Powered by Deep Web Technologies
Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NASA GISS Surface Temperature (GISTEMP) Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NASA GISS Surface Temperature (GISTEMP) Analysis NASA GISS Surface Temperature (GISTEMP) Analysis DOI: 10.3334/CDIAC/cli.001 Graphics Graphics data Data Contributors Hansen, J.E.,1 R. Ruedy,2 M. Sato,3 and K. Lo2 1National Aeronautics and Space Administration, 2SGT, Inc., 3Columbia University, Center for Climate Systems Research, NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 USA Period of Record 1880-2012 (Anomalies are relative to the 1951-80 base period means.) Methods The NASA GISS Surface Temperature (GISTEMP) analysis provides a measure of the changing global surface temperature with monthly resolution for the period since 1880, when a reasonably global distribution of meteorological stations was established. The input data Hansen et al. use for the analysis, collected by many national meteorological services around the

2

The draft paper "Global Surface Temperature Change" by Hansen, Ruedy, Sato and Lo is available at http://data.giss.nasa.gov/gistemp/paper/gistemp2010_draft0601.pdf. This is an  

E-Print Network [OSTI]

interesting charts are collected on two PowerPoint posters available at http://www.columbia.edu/~jeh1 importance to humanity, and global warming is the first order manifestation of increasing greenhouse gases be alleviated by stressing the need to focus on the frequency and magnitude of warm and cold anomalies, which

Hansen, James E.

3

ANALYSIS OF FUTURE PRICES AND MARKETS FOR HIGH TEMPERATURE SUPERCONDUCTORS  

E-Print Network [OSTI]

1 ANALYSIS OF FUTURE PRICES AND MARKETS FOR HIGH TEMPERATURE SUPERCONDUCTORS BY JOSEPH MULHOLLAND of Future Prices and Markets for High Temperature Superconductors 2 I . PURPOSE, SCOPE AND APPROACH analysts to make estimates about the future of high temperature superconductor (HTS) technology

4

Analysis of Low-Temperature Utilization of Geothermal Resources  

Broader source: Energy.gov [DOE]

Project objectives: Techno-economic analysis of the potential of low-temperature (90-150C) geothermal sources. Perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. Develop a regionalized model of the utilization of low-temperature geothermal resources.

5

INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION  

SciTech Connect (OSTI)

The systematic tests of the gasifier simulator on the ultrasonic vibration application for cleaning method were completed in this reporting period. Within the systematic tests on the ultrasonic vibration application, the ambient temperature and high temperature status condition were tested separately. The sticky dirt on the thermocouple tip was simulated by the cement-covered layer on the thermocouple tip. At the ambient temperature status, four (4) factors were considered as the input factors affecting the response variable of peeling off rate. The input factors include the shape of the cement-covered layer (thickness and length), the ultrasonic vibration output power, and application time. At the high temperature tests, four (4) different environments were considered as the experimental parameters including air flow supply, water and air supply environment, water/air/fine dust particle supply, and air/water/ammonia/fine dust particle supply environment. The factorial design method was used in the experiment design with twelve (12) data sets of readings. Analysis of Variances (ANOVA) was applied to the results from systematic tests. The ANOVA results show that the thickness and length of the cement-covered layer have the significant impact on the peeling off rate of ultrasonic vibration application at the ambient temperature environment. For the high temperature tests, the different environments do not seem to have significant impact on the temperature changes. These results may indicate that the ultrasonic vibration is one of best cleaning methods for the thermocouple tip.

Seong W. Lee

2005-04-01T23:59:59.000Z

6

Analysis of Low-Temperature Utilization of Geothermal Resources Geothermal  

Open Energy Info (EERE)

Temperature Utilization of Geothermal Resources Geothermal Temperature Utilization of Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Analysis of Low-Temperature Utilization of Geothermal Resources Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geothermal Analysis Project Description In this proposal West Virginia University (WVU) outline a project which will perform an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. Full realization of the potential of what might be considered "low-grade" geothermal resources will require the examination many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source the project will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects.

7

Computational analysis of temperature rise phenomena in electric induction motors  

E-Print Network [OSTI]

Computational analysis of temperature rise phenomena in electric induction motors Ying Huai Institute, University of Southern Denmark, Grundvigs Alle 150, Sonderborg, DK-6400, Denmark c Danfoss Drives A/S, Denmark Received 12 October 2002; accepted 20 December 2002 Abstract In developing electric

Melnik, Roderick

8

INNOVATIVE INSTRUMENTATION AND ANALYSIS OF THE TEMPERATURE MEASUREMENT FOR HIGH TEMPERATURE GASIFICATION  

SciTech Connect (OSTI)

The systematic tests of the gasifier simulator were conducted in this reporting period. In the systematic test, two (2) factors were considered as the experimental parameters, including air injection rate and water injection rate. Each experimental factor had two (2) levels, respectively. A special water-feeding device was designed and installed to the gasifier simulator. Analysis of Variances (ANOVA) was applied to the results of the systematic tests. The ANOVA shows that the air injection rate did have the significant impact to the temperature measurement in the gasifier simulator. The ANOVA also shows that the water injection rate did not have the significant impact to the temperature measurements in the gasifier simulator. The ANOVA analysis also proves that the thermocouple assembly we proposed was immune to the moisture environment, the temperature measurement remained accurate in moisture environment. Within this reporting period, the vibration application for cleaning purpose was explored. Both ultrasonic and sub-sonic vibrations were considered. A feasibility test was conducted to prove that the thermocouple vibration did not have the significant impact to the temperature measurements in the gasifier simulator. This feasibility test was a 2{sup 2} factorial design. Two factors including temperature levels and motor speeds were set to two levels respectively. The sub-sonic vibration tests were applied to the thermocouple to remove the concrete cover layer (used to simulate the solid condensate in gasifiers) on the thermocouple tip. It was found that both frequency and amplitude had significant impacts on removal performance of the concrete cover layer.

Seong W. Lee

2004-04-01T23:59:59.000Z

9

ANALYSIS OF A HIGH TEMPERATURE GAS-COOLED REACTOR POWERED HIGH TEMPERATURE ELECTROLYSIS HYDROGEN PLANT  

SciTech Connect (OSTI)

An updated reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322C and 750C, respectively. The reactor heat is used to produce heat and electric power to the HTE plant. A Rankine steam cycle with a power conversion efficiency of 44.4% was used to provide the electric power. The electrolysis unit used to produce hydrogen includes 1.1 million cells with a per-cell active area of 225 cm2. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 42.8% at a hydrogen production rate of 1.85 kg/s (66 million SCFD) and an oxygen production rate of 14.6 kg/s (33 million SCFD). An economic analysis of this plant was performed with realistic financial and cost estimating The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.03/kg of hydrogen was calculated assuming an internal rate of return of 10% and a debt to equity ratio of 80%/20% for a reactor cost of $2000/kWt and $2.41/kg of hydrogen for a reactor cost of $1400/kWt.

M. G. McKellar; E. A. Harvego; A. M. Gandrik

2010-11-01T23:59:59.000Z

10

Measurement and finite element analysis of temperature distribution in arc welding process  

Science Journals Connector (OSTI)

This presentation describes both the experimental measurement and finite element analysis used to study the temperature distribution during a metal inert gas (MIG) welding process, including the cooling down period. Welding was carried out on ... Keywords: FEA, MIG welding, arc welding, cracking, finite element analysis, metal inert gas welding, residual stress, simulation, temperature distribution, weldment temperature

C. K. Lee; J. Candy; C. P. H. Tan

2004-12-01T23:59:59.000Z

11

DOE Hydrogen Analysis Repository: High Temperature Electrolysis (HTE)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Temperature Electrolysis (HTE) High Temperature Electrolysis (HTE) Project Summary Full Title: High Temperature Electrolysis (HTE) Project ID: 159 Principal Investigator: Steve Herring Brief Description: A three-dimensional computational fluid dynamics (CFD) model was created to model high-temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). A solid-oxide fuel cell model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. Keywords: Solid oxide fuel cell; solid oxide elctrolysis cell; nuclear; model Purpose Assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Performer Principal Investigator: Steve Herring

12

Experimental Analysis of Water Based Drilling Fluid Aging Processes at High Temperature and High Pressure Conditions  

E-Print Network [OSTI]

! ! EXPERIMENTAL ANALYSIS OF WATER BASED DRILLING FLUID AGING PROCESSES AT HIGH TEMPERATURE AND HIGH PRESSURE CONDITIONS A Thesis by BRANDON SCOTT ZIGMOND Submitted to the Office of Graduate Studies of Texas A&M University... Temperature and High Pressure Conditions Copyright 2012 Brandon Scott Zigmond ! ! EXPERIMENTAL ANALYSIS OF WATER BASED DRILLING FLUID AGING PROCESSES AT HIGH TEMPERATURE AND HIGH PRESSURE CONDITIONS A Thesis by BRANDON SCOTT ZIGMOND Submitted...

Zigmond, Brandon

2012-10-19T23:59:59.000Z

13

Linear analysis of surface temperature dynamics and climate sensitivity  

E-Print Network [OSTI]

.............................................................................. 13 5 Solar radiative forcings used in present EBCMs....................................... 17 6 The amplitude of the temperature response to annual-cycle forcing from the model... Page 1 Values of model parameters used in the present studies............................. 18 1 CHAPTER I INTRODUCTION The Earth system absorbs energy through solar radiation non-uniformly, driving winds...

Wu, Wei

2007-04-25T23:59:59.000Z

14

NUMERICAL ANALYSIS OF VENTILATION TEMPERATURES REGULATION BY ENERGY STORAGE IN PHASE CHANGE  

E-Print Network [OSTI]

NUMERICAL ANALYSIS OF VENTILATION TEMPERATURES REGULATION BY ENERGY STORAGE IN PHASE CHANGE, the use of thermal energy storage (TES) systems receives increasing interest. To allow high or low temperature thermal energy to be stored for later use, a heat or cool storage with PCM could be designed; Zhu

Paris-Sud XI, Université de

15

The Usage of Screen-Level Parameters and Microwave Brightness Temperature for Soil Moisture Analysis  

Science Journals Connector (OSTI)

This study focuses on testing two different soil moisture analysis systems based on screen-level parameters (2-m temperature T2m, 2-m relative humidity RH2m) and 1.4-GHz passive microwave brightness temperatures TB. First, a simplified extended ...

G. Seuffert; H. Wilker; P. Viterbo; M. Drusch; J-F. Mahfouf

2004-06-01T23:59:59.000Z

16

Stability Analysis for a Landfill Experiencing Elevated Temperatures Timothy D. Stark1  

E-Print Network [OSTI]

Stability Analysis for a Landfill Experiencing Elevated Temperatures Timothy D. Stark1 , F. ASCE, P and stability analyses for a municipal solid waste (MSW) landfill experiencing elevated temperatures due wastes can be disposed of in MSW landfills because this waste is not categorized as hazardous under 40

17

A Statistical Analysis Of Bottom-Hole Temperature Data In The Hinton Area  

Open Energy Info (EERE)

A Statistical Analysis Of Bottom-Hole Temperature Data In The Hinton Area A Statistical Analysis Of Bottom-Hole Temperature Data In The Hinton Area Of West-Central Alberta Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Statistical Analysis Of Bottom-Hole Temperature Data In The Hinton Area Of West-Central Alberta Details Activities (0) Areas (0) Regions (0) Abstract: Considerable differences in the spread of bottom-hole temperature values from petroleum exploration well logs plotted as a function of depth are observed over a region of west-central Alberta. The spatial variation of the spread is investigated, and it is found to be greater toward the Rocky Mountain disturbed belt in the west. The spatial variation there does not seem to correspond directly to local topography, and may be partly due

18

Full-length high-temperature severe fuel damage test No. 2. Final safety analysis  

SciTech Connect (OSTI)

Hazardous conditions associated with performing the Full-Length High- Temperature (FLHT). Severe Fuel Damage Test No. 2 experiment have been analyzed. Major hazards that could cause harm or damage are (1) radioactive fission products, (2) radiation fields, (3) reactivity changes, (4) hydrogen generation, (5) materials at high temperature, (6) steam explosion, and (7) steam pressure pulse. As a result of this analysis, it is concluded that with proper precautions the FLHT- 2 test can be safely conducted.

Hesson, G.M.; Lombardo, N.J.; Pilger, J.P.; Rausch, W.N.; King, L.L.; Hurley, D.E.; Parchen, L.J.; Panisko, F.E.

1993-09-01T23:59:59.000Z

19

Modeling and Analysis of Stress in High Temperature Molten Salt Trough Receivers  

Science Journals Connector (OSTI)

Abstract SkyFuel has investigated the stresses and deformations occurring in parabolic trough receivers operating at temperatures above 425C. Operating at these temperatures allows for direct molten salt storage and higher efficiency conversion from thermal to electric energy. However, at these temperatures, the typical stainless steels used in receiver construction are susceptible to chromium carbide precipitation. After the precipitation has occurred, the steel is vulnerable to intergranular corrosion, and the fatigue strength of the steel is reduced. Corrosion increases the stresses in the receiver walls, and the reduced fatigue strength lowers the stress limit where failure will occur. This paper presents the results of an analysis of these stresses and an evaluation of the receiver material at these operating temperatures. It is shown that parabolic trough receivers can be designed to mitigate the negative effects of chromium carbide precipitation and operate above 425C without risk of premature failure.

Nolan Viljoen

2014-01-01T23:59:59.000Z

20

Covariance analysis of finite temperature density functional theory: symmetric nuclear matter  

E-Print Network [OSTI]

We study symmetric nuclear matter at finite temperature, with particular emphasis on the liquid-gas phase transition. We use a standard covariance analysis to propagate statistical uncertainties from the density functional to the thermodynamic properties. We use four functionals with known covariance matrices to obtain as wide a set of results as possible. Our findings suggest that thermodynamical properties are very well constrained by fitting data at zero temperature. The propagated statistical errors in the liquid-gas phase transition parameters are relatively small.

A. Rios; X. Roca-Maza

2014-08-21T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

WARM AND FUZZY: TEMPERATURE AND DENSITY ANALYSIS OF AN Fe XV EUV IMAGING SPECTROMETER LOOP  

SciTech Connect (OSTI)

The Hinode EUV Imaging Spectrometer (EIS) and X-Ray Telescope (XRT) were designed in part to work together. They have the same spatial resolution and cover different but overlapping coronal temperature ranges. These properties make a combined data set ideal for multithermal analysis, where EIS provides the best information on the cooler corona (log T < 6.5) and XRT provides the best information on the hotter corona (log T > 6.5). Here, we analyze a warm non-flaring loop detected in images made in a strong EIS Fe XV emission line with a wavelength of 284.16 A and peak formation temperature of log T = 6.3. We perform differential emission measure (DEM) analysis in three pixels at different heights above the footpoint and find multithermal results with the bulk of the emission measure in the range 6.0 < log T < 6.6. Analysis with the EIS lines alone gave a DEM with huge amounts of emission measure at very high temperatures (log T >7.2); analysis with XRT data alone resulted in a DEM that was missing most of the cooler emission measure required to produce many of the EIS lines. Thus, both results were misleading and unphysical. It was only by combining the EIS and XRT data that we were able to produce a reasonable result, one without ad hoc assumptions on the shape and range of the DEM itself.

Schmelz, J. T.; Rightmire, L. A.; Kimble, J. A.; Worley, B. T.; Pathak, S. [Physics Department, University of Memphis, Memphis, TN 38152 (United States); Saar, S. H., E-mail: jschmelz@memphis.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2011-09-10T23:59:59.000Z

22

Electrochemical and physical analysis of a Li-ion cell cycled at elevated temperature  

SciTech Connect (OSTI)

Laboratory-size LiNi0.8Co0.15Al0.05O2/graphite lithium-ion pouch cells were cycled over 100 percent DOD at room temperature and 60 degrees C in order to investigate high-temperature degradation mechanisms of this important technology. Capacity fade for the cell was correlated with that for the individual components, using electrochemical analysis of the electrodes and other diagnostic techniques. The high-temperature cell lost 65 percent of its initial capacity after 140 cycles at 60 degrees C compared to only 4 percent loss for the cell cycled at room temperature. Cell ohmic impedance increased significantly with the elevated temperature cycling, resulting in some of loss of capacity at the C/2 rate. However, as determined with slow rate testing of the individual electrodes, the anode retained most of its original capacity, while the cathode lost 65 percent, even when cycled with a fresh source of lithium. Diagnostic evaluation of cell components including XRD, Raman, CSAFM and suggest capacity loss occurs primarily due to a rise in the impedance of the cathode, especially at the end-of-charge. The impedance rise may be caused in part by a loss of the conductive carbon at the surface of the cathode and/or by an organic film on the surface of the cathode that becomes non-ionically conductive at low lithium content.

Shim, Joongpyo; Kostecki, Robert; Richardson, Thomas; Song, Xiangyun; Striebel, Kathryn A.

2002-06-21T23:59:59.000Z

23

System Evaluation and Economic Analysis of a HTGR Powered High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

A design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production has been developed. The HTE plant is powered by a high-temperature gas-cooled reactor (HTGR) whose configuration and operating conditions are based on the latest design parameters planned for the Next Generation Nuclear Plant (NGNP). The current HTGR reference design specifies a reactor power of 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 322C and 750C, respectively. The power conversion unit will be a Rankine steam cycle with a power conversion efficiency of 40%. The reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes a steam-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The overall system thermal-to-hydrogen production efficiency (based on the higher heating value of the produced hydrogen) is 40.4% at a hydrogen production rate of 1.75 kg/s and an oxygen production rate of 13.8 kg/s. An economic analysis of this plant was performed with realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.67/kg of hydrogen assuming an internal rate of return, IRR, of 12% and a debt to equity ratio of 80%/20%. A second analysis shows that if the power cycle efficiency increases to 44.4%, the hydrogen production efficiency increases to 42.8% and the hydrogen and oxygen production rates are 1.85 kg/s and 14.6 kg/s respectively. At the higher power cycle efficiency and an IRR of 12% the cost of hydrogen production is $3.50/kg.

Michael G. McKellar; Edwin A. Harvego; Anastasia A. Gandrik

2010-10-01T23:59:59.000Z

24

Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540C and 900C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

2008-08-01T23:59:59.000Z

25

[Geothermal system temperature-depth database and model for data analysis]. 5. quarterly technical progress report  

SciTech Connect (OSTI)

During this first quarter of the second year of the contract activity has involved several different tasks. The author has continued to work on three tasks most intensively during this quarter: the task of implementing the data base for geothermal system temperature-depth, the maintenance of the WWW site with the heat flow and gradient data base, and finally the development of a modeling capability for analysis of the geothermal system exploration data. The author has completed the task of developing a data base template for geothermal system temperature-depth data that can be used in conjunction with the regional data base that he had already developed and is now implementing it. Progress is described.

Blackwell, D.D.

1998-04-25T23:59:59.000Z

26

Analysis of a glass fibre reinforced polyurethane composite repair system for corroded pipelines at elevated temperatures  

Science Journals Connector (OSTI)

Abstract The present paper is concerned with the analysis of glass fibre reinforced polyurethane repair systems for metallic pipelines with localised corrosion damage that impair the serviceability. The main motivation for the study presented in this paper is the rehabilitation of corroded pipelines conveying produced water in offshore oil platforms. Although the operating pressure of these pipelines is not very high, the water temperature is between 60and 90C, which can be a major shortcoming for the use of polymeric material as repair systems. Tensile tests were performed to analyse the temperature dependence of a polyurethane pre-impregnated, bi-directional E-glass fibre composite. Burst tests were carried out to evaluate the performance of composite reinforcements applied to defects machined in pipeline test specimens. Preliminary ideas for a methodology to estimate the failure pressure of a reinforced specimen with arbitrary localised corrosion damage are presented.

H.S. da Costa Mattos; J.M.L. Reis; L.M. Paim; M.L. da Silva; F.C. Amorim; V.A. Perrut

2014-01-01T23:59:59.000Z

27

Analysis of roll gap heat transfers in hot steel strip rolling through roll temperature sensors and heat transfer models  

E-Print Network [OSTI]

Analysis of roll gap heat transfers in hot steel strip rolling through roll temperature sensors and heat transfer models N. Legrand1,a , N. Labbe1,b D. Weisz-Patrault2,c , A. Ehrlacher2,d , T. Luks3,e heat transfers during pilot hot steel strip rolling. Two types of temperature sensors (drilled and slot

Paris-Sud XI, Université de

28

The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry.  

SciTech Connect (OSTI)

The oxidation in air of high-purity Al foil was studied as a function of temperature using Thermogravimetric Analysis with Differential Scanning Calorimetry (TGA/DSC). The rate and/or extent of oxidation was found to be a non-linear function of the temperature. Between 650 and 750 %C2%B0C very little oxidation took place; at 850 %C2%B0C oxidation occurred after an induction period, while at 950 %C2%B0C oxidation occurred without an induction period. At oxidation temperatures between 1050 and 1150 %C2%B0C rapid passivation of the surface of the aluminum foil occurred, while at 1250 %C2%B0C and above, an initial rapid mass increase was observed, followed by a more gradual increase in mass. The initial rapid increase was accompanied by a significant exotherm. Cross-sections of oxidized specimens were characterized by scanning electron microscopy (SEM); the observed alumina skin thicknesses correlated qualitatively with the observed mass increases.

Coker, Eric Nicholas

2013-10-01T23:59:59.000Z

29

Computational Fluid Dynamics Analysis of Very High Temperature Gas-Cooled Reactor Cavity Cooling System  

SciTech Connect (OSTI)

The design of passive heat removal systems is one of the main concerns for the modular very high temperature gas-cooled reactors (VHTR) vessel cavity. The reactor cavity cooling system (RCCS) is a key heat removal system during normal and off-normal conditions. The design and validation of the RCCS is necessary to demonstrate that VHTRs can survive to the postulated accidents. The computational fluid dynamics (CFD) STAR-CCM+/V3.06.006 code was used for three-dimensional system modeling and analysis of the RCCS. A CFD model was developed to analyze heat exchange in the RCCS. The model incorporates a 180-deg section resembling the VHTR RCCS experimentally reproduced in a laboratory-scale test facility at Texas A&M University. All the key features of the experimental facility were taken into account during the numerical simulations. The objective of the present work was to benchmark CFD tools against experimental data addressing the behavior of the RCCS following accident conditions. Two cooling fluids (i.e., water and air) were considered to test the capability of maintaining the RCCS concrete walls' temperature below design limits. Different temperature profiles at the reactor pressure vessel (RPV) wall obtained from the experimental facility were used as boundary conditions in the numerical analyses to simulate VHTR transient evolution during accident scenarios. Mesh convergence was achieved with an intensive parametric study of the two different cooling configurations and selected boundary conditions. To test the effect of turbulence modeling on the RCCS heat exchange, predictions using several different turbulence models and near-wall treatments were evaluated and compared. The comparison among the different turbulence models analyzed showed satisfactory agreement for the temperature distribution inside the RCCS cavity medium and at the standpipes walls. For such a complicated geometry and flow conditions, the tested turbulence models demonstrated that the realizable k-epsilon model with two-layer all y+ wall treatment performs better than the other k-epsilon and k-omega turbulence models when compared to the experimental results and the Reynolds stress transport turbulence model results. A scaling analysis was developed to address the distortions introduced by the CFD model in simulating the physical phenomena inside the RCCS system with respect to the full plant configuration. The scaling analysis demonstrated that both the experimental facility and the CFD model achieve a satisfactory resemblance of the main flow characteristics inside the RCCS cavity region, and convection and radiation heat exchange phenomena are properly scaled from the actual plant.

Angelo Frisani; Yassin A. Hassan; Victor M. Ugaz

2010-11-02T23:59:59.000Z

30

Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents results of system analyses performed to optimize the design and to determine required plant performance and operating conditions.

Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

2010-06-01T23:59:59.000Z

31

Development and Transient Analysis of a Helical-coil Steam Generator for High Temperature Reactors  

SciTech Connect (OSTI)

A high temperature gas-cooled reactor (HTGR) is under development by the Next Generation Nuclear Plant (NGNP) Project at the Idaho National Laboratory (INL). Its design emphasizes electrical power production which may potentially be coupled with process heat for hydrogen production and other industrial applications. NGNP is considering a helical-coil steam generator for the primary heat transport loop heat exchanger based on its increased heat transfer and compactness when compared to other steam generators. The safety and reliability of the helical-coil steam generator is currently under evaluation as part of the development of NGNP. Transients, such as loss of coolant accidents (LOCA), are of interest in evaluating the safety of steam generators. In this study, a complete steam generator inlet pipe break (double ended pipe break) LOCA was simulated by an exponential loss of primary side pressure. For this analysis, a model of the helical-coil steam generator was developed using RELAP5-3D, an INL inhouse systems analysis code. The steam generator model behaved normally during the transient simulating the complete steam generator inlet pipe break LOCA. Further analysis is required to comprehensively evaluate the safety and reliability of the helical-coil steam generator design in the NGNP setting.

Nathan V. Hoffer; Nolan A. Anderson; Piyush Sabharwall

2011-08-01T23:59:59.000Z

32

Radiation flux and spectral analysis of the multi-temperature Z dynamic hohlraum  

SciTech Connect (OSTI)

Experiments performed at the Sandia National Laboratories (SNL) Z-machine, located in Albuquerque, New Mexico produce hot ({approx}220 eV) plasmas. X-ray emission from the plasma is used to drive radiation flow experiments. Our standard plasma diagnostic suite consists of x-ray diodes (XRDs), silicon photodiodes, and nickel thin film bolometers. Small diagnostic holes allow us to view the hot plasma from the side, top axial anode side, and bottom axial cathode side. Computer software has been written to process the raw data to calculate data quality, fold in detector spectral response and experiment geometry for emitted flux, calculate a multidetector spectral unfold, and yield an equivalent time-dependent Planckian temperature profile. Spectral unfolds of our XRD data generally yield a Planckian-like spectrum. In our presentation we will compare our diagnostic techniques, analysis, and results to more accurately characterize spectral unfolds in order to establish better drive conditions for our experiments.

Lockard, T. E.; Idzorek, G. C.; Tierney, T. E. IV; Watt, R. G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2008-10-15T23:59:59.000Z

33

Analysis of Reference Design for Nuclear-Assisted Hydrogen Production at 750C Reactor Outlet Temperature  

SciTech Connect (OSTI)

The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using a high-temperature gas-cooled reactor (HTGR) to provide the process heat and electricity to drive the electrolysis process. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This report describes the resulting new INL reference design coupled to two alternative HTGR power conversion systems, a Steam Rankine Cycle and a Combined Cycle (a Helium Brayton Cycle with a Steam Rankine Bottoming Cycle). Results of system analyses performed to optimize the design and to determine required plant performance and operating conditions when coupled to the two different power cycles are also presented. A 600 MWt high temperature gas reactor coupled with a Rankine steam power cycle at a thermal efficiency of 44.4% can produce 1.85 kg/s of hydrogen and 14.6 kg/s of oxygen. The same capacity reactor coupled with a combined cycle at a thermal efficiency of 42.5% can produce 1.78 kg/s of hydrogen and 14.0 kg/s of oxygen.

Michael G. McKellar; Edwin A. Harvego

2010-05-01T23:59:59.000Z

34

Validation of a CFD Analysis Model for Predicting CANDU-6 Moderator Temperature Against SPEL Experiments  

SciTech Connect (OSTI)

A validation of a 3D CFD model for predicting local subcooling of the moderator in the vicinity of calandria tubes in a CANDU-6 reactor is performed. The small scale moderator experiments performed at Sheridan Park Experimental Laboratory (SPEL) in Ontario, Canada[1] is used for the validation. Also a comparison is made between previous CFD analyses based on 2DMOTH and PHOENICS, and the current analysis for the same SPEL experiment. For the current model, a set of grid structures for the same geometry as the experimental test section is generated and the momentum, heat and continuity equations are solved by CFX-4.3, a CFD code developed by AEA technology. The matrix of calandria tubes is simplified by the porous media approach. The standard k-{epsilon} turbulence model associated with logarithmic wall treatment and SIMPLEC algorithm on the body fitted grid are used. Buoyancy effects are accounted for by the Boussinesq approximation. For the test conditions simulated in this study, the flow pattern identified is the buoyancy-dominated flow, which is generated by the interaction between the dominant buoyancy force by heating and inertial momentum forces by the inlet jets. As a result, the current CFD moderator analysis model predicts the moderator temperature reasonably, and the maximum error against the experimental data is kept at less than 2.0 deg. C over the whole domain. The simulated velocity field matches with the visualization of SPEL experiments quite well. (authors)

Churl Yoon; Bo Wook Rhee; Byung-Joo Min [Korea Atomic Energy Research Institute, 150, Dukjin-Dong, Yusong-Gu, Taejon 305-353 (Korea, Republic of)

2002-07-01T23:59:59.000Z

35

Transmutation Analysis of Enriched Uranium and Deep Burn High Temperature Reactors  

SciTech Connect (OSTI)

High temperature reactors (HTRs) have been under consideration for production of electricity, process heat, and for destruction of transuranics for decades. As part of the transmutation analysis efforts within the Fuel Cycle Research and Development (FCR&D) campaign, a need was identified for detailed discharge isotopics from HTRs for use in the VISION code. A conventional HTR using enriched uranium in UCO fuel was modeled having discharge burnup of 120 GWd/MTiHM. Also, a deep burn HTR (DB-HTR) was modeled burning transuranic (TRU)-only TRU-O2 fuel to a discharge burnup of 648 GWd/MTiHM. For each of these cases, unit cell depletion calculations were performed with SCALE/TRITON. Unit cells were used to perform this analysis using SCALE 6.1. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were first set by using Serpent calculations to match a spectral index between unit cell and whole core domains. In the case of the DB-HTR, the unit cell which was arrived at in this way conserved the ratio of fuel to moderator found in a single block of fuel. In the conventional HTR case, a larger moderator-to-fuel ratio than that of a single block was needed to simulate the whole core spectrum. Discharge isotopics (for 500 nuclides) and one-group cross-sections (for 1022 nuclides) were delivered to the transmutation analysis team. This report provides documentation for these calculations. In addition to the discharge isotopics, one-group cross-sections were provided for the full list of 1022 nuclides tracked in the transmutation library.

Michael A. Pope

2012-07-01T23:59:59.000Z

36

Geographic market suitability analysis for low- and intermediate-temperature solar IPH systems  

SciTech Connect (OSTI)

Previous studies of the industrial market for solar energy systems have considered the level of solar radiation as the main determinant of geographic markets in the US. This study evaluates geographical markets extensively based on such criteria as output of different types of low- and intermediate-temperature solar thermal collectors, air quality constraints for competitive fuels, state solar tax incentives, fuel costs, low industrial use of coal, high industrial growth areas, and industry energy consumption in different parts of the US. Market suitability analysis and mapping techniques, refined in the past 20 years by land use planners, were used to evaluate geographical markets. A computer-aided system, Generalized Map Analysis Planning System (GMAPS), performed interactive, cellular, computer mapping, and composite mapping. Results indicate that the US Southwest and West are the most attractive geographical markets for solar IPH, based on an equal weighting of the evaluation criteria. The West North-Central and East South-Central regions appear to have the least attractive markets. Specific areas within states where solar IPH systems have distinct marketing advantages also are apparent from the composite maps. However, when different weights are assigned to the various criteria, the results change significantly for some regions of the country, such as the New England, Mid-Atlantic, and West South-Central 2 regions. The results of this work will become less valid in the future as state incentives for solar IPH, air quality regulations, and the status of competitive fuels all change. Volume I contains study results and maps.

Turner, A.K.; Weber, J.C.; DeAngelis, M.

1981-12-01T23:59:59.000Z

37

Analysis of a Dedicated Outdoor Air System and Low Temperature Supply Air Conditioning System  

E-Print Network [OSTI]

This paper presents the principles and the characteristics of a dedicated outdoor air system (DOAS) and low temperature supply air system. DOAS is offered based on the demands of indoor air quality and the low temperature supply air system...

Guang, L.; Li, R.

2006-01-01T23:59:59.000Z

38

Sources of high temperature degradation of cement-based materials : nanoindentation and microporoelastic analysis  

E-Print Network [OSTI]

The effects of high temperature exposure on cement-based materials have been under investigation for quite some time, but a fundamental understanding of the sources of high temperature degradation has been limited by ...

DeJong, Matthew J. (Matthew Justin)

2005-01-01T23:59:59.000Z

39

Calculation and Analysis of Temperature and Fluid Fields in Water-Cooled Motor for Coal Cutters  

Science Journals Connector (OSTI)

To study the temperature distribution of the water-cooled motor for coal cutters, with the aid of ... the temperature distributions of stators, rotors and water-cooled jackets are worked out. Considering the fact...

Dawei Meng; Liying Wang; Yongming Xu

2012-01-01T23:59:59.000Z

40

An analysis of the impact of datacenter temperature on energy efficiency  

E-Print Network [OSTI]

The optimal air temperature for datacenters is one of ways to improve energy efficiency of datacenter cooling systems. Many datacenter owners have been interested in raising the room temperature as a quick and simple method ...

Lee, Heechang

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Validation of SCALE for High Temperature Gas-Cooled Reactors Analysis  

SciTech Connect (OSTI)

This report documents verification and validation studies carried out to assess the performance of the SCALE code system methods and nuclear data for modeling and analysis of High Temperature Gas-Cooled Reactor (HTGR) configurations. Validation data were available from the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhE Handbook), prepared by the International Reactor Physics Experiment Evaluation Project, for two different HTGR designs: prismatic and pebble bed. SCALE models have been developed for HTTR, a prismatic fuel design reactor operated in Japan and HTR-10, a pebble bed reactor operated in China. The models were based on benchmark specifications included in the 2009, 2010, and 2011 releases of the IRPhE Handbook. SCALE models for the HTR-PROTEUS pebble bed configuration at the PROTEUS critical facility in Switzerland have also been developed, based on benchmark specifications included in a 2009 IRPhE draft benchmark. The development of the SCALE models has involved a series of investigations to identify particular issues associated with modeling the physics of HTGRs and to understand and quantify the effect of particular modeling assumptions on calculation-to-experiment comparisons.

Ilas, Germina [ORNL; Ilas, Dan [ORNL; Kelly, Ryan P [ORNL; Sunny, Eva E [ORNL

2012-08-01T23:59:59.000Z

42

A Statistical Analysis Of Bottom-Hole Temperature Data In The...  

Open Energy Info (EERE)

Considerable differences in the spread of bottom-hole temperature values from petroleum exploration well logs plotted as a function of depth are observed over a region of...

43

Temperature Control Framework Using Wireless Sensor Networks and Geostatistical Analysis for Total Spatial Awareness  

E-Print Network [OSTI]

) intelligent control, and (3) home automation [1]. Home automation is the use of products to link services presents a novel framework for intelligent temperature control in smart homes using Wireless Sensor Home; Intelligent Temperature Control; Wireless Sensor Network; WSN; Context Awareness; Geostatistical

Fan, Jeffrey

44

Thermal Analysis to Calculate the Vessel Temperature and Stress in Alcator C-Mod Due to the Divertor Upgrade  

SciTech Connect (OSTI)

Alcator C-Mod is planning an upgrade to its outer divertor. The upgrade is intended to correct the existing outer divertor alignment with the plasma, and to operate at elevated temperatures. Higher temperature operation will allow study of edge physics behavior at reactor relevant temperatures. The outer divertor and tiles will be capable of operating at 600oC. Longer pulse length, together with the plasma and RF heat of 9MW, and the inclusion of heater elements within the outer divertor produces radiative energy which makes the sustained operation much more difficult than before. An ANSYS model based on ref. 1 was built for the global thermal analysis of C-Mod. It models the radiative surfaces inside the vessel and between the components, and also includes plasma energy deposition. Different geometries have been simulated and compared. Results show that steady state operation with the divertor at 600oC is possible with no damage to major vessel internal components. The differential temperature between inner divertor structure, or "girdle" and inner vessel wall is ~70oC. This differential temperature is limited by the capacity of the studs that hold the inner divertor backing plates to the vessel wall. At a 70oC temperature differential the stress on the studs is within allowable limits. The thermal model was then used for a stress pass to quantify vessel shell stresses where thermal gradients are significant.

Han Zhang, Peter H. Titus, Robert Ellis, Soren Harrison and Rui Vieira

2012-08-29T23:59:59.000Z

45

Numerical Analysis of Water Temperature Distribution in the Tank of ASHPWH it ha Cylindrical Condenser  

E-Print Network [OSTI]

Air source heat pump water heaters (ASHPWH) are becoming increasingly popular for saving energy, protecting the environment and security purposes. The water temperature distribution in the tank is an important parameter for an ASHPWH. This paper...

Wang, D.; Shan, S.; Wang, R.

2006-01-01T23:59:59.000Z

46

Non-linear Dynamical Reliability Analysis in the Very High Temperature Gas Cooled Reactor  

Science Journals Connector (OSTI)

A dynamic safety assessment has been developed for the passive system in the very high temperature gas cooled reactor (VHTR), where the operational data are deficient. It is needed to make use of the character...

Taeho Woo

2012-01-01T23:59:59.000Z

47

High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor  

SciTech Connect (OSTI)

The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.

Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

2010-09-01T23:59:59.000Z

48

Analysis of elevated temperature data for thermodynamic properties of selected radionuclides  

SciTech Connect (OSTI)

This report is a review of chemical thermodynamic data for Ni, Zr, Tc, U, Np, Pu and Am in aqueous solutions at elevated temperatures. Thermodynamic data for aqueous reactions over the temperature range 20-150{degrees}C are needed for geochemical modeling studies of the Yucca Mountain Project. The present review is focused on the aqueous complexes relevant to expected conditions in the Yucca Mountain region: primarily the hydroxide, carbonate, sulfate and fluoride complexes with the metal ions. Existing thermodynamic data are evaluated, and means of extrapolating 25{degrees}C data to the temperatures of interest are discussed. There will be a separate review of solubility data for relevant Ni, Zr, Tc, Np, Pu and Am compounds.

Wruck, D.A.; Palmer, C.E.A.

1997-08-01T23:59:59.000Z

49

Analysis of zeotropic mixtures used in high-temperature Organic Rankine cycle  

Science Journals Connector (OSTI)

Abstract The paper investigates the performance of high-temperature Organic Rankine cycle (ORC) with zeotropic mixtures as working fluid. A numerical model, which has been validated by comparing with the published data, is developed to predict the first law thermal efficiency of the cycle. The effects of mixture concentration, temperature gradient of the heat transfer fluid, pinch temperature difference, pressure ratio, and condensation pressure on the first law efficiency are presented firstly using a purposely designed program, and then the suitable conditions for the described ORC are suggested based on the results of the simulation. It is demonstrated that the use of zeotropic mixtures leads to an efficiency increase compared to pure fluids.

Bensi Dong; Guoqiang Xu; Yi Cai; Haiwang Li

2014-01-01T23:59:59.000Z

50

Analysis of transient temperature distribution in oil shale due to heat source propagating in retort  

Science Journals Connector (OSTI)

The initial?boundary?value problem for the transient temperature fields in oil shale which is heated by a propagating combustionflame in an i n s i t u retort chimney is formulated and solved analytically. The heat source of the flame is represented by a Gaussian distribution which models the average statistical variations in radial and axial flame extensions and is assumed to build up to maximum strength in accordance with a temporal relaxation process. The transient temperature fields in the oil shale surrounding the retort are calculated and discussed with respect to their spatial variations and dependence on the flamerelaxation time. The theoretical temperature distributions are shown to be consistent with those observed experimentally. The high?temperature core extends less than a retort radius into the surrounding shale bed. This result has implications for (i) the i n s i t u retort design and (ii) the environmental impact of i n s i t u retorts. It appears that the spacing between neighboring retorts can be reduced and that the thermal effects of retorts on the environment are less severe than previously anticipated.

H. E. Wilhelm; J. B. DuBow; S. H. Hong

1978-01-01T23:59:59.000Z

51

Laser schlieren deflectometry for temperature analysis of filamentary non-thermal atmospheric pressure plasma  

Science Journals Connector (OSTI)

The heat convection generated by micro filaments of a self-organized non-thermal atmospheric pressure plasma jet in Ar is characterized by employing laser schlieren deflectometry (LSD). It is demonstrated as a proof of principle that the spatial and temporal changes of the refractive indexn in the optical beam path related to the neutral gas temperature of the plasma jet can be monitored and evaluated simultaneously. The refraction of a laser beam in a high gradient field of n(r) with cylindrical symmetry is given for a general real refraction index profile. However the usually applied Abel approach represents an ill-posed problem and in particular for this plasma configuration. A simple analytical model is proposed in order to minimize the statistical error. Based on that the temperature profile specifically the absolute temperature in the filament core the FWHM and the frequencies of the collective filament dynamics are obtained for non-stationary conditions. For a gas temperature of 700 K inside the filament the presented model predicts maximum deflection angles of the laser beam of 0.3 mrad which is in accordance to the experimental results obtained with LSD. Furthermore the experimentally obtained FWHM of the temperature profile produced by the filament at the end of capillary is (1.5 0.2) mm which is about 10 times wider than the visual radius of the filament. The obtained maximum temperature in the effluent is (450 30) K and is in consistence with results of other techniques. The study demonstrates that LSD represents a useful low-cost method for monitoring the spatiotemporal behaviour of microdischarges and allows to uncover their dynamic characteristics e.g. the temperature profile even for challenging diagnostic conditions such as moving thin discharge filaments. The method is not restricted to the miniaturized and self-organizedplasma studied here. Instead it can be readily applied to other configurations that produce measurable gradients of refractive index by local gas heating and opens new diagnostics prospects particularly for microplasmas.

J. Schfer; R. Foest; S. Reuter; T. Kewitz; J. perka; K.-D. Weltmann

2012-01-01T23:59:59.000Z

52

A theoretical analysis of interstitial hydrogen : pressure-composition-temperature, chemical potential, enthalpy and entropy  

E-Print Network [OSTI]

We provide a first principles analysis of the physics and thermodynamics of interstitial hydrogen in metal. By utilizing recent advances in Density Functional Theory (DFT) to get state energies of the metal-hydrogen system, ...

Orondo, Peter Omondi

2012-01-01T23:59:59.000Z

53

A Viscoelastic-Viscoplastic Analysis of Fiber Reinforced Polymer Composites Undergoing Mechanical Loading and Temperature Changes  

E-Print Network [OSTI]

This study presents a combined viscoelastic (VE)-viscoplastic (VP) analysis for Fiber Reinforced Polymer (FRP) composites subject to simultaneous mechanical load and conduction of heat. The studied FRP composites consist of unidirectional fibers...

Jeon, Jaehyeuk

2013-08-09T23:59:59.000Z

54

A Mesoscale Analysis Method for Surface Potential Temperature in Mountainous and Coastal Terrain  

Science Journals Connector (OSTI)

A technique is developed to anisotropically spread surface observations in steep valleys. The goal is to create an improved objective analysis for the lowest, terrain-following numerical weather prediction (NWP) model level in mountainous ...

Xingxiu Deng; Roland Stull

2005-02-01T23:59:59.000Z

55

Performance analysis results of a battery fuel gauge algorithm at multiple temperatures  

Science Journals Connector (OSTI)

Abstract Evaluating a battery fuel gauge (BFG) algorithm is a challenging problem due to the fact that there are no reliable mathematical models to represent the complex features of a Li-ion battery, such as hysteresis and relaxation effects, temperature effects on parameters, aging, power fade (PF), and capacity fade (CF) with respect to the chemical composition of the battery. The existing literature is largely focused on developing different BFG strategies and BFG validation has received little attention. In this paper, using hardware in the loop (HIL) data collected form three Li-ion batteries at nine different temperatures ranging from?20C to 40C, we demonstrate detailed validation results of a battery fuel gauge (BFG) algorithm. The BFG validation is based on three different BFG validation metrics; we provide implementation details of these three BFG evaluation metrics by proposing three different BFG validation load profiles that satisfy varying levels of user requirements.

B. Balasingam; G.V. Avvari; K.R. Pattipati; Y. Bar-Shalom

2015-01-01T23:59:59.000Z

56

An analog analysis of transient heat flow in solids with temperature-dependent thermal properties  

E-Print Network [OSTI]

) used a nonlinear material known as Metrosil to simulate the nonlinear variations of thermal properties for combined conductive and radiant heat transfer. Since that time, Friedmann (8) has used nonlinear resistances in conjunction with an electronic... at end of this thesis. K = thermal conductivity of heat conducting media, and K and S are functions of the temperature t. Since the formation of these equations, solutions of transient heat flow problems involving materials in which the thermal...

Lee, Dwain Edward

2012-06-07T23:59:59.000Z

57

Self-propagating high-temperature synthesis by the method of x-ray diffraction analysis using synchrotron radiation  

SciTech Connect (OSTI)

Investigations of the dynamics of phase transformations accompanying self-propagating high-temperature synthesis by the method of x-ray diffraction analysis on a synchroton-radiation diffractometer offers the possibility of obtaining data on the dynamics of phase transformations, of observing unstable or unknown phases, of discovering liquid phases, of refining the models of the wave structure, and of obtaining data on the kinetics of formation of each of the phases participating in the synthesis process. This paper reviews the actual results in all of these areas to date and anticipates advances likely under each possibility.

Aleksandrov, V.V.; Korchagin, M.A.; Sheromov, M.A.; Tolochko, B.P.

1984-01-01T23:59:59.000Z

58

Extracting High Temperature Event radiance from satellite images and correcting for saturation using Independent Component Analysis  

E-Print Network [OSTI]

.Barnie@opgc.univ-bpclermont.fr (C. Oppenheimer). http://dx.doi.org/10.1016/j.rse.2014.10.023 0034-4257/ 2014 The Authors. Published by Elsevier Incyon, & Nordberg, 1965; 1979; Harris et al., 1997; al., 2002; Kaufman et al., HTE processes can be explicitly modelled, for instance... including back- ground surface temperature as a free parameter in subpixel thermal unmixing (although this is usually assumed a priori, e.g. Oppenheimer,Glaze, Francis, & Rothery, 1989; Hanel et al., Oppenheimer, 1991), wildfires (e.g. Justice et1...

Barnie, Talfan; Oppenheimer, Clive

2014-12-01T23:59:59.000Z

59

Contribution of ion beam analysis methods to the development of 2nd generation high temperature superconducting (HTS) wires  

SciTech Connect (OSTI)

One of the crucial steps in the second generation high temperature superconducting wire program was development of the buffer layer architecture. The architecture designed at the Superconductivity Technology Center at Los Alamos National Laboratory consists of several oxide layers wherein each layer plays a specific role, namely: nucleation layer, diffusion barrier, biaxially textured template, and an intermediate layer with a good match to the lattice parameter of superconducting Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} (YBCO) compound. This report demonstrates how a wide range of ion beam analysis techniques (SIMS, RBS, channeling, PIXE, PIGE, NRA, ERD) was employed for analysis of each buffer layer and the YBCO films. These results assisted in understanding of a variety of physical processes occurring during the buffet layer fabrication and helped to optimize the buffer layer architecture as a whole.

Usov, Igor O [Los Alamos National Laboratory; Arendt, Paul N [Los Alamos National Laboratory; Stan, Liliana [Los Alamos National Laboratory; Holesinger, Terry G [Los Alamos National Laboratory; Foltyn, Steven R [Los Alamos National Laboratory; Depaula, Raymond F [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

60

Perturbative Analysis of Two-Temperature Radiative Shocks with Multiple Cooling Processes  

E-Print Network [OSTI]

The structure of the hot downstream region below a radiative accretion shock, such as that of an accreting compact object, may oscillate due to a global thermal instability. The oscillatory behaviour depends on the functional forms of the cooling processes, the energy exchanges of electrons and ions in the shock-heated matter, and the boundary conditions. We analyse the stability of a shock with unequal electron and ion temperatures, where the cooling consists of thermal bremsstrahlung radiation which promotes instability, plus a competing process which tends to stabilize the shock. The effect of transverse perturbations is considered also. As an illustration, we study the special case in which the stabilizing cooling process is of order 3/20 in density and 5/2 in temperature, which is an approximation for the effects of cyclotron cooling in magnetic cataclysmic variables. We vary the efficiency of the second cooling process, the strength of the electron-ion exchange and the ratio of electron and ion pressures at the shock, to examine particular effects on the stability properties and frequencies of oscillation modes.

Curtis J. Saxton; Kinwah Wu

1999-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Energy analysis of a personalized ventilation system in a cold climate: influence of the supplied air temperature  

E-Print Network [OSTI]

Figure 2). The supply temperature and its control strategyAir supply Control strategy of temper. a temperature the aircontrol over the temperature of the supplied personalized air, the building manager has to define the air supply temperature (

Schiavon, Stefano; Melikov, Arsen

2008-01-01T23:59:59.000Z

62

Simulation and analysis of a multi-order imaging FabryPerot interferometer for the study of thermospheric winds and temperatures  

Science Journals Connector (OSTI)

We describe an analysis procedure for estimating the thermospheric winds and temperatures from the multi-order two-dimensional (2D) interferograms produced by an imaging FabryPerot...

Makela, Jonathan J; Meriwether, John W; Huang, Yiyi; Sherwood, Peter J

2011-01-01T23:59:59.000Z

63

Analysis of a new thermodynamic cycle for combined power and cooling using low and mid temperature solar collectors  

SciTech Connect (OSTI)

A combined thermal power and cooling cycle is proposed which combines the Rankine and absorption refrigeration cycles. It can provide power output as well as refrigeration with power generation as a primary goal. Ammonia-water mixture is used as a working fluid. The boiling temperature of the ammonia-water mixture increases as the boiling process proceeds until all liquid is vaporized, so that a better thermal match is obtained in the boiler. The proposed cycle takes advantage of the low boiling temperature of ammonia vapor so that it can be expanded to a low temperature while it is still in a vapor state or a high quality two phase state. This cycle is ideally suited for solar thermal power using low cost concentrating collectors, with the potential to reduce the capital cost of a solar thermal power plant. The cycle can also be used as a bottoming cycle for any thermal power plant. This paper presents a parametric analysis of the proposed cycle.

Goswami, D.Y.; Xu, F. [Univ. of Florida, Gainesville, FL (United States). Solar Energy and Energy Conversion Lab.

1999-05-01T23:59:59.000Z

64

Economic Analysis of the Reference Design for a Nuclear-Driven High-Temperature-Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540C and 900C, respectively. The electrolysis unit used to produce hydrogen consists of 4,009,177 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohmcm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current, AC, to direct current, DC, conversion is 96%. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of the plant was also performed using the H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost using realistic financial and cost estimating assumptions. A required cost of $3.23 per kg of hydrogen produced was calculated assuming an internal rate of return of 10%. Approximately 73% of this cost ($2.36/kg) is the result of capital costs associated with the construction of the combined nuclear plant and hydrogen production facility. Operation and maintenance costs represent about 18% of the total cost ($0.57/kg). Variable costs (including the cost of nuclear fuel) contribute about 8.7% ($0.28/kg) to the total cost of hydrogen production, and decommissioning and raw material costs make up the remaining fractional cost.

E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

2008-01-01T23:59:59.000Z

65

Analysis of a high-temperature heat exchanger for an externally-fired micro gas turbine  

Science Journals Connector (OSTI)

Abstract The externally-fired gas turbine (EFGT) can convert fuels such as coal, biomass, biomass gasification gas and solar energy into electricity and heat. The combination of this technology with biomass gasification gas represents an interesting option for gasification, for which it has been difficult to find a conversion technology. In this system, the heat exchanger deals with the contaminants of biomass derived gas instead of the turbine itself. However, these contaminants can build a deposit layer in the heat exchanger that can affect its performance. The heat exchanger is important in externally fired gas turbines since the turbine inlet temperature is directly dependent on its performance. Several studies on heat exchangers for externally fired gas turbines have been carried out. However, very few detailed studies were found comparing the performance of heat exchangers for externally fired gas turbines considering the effect of deposit materials on the surfaces. In this regard, this work compares the performance of a corrugated plate heat exchanger and a two-tube-passes shell and tube heat exchanger considering the effect of thickness of deposit material with different thermal conductivities on pressure drop and effectiveness. The results show that the effectiveness of the corrugated plate heat exchanger is more influenced at larger thicknesses of deposit materials than the two-tube-passes shell and tube heat exchanger. There is an exponential increase in the pressure drop of the plate heat exchanger while a monotonic increase of pressure drop is seen for the shell and tube heat exchanger. The increase in the thickness of the deposit material has two effects. On one hand, it increases the resistance to heat transfer and on the other hand, it reduces the through flow area increasing the velocity and hence the heat transfer coefficient. Additionally, the effectiveness of the heat exchangers had a stronger influence on the power output than the pressure drop.

Fabiola Baina; Anders Malmquist; Lucio Alejo; Bjrn Palm; Torsten H. Fransson

2015-01-01T23:59:59.000Z

66

Exergy Analysis of a GTL Process Based on Low-Temperature Slurry F-T Reactor Technology with a Cobalt Catalyst  

E-Print Network [OSTI]

Exergy Analysis of a GTL Process Based on Low-Temperature Slurry F-T Reactor Technology of the initial exergy of the gas is used to convert it into liquid fuel. In the present study, we analyze. Next, we use exergy analysis to establish the impact of catalyst selectivity and of thermal losses

Kjelstrup, Signe

67

Vortex Diode Analysis and Testing for Fluoride Salt-Cooled High-Temperature Reactors  

SciTech Connect (OSTI)

Fluidic diodes are presently being considered for use in several fluoride salt-cooled high-temperature reactor designs. A fluidic diode is a passive device that acts as a leaky check valve. These devices are installed in emergency heat removal systems that are designed to passively remove reactor decay heat using natural circulation. The direct reactor auxiliary cooling system (DRACS) uses DRACS salt-to-salt heat exchangers (DHXs) that operate in a path parallel to the core flow. Because of this geometry, under normal operating conditions some flow bypasses the core and flows through the DHX. A flow diode, operating in reverse direction, is-used to minimize this flow when the primary coolant pumps are in operation, while allowing forward flow through the DHX under natural circulation conditions. The DRACSs reject the core decay heat to the environment under loss-of-flow accident conditions and as such are a reactor safety feature. Fluidic diodes have not previously been used in an operating reactor system, and therefore their characteristics must be quantified to ensure successful operation. This report parametrically examines multiple design parameters of a vortex-type fluidic diode to determine the size of diode needed to reject a particular amount of decay heat. Additional calculations were performed to size a scaled diode that could be tested in the Oak Ridge National Laboratory Liquid Salt Flow Loop. These parametric studies have shown that a 152.4 mm diode could be used as a test article in that facility. A design for this diode is developed, and changes to the loop that will be necessary to test the diode are discussed. Initial testing of a scaled flow diode has been carried out in a water loop. The 150 mm diode design discussed above was modified to improve performance, and the final design tested was a 171.45 mm diameter vortex diode. The results of this testing indicate that diodicities of about 20 can be obtained for diodes of this size. Experimental results show similar trends as the computational fluid dynamics (CFD) results presented in this report; however, some differences exist that will need to be assessed in future studies. The results of this testing will be used to improve the diode design to be tested in the liquid salt loop system.

Yoder Jr, Graydon L [ORNL; Elkassabgi, Yousri M. [Texas A& M University, Kingsville; De Leon, Gerardo I. [Texas A& M University, Kingsville; Fetterly, Caitlin N. [Texas A& M University, Kingsville; Ramos, Jorge A. [Texas A& M University, Kingsville; Cunningham, Richard Burns [University of Tennessee, Knoxville (UTK)

2012-02-01T23:59:59.000Z

68

Stratospheric and mesospheric pressure-temperature profiles from rotational analysis of CO2 lines in atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra  

SciTech Connect (OSTI)

A simple, classical, and expedient method for the retrieval of atmospheric pressure-temperature profiles has been applied to the high-resolution infrared solar absorption spectra obtained with the atmospheric trace molecule spectroscopy (ATMOS) instrument. The basis for this method is a rotational analysis of retrieved apparent abundances from CO2 rovibrational absorption lines, employing existing constituent concentration retrieval software used in the analysis of data returned by ATMOS. Pressure-temperature profiles derived from spectra acquired during the ATLAS 1 space shuttle mission of March-April 1992 are quantitatively evaluated and compared with climatological and meteorological data as a means of assessing the validity of this approach.

Stiller, G.P.; Gunson, M.R.; Lowes, L.L.; Abrams, M.C.; Raper, O.F.; Farmer, C.B.; Zander, R.; Rinsland, C.P. [Kernforschungszentrum Karlsruhe, Karlsruhe (Germany)] [Kernforschungszentrum Karlsruhe, Karlsruhe (Germany); [Jet Propulsion Lab., California Inst. of Tech., Pasadena, CA (United States); [Liege Univ., Liege (Belgium); [NASA, Langley Research Center, Hampton, VA (United States)

1995-02-01T23:59:59.000Z

69

Analysis of effect of temperature gradients on surface-tension phenomena in gas-tungsten-arc welds  

SciTech Connect (OSTI)

Fluid motion directed by surface tension is considered as a contributor to heat penetration in a weld pool. The potential phenomena at the gas-liquid interface were analyzed, and the dependence of surface motion on temperature in the gas-tungsten-arc (GTA) welding process was examined. An existing heat-transfer model was used and was able to predict weld size to +- 50% of the actual value. A momentum-transfer equation was derived by considering the contribution of Lorentz force. The momentum boundary condition was developed and was able to predict the Marangoni effect. The magnitude of surface-tension-driven force is comparable to the gravitational force on one gram. An empirical approach was proposed to couple heat-transfer and momentum-transfer phenomena. A dimensional analysis identified the pertinent dimensionless groups as Reynolds, Weber, Froude, Peclet, and Power numbers and a dimensionless velocity. A simplified form of the correction was developed by combining dimensionless groups to yield a correlation with the Bond, Prandtl, and modified power numbers. Future experimental work was proposed to test the functionality of the dimensionless groups.

Lee, H.A.; Chien, P.S.J.

1982-10-01T23:59:59.000Z

70

Numerical study for CANDU moderator temperature prediction by using the two-phase flow analysis code, CUPID  

Science Journals Connector (OSTI)

Abstract KAERI has been developing a component-scale thermalhydraulics code, CUPID. The code adopts a three-dimensional, transient, three-field model for two-phase flow. In this study, we investigated the thermal hydraulic behavior of the moderator inside the Calandria tank of a CANDU reactor by using the CUPID code. At first, we have validated the CUPID code using the experiments that were performed at Stern Laboratories Inc. To avoid the complexity to generate computational geometry around the Calandria tube bundles, a porous media approach was applied for that region and the flow resistance inside the porous media zone was modeled by an empirical correlation. An open media is applied to generate the outer fluid layer including the inlet nozzles. Computational grids near the inlet nozzles should be well-generated because the flow field is very sensitive to the momentum flux from the nozzle. Since the axial flow can be assumed to be invariant for this experiment, a two-dimensional approach was adopted. The mixed flow pattern of forced and natural convection inside the Calandria vessel has been successfully predicted by the CUPID code. The analysis has been further extended to two-phase flow conditions and, then, a map of the local maximum moderator temperature in the Calandria vessel versus the injection flow rate was derived, which can be used to predict the local subcooled margin in the vessel.

Jae Ryong Lee; Sang Gi Park; Han Young Yoon; Hyoung Tae Kim; Jae Jun Jeong

2013-01-01T23:59:59.000Z

71

CFD Analysis of Core Bypass Flow and Crossflow in the Prismatic Very High Temperature Gas-cooled Nuclear Reactor  

E-Print Network [OSTI]

Very High Temperature Rector (VHTR) had been designated as one of those promising reactors for the Next Generation (IV) Nuclear Plant (NGNP). For a prismatic core VHTR, one of the most crucial design considerations is the bypass flow and crossflow...

Wang, Huhu 1985-

2012-12-13T23:59:59.000Z

72

Nickel-based superalloy operating temperature determination via analysis of gamma/gamma' microstructure and coating/base material interdiffusion  

E-Print Network [OSTI]

The average operating temperature of REN N5 high pressure turbine blades was evaluated via [gamma]/[gamma]' microstructure and coating/base metal interdiffusion methods. The [gamma]' volume fraction was measured by point ...

Ham, Wendy D. (Wendy Decker)

2005-01-01T23:59:59.000Z

73

The wavelet analysis of satellite sea surface temperature in the South China Sea and the Pacific Ocean  

Science Journals Connector (OSTI)

Using wavelet transform, the sea surface temperature (SST) during the period of 19821999 of the South China Sea and the equatorial Pacific, from datasets of NOAA/AVHRR, was analyzed. It is shown that there ar...

Jiwei Tian; Jinshan Xu; Enbo Wei

2000-12-01T23:59:59.000Z

74

A High Temperature Superconductor (HTSC) Hot Electron (HE) THz Heterodyne Thermal Sensor (HTS): Computational Analysis of Conversion Gain in  

Science Journals Connector (OSTI)

The solution of the two temperature (electron and phonon) heat transfer equations, for nonequilibrium elctronphonon cooling processes happening between electrons, sensor lattice, and the substrate system, is ...

M. M. Kaila

2002-06-01T23:59:59.000Z

75

Tritium production analysis and management strategies for a Fluoride-salt-cooled high-temperature test reactor (FHTR)  

E-Print Network [OSTI]

The Fluoride-salt-cooled High-temperature Test Reactor (FHTR) is a test reactor concept that aims to demonstrate the neutronics, thermal-hydraulics, materials, tritium management, and to address other reactor operational ...

Rodriguez, Judy N

2013-01-01T23:59:59.000Z

76

Spectral Analysis of Wave Motions in the Region of Temperature Minimum of the Suns Atmosphere  

Science Journals Connector (OSTI)

We present some results of an analysis of the spatial spectrum and two-dimensional distribution of horizontally running waves of five-minute oscillations.

V. E. Merkulenko; V. I. Polyakov; V. S. Loskutnikov

1982-01-01T23:59:59.000Z

77

Wavelet-based multi-resolution analysis and artificial neural networks for forecasting temperature and thermal power consumption  

E-Print Network [OSTI]

the functioning of a multi-energy district boiler (La Rochelle, west coast of France), adding to the plant. Substituting the prediction task of an original time series of high variability by the estimation of its, outdoor temperature, thermal power consumption, hot water distribution network, district boiler. 1

Boyer, Edmond

78

Analysis of the Reactor Cavity Cooling System for Very High Temperature Gas-cooled Reactors Using Computational Fluid Dynamics Tools  

E-Print Network [OSTI]

The design of passive heat removal systems is one of the main concerns for the modular Very High Temperature Gas-Cooled Reactors (VHTR) vessel cavity. The Reactor Cavity Cooling System (RCCS) is an important heat removal system in case of accidents...

Frisani, Angelo

2011-08-08T23:59:59.000Z

79

Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor  

SciTech Connect (OSTI)

The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a standard, UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge burnup level, while retaining its inherent safety characteristics. Using generic pebble bed reactor cores, this task will perform physics calculations to evaluate the capabilities of the pebble bed reactor to perform utilization and destruction of LWR used-fuel transuranics. The task will use established benchmarked models, and will introduce modeling advancements appropriate to the nature of the fuel considered (high TRU content and high burn-up).

B. Boer; A. M. Ougouag

2010-09-01T23:59:59.000Z

80

Analysis of dissimilar welds exposed to high temperature H{sub 2}/H{sub 2}S conditions in a hydrodesulfurizing (HDS) unit  

SciTech Connect (OSTI)

In high temperature applications, dissimilar welds made with nickel-base alloy filler metals provide extended service lives as compared to similar welds made with stainless steel filler metals. Although considerable refinery experience exists, it is difficult to find published information for pressure boundary welds made with nickel-base filler metal in hot hydrogen and/or H{sub 2}S services. The Amuay Refinery has used nickel base alloy filler metals to join clad piping components in a number of piping applications. This paper details the results of an analysis of clad 1{1/4}Cr-{1/2} Mo steel hydroprocessing reactor effluent piping samples removed from service to assess the long term effects of hydrogen and H{sub 2}S on the dissimilar weld. Results of mechanical testing and metallurgical analysis reveal that no significant loss in properties occurred. Details of the weld procedures and weld joint design are provided.

Penuela, L.E.; Chirinos, J.G. [PDVSA Manufacture y Mercado, Judibana (Venezuela). Centro Refinacion Paraguana; Dobis, J.D. [KLAD Inc., Elkton, MD (United States)

1999-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities. I. Fundamental analysis and diagnostics  

SciTech Connect (OSTI)

The influence of thermal stratification on autoignition at constant volume and high pressure is studied by direct numerical simulation (DNS) with detailed hydrogen/air chemistry with a view to providing better understanding and modeling of combustion processes in homogeneous charge compression-ignition engines. Numerical diagnostics are developed to analyze the mode of combustion and the dependence of overall ignition progress on initial mixture conditions. The roles of dissipation of heat and mass are divided conceptually into transport within ignition fronts and passive scalar dissipation, which modifies the statistics of the preignition temperature field. Transport within ignition fronts is analyzed by monitoring the propagation speed of ignition fronts using the displacement speed of a scalar that tracks the location of maximum heat release rate. The prevalence of deflagrative versus spontaneous ignition front propagation is found to depend on the local temperature gradient, and may be identified by the ratio of the instantaneous front speed to the laminar deflagration speed. The significance of passive scalar mixing is examined using a mixing timescale based on enthalpy fluctuations. Finally, the predictions of the multizone modeling strategy are compared with the DNS, and the results are explained using the diagnostics developed. (author)

Chen, Jacqueline H.; Hawkes, Evatt R.; Sankaran, Ramanan [Reacting Flow Research Department, Combustion Research Facility, Sandia National Laboratories, P.O. Box 969 MS 9051, Livermore, CA 94551-0969 (United States); Mason, Scott D. [Lockheed Martin Corporation, Sunnyvale, CA 94089 (United States); Im, Hong G. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125 (United States)

2006-04-15T23:59:59.000Z

82

Pressure &Pressure & TemperatureTemperature  

E-Print Network [OSTI]

to measure atmospheric pressure, and thermometer toprobe to measure atmospheric pressure, and thermometer toprobe to measure atmospheric pressure, and thermometer toprobe to measure atmospheric pressure, and thermometer to measure air temperature.measure air temperature.measure air temperature.measure air temperature

California at Santa Cruz, University of

83

An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor  

SciTech Connect (OSTI)

Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when must-take wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

2014-03-01T23:59:59.000Z

84

COBRA-WC pretest predictions and post-test analysis of the FOTA temperature distribution during FFTF natural-circulation transients  

SciTech Connect (OSTI)

The natural circulation tests of the Fast Flux Test Facility (FFTF) demonstrated a safe and stable transition from forced convection to natural convection and showed that natural convection may adequately remove decay heat from the reactor core. The COBRA-WC computer code was developed by the Pacific Northwest laboratory (PNL) to account for buoyancy-induced coolant flow redistribution and interassembly heat transfer, effects that become important in mitigating temperature gradients and reducing reactor core temperatures when coolant flow rate in the core is low. This report presents work sponsored by the US Department of Energy (DOE) with the objective of checking the validity of COBRA-WC during the first 220 seconds (sec) of the FFTF natural-circulation (plant-startup) tests using recorded data from two instrumented Fuel Open Test Assemblies (FOTAs). Comparison of COBRA-WC predictions of the FOTA data is a part of the final confirmation of the COBRA-WC methodology for core natural-convection analysis.

Khan, E.U.; George, T.L.; Rector, D.R.

1982-06-23T23:59:59.000Z

85

UHV high-resolution electron microscopy and chemical analysis of room-temperature Au deposition on Si(001)-21  

Science Journals Connector (OSTI)

Investigations of Au on Si(001) have suggested that room-temperature deposition of Au on a clean Si surface results in an interfacial reaction and the formation of a gold-silicide. However, these investigations typically lack direct information about the surface morphology or the exact structure at the interface. Utilizing the capabilities of a surface chemical analysis system attached to a Hitachi UHV H-9000 microscope, a layer plus island growth mode has been observed by high-resolution electron microscopy showing multiply twinned small particles on the surface. The presence of small particles for various coverages has been correlated with the shifts seen in the Si 2p and Au 4f binding energies as well as the peak splitting in the Si LVV Auger transition. Our chemical data are consistent with observed shifts in the binding energies of small metal clusters deposited on various substrates, and with the published data for this surface. In addition, the results are consistent with our previous studies of Ag on Si(001), and indicate the growth morphology plays a crucial role in understanding spectroscopic information as well as its correlation to the structure and chemical state of the interface and surface morphology.

E. Landree, D. Grozea, C. Collazo-Davila, and L. D. Marks

1997-03-15T23:59:59.000Z

86

Measurement of ion and electron temperatures in plasma blobs by using an improved ion sensitive probe system and statistical analysis methods  

SciTech Connect (OSTI)

We have measured ion temperature as well as electron temperature in plasma blobs observed in a linear plasma device by using an improved ion sensitive probe. Current-voltage characteristics of the ion sensitive probe inside and outside plasma blobs were re-constructed with a conditional sampling method. It is clearly found that both ion and electron temperatures in plasma blobs decrease more slowly in a cross-field direction than those in a bulk plasma without plasma blobs.

Okazaki, K.; Tanaka, H.; Ohno, N.; Tsuji, Y. [Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan); Ezumi, N. [Nagano National College of Technology, Nagano 381-8550 (Japan); Kajita, S. [EcoTopia Science Institute, Nagoya University, Nagoya, Aichi 464-8603 (Japan)

2012-02-15T23:59:59.000Z

87

TRENDS: TEMPERATURE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Historical Isotopic Temperature Record from the Vostok Ice Core Historical Isotopic Temperature Record from the Vostok Ice Core Graphics Digital Data J.R. Petit, D. Raynaud, and C. Lorius Laboratoire de Glaciogie et Géophysique de l'Environnement, CNRS, Saint Martin d'Hères Cedex, France J. Jouzel and G. Delaygue Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA/CNRS, L'Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France N.I. Barkov Arctic and Antarctic Research Institute, Beringa Street 38, 199397 St. Petersburg, Russia V.M. Kotlyakov Institute of Geography, Staromonetny, per 29, Moscow 109017, Russia DOI: 10.3334/CDIAC/cli.006 Period of Record 420,000 years BP-present Methods Because isotopic fractions of the heavier oxygen-18 (18O) and deuterium (D) in snowfall are temperature-dependent and a strong spatial correlation

88

Intrinsic point-defect equilibria in tetragonal ZrO[subscript 2]: Density functional theory analysis with finite-temperature effects  

E-Print Network [OSTI]

We present a density functional theory (DFT) framework taking into account the finite temperature effects to quantitatively understand and predict charged defect equilibria in a metal oxide. Demonstration of this approach ...

Youssef, Mostafa Youssef Mahm

89

Oxygen isotope analysis of multiple, single ostracod valves as a proxy for combined variability in seasonal temperature and lake water oxygen isotopes  

Science Journals Connector (OSTI)

Paleoclimate studies in lakes typically use oxygen isotopic ratios in samples that consist of multiple ostracod specimens, to obtain an average ?18O value that reflects the mean temperature and ?18O of lake water...

Yama Dixit; David A. Hodell; Rajiv Sinha; Cameron A. Petrie

2014-10-01T23:59:59.000Z

90

Analysis of Spurious Surface Temperature at the AtmosphereLand Interface and a New Method to Solve the Surface Energy Balance Equation  

Science Journals Connector (OSTI)

Solving the surface energy balance equation is the most important task when combining an atmospheric model and a land surface model. However, while the surface energy balance equation determines the interface temperature between the models, this ...

Hirofumi Tomita

2009-06-01T23:59:59.000Z

91

Beamline Temperatures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Temperatures Temperatures Energy: 3.0000 GeV Current: 493.2242 mA Date: 11-Jan-2014 21:40:00 Beamline Temperatures Energy 3.0000 GeV Current 493.2 mA 11-Jan-2014 21:40:00 LN:MainTankLevel 124.4 in LN:MainTankPress 56.9 psi SPEAR-BL:B120HeFlow 15.4 l/min SPEAR-BL:B131HeFlow 22.2 l/min BL 4 BL02:LCW 0.0 ℃ BL02:M0_LCW 31.5 ℃ BL 4-1 BL04-1:BasePlate -14.0 ℃ BL04-1:Bottom1 46.0 ℃ BL04-1:Bottom2 47.0 ℃ BL04-1:Lower 32.0 ℃ BL04-1:Moly 46.0 ℃ BL04-1:ChinGuard1 31.0 ℃ BL04-1:ChinGuard2 31.0 ℃ BL04-1:FirstXtalA -167.0 ℃ BL04-1:FirstXtalB -172.0 ℃ BL04-1:Pad1 31.0 ℃ BL04-1:Pad2 31.0 ℃ BL04-1:SecondXtalA -177.0 ℃ BL04-1:SecondXtalB -175.0 ℃ BL 4-2 BL04-2:BasePlate -14.0 ℃ BL04-2:Bottom1 24.0 ℃ BL04-2:Bottom2 25.0 ℃

92

Quantum Chemistry at Finite Temperature  

E-Print Network [OSTI]

In this article, we present emerging fields of quantum chemistry at finite temperature. We discuss its recent developments on both experimental and theoretical fronts. First, we describe several experimental investigations related to the temperature effects on the structures, electronic spectra, or bond rupture forces for molecules. These include the analysis of the temperature impact on the pathway shifts for the protein unfolding by atomic force microscopy (AFM), the temperature dependence of the absorption spectra of electrons in solvents, and the temperature influence over the intermolecular forces measured by the AFM. On the theoretical side, we review advancements made by the author in the coming fields of quantum chemistry at finite temperature. Starting from the Bloch equation, we have derived the sets of hierarchy equations for the reduced density operators in both canonical and grand canonical ensembles. They provide a law according to which the reduced density operators vary in temperature for the identical and interacting many-body systems. By taking the independent particle approximation, we have solved the equations in the case of a grand canonical ensemble, and obtained an energy eigenequation for the molecular orbitals at finite temperature. The explicit expression for the temperature-dependent Fock operator is also given. They form a mathematical foundation for the examination of the molecular electronic structures and their interplay with finite temperature. Moreover, we clarify the physics concerning the temperature effects on the electronic structures or processes of the molecules, which is crucial for both theoretical understanding and computation. Finally, ....

Liqiang Wei

2006-05-23T23:59:59.000Z

93

Analysis of different modes of low temperature combustion by ultra-high EGR and modulated kinetics in a heavy duty diesel engine  

Science Journals Connector (OSTI)

Abstract Simulation is performed to analyze the characteristics of different modes of low temperature combustion (LTC), by ultra-high exhaust gas recirculation (EGR) (UHE) and modulated kinetics (MK) in a CI engine. The physical models and numerical methods in KIVA-CMC are validated against measured pressure traces and NOx, CO and PM emissions for selected test cases. It is shown that the two LTC modes involve different fuel evaporation histories and turbulent flame structures in the tested ranges of EGR rates and injection timings. LTC is confirmed with simultaneous reduction of \\{NOx\\} and PM above the critical EGR rate and SOI timing in the UHE and the MK mode respectively. The UHE mode at the EGR rate 68% shows conditional temperature between 1000K and 1600K, while the MK mode at the EGR rate 48% shows conditional temperature distribution between 1000K and 2200K. It is shown that the temperature is the most sensitive parameter to suppress \\{NOx\\} in the UHE mode, while a longer ignition delay leads to more homogeneous mixture to result in reduced CO and PM in the MK mode.

Youngjae Lee; Kang Y. Huh

2014-01-01T23:59:59.000Z

94

Scaling Behaviors of Global Sea Surface Temperature  

Science Journals Connector (OSTI)

Temporal scaling properties of the monthly sea surface temperature anomaly (SSTA) in global ocean basins are examined by the power spectrum and detrended fluctuation analysis methods in this paper. Analysis results show that scaling behaviors of ...

Ming Luo; Yee Leung; Yu Zhou; Wei Zhang

95

Performance testing and Bayesian Reliability Analysis of small diameter, high power electric heaters for the simulation of nuclear fuel rod temperatures  

E-Print Network [OSTI]

proposed full test using prototypic mixed-oxide fuel (MOX) containing plutonium from converted nuclear weapons. Bayesian reliability analysis methods were used to determine the expected heater failure rate because of the expected short test duration...

O'Kelly, David Sean

2012-06-07T23:59:59.000Z

96

Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis Analysis of Short-Bunch Production with the APS Booster and a Bunch Compressor Michael Borland, AOD/OAG ∗ August 8, 2003 1 Abstract There is significant interest among x-ray scientists in short-pulse x-rays. The x-rays from the APS ring, although very bright, are produced by an electron bunch with an rms length of more than 30 ps. Typically, it is only a linear accelerator that can produce a very short bunch. An idea was brought to my attention by Glenn Decker that might allow us to produce a short bunch using the APS booster. This idea involves extracting the beam from the booster at 3 to 4 GeV, while it is still relatively short, then compressing it with a magnetic bunch compressor. In this note, we present a preliminary analysis of this idea, along with the related idea of using a nonequilibrium beam from the APS photoinjector. 2 Background We will begin with an examination of the ideal result

97

Room-temperature thermally induced relaxation effect in a two-dimensional cyano-bridged Cu-Mo bimetal assembly and thermodynamic analysis of the relaxation process  

SciTech Connect (OSTI)

We observed a photo-switching effect in [Cu{sup II}(1,4,8,11-tetraazacyclodecane)]{sub 2}[Mo{sup IV}(CN){sub 8}]{center_dot}10H{sub 2}O by irradiation with 410-nm light around room temperature using infrared spectroscopy. This photo-switching is caused by the photo-induced charge transfer from Mo{sup IV} to Cu{sup II}. The photo-induced phase thermally relaxed to the initial phase with a half-life time of 2.7 Multiplication-Sign 10{sup 1}, 6.9 Multiplication-Sign 10{sup 1}, and 1.7 Multiplication-Sign 10{sup 2} s at 293, 283, and 273 K, respectively. The relaxation process was analyzed using Hauser's equation, k=k{sub 0}exp[-(E{sub a}+E{sub a}{sup *}{gamma}) /k{sub B}T], where k is the rate constant of relaxation, k{sub 0} is the frequency factor, E{sub a} is the activation energy, E{sub a}{sup *} is the additional activation energy due to the cooperativity, and {gamma} is the fraction of the photo-induced phase. k{sub 0}, E{sub a}, and E{sub a}{sup *} were evaluated as 1.28 Multiplication-Sign 10{sup 7}{+-} 2.6 s{sup -1}, 4002 {+-} 188 cm{sup -1}, and 546 {+-} 318 cm{sup -1}, respectively. The value of E{sub a} is much larger than that of the relaxation process for the typical light-induced spin crossover effect (E{sub a} Almost-Equal-To 1000 cm{sup -1}). Room-temperature photo-switching is an important issue in the field of optical functional materials. The present system is useful for the demonstration of high-temperature photo-switching material.

Umeta, Yoshikazu; Ozaki, Noriaki [Department of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tokoro, Hiroko [Department of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); NEXT, JSPS, 8 Ichibancho, Chiyoda-ku, Tokyo 102-8472 (Japan); Ohkoshi, Shin-ichi [Department of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); CREST, JST, K's Gobancho, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076 (Japan)

2013-04-15T23:59:59.000Z

98

A profound analysis of Rb2[PH] and Cs2[PH] and the role of [PH]2? ions during temperature-induced solidsolid phase transitions  

Science Journals Connector (OSTI)

Abstract The temperature-induced solidsolid transformation of Rb2[PH] and Cs2[PH] is characterized from both experiment and theory. Neutron diffraction, IR-spectroscopy and ab-initio molecular dynamics simulations reveal an asymmetric shift of the lattice constants at 80K. The molecular mechanism of the structural transformation as identified from IR-spectroscopy and ab-initio molecular dynamics simulations is closely connected to the orientation of the [PH]2? moieties which undergo a partial orderdisorder phase transition.

M. Somer; H.G.v. Schnering; O. Hochrein; D. Zahn

2014-01-01T23:59:59.000Z

99

High Temperatures & Electricity Demand  

E-Print Network [OSTI]

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

100

The analysis and specification of large high-pressure, high-temperature valves for combustion turbine protection in second-generation PFB power plants: Topical report  

SciTech Connect (OSTI)

The purpose of this study was to provide a specification for the high-pressure/high-temperature valves for turbine overspeed protection in a commercial-scale second-generation pressurized fluidized bed combustion (PFBC) power plant. In the event of a loss of external (generator) load, the gas turbine rapidly accelerates from its normal operating speed. Protection from excessive overspeed can be maintained by actuation of fuel isolation and air bypass valves. A design specification for these valves was developed by analyses of the turbine/compressor interaction during a loss of load and analyses of pressure and flow transients during operation of the overspeed protection valves. The basis for these analyses was the Phase 1 plant conceptual design prepared in 1987.

Not Available

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

X-ray photoelectron spectroscopy and structural analysis of amorphous SiO{sub x}N{sub y} films deposited at low temperatures  

SciTech Connect (OSTI)

We establish, using a tetrahedral model, the bonding properties of amorphous silicon oxynitride (a-SiO{sub x}N{sub y}) films deposited at low temperatures (LTs) by electron-cyclotron resonance chemical-vapor deposition (ECRCVD) on several substrates and under various conditions of gas flows and total gas pressure in a dilute mixture of SiH{sub 4}+N{sub 2} in Ar. The atomic percentage of each tetrahedral unit incorporated in the film network is calculated from the deconvolution of the high-resolution x-ray photoelectron spectroscopy (XPS) spectra in the Si 2p{sub 3/2} region and corroborated by the results obtained from both survey scans and the high-resolution XPS spectra in the N 1s region. The Si{sub 3}N{sub 4} phase is the most important one and the only bonding unit which is incorporated in all our LT ECRCVD SiO{sub x}N{sub y} films. The incorporation of all the other component tetrahedrons depends strongly on growth conditions. The threshold values of the N/Si atomic ratio for which intrinsic defects, such as Si-Si bonds, are not incorporated in the network depend on the O/Si ratio incorporated in the films, mainly due to the competition between oxygen and nitrogen atoms in their reaction with silicon dangling bonds. The effect of the total gas pressure on the atomic percentages of the oxidation states present in the LT ECRCVD SiO{sub x}N{sub y} films is qualitatively similar to the effect of the ion bombarding energy or the plasma density. O-N bonds are present only in samples having high amount of oxygen and nitrogen in their networks. For these films, our results show unambiguously the presence of the N-Si{sub 2}O tetrahedron and suggest that N-Si{sub 3-{nu}}O{sub {nu}} tetrahedrons with {nu}{>=}2 are not incorporated in their networks. A correlation is observed between the N-Si{sub 2}O and the Si-O{sub 3}(ON) tetrahedrons whose component peak is localized at (104.0{+-}0.2) eV in the Si 2p{sub 3/2} region of the XPS data, which suggests that both bonding units coexist in these films as some sort of complex bonding configuration.

Cova, P.; Poulin, S.; Masut, R.A. [Departmento de Fisica, Laboratorio de Simulacion de Dispositivos Semiconductores, Universidad de Oriente, Apartado 124, Cumana 6101, Sucre (Venezuela); Regroupement Quebecois sur les Materiaux de Pointe (RQMP) and Departement de Genie Physique, Ecole Polytechnique, C.P. 6079, succ. Centre-ville, Montreal, Quebec H3C 3A7 (Canada)

2005-11-01T23:59:59.000Z

102

Low Temperature Proton Conductivity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and and MEAs at Freezing Temperatures Thomas A. Zawodzinski, Jr. Case Western Reserve University Cleveland, Ohio 2 Freezing Fuel Cells: Impact on MEAS Below 0 o C *Transport processes/motions slow down: questions re: lower conductivity,water mobility etc *Residual water will have various physical effects in different portions of the MEA questions re: durability of components 3 3 'States' of Water in Proton Conductors ? Freezing (bulk), bound freezable, bound non freezable water states claimed based on DSC * Freezing water more mobile, allegedly important for high conductivity Analysis common for porous systems Does the presence of these states matter? Why? 4 'State of Water' in PEMs At T < 0 o C *'Liquid-like' water freezes *'Non-freezing' fraction: water of solvation at pore

103

Thermodynamics of high-temperature nuclear fuel  

Science Journals Connector (OSTI)

A method for performing a thermodynamic analysis of the high-temperature nuclear fuel using the ASTA computer program is substantiated. Calculations of the chemical composition and pressure of the gas phase of...

I. A. Belov; A. S. Ivanov

104

E-Print Network 3.0 - airs-derived olr temperature Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperature (SST), and outgoing longwave radiation (OLR) in the northeastern tropical Pacific Ocean during... temperature Figure 5 shows LMCA analysis applied to the relation...

105

Geothermal Play Fairway Analysis | Department of Energy  

Energy Savers [EERE]

Analysis Geothermal Play Fairway Analysis pfw-webinar.pptx More Documents & Publications Geothermal Play Fairway Analysis LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 0211...

106

Microsoft PowerPoint - Georgetown lecture 3-29-10 final for distribution.pptx  

Broader source: Energy.gov (indexed) [DOE]

Whittington Lecture Whittington Lecture Georgetown Public Policy Institute 29 March 2010 "Predictions are hard to make, I will make two predictions: especially about the future." 1. The price of oil will be higher in the coming decades. 2. We will live in a carbon constrained world. "Breakeven" Price of Oil (Dollars/Barrel) Conventional oil is 30% of world oil reserves. Production costs of unconventional oil are much higher. Source: International Energy Agency Unconventional Oil Energy Use: 1980 - Present and Projections to 2030 Source: EIA International Energy Outlook 2009 Climate Change is real: the temperature record from 1880 - 2007 Source NASA: http://data.giss.nasa.gov/gistemp/graphs/ Concentration of Greenhouse gases The beginning of the Industrial

107

Yeast and Temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yeast and Temperature Yeast and Temperature Name: Alyssaaum Location: N/A Country: N/A Date: N/A Question: How does temperature affect yeast? Replies: Dear Alyssa, At low temperatures (0-10 C) yeast will not grow, but not die either. At temperatures 10-37 C yeast will grow and multiply, faster at higher temperatures with an optimal growth at 30 or 37 C (that depends on the species). At higher temperature the cells become stressed, meaning that their content becomes damaged and which can be repaired to some degree. At high temperatures (>50 C) the cells die. The bacteria can survive freezing under certain conditions. When baking bread all yeast dies during the process. Dr. Trudy Wassenaar yeast is a unique type of fungi that grows quickly by rapid cell division. It grows best at about 100 degrees fahrenheit, colder will cause it to go dormant, much warmer could kill it

108

6, 13011320, 2006 Temperature  

E-Print Network [OSTI]

ACPD 6, 1301­1320, 2006 Temperature climatology and trend estimates over Durban, South Africa H and Physics Discussions Temperature climatology and trend estimates in the UTLS region as observed over Commons License. 1301 #12;ACPD 6, 1301­1320, 2006 Temperature climatology and trend estimates over Durban

Boyer, Edmond

109

Thermoelectric Temperature Control  

E-Print Network [OSTI]

the controller can supply the power required to bring the device to the desired temperature and maintain a stableNOTE 201TM TECHNICAL Optimizing Thermoelectric Temperature Control Systems #12;2 May 1995 92 of applications that require extremely stable temperature control. System design can be complex, but improved

Saffman, Mark

110

Effects of temperature on laser diode ignition  

Science Journals Connector (OSTI)

In this paper, the effects of temperature on laser diode ignition and the resulting consequences were discussed in detail through theoretical analysis, experiments and numerical calculations. The results indicated that the output power of laser diode decreases and the wavelength of laser redshifts with elevated working temperature under a certain condition. The threshold conditions of ignition for powders are easily satisfied with increase in ambient temperature. While the temperature reaches a high enough level, ignition can occur and also the self-combustion or thermal induced explosion can do, even if laser power is very low. Therefore, it is of great importance to carefully control the working temperature of laser diode and the ambient temperature of powder system, and in the meanwhile, to install necessary insurance apparatus in order to ensure the normal and safe operation of the ignition system.

Shi-Biao Xiang; Xu Xiang; Chang-Gen Feng

2009-01-01T23:59:59.000Z

111

EGR Cooler Deposit Analysis  

Broader source: Energy.gov [DOE]

Analysis of fouling and performance of exhaust gas recirculation (EGR) coolers as a function of EGR flow rate, inlet gas and coolant temperatures, soot level, and hydrocarbon concentration

112

Temperature evolution of the spectral peak in high-temperature superconductors  

Science Journals Connector (OSTI)

Recent photoemission data in the high-temperature cuprate superconductor Bi2212 have been interpreted in terms of a sharp spectral peak with a temperature-independent lifetime, whose weight strongly decreases upon heating. By a detailed analysis of the data, we are able to extract the temperature dependence of the electron self-energy, and demonstrate that this interpretation is misleading. Rather, the spectral peak loses its integrity above Tc due to a large reduction in the electron lifetime.

M. R. Norman; A. Kaminski; J. Mesot; J. C. Campuzano

2001-03-22T23:59:59.000Z

113

Temperature compensated photovoltaic array  

DOE Patents [OSTI]

A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

Mosher, D.M.

1997-11-18T23:59:59.000Z

114

Thru-thickness bending stress distribution at elevated temperatures  

E-Print Network [OSTI]

), and the second was the bending process (structural). The five different temperatures collected during the thermal analysis were a uniform temperature of 75oF, a 1100oF uniform temperature as a result of furnace heating, both five and ten minutes of air...

Christian, Lee Conner

2005-08-29T23:59:59.000Z

115

Daily Temperature Lag  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Daily Temperature Lag Daily Temperature Lag Name: Shyammayi Status: teacher Grade: K-2 Country: Mauritius Date: Summer 2011 Question: At what time of the day is the temperature hottest? At what time of the day is the temperature coldest? Replies: In general, the hottest part of the day is late afternoon. The sun has passed its peak in the sky but still heats the Earth up until very late in the afternoon. The lowest temperatures are around dawn. Earth has had all night to get rid of the day's heat by radiating it into space. After sunrise, temperatures begin to climb. This can be changed by local storms, sea breezes or mountain breezes and even monsoon winds. Hope this helps. R. W. "Bob" Avakian Instructor Arts and Sciences/CRC Oklahoma State Univ. Inst. of Technology Shyammayi

116

Automatic temperature adjustment apparatus  

DOE Patents [OSTI]

An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.

Chaplin, James E. (66 Overlook Rd., Bloomingdale, NJ 07403)

1985-01-01T23:59:59.000Z

117

Surface Temperature of IGUs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

117 117 Surface Temperatures of Insulated Glazing Units: Infrared Thermography Laboratory Measurements Brent T. Griffith, Daniel Türler, and Dariush Arasteh Building Technologies Program Environmental Energy Technologies Division Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720 USA Fax: 510-486-6046, email: D_Arasteh@lbl.gov Abstract Data are presented for the distribution of surface temperatures on the warm-side surface of seven different insulated glazing units. Surface temperatures are measured using infrared thermography and an external referencing technique. This technique allows detailed mapping of surface temperatures that is non-intrusive. The glazings were placed between warm and cold environmental chambers that were operated at conditions

118

External vs. body temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

External vs. body temperature External vs. body temperature Name: jacqui Location: N/A Country: N/A Date: N/A Question: If one's internal body temperature is approximately 98.6, WHY when the external temperature is 98.6 do we feel hot? Since both temperatures are "balanced", shouldn't we feel comfortable? I am assuming here that humidity levels are controlled, and play no factor in the external temperature. Replies: First of all, skin temperature is lower than 98.6F; 98.6F is internal body temperature, so air at 98.6F is hotter than skin. But more important, it is the nervous system, and the cells in your skin that your brain uses to detect temperature that determine whether you "feel" hot or not, not whether the air is hotter than your skin. These are set so that you feel hot when the air is actually colder than your skin. Why? They are probably set to make you feel hot whenever the air is warm enough so that your body has some trouble getting rid of the excess heat it produces through metabolism. This insures that you take some actions to help your body cool off. Like drinking cool water, or reducing exercise

119

Temperature | Open Energy Information  

Open Energy Info (EERE)

Property:GeofluidTemp M Property:MeanReservoirTemp R Property:ReservoirTemp T Property:Temperature U Property:USGSMeanReservoirTemp Retrieved from "http:...

120

ARM - Temperature Converter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Teachers' Toolbox Lesson Plans Temperature Converter The Fahrenheit scale, invented by German physicist Daniel Gabriel Fahrenheit (1686-1736), is based on 32 F for the freezing...

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Low Temperature Proton Conductivity  

Broader source: Energy.gov [DOE]

Presentation by Tom Zawodzinski to DOE's Fuel Cell Operations at Sub-Freezing Temperatures Workshop held February 1-5, 2005 in Phoenix, Arizona.

122

Temperature and productivity  

Office of Scientific and Technical Information (OSTI)

symptoms and performance of office work under combined exposure to temperature, noise and air pollution. PhD Thesis. International Centre for Indoor Environment and Energy,...

123

Fiber optic temperature sensor  

SciTech Connect (OSTI)

Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

Rabold, D.

1995-12-01T23:59:59.000Z

124

High temperature probe  

DOE Patents [OSTI]

A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

Swan, Raymond A. (Fremont, CA)

1994-01-01T23:59:59.000Z

125

Hydrogen Production from Nuclear Energy via High Temperature Electrolysis  

SciTech Connect (OSTI)

This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production.

James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

2006-04-01T23:59:59.000Z

126

Fever and Body Temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fever and Body Temperature Fever and Body Temperature Name: Ying Location: N/A Country: N/A Date: N/A Question: Hi, I have a few questions that I want to ask you: Why does your body chose to raise its temperature when you have a fever? Replies: Most bacteria and viruses that live in your body grow best at body temperature. They don't grow very well when the temperature is raised. When there are bacteria in your body they give off chemicals that signal white blood cells to come to try to eat them and also affect an area in your brain called the hypothalamus. This part of the brain controls alot of the automatic functions in your body and is also the site of your body's "thermostat". When the chemicals from the bacteria circulate through the hypothalamus it sets the body's temperature higher. This is called a fever. Your body kind of tries to "sweat out" the bacteria and kill them with a higher temperature. Some scientists question whether trying to bring down a fever is the best thing to do. If it isn't too high, some believe we should just let it work

127

Maintaining body temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maintaining body temperature Maintaining body temperature Name: Jeff Location: N/A Country: N/A Date: N/A Question: What keeps the human body at a constant temperature of 98.6? Replies: Maintaining body temperature is very complex. It also takes a lot of energy. About 80% of the energy from the food you eat goes to maintaining body temperature. Basically, the chemical reactions of metabolism of stored food, especially fats, generate heat as a by product. This heat warms the body. The brain reads temperature and controls to some extent the rate of this metabolism. There are also many other mechanisms triggered by the brain to keep the core of your body warm, even if the periphery (skin) is cold. Blood vessels to the fingers and toes constrict, so that the cold air doesn't cool the blood too much, so that cooled blood doesn't cool down the heart and brain when it returns. In severe cases, your body will sacrifice a finger or a toe to keep you from dying of cold core temperature (frostbite: it saves your life!). Also the brain can order a lot of muscles to contract rapidly. This generates a lot of heat quickly, a response called shivering. There's much more to this exciting field of research.

128

Moderate Temperature | Open Energy Information  

Open Energy Info (EERE)

Moderate Temperature Moderate Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Moderate Temperature Dictionary.png Moderate Temperature: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Reservoir fluid between 190°C and 230°C is considered by Sanyal to be "moderate temperature." "The next higher resource temperature limit is chosen as 230°C, which is lower than the minimum initial resource temperature encountered in

129

ARM - Measurement - Atmospheric temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperature temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric temperature The temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar radiation. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AERI : Atmospheric Emitted Radiance Interferometer SONDE : Balloon-Borne Sounding System CO2FLX : Carbon Dioxide Flux Measurement Systems ECOR : Eddy Correlation Flux Measurement System

130

ARM - Measurement - Virtual temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsVirtual temperature govMeasurementsVirtual temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Virtual temperature The virtual temperature Tv = T(1 + rv/{epsilon}), where rv is the mixing ratio, and {epsilon} is the ratio of the gas constants of air and water vapor ( 0.622). Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems MWRP : Microwave Radiometer Profiler RWP : Radar Wind Profiler

131

Temperature-aware microarchitecture  

Science Journals Connector (OSTI)

With power density and hence cooling costs rising exponentially, processor packaging can no longer be designed for the worst case, and there is an urgent need for runtime processor-level techniques that can regulate operating temperature when the package's ...

Kevin Skadron; Mircea R. Stan; Wei Huang; Sivakumar Velusamy; Karthik Sankaranarayanan; David Tarjan

2003-06-01T23:59:59.000Z

132

Elevated temperature crack propagation  

SciTech Connect (OSTI)

This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.

Orange, T.W.

1994-02-01T23:59:59.000Z

133

Low temperature cryoprobe  

DOE Patents [OSTI]

A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperatures of 77 degrees Kelvin, is discussed. 3 figs.

Sungaila, Z.F.

1988-04-12T23:59:59.000Z

134

High temperature pressure gauge  

DOE Patents [OSTI]

A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

Echtler, J. Paul (Pittsburgh, PA); Scandrol, Roy O. (Library, PA)

1981-01-01T23:59:59.000Z

135

Temperature maintained battery system  

SciTech Connect (OSTI)

A chassis contains a battery charger connected to a multi-cell battery. The charger receives direct current from an external direct current power source and has means to automatically selectively charge the battery in accordance with a preselected charging program relating to temperature adjusted state of discharge of the battery. A heater device is positioned within the chassis which includes heater elements and a thermal switch which activates the heater elements to maintain the battery above a certain predetermined temperature in accordance with preselected temperature conditions occurring within the chassis. A cooling device within the chassis includes a cooler regulator, a temperature sensor, and peltier effect cooler elements. The cooler regulator activates and deactivates the peltier cooler elements in accordance with preselected temperature conditions within the chassis sensed by the temperature sensor. Various vehicle function circuitry may also be positioned within the chassis. The contents of the chassis are positioned to form a passage proximate the battery in communication with an inlet and outlet in the chassis to receive air for cooling purposes from an external source.

Newman, W.A.

1980-10-21T23:59:59.000Z

136

High Temperature | Open Energy Information  

Open Energy Info (EERE)

Temperature Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: High Temperature Dictionary.png High Temperature: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Reservoir fluid between 230°C and 300°C is considered by Sanyal to be "high temperature." "Above a temperature level of 230°C, the reservoir would be expected to become two-phase at some point during exploitation. The next higher

137

Low-Cost Constant Temperature Heating Block  

Science Journals Connector (OSTI)

Low-Cost Constant Temperature Heating Block ... Secondary school and undergraduate laboratories can build many units for the cost of a commercially comparable one while simultaneously putting to practice several electronic principles taught in most instrumental analysis courses. ... Cost-Effective Teacher ...

Charles G. Shevlin; Ward Coppersmith; Christopher Fish; Stanley Vlock; William Vellema

1997-08-01T23:59:59.000Z

138

Low Temperature | Open Energy Information  

Open Energy Info (EERE)

Temperature Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Low Temperature Dictionary.png Low Temperature: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Reservoir fluid between 150°C and 190°C is considered by Sanyal to be "low temperature." "The mobile fluid phase in these reservoirs is liquid water. A number of commercial power projects have been operated over the last two decades

139

High temperature thermometric phosphors  

DOE Patents [OSTI]

A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

1999-03-23T23:59:59.000Z

140

Temperature Data Evaluation  

SciTech Connect (OSTI)

Groundwater temperature is sensitive to the competing processes of heat flow from below the advective transport of heat by groundwater flow. Because groundwater temperature is sensitive to conductive and advective processes, groundwater temperature may be utilized as a tracer to further constrain the uncertainty of predictions of advective radionuclide transport models constructed for the Nevada Test Site (NTS). Since heat transport, geochemical, and hydrologic models for a given area must all be consistent, uncertainty can be reduced by devaluing the weight of those models that do not match estimated heat flow. The objective of this study was to identify the quantity and quality of available heat flow data at the NTS. One-hundred-forty-five temperature logs from 63 boreholes were examined. Thirteen were found to have temperature profiles suitable for the determination of heat flow values from one or more intervals within the boreholes. If sufficient spatially distributed heat flow values are obtained, a heat transport model coupled to a hydrologic model may be used to reduce the uncertainty of a nonisothermal hydrologic model of the NTS.

Gillespie, David

2003-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Temperature initiated passive cooling system  

DOE Patents [OSTI]

A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

Forsberg, C.W.

1994-11-01T23:59:59.000Z

142

temperature | OpenEI  

Open Energy Info (EERE)

temperature temperature Dataset Summary Description Freedom Field is a not-for-profit organization formed to facilitate development and commercialization of renewable energy solutions. The organization has installed a variety of renewable energy generating technologies at their facility (located at Rock River Water Reclamation in Rockford, IL), with the intention of serving as a demonstration facility. The facility monitors data (at 5-minute intervals) from a weather station, 12.4 kW of PV panels (56 220-watt panels), a 10kW wind turbine (HAWT), a 1.2 kW wind turbine (VAWT), an absorption cooling system, and biogas burners. Source Freedom Field Date Released July 19th, 2011 (3 years ago) Date Updated Unknown Keywords biogas monitoring data PV radiance solar temperature

143

A Furnace Temperature Regulator  

Science Journals Connector (OSTI)

Synopsis.By making the heating coil of an electric furnace one arm of a wheatstone bridge, and combining this with a galvanometer regulator, thus keeping constant the resistance of the coil, we can, regardless of variations in the current supply, and with no attention, maintain constant the temperature of furnaces not too directly influenced by the temperature of the room, or where the surrounding air is kept constant. The power available in this regulator is relatively very great indeed; nothing has to be inserted within the furnace cavity, and the lag is practically nothing; the regulator is often almost at its best under conditions most unfavorable to other regulators. It has held a small furnace constant to 0.1 for hours at temperatures from 500 to 1400.

Walter P. White and Leason H. Adams.

1919-07-01T23:59:59.000Z

144

Temperature profile detector  

DOE Patents [OSTI]

Disclosed is a temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles. 8 figs.

Tokarz, R.D.

1983-10-11T23:59:59.000Z

145

Temperature, heat flow maps and temperature gradient holes |...  

Open Energy Info (EERE)

Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Organization Colorado Geological Survey in Cooperation with the U.S. Department of Energy...

146

Ch. VII, Temperature, heat flow maps and temperature gradient...  

Open Energy Info (EERE)

Ch. VII, Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation with the...

147

Fluorescent temperature sensor  

DOE Patents [OSTI]

The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

2009-03-03T23:59:59.000Z

148

High Temperature Superconductors  

Science Journals Connector (OSTI)

Abstract A brief review of the phenomenology of superconductivity, the distinction between type I and type II superconductors, and the application of type II superconductors is followed by a history of the theory of conventional superconductivity. Unconventional high-temperature superconductivity in the copper oxides is reviewed as a phenomenon occurring in narrow two-dimensional bands where the time for an electron transfer between like atoms is comparable to the period of an optical-mode lattice vibration. A family of iron pnictides containing layers of iron atoms may not require an alternative explanation of its high-temperature superconductivity.

J.B. Goodenough

2013-01-01T23:59:59.000Z

149

Temperature effects on chemical reactor  

Science Journals Connector (OSTI)

In this paper we had to study some characteristics of the chemical reactors from which we can understand the reactor operation in different circumstances; from these and the most important factor that has a great effect on the reactor operation is the temperature it is a mathematical processing of a chemical problem that was already studied but it may be developed by introducing new strategies of control; in our case we deal with the analysis of a liquid?gas reactor which can make the flotation of the benzene to produce the ethylene; this type of reactors can be used in vast domains of the chemical industry especially in refinery plants where we find the oil separation and its extractions whether they are gases or liquids which become necessary for industrial technology especially in our century.

M. Azzouzi

2008-01-01T23:59:59.000Z

150

Temperature differential detection device  

DOE Patents [OSTI]

A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions.

Girling, Peter M. (Allentown, PA)

1986-01-01T23:59:59.000Z

151

Chemistry at High Temperatures  

Science Journals Connector (OSTI)

...347 the condensed phase. Both cases are...show the opposite behavior. These predictions...vapors. Condensed phase B203 B + B203 02...complex silicates and hydrates in high-temperature...characterized by phase diagrams (derived...doubt that thou-sands of new chemical materials...

John L. Margrave

1962-02-02T23:59:59.000Z

152

High Temperature Membrane Working Group  

Broader source: Energy.gov [DOE]

The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells.

153

Turbulence Patch Identification in Potential Density or Temperature Profiles  

Science Journals Connector (OSTI)

The Thorpe analysis is a recognized method used to identify and characterize turbulent regions within stably stratified fluids. By comparing an observed profile of potential temperature or potential density to a reference profile obtained by ...

Richard Wilson; Hubert Luce; Francis Dalaudier; Jacques Lefrre

2010-06-01T23:59:59.000Z

154

TEMPERATURE DEPENDENCE OF ELECTRICAL RESISTIVITY IN HIGHLY RESISTIVE ALLOYS  

E-Print Network [OSTI]

L-323 TEMPERATURE DEPENDENCE OF ELECTRICAL RESISTIVITY IN HIGHLY RESISTIVE ALLOYS F. BROUERS at finite temperature yields an expression for the resistivity which is consistent with a gene- ral analysis-dependence of the resistivity and appears as an alternative model to describe the resistivity of crystalline, liquid

Boyer, Edmond

155

High Temperature Membrane Working Group  

Broader source: Energy.gov [DOE]

This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

156

High temperature detonator  

DOE Patents [OSTI]

A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

Johnson, James O. (Los Alamos, NM); Dinegar, Robert H. (Los Alamos, NM)

1988-01-01T23:59:59.000Z

157

Thermionic converter temperature controller  

SciTech Connect (OSTI)

A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

Shaner, Benjamin J. (McMurray, PA); Wolf, Joseph H. (Pittsburgh, PA); Johnson, Robert G. R. (Trafford, PA)

2001-04-24T23:59:59.000Z

158

Thermionic Converter Temperature Controller  

SciTech Connect (OSTI)

A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

Shaner,B. J.; Wolf, Joseph H.; Johnson, Robert G. R.

1999-08-23T23:59:59.000Z

159

Drexel University Temperature Sensors  

SciTech Connect (OSTI)

This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) Drexel University Project 31091 irradiation. The objective of this test was to assess the radiation performance of new ceramic materials for advanced reactor applications. Accordingly, irradiations of transition metal carbides and nitrides were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in static capsules inserted into the A-3 and East Flux Trap Position 5 locations of the ATR.

K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

2014-09-01T23:59:59.000Z

160

Crowdsourcing urban air temperatures from smartphone battery?temperatures  

E-Print Network [OSTI]

Accurate air temperature observations in urban areas are important for meteorology and energy demand planning. They are indispensable to study the urban heat island effect and the adverse effects of high temperatures on ...

Overeem, A.

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Greenhouse Effect Temperature Equilibrium  

E-Print Network [OSTI]

The Greenhouse Effect #12;Temperature Equilibrium The Earth is in equilibrium with the Sun temperature is about 14C, or 287K. The 40K difference is due to the greenhouse effect. Essentially all

Walter, Frederick M.

162

Radiation Minimum Temperatures  

Science Journals Connector (OSTI)

Frost resulting from cooling of vegetation by nocturnal radiation is a serious agricultural problem. Because of the number of variables involved attacks on this problem from a purely theoretical point of view have met with only moderate success. It seems logical to suppose that an instrument might be devised which would speed up the natural radiation processes and enable an observer to obtain in a few hours a measure of the cooling which occurs naturally over a period of 12 to 14 hr. Such an instrument could serve as a frost warning device. This paper describes the construction of a radiation device and presents experimental evidence to show that it can be used as a predictor of freezing temperatures at vegetation level.

Francis K. Davis Jr.

1957-01-01T23:59:59.000Z

163

High-Temperature Water Splitting  

Broader source: Energy.gov [DOE]

High-temperature water splitting (a "thermochemical" process) is a long-term technology in the early stages of development.

164

Battery system with temperature sensors  

DOE Patents [OSTI]

A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

Wood, Steven J.; Trester, Dale B.

2012-11-13T23:59:59.000Z

165

Static Temperature Survey At Coso Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Static Temperature Survey At Coso Geothermal Area Static Temperature Survey At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Static Temperature Survey Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Temperature logs were taken during and after drilling: Results: Convective heat flow and temperatures greater than 350 F appear to occur only along an open fracture system encountered between depths of 1850 and 2775 feet. Temperature logs indicate a negative thermal gradient below 3000 feet. Water chemistry indicates that this geothermal resource is a hot-water rather than a vapor-dominated system. References Galbraith, R. M. (1 May 1978) Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA,

166

Hot Pot Contoured Temperature Gradient Map  

SciTech Connect (OSTI)

Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

Lane, Michael

2013-06-28T23:59:59.000Z

167

Hot Pot Contoured Temperature Gradient Map  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

Lane, Michael

168

Experimental Options for Determining the Temperature for the Onset of Sintering of Coal Ash  

Science Journals Connector (OSTI)

This paper presents a comparison of techniques that can be used to obtain the sintering temperature of coal ash. These techniques are thermal conductivity analysis (TCA), thermomechanical analysis (TMA), the compressive strength test (CS), and a proposed ...

A. Y. Al-Otoom; G. W. Bryant; L. K. Elliott; B. J. Skrifvars; M. Hupa; T. F. Wall

1999-12-29T23:59:59.000Z

169

Spectral Collection of Polyethylene Pellets at nearly Cryogenic Temperature to Improve Selectivity of Raman Measurement  

SciTech Connect (OSTI)

Raman spectroscopy has been extensively used for analysis of diverse polymer samples. Normally, Raman spectral collection of samples is routinely performed at room temperature for convenience. However, the feasibility of improving spectral selectivity and the resulting quantitative accuracy, when samples are measured at nearly cryogenic temperature, has not been investigated. For this purpose, we attempted to measure the density of polyethylene (PE) pellets at cryogenic temperatures and the resulting accuracies were compared with that from room temperature measurement. Initially, each of 25 PE sample was allowed to cool down to cryogenic temperature and the corresponding Raman spectra were continuously collected while the temperature of sample increased. When the temperature of sample was at cryogenic temperature, the resulting band widths were narrower compared to those at room temperature, thereby improving the accuracy of density measurement. In overall, the proposed Raman scheme is simple and efficient; therefore, it could be further applied for analysis of other polymers.

Kim, Saetbyeol; Lee, Sanguk; Hwang, Jinyoung; Chung, Hoeil [Analytical Spectroscopy Lab, Department of Chemistry, Hanyang University, Seoul, 133-791 (Korea, Republic of)

2010-08-06T23:59:59.000Z

170

Ultrasound Analysis of Slurries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ultrasound Analysis of Slurries Ultrasound Analysis of Slurries Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 6,959,589 entitled "Ultrasound Analysis of Slurries." Disclosed in this patent is an apparatus that facilitates the ultrasonic analysis of materials in slurry form. The apparatus focuses on an autoclave arrange- ment to determine the concentration and/or particle size distribution of the slurry under elevated temperature and pressure conditions. During the process, the temperature- and pressure-sensitive ultrasonic transducers are maintained under ambient conditions. The transducers are positioned outside of the temperature-pressure environment of the material to be analyzed,

171

Rubber friction: role of the flash temperature  

E-Print Network [OSTI]

When a rubber block is sliding on a hard rough substrate, the substrate asperities will exert time-dependent deformations of the rubber surface resulting in viscoelastic energy dissipation in the rubber, which gives a contribution to the sliding friction. Most surfaces of solids have roughness on many different length scales, and when calculating the friction force it is necessary to include the viscoelastic deformations on all length scales. The energy dissipation will result in local heating of the rubber. Since the viscoelastic properties of rubber-like materials are extremely strongly temperature dependent, it is necessary to include the local temperature increase in the analysis. At very low sliding velocity the temperature increase is negligible because of heat diffusion, but already for velocities of order 0.01 m/s the local heating may be very important. Here I study the influence of the local heating on the rubber friction, and I show that in a typical case the temperature increase results in a decrease in rubber friction with increasing sliding velocity for v > 0.01 m/s. This may result in stick-slip instabilities, and is of crucial importance in many practical applications, e.g., for the tire-road friction, and in particular for ABS-breaking systems.

B. N. J. Persson

2006-05-10T23:59:59.000Z

172

High-temperature Pump Monitoring - High-temperature ESP Monitoring...  

Broader source: Energy.gov (indexed) [DOE]

at least at the outset, exclude new ideas. The drift issue appears to have brought a new search for materials into this research. * Objectives: Develop temperature and pressure...

173

High-temperature Pump Monitoring - High-temperature ESP Monitoring...  

Broader source: Energy.gov (indexed) [DOE]

Report Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report...

174

An analysis of the pull strength behaviors of fine-pitch, flip chip solder interconnections using a Au-Pt-Pd thick film conductor on Low-Temperature, Co-fired Ceramic (LTCC) substrates.  

SciTech Connect (OSTI)

The assembly of the BDYE detector requires the attachment of sixteen silicon (Si) processor dice (eight on the top side; eight on the bottom side) onto a low-temperature, co-fired ceramic (LTCC) substrate using 63Sn-37Pb (wt.%, Sn-Pb) in a double-reflow soldering process (nitrogen). There are 132 solder joints per die. The bond pads were gold-platinum-palladium (71Au-26Pt-3Pd, wt.%) thick film layers fired onto the LTCC in a post-process sequence. The pull strength and failure modes provided the quality metrics for the Sn-Pb solder joints. Pull strengths were measured in both the as-fabricated condition and after exposure to thermal cycling (-55/125 C; 15 min hold times; 20 cycles). Extremely low pull strengths--referred to as the low pull strength phenomenon--were observed intermittently throughout the product build, resulting in added program costs, schedule delays, and a long-term reliability concern for the detector. There was no statistically significant correlation between the low pull strength phenomenon and (1) the LTCC 'sub-floor' lot; (2) grit blasting the LTCC surfaces prior to the post-process steps; (3) the post-process parameters; (4) the conductor pad height (thickness); (5) the dice soldering assembly sequence; or (5) the dice pull test sequence. Formation of an intermetallic compound (IMC)/LTCC interface caused by thick film consumption during either the soldering process or by solid-state IMC formation was not directly responsible for the low-strength phenomenon. Metallographic cross sections of solder joints from dice that exhibited the low pull strength behavior, revealed the presence of a reaction layer resulting from an interaction between Sn from the molten Sn-Pb and the glassy phase at the TKN/LTCC interface. The thick film porosity did not contribute, explicitly, to the occurrence of reaction layer. Rather, the process of printing the very thin conductor pads was too sensitive to minor thixotropic changes to ink, which resulted in inconsistent proportions of metal and glassy phase particles present during the subsequent firing process. The consequences were subtle, intermittent changes to the thick film microstructure that gave rise to the reaction layer and, thus, the low pull strength phenomenon. A mitigation strategy would be the use of physical vapor deposition (PVD) techniques to create thin film bond pads; this is multi-chip module, deposited (MCM-D) technology.

Uribe, Fernando R.; Kilgo, Alice C.; Grazier, John Mark; Vianco, Paul Thomas; Zender, Gary L.; Hlava, Paul Frank; Rejent, Jerome Andrew

2008-09-01T23:59:59.000Z

175

FCT Systems Analysis: Analysis Methodologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis Methodologies to Analysis Methodologies to someone by E-mail Share FCT Systems Analysis: Analysis Methodologies on Facebook Tweet about FCT Systems Analysis: Analysis Methodologies on Twitter Bookmark FCT Systems Analysis: Analysis Methodologies on Google Bookmark FCT Systems Analysis: Analysis Methodologies on Delicious Rank FCT Systems Analysis: Analysis Methodologies on Digg Find More places to share FCT Systems Analysis: Analysis Methodologies on AddThis.com... Home Analysis Methodologies Resource Analysis Technological Feasibility & Cost Analysis Environmental Analysis Delivery Analysis Infrastructure Development & Financial Analysis Energy Market Analysis DOE H2A Analysis Scenario Analysis Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

176

Condensation temperature trends among stars with planets  

E-Print Network [OSTI]

Results from detailed spectroscopic analyses of stars hosting massive planets are employed to search for trends between abundances and condensation temperatures. The elements C, S, Na, Mg, Al, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni and Zn are included in the analysis of 64 stars with planets and 33 comparison stars. No significant trends are evident in the data. This null result suggests that accretion of rocky material onto the photospheres of stars with planets is not the primary explanation for their high metallicities. However, the differences between the solar photospheric and meteoritic abundances do display a weak but significant trend with condensation temperature. This suggests that the metallicity of the sun's envelope has been enriched relative to its interior by about 0.07 dex.

Guillermo Gonzalez

2005-12-08T23:59:59.000Z

177

The first measurement of temperature standard deviation along the line of sight in galaxy clusters  

Science Journals Connector (OSTI)

......value of the temperature standard deviation by using the...isothermal beta model (for a review, see Birkinshaw 1999...measurement of temperature standard deviation along the line...measure sigma, and we plan to provide a systematic...analysis of the temperature standard deviation in all clusters......

D. A. Prokhorov; S. Colafrancesco

2012-07-01T23:59:59.000Z

178

STATISTICAL METHODS FOR RELATING TEMPERATURE EXTREMES TO LARGE-SCALE METEOROLOGICAL PATTERNS  

E-Print Network [OSTI]

1 STATISTICAL METHODS FOR RELATING TEMPERATURE EXTREMES TO LARGE-SCALE METEOROLOGICAL PATTERNS Rick Extreme Value Analysis: Block Maxima (3) Conditional Extreme Value Analysis: Peaks over Threshold (4) Application to California Temperature Extremes (5) Remaining Work #12;3 #12;4 #12;5 (1) Introduction

Katz, Richard

179

Correction of non-equilibrated temperature logs and implications for geothermal investigations  

Science Journals Connector (OSTI)

Optimum data for any geothermal investigation are densely sampled, high precision temperature logs from boreholes. They should represent the formation temperature as accurately as possible. Often, temperature measurements influenced by the drilling process and the circulation do not have the quality which is required for geothermal methods. Horner's method is a widely used correction method that is based on analysis of a time series of temperature observations. Mostly, these data are not available and a correction is therefore not possible. The approach presented here enables us to correct entire temperature logs even if no repeat measurements were carried out. This is achieved by combination of the theory of Horner's method with estimates for radial heat flow. Given a large number of technically perturbed logs this new approach enlarges considerably the potential database suitable for geothermal methods. The implications for two important fields of application are also discussed. These are fluid flow analysis and analysis of the ground surface temperature history on temperature logs.

Andrei Zschocke

2005-01-01T23:59:59.000Z

180

Actinide Thermodynamics at Elevated Temperatures  

SciTech Connect (OSTI)

The postclosure chemical environment in the proposed Yucca Mountain repository is expected to experience elevated temperatures. Predicting migration of actinides is possible if sufficient, reliable thermodynamic data on hydrolysis and complexation are available for these temperatures. Data are scarce and scattered for 25 degrees C, and nonexistent for elevated temperatures. This collaborative project between LBNL and PNNL collects thermodynamic data at elevated temperatures on actinide complexes with inorganic ligands that may be present in Yucca Mountain. The ligands include hydroxide, fluoride, sulfate, phosphate and carbonate. Thermodynamic parameters of complexation, including stability constants, enthalpy, entropy and heat capacity of complexation, are measured with a variety of techniques including solvent extraction, potentiometry, spectrophotometry and calorimetry

Friese, Judah I.; Rao, Linfeng; Xia, Yuanxian; Bachelor, Paula P.; Tian, Guoxin

2007-11-16T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

High Temperature Processing Symposium 2014  

E-Print Network [OSTI]

} High temperature recycling operations } Materials sustainability } New furnace technology (including solar) We look forward to seeing you in February 2014. Dr M Akbar Rhamdhani (Chairman HTPS 2014) Prof

Liley, David

182

AAPG Low-Temperature Webinar  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

is coproduction? When and where are low temperature geothermal resources coproduced with oil and gas? * What are the economics of low temp geothermal coproduction? * Where are some...

183

Dielectric Properties of Strontium Titanate at Low Temperature  

Science Journals Connector (OSTI)

The dielectric properties of annealed single crystals of SrTiO3 have been measured over the temperature range from 5 to 300 K. At temperatures below 50 K, electric double hysteresis loops are observed and associated changes in weak-field permittivity under dc bias have been measured. It is shown that a phenomenological analysis based on the simple Kittel function accounts satisfactorily for many aspects of the dielectric behavior of SrTiO3 crystals.

M. A. Saifi and L. E. Cross

1970-08-01T23:59:59.000Z

184

Turbulent Temperature Fluctuations in the Princeton Large Tokamak Plasma  

Science Journals Connector (OSTI)

We present the first experimental evidence for the existence of turbulent temperature fluctuations in plasmas. These measurements were accomplished by a spectral analysis of blackbody electron cyclotron emission. The fractional fluctuation in the mean electron energy is up to 10% for typical Princeton Large Tokamak discharges. The spectrum of temperature turbulence extends well beyond the electron diamagnetic-drift frequency f* and shows no resemblance to the simultaneously existing turbulent density fluctuations.

V. Arunasalam; R. Cano; J. C. Hosea; E. Mazzucato

1977-10-03T23:59:59.000Z

185

Experiment Hazard Class 3 - High Temperatures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Operation * APS Base Low Temperatures * Cryogenic Systems High Temperatures * Electric Furnace * Optical Furnace * Other High Temperature Lasers * Laser, Class 2 * Laser,...

186

Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes  

SciTech Connect (OSTI)

This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540C and the helium coolant was delivered at 7 MPa at 625925C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

Lee O. Nelson

2011-04-01T23:59:59.000Z

187

Gas temperature and electron temperature measurements by emission spectroscopy for an atmospheric microplasma  

SciTech Connect (OSTI)

A microplasma suitable for material processing at atmospheric pressure in argon and argon-oxygen mixtures is being studied here. The microplasma is ignited by a high voltage dc pulse and sustained by low power (1-5 W) at 450 MHz. the mechanisms responsible for sustaining the microplasma require a more detailed analysis, which will be the subject of further study. Here it is shown that the microplasma is in nonequilibrium and appears to be in glow mode. The effect of power and oxygen content is also analyzed in terms of gas temperature and electron temperature. Both the gas temperature and the electron temperature have been determined by spectral emission and for the latter a very simple method has been used based on a collisional-radiative model. It is observed that power coupling is affected by a combination of factors and that prediction and control of the energy flow are not always straightforward even for simple argon plasmas. Varying gas content concentration has shown that oxygen creates a preferential energy channel towards increasing the gas temperature. Overall the results have shown that combined multiple diagnostics are necessary to understand plasma characteristics and that spectral emission can represent a valuable tool for tailoring microplasma to specific processing requirements.

Mariotti, Davide; Shimizu, Yoshiki; Sasaki, Takeshi; Koshizaki, Naoto [Nanoarchtectonics Research Center (NARC), National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

2007-01-01T23:59:59.000Z

188

Quantitative room-temperature mineralization of airborne formaldehyde using  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quantitative room-temperature mineralization of airborne formaldehyde using Quantitative room-temperature mineralization of airborne formaldehyde using manganese oxide catalysts Title Quantitative room-temperature mineralization of airborne formaldehyde using manganese oxide catalysts Publication Type Journal Article Year of Publication 2011 Authors Sidheswaran, Meera A., Hugo Destaillats, Douglas P. Sullivan, Joern Larsen, and William J. Fisk Journal Applied Catalysis B - Environmental Issue 107 Pagination 34-41 Date Published 2011 Keywords commercial building ventilation & indoor environmental quality group, commercial building ventilation and indoor environmental quality group, energy analysis and environmental impacts department, indoor environment department, indoor environment group DOI 10.1016/j.apcatb.2011.06.032 Attachment Size

189

ARM - Measurement - Soil surface temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

surface temperature surface temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil surface temperature The temperature of the soil measured near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AMC : Ameriflux Measurement Component CO2FLX : Carbon Dioxide Flux Measurement Systems SOIL : Soil Measurement from the SGP SWATS : Soil Water and Temperature System MET : Surface Meteorological Instrumentation

190

ARM - Measurement - Surface skin temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

skin temperature skin temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface skin temperature The radiative surface skin temperature, from an IR thermometer measuring the narrowband radiating temperature of the ground surface in its field of view. Categories Radiometric, Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments IRT : Infrared Thermometer MFRIRT : Multifilter Radiometer and Infrared Thermometer External Instruments

191

Surface temperature | OpenEI  

Open Energy Info (EERE)

Surface temperature Surface temperature Dataset Summary Description This dataset, made available by the UK Department of Energy and Climate Change (DECC), shows the difference between the yearly central England temperature for years 1772 through 2009 and the 1961 - 1990 baseline (1961 - 1990 Central England average after smoothing). It also shows the difference between average global temperature and 1961 - 1990 average after smoothing. The original source of the data is the Met Office. Source UK Department of Energy and Climate Change (DECC) Date Released March 12th, 2010 (4 years ago) Date Updated Unknown Keywords climate change Surface temperature UK weather Data application/vnd.ms-excel icon 1 Excel file: Surface Temps, 1772 - 1990 (xls, 1.3 MiB) Quality Metrics Level of Review Some Review

192

Temperature dependence of vortex charges in high-temperature superconductors  

Science Journals Connector (OSTI)

Using a model Hamiltonian with d-wave superconductivity and competing antiferromagnetic (AF) interactions, the temperature (T) dependence of the vortex charge in high-Tc superconductors is investigated by numerically solving the Bogoliubovde Gennes equations. The strength of the induced AF order inside the vortex core is T dependent. The vortex charge could be negative when the AF order with sufficient strength is present at low temperatures. At higher temperatures, the AF order may be completely suppressed and the vortex charge becomes positive. A first-order-like transition in the T-dependent vortex charge is seen near the critical temperature TAF. For an underdoped sample, the spatial profiles of the induced spin-density wave and the charge-density wave orders could have stripelike structures at TTs. As a result, a vortex charge discontinuity occurs at Ts.

Yan Chen; Z. D. Wang; C. S. Ting

2003-06-03T23:59:59.000Z

193

Statistics of particle time-temperature histories.  

SciTech Connect (OSTI)

Particles in non - isothermal turbulent flow are subject to a stochastic environment tha t produces a distribution of particle time - temperature histories. This distribution is a function of the dispersion of the non - isothermal (continuous) gas phase and the distribution of particles relative to that gas phase. In this work we extend the one - dimensional turbulence (ODT) model to predict the joint dispersion of a dispersed particle phase and a continuous phase. The ODT model predicts the turbulent evolution of continuous scalar fields with a model for the cascade of fluctuations to smaller sc ales (the 'triplet map') at a rate that is a function of the fully resolved one - dimens ional velocity field . Stochastic triplet maps also drive Lagrangian particle dispersion with finite Stokes number s including inertial and eddy trajectory - crossing effect s included. Two distinct approaches to this coupling between triplet maps and particle dispersion are developed and implemented along with a hybrid approach. An 'instantaneous' particle displacement model matches the tracer particle limit and provide s an accurate description of particle dispersion. A 'continuous' particle displacement m odel translates triplet maps into a continuous velocity field to which particles respond. Particles can alter the turbulence, and modifications to the stochastic rate expr ession are developed for two - way coupling between particles and the continuous phase. Each aspect of model development is evaluated in canonical flows (homogeneous turbulence, free - shear flows and wall - bounded flows) for which quality measurements are ava ilable. ODT simulations of non - isothermal flows provide statistics for particle heating. These simulations show the significance of accurately predicting the joint statistics of particle and fluid dispersion . Inhomogeneous turbulence coupled with the in fluence of the mean flow fields on particles of varying properties alter s particle dispersion. The joint particle - temperature dispersion leads to a distribution of temperature histories predicted by the ODT . Predictions are shown for the lower moments an d the full distributions of the particle positions, particle - observed gas temperatures and particle temperatures. An analysis of the time scales affecting particle - temperature interactions covers Lagrangian integral time scales based on temperature autoco rrelations, rates of temperature change associated with particle motion relative to the temperature field and rates of diffusional change of temperatures. These latter two time scales have not been investigated previously; they are shown to be strongly in termittent having peaked distributions with long tails. The logarithm of the absolute value of these time scales exhibits a distribution closer to normal. A cknowledgements This work is supported by the Defense Threat Reduction Agency (DTRA) under their Counter - Weapons of Mass Destruction Basic Research Program in the area of Chemical and Biological Agent Defeat under award number HDTRA1 - 11 - 4503I to Sandia National Laboratories. The authors would like to express their appreciation for the guidance provi ded by Dr. Suhithi Peiris to this project and to the Science to Defeat Weapons of Mass Destruction program.

Hewson, John C.; Lignell, David O.; Sun, Guangyuan

2014-10-01T23:59:59.000Z

194

Method for measuring surface temperature  

DOE Patents [OSTI]

The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

Baker, Gary A. (Los Alamos, NM); Baker, Sheila N. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM)

2009-07-28T23:59:59.000Z

195

A Dynamical Approach to Temperature  

E-Print Network [OSTI]

We present a new dynamical approach for measuring the temperature of a Hamiltonian dynamical system in the micro canonical ensemble of thermodynamics. We show that under the hypothesis of ergodicity the temperature can be computed as a time-average of the functional, div(grad H/|grad H|^2), on the energy-surface. Our method not only yields an efficient computational approach for determining the temperature it also provides an intrinsic link between dynamical systems theory and the statistical mechanics of Hamiltonian systems.

Hans Henrik Rugh

1997-01-30T23:59:59.000Z

196

LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES  

SciTech Connect (OSTI)

This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves as the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest ASR is LSCF < PSCF < SSCF < YSCF < LSM. The button cell results agree with this ordering indicating that this is an important tool for use in developing our understanding of electrode behavior in fuel cells.

Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

2002-03-31T23:59:59.000Z

197

Uncertainty Quantification of Calculated Temperatures for the AGR-1 Experiment  

SciTech Connect (OSTI)

This report documents an effort to quantify the uncertainty of the calculated temperature data for the first Advanced Gas Reactor (AGR-1) fuel irradiation experiment conducted in the INLs Advanced Test Reactor (ATR) in support of the Next Generation Nuclear Plant (NGNP) R&D program. Recognizing uncertainties inherent in physics and thermal simulations of the AGR-1 test, the results of the numerical simulations can be used in combination with the statistical analysis methods to improve qualification of measured data. Additionally, the temperature simulation data for AGR tests can be used for validation of the fuel transport and fuel performance simulation models. The crucial roles of the calculated fuel temperatures in ensuring achievement of the AGR experimental program objectives require accurate determination of the model temperature uncertainties. The report is organized into three chapters. Chapter 1 introduces the AGR Fuel Development and Qualification program and provides overviews of AGR-1 measured data, AGR-1 test configuration and test procedure, and thermal simulation. Chapters 2 describes the uncertainty quantification procedure for temperature simulation data of the AGR-1 experiment, namely, (i) identify and quantify uncertainty sources; (ii) perform sensitivity analysis for several thermal test conditions; (iii) use uncertainty propagation to quantify overall response temperature uncertainty. A set of issues associated with modeling uncertainties resulting from the expert assessments are identified. This also includes the experimental design to estimate the main effects and interactions of the important thermal model parameters. Chapter 3 presents the overall uncertainty results for the six AGR-1 capsules. This includes uncertainties for the daily volume-average and peak fuel temperatures, daily average temperatures at TC locations, and time-average volume-average and time-average peak fuel temperatures.

Binh T. Pham; Jeffrey J. Einerson; Grant L. Hawkes

2013-03-01T23:59:59.000Z

198

ARM - Measurement - Sea surface temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsSea surface temperature govMeasurementsSea surface temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Sea surface temperature The temperature of sea water near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. External Instruments ECMWF : European Centre for Medium Range Weather Forecasts Model Data Field Campaign Instruments ECMWF : European Centre for Medium Range Weather Forecasts Model Data MIRAI : JAMSTEC Research Vessel Mirai

199

A Synthesis of Antarctic Temperatures  

Science Journals Connector (OSTI)

Monthly surface air temperatures from land surface stations, automatic weather stations, and ship/buoy observations from the high-latitude Southern Hemisphere are synthesized into gridded analyses at a resolution appropriate for applications ...

William L. Chapman; John E. Walsh

2007-08-01T23:59:59.000Z

200

Philosophy 26 High Temperature Superconductivity  

E-Print Network [OSTI]

is the ratio of voltage to current. The resistance of a material tells us how a low resistance, and they are therefore good conductors; other materials, likePhilosophy 26 High Temperature Superconductivity By Ohm's Law, resistance

Callender, Craig

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

temperature heat pumps applied to  

E-Print Network [OSTI]

Very high- temperature heat pumps applied to energy efficiency in industry Application June 21th 2012 Energy efficiency : A contribution to environmental protection Kyoto Copenhage Emission, plastics Partnership : EDF R&D Bil

Oak Ridge National Laboratory

202

Thermal Dosimetry and Temperature Measurements  

Science Journals Connector (OSTI)

...Saptem ber 15 and 16, 1978, San Diego, Calif. 2 The abbreviations used are: RF, radiofrequency; LED, light-emitting diode. gross temperature measurement errors when the probes are used to monitor tissue or phantom material in an electromag...

D. A. Christensen

1979-06-01T23:59:59.000Z

203

temperatures | OpenEI Community  

Open Energy Info (EERE)

temperatures temperatures Home Graham7781's picture Submitted by Graham7781(1992) Super contributor 18 January, 2013 - 15:46 U.S. Global Change Research Program publishes "National Climate Assessment" report for United States climate change drought OpenEI sea level rise temperatures U.S. Global Climate Change program The U.S. Global Change Research Program, established under the Department of Commerce in 2010, and partnered with NOAA, released an extensive National Climate Assessment report, projecting future climate changes in the United States under different scenarios. The 1,200 page report highlights some rather grim findings about the future of climate change. Here are 5 of the more disconcerting graphics from the report: 1. U.S. Average Temperatures Syndicate content

204

Fuel Temperature Coefficient of Reactivity  

SciTech Connect (OSTI)

A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

Loewe, W.E.

2001-07-31T23:59:59.000Z

205

Curie temperature of multiphase nanostructures  

SciTech Connect (OSTI)

The Curie temperature and the local spontaneous magnetization of ferromagnetic nanocomposites are investigated. The macroscopic character of the critical fluctuations responsible for the onset of ferromagnetic order means that there is only one Curie temperature, independent of the number of magnetic phases present. The Curie temperature increases with the grain size and is, in general, larger than predicted from the volume averages of the exchange constants. However, the Curie-temperature enhancement is accompanied by a relative reduction of the spontaneous magnetization. Due to the quadratic dependence of the permanent-magnet energy product on the spontaneous magnetization, this amounts to a deterioration of the magnets performance. The length scale on which an effective intergranular exchange coupling is realized (coupling length) depends on the Curie-temperature difference between the phases and on the spacial distribution of the local interatomic exchange. As a rule, it is of the order of a few interatomic distances; for much bigger grain sizes the structures mimic an interaction-free ensemble of different ferromagnetic materials. This must be compared to the magnetic-anisotropy coupling length, which is of the order of 10 nm. The difference is explained by the nonrelativistic character of the Curie-temperature problem. (c) 2000 American Institute of Physics.

Skomski, R. [Department of Physics and Astronomy and Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588 (United States)] [Department of Physics and Astronomy and Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588 (United States); Sellmyer, D. J. [Department of Physics and Astronomy and Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588 (United States)] [Department of Physics and Astronomy and Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588 (United States)

2000-05-01T23:59:59.000Z

206

Extremely Low Temperature | Open Energy Information  

Open Energy Info (EERE)

Extremely Low Temperature Extremely Low Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Extremely Low Temperature Dictionary.png Extremely Low Temperature: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Reservoir fluid less than 100°C is considered to to be "extremely low temperature." Note: Sanyal classified fluids of these temperatures to be "non-electrical grade" in 2005, but electricity has since been generated from these

207

1. Introduction The critical temperatures of lithium, sodium  

E-Print Network [OSTI]

reliably by ~hc reactor dcsigncrs to envisage their chemical state in the reactors. For the purpose and FBRs. are required for safety analysis under accident conditions. In addition. Cb and Rb are among the predominant lission products in nu- clear reactors whose critical temperatures arc also rcquircd to be known

Azad, Abdul-Majeed

208

Electromagnetic field at Finite Temperature: A first order approach  

E-Print Network [OSTI]

In this work we study the electromagnetic field at Finite Temperature via the massless DKP formalism. The constraint analysis is performed and the partition function for the theory is constructed and computed. When it is specialized to the spin 1 sector we obtain the well-known result for the thermodynamic equilibrium of the electromagnetic field.

R. Casana; B. M. Pimentel; J. S. Valverde

2007-02-04T23:59:59.000Z

209

High temperature thermometric phosphors for use in a temperature sensor  

DOE Patents [OSTI]

A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

1998-01-01T23:59:59.000Z

210

Analysis of Low-Temperature Utilization of Geothermal Resources...  

Open Energy Info (EERE)

water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to...

211

MISSUS experiment on BEXUS programme: temperature data analysis and correlation.  

E-Print Network [OSTI]

??MISSUS is a multi-sensors scientific package for the characterization of the atmosphere, that flew on-board BEXUS 15 stratospheric balloon. The flight constituted a unique opportunity (more)

Palla, Chiara

2013-01-01T23:59:59.000Z

212

Numerical modelling and analysis of a room temperature magnetic  

E-Print Network [OSTI]

are separated by channels of a heat transfer fluid. The time-dependent model solves the momentum and continuity equations of the flow of the heat transfer fluid and the coupled energy equations of the heat transfer and it was concluded that the model has energy conservation and that the solution is independent of the chosen grid

213

Apparatus and method for high temperature viscosity and temperature measurements  

DOE Patents [OSTI]

A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

Balasubramaniam, Krishnan (Mississippi State, MS); Shah, Vimal (Houston, TX); Costley, R. Daniel (Mississippi State, MS); Singh, Jagdish P. (Mississippi State, MS)

2001-01-01T23:59:59.000Z

214

Rapid reconnaissance of geothermal prospects using shallow temperature  

Open Energy Info (EERE)

Second technical report Second technical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Rapid reconnaissance of geothermal prospects using shallow temperature surveys. Second technical report Details Activities (1) Areas (1) Regions (0) Abstract: The previously examined geothermal sites at Long Valley and Coso were studied in much greater detail. Techniques for correcting the 2-m temperature data were evaluated. Using a preliminary model and analysis of the Coso data, the importance of measuring soil thermal diffusivity data at each temperature probe site was shown. Corrected 2-m temperature anomaly at Coso was compared with a low altitude aeromagnetic anomaly and an anomaly outlined by electrical resistivity methods obtained independently. Preliminary tests were made with a simple thermal conductivity probe

215

Low temperature CVD of TaB/sub 2/  

SciTech Connect (OSTI)

Crystalline TaB/sub 2/ has been deposited using the CVD reaction of TaCl/sub 5/ and B/sub 2/H/sub 6/ in the temperature range of 773-1200/sup 0/K. Thermodynamic calculations have been made which compare the use of both B/sub 2/H/sub 6/ and BCl/sub 3/ as B source gases. The deposits obtained with B/sub 2/H/sub 6/ exhibited extremely small crystal size and contained amorphous B when the deposition temperature was below approx. 873/sup 0/K but were substoichiometric in B above this temperature. Carbon analysis indicated that C may substitute for B and thereby stabilize the diboride structure at high deposition temperatures. Microhardness of the coatings decreased with increasing B/Ta ratio and decreasing crystal size.

Randich, E.

1980-01-01T23:59:59.000Z

216

Time Zone Dependence of Diurnal Cycle Errors in Surface Temperature Analyses  

Science Journals Connector (OSTI)

Surface temperatures from both the NCEP analysis and ECMWF Re-Analysis (ERA-Interim) in January 2008 over the AfricaEurasian region were compared with surface station measurements to study analysis errors in the diurnal cycle, with data sampled ...

X. Zou; Z-K. Qin

2010-06-01T23:59:59.000Z

217

Ultra High Temperature | Open Energy Information  

Open Energy Info (EERE)

Ultra High Temperature Ultra High Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Ultra High Temperature Dictionary.png Ultra High Temperature: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Reservoir fluid greater than 300°C is considered by Sanyal to be "ultra high temperature". "Such reservoirs are characterized by rapid development of steam saturation in the reservoir and steam fraction in the mobile fluid phase upon

218

Very Low Temperature | Open Energy Information  

Open Energy Info (EERE)

Very Low Temperature Very Low Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Very Low Temperature Dictionary.png Very Low Temperature: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in 2005 at the request of DOE and GEA, as reported in Classification of Geothermal Systems: A Possible Scheme. Extremely Low Temperature Very Low Temperature Low Temperature Moderate Temperature High Temperature Ultra High Temperature Steam Field Reservoir fluid between 100°C and 150°C is considered by Sanyal to be "very low temperature." "The mobile fluid phase in these reservoirs is liquid water. Very few power projects have been developed in the U.S. based on geothermal resources in

219

Thermodynamics of high-temperature, high-pressure water electrolysis  

Science Journals Connector (OSTI)

Abstract We report on a thermodynamic analysis for water electrolysis from normal conditions (P=0.1MPa, T=298K) up to heretofore unaddressed temperatures of 1000K and pressures of 100MPa. Thermoneutral and reversible potentials are determined using equations-of-state published by the International Association for the Properties of Water and Steam and the National Institute of Standards and Technology. The need for using accurate property models at these elevated temperatures and pressures is exemplified by contrasting results with those obtained via ideal assumptions. The utility of our results is demonstrated by their application in an analysis comparing pressurized electrolysis versus mechanical gas compression. Within the limits of our analysis, pressurized electrolysis demonstrates lower energy requirements albeit with electrical work composing a greater proportion of the total energy input.

Devin Todd; Maximilian Schwager; Walter Mrida

2014-01-01T23:59:59.000Z

220

Joint Institute for High Temperatures  

National Nuclear Security Administration (NNSA)

Joint Institute for High Temperatures of Russian Academy of Sciences Moscow Institute of Physics and Technology Extended title Extended title Excited state of warm dense matter or Exotic state of warm dense matter or Novel form of warm dense matter or New form of plasma Three sources of generation similarity: solid state density, two temperatures: electron temperature about tens eV, cold ions keep original crystallographic positions, but electron band structure and phonon dispersion are changed, transient but steady (quasi-stationary for a short time) state of non-equilibrium, uniform plasmas (no reference to non-ideality, both strongly and weakly coupled plasmas can be formed) spectral line spectra are emitted by ion cores embedded in plasma environment which influences the spectra strongly,

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Integrated Emissivity And Temperature Measurement  

DOE Patents [OSTI]

A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

Poulsen, Peter (Livermore, CA)

2005-11-08T23:59:59.000Z

222

Regeneration tests of a room temperature magnetic refrigerator and heat pump  

E-Print Network [OSTI]

A magnetic heat pump apparatus consisting of a solid magnetic refrigerant, gadolinium, and a liquid regenerator column of ethanol and water has been tested. Utilizing a 7T field, it produced a maximum temperature span of 80 K, and in separate tests, a lowest temperature of 241 K and a highest temperature of 328 K. Thermocouples, placed at intervals along the regenerator tube, permitted measurement of the temperature distribution in the regenerator fluid. No attempt was made to extract refrigeration from the device, but analysis of the temperature distributions shows that 34 watts of refrigeration was produced.

Brown, G V

2014-01-01T23:59:59.000Z

223

High Temperature Optical Gas Sensing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical Gas Sensing Optical Gas Sensing Opportunity Research is active on optical sensors integrated with advanced sensing materials for high temperature embedded gas sensing applications. Patent applications have been filed for two inventions in this area and several other methods are currently under development. These technologies are available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Organizations or individuals with capabilities in optical sensor packaging for harsh environment and high temperature applications are encouraged to contact NETL to explore potential collaborative opportunities. Overview Contact NETL Technology Transfer Group techtransfer@netl.doe.gov

224

High temperature superconductor current leads  

DOE Patents [OSTI]

An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

Hull, J.R.; Poeppel, R.B.

1995-06-20T23:59:59.000Z

225

Temperature fluctuations in the intergalactic medium  

Science Journals Connector (OSTI)

......research-article Papers Temperature fluctuations...Zaroubi 2 Tae-Sun Kim 3 Panayiotis...Germany The temperature of the low-density...scales, the gas distribution is similar to...scarce, then the temperature distribution could become......

Tom Theuns; Saleem Zaroubi; Tae-Sun Kim; Panayiotis Tzanavaris; Robert F. Carswell

2002-05-11T23:59:59.000Z

226

3, 771789, 2007 temperatures and  

E-Print Network [OSTI]

cooling and the onset of North American glaciation P. Huybers1 and P. Molnar2 1 Department of Earth that gradual cooling in the eastern tropical Pacific led to cooling of North America and the initiation affects North American temperature and ice-ablation. Assuming that the modern relationship holds5 over

Boyer, Edmond

227

Temperature controlled high voltage regulator  

DOE Patents [OSTI]

A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

Chiaro, Jr., Peter J. (Clinton, TN); Schulze, Gerald K. (Knoxville, TN)

2004-04-20T23:59:59.000Z

228

High temperature lightweight foamed cements  

DOE Patents [OSTI]

Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

Sugama, Toshifumi.

1989-10-03T23:59:59.000Z

229

High temperature turbine engine structure  

DOE Patents [OSTI]

A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

Boyd, Gary L. (Tempe, AZ)

1991-01-01T23:59:59.000Z

230

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

231

Litchfield Correctional Center District Heating Low Temperature...  

Open Energy Info (EERE)

Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature Geothermal...

232

Acid Doped Membranes for High Temperature PEMFC  

Broader source: Energy.gov [DOE]

Presentation on Acid Doped Membranes for High Temperature PEMFC to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

233

Novel room temperature ferromagnetic semiconductors  

SciTech Connect (OSTI)

Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting for Zn a 2+ state in the ZnO lattice. Ferromagnetic Resonance (FMR) technique is used to confirm the existence of ferromagnetic ordering at temperatures as high as 425K. The ab initio calculations were found to be consistent with the observation of ferromagnetism arising from fully polarized Mn 2+ state. The key to observed room temperature ferromagnetism in this system is the low temperature processing, which prevents formation of clusters, secondary phases and the host ZnO from becoming n-type. The electronic structure of the same Mn doped ZnO thin films studied using XAS, XES and RIXS, revealed a strong hybridization between Mn 3d and O 2p states, which is an important characteristic of a Dilute magnetic Semiconductor (DMS). It is shown that the various processing conditions like sintering temperature, dopant concentration and the properties of precursors used for making of DMS have a great influence on the final properties. Use of various experimental techniques to verify the physical properties, and to understand the mechanism involved to give rise to ferromagnetism is presented. Methods to improve the magnetic moment in Mn doped ZnO are also described. New promising DMS materials (such as Cu doped ZnO are explored). The demonstrated new capability to fabricate powder, pellets, and thin films of room temperature ferromagnetic semiconductors thus makes possible the realization of a wide range of complex elements for a variety of new multifunctional phenomena related to Spintronic devices as well as magneto-optic components.

Gupta, Amita

2004-11-01T23:59:59.000Z

234

Structure Analysis of a Precipitate Phase in an Ni-Rich High...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of a Precipitate Phase in an Ni-Rich High Temperature NiTiHf Shape Memory Alloy. Structure Analysis of a Precipitate Phase in an Ni-Rich High Temperature NiTiHf Shape...

235

Low-Temperature Structure and Dynamics of Brucite  

Science Journals Connector (OSTI)

Low-Temperature Structure and Dynamics of Brucite ... The volume of brucite at 15 K is equivalent to that at 0.2 GPa, which should not be sufficient to observe the H-bonding between the octahedral layer that occurs at high pressure; however, the three-site split-atom model, in which the O?D direction makes an angle ? with the 3-fold c axis, provides a better fit to the data for each temperature than the single-site model. ... Vibrational Analysis of Brucite Surfaces and the Development of an Improved Force Field for Molecular Simulation of Interfaces ...

B. C. Chakoumakos; C.-K. Loong; A. J. Schultz

1997-11-13T23:59:59.000Z

236

High temperature gas cooled reactor steam-methane reformer design  

SciTech Connect (OSTI)

The concept of the long distance transportation of process heat energy from a High Temperature Gas Cooled Reactor (HTGR) heat source, based on the steam-methane reforming reaction, is being evaluated by the Department of Energy as an energy source/application for use early in the 21st century. This paper summaries the design of a helium heated steam reformer utilized in conjunction with an intermediate loop, 850/degree/C reactor outlet temperature, HTGR process heat plant concept. This paper also discusses various design considerations leading to the mechanical design features, the thermochemical performance, the materials selection and the structural design analysis. 12 refs.

Impellezzeri, J.R.; Drendel, D.B.; Odegaard, T.K.

1981-01-01T23:59:59.000Z

237

Off-design performance of a chemical looping combustion (CLC) combined cycle: effects of ambient temperature  

Science Journals Connector (OSTI)

The present work investigates the influence of ambient temperature on the steady-state off-design thermodynamic performance of a chemical looping combustion (CLC) combined cycle. A sensitivity analysis...

Jinling Chi; Bo Wang; Shijie Zhang; Yunhan Xiao

2010-02-01T23:59:59.000Z

238

Thermal storage of solar energy as sensible heat at medium temperatures  

Science Journals Connector (OSTI)

A model has been solved in order to determine the thermal losses of a storage tank, where thermal energy is stored as sensible heat of a diathermic fluid at medium temperatures. A parametric analysis has been ...

C. Bellecci; A. Bonanno; M. Camarca; M. Conti; L. La Rotonda

239

Building America Webinar: Opportunities in Large Data Collection and Analysis-Presentation #3  

Broader source: Energy.gov [DOE]

This is the third presentation, Indoor Temperature and Humidity Data Collection and Analysis, in the webinar on April 16, 2014.

240

Techniques for spot microsampling and analysis of corrosion site fluid  

SciTech Connect (OSTI)

This paper presents techniques for the extraction and analysis of crevice fluid microsamples. Results are presented from ambient temperature benchtop proof-of-principle testing with the spot microsample extraction technique and from the high temperature test method.

Lynch, Garry J.; Niehaus, William C.

1999-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Lower-Temperature Invert Design For Diffusion Barrier  

SciTech Connect (OSTI)

The objective of this analysis is to advance the state of the subsurface facilities design to primarily support the ''Yucca Mountain Science and Engineering Report'' (DOE 2001) and to also support the preparation and revision of System Description Document's Section 2 system descriptions (CRWMS M&O 2001, pp. 9 and 11). The results may also eventually support the License Application (CRWMS M&O 2001, p. 3). The Performance Assessment Department will be the primary user of the information generated and will be used in abstraction modeling for the lower-temperature scenario (CRWMS M&O 200 1, p. 27). This analysis will evaluate the invert relative to the lower- and higher-temperature conditions in accordance with the primary tasks below. Invert design is a major factor in allowing water entering the drift to pass freely and enter the drift floor without surface ponding and in limiting diffusive transport into the host rock. Specific cost effective designs will be conceptualized under the new lower-temperature conditions in this analysis. Interfacing activities and all aspects of Integrated Safety Management and Nuclear Culture principles are included in this work scope by adhering to the respective principles during this design activity and by incorporating safety into the design analysis (CRWMS M&O 2001, p. 8). Primary tasks of this analysis include identifying available design information from existing sources on the invert as a diffusive barrier, developing concepts that reduce the amount steel, and developing other design features that accommodate both lower- and higher-temperature operating modes (CRWMS M&O 2001, p.16).

Bruce Stanley

2001-07-30T23:59:59.000Z

242

Development of High-Temperature Ferritic Alloys and Performance Prediction Methods for Advanced Fission Energy Systems  

SciTech Connect (OSTI)

Reports the results of a comprehensive development and analysis of a database on irradiation hardening and embrittlement of tempered martensitic steels (TMS). Alloy specific quantitative semi-empirical models were derived for the dpa dose, irradiation temperature (ti) and test (Tt) temperature of yield stress hardening (or softening) .

G. RObert Odette; Takuya Yamamoto

2009-08-14T23:59:59.000Z

243

UNIVERSITY OF CALIFORNIA, SAN DIEGO Measurement of the Magnetic and Temperature  

E-Print Network [OSTI]

Compressional Heating with Cyclotron Cooling 5.4 Experimentally Measured Relaxation Rate 5.5 Error Analysis.1 Introduction................... 57 4.2 Cyclotron Radiation and Plasma Temperature 61 4.2.1 Plasma Cooling Rate 62 4.2.2 Corrections to Calculated Cyclotron Radiation Rate for Low Temperatures 64 4

California at San Diego, University of

244

FEM Analysis ofFEM Analysis of Deformation and Fracture ofDeformation and Fracture of  

E-Print Network [OSTI]

FEM Analysis ofFEM Analysis of Deformation and Fracture ofDeformation and Fracture of Deformation and Fracture in Polycrystalline -TiAl + 2-Ti3Al Single Crystals #12;Use of -TiAl + 2-Ti3Al Alloys-Temperature Ductility ·Low Ambient-Temperature Fracture Toughness (KIC

Grujicic, Mica

245

Battery system with temperature sensors  

SciTech Connect (OSTI)

A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

Wood, Steven J; Trester, Dale B

2014-02-04T23:59:59.000Z

246

High temperature turbine engine structure  

DOE Patents [OSTI]

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1994-01-01T23:59:59.000Z

247

High temperature turbine engine structure  

DOE Patents [OSTI]

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1993-01-01T23:59:59.000Z

248

High temperature turbine engine structure  

DOE Patents [OSTI]

A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

1992-01-01T23:59:59.000Z

249

Variable temperature semiconductor film deposition  

DOE Patents [OSTI]

A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

Li, X.; Sheldon, P.

1998-01-27T23:59:59.000Z

250

Quantifying Temperature Effects on Fall Chinook Salmon  

SciTech Connect (OSTI)

The motivation for this study was to recommend relationships for use in a model of San Joaquin fall Chinook salmon. This report reviews literature pertaining to relationships between water temperature and fall Chinook salmon. The report is organized into three sections that deal with temperature effects on development and timing of freshwater life stages, temperature effects on incubation survival for eggs and alevin, and temperature effects on juvenile survival. Recommendations are made for modeling temperature influences for all three life stages.

Jager, Yetta [ORNL

2011-11-01T23:59:59.000Z

251

Theoretical Adiabatic Temperature and Chemical Composition of Sodium Combustion Flame  

SciTech Connect (OSTI)

Sodium fire safety analysis requires fundamental combustion properties, e.g., heat of combustion, flame temperature, and composition. We developed the GENESYS code for a theoretical investigation of sodium combustion flame.Our principle conclusions on sodium combustion under atmospheric air conditions are (a) the maximum theoretical flame temperature is 1950 K, and it is not affected by the presence of moisture; the uppermost limiting factor is the chemical instability of the condensed sodium-oxide products under high temperature; (b) the main combustion product is liquid Na{sub 2}O in dry air condition and liquid Na{sub 2}O with gaseous NaOH in moist air; and (c) the chemical equilibrium prediction of the residual gaseous reactants in the flame is indispensable for sodium combustion modeling.

Okano, Yasushi; Yamaguchi, Akira [O-arai Engineering Center (Japan)

2003-12-15T23:59:59.000Z

252

Linear Fresnel Collector Receiver: Heat Loss and Temperatures  

Science Journals Connector (OSTI)

Abstract For design and component specification of a Linear Fresnel Collector (LFC) cavity receiver, the prediction of temperature distribution and heat loss is of great importance. In this paper we present a sensitivity analysis for a range of geometry and material parameters. For the LFC receiver analysis we use two models developed at Fraunhofer ISE. One is a detailed model, combining the spatial distribution of reflected radiation via ray tracing with detailed convective simulations through computational fluid dynamics. The second one is a fast algorithm based on a thermal resistance model. It is applying a similar methodology as the well-known model for vacuum absorber, enhancing an absorber tube model by parameters describing the influence of the secondary mirror and cover glass. The thermal resistance model is described in detail. Obtained results indicate a significant effect of the secondary mirror temperature on heat loss for specific geometries.

A. Heimsath; F. Cuevas; A. Hofer; P. Nitz; W.J. Platzer

2014-01-01T23:59:59.000Z

253

On the relationship between brightness temperature and thunderstorm evolution  

E-Print Network [OSTI]

ACKNOWLEDGEMENTS . TABLE OF CONTENTS LIST OF FIGURES . V1 INTRODUCTION DATA CONCEPTUAL MODEL OF THUNDERSTORM. . . . . BRIGHTNESS TEMPERATURE OVERVIEW . . . 10 THUNDERSTORM OVERVIEW 13 ANALYSIS k METHODS . . RESULTS . . . . . 20 CONCLUSIONS 32 REFERENCES... Introduction The impact of tropical precipitation on the global energy budget has long been a topic of investigation. Riehl and Malkus (1958) determined that latent heat released in tropical convection provided the balance of poleward transport of energy...

Rapp, Anita Denise

2013-02-22T23:59:59.000Z

254

Maintaining Space Temperature and Humidity in the Digital Switch Environment  

E-Print Network [OSTI]

laboratory College Station, Texas ABSTRACT A methodology for a psychrometric analysis of the problem of maintaining space temperature and humidity in the digital switch environment is presented. Such spaces produce minimum or no humidity generation. Several... must be considered. The intent of this paper is to outline a simple methodology to compute cooling and Henry Johnstone, P.E. Mechanical Engineer GLHN, Inc. Tucson, Arizona humidification loads at any location, using a variety of techniques for space...

Saman, N. F.; Johnson, H.

255

University of Illinois Temperature Sensors  

SciTech Connect (OSTI)

This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) University of Illinois Project 29609 irradiation. The objective of this test was to assess the radiation performance of ferritic alloys for advanced reactor applications. The FeCr-based alloy system is considered the lead alloy system for a variety of advanced reactor components and applications. Irradiations of FeCr alloy samples were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in a static capsule in the A-11 position of the ATR.

K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

2014-09-01T23:59:59.000Z

256

Residual Stresses for Structural Analysis and Fatigue Life Prediction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Analysis and Fatigue Life Prediction in Vehicle Components: Success stories from the High Temperature Materials Laboratory (HTML) User Program Residual Stresses for Structural...

257

High Temperature, High Pressure Devices for Zonal Isolation in Geothermal  

Open Energy Info (EERE)

Temperature, High Pressure Devices for Zonal Isolation in Geothermal Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Zonal Isolation Project Description For Enhanced Geothermal Systems (EGS), high-temperature high-pressure zonal isolation tools capable of withstanding the downhole environment are needed. In these wells the packers must withstand differential pressures of 5,000 psi at more than 300°C, as well as pressures up to 20,000 psi at 200°C to 250°C. Furthermore, when deployed these packers and zonal isolation tools must form a reliable seal that eliminates fluid loss and mitigates short circuiting of flow from injectors to producers. At this time, general purpose open-hole packers do not exist for use in geothermal environments, with the primary technical limitation being the poor stability of existing elastomeric seals at high temperatures.

258

High-Temperature-High-Volume Lifting For Enhanced Geothermal Systems  

Open Energy Info (EERE)

Temperature-High-Volume Lifting For Enhanced Geothermal Systems Temperature-High-Volume Lifting For Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High-Temperature-High-Volume Lifting For Enhanced Geothermal Systems Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 High-Temperature-High-Volume Lifting Project Description The proposed scope of work is divided into three Phases. Overall system requirements will be established in Phase 1, along with an evaluation of existing lifting system capability, identification of technology limitations, and a conceptual design of an overall lifting system. In developing the system components in Phase 2, component-level tests will be conducted using GE facilities. Areas of development will include high-temperature drive system materials, journal and thrust bearings, and corrosion and erosion-resistant lifting pump components. Finally, in Phase 3, the overall lab-scale lifting system will be demonstrated in a flow loop that will be constructed at GE Global Research.

259

Temperature measurements using multicolor pyrometry in thermal radiation heating environments  

SciTech Connect (OSTI)

Temperature measurements are important for thermal-structural experiments in the thermal radiation heating environments such as used for thermal-structural stress analyses. This paper describes the use of multicolor pyrometry for the measurements of diffuse surfaces in thermal radiation environments that eliminates the effects of background radiation reflections and unknown emissivities based on a least-squares algorithm. The near-infrared multicolor pyrometer had a spectral range of 11002400 nm, spectrum resolution of 6 nm, maximum sampling frequency of 2 kHz, working distance of 0.6 m to infinity, temperature range of 7001700 K. The pyrometer wavelength response, nonlinear intensity response, and spectral response were all calibrated. The temperature of a graphite sample irradiated by quartz lamps was then measured during heating and cooling using the least-squares algorithm based on the calibrated irradiation data. The experiments show that higher temperatures and longer wavelengths are more suitable for the thermal measurements in the quartz lamp radiation heating system. This analysis provides a valuable method for temperature measurements of diffuse surfaces in thermal radiation environments.

Fu, Tairan, E-mail: trfu@mail.tsinghua.edu.cn [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China) [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Beijing 100084 (China); Liu, Jiangfan; Duan, Minghao; Zong, Anzhou [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)] [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

2014-04-15T23:59:59.000Z

260

Heat conductance in nonlinear lattices at small temperature gradients  

E-Print Network [OSTI]

This paper proposes a new methodological framework within which the heat conductance in 1D lattices can be studied. The total process of heat conductance is separated into two parts where the first one is the equilibrium process at equal temperatures $T$ of both ends and the second one -- non-equilibrium with the temperature $\\Delta T$ of one end and zero temperature of the other. This approach allows significant decrease of computational time at $\\Delta T \\to 0$. The threshold temperature $T_{\\rm thr}$ is found which scales $T_{\\rm thr}(N) \\sim N^{-3}$ with the lattice size $N$ and by convention separates two mechanisms of heat conductance: phonon mechanism dominates at $T T_{\\rm thr}$. Solitons and breathers are directly visualized in numerical experiments. The problem of heat conductance in non-linear lattices in the limit $\\Delta T \\to 0$ can be reduced to the heat conductance of harmonic lattice with time-dependent stochastic rigidities determined by the equilibrium process at temperature $T$. The detailed analysis is done for the $\\beta$-FPU lattice though main results are valid for one-dimensional lattices with arbitrary potentials.

T. Yu. Astakhova; V. N. Likhachev; G. A. Vinogradov

2010-06-09T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS  

SciTech Connect (OSTI)

Accomplishments during the Phase I of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. A matrix of potential fiber optic sensor approaches was derived, and a data set of specifications for high-temperature optical fiber was produced. Several fiber optic sensor configurations, including interferometric (extrinsic and intrinsic Fabry-Perot interferometer), gratings (fiber Bragg gratings and long period gratings), and microbend sensors, were evaluated in the laboratory. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers. Numerical aperture measurements of both clad and unclad sapphire fibers were obtained and used to estimate the reduction in mode volume afforded by the cladding. High-temperature sensors based on sapphire fibers were also investigated. The fabrication of an intrinsic Fabry-Perot cavity within sapphire fibers was attempted by the bulk diffusion of magnesium oxide into short localized segments of longer sapphire fibers. Fourier analysis of the fringes that resulted when the treated fiber was interrogated by a swept laser spectrometer suggested that an intrinsic cavity had been formed in the fiber. Also, an unclad sapphire fiber was tested as a temperature sensor at moderate temperatures (up to 775 C).

Russell G. May; Tony Peng; Tom Flynn

2004-12-01T23:59:59.000Z

262

Assessing Biases in Recent in situ SST and Marine Air Temperature  

E-Print Network [OSTI]

Effect of spatial variability plot the mean square difference between pairs of ships as a function of biases - errors and correlations Analysis of VOS Air Temperature Variations by country Effect of solar measurement methods and sensor heights Analysis of pairs of night-time data (one ship using bucket, one ERI

263

Tucannon River Temperature Study, Prepared for : Watershed Resource Inventory Area (WRIA) 35.  

SciTech Connect (OSTI)

This report presents the results of a temperature analysis of the Tucannon River completed for the WRIA 35 Planning Unit. The Tucannon River is located in southeastern Washington and flows approximately 100 kilometers (km) (62 miles) from the Blue Mountains to the Snake River. High water temperature in the Tucannon River has been identified as a limiting factor for salmonid fish habitat (Columbia Conservation District, 2004). Several segments of the Tucannon River are included on Washington State Department of Ecology (Ecology) 303(d) list of impaired waterbodies due to temperature. Ecology is currently conducting scoping for a temperature Total Maximum Daily Load (TMDL) study of the Tucannon River. The WRIA 35 Planning Unit retained HDR Engineering to evaluate water temperature in the Tucannon River. The project objectives are: (1) Review recent and historic data and studies to characterize temperature conditions in the river; (2) Perform field studies and analyses to identify and quantify heating and cooling processes in the river; (3) Develop and calibrate a computer temperature model to determine the sources of heat to the Tucannon River and to predict the temperature of the river that would occur with increased natural riparian shading assuming the current river morphology; (4) Evaluate differences in river temperatures between current and improved riparian shading during the 'critical' period - low river flows and high temperatures; and (5) Determine the potential benefits of riparian shading as a mechanism to decrease river temperature.

HDR Engineering.

2006-06-30T23:59:59.000Z

264

Investigating Low Temperature Properties of Rubber Seals - 13020  

SciTech Connect (OSTI)

To achieve the required tightness levels of containers for low and intermediate level radioactive wastes rubbers are widely applied as main sealing materials. The save encapsulation of the radioactive container contents has to be guaranteed according to legislation and appropriate guidelines for long storage periods as well as down to temperatures of -40 deg. C during transportation. Therefore the understanding of failure mechanisms that lead to leakage at low temperatures is of high importance. It is known that the material properties of rubbers are strongly influenced by temperature. At low temperatures this is caused by the rubber-glass transition (abbr. glass transition). During continuous cooling the material changes from rubber-like entropy-elastic to stiff energy-elastic behaviour, that allows nearly no strain or retraction. Therefore, rubbers are normally used above their glass transition but the minimum working temperature limit is not defined precisely, what can cause problems during application. The temperature range where full functionality is possible is strongly dependent on the application conditions and the material. For this investigation mainly ethylene propylene diene (EPDM) and fluorocarbon rubbers (FKM) were selected as they are often used for radioactive waste containers. Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) are typically used for the determination of the temperature range of the glass transition process. The standardized compression set measurement according to ISO 815 is common for investigation of rubber sealing materials as the test simulates the seal behaviour after release. To reduce the test time of the standard tests a faster technique giving the same information was developed. Additionally, the breakdown temperature of the sealing function of complete O-ring seals is measured in a component test setup to compare it with the results of the other tests. The experimental setup is capable of measuring the leakage rate at low temperatures by the pressure rise method. A model was developed that allows calculating the minimum working temperature limit of a seal by combining the results of the applied methods. (authors)

Jaunich, M.; Wolff, D.; Stark, W. [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12203 Berlin (Germany)] [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12203 Berlin (Germany)

2013-07-01T23:59:59.000Z

265

An internal winding high temperature heater  

Science Journals Connector (OSTI)

An internal winding high temperature heater ... General principles are outlined for the construction of compact heaters that are suitable for heating small containers or reaction vessels at constant temperature and up to about 1000 C. ...

A. J. Delbouille; E. G. Derouane

1973-01-01T23:59:59.000Z

266

High Temperature Mechanical Properties as Design Parameters  

Science Journals Connector (OSTI)

...corrosion resistance or high proof strength...development of more efficient power plant, process...Figure 2 shows a high temperature bolt...S.O.) of a Boiler Code (I968...power plant for high temperature pipework, boiler headers, valve...

1976-01-01T23:59:59.000Z

267

Thermal Insulation at Very Low Temperatures  

Science Journals Connector (OSTI)

24 September 1942 research-article Thermal Insulation at Very Low Temperatures A. H. Cooke R. A. Hull Various methods of insulation have been investigated at temperatures between and 1 degrees K. A simple suspension of artificial silk fibre...

1942-01-01T23:59:59.000Z

268

Temperature calibration of Gulf of Mexico corals  

E-Print Network [OSTI]

for measurement of extension, density, and isotopes ([]?O, []C). The coral oxygen isotope signature was calibrated against high-resolution daily temperature and salinity data sets spanning 1990-1997. Coralline estimates of water temperature demonstrate only...

Smith, Jennifer Mae

2012-06-07T23:59:59.000Z

269

Temperature-Dependent Chemical Properties of  

E-Print Network [OSTI]

Silberstein #12;What is a fuel cell? #12;Polymer Electrolyte Membrane Two phase ionomer (ionic polymer temperatures (thermal history) and relative humidities Temperatures 150o C for 1 hour 100o C, 90o C, 80o C, 70o

Petta, Jason

270

High-temperature thermocouples and related methods  

DOE Patents [OSTI]

A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

Rempe, Joy L. (Idaho Falls, ID); Knudson, Darrell L. (Firth, ID); Condie, Keith G. (Idaho Falls, ID); Wilkins, S. Curt (Idaho Falls, ID)

2011-01-18T23:59:59.000Z

271

Exergy analysis of thermal processes in the building materials industry  

Science Journals Connector (OSTI)

A method is proposed to calculate the chemical exergy with allowance for the chemical composition and the ambient temperature. The exergy analysis of cement clinker burning is performed. ... The analysis of therm...

P. A. Trubaev

2006-03-01T23:59:59.000Z

272

LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES  

SciTech Connect (OSTI)

This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and Testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Progress has been made in the preparation and characterization of thin electrolytes and porous LSM substrates. Both of these tasks are essentially on or ahead of schedule. In our proposal, we suggested that the ZrO{sub 2}/Sc system needed to be considered as a candidate as a thin electrolyte. This was because microcrystalline ZrO{sub 2}/Sc has a significantly higher ionic conductivity than YSZ, particularly at the lower temperatures. As a result, some 0.5 micron thick film of ZrO{sub 2}/16% Sc on an alumina substrate (grain size 20nm) was prepared and the electrical conductivity measured as a function of temperature and oxygen activity. The Sc doped ZrO{sub 2} certainly has a higher conductivity that either 20nm or 2400nm YSZ, however, electronic conductivity dominates the conductivity for oxygen activities below 10{sup -15}. Whereas for YSZ, electronic conductivity is not a problem until the oxygen activity decreases below 10{sup -25}. These initial results show that the ionic conductivity of 20nm YSZ and 20nm ZrO{sub 2}/16% Sc are essentially the same and the enhanced conductivity which is observed for Sc doping in microcrystalline specimens is not observed for the same composition when it is nanocrystalline. In addition they show that the electronic conductivity of Sc doped ZrO{sub 2} is at least two orders of magnitude higher than that observed for YSZ. The conclusion one reaches is that for 0.5 to 1 micron thick nanocrystalline films, Sc doping of ZrO{sub 2} has no benefits compared to YSZ. As a result, electrolyte films of ZrO{sub 2}/Sc should not be considered as candidates. However, they have the potential of being useful as an interface on the anode side of the electrolyte. NexTech has focused much of its effort during the past few months on establishing tape casting methods for porous LSM substrates. This work, performed under a separate DOE-funded program, involved tape casting formulations comprising LSM powders with bi-modal particle size distributions and fugitive pore forming additives. Sintered LSM substrates with porosities in the 30 to 40 vol% range, and pore sizes of 10 {approx} 20 microns have been prepared. In addition, tape casting formulations involving composite mixtures of LSM and Sm-doped ceria (SDC) have been evaluated. The LSM/SDC cathode substrates are expected to provide better performance at low temperatures. Characterization of these materials is currently underway.

Harlan U. Anderson

2000-03-31T23:59:59.000Z

273

Carbon nanotube temperature and pressure sensors  

DOE Patents [OSTI]

The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

Ivanov, Ilia N; Geohegan, David Bruce

2013-10-29T23:59:59.000Z

274

Materials Characterization Capabilities at the High Temperature...  

Broader source: Energy.gov (indexed) [DOE]

Characterization Capabilities at the High Temperature Materials Laboratory: Focus on Carbon Fiber and Composites Materials Characterization Capabilities at the High...

275

Reciprocity theorem in high-temperature superconductors  

E-Print Network [OSTI]

This article is devoted to the problem of the validity of the reciprocity theorem in high-temperature

Ivan Jane?ek

2002-01-01T23:59:59.000Z

276

Scaling in high-temperature superconductors by  

E-Print Network [OSTI]

A Hartree approximation is used to study the interplay of two kinds of scaling which arise in high-temperature

Ian D Lawrie

1994-01-01T23:59:59.000Z

277

Agenda: High Temperature Membrane Working Group Meeting  

Broader source: Energy.gov [DOE]

Agenda for the High Temperature Membrane Working Group (HTMWG) meeting on May 18, 2009, in Arlington, Virginia

278

Determining Outdoor CPV Cell Temperature: Preprint  

SciTech Connect (OSTI)

An accurate method is needed for determining cell temperature when measuring CPV modules outdoors. It has been suggested that cell temperature can be calculated though a procedure that shutters sunlight to the cells while measuring the transients in open-circuit voltage (Voc) and heat sink temperature. This paper documents application of this shutter procedure to multiple CPV modules at NREL. The challenges and limitations are presented along with an alternate approach to measuring CPV cell operating temperature.

Muller, M.; Deline, C.; Marion, B.; Kurtz, S.; Bosco, N.

2011-07-01T23:59:59.000Z

279

Building Energy Monitoring and Analysis  

E-Print Network [OSTI]

Fan Control Hot Water Temperature Supply Air TemperatureAir Temperature Supply Air Temperature Fan Control AverageTemperature Supply Air Temperature Fan Control Average Zone

Hong, Tianzhen

2014-01-01T23:59:59.000Z

280

Levitation Performance of Bulk High Temperature Superconductor Above the Permanent Magnet Guideway atDifferent Temperatures  

Science Journals Connector (OSTI)

The levitation performance of a high temperature superconducting (HTS) Maglev system was investigated at different temperatures for HTS Maglev vehicle application. Using a cryogenic measurement system, we stud...

Hua Jing; Suyu Wang; Ming Jiang; Jiasu Wang

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Accurate temperature measurements with a degrading thermocouple  

SciTech Connect (OSTI)

Ways are considered of enhancing the accuracy of thermoelectric measurement of temperature. The high accuracy method proposed for monitoring the temperature of an aggressive medium can determine the temperature, irrespective of the instantaneous values of the Seebeck and Peltier coefficients, i.e., irrespective of the uncontrolled thermocouple sensitivity, which varies during use.

Skripnik, Y.A.; Khimicheva, A.I.

1995-04-01T23:59:59.000Z

282

Temperature Measurements at an Implosion Focus  

Science Journals Connector (OSTI)

...Temperature Measurements at an Implosion Focus T. Saito I. I. Glass Spectroscopic temperature...temperatures were measured at the implosion focus by using a medium quartz Hilger spectrograph...very close to unity, confirmed that the plasma was a black body. Numerical studies with...

1982-01-01T23:59:59.000Z

283

Optical temperature sensor using thermochromic semiconductors  

DOE Patents [OSTI]

Optical thermometry is a growing technological field which exploits the ability of certain materials to change their optical properties with temperature. A subclass of such materials are those which change their color as a reversible and reproducible function of temperature. These materials are thermochromic. This invention is a composition to measure temperature utilizing thermochromic semiconductors.

Kronberg, J.W.

1994-01-01T23:59:59.000Z

284

Hydrogen Analysis  

Broader source: Energy.gov [DOE]

Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

285

Electrochemical investigations of various high-temperature superconductor phases  

Science Journals Connector (OSTI)

Electrochemical investigations of various high-temperature superconductor phases ... Electrochemistry of High-Temperature Superconductors ...

David R. Riley; A. Manthiram; John T. McDevitt

1992-11-01T23:59:59.000Z

286

Using conversions of chemically reacting tracers for numerical determination of temperature profiles in flowing systems and temperature histories in batch systems  

SciTech Connect (OSTI)

This report presents the mathematical bases for measuring internal temperatures within batch and flowing systems using chemically reacting tracers. This approach can obtain temperature profiles of plug-flow systems and temperature histories within batch systems. The differential equations for reactant conversion can be converted into Fredholm integral equations of the first kind. The experimental variable is the tracer-reaction activation energy. When more than one tracer is used, the reactions must have different activation energies to gain information. In systems with temperature extrema, multiple solutions for the temperature profiles or histories can exist, When a single parameter in the temperature distribution is needed, a single-tracer test may furnish this information. For multi-reaction tracer tests, three Fredholm equations are developed. Effects of tracer-reaction activation energy, number of tracers used, and error in the data are evaluated. The methods can determine temperature histories and profiles for many existing systems, and can be a basis for analysis of the more complicated dispersed-flow systems. An alternative to using the Fredholm-equation approach is the use of an assumed temperature- distribution function and incorporation of this function into the basic integral equation describing tracer behavior. The function contains adjustable parameters which are optimized to give the temperature distribution. The iterative Fredholm equation method is tested to see what is required to discriminate between two models of the temperature behavior of Hot Dry Rock (HDR) geothermal reservoirs. Experimentally, ester and amide hydrolyses are valid HDR tracer reactions for measuring temperatures in the range 75-100{degrees}C. Hydrolyses of bromobenzene derivatives are valid HDR tracer reactions for measuring temperatures in the range 150-275{degrees}C.

Brown, L.F.; Chemburkar, R.M.; Robinson, B.A.; Travis, B.J.

1996-04-01T23:59:59.000Z

287

Resource Analysis  

Broader source: Energy.gov [DOE]

Resource Analysis determines the quantity and location of resources needed to produce hydrogen. Additionally, resource analysis quantifies the cost of the resources, as a function of the amount...

288

A SYSTEMATIC SURVEY OF HIGH-TEMPERATURE EMISSION IN SOLAR ACTIVE REGIONS  

SciTech Connect (OSTI)

The recent analysis of observations taken with the EUV Imaging Spectrometer and X-Ray Telescope instruments on Hinode suggests that well-constrained measurements of the temperature distribution in solar active regions can finally be made. Such measurements are critical for constraining theories of coronal heating. Past analysis, however, has suffered from limited sample sizes and large uncertainties at temperatures between 5 and 10 MK. Here we present a systematic study of the differential emission measure distribution in 15 active region cores. We focus on measurements in the 'inter-moss' region, that is, the region between the loop footpoints, where the observations are easier to interpret. To reduce the uncertainties at the highest temperatures we present a new method for isolating the Fe XVIII emission in the AIA/SDO 94 A channel. The resulting differential emission measure distributions confirm our previous analysis showing that the temperature distribution in an active region core is often strongly peaked near 4 MK. We characterize the properties of the emission distribution as a function of the total unsigned magnetic flux. We find that the amount of high-temperature emission in the active region core is correlated with the total unsigned magnetic flux, while the emission at lower temperatures, in contrast, is inversely related. These results provide compelling evidence that high-temperature active region emission is often close to equilibrium, although weaker active regions may be dominated by evolving million degree loops in the core.

Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, VP 62, Huntsville, AL 35812 (United States); Brooks, David H. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

2012-11-10T23:59:59.000Z

289

THE EFFECT OF INCREASING TEMPERATURE ON K-EFF FOR FISSILE MATERIAL OUTSIDE REACTORS  

SciTech Connect (OSTI)

Nuclear Criticality Safety Evaluations typically employ room temperature cross sections, material densities, and dimensions. Processes that have been and are in development for conversion of legacy wastes in tanks, e.g., Waste Treatment Project (WTP) at the Hanford Remediation Site and Defense Waste Processing Facility (DWPF) at the Savannah River Site, utilize melters that operate at elevated temperatures, 1500 to 1900 C. The applicability of room temperature data to processes such as these has been questioned. Also questioned was the applicability of room temperature data for the analyses across the Savannah River Site (SRS) where the temperature may be elevated, such as in a postulated fire. This analysis was performed to examine the effect of temperature over the relatively small range encountered in normal and abnormal operations at SRS that does not include DWPF melters. This analysis documented herein is limited to fast systems of fissile metal and oxide cylinders on concrete at temperatures no greater than 640 C, the melting point of plutonium. Because thermal expansion data for various types of structural materials was not readily available, structural materials were not included in the analysis.

Kessler, S.

2009-06-09T23:59:59.000Z

290

Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit  

DOE Patents [OSTI]

A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radio nuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components.

McQuaid, James H. (Livermore, CA); Lavietes, Anthony D. (Hayward, CA)

1998-05-29T23:59:59.000Z

291

Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit  

DOE Patents [OSTI]

A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector is disclosed. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radionuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components. 9 figs.

McQuaid, J.H.; Lavietes, A.D.

1998-05-26T23:59:59.000Z

292

Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses  

SciTech Connect (OSTI)

Heat accumulation by high repetition rate femtosecond laser irradiation inside glass generates a much larger modification than that by a single pulse. In this study, we determined the temperature distribution due to heat accumulation and the characteristic temperature for heat modification inside a soda lime glass by analyzing the relationship between the radius of modification and glass temperature. The validity of the analysis was confirmed by reproducing the modification due to two-beam irradiation. The determined characteristic temperature suggested that the temperature distribution and the spatial dependence of the stress relaxation are important in the mechanism of heat modification.

Sakakura, Masaaki; Shimotsuma, Yasuhiko [Innovative Collaboration Center of Kyoto University, Kyoto 615-8520 (Japan); Shimizu, Masahiro; Miura, Kiyotaka; Hirao, Kazuyuki [Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510 (Japan)

2008-12-08T23:59:59.000Z

293

High Temperature Superconducting Underground Cable  

SciTech Connect (OSTI)

The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

Farrell, Roger, A.

2010-02-28T23:59:59.000Z

294

Thermodynamic Analysis for Energy Conservation  

E-Print Network [OSTI]

THERMODYNAMIC ANALYSIS FOR ENERGY CONSERVATION William F. Kenney Exxon Chemical Company Florham Park, New Jersey , ,,~ This paper describes a methodology for per forming a thermodynamic analysis of a process, and it demonstrates how... fired. In a cracking furnace it can reduce lost work in combustion and in the convec tion section at the cost of more surface area in the convection section, reduced steam make, and slightly higher radiative temperature differences. Preheating air...

Kenney, W. F.

1981-01-01T23:59:59.000Z

295

High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model  

E-Print Network [OSTI]

High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model Zaher Abstract We have analysed low and high temperature series expansions for the three­dimensional Ising model temperature of the three­dimensional (3d) Ising model on the simple cubic lattice has been exhaustively

Adler, Joan

296

NREL: Energy Analysis - Sustainability Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sustainability Analysis Sustainability Analysis The laboratory's Sustainability Analysis looks at the environmental, life-cycle, climate, and other impacts of renewable energy technologies. Our energy choices have global implications that affect greenhouse gas emissions, water resource distribution, mineral consumption, and equipment manufacturing and transportation. The school of thought is that renewable energy technologies are more sustainable than many current sources of energy. However, we need to verify that this is true before we miss some important opportunities. NREL's capabilities in this analysis area include: resource-use optimization techno-economic feasibility and cost analysis life cycle assessment environmental externalities analysis cobenefits analysis manufacturing cost analysis

297

NREL: Energy Analysis - Market Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market Analysis The laboratory's market analysis helps increase the use of renewable energy (RE) and energy efficiency (EE) technologies in the marketplace by providing strategic...

298

Operation and performance of a low temperature Organic Rankine Cycle  

Science Journals Connector (OSTI)

Abstract The test and analysis of an Organic Rankine Cycle (ORC) with R123 as the working fluid were presented in this paper. A scroll expander was integrated in the system to generate work. The expander was connected with an AC dynamometer unit, which was used to control and measure the expander shaft torque and rotating speed. The conductive oil simulated the low grade heat source. Operation characteristics were compared between the heat source temperatures of 140C and 160C. The experiments were conducted by adjusting two independent parameters: the pumping frequency of the R123 pump and the shaft torque of the expander. The former parameter was directly related to the R123 mass flow rate and the later to the external load. The optimum system performance can be determined by these two parameters. The maximum measured shaft power and thermal efficiency were 2.35 kW and 6.39% at the heat source temperature of 140C, but they were 3.25 kW and 5.12% at the heat source temperature of 160C. This study identified that the measured shaft power was about 15-20% lower than the enthalpy determined values, and the pumping power of the organic fluid was 2-4 times higher than the enthalpy determined values. The enthalpy determined values were based on the local pressure and temperature sensor measurements.

Zheng Miao; Jinliang Xu; Xufei Yang; Jinhuang Zou

2014-01-01T23:59:59.000Z

299

Temperature rise and safety considerations for radiation force ultrasound imaging  

Science Journals Connector (OSTI)

Current models for estimating temperature increase during ultrasound exposure calculate the steady?state rise using time?averaged acoustic output as the worst case for safety consideration. While valid for the typically very short (microsecond) pulses used by conventional diagnostic techniques this analysis does not necessarily correspond to a worst case scenario for the longer pulses or pulse bursts used by a new method radiation force imaging. Radiation force imaging employing ultrasound pulse durations up to hundreds of milliseconds produces and detects motion in solid tissue or acoustic streaming in fluids via a high intensity beam. Models that calculate the transient temperature rise from these pulses are developed for both the bone at focus and soft tissue cases. Based on accepted timetemperature dose criteria it is shown that for pulse lengths and intensities utilized by this technique temperature may increase to levels that raise safety concerns for bone at the focus of the ultrasound beam. Also the impact on this modality of the current U.S. Food and Drug Administration output limits for diagnostic ultrasound devices is discussed.

Bruce A. Herman; Gerald R. Harris

2002-01-01T23:59:59.000Z

300

High temperature solar selective coatings  

DOE Patents [OSTI]

Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

Kennedy, Cheryl E

2014-11-25T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Low-temperature heat capacity of solid HD  

Science Journals Connector (OSTI)

The heat capacity at the saturated vapor pressure Cs has been measured for a single sample of solid HD over the temperature range 0.4 to 8 K for various concentrations of J=1 impurities of H2 and D2. The variation in J=1 concentration in the sample was due to conversion to the J=0 rotational ground state over a period of time of approximately one month. In the limit of zero J=1 concentration, Cs fitted a T3 dependence characterized by a Debye temperature of 101 K. An analysis is given of the contribution to the heat capacity from electric quadrupole-quadrupole pair interactions of the J=1 impurities in the solid.

J. H. Constable; A. Q. McGee; J. R. Gaines

1975-04-15T23:59:59.000Z

302

Temperatureentropy diagram for an irreversible absorption refrigeration cycle  

Science Journals Connector (OSTI)

This article develops the theoretical foundation for the temperatureentropy (Ts) diagram for irreversible absorption chillers that employ either a volatile or nonvolatile working pair. The representation of a real absorption refrigeration cycle on a Ts diagram can directly depict the energetic superiority of one design over another. For practical usage this diagrammatic approach only requires as inputs the inlet and outlet state points that can be computed based on the corresponding temperatures pressures and component concentrations of each of the heat-and-mass exchanger modules within a chiller system and can therefore also be employed as a useful tool for system analysis and diagnosis. The same method is also applicable to any continuously operating thermodynamic system that is wholly or partially driven by thermal power.

H. T. Chua; H. K. Toh; K. C. Ng

2000-01-01T23:59:59.000Z

303

Room temperature ferromagnetism in a phthalocyanine based carbon material  

SciTech Connect (OSTI)

We report on a simple method to fabricate a magnetic carbon material that contains nitrogen-coordinated transition metals and has a large magnetic moment. Highly chlorinated iron phthalocyanine was used as building blocks and potassium as a coupling reagent to uniformly disperse nitrogen-coordinated iron atoms on the phthalocyanine based carbon material. The iron phthalocyanine based carbon material exhibits ferromagnetic properties at room temperature and the ferromagnetic phase transition occurs at T{sub c}?=?490??10?K. Transmission electron microscopy observation, X-ray diffraction analysis, and the temperature dependence of magnetization suggest that the phthalocyanine molecules form three-dimensional random networks in the iron phthalocyanine based carbon material.

Honda, Z., E-mail: honda@fms.saitama-u.ac.jp; Sato, K.; Sakai, M.; Fukuda, T.; Kamata, N. [Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570 (Japan); Hagiwara, M.; Kida, T. [KYOKUGEN (Center for Quantum Science and Technology under Extreme Conditions), Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

2014-02-07T23:59:59.000Z

304

Temperature Dependent Neutron Scattering Sections for Polyethylene  

E-Print Network [OSTI]

This note presents neutron scattering cross sections for polyethylene at 296 K, 77 K and 4 K derived from a new scattering kernel for neutron scattering off of hydrogen in polyethylene. The kernel was developed in ENDF-6 format as a set of S(alpha,beta) tables using the LEAPR module of the NJOY94 code package. The polyethylene density of states (from 0 to sub eV) adopted to derive the new kernel is presented. We compare our calculated room temperature total scattering cross sections and double differential cross sections at 232 meV at various angles with the available experimental data (at room temperature), and then extrapolate the calculations to lower temperatures (77K and 4K). The new temperature dependent scattering kernel gives a good quantitative fit to the available room temperature data and has a temperature dependence that is qualitatively consistent with thermodynamics.

Roger E. Hill; C. -Y. Liu

2003-09-05T23:59:59.000Z

305

Case histories of temperature surveys in Kuwait  

SciTech Connect (OSTI)

Most crude produced in Kuwait is from naturally flowing wells. Casing, tubing, and cement in these wells remain unchanged after completion. This study discusses the major application of temperature surveys in indicating fluid movement both inside and behind the production string, hence locating any holes in the casing. Some significant cases of temperature anomalies are examined qualitatively, and suggestions are made for a more quantitative interpretation of temperature profiles. 9 refs.

Gupta, B.S.

1981-12-01T23:59:59.000Z

306

Optical temperature indicator using thermochromic semiconductors  

DOE Patents [OSTI]

A reversible optical temperature indicator utilizes thermochromic semiconductors which vary in color in response to various temperature levels. The thermochromic material is enclosed in an enamel which provides protection and prevents breakdown at higher temperatures. Cadmium sulfide is the preferred semiconductor material. The indicator may be utilized as a sign or in a striped arrangement to clearly provide a warning to a user. The various color responses provide multiple levels of alarm.

Kronberg, J.W.

1995-01-01T23:59:59.000Z

307

NREL: Energy Analysis - Technology Systems and Sustainability Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Systems and Sustainability Analysis Technology Systems and Sustainability Analysis The following includes summary bios of staff expertise and interests in analysis related to infrastructure and systems; sustainability assessment; technoeconomic assessment; and water requirements. Team Lead: Margaret Mann Administrative Support: JoAnn Weaver Chad Augustine Alberta Carpenter Karlynn Cory Ran Fu Maureen Hand KC Hallett Ted James Garvin Heath Scott Jenne Aaron Levine Ben Maples Anelia Milbrandt Emily K. Newes Ethan Warner Kermit Witherbee Michael Woodhouse Katherine Young Yimin Zhang Photo of Chad Augustine. Chad Augustine Geothermal Energy Engineer/Analyst Areas of expertise Techno-economic modeling of Enhanced Geothermal Systems (EGS) Geothermal resource assessment High pressure, high temperature reaction systems

308

Coupling RELAP5-3D and Fluent to analyze a Very High Temperature Reactor (VHTR) outlet plenum  

E-Print Network [OSTI]

code such as Fluent. The two codes were successfully coupled. The values of pressure, mass flow rate and temperature across the coupled boundary showed only slight differences. The coupling tool used in this analysis can be applied to many different...

Anderson, Nolan Alan

2006-10-30T23:59:59.000Z

309

Dependence of Tropospheric Temperature on the Parameterization of Cumulus Convection in the GLAS Model of the General Circulation  

Science Journals Connector (OSTI)

Analysis of the simulation of seasonal change by the GLAS model of the general circulation reveals deficiencies in the simulation of tropospheric temperature and of convective cloud cover. These interrelated deficiencies are due to a spurious ...

H. Mark Helfand

1981-01-01T23:59:59.000Z

310

Variable Temperature UHV STM/AFM | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of oxide materials, determining their properties is widely pursued both... Surface Chemistry of 2-Propanol on TiO2(110): Low and High Temperature Dehydration, Isotope...

311

Membranes and MEAs at Freezing Temperatures  

Broader source: Energy.gov [DOE]

Presentation by Phil Ross to DOE's Fuel Cell Operations at Sub-Freezing Temperatures Workshop held February 1-5, 2005 in Phoenix, Arizona.

312

Low Temperature Catalyst for Fuel Injection System  

Broader source: Energy.gov [DOE]

A low temperature oxidation catalyst applied to a DOC and DPF combined with a unique fuel injection system remove soot from a diesel exhaust system.

313

High Temperature 300C Directional Drilling System  

Broader source: Energy.gov [DOE]

Project objective: provide a directional drilling system that can be used at environmental temperatures of up to 300C; and at depths of 10; 000 meters.

314

Geothermal: Sponsored by OSTI -- Temperatures and intervalgeothermal...  

Office of Scientific and Technical Information (OSTI)

Temperatures and interval geothermal-gradient determinations from wells in National Petroleum Reserve in Alaska Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

315

Low temperature proton conducting oxide devices  

DOE Patents [OSTI]

A device for conducting protons at a temperature below 550.degree. C. includes a LAMOX ceramic body characterized by an alpha crystalline structure.

Armstrong, Timothy R. (Clinton, TN); Payzant, Edward A. (Oak Ridge, TN); Speakman, Scott A. (Oak Ridge, TN); Greenblatt, Martha (Highland Park, NJ)

2008-08-19T23:59:59.000Z

316

SWTDI Geothermal Aquaculture Facility Aquaculture Low Temperature...  

Open Energy Info (EERE)

poi":true,"imageoverlays":,"markercluster":false,"searchmarkers":"","locations": The following error has been detected in your syntax: * Display map Temperature 57.0 C 135.0...

317

Jackpot Aquaculture Low Temperature Geothermal Facility | Open...  

Open Energy Info (EERE)

poi":true,"imageoverlays":,"markercluster":false,"searchmarkers":"","locations": The following error has been detected in your syntax: * Display map Temperature 36.0 C 97.0...

318

Low-Temperature Automotive Diesel Combustion  

Broader source: Energy.gov (indexed) [DOE]

reaction 12 The CO LIF results are semi-quantitative - lending credence to the measured spatial distributions We apply temperature and pressure corrections to the CO absorption...

319

Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficient Automotive Waste Heat Recovery Multi-physics modeling of thermoelectric generators for waste heat recovery applications Nanostructured High-Temperature Bulk...

320

High Temperature Thermoelectric Materials Characterization for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2009 -- Washington D.C. lmp06wang.pdf More Documents & Publications High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success...

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Electron Temperature Structures Associated With Magnetic Tearing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

flattening is characteristic of rapid parallel heat conduction along helical magnetic field lines. The spatial structure of the temperature fluctuations show that the location of...

322

High temperature, optically transparent plastics from biomass  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperature, optically transparent plastics from biomass At a Glance Rapid, selective catalytic system to produce vinyl plastics from renewable biomass Stereoregular...

323

Materials Characterization Capabilities at the High Temperature...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Laboratory and HTML User Program Success Stories Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus on Carbon Fiber and Composites...

324

Group 3: Humidity, Temperature, and Voltage (Presentation)  

SciTech Connect (OSTI)

Group 3 is chartered to develop accelerated stress tests that can be used as comparative predictors of module lifetime versus stresses associated with humidity, temperature and voltage.

Wohlgemuth, J.

2013-05-01T23:59:59.000Z

325

Low Temperature Performance Characterization & Modeling | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. esp04jansen.pdf More Documents & Publications Low Temperature Performance Characterization...

326

Low Temperature Performance Characterization | Department of...  

Broader source: Energy.gov (indexed) [DOE]

"Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08jansen2.pdf More Documents & Publications Low Temperature Performance Characterization &...

327

Low Temperature/Coproduced/Geopressured Subprogram Overview  

Broader source: Energy.gov [DOE]

This overview of GTP's Low Temperature/Coproduced/Geopressured subprogram was given at GTP's Program Peer Review on May 18, 2010.

328

Magnetism in SQUIDs at Millikelvin Temperatures  

Science Journals Connector (OSTI)

We have characterized the temperature dependence of the flux threading dc SQUIDs cooled to millikelvin temperatures. The flux increases as 1/T as temperature is lowered; moreover, the flux change is proportional to the density of trapped vortices. The data are compatible with the thermal polarization of surface spins in the trapped fields of the vortices. In the absence of trapped flux, we observe evidence of spin-glass freezing at low temperature. These results suggest an explanation for the universal 1/f flux noise in SQUIDs and superconducting qubits.

S. Sendelbach; D. Hover; A. Kittel; M. Mck; John M. Martinis; R. McDermott

2008-06-05T23:59:59.000Z

329

High Temperature Materials Laboratory (HTML) - PSD Directorate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

filler A National Resource for Collaborative Materials Research The High Temperature Materials Laboratory (HTML) User Program is on hiatus due to federal budget reductions....

330

Geothermal Energy Production from Low Temperature Resources,...  

Open Energy Info (EERE)

Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Jump to: navigation, search Geothermal ARRA Funded...

331

Comparing Wind, Temperature, Pressure, and Humidity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the higher the amount of energy in the air. Temperature is measured using a thermometer with units in degrees Celsius or Fahrenheit. See http:www.teachervision.com...

332

Temperature Normals/Extremes-August - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September October November December Historical Weather Charts Temperature NormalsExtremes-August Email Email Page | Print Print Page |Text Increase Font Size Decrease Font...

333

Temperature Normals/Extremes-October - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September October November December Historical Weather Charts Temperature NormalsExtremes-October Email Email Page | Print Print Page |Text Increase Font Size Decrease Font...

334

Temperature Normals/Extremes-April - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September October November December Historical Weather Charts Temperature NormalsExtremes-April Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size...

335

Temperature Normals/Extremes-July - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September October November December Historical Weather Charts Temperature NormalsExtremes-July Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size...

336

Temperature Normals/Extremes-May - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September October November December Historical Weather Charts Temperature NormalsExtremes-May Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size...

337

Temperature Normals/Extremes-December - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September October November December Historical Weather Charts Temperature NormalsExtremes-December Email Email Page | Print Print Page |Text Increase Font Size Decrease Font...

338

Temperature Normals/Extremes-March - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September October November December Historical Weather Charts Temperature NormalsExtremes-March Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size...

339

Temperature Normals/Extremes-September - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September October November December Historical Weather Charts Temperature NormalsExtremes-September Email Email Page | Print Print Page |Text Increase Font Size Decrease Font...

340

Temperature Normals/Extremes-November - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September October November December Historical Weather Charts Temperature NormalsExtremes-November Email Email Page | Print Print Page |Text Increase Font Size Decrease Font...

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Temperature Normals/Extremes-June - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September October November December Historical Weather Charts Temperature NormalsExtremes-June Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size...

342

Temperature Normals/Extremes-February - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September October November December Historical Weather Charts Temperature NormalsExtremes-February Email Email Page | Print Print Page |Text Increase Font Size Decrease Font...

343

Temperature Normals/Extremes-January - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September October November December Historical Weather Charts Temperature NormalsExtremes-January Email Email Page | Print Print Page |Text Increase Font Size Decrease Font...

344

Weak magnetic field effects on chiral critical temperature in a nonlocal Nambu--Jona-Lasinio model  

E-Print Network [OSTI]

In this article we study the nonlocal Nambu--Jona-Lasinio model with a Gaussian regulator in the chiral limit. Finite temperature effects and the presence of a homogeneous magnetic field are considered. The magnetic evolution of the critical temperature for chiral symmetry restoration is then obtained. Here we restrict ourselves to the case of low magnetic field values, being this a complementary discussion to the exisiting analysis in nonlocal models in the strong magnetic field regime.

Loewe, M; Villavicencio, C; Zamora, R

2014-01-01T23:59:59.000Z

345

Weak magnetic field effects on chiral critical temperature in a nonlocal Nambu--Jona-Lasinio model  

E-Print Network [OSTI]

In this article we study the nonlocal Nambu--Jona-Lasinio model with a Gaussian regulator in the chiral limit. Finite temperature effects and the presence of a homogeneous magnetic field are considered. The magnetic evolution of the critical temperature for chiral symmetry restoration is then obtained. Here we restrict ourselves to the case of low magnetic field values, being this a complementary discussion to the exisiting analysis in nonlocal models in the strong magnetic field regime.

M. Loewe; F. Marquez; C. Villavicencio; R. Zamora

2014-10-27T23:59:59.000Z

346

The resistivity-temperature-concentration relationships in ?-phase titanium-hydrogen alloys  

Science Journals Connector (OSTI)

An attempt has been made to test the tentative conclusion reached in earlier work on the resistivity/ composition curves for ?-phase titanium-niobium alloys that the extrapolated resistivity/temperature relationship for unalloyed ?-titanium at temperatures below the ?-? transformation temperature would have a form more to be expected from a semiconductor than from a pure metal. This has been done by means of similar studies of ?-phase titanium-hydrogen alloys in which resistivity measurements were made over a temperature range of 400904C and at compositions up to TiH. The form of the resistivity/composition curves has precluded their direct extrapolation to zero hydrogen content except at temperatures only just below the transformation temperature, but a more detailed analysis of the experimental results has provided some basis for a not unreasonable extrapolation of the resistivity/composition isotherms at lower temperatures, and the results thus obtained agree qualitatively with those of the earlier work. The validity of the various assumptions made is discussed. The present results indicate that at 480C, below the transformation temperature, the resistivity of ?-titanium would have fallen only 2% below the value of the resistivity immediately above the transformation temperature, and not by the 40% to be expected of a normal metal.

S.L Ames; A.D McQuillan

1956-01-01T23:59:59.000Z

347

Characterization of Single Barrier Microrefrigerators at Cryogenic Temperatures  

E-Print Network [OSTI]

Microrefrigerators at Cryogenic Temperatures X. WANG, 1,3 Y.Microrefrigerators at Cryogenic Temperatures Fig. 6. Three-ionic cooling devices at cryogenic temperatures is reported.

2009-01-01T23:59:59.000Z

348

Hole doping in high temperature superconductors using the XANES technique  

E-Print Network [OSTI]

Hole doping in high temperature superconductors using the1994 Thallium-Based High Temperature Superconductors ed A M1994 Thallium-Based High Temperature Superconductors ed A M

Hamdan, Nasser

2012-01-01T23:59:59.000Z

349

Southern Hemisphere humpback whales wintering off Central America: insights from water temperature into the longest mammalian migration  

Science Journals Connector (OSTI)

...temperature influences their distribution at the basin scale. Our analysis shows that worldwide...Sohouhoue, P. Dossou, C. 2001 The Bight of Benin, a North Atlantic breeding ground...temperature influences whale distribution at the basin scale. Calf development in warm water...

2007-01-01T23:59:59.000Z

350

High- and low-temperature bonding techniques for microstructures  

SciTech Connect (OSTI)

The ability to bond together two or more silicon wafers greatly expands the variety and complexity of silicon microstructures that can be designed and fabricated. At LLNL, microstructures have been used for many years as hardware in scientific experiments. The activity has recently been expanded into other areas to include microinstruments for biomedical applications and for chemical analysis. Both high temperature (1100{degrees}C) bonding techniques have been used, depending on the application. This paper discusses these applications with emphasis on the most extensive which is the fabrication of microchannel coolers for diode arrays.

Ciarlo, D.R.

1993-06-22T23:59:59.000Z

351

Probing the glass transition from structural and vibrational properties of zero-temperature glasses  

E-Print Network [OSTI]

We find that the density dependence of the glass transition temperature of Lennard-Jones (LJ) and Weeks-Chandler-Andersen (WCA) systems can be predicted from properties of the zero-temperature ($T=0$) glasses. Below a crossover density $\\rho_s$, LJ and WCA glasses show different structures, leading to different vibrational properties and consequently making LJ glasses more stable with higher glass transition temperatures than WCA ones. Above $\\rho_s$, structural and vibrational quantities of the $T=0$ glasses show scaling collapse. From scaling relations and dimensional analysis, we predict a density scaling of the glass transition temperature, in excellent agreement with simulation results. We also propose an empirical expression of the glass transition temperature using structural and vibrational properties of the $T=0$ glasses, which works well over a wide range of densities.

Lijin Wang; Ning Xu

2014-02-10T23:59:59.000Z

352

Analysis5_.PDF  

Gasoline and Diesel Fuel Update (EIA)

September 1999 September 1999 The Impact of Temperature Trends on Short-Term Energy Demand by Michael Morris The past few years have witnessed unusually warm weather, as evidenced by both mild winters and hot summers. The most recent winter was the second warmest on record, and the summer of 1998 set new U.S. and worldwide temperature records. Climatologists have concluded that the recent spate of unusually warm weather is part of a warming trend that dates to 1965, and that this trend is likely to continue. The trend has also exhibited distinct seasonal and regional variations: winters have experienced a greater warming trend than other seasons, and the West has been more prone to warming than the rest of the Lower-48 states. The analysis shows that the 30-year norms--the basis of weather-related energy demand projections--do

353

Reactor hot spot analysis  

SciTech Connect (OSTI)

The principle methods for performing reactor hot spot analysis are reviewed and examined for potential use in the Applied Physics Division. The semistatistical horizontal method is recommended for future work and is now available as an option in the SE2-ANL core thermal hydraulic code. The semistatistical horizontal method is applied to a small LMR to illustrate the calculation of cladding midwall and fuel centerline hot spot temperatures. The example includes a listing of uncertainties, estimates for their magnitudes, computation of hot spot subfactor values and calculation of two sigma temperatures. A review of the uncertainties that affect liquid metal fast reactors is also presented. It was found that hot spot subfactor magnitudes are strongly dependent on the reactor design and therefore reactor specific details must be carefully studied. 13 refs., 1 fig., 5 tabs.

Vilim, R.B.

1985-08-01T23:59:59.000Z

354

Ultrasound Analysis of Slurries  

DOE Patents [OSTI]

An autoclave reactor allows for the ultrasonic analysis of slurry concentration and particle size distribution at elevated temperatures and pressures while maintaining the temperature- and pressure-sensitive ultrasonic transducers under ambient conditions. The reactor vessel is a hollow stainless steel cylinder containing the slurry which includes a stirrer and a N, gas source for directing gas bubbles through the slurry. Input and output transducers are connected to opposed lateral portions of the hollow cylinder for respectively directing sound waves through the slurry and receiving these sound waves after transmission through the slurry, where changes in sound wave velocity and amplitude can be used to measure slurry parameters. Ultrasonic adapters connect the transducers to the reactor vessel in a sealed manner and isolate the transducers from the hostile conditions within the vessel without ultrasonic signal distortion or losses.

Soong, Yee and Blackwell, Arthur G.

2005-11-01T23:59:59.000Z

355

Ultra-low-temperature cooling of two-dimensional electron gas  

Science Journals Connector (OSTI)

A new design has been used for cooling GaAs/AlxGa1?xAs sample to ultra-low-temperatures. The sample, with electrical contacts directly soldered to the sintered silver powder heat exchangers, was immersed in liquid 3He, which was cooled by a PrNI5 nuclear refrigerator. The data analysis shows that the two-dimensional electron gas (2DEG) was cooled to 4.0mK at the refrigerator base temperature Tb of 2.0mK. The design with heat exchanger cooling is applicable to any ultra-low-temperature transport measurements of 2DEG system.

J.S Xia; E.D Adams; V Shvarts; W Pan; H.L Stormer; D.C Tsui

2000-01-01T23:59:59.000Z

356

Analytical Fit of the Transfer Function of a Logarithmic Electrometer and Correction for Ambient Temperature Variations  

Science Journals Connector (OSTI)

An analytical fit has been derived for the transfer function of a logarithmic electrometer utilizing a p?n junctiondiode as a feedback loop element. Elementary semiconductortheory has been used to describe the diode current?voltage characteristic and the diode ohmic resistance and an external parallel resistance have been included in the circuit analysis. A temperature correction has been applied to account for a difference in the temperature of the diode during calibration and during the taking of data. The analytical fit with temperature correction is believed to be accurate to better than 10% of the absolute current input over seven current decades.

Raymond W. Huggins

1973-01-01T23:59:59.000Z

357

High Temperature Solar Splitting of Methane  

E-Print Network [OSTI]

-term commercialization opportunities #12;Why Use Solar Energy?Why Use Solar Energy? · High concentrations possible (>1000High Temperature Solar Splitting of Methane to Hydrogen and Carbon High Temperature Solar Splitting and worldwide) ­ Sufficient to power the world (if we choose to) · Advantages tradeoff against collection area

358

QED3 Theory of High Temperature Superconductors  

E-Print Network [OSTI]

QED3 Theory of High Temperature Superconductors Zlatko Tesanovi´c The Johns Hopkins University is The Problem in high Tc superconductors? · Superconducting state appears dx2-y2 "BCS-like". Low energy: · Today, everything seems to be a high temperature superconduc- tor (cuprates, C60's, MgB2

Tesanovic, Zlatko

359

Metallic Hydrogen: A High-Temperature Superconductor?  

Science Journals Connector (OSTI)

Application of the BCS theory to the proposed metallic modification of hydrogen suggests that it will be a high-temperature superconductor. This prediction has interesting astrophysical consequences, as well as implications for the possible development of a superconductor for use at elevated temperatures.

N. W. Ashcroft

1968-12-23T23:59:59.000Z

360

Sanyal Temperature Classification | Open Energy Information  

Open Energy Info (EERE)

Sanyal Temperature Classification Sanyal Temperature Classification Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification The information for this page was taken directly from Subir Sanyal's paper, Classification of Geothermal Systems: A Possible Scheme (Stanford, February 2, 2005) At the request of the United States Department of Energy, the author was asked by the Geothermal Energy Association (Washington, D.C.) to prepare a white paper on the subject (in connection with a new national assessment of geothermal resources). This paper offers a possible scheme in which geothermal resources are classified into seven categories based on temperature. This scheme is based not only on temperature but also according to a set of additional attributes important for practical utilization of geothermal

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Thermoelectric refrigerator having improved temperature stabilization means  

DOE Patents [OSTI]

A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

Falco, Charles M. (Woodridge, IL)

1982-01-01T23:59:59.000Z

362

2-D Temperature Mapping in Fluorocarbon Plasmas  

SciTech Connect (OSTI)

Two-dimensional maps of rotational temperature in CF4 plasmas were determined using planar laser-induced fluorescence measurements of CF A2{sigma}+ - X2{pi} (1,0). Rotational temperatures are expected to be in equilibrium with gas temperatures under the present conditions. Experiments were performed in a capacitively-coupled, parallel-plate reactor at pressures from 27 Pa to 107 Pa and powers of 10 W to 30 W. The effects of electrode cooling and having a wafer present were also examined. Measured temperatures ranged between 273 K{+-}15 K and 480 K{+-}15 K. The strong temperature gradients found in these plasmas can have serious effects on density measurements that probe a single rotational level, as well as on reaction rate constants and interpretation of density gradients.

Steffens, Kristen L.; Sobolewski, Mark A. [Process Measurements Division, National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States)

2005-09-09T23:59:59.000Z

363

Spherical Target Temperature by Extended CFAST Calculation  

SciTech Connect (OSTI)

The purpose of this calculation is to evaluate the temperature at the surface of a spherical target made of polyethylene during a room fire. The current calculation is separated into 2 steps: (1) CFAST code calculation--Calculate the air temperature; radiation flux to the target from the fire, surrounding air, and walls; convection flux; and target temperature. (2) Extended model calculation--Calculate the temperature of the target sphere taking into account the density, heat capacity, heat conductivity, and the spherical geometry of the target by solving the coupled finite difference equations. The second step calculation utilizes the air temperature and radiation flux determined by the CFAST code calculation in the first step.

Ma, C W

2009-05-05T23:59:59.000Z

364

Polarization versus Temperature in Pyridinium Ionic Liquids  

E-Print Network [OSTI]

Electronic polarization and charge transfer effects play a crucial role in thermodynamic, structural and transport properties of room-temperature ionic liquids (RTILs). These non-additive interactions constitute a useful tool for tuning physical chemical behavior of RTILs. Polarization and charge transfer generally decay as temperature increases, although their presence should be expected over an entire condensed state temperature range. For the first time, we use three popular pyridinium-based RTILs to investigate temperature dependence of electronic polarization in RTILs. Atom-centered density matrix propagation molecular dynamics, supplemented by a weak coupling to an external bath, is used to simulate the temperature impact on system properties. We show that, quite surprisingly, non-additivity in the cation-anion interactions changes negligibly between 300 and 900 K, while the average dipole moment increases due to thermal fluctuations of geometries. Our results contribute to the fundamental understanding...

Chaban, Vitaly V

2014-01-01T23:59:59.000Z

365

average air temperature | OpenEI  

Open Energy Info (EERE)

average air temperature average air temperature Dataset Summary Description (Abstract): Air Temperature at 10 m Above The Surface Of The Earth (deg C)NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly & Annual Average (July 1983 - June 2005)Parameter: Air Temperature at 10 m Above The Surface Of The Earth (deg C)Internet: http://eosweb.larc.nasa.gov/sse/Note 1: SSE Methodology & Accuracy sections onlineNote 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; Source U.S. National Aeronautics and Space Administration (NASA), Surface meteorology and Solar Energy (SSE) Date Released March 31st, 2009 (5 years ago) Date Updated April 01st, 2009 (5 years ago) Keywords average air temperature

366

Development of 2-Meter Soil Temperature Probes and Results of Temperature  

Open Energy Info (EERE)

Development of 2-Meter Soil Temperature Probes and Results of Temperature Development of 2-Meter Soil Temperature Probes and Results of Temperature Survey Conducted at Desert Peak, Nevada, USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Development of 2-Meter Soil Temperature Probes and Results of Temperature Survey Conducted at Desert Peak, Nevada, USA Abstract Temperature gradient drilling has historically been a key tool in the exploration for geothermal resources in the Great Basin, USA but regulatory, environmental, and accessibility issues, as well as the expense of drilling, are increasingly limiting its use. In cases where thermal groundwater is not overlain by near-surface cold aquifers, temperatures measured at a depth of 2-meters is an efficient method for mapping thermal anomalies at a high level of detail. This is useful for augmenting deeper

367

Working fluid selection based on critical temperature and water temperature in organic Rankine cycle  

Science Journals Connector (OSTI)

This paper examines the thermal performance of working fluids in the entire evaporation temperature region up to near-critical temperature of working fluids in the organic Rankine cycle (ORC). The variation and t...

XinGuo Li; WenJing Zhao; DieDie Lin; Qiang Zhu

2014-11-01T23:59:59.000Z

368

Pseudovertical Temperature Profiles in a Broad Valley from Lines of Temperature Sensors on Sidewalls  

Science Journals Connector (OSTI)

Pseudovertical temperature soundings from lines of inexpensive temperature sensors on the sidewalls of Utahs Salt Lake valley are compared with contemporaneous radiosonde soundings from the north, open end of the valley. Morning [0415 mountain ...

C. David Whiteman; Sebastian W. Hoch

2014-11-01T23:59:59.000Z

369

Category:Sanyal Temperature Classification | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Sanyal Temperature Classification Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Category:Sanyal Temperature Classification Geothermalpower.jpg Looking for the Sanyal Temperature Classification page? For detailed information on Sanyal Temperature Classification, click here. Pages in category "Sanyal Temperature Classification" The following 7 pages are in this category, out of 7 total. E Extremely Low Temperature H High Temperature L Low Temperature M Moderate Temperature S Steam Field U Ultra High Temperature V Very Low Temperature Retrieved from

370

Low-Temperature, Coproduced, and Geopressured Geothermal Technologies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Temperature, Coproduced, and Geopressured Geothermal Technologies Strategic Action Plan, September 2010 Low-Temperature, Coproduced, and Geopressured Geothermal Technologies...

371

Influence of Sea Surface Temperature on Humidity and Temperature in the Outflow of Tropical Deep Convection  

E-Print Network [OSTI]

-Service Aircraft (MOZAIC) project are analyzed in the vicinity of deep convective outflow to study the variationsInfluence of Sea Surface Temperature on Humidity and Temperature in the Outflow of Tropical Deep upper-tropospheric temperature and humidity by the Mea- surement of Ozone and Water Vapor by Airbus In

Johnson, Richard H.

372

A simple, inexpensive device for measuring the critical temperature of a high-temperature superconductor  

Science Journals Connector (OSTI)

A simple, inexpensive device for measuring the critical temperature of a high-temperature superconductor ... This note describes a simple, inexpensive method of measuring the temperature at which the Meissner effect exists in a disk of YBa2Cu3O7-x. ...

David B. Green; Dijon Douphner; Bennett Hutchinson

1992-01-01T23:59:59.000Z

373

Hydrogen Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A A H2A: Hydrogen Analysis Margaret K. Mann DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. H2A Charter * H2A mission: Improve the transparency and consistency of approach to analysis, improve the understanding of the differences among analyses, and seek better validation from industry. * H2A was supported by the HFCIT Program H2A History * First H2A meeting February 2003 * Primary goal: bring consistency & transparency to hydrogen analysis * Current effort is not designed to pick winners - R&D portfolio analysis - Tool for providing R&D direction * Current stage: production & delivery analysis - consistent cost methodology & critical cost analyses * Possible subsequent stages: transition analysis, end-point

374

Effect of Temperature on the Complexity of Solid Argon System  

E-Print Network [OSTI]

We study the measure of complexity in solid Argon(Ar) system from the time series data of kinetic energy(KE) of single Ar atoms at different equilibrated temperatures. To account the inherent multi-scale dependence of the complexity, the multi-scale entropy (MSE) of the time series of KE of individual Ar atoms are computed at different equilibrated temperatures. The MSE study reveals that the dynamics of an atom becomes more complex at higher temperatures and the result corroborates well with the variation of the pair correlation function of the atoms in the solid Ar crystal. Also, We repeat the MSE analysis for program generated Levy noise time series and for time series data obtained from the outcomes of exponential decay with noise dx(t) = -x(t) dt + sigma x dB(t)(Langevin equation). Our study establishes that the scale dependence of sample entropy for time series of KE of individual atoms in solid Ar system has similar tendency as that of Levy noise time series and the outcomes of exponential decay with n...

Giri, A; Barat, P

2014-01-01T23:59:59.000Z

375

Nonlinear Meissner effect in a high-temperature superconductor  

Science Journals Connector (OSTI)

The lowest nonlinear correction to the penetration depth, i.e., the nonlinear Meissner effect, is calculated and compared to data from high-quality YBa2Cu3O7-? (YBCO) films. The calculation is based on the Green-function formulation of superconductivity, and the data consist of the intermodulation power as function of temperature and circulating power. At a low power level, the calculated temperature dependence compares very well with the data, including the divergence as T?2 at very low temperatures. The calculated power dependence of the nonlinear penetration depth follows the data semiquantitatively and is enhanced due to the d-wave symmetry of the order parameter. These results support the assertion that the origin of nonlinearity in high-quality YBCO films is intrinsic. The analysis also implies that the nonlinear corrections to the penetration depth depend primarily on the total current carried by the strip and thus are insensitive to the edges. The comparison of the present approach with an alternative approach, based on quasiparticle backflow, is discussed.

D. Agassi and D. E. Oates

2005-07-26T23:59:59.000Z

376

System Analyses of High and Low-Temperature Interface Designs for a Nuclear-Driven High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

As part of the Next Generation Nuclear Plant (NGNP) project, an evaluation of a low-temperature heat-pump interface design for a nuclear-driven high-temperature electrolysis (HTE) hydrogen production plant was performed using the UniSim process analysis software. The lowtemperature interface design is intended to reduce the interface temperature between the reactor power conversion system and the hydrogen production plant by extracting process heat from the low temperature portion of the power cycle rather than from the high-temperature portion of the cycle as is done with the current Idaho National Laboratory (INL) reference design. The intent of this design change is to mitigate the potential for tritium migration from the reactor core to the hydrogen plant, and reduce the potential for high temperature creep in the interface structures. The UniSim model assumed a 600 MWt Very-High Temperature Reactor (VHTR) operating at a primary system pressure of 7.0 MPa and a reactor outlet temperature of 900C. The lowtemperature heat-pump loop is a water/steam loop that operates between 2.6 MPa and 5.0 MPa. The HTE hydrogen production loop operated at 5 MPa, with plant conditions optimized to maximize plant performance (i.e., 800C electrolysis operating temperature, area specific resistance (ASR) = 0.4 ohm-cm2, and a current density of 0.25 amps/cm2). An air sweep gas system was used to remove oxygen from the anode side of the electrolyzer. Heat was also recovered from the hydrogen and oxygen product streams to maximize hydrogen production efficiencies. The results of the UniSim analysis showed that the low-temperature interface design was an effective heat-pump concept, transferring 31.5 MWt from the low-temperature leg of the gas turbine power cycle to the HTE process boiler, while consuming 16.0 MWe of compressor power. However, when this concept was compared with the current INL reference direct Brayton cycle design and with a modification of the reference design to simulate an indirect Brayton cycle (both with heat extracted from the high-temperature portion of the power cycle), the latter two concepts had higher overall hydrogen production rates and efficiencies compared to the low-temperature heatpump concept, but at the expense of higher interface temperatures. Therefore, the ultimate decision on the viability of the low-temperature heat-pump concept involves a tradeoff between the benefits of a lower-temperature interface between the power conversion system and the hydrogen production plant, and the reduced hydrogen production efficiency of the low-temperature heat-pump concept compared to concepts using high-temperature process heat.

E. A. Harvego; J. E. O'Brien

2009-07-01T23:59:59.000Z

377

Subsurface temperature distributions in south Texas  

SciTech Connect (OSTI)

Isothermal surfaces and temperature gradients confirm the presence of anomalously high geothermal gradients within south Texas. The authors have analyzed over 2,200 oil and gas well logs and compiled more than 5,200 corrected bottom-hole temperature measurements. The data show that temperature gradients often steepen from around 30{degree}C/km up to 60{degree}C/km near the top of geopressure (> 15.8 kPa/m from 1,800 to 3,600 m) through much of the south Texas Gulf Coast. However, the highest gradients coincide with the Wilcox growth-fault zone. Within the Wilcox trend, isotherms indicate that the elevated temperatures become more prominent with depth. Their qualitative analyses indicate that the thermal anomaly is caused by advecting fluids moving upward, along and just coastward of the Wilcox fault zone. In addition, preliminary computer modeling indicates that a pulse or pulses of deep upwelling fluids could create the anomalous temperatures. Petrographic and geochemical data are also consistent with enhanced fluid flux in the zones of elevated temperatures, as are the distributions of hydrocarbon and uranium deposits. Higher temperatures also exist above the top of geopressure along the Wilcox trend, which suggests that fluids are escaping from the geopressured zone via growth faults and perturbing the temperature field in the overlying meteoric regime. Although a few areas of the Vicksburg-Frio growth fault zones have elevated temperature gradients below the top of geopressure, it is still unknown why such a prominent thermal anomaly occurs along the Wilcox trend but not along the Vicksburg and Frio trends.

Pfeiffer, D.S.; Sharp, J.M. Jr. (Univ. of Texas, Austin (USA))

1989-09-01T23:59:59.000Z

378

Ultra-High Temperature Distributed Wireless Sensors  

SciTech Connect (OSTI)

Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.

May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O'Donnell, Alan; Bresnahan, Peter

2013-03-31T23:59:59.000Z

379

Strings at Finite Temperature: Wilson Lines, Free Energies, and the Thermal Landscape  

E-Print Network [OSTI]

According to the standard prescriptions, zero-temperature string theories can be extended to finite temperature by compactifying their time directions on a so-called "thermal circle" and implementing certain orbifold twists. However, the existence of a topologically non-trivial thermal circle leaves open the possibility that a gauge flux can pierce this circle --- i.e., that a non-trivial Wilson line (or equivalently a non-zero chemical potential) might be involved in the finite-temperature extension. In this paper, we concentrate on the zero-temperature heterotic and Type I strings in ten dimensions, and survey the possible Wilson lines which might be introduced in their finite-temperature extensions. We find a rich structure of possible thermal string theories, some of which even have non-traditional Hagedorn temperatures, and we demonstrate that these new thermal string theories can be interpreted as extrema of a continuous thermal free-energy "landscape". Our analysis also uncovers a unique finite-temperature extension of the heterotic SO(32) and $E_8\\times E_8$ strings which involves a non-trivial Wilson line, but which --- like the traditional finite-temperature extension without Wilson lines --- is metastable in this thermal landscape.

Keith R. Dienes; Michael Lennek; Menika Sharma

2012-05-25T23:59:59.000Z

380

Ion temperatures in Ormak from Doppler broadening  

Science Journals Connector (OSTI)

Rapid-scanning spectrometric techniques have permitted the determination of ion temperatures in ORMAK as a function of time during the discharge pulse for ORMAK plasma currents up to 180 kA. Emission spectra of hydrogen atoms are Doppler-broadened in the line wings, characteristic of the initial proton motions prior to charge exchange, and give ion "temperatures" generally less than kT+ ~ 300 eV. Impurity spectra of C III and O V, as well as the spectra of He II in helium discharges, lead to somewhat higher ion temperatures ranging up to a maximum of kT+ ~ 700 eV.

J. Rand McNally Jr.; R.V. Neidigh

1973-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

High temperature, minimally invasive optical sensing modules  

DOE Patents [OSTI]

A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector to calculate a temperature of the device.

Riza, Nabeel Agha (Oviedo, FL); Perez, Frank (Tujunga, CA)

2008-02-05T23:59:59.000Z

382

High temperature crystalline superconductors from crystallized glasses  

DOE Patents [OSTI]

A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

Shi, Donglu (Downers Grove, IL)

1992-01-01T23:59:59.000Z

383

Symposium on high temperature and materials chemistry  

SciTech Connect (OSTI)

This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

Not Available

1989-10-01T23:59:59.000Z

384

Low temperature monitoring system for subsurface barriers  

DOE Patents [OSTI]

A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.

Vinegar, Harold J. (Bellaire, TX); McKinzie, II. Billy John (Houston, TX)

2009-08-18T23:59:59.000Z

385

On quantum interferometric measurements of temperature  

E-Print Network [OSTI]

We provide a detailed description of the interferometric thermometer, which is a device that estimates the temperature of a sample from measurements of the optical phase. For the first time, we rigorously analyze the operation of such a device by studying the interaction of the optical probe system with a heated sample. We find that this approach to thermometry is capable of measuring the temperature of a sample in the nK regime. Furthermore, we compare the theoretical precision of interferometric thermometers with the precision offered by the idealized pyrometers, which infer the temperature from a measurement of the total thermal radiation emitted by the sample.

Marcin Jarzyna; Marcin Zwierz

2014-12-17T23:59:59.000Z

386

Temperature measurement method using temperature coefficient timing for resistive or capacitive sensors  

DOE Patents [OSTI]

A method and apparatus for temperature measurement especially suited for low cost, low power, moderate accuracy implementation. It uses a sensor whose resistance varies in a known manner, either linearly or nonlinearly, with temperature, and produces a digital output which is proportional to the temperature of the sensor. The method is based on performing a zero-crossing time measurement of a step input signal that is double differentiated using two differentiators functioning as respective first and second time constants; one temperature stable, and the other varying with the sensor temperature. 5 figs.

Britton, C.L. Jr.; Ericson, M.N.

1999-01-19T23:59:59.000Z

387

Temperature dependence of the lower critical field and strong pinning in high-temperature superconductors  

Science Journals Connector (OSTI)

We show, within the framework of the Ginzburg-Landau theory, that both the conventional and the anomalous temperature dependence of the lower critical field observed in high-temperature superconductors may result from the flux penetration through a set of separated microdefects. Microdefects modeled by normal layers with proximity-induced superconductivity can produce drastic enhancement of the lower critical field at low temperatures and can provide strong-pinning centers. The pinning interaction between an isolated vortex and the normal layer is primarily magnetic at high temperatures. At low temperatures, magnetic interaction is reduced, due to the increase of the normal-layer coherence length.

Dragomir Davidovi? and Ljiljana Dobrosavljevi?-Gruji?

1991-02-01T23:59:59.000Z

388

Long-term, One-dimensional Simulation of Lower Snake River Temperatures for Current and Unimpounded Conditions  

SciTech Connect (OSTI)

The objective of the study was to compare water temperatures in the Lower Snake River for current (impounded) and unimpounded conditions using a mathematical model of the river system. A long-term analysis was performed using the MASS1 one-dimensional (1D) hydrodynamic and water quality model. The analysis used historical flows and meteorological conditions for a 35-year period spanning between 1960 and 1995. Frequency analysis was performed on the model results to calculate river temperatures at various percent of time exceeded levels. Results were are also analyzed to compute the time when, during the year, water temperatures rose above or fell below various temperature levels. The long-term analysis showed that the primary difference between the current and unimpounded river scenarios is that the reservoirs decrease the water temperature variability. The reservoirs also create a thermal inertia effect which tends to keep water cooler later into the spring and warmer later into the fall compared to the unimpounded river condition. Given the uncertainties in the simulation model, inflow temperatures, and meteorological conditions the results show only relatively small differences between current and unimpounded absolute river temperatures.

Perkins, William A.; Richmond, Marshall C.

2001-02-15T23:59:59.000Z

389

DYNAMIC MECHANICAL ANALYSIS CHARACTERIZATION OF GLOVEBOX GLOVES  

SciTech Connect (OSTI)

As part of the characterization of various glovebox glove material from four vendors, the permeability of gas through each type as a function of temperature was determined and a discontinuity in the permeability with temperature was revealed. A series of tests to determine the viscoelastic properties of the glove materials as a function of temperature using Dynamic Mechanical Analysis (DMA) was initiated. The glass transition temperature and the elastic and viscoelastic properties as a function of temperature up to maximum use temperature were determined for each glove material. The glass transition temperatures of the gloves were -60 C for butyl, -30 C for polyurethane, -16 C Hypalon{reg_sign}, - 16 C for Viton{reg_sign}, and -24 C for polyurethane-Hypalon{reg_sign}. The glass transition was too complex for the butyl-Hypalon{reg_sign} and butyl-Viton{reg_sign} composite gloves to be characterized by a single glass transition temperature. All of the glass transition temperatures exceed the vendor projected use temperatures.

Korinko, P.

2012-02-29T23:59:59.000Z

390

Modeling heat and mass transport phenomena at higher temperatures in solar distillation systems - The Chilton-Colburn analogy  

SciTech Connect (OSTI)

In the present investigation efforts have been devoted towards developing an analysis suitable for heat and mass transfer processes modeling in solar distillation systems, when they are operating at higher temperatures. For this purpose the use of Lewis relation is not new although its validity is based on the assumptions of identical boundary layer concentration and temperature distributions, as well as low mass flux conditions, which are not usually met in solar distillation systems operating at higher temperatures associated with considerable mass transfer rates. The present analysis, taking into consideration these conditions and the temperature dependence of all pertinent thermophysical properties of the saturated binary mixture of water vapor and dry air, leads to the development of an improved predictive accuracy model. This model, having undergone successful first order validation against earlier reported measurements from the literature, appears to offer more accurate predictions of the transport processes and mass flow rate yield of solar stills when operated at elevated temperatures. (author)

Tsilingiris, P.T. [Department of Energy Engineering, Heat Transfer Laboratory, Technological Education Institution of Athens, A. Spyridonos Street, GR 122 10 Egaleo, Athens (Greece)

2010-02-15T23:59:59.000Z

391

The relativistic Feynman-Metropolis-Teller treatment at finite temperatures  

E-Print Network [OSTI]

The Feynman-Metropolis-Teller treatment of compressed atoms has been recently generalized to relativistic regimes and applied to the description of static and rotating white dwarfs in general relativity. We present here the extension of this treatment to the case of finite temperatures and construct the corresponding equation of state (EOS) of the system; applicable in a wide regime of densities that includes both white dwarfs and neutron star outer crusts. We construct the mass-radius relation of white dwarfs at finite temperatures obeying this new EOS and apply it to the analysis of ultra low-mass white dwarfs with $M\\lesssim 0.2 M_\\odot$. In particular, we analyze the case of the white dwarf companion of PSR J1738+0333. The formulation is then extrapolated to compressed nuclear matter cores of stellar dimensions, systems with mass numbers $A\\approx (m_{\\rm Planck}/m_n)^3$ or mass $M_{\\rm core}\\approx M_{\\odot}$, where $m_{\\rm Planck}$ and $m_n$ are the Planck and the nucleon mass. For $T \\ll m_e c^2/k_B \\approx 5.9\\times 10^9$ K, a family of equilibrium configurations can be obtained with analytic solutions of the ultra-relativistic Thomas-Fermi equation at finite temperatures. Such configurations fulfill global but not local charge neutrality and have strong electric fields on the core surface. We find that the maximum electric field at the core surface is enhanced at finite temperatures with respect to the degenerate case.

S. M. de Carvalho; M. Rotondo; Jorge A. Rueda; R. Ruffini

2013-12-09T23:59:59.000Z

392

Threshold Stress Creep Behavior of Alloy 617 at Intermediate Temperatures  

SciTech Connect (OSTI)

Creep of Alloy 617, a solid solution Ni-Cr-Mo alloy, was studied in the temperature range of 1023 K to 1273 K (750 C to 1000 C). Typical power-law creep behavior with a stress exponent of approximately 5 is observed at temperatures from 1073 K to 1273 K (800 C to 1000 C). Creep at 1023 K (750 C), however, exhibits threshold stress behavior coinciding with the temperature at which a low volume fraction of ordered coherent y' precipitates forms. The threshold stress is determined experimentally to be around 70 MPa at 1023 K (750 C) and is verified to be near zero at 1173 K (900 C)temperatures directly correlating to the formation and dissolution of y' precipitates, respectively. The y' precipitates provide an obstacle to continued dislocation motion and result in the presence of a threshold stress. TEM analysis of specimens crept at 1023 K (750 C) to various strains, and modeling of stresses necessary for y' precipitate dislocation bypass, suggests that the climb of dislocations around the y' precipitates is the controlling factor for continued deformation at the end of primary creep and into the tertiary creep regime. As creep deformation proceeds at an applied stress of 121 MPa and the precipitates coarsen, the stress required for Orowan bowing is reached and this mechanism becomes active. At the minimum creep rate at an applied stress of 145 MPa, the finer precipitate size results in higher Orowan bowing stresses and the creep deformation is dominated by the climb of dislocations around the y' precipitates.

J.K. Benz; L.J. Carroll; J.K. Wright; R.N. Wright; T. Lillo

2014-06-01T23:59:59.000Z

393

Static Temperature Survey | Open Energy Information  

Open Energy Info (EERE)

Static Temperature Survey Static Temperature Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Static Temperature Survey Details Activities (28) Areas (24) Regions (2) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Extrapolate the true temperature of the formation the well penetrates Cost Information Low-End Estimate (USD): 0.2525 centUSD 2.5e-4 kUSD 2.5e-7 MUSD 2.5e-10 TUSD / foot Median Estimate (USD): 0.3535 centUSD 3.5e-4 kUSD 3.5e-7 MUSD 3.5e-10 TUSD / foot High-End Estimate (USD): 0.7575 centUSD 7.5e-4 kUSD 7.5e-7 MUSD

394

ARM - Measurement - Longwave narrowband brightness temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

narrowband brightness temperature narrowband brightness temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Longwave narrowband brightness temperature A descriptive measure of radiation in terms of the temperature of a hypothetical black body emitting an identical amount of radiation in the same narrow band of wavelengths. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments IRT : Infrared Thermometer Field Campaign Instruments RAD-AIR : Airborne Radiometers

395

earth skin temperature | OpenEI  

Open Energy Info (EERE)

earth skin temperature earth skin temperature Dataset Summary Description (Abstract): Earth Skin Temperature (° C)NASA Surface meteorology and Solar Energy (SSE) Release 6.0 Data Set (Nov 2007)22-year Monthly & Annual Average (July 1983 - June 2005)Parameter: Earth Skin Temperature (deg C)Internet: http://eosweb.larc.nasa.gov/sse/Note 1: SSE Methodology & Accuracy sections onlineNote 2: Lat/Lon values indicate the lower left corner of a 1x1 degree region. Negative values are south and west; positive values are north and east. Boundaries of the -90/-180 region Source U.S. National Aeronautics and Space Administration (NASA), Surface meteorology and Solar Energy (SSE) Date Released March 31st, 2009 (5 years ago) Date Updated April 01st, 2009 (5 years ago) Keywords climate

396

Industrial Low Temperature Waste Heat Utilization  

E-Print Network [OSTI]

In this paper, some common and emerging techniques to better utilize energy in the chemical process industries are discussed. Temperature levels of waste heat available are pointed out. Emerging practices for further economical utilization of waste...

Altin, M.

1981-01-01T23:59:59.000Z

397

Ballistic dispersion in temperature gradient focusing  

E-Print Network [OSTI]

regime is the most familiar regime in microfluidic systems, an oft-overlooked regime is that of purely kinematic (or ballistic) dispersion. In most microfluidic systems, this dispersion regime is transient systems. Keywords: microfluidics; temperature gradient focusing; kinematic dispersion; Taylor

Santiago, Juan G.

398

Communication of uncertainty in temperature forecasts  

Science Journals Connector (OSTI)

We used experimental economics to test whether undergraduate students presented with a temperature forecast with uncertainty information in a table and bar graph format were able to use the extra information to interpret a given forecast. ...

Pricilla Marimo; Todd R. Kaplan; Ken Mylne; Martin Sharpe

399

Greens Functions at Zero Temperature  

Science Journals Connector (OSTI)

Greens functions as a tool for probing ... one-particle propagator. Statistical ensembles. Definition of Greens functions at zero temperature. Analytical properties of Greens functions and their relation to qu...

Alexandre Zagoskin

2014-01-01T23:59:59.000Z

400

Downhole Temperature Prediction for Drilling Geothermal Wells  

SciTech Connect (OSTI)

Unusually high temperatures are encountered during drilling of a geothermal well. These temperatures affect every aspect of drilling, from drilling fluid properties to cement formulations. Clearly, good estimates of downhole temperatures during drilling would be helpful in preparing geothermal well completion designs, well drilling plans, drilling fluid requirements, and cement formulations. The thermal simulations in this report were conducted using GEOTEMP, a computer code developed under Sandia National Laboratories contract and available through Sandia. Input variables such as drilling fluid inlet temperatures and circulation rates, rates of penetration, and shut-in intervals were obtained from the Imperial Valley East Mesa Field and the Los Alamos Hot Dry Rock Project. The results of several thermal simulations are presented, with discussion of their impact on drilling fluids, cements, casing design, and drilling practices.

Mitchell, R. F.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Noise Absorbing High-Temperature Insulation  

Science Journals Connector (OSTI)

Until recently simple heat shields on the engine, in the engine space or on the subframe of a vehicle had given protection against radiant heat from hot components. Today, complex high-temperature insulation syst...

Peter Cappellucci

2013-07-01T23:59:59.000Z

402

Comparison Measurements of Silicon Carbide Temperature Monitors  

SciTech Connect (OSTI)

As part of the efforts initiated through the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program to make Silicon Carbide (SiC) temperature monitors available, a capability was developed at the Idaho National Laboratory (INL) to complete post-irradiation evaluations of these monitors. INL selected the resistance measurement approach for detecting peak irradiation temperature from SiC temperature monitors. To demonstrate this new capability, comparison measurements were completed by INL and Oak Ridge National Laboratory (ORNL) on identical samples subjected to identical irradiation conditions. Results reported in this paper indicate that the resistance measurement approach can yield similar peak irradiation temperatures if appropriate equipment is used and appropriate procedures are followed.

J. L. Rempe; K. G. Condie; D. L. Knudson; L. L. Snead

2010-06-01T23:59:59.000Z

403

Air separation with temperature and pressure swing  

DOE Patents [OSTI]

A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

Cassano, Anthony A. (Allentown, PA)

1986-01-01T23:59:59.000Z

404

Solar Eclipse Effect on Shelter Air Temperature  

Science Journals Connector (OSTI)

Decreases in shelter temperature during eclipse events were quantified on the basis of observations, numerical model simulations, and complements conceptual evaluations. Observations for the annular eclipse on 10 May 1994 over the United States ...

M. Segal; R. W. Turner; J. Prusa; R. J. Bitzer; S. V. Finley

1996-01-01T23:59:59.000Z

405

Temperature dependence of the step free energy  

Science Journals Connector (OSTI)

We have derived an expression for the step free energy that includes the usual thermally induced step meandering term and a vibrational entropy term related to the step edge atoms. The latter term results from the rduced local coordination of the step atoms with respect to the terrace atoms and was introduced recently by Frenken and Stoltze as well as by Bonzel and Emundts. Additionally, we have added third and fourth terms that deal with the vibrational entropy contribution of the thermally generated step and kink atoms. At elevated temperatures the two latter vibrational entropy terms are of the same order of magnitude. Incorporation of these vibrational entropy terms results in a faster decrease of the step free energy with increasing temperature than anticipated previously. This enhanced temperature dependence of the step free energy results in a lower thermal roughening temperature of the facet.

H. J. W. Zandvliet; O. Gurlu; Bene Poelsema

2001-07-17T23:59:59.000Z

406

Variable Temperature Scanning Probe Microscope | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EMSL's ultra-high vacuum, variable-temperature scanning probe microscope system, or UHV VT SPM, is a state-of-the-art surface science tool comprising multiple complementary...

407

Soil Water and Temperature System (SWATS) Handbook  

SciTech Connect (OSTI)

The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the SGP climate research site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.

Bond, D

2005-01-01T23:59:59.000Z

408

Highly temperature insensitive quantum cascade lasers  

SciTech Connect (OSTI)

An InP based quantum cascade laser (QCL) heterostructure emitting around 5 {mu}m is grown with gas-source molecular beam epitaxy. The QCL core design takes a shallow-well approach to maximize the characteristic temperatures, T{sub 0} and T{sub 1}, for operations above room temperature. A T{sub 0} value of 383 K and a T{sub 1} value of 645 K are obtained within a temperature range of 298-373 K. In room temperature continuous wave operation, this design gives a single facet output power of 3 W and a wall plug efficiency of 16% from a device with a cavity length of 5 mm and a ridge width of 8 {mu}m.

Bai, Y.; Bandyopadhyay, N.; Tsao, S.; Selcuk, E.; Slivken, S.; Razeghi, M. [Department of Electrical Engineering and Computer Science, Center for Quantum Devices, Northwestern University, Evanston, Illinois 60208 (United States)

2010-12-20T23:59:59.000Z

409

Transpiration: Its Effects on Plant Leaf Temperature  

Science Journals Connector (OSTI)

...Engineering, Purdue University Department of Horticulture, Purdue University, Lafayette, Indiana...which is equivalent to normal indoor lighting. Since the air temperature was held...University A. C. LEOPOLD Department of Horticulture, Purdue University, Lafayette, Indiana...

G. D. Cook; J. R. Dixon; A. C. Leopold

1964-05-01T23:59:59.000Z

410

Low temperature joining of ceramic composites  

DOE Patents [OSTI]

A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 C to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.

Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.

1999-07-13T23:59:59.000Z

411

Optical interferometry at ultra low temperatures  

Science Journals Connector (OSTI)

We have developed optical, interferometric methods for investigations of interfaces at ultra low temperatures. In our scheme conventional optical...3He down to 0.6 mK whereas a slow-scan camera has been...?6). Th...

P. J. Hakonen; H. Alles; A. V. Babkin; J. P. Ruutu

1995-10-01T23:59:59.000Z

412

SOME RELATIONSHIPS BETWEEN TEMPERATURE AND EGG ...  

Science Journals Connector (OSTI)

rate, and fecundity of Pseudoculanus arc functions of temperature. Thcsc functions may bc difficult ... useful clues to the control of size and development rates. The constants o,f ... supplied useful data from her plankton studies. I am grateful to...

413

Temperature issues in fine wine transportation.  

E-Print Network [OSTI]

??New Zealand wine exports are growing rapidly year-by-year. Wine is a temperature sensitive product. On the shipping route from New Zealand to major export markets (more)

Xie, Ying

2006-01-01T23:59:59.000Z

414

Pressure Temperature Log | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Pressure Temperature Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Pressure Temperature Log Details Activities (13) Areas (13) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Perturbations in temperature or pressure can be indicative of faults or other structural features Hydrological: fluid cirulation, over-pressured zones, and under-pressured zones. Thermal: Temperature profile with depth Cost Information Low-End Estimate (USD): 0.6060 centUSD 6.0e-4 kUSD

415

Seasonal temperature variations and energy demand  

Science Journals Connector (OSTI)

This paper presents an empirical study of the relationship between residential energy demand and temperature. Unlike previous studies in this ... different regions and to the contrasting effects on energy demand ...

Enrica De Cian; Elisa Lanzi; Roberto Roson

2013-02-01T23:59:59.000Z

416

TEMPERATURE PREDICTION IN 3013 CONTAINERS IN K AREA MATERIAL STORAGE (KAMS) FACILITY USING REGRESSION METHODS  

SciTech Connect (OSTI)

3013 containers are designed in accordance with the DOE-STD-3013-2004. These containers are qualified to store plutonium (Pu) bearing materials such as PuO2 for 50 years. DOT shipping packages such as the 9975 are used to store the 3013 containers in the K-Area Material Storage (KAMS) facility at Savannah River Site (SRS). DOE-STD-3013-2004 requires that a comprehensive surveillance program be set up to ensure that the 3013 container design parameters are not violated during the long term storage. To ensure structural integrity of the 3013 containers, thermal analyses using finite element models were performed to predict the contents and component temperatures for different but well defined parameters such as storage ambient temperature, PuO{sub 2} density, fill heights, weights, and thermal loading. Interpolation is normally used to calculate temperatures if the actual parameter values are different from the analyzed values. A statistical analysis technique using regression methods is proposed to develop simple polynomial relations to predict temperatures for the actual parameter values found in the containers. The analysis shows that regression analysis is a powerful tool to develop simple relations to assess component temperatures.

Gupta, N

2008-04-22T23:59:59.000Z

417

Method for cooling nanostructures to microkelvin temperatures  

SciTech Connect (OSTI)

We propose a new scheme aimed at cooling nanostructures to microkelvin temperature based on the well established technique of adiabatic nuclear demagnetization: we attach each device measurement lead to an individual nuclear refrigerator, allowing efficient thermal contact to a microkelvin bath. On a prototype consisting of a parallel network of nuclear refrigerators, temperatures of {approx}1 mK simultaneously on ten measurement leads have been reached upon demagnetization, thus completing the first steps toward ultracold nanostructures.

Clark, A. C.; Schwarzwaelder, K. K.; Bandi, T.; Maradan, D.; Zumbuehl, D. M. [Department of Physics, University of Basel, Klingelbergstrasse 82, Basel CH-4056 (Switzerland)

2010-10-15T23:59:59.000Z

418

Determining Camera Gain in Room Temperature Cameras  

SciTech Connect (OSTI)

James R. Janesick provides a method for determining the amplification of a CCD or CMOS camera when only access to the raw images is provided. However, the equation that is provided ignores the contribution of dark current. For CCD or CMOS cameras that are cooled well below room temperature, this is not a problem, however, the technique needs adjustment for use with room temperature cameras. This article describes the adjustment made to the equation, and a test of this method.

Joshua Cogliati

2010-12-01T23:59:59.000Z

419

PREDICTING TEMPERATURE BEHAVIOR IN CARBONATE ACIDIZING TREATMENTS  

E-Print Network [OSTI]

PREDICTING TEMPERATURE BEHAVIOR IN CARBONATE ACIDIZING TREATMENTS A Thesis by XUEHAO TAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 2009 Major Subject: Petroleum Engineering PREDICTING TEMPERATURE BEHAVIOR IN CARBONATE ACIDIZING TREATMENTS A Thesis by XUEHAO TAN Submitted to the Office of Graduate Studies of Texas A&M University...

Tan, Xuehao

2010-01-16T23:59:59.000Z

420

Intermediate Temperature Solid Oxide Fuel Cell Development  

SciTech Connect (OSTI)

Solid oxide fuel cells (SOFCs) are high efficiency energy conversion devices. Present materials set, using yttria stabilized zirconia (YSZ) electrolyte, limit the cell operating temperatures to 800 C or higher. It has become increasingly evident however that lowering the operating temperature would provide a more expeditious route to commercialization. The advantages of intermediate temperature (600 to 800 C) operation are related to both economic and materials issues. Lower operating temperature allows the use of low cost materials for the balance of plant and limits degradation arising from materials interactions. When the SOFC operating temperature is in the range of 600 to 700 C, it is also possible to partially reform hydrocarbon fuels within the stack providing additional system cost savings by reducing the air preheat heat-exchanger and blower size. The promise of Sr and Mg doped lanthanum gallate (LSGM) electrolyte materials, based on their high ionic conductivity and oxygen transference number at the intermediate temperature is well recognized. The focus of the present project was two-fold: (a) Identify a cell fabrication technique to achieve the benefits of lanthanum gallate material, and (b) Investigate alternative cathode materials that demonstrate low cathode polarization losses at the intermediate temperature. A porous matrix supported, thin film cell configuration was fabricated. The electrode material precursor was infiltrated into the porous matrix and the counter electrode was screen printed. Both anode and cathode infiltration produced high performance cells. Comparison of the two approaches showed that an infiltrated cathode cells may have advantages in high fuel utilization operations. Two new cathode materials were evaluated. Northwestern University investigated LSGM-ceria composite cathode while Caltech evaluated Ba-Sr-Co-Fe (BSCF) based pervoskite cathode. Both cathode materials showed lower polarization losses at temperatures as low as 600 C than conventional manganite or cobaltite cathodes.

S. Elangovan; Scott Barnett; Sossina Haile

2008-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Maine Geological Survey Borehole Temperature Profiles  

SciTech Connect (OSTI)

This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

Marvinney, Robert

2013-11-06T23:59:59.000Z

422

High Temperature Materials for Aerospace Applications  

E-Print Network [OSTI]

below 430 ?C for exposure times up to 20 minutes. Transition-metal carbides were initially synthesized by carbothermal reduction of transition-metal halides and polymer precursor mixtures, at temperatures that range from 900 to 1500 ?C in an argon... ........................................ 20 2.3 Present/Future Aerospace Applications ......................................... 24 2.4 Ultra-High Temperature Materials ................................................. 27 2.4.1 Transition-Metal Carbides...

Adamczak, Andrea Diane

2011-08-08T23:59:59.000Z

423

Steady- and transient-state analyses of fully ceramic microencapsulated fuel loaded reactor core via two-temperature homogenized thermal-conductivity model  

Science Journals Connector (OSTI)

Abstract Fully ceramic microencapsulated (FCM) fuel, a type of accident-tolerant fuel (ATF), consists of TRISO particles randomly dispersed in a SiC matrix. In this study, for a thermal analysis of the FCM fuel with such a high heterogeneity, a two-temperature homogenized thermal-conductivity model was applied by the authors. This model provides separate temperatures for the fuel-kernels and the SiC matrix. It also provides more realistic temperature profiles than those of harmonic- and volumetric-average thermal conductivity models, which are used for thermal analysis of a fuel element in \\{VHTRs\\} having a composition similar to the FCM fuel, because such models are unable to provide the fuel-kernel and graphite matrix temperatures separately. In this study, coupled with a neutron diffusion model, a FCM fuel-loaded reactor core is analyzed via a two-temperature homogenized thermal-conductivity model at steady- and transient-states. The results are compared to those from harmonic- and volumetric-average thermal conductivity models, i.e., we compare keff eigenvalues, power distributions, and temperature profiles in the hottest single-channel at steady-state. At transient-state, we compare total powers, reactivity, and maximum temperatures in the hottest single-channel obtained by the different thermal analysis models. The different thermal analysis models and the availability of fuel-kernel temperatures in the two-temperature homogenized thermal-conductivity model for Doppler temperature feedback cause significant differences as revealed by comparisons.

Yoonhee Lee; Nam Zin Cho

2015-01-01T23:59:59.000Z

424

Environmental Analysis  

Broader source: Energy.gov [DOE]

Environmental Analysis is used by the Program to quantify the environmental impacts of hydrogen technologies. Specifically, life cycle assessment is used to identify and evaluate the emissions,...

425

An evaluation of possible next-generation high temperature molten-salt power towers.  

SciTech Connect (OSTI)

Since completion of the Solar Two molten-salt power tower demonstration in 1999, the solar industry has been developing initial commercial-scale projects that are 3 to 14 times larger. Like Solar Two, these initial plants will power subcritical steam-Rankine cycles using molten salt with a temperature of 565 C. The main question explored in this study is whether there is significant economic benefit to develop future molten-salt plants that operate at a higher receiver outlet temperature. Higher temperatures would allow the use of supercritical steam cycles that achieve an improved efficiency relative to today's subcritical cycle ({approx}50% versus {approx}42%). The levelized cost of electricity (LCOE) of a 565 C subcritical baseline plant was compared with possible future-generation plants that operate at 600 or 650 C. The analysis suggests that {approx}8% reduction in LCOE can be expected by raising salt temperature to 650 C. However, most of that benefit can be achieved by raising the temperature to only 600 C. Several other important insights regarding possible next-generation power towers were also drawn: (1) the evaluation of receiver-tube materials that are capable of higher fluxes and temperatures, (2) suggested plant reliability improvements based on a detailed evaluation of the Solar Two experience, and (3) a thorough evaluation of analysis uncertainties.

Kolb, Gregory J.

2011-12-01T23:59:59.000Z

426

Elevated-Temperature Tribology of Metallic Materials  

SciTech Connect (OSTI)

The wear of metals and alloys takes place in many forms, and the type of wear that dominates in each instance is influenced by the mechanics of contact, material properties, the interfacial temperature, and the surrounding environment. The control of elevated-temperature friction and wear is important for applications like internal combustion engines, aerospace propulsion systems, and metalworking equipment. The progression of interacting, often synergistic processes produces surface deformation, subsurface damage accumulation, the formation of tribolayers, and the creation of free particles. Reaction products, particularly oxides, play a primary role in debris formation and microstructural evolution. Chemical reactions are known to be influenced by the energetic state of the exposed surfaces, and that surface energy is in turn affected by localized deformation and fracture. At relatively low temperatures, work-hardening can occur beneath tribo-contacts, but exposure to high temperatures can modify the resultant defect density and grain structure to affect the mechanisms of re-oxidation. As research by others has shown, the rate of wear at elevated temperatures can either be enhanced or reduced, depending on contact conditions and nature of oxide layer formation. Furthermore, the thermodynamic driving force for certain chemical reactions is moderated by kinetics and microstructure. The role of deformation, oxidation, and tribo-corrosion in the elevated temperature tribology of metallic alloys will be exemplified by three examples involving sliding wear, single-point abrasion, and repetitive impact plus slip.

Blau, Peter Julian [ORNL

2010-01-01T23:59:59.000Z

427

Feedbacks of sea surface temperature to wintertime storm tracks in the North Atlantic  

Science Journals Connector (OSTI)

In this study the lagged maximum covariance analysis is performed on winter storm-track anomalies, represented by the meridional heat flux by synoptic-scale (2-8 days) transient eddies, and sea surface temperature (SST) anomalies in the North ...

Bolan Gan; Lixin Wu

428

Boron Carbide and Silicon Oxide Hetero-nanonecklaces via Temperature Modulation  

E-Print Network [OSTI]

Boron Carbide and Silicon Oxide Hetero-nanonecklaces via Temperature Modulation Jifa Tian, Xingjun ReceiVed April 23, 2008 ABSTRACT: Boron carbide and silicon oxide (BCSiO) hetero-nanonecklaces have been-500 nm silicon oxide nanoballs onto 20-30 nm boron carbide nanowires. Synthetic analysis shows that a two

Gao, Hongjun

429

Insights into Conventional and Low Temperature Diesel Combustion Using Combustion Trajectory Prediction Model  

E-Print Network [OSTI]

.................................................. 61 4.2.1 Rail pressure sweep ...................................................................................... 61 4.2.2 Exhaust gas recirculation sweep ................................................................... 66 4.3 Low temperature... combustion trajectory analysis............................................. 71 4.3.1 Rail pressure sweep ...................................................................................... 71 4.3.2 Exhaust gas recirculation sweep...

Bittle, Joshua A

2014-04-18T23:59:59.000Z

430

Sea surface temperature control on the stable isotopic composition of rainfall in Panama  

E-Print Network [OSTI]

Sea surface temperature control on the stable isotopic composition of rainfall in Panama Matthew S investigated. Analysis of a 30-year time series of d18 Orain in Panama was used to test the hypothesis that d18) in the bordering tropical oceans. The results show that d18 Orain values in Panama are positively (negatively

Lachniet, Matthew S.

431

Experimental investigation of ultraviolet laser induced plasma density and temperature evolution in air  

E-Print Network [OSTI]

and collisional cascade processes for pressures ranging from 40 Torr to 5 atm. A laser shadowgraphy diagnosticExperimental investigation of ultraviolet laser induced plasma density and temperature evolution July 2008 We present measurements and analysis of laser induced plasma neutral densities

Scharer, John E.

432

On Optimizing Sensor Placement for Spatio-Temporal Temperature Estimation in Large Battery Packs  

E-Print Network [OSTI]

of battery pack thermal dynamics. Monitoring and controlling battery pack temperature dy- namics. One important challenge with such battery packs is that an individual cell may become thermally management systems [2], [3], [4]. CFD modeling, model reduction, and analysis of battery pack thermal

Krstic, Miroslav

433

Solar wind electron temperature and density measurements on the Solar Orbiter with thermal noise spectroscopy  

E-Print Network [OSTI]

Solar wind electron temperature and density measurements on the Solar Orbiter with thermal noise of the plasma thermal noise analysis for the Solar Orbiter, in order to get accurate measurements of the total of their small mass and therefore large thermal speed, the solar wind electrons are expected to play a major role

California at Berkeley, University of

434

Experimental & Numerical Investigation of Pool Boiling on Engineered Surfaces with Integrated Thin-flim Temperature Sensors  

E-Print Network [OSTI]

of these fluctuations using techniques of nonlinear time series analysis. Ten TFT are fabricated on a rectangular silicon surface within an area of ~ 3.00 cm x 3.00 cm. The sensing junctions of the TFT measure 50 mm in width and 250 nm in depth. Surface temperature...

Sathyamurthi, Vijaykumar

2011-02-22T23:59:59.000Z

435

Extreme Value Theory, Extreme Temperatures, and demonstration of extRemes  

E-Print Network [OSTI]

Extreme Value Theory, Extreme Temperatures, and demonstration of extRemes Eric Gilleland, National;Extremes Toolkit (extRemes) Web Page http://www.isse.ucar.edu/extremevalues/evtk.html #12;Background on Extreme Value Analysis (EVA) Motivation Central Limit Theorem Extremal Types Theorem Normal (light tail

Gilleland, Eric

436

Evaporation behavior of Hastelloy-X alloys in simulated very high temperature reactor environments  

SciTech Connect (OSTI)

A sequential analysis was made on the material degradations during exposure of nickel-base corrosionresistant austenitic alloys to simulated very high temperature reactor environments. The materials tested were two modified versions of Hastelloy-X in terms of both increased manganese content for improved compatibility and decreased manganese content for possible adverse effects. Quantitative analysis of the specimens after exposure for 1000 h at several temperature steps from 850 to 1050/sup 0/C have revealed the temperature-dependent aspects of the processes including the depletion of chromium and manganese due to oxidation, evaporation, and carbon transfer into and/or from the materials. The material with enriched manganese, developed and specified as Hastelloy-XR, showed enhanced resistance to loss of chromium in terms of both oxidation and evaporation.

Shindo, M.; Kondo, T.

1984-08-01T23:59:59.000Z

437

NREL: Energy Analysis: Geospatial Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enlarge image Highlights of Recent Studies U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis This study summarizes the achievable energy generation, or technical...

438

USING HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER TO CONFIRM A SEISMOLOGICALLY INFERRED CORONAL TEMPERATURE  

SciTech Connect (OSTI)

The Extreme-Ultraviolet Imaging Spectrometer on board the HINODE satellite is used to examine the loop system described in Marsh et al. by applying spectroscopic diagnostic methods. A simple isothermal mapping algorithm is applied to determine where the assumption of isothermal plasma may be valid, and the emission measure locii technique is used to determine the temperature profile along the base of the loop system. It is found that, along the base, the loop has a uniform temperature profile with a mean temperature of 0.89 +- 0.09 MK which is in agreement with the temperature determined seismologically in Marsh et al., using observations interpreted as the slow magnetoacoustic mode. The results further strengthen the slow mode interpretation, propagation at a uniform sound speed, and the analysis method applied in Marsh et al. It is found that it is not possible to discriminate between the slow mode phase speed and the sound speed within the precision of the present observations.

Marsh, M. S.; Walsh, R. W., E-mail: mike.s.marsh@gmail.co [Jeremiah Horrocks Institute for Astrophysics and Supercomputing, University of Central Lancashire, Preston, PR1 2HE (United Kingdom)

2009-11-20T23:59:59.000Z

439

The low temperature differential Stirling engine with working fluid operated on critical condition  

SciTech Connect (OSTI)

The research and development of low temperature differential Stirling engine has a great potential market since a lot of thermal energy at low temperature can supply it and the cost of this kind of engine is lower than general Stirling engine. The characteristics of low compression ratio and low differential temperature Stirling engine may be satisfied with working fluid compressed on critical conditions. By combining two phase heat transfer with forced convective flow in compression space and through the regenerator in the engine, a new heat transfer coefficient emerges capable of absorbing and releasing high heat fluxes without the corresponding low temperature increase. The current analysis focuses on the study of Stirling engines with working fluid compressed on critical conditions, thus at two-phase heat transfer in compression space and regenerator of the engine under forced convective flow conditions.

Naso, V.; Dong, W.; Lucentini, M.; Capata, R.

1998-07-01T23:59:59.000Z

440

Evaluation of a low-cost and accurate ocean temperature logger on subsurface mooring systems  

SciTech Connect (OSTI)

Monitoring seawater temperature is important to understanding evolving ocean processes. To monitor internal waves or ocean mixing, a large number of temperature loggers are typically mounted on subsurface mooring systems to obtain high-resolution temperature data at different water depths. In this study, we redesigned and evaluated a compact, low-cost, self-contained, high-resolution and high-accuracy ocean temperature logger, TC-1121. The newly designed TC-1121 loggers are smaller, more robust, and their sampling intervals can be automatically changed by indicated events. They have been widely used in many mooring systems to study internal wave and ocean mixing. The loggers fundamental design, noise analysis, calibration, drift test, and a long-term sea trial are discussed in this paper.

Tian, Chuan; Deng, Zhiqun; Lu, Jun; Xu, Xiaoyang; Zhao, Wei; Xu, Ming

2014-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Effective temperature of an ultracold electron source based on near-threshold photoionization  

Science Journals Connector (OSTI)

Abstract We present a detailed description of measurements of the effective temperature of a pulsed electron source, based on near-threshold photoionization of laser-cooled atoms. The temperature is determined by electron beam waist scans, source size measurements with ion beams, and analysis with an accurate beam line model. Experimental data is presented for the source temperature as a function of the wavelength of the photoionization laser, for both nanosecond and femtosecond ionization pulses. For the nanosecond laser, temperatures as low as 143K were found; for femtosecond photoionization, 305K is possible. With a typical source size of 25 ? m , this results in electron bunches with a relative transverse coherence length in the 10?4 range and an emittance of a few nmrad.

W.J. Engelen; E.P. Smakman; D.J. Bakker; O.J. Luiten; E.J.D. Vredenbregt

2014-01-01T23:59:59.000Z

442

Thermodynamic Characteristic Study of a High-temperature Flow-rate Control Valve for Fuel Supply of Scramjet Engines  

Science Journals Connector (OSTI)

Thermodynamic characteristics are of great importance for the performance of a high-temperature flow-rate control valve, as high-temperature environment may bring problems, such as blocking of spool and increasing of leakage, to the valve. In this paper, a high-temperature flow-rate control valve, pilot-controlled by a pneumatic servo system is developed to control the fuel supply for scramjet engines. After introducing the construction and working principle, the thermodynamic mathematical models of the valve are built based on the heat transfer methods inside the valve. By using different boundary conditions, different methods of simulations are carried out and compared. The steady-state and transient temperature field distribution inside the valve body are predicted and temperatures at five interested points are measured. By comparing the simulation and experimental results, a reasonable 3D finite element analysis method is suggested to predict the thermodynamic characteristics of the high-temperature flow-rate control valve.

Wen ZENG; Zhizhong TONG; Songjing LI; Hongzhou LI; Liang ZHANG

2012-01-01T23:59:59.000Z

443

SUPPLEMENT ANALYSIS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

812 Supplement Analysis 1 October 2013 812 Supplement Analysis 1 October 2013 SUPPLEMENT ANALYSIS for the FINAL ENVIRONMENTAL ASSESSMENT for NECO (FORMERLY HAXTUN) WIND ENERGY PROJECT LOGAN AND PHILLIPS COUNTIES, COLORADO U. S. Department of Energy Office of Energy Efficiency and Renewable Energy Golden Field Office and U.S. Department of Energy Western Area Power Administration Rocky Mountain Customer Service Region OCTOBER 2013 DOE/EA-1812/SA-1 DOE/EA-1812 Supplement Analysis 2 October 2013 SUPPLEMENT ANALYSIS for the FINAL ENVIRONMENTAL ASSESSMENT for NECO (FORMERLY HAXTUN) WIND ENERGY PROJECT LOGAN AND PHILLIPS COUNTIES, COLORADO U. S. Department of Energy Office of Energy Efficiency and Renewable Energy Golden Field Office and U.S. Department of Energy Western Area Power Administration

444

SUPPLEMENT ANALYSIS  

Broader source: Energy.gov (indexed) [DOE]

Supplement Analysis 1 October 2013 Supplement Analysis 1 October 2013 SUPPLEMENT ANALYSIS for the FINAL ENVIRONMENTAL ASSESSMENT for NECO (FORMERLY HAXTUN) WIND ENERGY PROJECT LOGAN AND PHILLIPS COUNTIES, COLORADO U. S. Department of Energy Office of Energy Efficiency and Renewable Energy Golden Field Office and U.S. Department of Energy Western Area Power Administration Rocky Mountain Customer Service Region OCTOBER 2013 DOE/EA-1812/SA-1 DOE/EA-1812 Supplement Analysis 2 October 2013 SUPPLEMENT ANALYSIS for the FINAL ENVIRONMENTAL ASSESSMENT for NECO (FORMERLY HAXTUN) WIND ENERGY PROJECT LOGAN AND PHILLIPS COUNTIES, COLORADO U. S. Department of Energy Office of Energy Efficiency and Renewable Energy Golden Field Office and U.S. Department of Energy Western Area Power Administration

445

Development of high-temperature heat exchanger for hydrogen combustion turbine system  

SciTech Connect (OSTI)

New Rankine Cycle and Topping Regenerative Cycle are representative 500MW power generation systems for a hydrogen combustion turbine (HCT). The energy efficiency based on HHV of these is expected to be over 60% because the inlet temperature of turbine can be increased to 1,970K. These systems comprise various heat exchangers. Especially, the development of high temperature heat exchanger dealing with the high temperature and pressure steam is very important to realize the hydrogen combustion turbine system. The high-temperature heat exchanger of New Rankine Cycle is a supercritical heat recovery steam generator operating at pressure of 36MPa. This heat exchanger is heated by steam at temperature of 1,390K. On the other hand, Topping Regenerative Cycle has two high-temperature heat exchangers. One is a regenerator operating at pressure of 37MPa. The other is a regenerator operating at pressure of 5MPa. Both regenerators are heated by steam at temperature of 1,030K. The following are the principal development subject of high-temperature heat exchanger: (1) Improving the heat transfer characteristics to achieve the compact heat exchanger, and (2) Planning the heat exchanger structure suitable for the high thermal stress. To improve a heat transfer characteristic of the high-temperature heat exchangers, a parameter survey is conducted to optimize a tube arrangement and a fin configuration on tube outside and/or inside. The heat transfer areas are minimized through using the tubes with an extended heat transfer surface on both sides of a tube. Structural integrity is also estimated by conducting a structural analysis for the critical parts of the high-temperature heat exchangers.

Takakuwa, Akihiro; Mochida, Yoshio

1999-07-01T23:59:59.000Z

446

Temperature dependence of the gaps of high-temperature superconductors in the Fermi-arc region  

Science Journals Connector (OSTI)

It is shown how in a high-temperature superconductor, the length of the Fermi arc can be obtained from the doping dependence of the pseudogap and the superconducting gap. In the momentum region spanned by the Fermi arc, the pseudogap temperature dependence follows that of the superconducting gap. The close interconnection of the two gaps suggests that they are both an essential part of the high-temperature superconductivity.

S. Hfner and F. Mller

2008-07-23T23:59:59.000Z

447

Coupling Temperature Control with Electrochemically Modulated Liquid Chromatography: Fundamental Aspects and Applications  

SciTech Connect (OSTI)

The primary focus of the doctoral research presented herein has been the integration of temperature control into electrochemically modulated liquid chromatography (EMLC). The combination of temperature control and the tunable characteristics of carbonaceous EMLC stationary phases have been invaluable in deciphering the subtleties of the retention mechanism. The effects of temperature and E{sub app} on the retention of several naphthalene disulfonates were therefore examined by the van' Hoff relationship. The results indicate that while the retention of both compounds is exothermic at levels comparable to that in many reversed-phase separations, the potential dependence of the separation is actually entropically affected in a manner paralleling that of several classical ion exchange systems. Furthermore, the retention of small inorganic anions at constant temperature also showed evidence of an ion exchange type of mechanism. While a more complete mechanistic description will come from examining the thermodynamics of retention for a wider variety of analytes, this research has laid the groundwork for full exploitation of temperature as a tool to develop retention rules for EMLC. Operating EMLC at elevated temperature and flow conditions has decreased analysis time and has enabled the separation of analytes not normally achievable on a carbon stationary phase. The separation of several aromatic sulfonates was achieved in less than 1 min, a reduction of analysis time by more than a factor of 20 as compared to room temperature separations. The use of higher operating temperatures also facilitated the separation of this mixture with an entirely aqueous mobile phase in less than 2 min. This methodology was extended to the difficult separation of polycyclic aromatic hydrocarbons on PGC. This study also brought to light the mechanistic implications of the unique retention behavior of these analytes through variations of the mobile phase composition.

Lisa M. Ponton

2004-12-19T23:59:59.000Z

448

High temperature intermetallic binders for HVOF carbides  

SciTech Connect (OSTI)

Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr{sub 3}C{sub 2}-NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr{sub 3}C{sub 2} cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr{sub 3}C{sub 2}-NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders.

Shaw, K.G. [Xform, Inc., Cohoes, NY (United States); Gruninger, M.F.; Jarosinski, W.J. [Praxair Specialty Powders, Indianapolis, IN (United States)

1994-12-31T23:59:59.000Z

449

OIL ANALYSIS LAB TRIVECTOR ANALYSIS  

E-Print Network [OSTI]

OIL ANALYSIS LAB TRIVECTOR ANALYSIS This test method is a good routine test for the overall condition of the oil, the cleanliness, and can indicate the presence of wear metals that could be coming of magnetic metal particles within the oil. This may represent metals being worn from components (i

450

Nanoflare Statistics from First Principles: Fractal Geometry and Temperature Synthesis  

Science Journals Connector (OSTI)

We derive universal scaling laws for the physical parameters of flarelike processes in a low-? plasma, quantified in terms of spatial length scales l, area A, volume V, electron density ne, electron temperature Te, total emission measure M, and thermal energy E. The relations are specified as functions of two independent input parameters, the power index a of the length distribution, N(l) ? l-a, and the fractal Haussdorff dimension D between length scales l and flare areas, A(l) ? lD. For values that are consistent with the data, i.e., a = 2.5 0.2 and D = 1.5 0.2, and assuming the RTV scaling law, we predict an energy distribution N(E) ? E-? with a power-law coefficient of ? = 1.54 0.11. As an observational test, we perform statistics of nanoflares in a quiet-Sun region covering a comprehensive temperature range of Te ? 1-4 MK. We detected nanoflare events in extreme-ultraviolet (EUV) with the 171 and 195 filters from the Transition Region and Coronal Explorer (TRACE), as well as in soft X-rays with the AlMg filter from the Yohkoh soft X-ray telescope (SXT), in a cospatial field of view and cotemporal time interval. The obtained frequency distributions of thermal energies of nanoflares detected in each wave band separately were found to have power-law slopes of ? ? 1.86 0.07 at 171 (Te ? 0.7-1.1 MK), ? ? 1.81 0.10 at 195 (Te ? 1.0-1.5 MK), and ? ? 1.57 0.15 in the AlMg filter (Te ? 1.8-4.0 MK), consistent with earlier studies in each wavelength. We synthesize the temperature-biased frequency distributions from each wavelength and find a corrected power-law slope of ? ? 1.54 0.03, consistent with our theoretical prediction derived from first principles. This analysis, supported by numerical simulations, clearly demonstrates that previously determined distributions of nanoflares detected in EUV bands produced a too steep power-law distribution of energies with slopes of ? ? 2.0-2.3 mainly because of this temperature bias. The temperature-synthesized distributions of thermal nanoflare energies are also found to be more consistent with distributions of nonthermal flare energies determined in hard X-rays (? ? 1.4-1.6) and with theoretical avalanche models (? ? 1.4-1.5).

Markus J. Aschwanden; Clare E. Parnell

2002-01-01T23:59:59.000Z

451

High Temperature Cements | Open Energy Information  

Open Energy Info (EERE)

High Temperature Cements High Temperature Cements Jump to: navigation, search Geothermal ARRA Funded Projects for High Temperature Cements Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

452

Castlevalley Greenhouses Greenhouse Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Castlevalley Greenhouses Greenhouse Low Temperature Geothermal Facility Castlevalley Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Castlevalley Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Castlevalley Greenhouses Sector Geothermal energy Type Greenhouse Location Newcastle, Utah Coordinates 37.6666413°, -113.549406° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

453

Integrated Ingredients Dehydrated Agricultural Drying Low Temperature  

Open Energy Info (EERE)

Ingredients Dehydrated Agricultural Drying Low Temperature Ingredients Dehydrated Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Integrated Ingredients Dehydrated Agricultural Drying Low Temperature Geothermal Facility Facility Integrated Ingredients Dehydrated Sector Geothermal energy Type Agricultural Drying Location Empire, Nevada Coordinates 40.5757352°, -119.34213° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

454

SWTDI Geothermal Aquaculture Facility Aquaculture Low Temperature  

Open Energy Info (EERE)

SWTDI Geothermal Aquaculture Facility Aquaculture Low Temperature SWTDI Geothermal Aquaculture Facility Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name SWTDI Geothermal Aquaculture Facility Aquaculture Low Temperature Geothermal Facility Facility SWTDI Geothermal Aquaculture Facility Sector Geothermal energy Type Aquaculture Location Las Cruces, New Mexico Coordinates 32.3123157°, -106.7783374° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

455

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal  

Open Energy Info (EERE)

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

456

Improved Martensitic Steel for High Temperature Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved Martensitic Steel Improved Martensitic Steel for High Temperature Applications Opportunity Research is active on the patented technology, titled "Heat-Treated 9 Cr-1 Mo Steel for High Temperature Application." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory (NETL). Overview The operating efficiency of coal-fired power plants is directly related to combustion system temperature and pressure. Incorporation of ultra- supercritical (USC) steam conditions into new or existing power plants can achieve increased efficiency and reduce coal consumption, while reducing carbon dioxide emissions as well as other pollutants. Traditionally used materials do not possess the optimal characteristics for operation

457

Viscosity of high-temperature iodine  

Science Journals Connector (OSTI)

The viscosity coefficient of iodine in the temperature range 500?T?3000 K is calculated. Because of the low dissociation energy of the I2 molecules, the dissociation degree of the gas increases quickly with temperature, and I+I2 and I+I collisions must be taken into account in calculations of viscosity at temperatures greater than 1000. Several possible channels for atom-atom interaction are considered, and the resulting collision integrals are averaged over all the important channels. It is also shown that the rigid-sphere model is inaccurate in predictions of the viscosity. The approach of the present work is general and can be used for other diatomic gases with arbitrary dissociation degree.

Steve H. Kang and Joseph A. Kunc

1991-09-15T23:59:59.000Z

458

Finite temperature Casimir effect for graphene  

E-Print Network [OSTI]

We adopt the Dirac model for quasiparticles in graphene and calculate the finite temperature Casimir interaction between a suspended graphene layer and a parallel conducting surface. We find that at high temperature the Casimir interaction in such system is just one half of that for two ideal conductors separated by the same distance. In this limit single graphene layer behaves exactly as a Drude metal. In particular, the contribution of the TE mode is suppressed, while one of the TM mode saturates the ideal metal value. Behaviour of the Casimir interaction for intermediate temperatures and separations accessible for an experiment is studied in some detail. We also find an interesting interplay between two fundamental constants of graphene physics: the fine structure constant and the Fermi velocity.

Ignat V. Fialkovsky; Valery N. Marachevsky; Dmitri V. Vassilevich

2011-02-09T23:59:59.000Z

459

Compliant high temperature seals for dissimilar materials  

DOE Patents [OSTI]

A high temperature, gas-tight seal is formed by utilizing one or more compliant metallic toroidal ring sealing elements, where the applied pressure serves to activate the seal, thus improving the quality of the seal. The compliant nature of the sealing element compensates for differences in thermal expansion between the materials to be sealed, and is particularly useful in sealing a metallic member and a ceramic tube art elevated temperatures. The performance of the seal may be improved by coating the sealing element with a soft or flowable coating such as silver or gold and/or by backing the sealing element with a bed of fine powder. The material of the sealing element is chosen such that the element responds to stress elastically, even at elevated temperatures, permitting the seal to operate through multiple thermal cycles.

Rynders, Steven Walton (Fogelsville, PA); Minford, Eric (Laurys Station, PA); Tressler, Richard Ernest (Boalsburg, PA); Taylor, Dale M. (Salt Lake City, UT)

2001-01-01T23:59:59.000Z

460

High Temperature Membrane & Advanced Cathode Catalyst Development  

SciTech Connect (OSTI)

Current project consisted of three main phases and eighteen milestones. Short description of each phase is given below. Table 1 lists program milestones. Phase 1--High Temperature Membrane and Advanced Catalyst Development. New polymers and advanced cathode catalysts were synthesized. The membranes and the catalysts were characterized and compared against specifications that are based on DOE program requirements. The best-in-class membranes and catalysts were downselected for phase 2. Phase 2--Catalyst Coated Membrane (CCM) Fabrication and Testing. Laboratory scale catalyst coated membranes (CCMs) were fabricated and tested using the down-selected membranes and catalysts. The catalysts and high temperature membrane CCMs were tested and optimized. Phase 3--Multi-cell stack fabrication. Full-size CCMs with the down-selected and optimized high temperature membrane and catalyst were fabricated. The catalyst membrane assemblies were tested in full size cells and multi-cell stack.

Protsailo, Lesia

2006-04-20T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Manufacturing Barriers to High Temperature PEM Commercialization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9/2011 9/2011 1 BASF Fuel Cell, Inc. Manufacturing Barriers to high temperature PEM commercialization 39 Veronica Ave Somerset , NJ 08873 Tel : (732) 545-5100 9/9/2011 2 Background on BASF Fuel Cell  BASF Fuel Cell was established in 2007, formerly PEMEAS Fuel Cells (including E-TEK)  Product line is high temperature MEAs (Celtec ® P made from PBI-phosphoric acid)  Dedicated a new advanced pilot manufacturing facility in Somerset NJ May 2009. Ribbon-cutting hosted by Dr. Kreimeyer (BASF BoD, right) and attended by various US pubic officials including former NJ Governor Jon Corzine (left) 9/9/2011 3 Multi-layer product of membrane (polybenzimidazole and phosphoric acid), gas diffusion material and catalysts Unique characteristics:  High operating temperature

462

Conformal Invariance of Black Hole Temperature  

E-Print Network [OSTI]

It is shown that the surface gravity and temperature of a stationary black hole are invariant under conformal transformations of the metric that are the identity at infinity. More precisely, we find a conformal invariant definition of the surface gravity of a conformal Killing horizon that agrees with the usual definition(s) for a true Killing horizon and is proportional to the temperature as defined by Hawking radiation. This result is reconciled with the intimate relation between the trace anomaly and the Hawking effect, despite the {\\it non}invariance of the trace anomaly under conformal transformations.

Ted Jacobson; Gungwon Kang

1993-07-06T23:59:59.000Z

463

Temperature determination from the lattice gas model  

E-Print Network [OSTI]

Determination of temperature from experimental data has become important in searches for critical phenomena in heavy ion collisions. Widely used methods are ratios of isotopes (which rely on chemical and thermal equilibrium), population ratios of excited states etc. Using the lattice gas model we propose a new observable: $n_{ch}/Z$ where $n_{ch}$ is the charge multiplicity and $Z$ is the charge of the fragmenting system. We show that the reduced multiplicity is a good measure of the average temperature of the fragmenting system.

S. Das Gupta; J. Pan; M. B. Tsang

1996-09-30T23:59:59.000Z

464

Frustrated phase separation and high temperature superconductivity  

SciTech Connect (OSTI)

A dilute system of neutral holes in an antiferromagnet separates into a hole-rich and a hole-poor phase. The phase separation is frustrated by long-range Coulomb interactions but, provided the dielectric constant is sufficiently large, there remain large-amplitude low-energy fluctuations in the hole density at intermediate length scales. The extensive experimental evidence showing that this behavior giver, a reasonable picture of high temperature superconductors is surveyed. Further, it is shown that the scattering of mobile holes from the local density fluctuations may account for the anomalous normal-state properties of high temperature superconductors and also provide the mechanism of pairing.

Emery, V.J. [Brookhaven National Lab., Upton, NY (United States); Kivelson, S.A. [California Univ., Los Angeles, CA (United States). Dept. of Physics

1992-09-01T23:59:59.000Z

465

Frustrated phase separation and high temperature superconductivity  

SciTech Connect (OSTI)

A dilute system of neutral holes in an antiferromagnet separates into a hole-rich and a hole-poor phase. The phase separation is frustrated by long-range Coulomb interactions but, provided the dielectric constant is sufficiently large, there remain large-amplitude low-energy fluctuations in the hole density at intermediate length scales. The extensive experimental evidence showing that this behavior giver, a reasonable picture of high temperature superconductors is surveyed. Further, it is shown that the scattering of mobile holes from the local density fluctuations may account for the anomalous normal-state properties of high temperature superconductors and also provide the mechanism of pairing.

Emery, V.J. (Brookhaven National Lab., Upton, NY (United States)); Kivelson, S.A. (California Univ., Los Angeles, CA (United States). Dept. of Physics)

1992-01-01T23:59:59.000Z

466

Effects of temperature and temperature shock on the performance and microbial community structure of a submerged anaerobic membrane bioreactor  

E-Print Network [OSTI]

in biogas pro- duction rate and biogas composition. However, temperature shocks resulted in an increase in biogas pro- duction temporarily. The SAnMBR could tolerate the 5 and 10 °C temperature shocks at 37 °C). The effects of digestion temperature and temperature shock on the biogas yields, temperature shocks

Qin, Wensheng

467

Petroleum Analysis  

Science Journals Connector (OSTI)

A comprehensive review of fluorescence techniques used for the analysis of crude petroleum oils encompasses both industrial and research applications of optical techniques routinely applied to oil applications. ... fractions of heavy petroleums were examd. ...

Ryan P. Rodgers; Amy M. McKenna

2011-04-29T23:59:59.000Z

468

Isotope Analysis  

Science Journals Connector (OSTI)

Naturally occurring oxygen includes three stable isotopes,16O,17O, and18O, with the relative abundances of 99.763%, 0.0375%, and 0.1995%, respectively. Isotopic analysis does not consider the absolute abundances ...

Tandong Yao; Wusheng Yu; Huabiao Zhao

2014-08-01T23:59:59.000Z

469

Financial Analysis  

Broader source: Energy.gov [DOE]

The first step in financing a street lighting retrofit is a detailed financial analysis. Because street lighting systems are designed to last ten or twenty years, or even longer, all aspects of first costs, ongoing expenses, and long-term savings are important. While a preliminary or first-level analysis can be used to determine such things as simple payback, rate of return, and cost of light, the results may neglect a number of important economic considerations, such as the time value of money, additional savings and expenses and their relative timing, and future energy price escalations. Hence a first-level analysis does not typically provide the end user with sufficient details to make a fully informed decision. For this reason, the Illuminating Engineering Society (IES) recommends a full life cycle cost/benefit analysis (LCCBA).

470

Category:Geothermal Low Temperature Direct Use Facilities | Open Energy  

Open Energy Info (EERE)

Low Temperature Direct Use Facilities Low Temperature Direct Use Facilities Jump to: navigation, search Low Temperature Direct Use Geothermal Facilities. Add a Low Temperature Geothermal Facility Pages in category "Geothermal Low Temperature Direct Use Facilities" The following 200 pages are in this category, out of 449 total. (previous 200) (next 200) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility A Ace Development Aquaculture Low Temperature Geothermal Facility Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility Americulture Aquaculture Low Temperature Geothermal Facility Aq Dryers Agricultural Drying Low Temperature Geothermal Facility Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility

471

Low-Temperature Diesel Combustion Cross-Cut Research | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Density and Temperature on Soot Formation under High-EGR Conditions Low-Temperature Diesel Combustion Cross-Cut Research LES Applied to Low-Temperature, Diesel and Hydrogen...

472

Physiological temperature regulation by flowers of the sacred lotus  

Science Journals Connector (OSTI)

...the hood by the sun. Temperatures in the centre...the widespread distribution of the lotus...maintain thoracic temperatures above 30 8C at...macrophytes to temperature. In Physiological...Classi cation and distribution of the genus...

1998-01-01T23:59:59.000Z

473

The New England High-Resolution Temperature Program  

Science Journals Connector (OSTI)

The New England High-Resolution Temperature Program seeks to improve the accuracy of summertime 2-m temperature and dewpoint temperature forecasts in the New England region through a collaborative effort between the research and operational ...

David J. Stensrud; Nusrat Yussouf; Michael E. Baldwin; Jeffery T. McQueen; Jun Du; Binbin Zhou; Brad Ferrier; Geoffrey Manikin; F. Martin Ralph; James M. Wilczak; Allen B. White; Irina Djlalova; Jian-Wen Bao; Robert J. Zamora; Stanley G. Benjamin; Patricia A. Miller; Tracy Lorraine Smith; Tanya Smirnova; Michael F. Barth

2006-04-01T23:59:59.000Z

474

Generating Scenarios of Local Surface Temperature Using Time Series Methods  

Science Journals Connector (OSTI)

A method for creating scenarios of time series of monthly mean surface temperature at a specific site is developed. It is postulated that surface temperature can be specified as a linear combination of regional and local temperature components, ...

Robert S. Chen; Peter J. Robinson

1991-07-01T23:59:59.000Z

475

Static Temperature Survey At Lassen Volcanic National Park Area...  

Open Energy Info (EERE)

in volcanic rocks (Beall, 1981). Temperature-log profiles made 10 months after drilling completion show an abrupt temperature rise at 183 m, a maximum temperature of 176 degrees...

476

High Operating Temperature Liquid Metal Heat Transfer Fluids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Liquid Metal Liquid Metal Heat Transfer Fluids UCLA, UCB, Yale DE-EE0005941 | April 15, 2013 | Ju 1.1 Thermochemistry modeling * Continue CALPHAD based calculations to search for optimal ternary alloy compositions. * Initiate development of liquid density models. 1.2 Combinatorial synthesis and characterization * Pipe-Liquid interaction of compositional library * More alloys, alloy additions and effect on liquidus temperatures * Iteratively optimize the compositions. 1.3 Corrosion characterization and mitigation * Tune static corrosion testing systems for testing over an extended period of time. * Perform analysis of the micro mechanical testing on the oxide layers. 1.4 Heat transfer characterization and modeling * Complete the construction of the flow loop and perform experiments to measure

477

Surface temperature trends in Russia over the past five centuries reconstructed from borehole temperatures  

E-Print Network [OSTI]

Surface temperature trends in Russia over the past five centuries reconstructed from borehole in Russia and nearby areas to reconstruct the ground surface temperature history (GSTH) over the past five Siberia. We derive GSTHs for each region individually, and a composite ``all-Russia'' GSTH from the full

Smerdon, Jason E.

478

Silicon Carbide Temperature Monitor Measurements at the High Temperature Test Laboratory  

SciTech Connect (OSTI)

Silicon carbide (SiC) temperature monitors are now available for use as temperature sensors in Advanced Test Reactor (ATR) irradiation test capsules. Melt wires or paint spots, which are typically used as temperature sensors in ATR static capsules, are limited in that they can only detect whether a single temperature is or is not exceeded. SiC monitors are advantageous because a single monitor can be used to detect for a range of temperatures that may have occurred during irradiation. As part of the efforts initiated by the ATR National Scientific User Facility (NSUF) to make SiC temperature monitors available, a capability was developed to complete post-irradiation evaluations of these monitors. As discussed in this report, the Idaho National Laboratory (INL) selected the resistance measurement approach for detecting peak irradiation temperature from SiC temperature monitors. This document describes the INL efforts to develop the capability to complete these resistance measurements. In addition, the procedure is reported that was developed to assure that high quality measurements are made in a consistent fashion.

J. L. Rempe; K. G. Condie; D. L. Knudson; L. L. Snead

2010-01-01T23:59:59.000Z

479

High Temperature Variable Conductance Heat Pipes for Radioisotope Stirling Systems  

SciTech Connect (OSTI)

In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling converter provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) is under development to allow multiple stops and restarts of the Stirling engine. The status of the ongoing effort in developing this technology is presented in this paper. An earlier, preliminary design had a radiator outside the Advanced Stirling Radioisotope Generator (ASRG) casing, used NaK as the working fluid, and had the reservoir located on the cold side adapter flange. The revised design has an internal radiator inside the casing, with the reservoir embedded inside the insulation. A large set of advantages are offered by this new design. In addition to reducing the overall size and mass of the VCHP, simplicity, compactness and easiness in assembling the VCHP with the ASRG are significantly enhanced. Also, the permanently elevated temperatures of the entire VCHP allows the change of the working fluid from a binary compound (NaK) to single compound (Na). The latter, by its properties, allows higher performance and further mass reduction of the system. Preliminary design and analysis shows an acceptable peak temperature of the ASRG case of 140 deg. C while the heat losses caused by the addition of the VCHP are 1.8 W.

Tarau, Calin; Walker, Kara L.; Anderson, William G. [Advanced Cooling Technologies, Inc. 1046 New Holland Ave. Lancaster, PA 17601 (United States)

2009-03-16T23:59:59.000Z

480

Air Cooling for High Temperature Power Electronics (Presentation)  

SciTech Connect (OSTI)

Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

Waye, S.; Musselman, M.; King, C.

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "temperature gistemp analysis" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Energy Savings by Wideband Temperature Control in Telephone Offices  

E-Print Network [OSTI]

was recorded with totalizer meters. The data recorded on the data logger was as follows: Channel 0 - Temperature of the air between circuit packs in central controller frame. (air-gap temperature) 1 - Temperature of the air between circuit packs... was recorded with totalizer meters. The data recorded on the data logger was as follows: Channel 0 - Temperature of the air between circuit packs in central controller frame. (air-gap temperature) 1 - Temperature of the air between circuit packs...

Lingousky, J. E.; McKay, J. R.

1983-01-01T23:59:59.000Z

482

Plasma Heating to Super-Hot Temperatures (>30 MK) in the August 9, 2011 Solar Flare  

E-Print Network [OSTI]

We investigate the August 9, 2011 solar flare of X-ray class X6.9, the "hottest" flare from 2000 to 2012, with a peak plasma temperature according to GOES data of 32.5 MK. Our goal is to determine the cause of such an anomalously high plasma temperature and to investigate the energy balance in the flare region with allowance made for the presence of a super-hot plasma (>30 MK). We analyze the RHESSI, GOES, AIA/SDO, and EVE/SDO data and discuss the spatial structure of the flare region and the results of our spectral analysis of its X-ray emission. Our analysis of the RHESSI X-ray spectra is performed in the one-temperature and two-temperature approximations by taking into account the emission of hot (20 MK) and super-hot (45 MK) plasmas. The hard X-ray spectrum in both models is fitted by power laws. The observed peculiarities of the flare are shown to be better explained in terms of the two-temperature model, in which the super-hot plasma is located at the flare loop tops (or in the magnetic cusp region). Th...

Sharykin, I N; Zimovets, I V

2015-01-01T23:59:59.000Z

483

Characterization of temperature-induced changes in amorphous hydrogenated carbon thin films  

Science Journals Connector (OSTI)

Abstract Hard hydrogenated amorphous carbon thin films were heated in vacuum to different temperatures and held at these for at least 30min. Afterwards, the cooled-down samples were analyzed by various techniques. Strict and reproducible correlations were found between all the determined parameters and the annealing temperature. Single-wavelength ellipsometry shows that the real part of the refractive index of the films at 633nm wavelength decreases with temperature while the extinction coefficient increases. It also shows swelling of the films with a thickness increase of about 50% for films heated to ?1000K. The associated decrease of mass density is proportional to the decrease in refractive index. Ion beam analysis shows that hydrogen is released from the films during heating with only about 5% of the initial H remaining after annealing at 1300K while no significant loss of carbon can be detected. The losses of hydrogen during heating are monitored by temperature programmed desorption and they are in good agreement with the ion-beam-analysis results. Raman spectroscopy delivers evidence of aromatization of the films under heat treatment. Indication of first structural changes is found already at 600K while the quickest changes of the refractive index, thickness, and hydrogen content with temperature occur around 850K.

Christian Hopf; Thierry Angot; Etienne Arou; Thomas Drbeck; Wolfgang Jacob; Cline Martin; Cdric Pardanaud; Pascale Roubin; Thomas Schwarz-Selinger

2013-01-01T23:59:59.000Z

484

Potential applications of high temperature helium  

SciTech Connect (OSTI)

This paper discusses the DOE MHTGR-SC program`s recent activity to improve the economics of the MHTGR without sacrificing safety performance and two potential applications of high temperature helium, the MHTGR gas turbine plant and a process heat application for methanol production from coal.

Schleicher, R.W. Jr.; Kennedy, A.J.

1992-09-01T23:59:59.000Z

485

Potential applications of high temperature helium  

SciTech Connect (OSTI)

This paper discusses the DOE MHTGR-SC program's recent activity to improve the economics of the MHTGR without sacrificing safety performance and two potential applications of high temperature helium, the MHTGR gas turbine plant and a process heat application for methanol production from coal.

Schleicher, R.W. Jr.; Kennedy, A.J.

1992-09-01T23:59:59.000Z

486

Cavity Field Reconstruction at Finite Temperature  

E-Print Network [OSTI]

We present a scheme to reconstruct the quantum state of a field preparedinside a lossy cavity at finite temperature. Quantum coherences are normallydestroyed by the interaction with an environment, but we show that it ispossible to recover complete information about the initial state (beforeinteraction with its environment), making possible to reconstruct any$s$-parametrized quasiprobability distribution, in particular, the Wignerfunction.

Moya-Cessa, H; Tombesi, P; Roversi, J A

2000-01-01T23:59:59.000Z

487

Low Temperature PEM Fuel Cell Manufacturing Needs  

E-Print Network [OSTI]

Low Temperature PEM Fuel Cell Manufacturing Needs Presented by Duarte Sousa, PE Manufacturing Fuel Cell Manhattan Project #12; Cost drivers were identified for the following: · MEA · Plates · Balance of Plant (BOP) · Fuel Processing Manufacturing Fuel Cell Project ­ Phase 1 Note that this presentation

488

Performance of scintillation materials at cryogenic temperatures  

E-Print Network [OSTI]

An increasing number of applications of scintillators at low temperatures, particularly in cryogenic experiments searching for rare events, has motivated the investigation of scintillation properties of materials over a wide temperature range. This paper provides an overview of the latest results on the study of luminescence, absorption and scintillation properties of materials selected for rare event searches so far. These include CaWO4, ZnWO4, CdWO4, MgWO4, CaMoO4, CdMoO4, Bi4Ge3O12, CaF2, MgF2, ZnSe and AL2O3-Ti. We discuss the progress achieved in research and development of these scintillators, both in material preparation and in the understanding of scintillation mechanisms, as well as the underlying physics. To understand the origin of the performance limitation of self-activated scintillators we employed a semi-empirical model of conversion of high energy radiation into light and made appropriate provision for effects of temperature and energy transfer. We conclude that the low-temperature value of the light yield of some modern scintillators, namely CaWO4, CdWO4 and Bi4Ge3O12, is close to the theoretical limit. Finally, we discuss the advantages and limitations of different materials with emphasis on their application as cryogenic phonon-scintillation detectors (CPSD) in rare event search experiments.

V. B. Mikhailik; H. Kraus

2010-01-29T23:59:59.000Z

489

On the Burning Temperatures of Tobacco  

Science Journals Connector (OSTI)

...low, but the heat spread over...formed by the combustion of tobacco leaf...carcinogenic aromatic hydrocarbons are produced...Temperature of the combustion zone in a pipe...low, but the heat spread over...from In ternal Combustion Engines and...Polycyclic Hydrocarbons in Cigarette...

Pentti Ermala and Lars R. Holsti

1956-07-01T23:59:59.000Z

490

The Temperature of the Copper Arc  

Science Journals Connector (OSTI)

...Laboratory, General Electric Company. | Journal Article...TEMPERATURE OF THE COPPER ARC By C. G. SUITS RESEARCH LABORATORY, GENERAL ELECTRIC COMPANY Read before the...figure 1, where Fis an arc burning between the electrodes...experiment is a condensed discharge between the electrode...

C. G. Suits

1935-01-01T23:59:59.000Z

491

High temperature storage loop : final design report.  

SciTech Connect (OSTI)

A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650%C2%B0C) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOE's SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

Gill, David Dennis; Kolb, William J.

2013-07-01T23:59:59.000Z

492

Thermodynamics of viscoelastic fluids: the temperature equation.  

E-Print Network [OSTI]

in rubber elasticity, we will derive an approximation of the temperature equation in measurable quantities was considered, i.e. with the heat production equal to the stress work, with isotropic heat conduction gives no reversible heat production, only dissipation. If it is completely stored 1 #12;as entropy

Wapperom, Peter

493

High Temperature, Permanent Magnet Biased Magnetic Bearings  

E-Print Network [OSTI]

performance, high speed and high temperature applications like space vehicles, jet engines and deep sea equipment. The bearing system had a target design to carry a load equal to 500 lb-f (2225N). Another objective was to design and build a test rig fixture...

Gandhi, Varun R.

2010-07-14T23:59:59.000Z

494

The High-Temperature Oxidation of Propane  

Science Journals Connector (OSTI)

...research-article The High-Temperature Oxidation of Propane J. W. Falconer J. H. Knox Above 400 degrees C propane is oxidized by a two-stage degenerately...of propylene becomes important. While propane still in the main reacts to form propylene...

1959-01-01T23:59:59.000Z

495

Flux noise in high-temperature superconductors  

Science Journals Connector (OSTI)

Spontaneously created vortex-antivortex pairs are the predominant source of flux noise in high-temperature superconductors. In principle, flux noise measurements allow to check theoretical predictions for both the distribution of vortex-pair sizes and for the vortex diffusivity. In this paper the flux-noise power spectrum is calculated for the highly anisotropic high-temperature superconductor Bi2Sr2CaCu2O8+?, both for bulk crystals and for ultrathin films. The spectrum is basically given by the Fourier transform of the temporal magnetic-field correlation function. We start from a Berezinskii-Kosterlitz-Thouless-type theory and incorporate vortex diffusion, intrapair vortex interaction, and annihilation of pairs by means of a Fokker-Planck equation to determine the noise spectrum below and above the superconducting transition temperature. We find white noise at low frequencies ? and a spectrum proportional to 1/?3/2 at high frequencies. The crossover frequency between these regimes strongly depends on temperature. The results are compared with earlier results of computer simulations.

Carsten Timm

1997-02-01T23:59:59.000Z

496

Temperature Change in the Southern Sarah Gille  

E-Print Network [OSTI]

on Impact #12;Southern Ocean data (900 m depth) #12;Autonomous Floats: ALACE and PALACE in the 1990s #12 in the coordinates of the flow #12;Profiling Autonomous Floats: PALACE, and ARGO #12;Stratification changes (from of ACC. Temperature change at 900 m in 50 years: > 2 C. Gille, JPO, 2003 #12;Mechanisms: Changes in wind

Gille, Sarah T.

497

High-temperature for improved ES  

E-Print Network [OSTI]

standard requires tests both for u powered systems. For the latter testin temperature has to be taken a perfect electric insulation active device. Regarding ESD r proposed protection should provide current: We propose a new MOS-IGB robustness ESD protection with low temp diffusions in the drain with various

Paris-Sud XI, Université de