES . 52 APPENDIX A TABLES. 56 APPENDIX B FIGURES . . 68 APPENDIX C TENSOR TRANSFORMATIONS. . 107 VITA... serves as a conduit between the drilling platform and the subsea well- head. It provides a protected path for the tools being inserted into the well, and for the drilling mud that circulates from the drilling platform to the wefl bottom. The marine...

Sundstrom, Keith Andrew

1996-01-01T23:59:59.000Z

355

Conoco cuts North Sea drilling time by 40%  

SciTech Connect (OSTI)

The record-breaking Murchison platform has slashed development drilling time by an average of 20 days and in the process has attracted the interest of oil men over the world. This article details each aspect of the operation how the rig was modified for speed, mud and casing programs and how they were changed, computer-aided MWD directional program, special conductor pipe and the way straight-hole turbo drilling complemented conventional rotary drilling.

Shute, J.; Alldredge, G.

1982-07-01T23:59:59.000Z

356

U. S. Energy Information Administration | Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

December 2013 December 2013 Explanatory notes Drilling Productivity Report The Drilling Productivity Report uses recent data on the total number of drilling rigs in operation along with estimates of drilling productivity and estimated changes in production from existing oil and natural gas wells to provide estimated changes in oil and natural gas production for six key fields. EIA's approach does not distinguish between oil-directed rigs and gas-directed rigs because once a well is completed it may produce both oil and gas; more than half of the wells do that. Monthly additions from one average rig Monthly additions from one average rig represent EIA's estimate of an average rig's

357

Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared  

Open Energy Info (EERE)

Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rapid Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Abstract Infrared spectroscopy is particularly good at identifying awide variety of hydrothermally altered minerals with no samplepreparation, and is especially helpful in discrimination amongclay minerals. We have performed several promising pilot studieson geothermal drill core and cuttings that suggest the efficiencyof the technique to sample continuously and provide alterationlogs similar to geophysical logs. We have successfully identifiedlayered silicates, zeolites, opal, calcite, and iron oxides and

358

Semantic technology in the oil and gas drilling domain.  

E-Print Network [OSTI]

??Data integration and knowledge representation in the oil and gas drilling domain are two challenges much work is focused upon. They are important real-world challenges (more)

Over, Lars

2010-01-01T23:59:59.000Z

359

A Telerobotic Drilling Control System with Haptic Feedback.  

E-Print Network [OSTI]

??Drilling a borehole is a common method for extracting oil, gas, and natural resources from beneath the surface of the earth. The main topic of (more)

Shah, Faraz

2012-01-01T23:59:59.000Z

360

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications  

Broader source: Energy.gov [DOE]

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications presentation at the April 2013 peer review meeting held in Denver, Colorado.

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Chesapeake Bay, Drilling for Oil or Gas Prohibited (Virginia)  

Broader source: Energy.gov [DOE]

Drilling for oil or gas in the waters or within 500 hundred feet from the shoreline of the Chesapeake Bay or any of its tributaries is prohibited.

362

Recent Drilling Activities At The Earth Power Resources Tuscarora...  

Open Energy Info (EERE)

Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area Jump to: navigation, search OpenEI Reference LibraryAdd to...

363

Directional drilling techniques for exploration in-advance of mining  

SciTech Connect (OSTI)

In-seam directionally drilled horizontal boreholes have provided effective solutions in underground coal mines for methane and water drainage and inherently provide an excellent tool for coalbed exploration. Directionally drilled methane drainage boreholes have identified rapid changes in coalbed elevation, coalbed thickness and faults. Specific directional drilling and coring procedures for exploration in-advance of mining are reviewed in this paper, and also other directional drilling applications including in-mine horizontal gob ventilation boreholes, identification of abandoned workings, and water drainage boreholes.

Kravits, S.J.; Schwoebel, J.J. (REI Underground Exploration Inc., Salt Lake City, UT (United States))

1994-01-01T23:59:59.000Z

364

Costs of Crude Oil and Natural Gas Wells Drilled  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Costs of Crude Oil and Natural Gas Wells Drilled Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2002 2003...

365

Idaho Well Construction and Drilling Forms Webpage | Open Energy...  

Open Energy Info (EERE)

Forms Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho Well Construction and Drilling Forms Webpage Author Idaho Department of...

366

Evaluation of an air drilling cuttings containment system  

SciTech Connect (OSTI)

Drilling at hazardous waste sites for environmental remediation or monitoring requires containment of all drilling fluids and cuttings to protect personnel and the environment. At many sites, air drilling techniques have advantages over other drilling methods, requiring effective filtering and containment of the return air/cuttings stream. A study of. current containment methods indicated improvements could be made in the filtering of radionuclides and volatile organic compounds, and in equipment like alarms, instrumentation or pressure safety features. Sandia National Laboratories, Dept. 61 11 Environmental Drilling Projects Group, initiated this work to address these concerns. A look at the industry showed that asbestos abatement equipment could be adapted for containment and filtration of air drilling returns. An industry manufacturer was selected to build a prototype machine. The machine was leased and put through a six-month testing and evaluation period at Sandia National Laboratories. Various materials were vacuumed and filtered with the machine during this time. In addition, it was used in an actual air drive drilling operation. Results of these tests indicate that the vacuum/filter unit will meet or exceed our drilling requirements. This vacuum/filter unit could be employed at a hazardous waste site or any site where drilling operations require cuttings and air containment.

Westmoreland, J.

1994-04-01T23:59:59.000Z

367

Modeling Drilled Shafts in MSE Block Walls  

E-Print Network [OSTI]

ACKNOWLEDGEMENTS xii ABSTRACT xiii 1 INTRODUCTION 1 2 LITERATURE REVIEW 3 2.1 Physical Testing 3 2.1.1 MSE Wall Design (FHWA) 3 2.1.2 Design of Laterally Loaded Shafts 6 2.1.3 Design of Drilled Shafts Supporting Sound Walls 7 2.1.4 Topics Related to MSE... Wall Interaction with Bridges 8 2.1.5 Lateral Loading of Facing and Retained Soil 9 2.1.6 Physical Test Results 11 2.1.6.1 Construction and Instrumentation of Test Wall 12 2.1.6.2 Physical Testing and Results 17 2.2 Numerical Approaches 22 2...

Pierson, Matthew Charles

2010-09-01T23:59:59.000Z

368

Sound Coiled-Tubing Drilling Practices  

SciTech Connect (OSTI)

This Coiled-Tubing Drilling (CTD) Sound Practices Manual provides tools needed by CTD engineers and supervisors to plan, design and perform safe, successful CTD operations. As emphasized throughout, both careful planning and attention to detail are mandatory for success. A bibliography of many useful CTD references is presented in Chapter 6. This manual is organized according to three processes: 1) Pre-Job Planning Process, 2) Operations Execution Process, and 3) Post-Job Review Process. Each is discussed in a logical and sequential format.

Williams, Thomas; Deskins, Greg (Maurer Technology Inc.); Ward, Stephen L. (Advantage Energy Services Ltd); Hightower, Mel

2001-09-30T23:59:59.000Z

369

Performance-Oriented Drilling Fluids Design System with a Neural Network Approach  

Science Journals Connector (OSTI)

Drilling fluids play a key role in the minimization of well bore problems when drilling oil or gas wells, usually the design of drilling fluids is depended on many experiments with experience. Rule-based and case-based reasoning drilling fluid system ... Keywords: artificial neural network, drilling fluid, performance-oriented

Yongbin Zhang; Yeli Li; Peng Cao

2009-11-01T23:59:59.000Z

370

Drilling Waste Management Technology Identification Module  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

you are in this section Technology Identification you are in this section Technology Identification Home » Technology Identification Drilling Waste Management Technology Identification Module The Technology Identification Module is an interactive tool for identifying appropriate drilling waste management strategies for a given well location and circumstances. The Technology Identification Module follows the philosophy of a waste management hierarchy. Waste management options with the lowest environmental impacts are encouraged ahead of those with more significant environmental impacts. The Technology Identification Module helps identify waste management options, but users should also consider their own site-specific costs and waste volumes. How it Works Users will be asked to answer a series of questions about the location of the well site, physical features of the site that may allow or inhibit the use of various options, whether the regulatory agency with jurisdiction allows or prohibits particular options, and whether cost or the user's company policy would preclude any options. Nearly all questions are set up for only "yes" or "no" responses. Depending on how the initial questions are answered, users will face from 15 to 35 total questions. Some of these can be answered immediately, while others may require some additional investigation of other portions of this web site or external information. Suitable options will be identified as users complete the questions, and users will be able to print out a summary of suitable options when the process is completed.

371

Rotating head for rotary drilling rigs  

SciTech Connect (OSTI)

A rotating head is claimed for a rotary drilling rig which is to be secured to the top of a well pipe having an inner rotating portion with an opening therethrough which permits passage of drill pipe, pipe joints, and Kelly tools; the rotating portion has an annular drive rubber formed integrally with the top portion thereof. A rotating head drive bushing having an opening with a cross-sectional shape generally conforming to the cross-section of the Kelly tool to permit only sliding motion therebetween is provided with helical external ridges which produce a disengagable gripping action with the opening in the drive rubber at the top of the rotating portion of the rotating head. The rotating portion has a conventional stripper rubber at the bottom thereof and is mounted with a double roller bearing to provide low friction motion with respect to the fixed portion of the head. The double roller bearing is lubricated with a viscous lubricating material and paddles are provided between the sets of rollers of the double roller bearing for distributing the viscous lubricating material and in particular propel it onto the upper set of bearings; the upper body portion of the rotating head is readily detachable from the lower sleeve portion which is normally welded to the well conductor pipe.

Adams, J.R.

1983-09-27T23:59:59.000Z

372

Wayne field: A horizontal drilling case study  

SciTech Connect (OSTI)

Beginning in the spring of 1994, studies of Wayne field located on the northeastern flank of the Williston Basin were initiated to determine the feasibility of using horizontal drilling to increase recoverable reserves in the field. The Wayne subinterval is one of several shoaling-upwards cycles within the Mission Canyon Formation of the Mississippian Madison Group. The reservoir pay averages 24% porosity, 100 millidarcys permeability, and 50% water saturation. Vertical wells, since field discovery in 1957, typically IP for 70 bopd and 20% water with a rapid decline within a few months to 10 bopd and 90% water. This type of well performance is characteristic of severe water coning for which horizontal development can help to minimize. In late 1994 and early 1995 the Ballantyne Hedges No.7H and GeoResources O. Fossum No.H1 were drilled. The wells recorded IP`s of 280 bopd/5 bwpd and 390 bopd/80 bwpd respectively. After six months of production both wells stabilized at approximately 110 bopd with a 35% water cut. Projections indicate that each horizontal well will recover 250,000 bbls of oil as compared to 115,000 bbls for an average vertical well and will do so in half the time. These early results provide a significant improvement over the vertical production and would seem to be reducing water coning. Three more horizontal wells are planned for the fourth quarter of 1995.

Jennings, J.B. [GeoResources, Inc., Williston, ND (United States); Johnson, R.P. [Harris, Brown, & Kiemer, Inc., Bismarck, ND (United States)

1996-06-01T23:59:59.000Z

373

Geothermal: Sponsored by OSTI -- Temperatures and intervalgeothermal...  

Office of Scientific and Technical Information (OSTI)

Temperatures and interval geothermal-gradient determinations from wells in National Petroleum Reserve in Alaska Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

374

Biodegradation of Fuel Oil Hydrocarbons in Soil Contaminated by Oily Wastes Produced During Onshore Drilling Operations  

Science Journals Connector (OSTI)

The petroleum industry generates high amount of oily wastes during drilling, storage and refining operations. Onshore drilling operations produce oil based wastes, typically 100150m-3 well. The drilling cuttings...

Qaude-Henri Chaneau; Jean-Louis Morel; Jean Oudot

1995-01-01T23:59:59.000Z

375

Multi-objective optimization of oil well drilling using elitist non-dominated sorting genetic algorithm  

Science Journals Connector (OSTI)

A multi-objective optimization of oil well drilling has been carried out using a binary ... functions were formulated and solved to fix optimal drilling variables. The important objectives are: (i) maximizing drilling

Chandan Guria; Kiran K. Goli; Akhilendra K. Pathak

2014-03-01T23:59:59.000Z

376

Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch  

E-Print Network [OSTI]

frequency data from oil and gas drilling. I find that thean examination of the oil and gas drilling industry. I findintegration. The oil and gas drilling industry is well-

KELLOGG, RYAN M

2007-01-01T23:59:59.000Z

377

The Importance of Rheology in the Determination of the Carrying Capacity of Oil-Drilling Fluids  

Science Journals Connector (OSTI)

The ability of a drilling fluid to convey drill cuttings from a well is not fully ... cuttings travel with a lower velocity than the drilling fluid and they can accumulate in the ... lead to degradation of the cu...

M. A. Lockyer; J. M. Davies; T. E. R. Jones

1980-01-01T23:59:59.000Z

378

Support for Offshore Oil and Gas Drilling among the California Public  

E-Print Network [OSTI]

005 "Support for Offshore Oil and Gas Drilling Among theSupport for Offshore Oil and Gas Drilling among theSupport for Offshore Oil and Gas Drilling among the

Smith, Eric R.A.N.

2003-01-01T23:59:59.000Z

379

Public Support for Oil and Gas Drilling in California's Forests and Parks  

E-Print Network [OSTI]

009 "Public Support for Oil and Gas Drilling in CaliforniasPublic Support for Oil and Gas Drilling in CaliforniasPublic Support for Oil and Gas Drilling in Californias

Smith, Eric R.A.N.; Carlisle, Juliet; Michaud, Kristy

2004-01-01T23:59:59.000Z

380

Deep-water drilling remains a risky business  

Science Journals Connector (OSTI)

... Two years after the blowout of the BP oil well drilled by the Deepwater Horizon rig in the Gulf of Mexico, the United States is largely failing to act on ... commission that produced the report Deep Water: The Gulf Oil Disaster and the Future of Offshore Drilling the other was Cherry Murray of Harvard University. The commission concluded that ...

Donald Boesch

2012-04-17T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

a microsoft white paper Drilling for new Business Value  

E-Print Network [OSTI]

a microsoft white paper Drilling for new Business Value How innovative oil and gas companies Technical Strategist, Oil & Gas and Mining, Microsoft Adil Soofi, Enterprise Architect, Microsoft Ernie Perez, Enterprise Architect, Microsoft #12;a microsoft white paper Drilling for new B usiness Value 2

Bernstein, Phil

382

Penetration rate prediction for percussive drilling via dry friction model  

E-Print Network [OSTI]

Penetration rate prediction for percussive drilling via dry friction model Anton M. Krivtsov a. Similarly, an increased weight on bit in downhole drilling does not improve the penetration rates when hard- tration rate is presented. The inherent nonlinearity of the discontinuous impact process is modelled

Krivtsov, Anton M.

383

US deep geothermal drilling for 1973-1980  

SciTech Connect (OSTI)

The number of deep geothermal wells drilled in 1973 through 1980 are analyzed. The rate of drilling was constant from 1973 through 1978, but appears to have increased starting in 1979. The increase has occurred mainly at The Geysers and at exploratory locations outside of California.

Gerstein, R.E.; Entingh, D.J.

1981-10-01T23:59:59.000Z

384

INTEGRATED OCEAN DRILLING PROGRAM U.S. IMPLEMENTING ORGANIZATION  

E-Print Network [OSTI]

and to monitor subseafloor environments. IODP builds upon the earlier successes of the Deep Sea Drilling Project in shallow-water areas and in climatically sensitive or ice-covered regions. Three implementing organizations the riserless drilling vessel JOIDES Resolution, Japan's Center for Deep Earth Exploration (CDEX) for the riser

385

Integrated Ocean Drilling Program U.S. Implementing Organization  

E-Print Network [OSTI]

in seafloor sediments and rocks. IODP builds upon the earlier successes of the Deep Sea Drilling Project (DSDP by Japan's Center for Deep Earth Exploration (CDEX), allows IODP to drill for months to a year or more Resolution or the Chikyu, such as locations near the shoreline in shallow-water areas and in climatically

386

Water's Journey Through the Shale Gas Drilling and  

E-Print Network [OSTI]

Water's Journey Through the Shale Gas Drilling and Production Processes in the Mid-Atlantic Region: Marcellus shale drilling in progress, Beaver Run Reservoir, Westmoreland County. Credit: Robert Donnan. Gas in the Marcellus shale natural gas industry in the Mid-Atlantic region. Using publicly available information, we

Lee, Dongwon

387

Theoretical simulation of the multipole seismoelectric logging while drilling  

Science Journals Connector (OSTI)

......wave can travel through the drilling collar from the transmitter...collar, which occupies a large portion of the borehole. It does not allow a large number of deep grooves to...stiffness and strength during drilling. On the steel collar......

Wei Guan; Hengshan Hu; Xiaobo Zheng

2013-01-01T23:59:59.000Z

388

Thermal and hydraulic aspects of the KTB drill site  

Science Journals Connector (OSTI)

......Continental Deep Drilling (KTB)project...accompanied by large-scale data...sections and borehole data show eastwards...submitted to borehole convection...fractured zones near large fluid reservoirs...preferential uptake of drilling mud these zones...demonstrated that the borehole profile is completelyunaffected......

T. Kohl; L. Rybach

1996-03-01T23:59:59.000Z

389

Using Bayesian Network to Develop Drilling Expert Systems  

E-Print Network [OSTI]

in foam UBD ............................................ 82 67 Overall air and gas UBD ........................................................................... 83 68 Rotary and hammer drilling options... .......................................................... 84 69 A list of limits and challenges for air and gas UBD .................................. 85 70 A list of possible gas drilling operations ................................................... 86 71 A list of possible rig equipment...

Alyami, Abdullah

2012-10-19T23:59:59.000Z

390

Big-hole drilling - the state of the art  

SciTech Connect (OSTI)

The art of big-hole drilling has been in a continual state of evolution at the Nevada Test Site since the start of underground testing in 1961. Emplacement holes for nuclear devices are still being drilled by the rotary-drilling process, but almost all the hardware and systems have undergone many changes during the intervening years. The current design of bits, cutters, and other big-hole-drilling hardware results from contributions of manufacturers and Test Site personnel. The dual-string, air-lift, reverse-circulation system was developed at the Test Site. Necessity was really the Mother of this invention, but this circulation system is worthy of consideration under almost any condition. Drill rigs for big-hole drilling are usually adaptations of large oil-well drill rigs with minor modifications required to handle the big bits and drilling assemblies. Steel remains the favorite shaft lining material, but a lot of thought is being given to concrete linings, especially precast concrete.

Lackey, M.D.

1983-01-01T23:59:59.000Z

391

Calculator program optimizes bit weight, rotary speed, reducing drilling cost  

SciTech Connect (OSTI)

Bit selection, bit weight, and rotary speed have repeatedly proven to be the most important and commonly overlooked alterable factors which control penetration rate, footage, and overall drilling cost. This is particularly true in offshore operations where drilling costs are highest and the greatest cost savings stand to be achieved through implementation of proven optimization techniques. The myth that bit weights and rotary speeds cannot be optimized in directional holes has hindered the industry from using this virtually cost-free method for reducing drilling cost. The use of optimized bit weights and rotary speeds in conjunction with minimum cost bit programs based on cost per foot analysis of previous bit runs in the area was implemented on a five-well platform in the Grand Isle Block 20 field, offshore Louisiana. Each of the directional wells was drilled substantially faster and cheaper than the discovery well, which was a straight hole. Average reductions in footage cost of 31.3%, based on daily operating cost of $30,000/day, and increase in average daily footage drilled of 45.2% were effected by ''collectively optimizing'' drilling performance. The ''Optimizer'' program is an HP-41CV adaptation of the Bourgoyne and Young drilling model. It was used to calculate the optimum bit weights and rotary speeds based on field drilling tests; historical bit and bearing wear data; and current operating conditions, cost, and constraints.

Simpson, M.A.

1984-04-23T23:59:59.000Z

392

The Determination of Virgin Strata Temperatures from Observations in Deep Survey Boreholes  

Science Journals Connector (OSTI)

......Hopton Pool Borehole changed in diameter...temperature of the drilling fluid for differentboreholes...effect of a larger hole in rock...the hole was large in diameter in the Hopton Pool Borehole at least 27...virgin strata and drilling fluid temperatures......

L. R. Cooper; C. Jones

1959-06-01T23:59:59.000Z

393

Drilling Waste Management Fact Sheet: Offsite Disposal at Commercial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Disposal Facilities Commercial Disposal Facilities Fact Sheet - Commercial Disposal Facilities Although drilling wastes from many onshore wells are managed at the well site, some wastes cannot be managed onsite. Likewise, some types of offshore drilling wastes cannot be discharged, so they are either injected underground at the platform (not yet common in the United States) or are hauled back to shore for disposal. According to an American Petroleum Institute waste survey, the exploration and production segment of the U.S. oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes in 1985. The report estimates that 28% of drilling wastes are sent to offsite commercial facilities for disposal (Wakim 1987). A similar American Petroleum Institute study conducted ten years later found that the volume of drilling waste had declined substantially to about 150 million bbl.

394

Coal Ranks and Geothermal Gradients in High-volatile Bituminous Coalfields  

Science Journals Connector (OSTI)

... 380; Sw. No., 6. If it is assumed that no great changes in geothermal gradient have occurred since the early Pleistocene, this coal was metamorphosed at a temperature ... Silesia5. The most obvious explanation is that of a nearly two to one difference in geothermal gradient. Comparison of data from the Carboniferous coalfields of the Netherlands with analyses of ...

R. P. SUGGATE; J. O. ELPHICK

1964-07-04T23:59:59.000Z

395

Development of a Low-Cost Rotary Steerable Drilling System  

SciTech Connect (OSTI)

The project had the goal to develop and commercialize a low-cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures to reduce operating costs by a minimum of 50% and lost-in-hole charges by at least 50% over the currently offered systems. The LCRSS system developed under this project does reduce operating costs by 55% and lost-in-hole charges by at least 50%. The developed product is not commercializable in its current form. The overall objective was to develop and commercialize a low cost rotary steerable system (LCRSS) capable of operating downhole at conventional pressures and temperatures (20,000 psi/150 C) while reducing the operating costs by 50% and the lost-in-hole charges by 50% over the currently available systems. The proposed reduction in costs were to be realized through the significant reduction in tool complexity, a corresponding increase in tool reliability as expressed in the mean-time between failure (MTBF), and a reduction in the time and costs required to service tools after each field operation. Ultimately, the LCRSS system was to be capable of drilling 7 7/8 in. to 9 5/8 in. borehole diameters. The project was divided into three Phases, of which Phases I & II were previously completed and reported on, and are part of the case file. Therefore, the previously reported information is not repeated herein. Phase III included the fabrication of two field ready prototypes that were to be subjected to a series of drilling tests at GTI Catoosa, DOE RMOTC, and at customer partnering wells, if possible, as appropriate in the timing of the field test objectives to fully exercise all elements of the LCRSS. These tests were conducted in an iterative process based on a performance/reliability improvement cycle with the goal of demonstrating the system met all aspects required for commercial viability. These tests were conducted to achieve continuous runs of 100+ hours with well trajectories that fully exercised the tool's build/turn/drop/hold target capabilities and its higher end ratings for bit weight, torque and rotary speed. The tool teardowns were rigorously analyzed at the conclusion of each field run to assess component wear rates and to fully document any detrimental behavior(s) observed.

Roney Nazarian

2012-01-31T23:59:59.000Z

396

Gas Exchange, Partial Pressure Gradients,  

E-Print Network [OSTI]

Gas Exchange, Partial Pressure Gradients, and the Oxygen Window Johnny E. Brian, Jr., M of circulatory and gas transport physiology, and the best place to start is with normobaric physiology. LIFE affect the precise gas exchange occurring in individual areas of the lungs and body tissues. To make

Riba Sagarra, Jaume

397

Drilling, instrumentation and sampling consideration for geoscience studies of magma-hydrothermal regimes  

SciTech Connect (OSTI)

Drilling, diagnostic, and sampling technologies are reviewed and a strawman drill hole is used for identifying scientific and technological limitations. (MHR)

Traeger, R.K.; Varnado, S.G.; Veneruso, A.F.; Behr, V.L.; Ortega, A.

1981-05-01T23:59:59.000Z

398

Research on Error Compensation for Oil Drilling Angle Based on ANFIS  

Science Journals Connector (OSTI)

Gyro survey technique has applied and played an important role in many areas, such as offshore oil drilling, directional drilling and so on. Considering the influence of...

Fan Li; Liyan Wang; Jianhui Zhao

2007-01-01T23:59:59.000Z

399

E-Print Network 3.0 - autolifting floating drilling Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7. Spar... that by one-third. o By producing more oil domestically though offshore drilling o Reducing our dependence... Ocean Explorer 12;Types of offshore drilling...

400

The Extended Finite Element Method for High Gradient Solutions  

E-Print Network [OSTI]

Outline Enrichment functions for high gradient solutions Motivation High gradient inside the domain (Shocks) High gradient at the boundary (boundary layers) Optimal set of enrichment functions Numerical for high gradient solutions Outline Enrichment functions for high gradient solutions Motivation High

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Drilling Waste Management Fact Sheet: Land Application  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Land Application Land Application Fact Sheet - Land Application The objective of applying drilling wastes to the land is to allow the soil's naturally occurring microbial population to metabolize, transform, and assimilate waste constituents in place. Land application is a form of bioremediation, and is important enough to be described in its own fact sheet; other forms of bioremediation are described in a separate fact sheet. Several terms are used to describe this waste management approach, which can be considered both treatment and disposal. In general, land farming refers to the repeated application of wastes to the soil surface, whereas land spreading and land treatment are often used interchangeably to describe the one-time application of wastes to the soil surface. Some practitioners do not follow the same terminology convention, and may interchange all three terms. Readers should focus on the technologies rather than on the specific names given to each process.

402

Borehole gravity meter survey in drill hole USW G-4, Yucca Mountain Area, Nye County, Nevada  

SciTech Connect (OSTI)

Drill hole USW G-4 was logged with the US Geological Survey borehole gravity meter (BHGM) BH-6 as part of a detailed study of the lithostratigraphic units penetrated by this hole. Because the BHGM measures a larger volume of rock than the conventional gamma-gamma density tool, it provides an independent and more accurate measurement of the in situ average bulk density of thick lithologic units. USW G-4 is an especially important hole because of its proximity to the proposed exploratory shaft at Yucca Mountain. The BHGM data were reduced to interval densities using a free-air gradient (F) of 0.3083 mGal./m (0.09397 mGal/ft) measured at the drill site. The interval densities were further improved by employing an instrument correction factor of 1.00226. This factor was determined from measurements obtained by taking gravity meter BH-6 over the Charleston Peak calibration loop. The interval density data reported herein, should be helpful for planning the construction of the proposed shaft.

Healey, D.L.; Clutsom, F.G.; Glover, D.A.

1986-12-31T23:59:59.000Z

403

Novel signal inversion of laser beam induced current for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe  

SciTech Connect (OSTI)

In this paper, experimental results of temperature-dependent signal inversion of laser beam induced current (LBIC) for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe are reported. LBIC characterization shows that the traps induced by femtosecond laser drilling are sensitive to temperature. Theoretical models for trap-related p-n junction transformation are proposed and demonstrated using numerical simulations. The simulations are in good agreement with the experimental results. The effects of traps and mixed conduction are possibly the main reasons that result in the novel signal inversion of LBIC microscope at room temperature. The research results provide a theoretical guide for practical applications of large-scale array HgCdTe infrared photovoltaic detectors formed by femtosecond laser drilling, which may act as a potential new method for fabricating HgCdTe photodiodes.

Qiu, W. C.; Wang, R.; Xu, Z. J.; Jiang, T. [College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073 (China); Cheng, X. A., E-mail: xiang-ai-cheng@126.com [College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073 (China); State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha, Hunan 410073 (China); Science and Technology on Electro-Optical Information Security Control Laboratory, Hebei 065201 (China)

2014-05-28T23:59:59.000Z

404

Double-Diffusive Intrusions in a Stable Salinity Gradient Heated from Below  

Science Journals Connector (OSTI)

Two-dimensional direct numerical simulations (DNS) are used to investigate the growth and nonlinear equilibration of spatially periodic double-diffusive intrusion for negative vertical temperature Tz salinity Sz gradients, which are ...

Julian Simeonov; Melvin E. Stern

2008-10-01T23:59:59.000Z

405

Drill-bit with full offset cutter bodies  

SciTech Connect (OSTI)

A rotary drag drill bit is seen wherein cutter bodies are rotatively connected to a main body structure at a fully offset position. The fully offset position is defined by a rotational axis of each cutter body, a longitudinal axis of the drill bit and end support points or positions of the cutter bodies. The rotational axes of the cutter bodies are perpendicular to the longitudinal axis of the drill bit. The end supports of the cutter body are each equal distance from any point on the longitudinal axis of the drill bit. The cutter bodies of essentially ellipsoidal configuration, being slightly thicker at a mid-portion thereof. Cutting elements are connected to flutes projecting above an outer surface of each cutter body. In a primary rotational direction of the drill string and drill bit, the rows abrade the bottom and side walls of a well bore as the cutter body attacks the earth formation as the drill bit is rotated. The impingement of the cutting elements of the cutter body on the earth formation imparts a secondary rotation to the cutter bodies, which secondary rotation is induced by the primary rotation. The secondary rotation allows the rows of cutting elements to engage the side wall of the bore and gauge the hole as well as abrading away material from the bottom of the well bore. A roller bearing assembly is provided for the cutter body to permit the secondary rotation, while a thrust bearing assembly assists the primary abrasive action imparted by the primary rotational movement of the rotary drill bit. A lubrication system is included in the main body structure of the drill bit wherein both the roller bearing assembly and thrust bearing assembly are lubricated.

Frear, L.

1985-11-12T23:59:59.000Z

406

Cost analysis of oil, gas, and geothermal well drilling  

Science Journals Connector (OSTI)

Abstract This paper evaluates current and historical drilling and completion costs of oil and gas wells and compares them with geothermal wells costs. As a starting point, we developed a new cost index for US onshore oil and gas wells based primarily on the API Joint Association Survey 19762009 data. This index describes year-to-year variations in drilling costs and allows one to express historical drilling expenditures in current year dollars. To distinguish from other cost indices we have labeled it the Cornell Energy Institute (CEI) Index. This index has nine sub-indices for different well depth intervals and has been corrected for yearly changes in drilling activity. The CEI index shows 70% higher increase in well cost between 2003 and 2008 compared to the commonly used Producer Price Index (PPI) for drilling oil and gas wells. Cost trends for various depths were found to be significantly different and explained in terms of variations of oil and gas prices, costs, and availability of major well components and services at particular locations. Multiple methods were evaluated to infer the cost-depth correlation for geothermal wells in current year dollars. In addition to analyzing reported costs of the most recently completed geothermal wells, we investigated the results of the predictive geothermal well cost model WellCost Lite. Moreover, a cost database of 146 historical geothermal wells has been assembled. The CEI index was initially used to normalize costs of these wells to current year dollars. A comparison of normalized costs of historical wells with recently drilled ones and WellCost Lite predictions shows that cost escalation rates of geothermal wells were considerably lower compared to hydrocarbon wells and that a cost index based on hydrocarbon wells is not applicable to geothermal well drilling. Besides evaluating the average well costs, this work examined economic improvements resulting from increased drilling experience. Learning curve effects related to drilling multiple similar wells within the same field were correlated.

Maciej Z. Lukawski; Brian J. Anderson; Chad Augustine; Louis E. Capuano Jr.; Koenraad F. Beckers; Bill Livesay; Jefferson W. Tester

2014-01-01T23:59:59.000Z

407

DEVELOPMENT OF GLASS AND GLASS CERAMIC PROPPANTS FROM GAS SHALE WELL DRILL CUTTINGS  

SciTech Connect (OSTI)

The objective of this study was to develop a method of converting drill cuttings from gas shale wells into high strength proppants via flame spheroidization and devitrification processing. Conversion of drill cuttings to spherical particles was only possible for small particle sizes (< 53 {micro}m) using a flame former after a homogenizing melting step. This size limitation is likely to be impractical for application as conventional proppants due to particle packing characteristics. In an attempt to overcome the particle size limitation, sodium and calcium were added to the drill cuttings to act as fluxes during the spheroidization process. However, the flame former remained unable to form spheres from the fluxed material at the relatively large diameters (0.5 - 2 mm) targeted for proppants. For future work, the flame former could be modified to operate at higher temperature or longer residence time in order to produce larger, spherical materials. Post spheroidization heat treatments should be investigated to tailor the final phase assemblage for high strength and sufficient chemical durability.

Johnson, F.; Fox, K.

2013-10-02T23:59:59.000Z

408

Remote arctic drilling operations in Russia, case history of Ardalin field operations, Timan Pechora Basin  

SciTech Connect (OSTI)

In developing the Ardalin field, the Polar Lights Company merged Russian and western expertise to conduct drilling operations in a hostile and ecologically sensitive arctic tundra environment. The field is located above the Arctic Circle in northern Russia. The nearest Russian road system is over 60km away and the nearest railhead is 240 km from the field. Three Russian rigs were constructed with selected western upgrades, twelve development wells were drilled, and three existing Russian wells were worked over within a 24 month period. Operations were supported with a snow road in the winter season and Russian helicopter in the summer season. All materials for one year`s worth of drilling had to be transported to the field prior to break-up (end of trucking activities on the snow roads). Services and equipment were sourced from both inside and outside of the Commonwealth of Independent States (CIS). Temperatures in winter reached -45{degrees}C. The field is located in one of the most ecologically sensitive areas in the world, and numerous precautions were taken for the protection of the environment. Russian operating philosophies were successfully merged with western practices. This paper will focus on the operational criteria initiated and infrastructure system that evolved to support this project.

Reyna, E.M.; Nicholson, S.; Brady, S.

1996-12-31T23:59:59.000Z

409

A leading index of drilling activity: Update and improvements  

SciTech Connect (OSTI)

A five-component composite leading index of United States rotary rig drilling activity is updated. The index is presented for 1949 through April 1986 and is shown to consistently lead turning points in drilling activity. Seven new leading indices based on some new components are also presented. A forecast of drilling activity is made for the remainder of 1986 based on the leading index and the current economic condition of the petroleum industry. The methods used to prepare time series and construct indices are reviewed.

Buell, R.S.; Maurer, R.A.

1986-01-01T23:59:59.000Z

410

Oil and Gas Exploration, Drilling, Transportation, and Production (South  

Broader source: Energy.gov (indexed) [DOE]

Exploration, Drilling, Transportation, and Production Exploration, Drilling, Transportation, and Production (South Carolina) Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina) < Back Eligibility Commercial Construction Industrial Institutional Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Buying & Making Electricity Program Info State South Carolina Program Type Environmental Regulations Siting and Permitting Provider South Carolina Department of Health and Environmental Control This legislation prohibits the waste of oil or gas and the pollution of water, air, or land. The Department of Health and Environmental Control is authorized to implement regulations designed to prevent the waste of oil and gas, promote environmental stewardship, and regulate the exploration,

411

Subsurface temperature anomalies as a key to petroleum-producing areas in the Cherokee and Forest City Basins, eastern Kansas?  

SciTech Connect (OSTI)

The relation of subsurface temperature to `plain-type fold` structure in the Midcontinent (USA) as an exploration tool has been speculated on for a long time. Structural highs, termed `plains-type folds,` are partly the result of differential compaction of sediments over rigid crystalline fault blocks in the Precambrian basement. In the Midcontinent, bottom-hole temperature (BHT) data, temperatures measured in drillstem tests (DSTs), and structural data are abundant. In the Cherokee and Forest City Basins, we analyzed BHT data by depth and stratigraphic unit (Cambro-Ordovician Arbuckle carbonates; Mississippian carbonates; and Perm-Pennsylvanian clastics). By relating the BHTs to DSTs, it was noted that the thermal disturbance inherent in BHT by drilling is minor and comparable within a formation. Also, the signal-noise ratio of BHTs could be improved utilizing the large data set. Although the resulting BHT formation gradients show unexpected values from the thermal conductivity in the carbonates and from the evaluated temperature disturbance by the drilling process, analysis of the BHT spatial pattern shows a coincidence of structural highs and temperature anomalies both in the clastics and in the carbonates. These BHT anomalies are outlined by values higher than the regional temperature trend. We attribute the anomalies partly to the insulation effect of petroleum (which may include the self-generation of heat) and partly to the movement of fluids vertically through the fracture and fault system created in the sedimentary veneer. Numerous examples from the oil- and gas-producing areas in eastern Kansas show that the nature of origin of fluids contained in a porous medium can alter local geothermal conditions.

Merriam, D.F. [Univ. of Kansas, Lawrence, KS (United States); Foerster, A. [GeoForschungsZentrum Posdam (Germany)

1995-09-01T23:59:59.000Z

412

Salinity Gradient Energy at River Mouths  

Science Journals Connector (OSTI)

Salinity Gradient Energy at River Mouths ... River mouths are potentially abundant locations for the exploitation of the clean and renewable salinity gradient energy (SGE) as here perpetually fresh water mixes with saline seawater. ...

Oscar Alvarez-Silva; Christian Winter; Andres F. Osorio

2014-09-03T23:59:59.000Z

413

Revisiting an Old Concept: The Gradient Wind  

Science Journals Connector (OSTI)

The gradient wind is defined as a horizontal wind having the same direction as the geostrophic wind but with a magnitude consistent with a balance of three forces: the pressure gradient force, the Coriolis force, and the centrifugal force arising ...

Keith F. Brill

2014-04-01T23:59:59.000Z

414

Thermal Gradient Holes At Fort Bidwell Area (Lafleur, Et Al., 2010) | Open  

Open Energy Info (EERE)

Bidwell Area (Lafleur, Et Al., 2010) Bidwell Area (Lafleur, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Fort Bidwell Area (Lafleur, Et Al., 2010) Exploration Activity Details Location Fort Bidwell Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes "Four wells have been successfully drilled into this resource since the early 1980s using a combination of funds provided by the California Energy Commission (CEC) and the United State Department of Energy (USDOE). The first three wells, FB-1, -2 and -3 have been discussed in a previous paper (Barker et al., 2005). The current status of the FBIC project to evaluate the potential geothermal resource under the reservation is that a deep

415

Determining root causes of drilling problems by combining cases and general knowledge  

E-Print Network [OSTI]

-based, knowledge intensive, oil well drilling 1 Introduction Drilling of oil wells is an expensive offshore based reasoning to improve efficiency of oil well drilling. Their focus was on lost circulation, whichDetermining root causes of drilling problems by combining cases and general knowledge Samad

Aamodt, Agnar

416

PREDICTION OF CUTTINGS BED HEIGHT WITH COMPUTATIONAL FLUID DYNAMICS IN DRILLING HORIZONTAL AND HIGHLY DEVIATED WELLS  

E-Print Network [OSTI]

Louisiana State University Abstract In oil well drilling, the efficient transport of drilled cuttings from pipe and excessive frictional pressure losses while drilling directional and horizontal oil wellsPREDICTION OF CUTTINGS BED HEIGHT WITH COMPUTATIONAL FLUID DYNAMICS IN DRILLING HORIZONTAL

Ullmer, Brygg

417

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, January 1981-March 1981  

SciTech Connect (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods as they apply to advanced drilling systems.

Kelsey, J.R. (ed.)

1981-06-01T23:59:59.000Z

418

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980  

SciTech Connect (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.

Kelsey, J.R. (ed.)

1981-03-01T23:59:59.000Z

419

An Advisory System For Selecting Drilling Technologies and Methods in Tight Gas Reservoirs  

E-Print Network [OSTI]

). 13 Fig. 6? Rotary drilling process (Bourgoyne et al. 1986). Two main systems are currently used to rotate the drill bit. As of 2007, for onshore drilling, 55% of the drilling rigs are equipped with a rotary table and Kelly- bushing while 45... ................................................................................................ 11 2.2.2. Discussion .................................................................................................. 12 2.3 Fit For Purpose Land Rig ................................................................................. 16 2.4 Slim...

Pilisi, Nicolas

2010-01-16T23:59:59.000Z

420

Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat  

SciTech Connect (OSTI)

Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

Ezra Zemach

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.

TerraTek, A Schlumberger Company

2008-12-31T23:59:59.000Z

422

Handbook of Best Practices for Geothermal Drilling | Open Energy  

Open Energy Info (EERE)

Handbook of Best Practices for Geothermal Drilling Handbook of Best Practices for Geothermal Drilling Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Handbook of Best Practices for Geothermal Drilling Abstract This Handbook is a description of the complex process that comprises drilling a geothermal well. The focus of the detailed Chapters covering various aspects of the process (casing design, cementing, logging and instrumentation, etc) is on techniques and hardware that have proven successful in geothermal reservoirs around the world. The Handbook will eventually be linked to the Geothermal Implementing Agreement (GIA) web site, with the hope and expectation that it can be continually updated as new methods are demonstrated or proven. Authors John Finger and Doug Blankenship

423

Geothermal Drilling Success at Blue Mountain, Nevada | Open Energy  

Open Energy Info (EERE)

Drilling Success at Blue Mountain, Nevada Drilling Success at Blue Mountain, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Drilling Success at Blue Mountain, Nevada Abstract Exploration in a blind prospect has led to the confirmation of a geothermal resource at Blue Mt.Nevada. The latest results include drilling of three production wells into Piedmont faults. These wells produce from a 185 to 190°C dilute benign brine reservoir. Short flow tests have shown prolific flow rates and indications of reservoir continuity.Well entries have shown that system permeability is fault-dominated. This is confirmed by the results of seismic reflection imaging. Young faulting in the area includes intersecting range front faults that strike NW, NS, and NE. Exposure of

424

Offshore Drilling Safety and Response Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Offshore Drilling Safety and Response Technologies Offshore Drilling Safety and Response Technologies Offshore Drilling Safety and Response Technologies April 6, 2011 - 2:33pm Addthis Statement of Dr. Victor Der, Acting Assistant Secretary for Fossil Energy before the House Science, Space, and Technology Committee, Subcommittee on Energy and Environment. Chairman Harris, Ranking Member Miller, and members of the Subcommittee, thank you for the opportunity to appear before you today to discuss the Department of Energy's (DOE) perspective on research and development (R&D) to improve oil and gas drilling in ever-deeper waters with greater margins of safety, reduced risk of spills, and better mitigation approaches should there be a spill. As you know, the Office of Fossil Energy (FE) leads DOE's efforts to

425

Historical Exploration And Drilling Data From Geothermal Prospects And  

Open Energy Info (EERE)

Exploration And Drilling Data From Geothermal Prospects And Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Details Activities (20) Areas (7) Regions (0) Abstract: In 2005, Idaho National Laboratory was conducting a study of historical exploration practices and success rates for geothermal resources identification. Geo Hills Associates (GHA) was contracted to review and accumulate copies of published literature, Internet information, and unpublished geothermal exploration data to determine the level of exploration and drilling activities that occurred for all of the currently

426

Slimhole Handbook- Procedures and Recommendations for Slimhole Drilling and  

Open Energy Info (EERE)

Slimhole Handbook- Procedures and Recommendations for Slimhole Drilling and Slimhole Handbook- Procedures and Recommendations for Slimhole Drilling and Testing in Geothermal Exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Slimhole Handbook- Procedures and Recommendations for Slimhole Drilling and Testing in Geothermal Exploration Abstract No abstract prepared. Authors Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr., Ronald D. Jacobsen and Gene Polik Organization Sandia National Laboratories Published Geothermal Technologies Legacy Collection, 1999 Report Number SAND99-1976 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Slimhole Handbook- Procedures and Recommendations for Slimhole Drilling and Testing in Geothermal Exploration Citation

427

NEPA COMPLIANCE SURVEY Project Information Project Title: Casing Drilling Test  

Broader source: Energy.gov (indexed) [DOE]

Casing Drilling Test Casing Drilling Test Date: 5-17-201 1 DOE Code: 6730-020-72000 Contractor Code: 8067-806 Project Lead: Marl< Duletsky Project Overview 1, Brief project description ~nclude The existing 13-1-SX-23 location and entry road will be reworldrilling rig (SST anything that could impact the rig #3). The two existing wells on the location will be capped at ground level, and a new well will be drilled environment] using water based mud. The existing rat I mouse hole on the site will be backfilled. A new 6700 ft3 reserve pit [80' long by 30' wide by 4' deep allowing for 2' of freeboard] will be constructed on location. and a 12 mm 2. Legal location liner will be installed. 3. Duration of the project 4. Major equipment to be used

428

Toxicity testing of oil-contaminated drilling cuttings  

Science Journals Connector (OSTI)

The luminescent bacterium Photobacterium phosphoreum...has been used to examine samples of oily drilling cuttings from the sea bottom in the vicinity of a North Sea oil production platform. Because the presence o...

B. Neustadt; I. L. Marr; H. W. Zwanziger

429

Improved Efficiency of Oil Well Drilling through Case Based Reasoning  

Science Journals Connector (OSTI)

A system that applies a method of knowledge-intensive case-based reasoning, for repair and prevention of unwanted events in the domain of offshore oil well drilling, has been developed in cooperation with an oil ...

Paal Skalle; Jostein Sveen; Agnar Aamodt

2000-01-01T23:59:59.000Z

430

Studying rheological behavior of nanoclay as oil well drilling fluid  

Science Journals Connector (OSTI)

Bentonite is commonly used to control the rheology and filtrate loss required for water-based drilling fluids. In this study, the effect ... modification on fluid viscosity and its dispersion in oil-wet fluids we...

M. Mohammadi; M. Kouhi; A. Sarrafi; M. Schaffie

2013-09-01T23:59:59.000Z

431

Optimal Choice of Coordinates for Oil Well Drilling  

Science Journals Connector (OSTI)

Methods and algorithms for determining coordinates for drilling new wells on an admissible set are ... cases in which (1) time-changes in oil saturation can be neglected and (2) pressure and oil saturation distri...

A. V. Akhmetzyanov; V. N. Akhmetzyanov

2002-11-01T23:59:59.000Z

432

Evaluation of Emerging Technology for Geothermal Drilling and...  

Broader source: Energy.gov (indexed) [DOE]

F weight-on-bit (WOB) A area N bit rotation rate (RPM) T torque-on bit (TOB) u rate-of-penetration (ROP) MSE is a measure of the efficiency of the drilling process,...

433

NNSA participates in cloud-based radiation data collection drill...  

National Nuclear Security Administration (NNSA)

were collected and validated during this one-day drill . The RadResponder Network is a mobile, cloud-based radiation data collection system that provides federal and state, local,...

434

Drilling through gas hydrates formations: possible problems and suggested solution  

E-Print Network [OSTI]

Gas hydrate research in the last two decades has taken various directions ranging from ways to understand the safe and economical production of this enormous resource to drilling problems. as more rigs and production platforms move into deeper...

Amodu, Afolabi Ayoola

2009-05-15T23:59:59.000Z

435

Water Wells and Drilled or Mined Shafts (Texas)  

Broader source: Energy.gov [DOE]

The drilling, excavation, and construction of a water well or mine shaft requires a permit from the Texas Commission on Environmental Quality (previously known as the Texas Natural Resource...

436

Lowering Drilling Cost, Improving Operational Safety, and Reducing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

via stress cycling. This can occur due to post cementing operations such as drilling and hydraulic fracturing, or thermal stresses. The testing method used a 3" PVC pipe to...

437

Small-scale drilling operations for research purposes  

Science Journals Connector (OSTI)

...Transmission: Throttle: Fuel: Fuel consumption: Drill rods: Core barrels...comment on starting the engine and an apparent deficiency...cease, otherwise the engine will receive damage...Two-stroke and four-stroke fuel 8 0 0 Depreciation...

Noah Farmer; John Michael Jones; Duncan George Murchison

438

The objectives for deep scientific drilling in Yellowstone National Park  

SciTech Connect (OSTI)

The western area of the United Stated contains three young silicic calderas, all of which contain attractive targets for scientific drilling. Of the three, the Yellowstone caldera complex is the largest, has the most intense geothermal anomalies, and is the most seismically active. On the basis of scientific objectives alone. it is easily the first choice for investigating active hydrothermal processes. This report briefly reviews what is known about the geology of Yellowstone National Park and highlights unique information that could be acquired by research drilling only in Yellowstone. However, it is not the purpose of this report to recommend specific drill sites or to put forth a specific drilling proposal. 175 refs., 9 figs., 2 tabs.

Not Available

1987-01-01T23:59:59.000Z

439

Borehole Stability Analysis of Horizontal Drilling in Shale Gas Reservoirs  

Science Journals Connector (OSTI)

Serious wellbore instability occurs frequently during horizontal drilling in shale gas reservoirs. The conventional forecast model of in ... not suitable for wellbore stability analysis in laminated shale gas for...

Jun-Liang Yuan; Jin-Gen Deng; Qiang Tan; Bao-Hua Yu

2013-09-01T23:59:59.000Z

440

Scientific Drilling at Sulphur Springs, Valles Caldera, New Mexico...  

Open Energy Info (EERE)

Hole VC-2A Abstract A scientific core hole has been drilled into the western ring fracture zone of the Valles Caldera, N.Mex. Hole VC-2A, the second scientific core hole in the...

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Odessa fabricator builds rig specifically for geothermal drilling  

Broader source: Energy.gov [DOE]

For 35 years, MD Cowan has built drilling rigs, developing a market for its Super Single rig for use in the nation's oil and gas fields. Now the Odessa-based company is branching out into alternative energy.

442

Investigation of the feasibility of deep microborehole drilling  

SciTech Connect (OSTI)

Recent advances in sensor technology, microelectronics, and telemetry technology make it feasible to produce miniature wellbore logging tools and instrumentation. Microboreholes are proposed for subterranean telemetry installations, exploration, reservoir definition, and reservoir monitoring this assumes that very small diameter bores can be produced for significantly lower cost using very small rigs. A microborehole production concept based on small diameter hydraulic or pneumatic powered mechanical drilling, assemblies deployed on coiled tubing is introduced. The concept is evaluated using, basic mechanics and hydraulics, published theories on rock drilling, and commercial simulations. Small commercial drill bits and hydraulic motors were selected for laboratory scale demonstrations. The feasibility of drilling deep, directional, one to two-inch diameter microboreholes has not been challenged by the results to date. Shallow field testing of prototype systems is needed to continue the feasibility investigation.

Dreesen, D.S. [Los Alamos National Lab., NM (United States); Cohen, J.H. [Maurer Engineering, Inc., Houston, TX (United States)

1997-01-01T23:59:59.000Z

443

Offshore Drilling Safety and Response Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Offshore Drilling Safety and Response Technologies Offshore Drilling Safety and Response Technologies Offshore Drilling Safety and Response Technologies April 6, 2011 - 2:33pm Addthis Statement of Dr. Victor Der, Acting Assistant Secretary for Fossil Energy before the House Science, Space, and Technology Committee, Subcommittee on Energy and Environment. Chairman Harris, Ranking Member Miller, and members of the Subcommittee, thank you for the opportunity to appear before you today to discuss the Department of Energy's (DOE) perspective on research and development (R&D) to improve oil and gas drilling in ever-deeper waters with greater margins of safety, reduced risk of spills, and better mitigation approaches should there be a spill. As you know, the Office of Fossil Energy (FE) leads DOE's efforts to

444

Research and Development Activities in Geothermal Drilling, Completion, and Logging  

Science Journals Connector (OSTI)

Sandia National Laboratories manages the Geothermal Drilling and Completion Program for the US Department of Energy. The primary purpose of this program is to expand access to the geothermal resource by reduci...

John Finger

1985-01-01T23:59:59.000Z

445

Williston Basin: An analysis of salt drilling techniques for brine-based drilling-fluid systems  

SciTech Connect (OSTI)

Williston Basin salt intervals, ranging in depth from 5,000 to 12,500 ft (1525 to 3810 m), have been responsible for widespread casing collapse because of the plastic movement of evaporites and the subsequent point loading of casing. This phenomenon is attributable to poor cement jobs across excessively eroded salt sections. A 2-year study led to the realization that this erosion is a function of not only salt dissolution but also the mechanical action of turbulent flow in the wellbore. A laminar flow regime can be realized and salt enlargement limited by careful control of annular flow rate, jet velocity, and drilling-fluid rheology.

Stash, S.M.; Jones, M.E.

1988-03-01T23:59:59.000Z

446

Deep Drilling Basic Research: Volume 5 - System Evaluations. Final Report, November 1988--August 1990  

SciTech Connect (OSTI)

This project is aimed at decreasing the costs and increasing the efficiency of drilling gas wells in excess of 15,000 feet. This volume presents a summary of an evaluation of various drilling techniques. Drilling solutions were compared quantitatively against typical penetration rates derived from conventional systems. A qualitative analysis measured the impact of a proposed system on the drilling industry. The evaluations determined that the best candidates f o r improving the speed and efficiency of drilling deep gas wells include: PDC/TSD bits, slim-hole drilling, roller-cone bits, downhole motors, top-driven systems, and coiled-tubing drilling.

None

1990-06-01T23:59:59.000Z

447

Residual strain measurements on drill cores from Reydarfjordur, Iceland  

E-Print Network [OSTI]

RESIDUAL STRAIN MEASUREMENTS ON DRILL CORES FROM REYDARFJORDUR, ICELAND A Thesis BESIM BASLANGIC Submitted to the Office oi' Graduate Studies of Texas A&M University in partial fulfillment of the requirements I' or the degree of MAST...'ER OF SCIENCE May 1989 Major Subject: Geophysics RESIDUAL STRAIN MEASLREMENTS ON DRILL CORES FROM REYDARFJORDUR, ICELAVD A Thesis BESIM BASLANGIC Approved as to style and content by: Earl R. Hoskins (Chair of Committee) Richard L. Carlson (Member...

Baslangic, Besim

2012-06-07T23:59:59.000Z

448

Economic analysis of waterflood infill drilling in Texas  

E-Print Network [OSTI]

IN MID 1980 DOLLARS 3 COST ESCALATION FACTORS FOR INFILL WELL COSTS 4 ANNUAL OPERATING COSTS AND INDEXES FOR WEST TEXAS SECONDARY RECOVERY PROJECTS WITH 10 PRODUCERS AND 11 INJECTION WELLS 5 HISTORICAL AVERAGE OIL AND GAS PRICES 6 INFILL DRILLING... IN MID 1980 DOLLARS 3 COST ESCALATION FACTORS FOR INFILL WELL COSTS 4 ANNUAL OPERATING COSTS AND INDEXES FOR WEST TEXAS SECONDARY RECOVERY PROJECTS WITH 10 PRODUCERS AND 11 INJECTION WELLS 5 HISTORICAL AVERAGE OIL AND GAS PRICES 6 INFILL DRILLING...

Reviere, Randall Hooge

2012-06-07T23:59:59.000Z

449

Calculating limits for torsion and tensile loads on drill pipe  

SciTech Connect (OSTI)

Drill pipe used for drilling horizontal and extended reach holes experiences much higher torsional and tensile loads than normally seen while drilling vertical holes. This is particularly true for rigs with top drives vs. rigs with rotary tables. When pipe is rotated while pulling out of the hole, which is commonly done on top drive rigs, the drill pipe can experience high tensile and torsional loading simultaneously. These conditions increase the probability of overload on tool joints and require that the drill pipe and tool joint selection process include consideration of combined loading. Calculating the required drill pipe strength for vertical holes is straightforward and spelled out in Section 5 of API RP7G. In vertical hole applications, pipe is almost always selected for its tensile capacity and the torsional strength of the pipe generally does not require special consideration. In Section 4 of API Sec 7, API recommends that the tool joints have a torsional strength of 80% of the pipe`s torsional strength; this is usually adequate. The torsional strength and tensile strength of commonly used drill pipe and tool joint combinations are tabulated in Tables 2 through 10 of API RP7G. Appendix A.8.3 in API RP7G shows a method for plotting a graphical representation of the combined torsional and tensile operational limits of tool joints. How to calculate the limits of the drill pipe tube is shown in Appendix A.9.2. This paper defines terms and limits, and discusses building and using a diagram to determine safe loads.

Bailey, E.I. [Stress Engineering Service Inc., Houston, TX (United States); Smith, J.E. [Grant Prideco, Houston, TX (United States)

1998-02-01T23:59:59.000Z

450

Advanced Mud System for Microhole Coiled Tubing Drilling  

SciTech Connect (OSTI)

An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

Kenneth Oglesby

2008-12-01T23:59:59.000Z

451

Bayesian Policy Gradient and Actor-Critic Algorithms Bayesian Policy Gradient and Actor-Critic Algorithms  

E-Print Network [OSTI]

Bayesian Policy Gradient and Actor-Critic Algorithms Bayesian Policy Gradient and Actor Yaakov Engel yakiengel@gmail.com Editor: Abstract Policy gradient methods are reinforcement learning algorithms that adapt a param- eterized policy by following a performance gradient estimate. Many

Paris-Sud XI, Université de

452

Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well drilling  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project Objectives: Discover a blind, low-moderate temperature resource: Apply a combination of detailed sub-soil gas, hydrocarbon, and isotope data to define possible upflow areas; Calibrate the sub-soil chemistry with down-hole fluid inclusion stratigraphy and fluid analyses to define a follow-up exploration drilling target; Create short term jobs and long term employment through resource exploration, development and power plant operation; Extend and adapt the DOE sub-soil 2 meter probe technology to gas sampling.

453

Enhanced Wellbore Stabilization and Reservoir Productivity With Aphron Drilling Fluid Technology  

SciTech Connect (OSTI)

The Acoustic Bubble Spectrometer has been identified as a potential method for monitoring the size distribution of aphrons in situ, such as in an oil well drilling fluid flowline.1 Research was continued from Task 1.1 of this Project, Aphron Visualization,2 in which ABS was tested against laser light scattering (Coulter Counter) and optical (visual) imaging to determine the bubble size distribution (BSD) of the aphrons at ambient temperature and pressure. Task 2.1 continued this investigation by measuring the bubble size distribution via ABS and optical imaging at elevated pressures up to 2000 psig.

Bob O'Connor; Fred Growcock

2004-12-01T23:59:59.000Z

454

Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To  

Open Energy Info (EERE)

Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To Efficiently Exploit Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To Efficiently Exploit Enhanced Geothermal Systems Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Drilling Systems Project Description This project proposes to develop a cost-effective microhole drilling and completion technology with the Flash Abrasive Slurry Jet (ASJ) system and optimize it to maximize the efficiency of fluid circulation and heat removal for Enhanced Geothermal Systems (EGS). The proposed approach is expected to address the key obstacles that currently prevent EGS from becoming a technically feasible, commercially viable major contributor for electricity generation, namely: (1) reduce costs for drilling and well completion and (2) increase the volume of hot rock from which heat can be extracted.

455

Rotary torque and rpm indicator for oil well drilling rigs  

SciTech Connect (OSTI)

Monitoring the torque applied by the rotary table to the drill string and the rpm of the drill string is provided. An intermediate adapter is positioned between the drill kelly and the rotary table. A strain gauge is attached to the intermediate adapter to measure torsional deformation and provide an indication of rotary torque. Transmission of torque data is accomplished by radio frequency transmission utilizing a transmitter on the intermediate adapter. A receiver is mounted to the side of the drill rig floor to receive and demodulate the torque signal. The intermediate adapter is rotating at the same rate as the drill string. Detection of the revolutions utilizing the changing R.F. Field strength is accomplished at the edge of the drill rig platform or elsewhere with a stationary sensor which doubles as the torque receiver. A highly directional torque transmitter antenna mounted on the adapter is used with the major lobe lying parallel to the rig floor and perpendicular to the pipe. By detecting the envelope of the radio frequency field strength, each rotation is marked by a peak. This enables continuous torque and rpm monitoring.

Chien, L.C.

1981-08-25T23:59:59.000Z

456

Application of horizontal drilling to tight gas reservoirs  

SciTech Connect (OSTI)

Vertical fractures and lithologic heterogeneity are extremely important factors controlling gas flow rates and total gas recovery from tight (very low permeability) reservoirs. These reservoirs generally have in situ matrix permeabilities to gas of less than 0.1 md. Enhanced gas recovery methods have usually involved hydraulic fracturing; however, the induced vertical hydraulic fractures almost always parallel the natural fracture and may not be an efficient method to establish a good conduit to the wellbore. Horizontal drilling appears to be an optimum method to cut across many open vertical fractures. Horizontal holes will provide an efficient method to drain heterogeneous tight reservoirs even in unfractured rocks. Although many horizontal wells have now been completed in coalbed methane and oil reservoirs, very few have been drilled to exclusively evaluate tight gas reservoirs. The U.S. Department of Energy (DOE) has funded some horizontal and slanthole drilling in order to demonstrate the applicability of these techniques for gas development. Four DOE holes have been drilled in Devonian gas shales in the Appalachian basin, and one hole has been drilled in Upper Cretaceous tight sandstones in the Piceance basin of Colorado. The Colorado field experiment has provided valuable information on the abundance and openness of deeply buried vertical fractures in tight sandstones. These studies, plus higher gas prices, should help encourage industry to begin to further utilize horizontal drilling as a new exploitation method for tight gas reservoirs.

Spencer, C.W. (U.S. Geological Survey, Lakewood, CO (United States)); Lorenz, J.C. (Sandia National Labs., Albuquerque, NM (United States)); Brown, C.A. (Synder Oil Co., Denver, CO (United States))

1991-03-01T23:59:59.000Z

457

Evaluation of drill cuttings in prediction of penetration rate by using coarseness index and mean particle size in percussive drilling  

Science Journals Connector (OSTI)

Penetration rate of rocks is influenced by geological parameters,...CI) and mean particle size (d) to evaluate the penetration rate (PR) in percussive drilling in a limestone and in a marl quarry. The coarseness ...

Ra??t Altindag

458

The development and utilization of a high-speed laboratory rock drilling apparatus  

E-Print Network [OSTI]

Operations Data Analysis Techniques Effect of Drilling Parameters on Drilling Rate Observed Drilling Trends Page vi vi 1 ix 14 20 21 28 34 35 39 39 45 45 47 55 59 TABLE OF CONTENTS (continued) Comparison of Actual Penetration Rate... to Calculated Penetration Rate Problems Encountered With the Drilling Apparatus Future Application of the Drilling Apparatus CONCLUSIONS REFERENCES APPENDIX A: DATA ANALYSIS PROGRAM APPENDIX B: DIMENSIONLESS ANALYSIS PROGRAM VITA Page 90 97 98 100...

Day, Jeffrey Dale

2012-06-07T23:59:59.000Z

459

Investigation of the effect of irradiance and pulse duration in industrial percussion laser-drilling of Waspaloy  

Science Journals Connector (OSTI)

As the use of pulsed lasers in the manufacture of cooling holes in high-temperature gas-turbine engine components continues to increase understanding the material behavior during laser-material interaction and the subsequent effects on hole quality becomes critical. In this study atomic emission spectroscopy is used to monitor the optical characteristics of ejected material during percussion laser-drilling of Waspaloy over irradiance and pulse duration values in the ranges of 1020 MW/cm2 and 0.31.1 ms respectively. While irradiance is a widely used target parameter it was experimentally determined that pulse duration had a larger impact on both the calculated electron temperature of the ejected material as well as on the thickness of residual resolidified or recast layer of material on the inside walls of drilled holes.

Robin Bright; Harris L. Marcus

2011-01-01T23:59:59.000Z

460

Experimental study on the model of the correlation between the movement of the drilling string with big diameter of drill and effects on the oil rigs  

Science Journals Connector (OSTI)

In the authors view, an important contribution is to clarify the interaction of a drill string and unconventional hoisting system, we find the influence of the constructive peculiarities oil installations (drilling

Marius Stan; Lazar Avram

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gradient drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

X-ray Scanner for ODP Leg 204: Drilling Gas Hydrates on Hydrate Ridge, Cascadia Continental Margin  

SciTech Connect (OSTI)

An x-ray scanner was designed and fabricated at Lawrence Berkeley National Laboratory to provide high speed acquisition of x-ray images of sediment cores collected on the Ocean Drilling Program (ODP) Leg 204: Drilling Gas Hydrates On Hydrate Ridge, Cascadia Continental Margin. This report discusses the design and fabrication of the instrument, detailing novel features that help reduce the weight and increase the portability of the instrument. Sample x-ray images are included. The x-ray scanner was transferred to scientific drilling vessel, the JOIDES Resolution, by the resupply ship Mauna Loa, out of Coos Bay, Oregon on July 25. ODP technicians were trained in the instruments operation. The availability of the x-ray scanner at the drilling site allows real-time imaging of cores containing methane hydrate immediately after retrieval. Thus, imaging experiments on cores can yield information on the distribution and quantity of methane hydrates. Performing these measurements at the location of core collection eliminates the need for high pressures or low temperature core handling while the cores are stored and transported to a remote imaging laboratory.

Freifeld, Barry; Kneafsey, Tim; Pruess, Jacob; Reiter, Paul; Tomutsa, Liviu

2002-08-08T23:59:59.000Z

462

RAHEL, FRANK J. Anomalous temperature and oxygen gradients ...  

Science Journals Connector (OSTI)

Mar 18, 1996 ... quent winds that remove snow cover, thus allowing solar heating ... MAGNUSON, J. J., A. L. BECKEL, K. MILLS, AND S. B.. BRANDT. 1985.

2000-11-03T23:59:59.000Z

463

Ocean Temperature Gradients: Solar Power from the Sea  

Science Journals Connector (OSTI)

...col-lection of sunlight and storage of en-ergy. Undoubtedly...condenser cooled by cold seawater. A very important and...probably because it used seawater, which has a very low...submerged system, the seawater's hydrostatic pressure...shellfish with water pumped up from a depth of 870...

William D. Metz

1973-06-22T23:59:59.000Z

464

Laser Oil and Gas Well Drilling Demonstration Videos  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into the borehole to wash out rock cuttings and keep water and other fluids from the underground formations from seeping into the well. The technical challenge will be to determine whether too much laser energy is expended to clear away the fluid where the drilling is occurring. (Copied with editing from http://www.ne.anl.gov/facilities/lal/laser_drilling.html). The demonstration videos, provided here in QuickTime format, are accompanied by patent documents and PDF reports that, together, provide an overall picture of this fascinating project.

465

Investigation of iron opacity experiment plasma gradients with synthetic data analyses  

SciTech Connect (OSTI)

Experiments have been performed at Sandia National Laboratories Z-facility to validate iron opacity models relevant to the solar convection/radiation zone boundary. Sample conditions were measured by mixing Mg with the Fe and using Mg K-shell line transmission spectra, assuming that the plasma was uniform. We develop a spectral model that accounts for hypothetical gradients, and compute synthetic spectra to quantitatively evaluate the plasma gradient size that can be diagnosed. Two sample designs are investigated, assuming linear temperature and density gradients. First, Mg uniformly mixed with Fe enables temperature gradients greater than 10% to be detected. The second design uses Mg mixed into one side and Al mixed into the other side of the sample in an attempt to more accurately infer the sample gradient. Both temperature and density gradients as small as a few percent can be detected with this design. Experiments have successfully recorded spectra with the second design. In future research, the spectral model will be used to place bounds on gradients that exist in Z opacity experiments.

Nagayama, T.; Bailey, J. E.; Rochau, G. A.; Hansen, S. B. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Mancini, R. C. [Physics Department, University of Nevada, Reno, Nevada 89557 (United States); MacFarlane, J. J.; Golovkin, I. [Prism Computational Sciences, Madison, Wisconsin 53703 (United States)

2012-10-15T23:59:59.000Z

466

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the ultra-high rotary speed drilling system is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 October 2004 through 30 September 2005. Additionally, research activity from 1 October 2005 through 28 February 2006 is included in this report: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek designed and planned Phase I bench scale experiments. Some difficulties continue in obtaining ultra-high speed motors. Improvements have been made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs have been provided to vendors for production. A more consistent product is required to minimize the differences in bit performance. A test matrix for the final core bit testing program has been completed. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. (4) Significant testing has been performed on nine different rocks. (5) Bit balling has been observed on some rock and seems to be more pronounces at higher rotational speeds. (6) Preliminary analysis of data has been completed and indicates that decreased specific energy is required as the rotational speed increases (Task 4). This data analysis has been used to direct the efforts of the final testing for Phase I (Task 5). (7) Technology transfer (Task 6) has begun with technical presentations to the industry (see Judzis).

Arnis Judzis; Alan Black; Homer Robertson

2006-03-01T23:59:59.000Z

467

SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. (1) TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

Alan Black; Arnis Judzis

2004-10-01T23:59:59.000Z

468

SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

Alan Black; Arnis Judzis

2004-10-01T23:59:59.000Z

469

Microhole High-Pressure Jet Drill for Coiled Tubing  

SciTech Connect (OSTI)

Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the coiled tubing. In a chamber test, the BHA delivered up to 50 kW (67 hhp) hydraulic power. The tool drilled uncertified class-G cement samples cast into casing at a rate of 0.04 to 0.17 m/min (8 to 33 ft/hr), within the range projected for this tool but slower than a conventional PDM. While the tool met most of the performance goals, reliability requires further improvement. It will be difficult for this tool, as currently configured, to compete with conventional positive displacement downhole motors for most coil tubing drill applications. Mechanical cutters on the rotating nozzle head would improve cutting. This tool can be easily adapted for well descaling operations. A variant of the Microhole jet drilling gas separator was further developed for use with positive displacement downhole motors (PDM) operating on commingled nitrogen and water. A fit-for-purpose motor gas separator was designed and yard tested within the Microhole program. Four commercial units of that design are currently involved in a 10-well field demonstration with Baker Oil Tools in Wyoming. Initial results indicate that the motor gas separators provide significant benefit.

Ken Theimer; Jack Kolle

2007-06-30T23:59:59.000Z

470

Slim hole drilling proven in remote exploration project  

SciTech Connect (OSTI)

This paper reports on a helicopter-supported slim hole exploration project in a remote tropical forest which cost 15% less than a conventional drilling operation. The potential savings after improvements in rig equipment, bits, and drilling and coring methods may approach 30%. Because of the small size of the slim hole equipment, the impact on the rain forest was small. The areas cleared for locations and access during the operation were 75% less than that required for similar operations with conventional road-transported rigs. During the second half of 1991, Total Exploration Gabon, a subsidiary of Total Exploration Production, conducted a slim hole drilling project in the Gabonese tropical rain forest in a joint venture with Chevron Corp., Exxon Corp., and Austria's OMV AG. During this helicopter-supported operation, two wells were drilled: one to 2,747 m (9,010 ft) ending with a 3 in. hole and one to 418 m (1,371 ft) ending with a 5-7/8 in. hole. Continuous coring operations recovered 1,868 m (6,127 ft), or 59% of the total length drilled.

Dachary, J. (Total Exploration Production, Libreville (GA)); Vighetto, R. (Total Exploration Production, Paris (FR))

1992-06-22T23:59:59.000Z

471

Crude Injustice in the Gulf: Why Categorical Exclusions for Deepwater Drilling in the Gulf of Mexico are Inconsistent with U.S. International Ocean Law and Policy  

E-Print Network [OSTI]

torium on Deepwater Oil Drilling, Demands Environmentaland Offshore Oil Drilling .. Deepwater Horizon-D. NEPA and Offshore Oil Drilling NEPA and the Outer

Hull, Eric V.

2011-01-01T23:59:59.000Z

472

Characterization of tuyere-level core-drill coke samples from blast furnace operation  

SciTech Connect (OSTI)

A suite of tuyere-level coke samples have been withdrawn from a working blast furnace during coal injection, using the core-drilling technique. The samples have been characterized by size exclusion chromatography (SEC), Fourier transform Raman spectroscopy (FT-RS), and X-ray powder diffraction (XRD) spectroscopy. The 1-methyl-2-pyrrolidinone (NMP) extracts of the cokes sampled from the 'bosh', the rear of the 'bird's nest', and the 'dead man' zones were found by SEC to contain heavy soot-like materials (ca. 10{sup 7}-10{sup 8} apparent mass units). In contrast, NMP extracts of cokes taken from the raceway and the front of the 'bird's nest' only contained a small amount of material of relatively lower apparent molecular mass (up to ca. 10{sup 5} u). Since the feed coke contained no materials extractable by the present method, the soot-like materials are thought to have formed during the reactions of volatile matter released from the injectant coal, probably via dehydrogenation and repolymerization of the tars. The Raman spectra of the NMP-extracted core-drilled coke samples showed variations reflecting their temperature histories. Area ratios of D-band to G-band decreased as the exposure temperature increased, while intensity ratios of D to G band and those of 2D to G bands increased with temperature. The graphitic (G), defect (D), and random (R) fractions of the carbon structure of the cokes were also derived from the Raman spectra. The R fractions decreased with increasing temperature, whereas G fractions increased, while the D fractions showed a more complex variation with temperature. These data appear to give clues regarding the graphitization mechanism of tuyere-level cokes in the blast furnace. 41 refs., 9 figs., 6 tabs.

S. Dong; N. Paterson; S.G. Kazarian; D.R. Dugwell; R. Kandiyoti [Imperial College London, London (United Kingdom). Department of Chemical Engineering

2007-12-15T23:59:59.000Z

473

Optimization of synchronization in gradient clustered networks  

E-Print Network [OSTI]

We consider complex clustered networks with a gradient structure, where sizes of the clusters are distributed unevenly. Such networks describe more closely actual networks in biophysical systems and in technological applications than previous models. Theoretical analysis predicts that the network synchronizability can be optimized by the strength of the gradient field but only when the gradient field points from large to small clusters. A remarkable finding is that, if the gradient field is sufficiently strong, synchronizability of the network is mainly determined by the properties of the subnetworks in the two largest clusters. These results are verified by numerical eigenvalue analysis and by direct simulation of synchronization dynamics on coupled-oscillator networks.

Xingang Wang; Liang Huang; Ying-Cheng Lai; Choy Heng Lai

2007-11-23T23:59:59.000Z

474

Optimization Online - An Accelerated Proximal Coordinate Gradient ...  

E-Print Network [OSTI]

Jul 7, 2014 ... An Accelerated Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization. Qihang Lin(qihang-lin...

Qihang Lin

2014-07-07T23:59:59.000Z

475

Static Temperature Survey At Blue Mountain Area (Fairbank Engineering,  

Open Energy Info (EERE)

Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, 2010) Exploration Activity Details Location Blue Mountain Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Using a precision thermistor probe, EGI, University of Utah, obtained detailed temperature logs of eleven new mineral exploration holes drilled at Blue Mountain. The holes, ranging in depth from 99 to 244 meters (325 to 800 feet), were drilled in areas to the northeast, northwest and southwest of, and up to distances of two kilometers from, the earlier mineral exploration drill holes that encountered hot artesian flows. Unfortunately,

476

Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And  

Open Energy Info (EERE)

Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And Testing In Geothermal Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And Testing In Geothermal Exploration Details Activities (27) Areas (8) Regions (0) Abstract: No abstract prepared. Author(s): Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr., Ronald D. Jacobsen, Gene Polik Published: Geothermal Technologies Legacy Collection, 1999 Document Number: Unavailable DOI: Unavailable Source: View Original Report Acoustic Logs At Newberry Caldera Area (Combs, Et Al., 1999) Acoustic Logs At Steamboat Springs Area (Combs, Et Al., 1999) Core Analysis At Fort Bliss Area (Combs, Et Al., 1999)

477

Drilling Large Diameter Holes in Rocks Using Multiple Laser Beams  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Drilling Large Diameter Holes in Rocks Using Multiple Laser Beams (504) Drilling Large Diameter Holes in Rocks Using Multiple Laser Beams (504) Richard Parker,. Parker Geoscience Consulting, LLC, Arvada, Colorado, USA; Zhiyue Xu and Claude Reed, Argonne National Laboratory, Argonne, Illinois, USA; Ramona Graves, Department of Petroleum Engineering, Colorado School of Mines, Golden, Colorado, USA; Brian Gahan and Samih Batarseh, Gas Technology Institute, Des Plaines, Illinois, USA ABSTRACT Studies on drilling petroleum reservoir rocks with lasers show that modern infrared lasers have the capability to spall (thermally fragment), melt and vaporize natural earth materials with the thermal spallation being the most efficient rock removal mechanism. Although laser irradiance as low as 1000 W/cm 2 is sufficient to spall rock, firing the

478

Recent Drilling Activities At The Earth Power Resources Tuscarora  

Open Energy Info (EERE)

Recent Drilling Activities At The Earth Power Resources Tuscarora Recent Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Recent Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area Details Activities (3) Areas (1) Regions (0) Abstract: Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by

479

Improved practices, synthetic mud drive record 24-hr drilling  

SciTech Connect (OSTI)

Revised and improved drilling practices resulted in increased rate of penetration (ROP), improved hole cleaning, decreased circulating time, fewer instances of stuck pipe and reduced total drilling days. Rig equipment modifications and optimized techniques, combined with olefin-based synthetic fluid, produced significant efficiency improvements and cost reductions. Total-project strategy allows best technologies to be used, even if they are not low bid. In the Gulf of Mexico, a total-project concept helped Marathon drill back-to-back record 24-hr footages. Methods and philosophy described in this article allow drillers to choose optimum technologies, tools, materials and service performance for achieving optimum or lowest cost per foot rather than always using low bid.

Collins, G.J. [Marathon Oil Co., Houston, TX (United States); White, W.W. [Marathon Oil Co., Lafayette, LA (United States)

1995-05-01T23:59:59.000Z

480

Drilling/producing depths; Two records and a revision  

SciTech Connect (OSTI)

This paper reports that record depths for natural gas or oil well drilling or producing continue to be rare occurrences, although one or two still come in each year. Records fell in Texas Railroad Commission (RRC) District 9 and in the California area of the Minerals Management Service (MMS) Pacific Outer Continental Shelf (OCS) in 1990. Deep drilling and production has traditionally been defined as well depths greater than 15,000 ft. Smith Tool reported that 9.4% of all active rotary rigs were dedicated to targets below 15,000 ft at the beginning of 1991. Deep rigs had dropped to 8.1% by year-end 1991, but remained above the 1989 and 1990 levels of 8.4 and 7.6%, respectively. In 1988 about 11% of active rigs were drilling deep at any given time.

Not Available