National Library of Energy BETA

Sample records for temperature extremes grid-connected

  1. Geothermal/Grid Connection | Open Energy Information

    Open Energy Info (EERE)

    GeothermalGrid Connection < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection...

  2. Grid Connected Functionalities | Department of Energy

    Office of Environmental Management (EM)

    Grid Connected Functionalities Grid Connected Functionalities Lead Performer: National Renewable Energy Laboratory (NREL) Objective The objective of Grid Connected Functionality is to develop planning and establish strategic directions, along with supporting framework documents vetted by public engagement with industry and other stakeholders, which support and inform future research, development and deployment of critical building-grid transactional frameworks. View the Presentation PDF icon

  3. Public Meeting: Physical Characterization of Grid-Connected Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building...

  4. Public Meeting: Physical Characterization of Smart and Grid-Connected...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and...

  5. Integration Technology for PHEV-Grid-Connectivity, with Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards Integration Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards 2010...

  6. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Environmental Management (EM)

    Grid-Connected Renewable Energy Systems Grid-Connected Renewable Energy Systems When connecting a home energy system to the electric grid, research and consider equipment required...

  7. United States Launches First Grid-Connected Offshore Wind Turbine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    United States Launches First Grid-Connected Offshore Wind Turbine United States Launches First Grid-Connected Offshore Wind Turbine August 22, 2013 - 12:00am Addthis Leveraging an ...

  8. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid-Connected Renewable Energy Systems Grid-Connected Renewable Energy Systems July 7, 2015 - 8:21pm Addthis When connecting a home energy system to the electric grid, research...

  9. United States Launches First Grid-Connected Offshore Wind Turbine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy United States Launches First Grid-Connected Offshore Wind Turbine United States Launches First Grid-Connected Offshore Wind Turbine August 22, 2013 - 12:00am Addthis Leveraging an EERE investment, the University of Maine deployed the nation's first grid-connected offshore floating wind turbine prototype off the coast of Castine, Maine. The university and its project partners conducted extensive design, engineering, and testing of floating offshore wind turbines, then

  10. Grid-Connected Renewable Energy Generation Toolkit-Biomass |...

    Open Energy Info (EERE)

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Grid-Connected Renewable Energy Generation Toolkit-Biomass AgencyCompany Organization: United States Agency for...

  11. Grid-Connected Renewable Energy Generation Toolkit-Wind | Open...

    Open Energy Info (EERE)

    Agency for International Development Sector: Energy Focus Area: Wind Resource Type: Training materials Website: www.energytoolbox.orggcremod6index.shtml Grid-Connected...

  12. Grid-Connected Renewable Energy Generation Toolkit-Solar | Open...

    Open Energy Info (EERE)

    Agency for International Development Sector: Energy Focus Area: Solar Resource Type: Training materials Website: www.energytoolbox.orggcremod5index.shtml Grid-Connected...

  13. Grid-Connected Renewable Energy Generation Toolkit-Geothermal...

    Open Energy Info (EERE)

    for International Development Sector: Energy Focus Area: Geothermal Resource Type: Training materials Website: www.energytoolbox.orggcremod3index.shtml Grid-Connected...

  14. Grid-Connected Renewable Energy Generation Toolkit-Hydroelectric...

    Open Energy Info (EERE)

    United States Agency for International Development Sector: Energy Resource Type: Training materials Website: www.energytoolbox.orggcremod4index.shtml Grid-Connected...

  15. Grid-Connected Renewable Energy Systems Case Studies | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Grid-Connected Renewable Energy Systems Case Studies AgencyCompany Organization: World Bank Sector: Energy Topics:...

  16. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and how to implement them): The Institute of Electrical and Electronics Engineers (IEEE) has written a standard that addresses all grid-connected distributed generation...

  17. Extremely Low Temperature | Open Energy Information

    Open Energy Info (EERE)

    Extremely Low Temperature: No definition has been provided for this term. Add a Definition Sanyal Temp Classification This temperature scheme was developed by Sanyal in...

  18. Transatlantic Workshop on Electric Vehicles and Grid Connectivity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Transatlantic Workshop on Electric Vehicles and Grid Connectivity Transatlantic Workshop on Electric Vehicles and Grid Connectivity November 17, 2010 - 2:33pm Addthis On November 17, 2010, the United States and the European Union, under the auspices of the U.S.-EU Energy Council, invited equipment suppliers and manufacturers, utilities, policymakers, standards organizations, and government agencies to discuss mutually beneficial near-term actions to accelerate the

  19. Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems May 16, 2013 - 12:00am Addthis The Southeast Propane Autogas Development Program, an $8.6 million Clean Cities Recovery Act project, finished bringing 1,200 propane vehicles and 11 new stations to support them to the road in October 2013. The Virginia Department of Mines, Minerals, and Energy led the project, with support

  20. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid-Connected Renewable Energy Systems Grid-Connected Renewable Energy Systems When connecting a home energy system to the electric grid, research and consider equipment required as well as your power provider’s requirements and agreements. | Photo courtesy of Solar Design Associates, Inc. When connecting a home energy system to the electric grid, research and consider equipment required as well as your power provider's requirements and agreements. | Photo courtesy of Solar Design

  1. Understanding the Benefits of Dispersed Grid-Connected Photovoltaics: From Avoiding the Next Major Outage to Taming Wholesale Power Markets

    SciTech Connect (OSTI)

    Letendre, Steven E.; Perez, Richard

    2006-07-15

    Thanks to new solar resource assessment techniques using cloud cover data available from geostationary satellites, it is apparent that grid-connected PV installations can serve to enhance electric grid reliability, preventing or hastening recovery from major power outages and serving to mitigate extreme price spikes in wholesale energy markets. (author)

  2. High Penetration, Grid Connected Photovoltaic Technology Codes and Standards: Preprint

    SciTech Connect (OSTI)

    Basso, T. S.

    2008-05-01

    This paper reports the interim status in identifying and reviewing photovoltaic (PV) codes and standards (C&S) and related electrical activities for grid-connected, high-penetration PV systems with a focus on U.S. electric utility distribution grid interconnection.

  3. First U.S. Grid-Connected Offshore Wind Turbine Installed Off...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine October 1, 2013 - ...

  4. Mongolia-GTZ Energy Efficiency within the Grid-Connected Energy...

    Open Energy Info (EERE)

    Energy Efficiency within the Grid-Connected Energy Supply Jump to: navigation, search Logo: Mongolia-GTZ Energy Efficiency within the Grid-Connected Energy Supply Name Mongolia-GTZ...

  5. Changes in Concurrent Precipitation and Temperature Extremes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hao, Zengchao; AghaKouchak, Amir; Phillips, Thomas J.

    2013-08-01

    While numerous studies have addressed changes in climate extremes, analyses of concurrence of climate extremes are scarce, and climate change effects on joint extremes are rarely considered. This study assesses the occurrence of joint (concurrent) monthly continental precipitation and temperature extremes in Climate Research Unit (CRU) and University of Delaware (UD) observations, and in 13 Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate simulations. Moreover, the joint occurrences of precipitation and temperature extremes simulated by CMIP5 climate models are compared with those derived from the CRU and UD observations for warm/wet, warm/dry, cold/wet, and cold/dry combinations of joint extremes.more » The number of occurrences of these four combinations during the second half of the 20th century (1951–2004) is assessed on a common global grid. CRU and UD observations show substantial increases in the occurrence of joint warm/dry and warm/wet combinations for the period 1978–2004 relative to 1951–1977. The results show that with respect to the sign of change in the concurrent extremes, the CMIP5 climate model simulations are in reasonable overall agreement with observations. The results reveal notable discrepancies between regional patterns and the magnitude of change in individual climate model simulations relative to the observations of precipitation and temperature.« less

  6. Changes in Concurrent Precipitation and Temperature Extremes

    SciTech Connect (OSTI)

    Hao, Zengchao; AghaKouchak, Amir; Phillips, Thomas J.

    2013-08-01

    While numerous studies have addressed changes in climate extremes, analyses of concurrence of climate extremes are scarce, and climate change effects on joint extremes are rarely considered. This study assesses the occurrence of joint (concurrent) monthly continental precipitation and temperature extremes in Climate Research Unit (CRU) and University of Delaware (UD) observations, and in 13 Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate simulations. Moreover, the joint occurrences of precipitation and temperature extremes simulated by CMIP5 climate models are compared with those derived from the CRU and UD observations for warm/wet, warm/dry, cold/wet, and cold/dry combinations of joint extremes. The number of occurrences of these four combinations during the second half of the 20th century (19512004) is assessed on a common global grid. CRU and UD observations show substantial increases in the occurrence of joint warm/dry and warm/wet combinations for the period 19782004 relative to 19511977. The results show that with respect to the sign of change in the concurrent extremes, the CMIP5 climate model simulations are in reasonable overall agreement with observations. The results reveal notable discrepancies between regional patterns and the magnitude of change in individual climate model simulations relative to the observations of precipitation and temperature.

  7. Extreme Temperature Energy Storage and Generation, for Cost and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extreme Temperature Energy Storage and Generation, for Cost and Risk Reduction in Geothermal Exploration Extreme Temperature Energy Storage and Generation, for Cost and Risk ...

  8. Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project July 24, 2012 - 1:12pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Today, Energy Secretary Steven Chu recognized the nation's first commercial, grid-connected tidal energy project off the coast of Eastport, Maine. Leveraging a $10 million investment from the Energy Department, Ocean Renewable Power Company (ORPC)

  9. EERE Success Story-United States Launches First Grid-Connected Offshore

    Office of Environmental Management (EM)

    Wind Turbine | Department of Energy United States Launches First Grid-Connected Offshore Wind Turbine EERE Success Story-United States Launches First Grid-Connected Offshore Wind Turbine August 22, 2013 - 12:00am Addthis Leveraging an EERE investment, the University of Maine deployed the nation's first grid-connected offshore floating wind turbine prototype off the coast of Castine, Maine. The university and its project partners conducted extensive design, engineering, and testing of

  10. DOE Publishes Notice of Public Meeting for Smart Grid-connected Buildings

    Broader source: Energy.gov [DOE]

    The physical characterization of smart and grid-connected commercial and residential buildings end-use equipment and appliances, including but not limited to processes and metrics for measurement, identification of grid and building services, and identification of values and benefits of grid connectivity.

  11. Maine Project Launches First Grid-Connected Offshore Wind Turbine in the

    Office of Environmental Management (EM)

    U.S. | Department of Energy Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. Maine Project Launches First Grid-Connected Offshore Wind Turbine in the U.S. May 31, 2013 - 11:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first grid-connected offshore floating wind turbine prototype off the coast of Castine, Maine. Led by the University of Maine, this project represents the first concrete-composite floating

  12. Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced...

    Office of Environmental Management (EM)

    Enhanced Geothermal System Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System April 12, 2013 - 12:00pm Addthis WASHINGTON -- As part of the Obama...

  13. Extreme Temperature Energy Storage and Generation, for Cost and Risk

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduction in Geothermal Exploration | Department of Energy Extreme Temperature Energy Storage and Generation, for Cost and Risk Reduction in Geothermal Exploration Extreme Temperature Energy Storage and Generation, for Cost and Risk Reduction in Geothermal Exploration Extreme Temperature Energy Storage and Generation, for Cost and Risk Reduction in Geothermal Exploration presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon fast_cap_sys_peer2013.pdf More

  14. EERE Success Story-Nevada Deploys Grid-Connected Electricity from

    Energy Savers [EERE]

    Enhanced Geothermal Systems | Department of Energy Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems EERE Success Story-Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems May 16, 2013 - 12:00am Addthis The Southeast Propane Autogas Development Program, an $8.6 million Clean Cities Recovery Act project, finished bringing 1,200 propane vehicles and 11 new stations to support them to the road in October 2013. The Virginia Department of Mines,

  15. Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System | Department of Energy Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System April 12, 2013 - 12:00pm Addthis WASHINGTON -- As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department today recognized the nation's first commercial enhanced geothermal system (EGS) project to supply electricity to the grid. Based in Churchill County, Nevada, Ormat

  16. EV Everywhere: Maximizing Electric Cars' Range in Extreme Temperatures |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Electric Vehicle Basics » EV Everywhere: Maximizing Electric Cars' Range in Extreme Temperatures EV Everywhere: Maximizing Electric Cars' Range in Extreme Temperatures The efficiency and all-electric driving range of plug-in electric vehicles (also known as electric cars or EVs) varies based on a number of factors, including driver habits, driving conditions, and temperature, such as hot or cold weather. For an all-electric vehicle, reduced range may mean the driver

  17. First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project...

    Office of Science (SC) Website

    Advanced water power technologies include devices capable of extracting electrical power from waves, water currents, and ocean thermal temperature differences. They also included ...

  18. A $5 Million Boost for Midsize Wind Turbines and Grid Connectivity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy A $5 Million Boost for Midsize Wind Turbines and Grid Connectivity A $5 Million Boost for Midsize Wind Turbines and Grid Connectivity September 14, 2010 - 10:52am Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? With better forecasting, utilities can more reliably connect variable power sources such as wind energy with electricity grids, and can decrease their need for back-up energy sources such as natural

  19. First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of

    Office of Environmental Management (EM)

    Maine | Department of Energy First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine First U.S. Grid-Connected Offshore Wind Turbine Installed Off the Coast of Maine October 1, 2013 - 12:33pm Addthis This is an excerpt from the Third Quarter 2013 edition of the Wind Program R&D Newsletter. A 65-foot tall, 20-kilowatt wind turbine with a white rotor and a yellow tower on a floating platform in the ocean. Castine, Maine - On May 31, 2013, the University of Maine's

  20. Ultrasonic transducer for extreme temperature environments

    DOE Patents [OSTI]

    Light, Glenn M.; Cervantes, Richard A.; Alcazar, David G.

    1993-03-23

    An ultrasonic piezoelectric transducer that is operable in very high and very low temperatures. The transducer has a dual housing structure that isolates the expansion and contraction of the piezoelectric element from the expansion and contraction of the housing. Also, the internal components are made from materials having similar coefficients of expansion so that they do not interfere with the motion of the piezoelectric element.

  1. Performance Parameters for Grid-Connected PV Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    derate and NOCT values instead of typical values. INFLUENCE OF WEATHER Variations in solar radiation and ambient temperature from month-to-month and year-to-year influence the...

  2. Method For Synthesizing Extremely High-Temperature Melting Materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise (Chicago, IL); Glorieux, Benoit (Perpignan, FR)

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  3. Method for synthesizing extremely high-temperature melting materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise (Chicago, IL); Glorieux, Benoit (Perpignan, FR)

    2007-11-06

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  4. Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Office of Energy Efficiency and Renewable Energy (EERE)

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  5. July 11 Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances

    Broader source: Energy.gov [DOE]

    These documents contain the three slide decks presented at the public meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances, held on July 11, 2014 in Washington, DC.

  6. PVUSA experience with power conversion for grid-connected photovoltaic systems

    SciTech Connect (OSTI)

    Stolte, W.

    1995-11-01

    The Photovoltaics for Utility Scale Application (PVUSA) project was established to demonstrate photovoltaic (PV) systems in grid-connected utility applications. One of PVUSA`s key objectives is to evaluate the performance, reliability, and cost of the PV balance of system (BOS). Power conditioning units (PCUs) are the interface between the dc PV arrays and the ac utility lines, and have proved to be the most critical element in grid-connected PV systems. There are five different models of PCUs at PVUSA`s Davis and Kerman sites. This report describes the design, testing, performance characteristics, and maintenance history of each of these PCUs. PVUSA required PCUs in the power range 25 kW to 500 kW which could operate automatically and reliably under changing conditions of sunlight and changing conditions on the utility grid. Although a number of manufacturers can provide PCUs in this power range, none of these PCUs have been produced in sufficient quantity to allow refinement of a particular model into the highly reliable unit needed for long-term, unattended operation. Factory tests were useful but limited by the inability to test under full power and changing power conditions. The inability to completely test PCUs at the factory resulted in difficulty during startup, field testing, and subsequent operation. PVUSA has made significant progress in understanding the requirements for PCUs in grid-connected PV applications and improving field performance. This record of PVUSA`s experience with a variety of PCUs is intended to help utilities and their suppliers identify and retain the good performance characteristics of PCUs, and to make improvements where necessary to meet the needs of utilities.

  7. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    SciTech Connect (OSTI)

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken

    2010-12-15

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)

  8. Electricity storage for grid-connected household dwellings with PV panels

    SciTech Connect (OSTI)

    Mulder, Grietus; Six, Daan; Ridder, Fjo De

    2010-07-15

    Classically electricity storage for PV panels is mostly designed for stand-alone applications. In contrast, we focus in this article on houses connected to the grid with a small-scale storage to store a part of the solar power for postponed consumption within the day or the next days. In this way the house owner becomes less dependent on the grid and does only pay for the net shortage of his energy production. Local storage solutions pave the way for many new applications like omitting over-voltage of the line and bridging periods of power-line black-out. Since 2009 using self-consumption of PV energy is publicly encouraged in Germany, which can be realised by electric storage. This paper develops methods to determine the optimal storage size for grid-connected dwellings with PV panels. From measurements in houses we were able to establish calculation rules for sizing the storage. Two situations for electricity storage are covered: - the storage system is an optimum to cover most of the electricity needs; - it is an optimum for covering the peak power need of a dwelling. After these calculation rules a second step is needed to determine the size of the real battery. The article treats the aspects that should be taken into consideration before buying a specific battery like lead-acid and lithium-ion batteries. (author)

  9. Extremism

    Office of Scientific and Technical Information (OSTI)

    i LEFT-WING EXTREMISM: The Current Threat Prepared for U.S. Department of Energy Office of Safeguards and Security Washington, DC Prepared by Karl A. Seger, Ph.D. Center for Human Reliability Studies Oak Ridge Institute for Science and Education Oak Ridge, TN April 2001 ORISE 01-0439 i TABLE OF CONTENTS EXECUTIVE SUMMARY .............................................................................................ii I. LEFTIST EXTREMISM IS ALIVE AND

  10. 2014-04-30 Public Meeting Presentation Slides: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Office of Energy Efficiency and Renewable Energy (EERE)

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  11. 2014-04-30 Public Meeting Agenda: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    This document is the agenda for the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting being held on April 30, 2014.

  12. Agenda for Public Meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    Download the agenda below for the July 11 Public Meeting on the Physical Characterization of Grid-Connected Commercial and  Residential Buildings End-Use Equipment and Appliances.

  13. Three-Phase Modular Cascaded H-Bridge Multilevel Inverter with Individual MPPT for Grid-Connected Photovoltaic Systems

    SciTech Connect (OSTI)

    Xiao, Bailu; Hang, Lijun; Riley, Cameron; Tolbert, Leon M; Ozpineci, Burak

    2013-01-01

    A three-phase modular cascaded H-bridge multilevel inverter for a grid-connected photovoltaic (PV) system is presented in this paper. To maximize the solar energy extraction of each PV string, an individual maximum power point tracking (MPPT) control scheme is applied, which allows the independent control of each dc-link voltage. PV mismatches may introduce unbalanced power supplied to the three-phase system. To solve this issue, a control scheme with modulation compensation is proposed. The three-phase modular cascaded multilevel inverter prototype has been built. Each H-bridge is connected to a 185 W solar panel. Simulation and experimental results are presented to validate the proposed ideas.

  14. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy

    SciTech Connect (OSTI)

    Mellit, Adel; Pavan, Alessandro Massi

    2010-05-15

    Forecasting of solar irradiance is in general significant for planning the operations of power plants which convert renewable energies into electricity. In particular, the possibility to predict the solar irradiance (up to 24 h or even more) can became - with reference to the Grid Connected Photovoltaic Plants (GCPV) - fundamental in making power dispatching plans and - with reference to stand alone and hybrid systems - also a useful reference for improving the control algorithms of charge controllers. In this paper, a practical method for solar irradiance forecast using artificial neural network (ANN) is presented. The proposed Multilayer Perceptron MLP-model makes it possible to forecast the solar irradiance on a base of 24 h using the present values of the mean daily solar irradiance and air temperature. An experimental database of solar irradiance and air temperature data (from July 1st 2008 to May 23rd 2009 and from November 23rd 2009 to January 24th 2010) has been used. The database has been collected in Trieste (latitude 45 40'N, longitude 13 46'E), Italy. In order to check the generalization capability of the MLP-forecaster, a K-fold cross-validation was carried out. The results indicate that the proposed model performs well, while the correlation coefficient is in the range 98-99% for sunny days and 94-96% for cloudy days. As an application, the comparison between the forecasted one and the energy produced by the GCPV plant installed on the rooftop of the municipality of Trieste shows the goodness of the proposed model. (author)

  15. Extreme temperature robust optical sensor designs and fault-tolerant signal processing

    DOE Patents [OSTI]

    Riza, Nabeel Agha; Perez, Frank

    2012-01-17

    Silicon Carbide (SiC) probe designs for extreme temperature and pressure sensing uses a single crystal SiC optical chip encased in a sintered SiC material probe. The SiC chip may be protected for high temperature only use or exposed for both temperature and pressure sensing. Hybrid signal processing techniques allow fault-tolerant extreme temperature sensing. Wavelength peak-to-peak (or null-to-null) collective spectrum spread measurement to detect wavelength peak/null shift measurement forms a coarse-fine temperature measurement using broadband spectrum monitoring. The SiC probe frontend acts as a stable emissivity Black-body radiator and monitoring the shift in radiation spectrum enables a pyrometer. This application combines all-SiC pyrometry with thick SiC etalon laser interferometry within a free-spectral range to form a coarse-fine temperature measurement sensor. RF notch filtering techniques improve the sensitivity of the temperature measurement where fine spectral shift or spectrum measurements are needed to deduce temperature.

  16. April 30 Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014. The first document includes the first presentation from the meeting: DOE Vision and Objectives. The second document includes all other presentations from the meeting: Terminology and Definitions; End-User and Grid Services; Physical Characterization Framework; Value, Benefits & Metrics.

  17. Extremely high Q-factor mechanical modes in quartz bulk acoustic wave resonators at millikelvin temperature

    SciTech Connect (OSTI)

    Goryachev, M.; Creedon, D. L.; Ivanov, E. N.; Tobar, M. E.; Galliou, S.; Bourquin, R.

    2014-12-04

    We demonstrate that Bulk Acoustic Wave (BAW) quartz resonator cooled down to millikelvin temperatures are excellent building blocks for hybrid quantum systems with extremely long coherence times. Two overtones of the longitudinal mode at frequencies of 15.6 and 65.4 MHz demonstrate a maximum f.Q product of 7.810{sup 16} Hz. With this result, the Q-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained in other mechanical systems. Tested quartz resonators possess the ultra low acoustic losses crucial for electromagnetic cooling to the phonon ground state.

  18. In-Situ Acoustic Measurements of Temperature Profile in Extreme Environments

    SciTech Connect (OSTI)

    Skliar, Mikhail

    2015-03-31

    A gasifier’s temperature is the primary characteristic that must be monitored to ensure its performance and the longevity of its refractory. One of the key technological challenges impacting the reliability and economics of coal and biomass gasification is the lack of temperature sensors that are capable of providing accurate, reliable, and long-life performance in an extreme gasification environment. This research has proposed, demonstrated, and validated a novel approach that uses a noninvasive ultrasound method that provides real-time temperature distribution monitoring across the refractory, especially the hot face temperature of the refractory. The essential idea of the ultrasound measurements of segmental temperature distribution is to use an ultrasound propagation waveguide across a refractory that has been engineered to contain multiple internal partial reflectors at known locations. When an ultrasound excitation pulse is introduced on the cold side of the refractory, it will be partially reflected from each scatterer in the US propagation path in the refractory wall and returned to the receiver as a train of partial echoes. The temperature in the corresponding segment can be determined based on recorded ultrasonic waveform and experimentally defined relationship between the speed of sound and temperature. The ultrasound measurement method offers a powerful solution to provide continuous real time temperature monitoring for the occasions that conventional thermal, optical and other sensors are infeasible, such as the impossibility of insertion of temperature sensor, harsh environment, unavailable optical path, and more. Our developed ultrasound system consists of an ultrasound engineered waveguide, ultrasound transducer/receiver, and data acquisition, logging, interpretation, and online display system, which is simple to install on the existing units with minimal modification on the gasifier or use with new units. This system has been successfully tested with a 100 kW pilot scale down flow oxyfuel combustor, capturing in real time temperature changes during all relevant combustion process changes. The ultrasound measurements have excellent agreement with thermo- couple measurements, and appear to be more sensitive to temperature changes before the thermocouples response, which is believed to be the first demonstration of ultrasound measurements segmental temperature distribution across refractories.

  19. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    SciTech Connect (OSTI)

    Lyons, K.D.; Honeygan, S.; Moroz, T.H.

    2008-12-01

    The U.S. Department of Energy's National Energy Technology Laboratory (NETL) established the Extreme Drilling Laboratory to engineer effective and efficient drilling technologies viable at depths greater than 20,000 ft. This paper details the challenges of ultradeep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL's research and development activities. NETL is invested in laboratory-scale physical simulation. Its physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480°F around a single drill cutter. This simulator is not yet operational; therefore, the results will be limited to the identification of leading hypotheses of drilling phenomena and NETL's test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Laboratory's studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.

  20. NETL Extreme Drilling Laboratory Studies High Pressure High Temperature Drilling Phenomena

    SciTech Connect (OSTI)

    Lyons, K.D.; Honeygan, S.; Moroz, T

    2007-06-01

    The U.S. Department of Energy’s National Energy Technology Laboratory (NETL) established an Extreme Drilling Lab to engineer effective and efficient drilling technologies viable at depths greater than 20,000 feet. This paper details the challenges of ultra-deep drilling, documents reports of decreased drilling rates as a result of increasing fluid pressure and temperature, and describes NETL’s Research and Development activities. NETL is invested in laboratory-scale physical simulation. Their physical simulator will have capability of circulating drilling fluids at 30,000 psi and 480 °F around a single drill cutter. This simulator will not yet be operational by the planned conference dates; therefore, the results will be limited to identification of leading hypotheses of drilling phenomena and NETL’s test plans to validate or refute such theories. Of particular interest to the Extreme Drilling Lab’s studies are the combinatorial effects of drilling fluid pressure, drilling fluid properties, rock properties, pore pressure, and drilling parameters, such as cutter rotational speed, weight on bit, and hydraulics associated with drilling fluid introduction to the rock-cutter interface. A detailed discussion of how each variable is controlled in a laboratory setting will be part of the conference paper and presentation.

  1. HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS OF THE TEMPERATURE STRUCTURE OF THE QUIET CORONA

    SciTech Connect (OSTI)

    Brooks, David H.; Warren, Harry P. [Space Science Division, Code 7673, Naval Research Laboratory, Washington, DC 20375 (United States); Williams, David R. [Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT (United Kingdom); Watanabe, Tetsuya, E-mail: dhbrooks@ssd5.nrl.navy.mi [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2009-11-10

    We present a differential emission measure (DEM) analysis of the quiet solar corona on disk using data obtained by the Extreme-ultraviolet Imaging Spectrometer (EIS) on Hinode. We show that the expected quiet-Sun DEM distribution can be recovered from judiciously selected lines, and that their average intensities can be reproduced to within 30%. We present a subset of these selected lines spanning the temperature range log T = 5.6-6.4 K that can be used to derive the DEM distribution reliably, including a subset of iron lines that can be used to derive the DEM distribution free of the possibility of uncertainties in the elemental abundances. The subset can be used without the need for extensive measurements, and the observed intensities can be reproduced to within the estimated uncertainty in the pre-launch calibration of EIS. Furthermore, using this subset, we also demonstrate that the quiet coronal DEM distribution can be recovered on size scales down to the spatial resolution of the instrument (1'' pixels). The subset will therefore be useful for studies of small-scale spatial inhomogeneities in the coronal temperature structure, for example, in addition to studies requiring multiple DEM derivations in space or time. We apply the subset to 45 quiet-Sun data sets taken in the period 2007 January to April, and show that although the absolute magnitude of the coronal DEM may scale with the amount of released energy, the shape of the distribution is very similar up to at least log T approx 6.2 K in all cases. This result is consistent with the view that the shape of the quiet-Sun DEM is mainly a function of the radiating and conducting properties of the plasma and is fairly insensitive to the location and rate of energy deposition. This universal DEM may be sensitive to other factors such as loop geometry, flows, and the heating mechanism, but if so they cannot vary significantly from quiet-Sun region to region.

  2. Low Frequency Modulation of Extreme Temperature Regimes in a Changing Climate

    SciTech Connect (OSTI)

    Black, Robert X.

    2014-11-24

    The project examines long-term changes in extreme temperature episodes (ETE) associated with planetary climate modes (PCMs) in both the real atmospheric and climate model simulations. The focus is on cold air outbreaks (CAOs) and warm waves (WWs) occurring over the continental US during the past 60 winters. No significant long-term trends in either WWs or CAOs are observed over the US. The annual frequency of CAOs is affected by the (i) North Atlantic Oscillation (NAO) over the Southeast US and (ii) PacificNorth American (PNA) pattern over the Northwest US. WW frequency is influenced by the (i) NAO over the eastern US and (ii) combined influence of PNA, Pacific decadal oscillation (PDO), and ENSO over the southern US. The collective influence of PCMs accounts for as much as 50% of the regional variability in ETE frequency. During CAO (WW) events occurring over the southeast US, there are low (high) pressure anomalies at higher atmospheric levels over the southeast US with oppositely-signed pressure anomalies in the lower atmosphere over the central US. These patterns lead to anomalous northerly (for CAOs) or southerly (for WWs) flow into the southeast leading to cold or warm surface air temperature anomalies, respectively. One distinction is that CAOs involve substantial air mass transport while WW formation is more local in nature. The primary differences among event categories are in the origin and nature of the pressure anomaly features linked to ETE onset. In some cases, PCMs help to provide a favorable environment for event onset. Heat budget analyses indicate that latitudinal transport in the lower atmosphere is the main contributor to regional cooling during CAO onset. This is partly offset by adiabatic warming associated with subsiding air. Additional diagnoses reveal that this latitudinal transport is partly due to the remote physical influence of a shallow cold pool of air trapped along the east side of the Rocky Mountains. ETE and PCM behavior is also studied in (CMIP5) climate model simulations. Although the climate models considered are able to represent the overall behavior of ETEs, the frequency of WWs (CAOs) is too high (low) in many models. While all models qualitatively replicate the overall structure of the PNA pattern, a small minority of models fails to properly simulate the NAO pattern. Model shortcomings in representing the NAO and PNA patterns have important consequences for simulating associated regional variability in surface air temperature and storm track behavior. The influence of PCMs on ETEs is underestimated in most CMIP5 models. In particular, none of the models are able to accurately simulate observed linkages between ETEs and the PDO, due to a gross misrepresentation of the PDO pattern in most models. Our results indicate that predictions of future CAO and WW behavior are currently limited by the ability of climate models to accurately represent PCM characteristics. Our study also considers the behavior of PCMs known as annular modes. It is determined that north-south movements in the stratospheric jet stream (related to the Polar Annular Mode) result in long-lasting impacts upon surface weather conditions including regional air temperature anomalies. The structure and dynamics of the stratospheric northern annular mode (or SNAM, related to changes in the strength of the stratospheric jet stream) was studied in CMIP5 models. In models with poorly-resolved stratospheres, the amplitude of SNAM at stratospheric altitudes is typically too weak, consistent with weaker stratospheric jet variability. However, this distinction does not carry over to the associated tropospheric signature of SNAM. A regional analysis illustrates that most CMIP5 models (regardless of whether the stratosphere is well-resolved) have anomalously weak and eastward shifted (compared to observed SNAM events) storm track and sea level pressure anomaly patterns during SNAM events. Analyses of stratospheretroposphere coupling reveal that large-scale wave activity in the stratosphere is anomalously weak in CMIP5 model

  3. Development of a low cost integrated 15 kW A.C. solar tracking sub-array for grid connected PV power system applications

    SciTech Connect (OSTI)

    Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.

    1997-02-01

    Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on (1) The utilization of a large area factory assembled PV panel, and (2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District{close_quote}s Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems. {copyright} {ital 1997 American Institute of Physics.}

  4. Molecular basis of the structural stability of a Top7-based scaffold at extreme pH and temperature conditions

    SciTech Connect (OSTI)

    Soares, Thereza A.; Boschek, Curt B.; Apiyo, David O.; Baird, Cheryl L.; Straatsma, TP

    2010-07-01

    The development of stable scaffolds that can tolerate environmental extremes has an immense potential for applications in industry and defense. Recently, we have engineered an eight-residue loop into the de novo designed Top7 protein, which specifically binds the glycoprotein CD4. The robust properties of the Top7, coupled with the ease in production, make it a robust scaffold to design novel functionalities for use under extreme environmental conditions. In the present work, a series of explicit-solvent molecular dynamics simulations are reported which investigates the effect of mutations and extreme conditions of temperature and pH on the structure, stability, and dynamics of the native and engineered Top7. These simulations indicate that i. The structural dynamics of the engineered and native Top7 in solution are equivalent under corresponding conditions of pH and temperature. Ensemble-averaged structures of the native and engineered Top7 maintain the overall tertiary structure pattern, albeit with loss of helical content when at low pH and high-temperature conditions. Mutations of residues E43A, D46A, E67A, E69A, EA81A along the ?-helices of the engineered Top7 did not lead to significant changes in the native fold under pH 2 and 400 K, suggesting that the helices can accommodate varying sequences. iii. The anti-parallel ?-sheet is the structural core responsible for the stability of the native and engineered Top7 and is well maintained under extreme pH and temperature conditions. These findings indicate that the insertion of an eight-residue loop into the structure of Top7 does not adversely affect the global fold or the structural stability of the Top7 scaffold.

  5. Ultra low friction carbon/carbon composites for extreme temperature applications

    DOE Patents [OSTI]

    Erdemir, Ali (Naperville, IL); Busch, Donald E. (Hinsdale, IL); Fenske, George R. (Downers Grove, IL); Lee, Sam (Gardena, CA); Shepherd, Gary (Los Alamitos, CA); Pruett, Gary J. (Cypress, CA)

    2001-01-01

    A carbon/carbon composite in which a carbon matrix containing a controlled amount of boron or a boron compound is reinforced with carbon fiber exhibits a low coefficient of friction, i.e., on the order of 0.04 to 0.1 at temperatures up to 600.degree. C., which is one of the lowest frictional coefficients for any type of carbonaceous material, including graphite, glassy carbon, diamond, diamond-like carbon and other forms of carbon material. The high degree of slipperiness of the carbon composite renders it particularly adapted for limiting friction and wear at elevated temperatures such as in seals, bearings, shafts, and flexible joints

  6. Energy Storage and Generation for Extreme Temperature and Pressure and Directional Measurement While Drilling Applications

    SciTech Connect (OSTI)

    Signorelli, Riccardo; Cooley, John

    2015-10-14

    FastCAP Systems Corporation has successfully completed all milestones defined by the award DE-EE0005503. Under this program, FastCAP developed three critical subassemblies to TRL3 demonstrating proof of concept of a geothermal MWD power source. This power source includes an energy harvester, electronics and a novel high temperature ultracapacitor (“ultracap”) rechargeable energy storage device suitable for geothermal exploration applications. FastCAP’s ruggedized ultracapacitor (ultracap) technology has been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. Characteristics of this technology are that it is rechargeable and relatively high power. This technology was the basis for the advancements in rechargeable energy storage under this project. The ultracap performs reliably at 250°C and beyond and operates over a wide operating temperature range: -5°C to 250°C. The ultracap has significantly higher power density than lithium thionyl chloride batteries, a non-rechargeable incumbent used in oil and gas drilling today. Several hermetically sealed, prototype devices were tested in our laboratories at constant temperatures of 250°C showing no significant degradation over 2000 hours of operation. Other prototypes were tested at Sandia National Lab in the month of April, 2015 for a third party performance validation. These devices showed outstanding performance over 1000 hours of operation at three rated temperatures, 200°C, 225°C and 250°C, with negligible capacitance degradation and minimal equivalent series resistance (ESR) increase. Similarly, FastCAP’s ruggedized electronics have been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. This technology was the basis for the advancements in downhole electronics under this project. Principal contributions here focused on design for manufacture innovations that have reduced the prototype build cycle time by a factor of 10x. The electronics have demonstrated a substantially reduced design cycle time by way of process and material selection innovations and have been qualified for 250°C / 10 Grms for at least 200 hours. FastCAP has also invented a rotary inertial energy generator (RIEG) to harvest various mechanical energy sources that exist downhole. This device is flow-independent and has been demonstrated as a proof of concept to survive geothermal well temperatures under this project. The herein energy harvester has been developed to provide operational power by harvesting rotational mechanical energy that exists downhole in geothermal drilling. The energy harvester has been tested at 250°C / 10 Grms for 200 hours. Deployment of these technologies in geothermal drilling and exploration applications could have an immediate and significant impact on the effectiveness and efficiency of drilling processes, particularly with regard to use of advanced logging and monitoring techniques. The ultimate goal of this work is to reduce drilling risk to make geothermal energy more attractive and viable to the customer. Generally speaking, we aim to support the transfer of MWD techniques from oil and gas to geothermal exploration with considerations toward the practical differences between the two. One of the most significant obstacles to the deployment of advanced drilling and production techniques in the geothermal context are limitations related to the maximum operating temperatures of downhole batteries used to provide power for downhole sensors, steering tools, telemetry equipment and other MWD/LWD technologies. FastCAP’s higher temperature ultracapacitor technology will provide power solutions for similar advanced drilling and production techniques, even in the harsher environments associated with geothermal energy production. This ultracapacitor will enable downhole power solutions for the geothermal industry capable of the same reliable and safe operation our team has demonstrated in the oil and gas context. Without batteries, geothermal MWD is left without a downhole power source. Some very high temperature turbines exist but provide unsteady, intermittent power and no power when the flow is off. In high loss formations common to geothermal exploration, it will be auspicious to support air drilling in which case there is no flow to power a turbine at all. In the best case, rechargeable energy storage will help to buffer unsteady power from non-battery power sources and in the worst case it will be needed to store energy from highly intermittent sources to provide a continuously operable power source to the tool.

  7. Review on the effects of hydrogen at extreme pressures and temperatures on the mechanical behavior of polymers.

    SciTech Connect (OSTI)

    Hecht, Ethan S.

    2013-03-01

    The effects of hydrogen on the mechanics (e.g. strength, ductility, and fatigue resistance) of polymer materials are outlined in this report. There are a small number of studies reported in the literature on this topic, and even fewer at the extreme temperatures to which hydrogen service materials will be exposed. Several studies found little evidence that hydrogen affects the static tensile properties, long term creep, or ductile fracture of high density polyethylene or polyamide. However, there has been a report that a recoverable drop in the modulus of high density polyethylene is observable under high hydrogen pressure. A research need exists on the mechanical effects of hydrogen on the wide range of polymers used or considered for use in the hydrogen economy, due to the lack of data in the literature.

  8. Addressing the Impact of Temperature Extremes on Large Format Li-Ion Batteries for Vehicle Applications (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Santhanagopalan, S.; Kim, G. H.

    2013-05-01

    This presentation discusses the effects of temperature on large format lithium-ion batteries in electric drive vehicles.

  9. Geothermal/Grid Connection | Open Energy Information

    Open Energy Info (EERE)

    Transmission Lines How a Geothermal Power Plant Works (Simple) Western Renewable Energy Zones (WREZ) Reports Geothermal Regulations and Permitting for Transmission Siting...

  10. Grid Connectivity Research, Development & Demonstration Projects

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. GROWDERS Demonstration of Grid Connected Electricity Systems...

    Open Energy Info (EERE)

    2011 References EU Smart Grid Projects Map1 Overview The GROWDERS project (Grid Reliability and Operability with Distributed Generation using Flexible Storage) investigates...

  12. ARM - Measurement - Extreme event time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsExtreme event time ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Extreme event time The time of extreme meteorological events such as min/max temperature and wind gusts. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all

  13. Advanced Instrumentation for Extreme Environments

    SciTech Connect (OSTI)

    Melin, Alexander M; Kisner, Roger; Fugate, David L

    2013-01-01

    The Department of Energy (DOE) Office of Nuclear Energy (NE) is pursuing embedded instrumentation and controls (I&C) technology for next generation nuclear power generation applications. Embedded systems encompass a wide range of configurations and technologies; we define embedding in this instance as the integration of the sensors and the control system design into the component design using a systems engineering process. Embedded I&C systems are often an essential part of developing new capabilities, improving reliability, enhancing performance, and reducing operational costs. The new intrinsically safe, more efficient, and cost effective reactor technologies (Next Generation Nuclear Plant and Small Modular Reactors) require the development and application of new I&C technologies. These new designs raise extreme environmental challenges such as high temperatures (over 700 C) and material compatibility (e.g., molten salts). The desired reliability and functionality requires measurements in these extreme conditions including high radiation environments which were not previously monitored in real time. The DOE/NE Nuclear Energy Enabling Technologies (NEET) program currently has several projects investigating I&C technologies necessary to make these reactor designs realizable. The project described in this paper has the specific goal of investigating embedded I&C with the following objectives: 1.Explore and quantify the potential gains from embedded I&C improved reliability, increased performance, and reduced cost 2.Identify practical control, sensing, and measurement techniques for the extreme environments found in high-temperature reactors 3.Design and fabricate a functional prototype high-temperature cooling pump for molten salts represents target demonstration of improved performance, reliability, and widespread usage There are many engineering challenges in the design of a high-temperature liquid salt cooling pump. The pump and motor are in direct contact with molten fluoride salt at 700 C (1,292 F) as part of a reactor cooling loop. The motor-pump combination during normal operation would be red-hot (Figure 1). This environment challenges every facet of the design including seals, wiring, magnetic materials, and sensors. In this paper, we discuss the challenges of sensor design in extreme environments and specifically the sensor design for a high-temperature fluoride salt coolant pump. This pump will be used as a test-bed for embedded I&C development and validation in extreme environments.

  14. Extreme Environments (EFree) Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extreme Environments (EFree ) Center LLNL Co-PI: Jonathon Crowhurst e-mail bio Novel materials for energy applications Ultrafast reflectivity measurements under high pressure...

  15. Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal...

    Office of Environmental Management (EM)

    freedom of mobility and energy security, while lowering costs and reducing impacts on the environment. Addthis Related Articles Nationwide: Southeast Propane Autogas Development...

  16. Controlling of grid connected photovoltaic lighting system with fuzzy logic

    SciTech Connect (OSTI)

    Saglam, Safak; Ekren, Nazmi; Erdal, Hasan

    2010-02-15

    In this study, DC electrical energy produced by photovoltaic panels is converted to AC electrical energy and an indoor area is illuminated using this energy. System is controlled by fuzzy logic algorithm controller designed with 16 rules. Energy is supplied from accumulator which is charged by photovoltaic panels if its energy would be sufficient otherwise it is supplied from grid. During the 1-week usage period at the semester time, 1.968 kWh energy is used from grid but designed system used 0.542 kWh energy from photovoltaic panels at the experiments. Energy saving is determined by calculations and measurements for one education year period (9 months) 70.848 kWh. (author)

  17. Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    of Community Counseling Services. Clean Cities Helps Nonprofit Cut Fuel Costs with Propane Green Means Go for Hybrid and Alternative Fuel Taxis Project Overview Positive...

  18. Extreme ultraviolet lithography machine

    DOE Patents [OSTI]

    Tichenor, Daniel A. (Castro Valley, CA); Kubiak, Glenn D. (Livermore, CA); Haney, Steven J. (Tracy, CA); Sweeney, Donald W. (San Ramon, CA)

    2000-01-01

    An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  19. Extreme Conditions Modeling Workshop Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Met-ocean modeling: This group discussed current practices and new developments in estimating extreme sea states (ESS) through met-ocean measurements and modeling. Each breakout ...

  20. Impacts of High Resolution Extreme Events on U.S. Energy Demand and CO{sub 2} Emissions in the 21st Century

    SciTech Connect (OSTI)

    Diffenbaugh, Noah

    2013-06-21

    Progress is reported in these areas: Validation of temperature and precipitation extremes; Time of emergence of severe heat stress in the United States; Quantifying the effects of temperature extremes on energy demand and carbon dioxide emissions.

  1. Quasicrystals at extreme conditions: The role of pressure in stabilizing

    Office of Scientific and Technical Information (OSTI)

    icosahedral Al[subscript 63]Cu[subscript 24]Fe[subscript 13] at high temperature (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Quasicrystals at extreme conditions: The role of pressure in stabilizing icosahedral Al[subscript 63]Cu[subscript 24]Fe[subscript 13] at high temperature Citation Details In-Document Search Title: Quasicrystals at extreme conditions: The role of pressure in stabilizing icosahedral Al[subscript 63]Cu[subscript 24]Fe[subscript 13]

  2. Extreme Scale Computing, Co-design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Science, Computing, Applied Math Extreme Scale Computing, Co-design Extreme Scale Computing, Co-design Computational co-design may facilitate revolutionary designs ...

  3. Extreme Conditions Modeling Workshop Report

    SciTech Connect (OSTI)

    Coe, R. G.; Neary, V. S.; Lawson, M. J.; Yu, Y.; Weber, J.

    2014-07-01

    Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, NM on May 13th-14th, 2014. The objective of the workshop was to review the current state of knowledge on how to model WECs in extreme conditions (e.g. hurricanes and other large storms) and to suggest how U.S. Department of Energy (DOE) and national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry.

  4. A potential Rosetta Stone of high temperature superconductivity...

    Office of Science (SC) Website

    for the high temperature superconductivity. Summary Superconductivity enables the flow of electricity without any loss of energy, but this extremely-low temperature...

  5. EV Everywhere: Maximizing Electric Cars' Range in Extreme Temperatures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The efficiency and all-electric driving range of plug-in electric vehicles (also known as electric cars or EVs) varies based on a number of factors, including driver habits, ...

  6. Persisting cold extremes under 21st-century warming scenarios

    SciTech Connect (OSTI)

    Kodra, Evan A; Steinhaeuser, Karsten J K; Ganguly, Auroop R

    2011-01-01

    Analyses of climate model simulations and observations reveal that extreme cold events are likely to persist across each land-continent even under 21st-century warming scenarios. The grid-based intensity, duration and frequency of cold extreme events are calculated annually through three indices: the coldest annual consecutive three-day average of daily maximum temperature, the annual maximum of consecutive frost days, and the total number of frost days. Nine global climate models forced with a moderate greenhouse-gas emissions scenario compares the indices over 2091 2100 versus 1991 2000. The credibility of model-simulated cold extremes is evaluated through both bias scores relative to reanalysis data in the past and multi-model agreement in the future. The number of times the value of each annual index in 2091 2100 exceeds the decadal average of the corresponding index in 1991 2000 is counted. The results indicate that intensity and duration of grid-based cold extremes, when viewed as a global total, will often be as severe as current typical conditions in many regions, but the corresponding frequency does not show this persistence. While the models agree on the projected persistence of cold extremes in terms of global counts, regionally, inter-model variability and disparity in model performance tends to dominate. Our findings suggest that, despite a general warming trend, regional preparedness for extreme cold events cannot be compromised even towards the end of the century.

  7. Method for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Felter, T. E. (727 Clara St., Livermore, Alameda County, CA 94550); Kubiak, G. D. (475 Maple St., Livermore, Alameda County, CA 94550)

    2000-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  8. Method for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Felter, T. E. (Livermore, CA); Kubiak, Glenn D. (Livermore, CA)

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  9. COLLOQUIUM: Extreme Global Warming: Examples from the Past | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab April 16, 2014, 4:00pm to 5:30pm MBG Auditorium COLLOQUIUM: Extreme Global Warming: Examples from the Past Professor Mark Pagani Yale University Earth's climate 50 million years ago was the warmest time of the Cenozoic and characterized by expansive high-latitude warmth and low meridional temperature gradients. Starting at about 55 million years ago, a series of rapid and extreme carbon-induced global warming events, known as hyperthermals, are evident. This presentation

  10. Climate, extreme heat, and electricity demand in California

    SciTech Connect (OSTI)

    Miller, N.L.; Hayhoe, K.; Jin, J.; Auffhammer, M.

    2008-04-01

    Climate projections from three atmosphere-ocean climate models with a range of low to mid-high temperature sensitivity forced by the Intergovernmental Panel for Climate Change SRES higher, middle, and lower emission scenarios indicate that, over the 21st century, extreme heat events for major cities in heavily air-conditioned California will increase rapidly. These increases in temperature extremes are projected to exceed the rate of increase in mean temperature, along with increased variance. Extreme heat is defined here as the 90 percent exceedance probability (T90) of the local warmest summer days under the current climate. The number of extreme heat days in Los Angeles, where T90 is currently 95 F (32 C), may increase from 12 days to as many as 96 days per year by 2100, implying current-day heat wave conditions may last for the entire summer, with earlier onset. Overall, projected increases in extreme heat under the higher A1fi emission scenario by 2070-2099 tend to be 20-30 percent higher than those projected under the lower B1 emission scenario, ranging from approximately double the historical number of days for inland California cities (e.g. Sacramento and Fresno), up to four times for previously temperate coastal cities (e.g. Los Angeles, San Diego). These findings, combined with observed relationships between high temperature and electricity demand for air-conditioned regions, suggest potential shortfalls in transmission and supply during T90 peak electricity demand periods. When the projected extreme heat and peak demand for electricity are mapped onto current availability, maintaining technology and population constant only for demand side calculations, we find the potential for electricity deficits as high as 17 percent. Similar increases in extreme heat days are suggested for other locations across the U.S. southwest, as well as for developing nations with rapidly increasing electricity demands. Electricity response to recent extreme heat events, such as the July 2006 heat wave in California, suggests that peak electricity demand will challenge current supply, as well as future planned supply capacities when population and income growth are taken into account.

  11. Thermal disconnect for high-temperature batteries

    DOE Patents [OSTI]

    Jungst, Rudolph George; Armijo, James Rudolph; Frear, Darrel Richard

    2000-01-01

    A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

  12. Response of Simple, Model Systems to Extreme Conditions

    SciTech Connect (OSTI)

    Ewing, Rodney C.; Lang, Maik

    2015-07-30

    The focus of the research was on the application of high-pressure/high-temperature techniques, together with intense energetic ion beams, to the study of the behavior of simple oxide systems (e.g., SiO2, GeO2, CeO2, TiO2, HfO2, SnO2, ZnO and ZrO2) under extreme conditions. These simple stoichiometries provide unique model systems for the analysis of structural responses to pressure up to and above 1 Mbar, temperatures of up to several thousands of kelvin, and the extreme energy density generated by energetic heavy ions (tens of keV/atom). The investigations included systematic studies of radiation- and pressure-induced amorphization of high P-T polymorphs. By studying the response of simple stoichiometries that have multiple structural “outcomes”, we have established the basic knowledge required for the prediction of the response of more complex structures to extreme conditions. We especially focused on the amorphous state and characterized the different non-crystalline structure-types that result from the interplay of radiation and pressure. For such experiments, we made use of recent technological developments, such as the perforated diamond-anvil cell and in situ investigation using synchrotron x-ray sources. We have been particularly interested in using extreme pressures to alter the electronic structure of a solid prior to irradiation. We expected that the effects of modified band structure would be evident in the track structure and morphology, information which is much needed to describe theoretically the fundamental physics of track-formation. Finally, we investigated the behavior of different simple-oxide, composite nanomaterials (e.g., uncoated nanoparticles vs. core/shell systems) under coupled, extreme conditions. This provided insight into surface and boundary effects on phase stability under extreme conditions.

  13. Extreme luminosity imaging conical spectrograph

    SciTech Connect (OSTI)

    Pikuz, S. A.; Shelkovenko, T. A.; Mitchell, M. D.; Chandler, K. M.; Douglass, J. D.; McBride, R. D.; Jackson, D. P.; Hammer, D. A.

    2006-10-15

    A new configuration for a two-dimensional (2D) imaging x-ray spectrograph based on a conically bent crystal is introduced: extreme luminosity imaging conical spectrograph (ELICS). The ELICS configuration has important advantages over spectrographs that are based on cylindrically and spherically bent crystals. The main advantages are that a wide variety of large-aperture crystals can be used, and any desired magnification in the spatial direction (the direction orthogonal to spectral dispersion) can be achieved by the use of different experimental arrangements. The ELICS can be set up so that the detector plane is almost perpendicular to the incident rays, a good configuration for time-resolved spectroscopy. ELICSs with mica crystals of 45x90 mm{sup 2} aperture have been successfully used for imaging on the XP and COBRA pulsed power generators, yielding spectra with spatial resolution in 2D of Z pinches and X pinches.

  14. Hourly Simulation of Grid-Connected PV Systems Using Realistic Building Loads (Preprint)

    SciTech Connect (OSTI)

    Balcomb, J.D.; Hayter, S.J.; Weaver, N.L.

    2001-02-27

    This is one of two companion papers that describe the ENERGY-10 PV design tool computer simulation program. The other paper is titled ''ENERGY-10 Photovoltaics: A New Capability.'' Whereas this paper focuses on the PV aspects of the program, the companion paper focuses on the implementation method. The case study in this paper is a commercial building application, whereas the case study in the companion paper is a residential application with an entirely different building load characteristic. Together they provide a balanced view.

  15. Homeowners Guide to Financing a Grid-Connected Solar Electric System

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-10-11

    This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house.

  16. Magnitude and Variability of Controllable Charge Capacity Provided by Grid Connected Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    Scoffield, Don R; Smart, John; Salisbury, Shawn

    2015-03-01

    As market penetration of plug-in electric vehicles (PEV) increases over time, the number of PEVs charging on the electric grid will also increase. As the number of PEVs increases, their ability to collectively impact the grid increases. The idea of a large body of PEVs connected to the grid presents an intriguing possibility. If utilities can control PEV charging, it is possible that PEVs could act as a distributed resource to provide grid services. The technology required to control charging is available for modern PEVs. However, a system for wide-spread implementation of controllable charging, including robust communication between vehicles and utilities, is not currently present. Therefore, the value of controllable charging must be assessed and weighed against the cost of building and operating such as system. In order to grasp the value of PEV charge control to the utility, the following must be understood: 1. The amount of controllable energy and power capacity available to the utility 2. The variability of the controllable capacity from day to day and as the number of PEVs in the market increases.

  17. Chile-GTZ Public Properties for Grid-connected Renewable Energy...

    Open Energy Info (EERE)

    on behalf of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) Sector Energy Topics Background analysis Website http:www.gtz.deen...

  18. MHK Projects/Evopod E1 1 10 scale grid connected demonstrator...

    Open Energy Info (EERE)

    Laboratory. On this day in 2011 the E1 achieved a world first for successfully feeding power from a floating tidal turbine into the grid. Project Licensing Environmental...

  19. Homeowners Guide to Financing a Grid-Connected Solar Electric System (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house.

  20. MHK Projects/Evopod E35 35kW grid connected demonstrator | Open...

    Open Energy Info (EERE)

    Enterprise, the business development arm of the Scottish Government. *112011 Extensive environmental monitoring programme at the proposed site commences. Includes seabed...

  1. DOE Publishes Notice of Public Meeting for Smart Grid-connected...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Time, in Golden, Colorado at the National Renewable Energy Laboratory (NREL), San Juan Room Conference Room, on the South Table Mountain Campus, 15013 Denver West Parkway,...

  2. Estimating the maximum potential revenue for grid connected electricity storage : arbitrage and regulation.

    SciTech Connect (OSTI)

    Byrne, Raymond Harry; Silva Monroy, Cesar Augusto.

    2012-12-01

    The valuation of an electricity storage device is based on the expected future cash ow generated by the device. Two potential sources of income for an electricity storage system are energy arbitrage and participation in the frequency regulation market. Energy arbitrage refers to purchasing (stor- ing) energy when electricity prices are low, and selling (discharging) energy when electricity prices are high. Frequency regulation is an ancillary service geared towards maintaining system frequency, and is typically procured by the independent system operator in some type of market. This paper outlines the calculations required to estimate the maximum potential revenue from participating in these two activities. First, a mathematical model is presented for the state of charge as a function of the storage device parameters and the quantities of electricity purchased/sold as well as the quantities o ered into the regulation market. Using this mathematical model, we present a linear programming optimization approach to calculating the maximum potential revenue from an elec- tricity storage device. The calculation of the maximum potential revenue is critical in developing an upper bound on the value of storage, as a benchmark for evaluating potential trading strate- gies, and a tool for capital nance risk assessment. Then, we use historical California Independent System Operator (CAISO) data from 2010-2011 to evaluate the maximum potential revenue from the Tehachapi wind energy storage project, an American Recovery and Reinvestment Act of 2009 (ARRA) energy storage demonstration project. We investigate the maximum potential revenue from two di erent scenarios: arbitrage only and arbitrage combined with the regulation market. Our analysis shows that participation in the regulation market produces four times the revenue compared to arbitrage in the CAISO market using 2010 and 2011 data. Then we evaluate several trading strategies to illustrate how they compare to the maximum potential revenue benchmark. We conclude with a sensitivity analysis with respect to key parameters.

  3. Performance of a grid connected residential photovoltaic system with energy storage

    SciTech Connect (OSTI)

    Palomino, G.E. [SRP, Phoenix, AZ (United States); Wiles, J. [Southwest Technology Development Institute, Las Cruces, NM (United States); Stevens, J. [Sandia National Labs., Albuquerque, NM (United States); Goodman, F. [EPRI, Palo Alto, CA (United States)

    1997-11-01

    In 1995, Salt River Project (SRP), a public power utility located in Phoenix, Arizona, collaborated with the Electric Power Research Institute (EPRI) and Sandia National Laboratories (Sandia) to initiate a photovoltaic (PV) power system with battery energy storage to match PV output with residential customer peak energy demand periods. The PV power system, a 2.4kW PV array with 25.2kWh of energy storage, was designed and installed by Southwest Technology Development Institute (SWTDI) at an SRP-owned facility, known as the Chandler Research House during August 1995. This paper presents an overview of the system design, operation and performance. 3 refs., 2 figs., 2 tabs.

  4. Integration Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  5. Market Transformation Pathways for Grid-Connected Rooftop Solar PV in Minnesota

    SciTech Connect (OSTI)

    Abbey, Ross; Ross, Brian

    2013-06-03

    This report presents the market and policy findings of the Minnesota Solar Challenge program. The report draws on information collected from state agencies, local government units, solar industry participants, rooftop photovoltaic (PV) adopters (sometimes called customer-generators), state and national experts, the Commerce distributed generation stakeholder process, and the numerous reports and data sets referenced herein.

  6. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Extreme Ultraviolet Lithography Mask Defects Investigating Extreme Ultraviolet Lithography Mask Defects Print Wednesday, 28 July 2010 00:00 Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using

  7. Extreme Weather Events and Climate Change

    Broader source: Energy.gov [DOE]

    The presentation will review known variability in extreme weather such as excessive heat, cold waves, floods, droughts, hurricanes, severe thunderstorms and tornadoes. Projections and uncertainties...

  8. Extreme Scale Computing, Co-Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Science, Computing, Applied Math Extreme Scale Computing, Co-design Publications Publications Ramon Ravelo, Qi An, Timothy C. Germann, and Brad Lee Holian, ...

  9. Wave Energy Converter Extreme Conditions Modeling Workshop |...

    Open Energy Info (EERE)

    process. The WEC industry has adopted extreme conditions design, modeling, and analysis techniques developed for offshore oil & gas and naval architecture applications. While...

  10. Conceptual Design Report for the Extreme Ecosystems Test Chambers

    SciTech Connect (OSTI)

    C. Barnes; J. Beller; K. Caldwell; K. Croft; R. Cherry; W. Landman

    1998-12-01

    This conceptual design supports the creation of Extreme Ecosystems Test Chambers, which will replicate deep subsurface and subocean environments characterized by high pressure (2,000 psi) and subfreezing to high temperature (-4 to 300 degrees F) with differing chemical and saturation conditions. The design provides a system to support research and development that includes heat transfer, phase change issues in porous media, microbiology in extreme environments, and carbon sequestration and extraction. The initial system design is based on the research needs to support the commercial production of methane hydrates from subsurface sediments. The design provides for three pressure vessels: a Down Hole Test Vessel, a Vertical Multi-phase Test Vessel, and a Horizontal Multi-phase Test Vessel.

  11. Extreme Balance of System Hardware Cost Reduction

    Broader source: Energy.gov [DOE]

    On September 1, 2011, DOE announced $42.4 million in funding over three years for the Extreme Balance of System Hardware Cost Reduction (BOS-X) funding opportunity. Part of the SunShot Systems...

  12. Extreme Scale Computing, Co-design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Science, Computing, Applied Math » Extreme Scale Computing, Co-design Extreme Scale Computing, Co-design Computational co-design may facilitate revolutionary designs in the next generation of supercomputers. Get Expertise Tim Germann Physics and Chemistry of Materials Email Allen McPherson Energy and Infrastructure Analysis Email Turab Lookman Physics and Condensed Matter and Complex Systems Email Computational co-design involves developing the interacting components of a

  13. Data triage enables extreme-scale computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data triage enables extreme-scale computing Data triage enables extreme-scale computing Data selection and triage are important techniques for large-scale data, which can drastically reduce the amount of data written to disk or transmitted over a network. August 1, 2014 Spatial partitioning for the ocean simulation data set. Spatial partitioning for the ocean simulation data set. The main focus for ADR is to prioritize data primarily generated by large-scale scientific simulations run on

  14. Extreme Scale Computing, Co-design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extreme Scale Computing, Co-design Informing system design, ensuring productive and efficient code Project Description To address the increasingly complex problems of the modern world, scientists at Los Alamos are pushing the scale of computing to the extreme, forming partnerships with other national laboratories and industry to develop supercomputers that can achieve "exaflop" speeds-that is, a quintillion (a million trillion) calculations per second. To put such speed in perspective,

  15. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper

  16. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper

  17. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper

  18. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper

  19. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper

  20. Investigating Extreme Ultraviolet Lithography Mask Defects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating Extreme Ultraviolet Lithography Mask Defects Print Since the 1970s, the semiconductor industry has strived to shrink the cost and size of circuit patterns printed onto computer chips in accordance with Moore's law, doubling the number of transistors on a computer's central processing unit (CPU) every two years. The introduction of extreme ultraviolet (EUV) lithography, printing chips using 13-nm-wavelength light, opens the way to future generations of smaller, faster, and cheaper

  1. Global extreme events and their regional economic impact: 1996 update

    SciTech Connect (OSTI)

    Shen, S.

    1996-12-31

    The meaning of global warming and its relevance to everyday life is explained. Simple thermodynamics is used to predict an oscillatory nature of the change in climate due to global warming. The regional economic impacts of global extreme events are what mankind needs to focus on in government and private sector policy and planning. The economic impact of global warming has been tracked by the Extreme Event Index (EEI) established by the Global Warming International Center (GWIC). This review will update the overall trend and the components of the EEI from 1960 to 1996. The regional components of the global EEI have provided an excellent gauge for measuring the statistical vulnerability of any geographical locality in climate related economic disasters. The author further explains why we no longer fully understand the nature and magnitudes of common phenomena such as storms and wind speeds because of these extreme events, precipitation and temperature oscillations, atmospheric thermal unrest, as well as the further stratification of clouds, and changes in the absorptive properties of clouds. Hurricane strength winds are increasingly common even in continental areas. The author links the increase in duration of the El Nino to global warming, and further predicts a high public health risk as a result of the earth`s transition to another equilibrium state in its young history.

  2. Fiber optic temperature sensor

    SciTech Connect (OSTI)

    Rabold, D.

    1995-12-01

    Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

  3. Historical trends and extremes in boreal Alaska river basins

    SciTech Connect (OSTI)

    Bennett, Katrina E.; Cannon, Alex J.; Hinzman, Larry

    2015-05-12

    Climate change will shift the frequency, intensity, duration and persistence of extreme hydroclimate events and have particularly disastrous consequences in vulnerable systems such as the warm permafrost-dominated Interior region of boreal Alaska. This work focuses on recent research results from nonparametric trends and nonstationary generalized extreme value (GEV) analyses at eight Interior Alaskan river basins for the past 50/60 years (1954/64–2013). Trends analysis of maximum and minimum streamflow indicates a strong (>+50%) and statistically significant increase in 11-day flow events during the late fall/winter and during the snowmelt period (late April/mid-May), followed by a significant decrease in the 11-day flow events during the post-snowmelt period (late May and into the summer). The April–May–June seasonal trends show significant decreases in maximum streamflow for snowmelt dominated systems (<–50%) and glacially influenced basins (–24% to –33%). Annual maximum streamflow trends indicate that most systems are experiencing declines, while minimum flow trends are largely increasing. Nonstationary GEV analysis identifies time-dependent changes in the distribution of spring extremes for snowmelt dominated and glacially dominated systems. Temperature in spring influences the glacial and high elevation snowmelt systems and winter precipitation drives changes in the snowmelt dominated basins. The Pacific Decadal Oscillation was associated with changes occurring in snowmelt dominated systems, and the Arctic Oscillation was linked to one lake dominated basin, with half of the basins exhibiting no change in response to climate variability. The paper indicates that broad scale studies examining trend and direction of change should employ multiple methods across various scales and consider regime dependent shifts to identify and understand changes in extreme streamflow within boreal forested watersheds of Alaska.

  4. Historical trends and extremes in boreal Alaska river basins

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bennett, Katrina E.; Cannon, Alex J.; Hinzman, Larry

    2015-05-12

    Climate change will shift the frequency, intensity, duration and persistence of extreme hydroclimate events and have particularly disastrous consequences in vulnerable systems such as the warm permafrost-dominated Interior region of boreal Alaska. This work focuses on recent research results from nonparametric trends and nonstationary generalized extreme value (GEV) analyses at eight Interior Alaskan river basins for the past 50/60 years (1954/64–2013). Trends analysis of maximum and minimum streamflow indicates a strong (>+50%) and statistically significant increase in 11-day flow events during the late fall/winter and during the snowmelt period (late April/mid-May), followed by a significant decrease in the 11-day flowmore » events during the post-snowmelt period (late May and into the summer). The April–May–June seasonal trends show significant decreases in maximum streamflow for snowmelt dominated systems (<–50%) and glacially influenced basins (–24% to –33%). Annual maximum streamflow trends indicate that most systems are experiencing declines, while minimum flow trends are largely increasing. Nonstationary GEV analysis identifies time-dependent changes in the distribution of spring extremes for snowmelt dominated and glacially dominated systems. Temperature in spring influences the glacial and high elevation snowmelt systems and winter precipitation drives changes in the snowmelt dominated basins. The Pacific Decadal Oscillation was associated with changes occurring in snowmelt dominated systems, and the Arctic Oscillation was linked to one lake dominated basin, with half of the basins exhibiting no change in response to climate variability. The paper indicates that broad scale studies examining trend and direction of change should employ multiple methods across various scales and consider regime dependent shifts to identify and understand changes in extreme streamflow within boreal forested watersheds of Alaska.« less

  5. Center for Materials at Irradiation and Mechanical Extremes: Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory EFRC Research Teams Irradiation Extremes and Mechanical Extremes are the two thrusts of CMIME. Currently, each thrust has two research teams. The Irradiation Extremes Thrust teams focus on metals and oxides. The Mechanical Extremes Thrust teams focus on severe plastic deformation (SPD) and deformation at high strain rates. CMIME org chart (pdf) IRRADIATION EXTREMES THRUST Amit Misra Amit Misra, LANL Fellow CMIME Director, Thrust Leader MECHANICAL EXTREMES THRUST beyerlein

  6. Optical Design for Extremely Large Telescope Adaptive Optics...

    Office of Scientific and Technical Information (OSTI)

    ThesisDissertation: Optical Design for Extremely Large Telescope Adaptive Optics Systems Citation Details In-Document Search Title: Optical Design for Extremely Large Telescope...

  7. Optical Design for Extremely Large Telescope Adaptive Optics...

    Office of Scientific and Technical Information (OSTI)

    ThesisDissertation: Optical Design for Extremely Large Telescope Adaptive Optics Systems Citation Details In-Document Search Title: Optical Design for Extremely Large Telescope ...

  8. Tribal Energy System Vulnerabilities to Climate Change and Extreme...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Vulnerabilities to Climate Change and Extreme Weather Tribal Energy System Vulnerabilities to Climate Change and Extreme Weather This U.S. Department of Energy Office of ...

  9. Extreme Adaptive Optics for the Thirty Meter Telescope (Conference...

    Office of Scientific and Technical Information (OSTI)

    Extreme Adaptive Optics for the Thirty Meter Telescope Citation Details In-Document Search Title: Extreme Adaptive Optics for the Thirty Meter Telescope You are accessing a...

  10. Extremely stable bare hematite photoanode for solar water splitting...

    Office of Scientific and Technical Information (OSTI)

    Extremely stable bare hematite photoanode for solar water splitting Prev Next Title: Extremely stable bare hematite photoanode for solar water splitting Authors: Dias, Paula ; ...

  11. Photoresist composition for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Felter, T. E. (Alameda County, CA); Kubiak, G. D. (Alameda County, CA)

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods. A photoresist composition for extreme ultraviolet radiation of boron carbide polymers, hydrochlorocarbons and mixtures thereof.

  12. Extreme Science (LBNL Science at the Theater)

    SciTech Connect (OSTI)

    Ajo-Franklin, Caroline; Klein, Spencer; Minor, Andrew; Torok, Tamas

    2012-02-27

    On Feb. 27, 2012 at the Berkeley Repertory Theatre, four Berkeley Lab scientists presented talks related to extreme science - and what it means to you. Topics include: Neutrino hunting in Antarctica. Learn why Spencer Klein goes to the ends of the Earth to search for these ghostly particles. From Chernobyl to Central Asia, Tamas Torok travels the globe to study microbial diversity in extreme environments. Andrew Minor uses the world's most advanced electron microscopes to explore materials at ultrahigh stresses and in harsh environments. And microbes that talk to computers? Caroline Ajo-Franklin is pioneering cellular-electrical connections that could help transform sunlight into fuel.

  13. Microsoft Word - Extreme Electron Correlation in the Strange Metal Phase of High

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2011 An exemplary fit of ARPES data using the ECFL theory. In this fit, the very wide energy of the data are fit including the rising background, thanks to the "caparison factor" of the ECFL theory. Extreme Electron Correlation in the Strange Metal Phase of High- temperature Superconductors High-temperature superconductors are known for their "strange metal phase," which presents a rich but strange set of phenomena that challenge understanding. A requirement for

  14. Open-source extreme conditions modeling tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Open-source extreme conditions modeling tools - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  15. Extreme Scale Computing, Co-Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Science, Computing, Applied Math » Extreme Scale Computing, Co-design » Publications Publications Ramon Ravelo, Qi An, Timothy C. Germann, and Brad Lee Holian, "Large-scale molecular dynamics simulations of shock induced plasticity in tantalum single crystals," AIP Conference Proceedings 1426, 1263-1266 (2012). Frank J. Cherne, Guy Dimonte, and Timothy C. Germann, "Richtymer-Meshkov instability examined with large-scale molecular dynamics simulations," AIP

  16. Materials Science in Radiation and Dynamics Extremes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Materials Science in Radiation and Dynamics Extremes Our combination of modeling and experimental testing capabilities opens up unparalleled opportunities to do fundamental research leading to physics-based predictive models. Contact Us Group Leader Ellen Cerreta Email Deputy Group Leader (acting) Christopher Stanek Email Group Office (505) 665-4735 We predict structure/property relationships of materials, perform computational materials modeling, characterize thermophysical properties, and

  17. Energy Department Announces First-of-its-Kind, High-Temperature, Downhole Rechargeable Energy Storage Device

    Broader source: Energy.gov [DOE]

    The Energy Department today announced commercialization of a rechargeable energy storage device capable of operating in the extreme temperatures necessary for geothermal energy production. Industry...

  18. Radiation stability of graphene under extreme conditions

    SciTech Connect (OSTI)

    Kumar, Sunil, E-mail: kumar.sunil092@gmail.com; Tripathi, Ambuj; Khan, Saif A.; Pannu, Compesh; Avasthi, Devesh K. [Materials Science Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2014-09-29

    In this letter, we report radiation stability of graphene under extreme condition of high energy density generated by 150?MeV Au ion irradiation. The experiment reveals that graphene is radiation resistant for irradiation at 10{sup 14?}ions/cm{sup 2} of 150?MeV Au ions. It is significant to note that annealing effects are observed at lower fluences whereas defect production occurs at higher fluences but significant crystallinity is retained. Our results demonstrate applicability of graphene based devices in radiation environment and space applications.

  19. Extremely compliant and highly stretchable patterned graphene

    SciTech Connect (OSTI)

    Zhu, Shuze; Huang, Yinjun; Li, Teng, E-mail: LiT@umd.edu [Department of Mechanical Engineering and Maryland NanoCenter, University of Maryland, College Park, Maryland 20742 (United States)

    2014-04-28

    Graphene is intrinsically ultra-stiff in its plane. Its huge mechanical mismatch when interfacing with ultra-compliant biological tissues and elastomers (79 orders of magnitude difference in stiffness) poses significant challenge in its application to functional devices such as epidermal electronics and sensing prosthesis. We offer a feasible and promising solution to this significant challenge by suitably patterning graphene into a nanomesh. Through systematic coarse-grained simulations, we show that graphene nanomesh can be made extremely compliant with nearly zero stiffness up to about 20% elongation and then remain highly compliant up to about 50% elongation.

  20. Temperature System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Soil Water and Temperature System  SWATS In the realm of global climate modeling, numerous variables affect the state of the atmosphere and climate. One important area is soil moisture and temperature. The ARM Program uses several types of instruments to gather soil moisture information. An example is the soil water and temperature system (SWATS) (Figure 1). A SWATS is located at each of 21 extended facility sites within the CART site boundary. Each system is configured to measure soil

  1. DOE Zero Energy Ready Home Case Study: Green Extreme Homes &...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Green Extreme Homes & Carl Franklin Homes, Garland, TX DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes, Garland, TX DOE Zero Energy Ready Home Case ...

  2. Impact of Extreme Injection Pressure and EGR on the Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extreme Injection Pressure and EGR on the Combustion System of a HD Single Cylinder Engine Impact of Extreme Injection Pressure and EGR on the Combustion System of a HD Single ...

  3. Tribal Energy System Vulnerabilities to Climate Change and Extreme Weather

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy System Vulnerabilities to Climate Change and Extreme Weather Tribal Energy System Vulnerabilities to Climate Change and Extreme Weather This U.S. Department of Energy Office of Indian Energy report assesses climate change and extreme weather vulnerabilities specific to tribal energy infrastructure and systems in the contiguous United States and Alaska. It includes information about the impacts from climate change and extreme weather events on both onsite and offsite

  4. Daily HMS Extremes in Met Data - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Meteorological Station Daily HMS Extremes in Met Data Hanford Meteorological Station Real Time Met Data from Around the Site Current and Past 48 Hours HMS Observations Daily HMS Extremes in Met Data Met and Climate Data Summary Products Contacts / Hours Current NWS Forecast for the Tri-Cities NWS Windchill Chart Daily HMS Extremes in Met Data Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size This table shows the daily extremes at each of the remote stations

  5. LANL Shock Tube Kathy Prestridge Extreme Fluids Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Header image FLUID DYNAMICS at Los Alamos Extreme Fluids Team in Physics Division home the team research publications pictures diversity contact The Extreme Fluids Team On the P-23 Extreme Fluids Team at Los Alamos National Laboratory, we apply high-resolution diagnostics to study fluid dynamics problems in extreme environments, such as shock-driven mixing, multiphase flows, and variable-density turbulence. The team is composed of Los Alamos staff, postdocs, and students. EXPERIMENTAL FACILITIES

  6. Extremely high frequency RF effects on electronics.

    SciTech Connect (OSTI)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  7. Xe capillary target for laser-plasma extreme ultraviolet source

    SciTech Connect (OSTI)

    Inoue, Takahiro; Okino, Hideyasu; Nica, Petru Edward; Amano, Sho; Miyamoto, Shuji; Mochizuki, Takayasu

    2007-10-15

    A cryogenic Xe jet system with an annular nozzle has been developed in order to continuously fast supply a Xe capillary target for generating a laser-plasma extreme ultraviolet (EUV) source. The cooling power of the system was evaluated to be 54 W, and the temperature stability was {+-}0.5 K at a cooling temperature of about 180 K. We investigated experimentally the influence of pressure loss inside an annular nozzle on target formation by shortening the nozzle length. Spraying caused by cavitation was mostly suppressed by mitigating the pressure loss, and a focused jet was formed. Around a liquid-solid boundary, a solid-Xe capillary target (100/70 {mu}m {phi}) was formed with a velocity of {<=}0.01 m/s. Laser-plasma EUV generation was tested by focusing a Nd:YAG laser beam on the target. The results suggested that an even thinner-walled capillary target is required to realize the inertial confinement effect.

  8. Beamline Temperatures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperatures Energy: 3.0000 GeV Current: 495.5347 mA Date: 09-Jan-2016 04:18:38 Beamline Temperatures Energy 3.0000 GeV Current 495.5 mA 09-Jan-2016 04:18:38 LN:MainTankLevel 112.0...

  9. Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks

    SciTech Connect (OSTI)

    Makarova, Kira S.; Omelchenko, Marina V.; Gaidamakova, Elena K.; Matrosova, Vera Y.; Vasilenko, Alexander; Zhai, Min; Lapidus, Alla; Copeland, Alex; Kim, Edwin; Land, Miriam; Mavrommatis, Konstantinos; Pitluck, Samuel; Richardson, Paul M.; Detter, Chris; Brettin, Thomas; Saunders, Elizabeth; Lai, Barry; Ravel, Bruce; Kemner, Kenneth M.; Wolf, Yuri I.; Sorokin, Alexander; Gerasimova, Anna V.; Gelfand, Mikhail S.; Fredrickson, James K.; Koonin, Eugene V.; Daly, Michael J.

    2007-07-24

    Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation (IR), ultraviolet light (UV) and desiccation. The mesophile Deinococcus radiodurans was the first member of this group whose genome was completely sequenced. Analysis of the genome sequence of D. radiodurans, however, failed to identify unique DNA repair systems. To further delineate the genes underlying the resistance phenotypes, we report the whole-genome sequence of a second Deinococcus species, the thermophile Deinococcus geothermalis, which at itsoptimal growth temperature is as resistant to IR, UV and desiccation as D. radiodurans, and a comparative analysis of the two Deinococcus genomes. Many D. radiodurans genes previously implicated in resistance, but for which no sensitive phenotype was observed upon disruption, are absent in D. geothermalis. In contrast, most D. radiodurans genes whose mutants displayed a radiation-sensitive phenotype in D. radiodurans are conserved in D. geothermalis. Supporting the existence of a Deinococcus radiation response regulon, a common palindromic DNA motif was identified in a conserved set of genes associated with resistance, and a dedicated transcriptional regulator was predicted. We present the case that these two species evolved essentially the same diverse set of gene families, and that the extreme stress-resistance phenotypes of the Deinococcus lineage emerged progressively by amassing cell-cleaning systems from different sources, but not by acquisition of novel DNA repair systems. Our reconstruction of the genomic evolution of the Deinococcus-Thermus phylum indicates that the corresponding set of enzymes proliferated mainly in the common ancestor of Deinococcus. Results of the comparative analysis weaken the arguments for a role of higher-order chromosome alignment structures in resistance; more clearly define and substantially revise downward the number of uncharacterized genes that might participate in DNA repair and contribute to resistance; and strengthen the case for a role in survival of systems involved in manganese and iron homeostasis.

  10. Homeowners Guide to Financing a Grid-Connected Solar Electric System (Brochure), Solar Energy Technologies Program (SETP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house.

  11. Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances

    Broader source: Energy.gov [DOE]

    BTO held a public meeting to solicit comments from the public on a draft framework. View the agenda, presentations, and summary notes.

  12. A Road Map to Extreme High Vacuum

    SciTech Connect (OSTI)

    Ganapati Rao Myneni

    2007-06-20

    Ultimate pressure of a well-designed vacuum system very much depends on pretreatments, processing and the procedures [1,2]. Until now much attention has been paid in minimizing hydrogen outgassing from the chamber material. However, procedures and processing deserves further scrutiny than hitherto given so far. For reducing the gas load, high sensitivity helium leak detection techniques with sensitivities better than 1 10-12 Torr l/sec need to be used. Effects that are induced by vacuum instrumentation need to be reduced in order to obtain accurate pressure measurements. This presentation will discuss: clean assembly procedures, metal sponges for cryosorption pumping of hydrogen to extreme high vacuum, low cost surface diffusion barriers for reducing the hydrogen gas load, cascade pumping, sensitive helium leak detection techniques and the use of modified extractor and residual gas analyzers. Further, alternative back up pumping systems based on active NEGs [3] for turbo molecular pumps will be presented.

  13. Left-Wing Extremism: The Current Threat

    SciTech Connect (OSTI)

    Karl A. Seger

    2001-04-30

    Left-wing extremism is ''alive and well'' both in the US and internationally. Although the current domestic terrorist threat within the U. S. is focused on right-wing extremists, left-wing extremists are also active and have several objectives. Leftist extremists also pose an espionage threat to U.S. interests. While the threat to the U.S. government from leftist extremists has decreased in the past decade, it has not disappeared. There are individuals and organizations within the U.S. who maintain the same ideology that resulted in the growth of left-wing terrorism in this country in the 1970s and 1980s. Some of the leaders from that era are still communicating from Cuba with their followers in the U.S., and new leaders and groups are emerging.

  14. Monitoring Extreme-scale Lustre Toolkit

    SciTech Connect (OSTI)

    Brim, Michael J; Lothian, Josh

    2015-01-01

    We discuss the design and ongoing development of the Monitoring Extreme-scale Lustre Toolkit (MELT), a unified Lustre performance monitoring and analysis infrastructure that provides continuous, low-overhead summary information on the health and performance of Lustre, as well as on-demand, in-depth problem diagnosis and root-cause analysis. The MELT infrastructure leverages a distributed overlay network to enable monitoring of center-wide Lustre filesystems where clients are located across many network domains. We preview interactive command-line utilities that help administrators and users to observe Lustre performance at various levels of resolution, from individual servers or clients to whole filesystems, including job-level reporting. Finally, we discuss our future plans for automating the root-cause analysis of common Lustre performance problems.

  15. Extreme-UV electrical discharge source

    DOE Patents [OSTI]

    Fornaciari, Neal R.; Nygren, Richard E.; Ulrickson, Michael A.

    2002-01-01

    An extreme ultraviolet and soft x-ray radiation electric capillary discharge source that includes a boron nitride housing defining a capillary bore that is positioned between two electrodes one of which is connected to a source of electric potential can generate a high EUV and soft x-ray radiation flux from the capillary bore outlet with minimal debris. The electrode that is positioned adjacent the capillary bore outlet is typically grounded. Pyrolytic boron nitride, highly oriented pyrolytic boron nitride, and cubic boron nitride are particularly suited. The boron nitride capillary bore can be configured as an insert that is encased in an exterior housing that is constructed of a thermally conductive material. Positioning the ground electrode sufficiently close to the capillary bore outlet also reduces bore erosion.

  16. Observational constraints of stellar collapse: Diagnostic probes of nature's extreme matter experiment

    SciTech Connect (OSTI)

    Fryer, Chris L. Even, Wesley; Grefenstette, Brian W.; Wong, Tsing-Wai; Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138

    2014-04-15

    Supernovae are Nature's high-energy, high density laboratory experiments, reaching densities in excess of nuclear densities and temperatures above 10MeV. Astronomers have built up a suite of diagnostics to study these supernovae. If we can utilize these diagnostics, and tie them together with a theoretical understanding of supernova physics, we can use these cosmic explosions to study the nature of matter at these extreme densities and temperatures. Capitalizing on these diagnostics will require understanding a wide range of additional physics. Here we review the diagnostics and the physics neeeded to use them to learn about the supernova engine, and ultimate nuclear physics.

  17. 'Extreme Makeover: Home Edition' Builds Efficiently | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    'Extreme Makeover: Home Edition' Builds Efficiently 'Extreme Makeover: Home Edition' Builds Efficiently February 12, 2010 - 9:30am Addthis Joshua DeLung You may recall this post on Energy Empowers, which previewed an upcoming episode of ABC's "Extreme Makeover: Home Edition" where the U.S. Department of Energy collaborated with builders to incorporate energy-efficiency and renewable energy technologies at The Fishing School, one of two such collaborative projects in an episode that was

  18. Optical Design for Extremely Large Telescope Adaptive Optics Systems

    Office of Scientific and Technical Information (OSTI)

    (Thesis/Dissertation) | SciTech Connect Thesis/Dissertation: Optical Design for Extremely Large Telescope Adaptive Optics Systems Citation Details In-Document Search Title: Optical Design for Extremely Large Telescope Adaptive Optics Systems Designing an adaptive optics (AO) system for extremely large telescopes (ELT's) will present new optical engineering challenges. Several of these challenges are addressed in this work, including first-order design of multi-conjugate adaptive optics

  19. SUMMARY OF REVISED TORNADO, HURRICANE AND EXTREME STRAIGHT WIND...

    Office of Environmental Management (EM)

    at Nuclear Facility Sites More Documents & Publications Best Practices in Literature Review for the 10 Year Extreme Wind Update at the DOE Pantex Site DOE Standard 1020...

  20. Extreme dynamic compression with a low energy laser pulse (Conference...

    Office of Scientific and Technical Information (OSTI)

    at: Extreme dynamic compression with a low energy laser pulse, Tampa, FL, United States, Jun 15 - Jun 19, 2015 Research Org: Lawrence Livermore National Laboratory (LLNL),...

  1. LDRD symposium focuses on materials in extremes, big data, and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LDRD symposium focuses on materials in extremes, big data, and energy use impacts | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission...

  2. Asking the right questions: benchmarking fault-tolerant extreme...

    Office of Scientific and Technical Information (OSTI)

    Asking the right questions: benchmarking fault-tolerant extreme-scale systems. Citation Details In-Document Search Title: Asking the right questions: benchmarking fault-tolerant ...

  3. Emerging Nanoscale Memory Technologies: The Solution to Extreme...

    Office of Scientific and Technical Information (OSTI)

    Emerging Nanoscale Memory Technologies: The Solution to Extreme Scale Problems. Citation Details In-Document Search Title: Emerging Nanoscale Memory Technologies: The Solution to ...

  4. Bianchi Attractors: A Classification of Extremal Black Brane...

    Office of Scientific and Technical Information (OSTI)

    A Classification of Extremal Black Brane Geometries Authors: Iizuka, Norihiro ; CERN ; Kachru, Shamit ; Stanford U., ITP SLAC ; Kundu, Nilay ; Narayan, Prithvi ; Sircar,...

  5. Extreme Adaptive Optics for the Thirty Meter Telescope (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Extreme Adaptive Optics for the Thirty Meter Telescope Direct detection of ... instrument, the Planet Formation Imager (PFI) for TMT. It has four key science missions. ...

  6. DISCOVERY AND CHARACTERIZATION OF AN EXTREMELY DEEP-ECLIPSING...

    Office of Scientific and Technical Information (OSTI)

    CATACLYSMIC VARIABLE: LSQ172554.8-643839 Citation Details In-Document Search Title: DISCOVERY AND CHARACTERIZATION OF AN EXTREMELY DEEP-ECLIPSING CATACLYSMIC VARIABLE: ...

  7. Impact of horizontal resolution on simulation of precipitation extremes in an aqua-planet version of the Community Atmosphere Model (CAM)

    SciTech Connect (OSTI)

    Li, F.; Collins, W.D.; Wehner, M.F.; Williamson, D.L.; Olson, J.G.; Algieri, C.

    2011-03-01

    One key question regarding current climate models is whether the projection of climate extremes converges to a realistic representation as the spatial and temporal resolutions of the model are increased. Ideally the model extreme statistics should approach a fixed distribution once the resolutions are commensurate with the characteristic length and time scales of the processes governing the formation of the extreme phenomena of interest. In this study, a series of AGCM runs with idealized 'aquaplanet-steady-state' boundary conditions have been performed with the Community Atmosphere Model CAM3 to investigate the effect of horizontal resolution on climate extreme simulations. The use of the aquaplanet framework highlights the roles of model physics and dynamics and removes any apparent convergence in extreme statistics due to better resolution of surface boundary conditions and other external inputs. Assessed at a same large spatial scale, the results show that the horizontal resolution and time step have strong effects on the simulations of precipitation extremes. The horizontal resolution has a much stronger impact on precipitation extremes than on mean precipitation. Updrafts are strongly correlated with extreme precipitation at tropics at all the resolutions, while positive low-tropospheric temperature anomalies are associated with extreme precipitation at mid-latitudes.

  8. A Wide Temperature, Radiation Tolerant, CMOS-compatible Precision Voltage Reference for Extreme Environment Instrumentation Systems

    SciTech Connect (OSTI)

    McCue, Mr. Benjamin; Blalock, Benjamin; Potts, J.; Kemerling, Mr. James; Isihara, Mr. Kyoshi; Leines, Capt. Matt; Britton Jr, Charles L

    2013-01-01

    Many design techniques have been incorporated into modern CMOS design practices to improve radiation tolerance of integrated circuits. Annular-gate NMOS structures have been proven to be significantly more radiation tolerant than the standard straight-gate variety. Many circuits can be designed using the annular-gate NMOS and the inherently radiation tolerant PMOS. Band-gap reference circuits, however, typically require p-n junction diodes. These p-n junction diodes are the dominating factor in radiation degradation in band-gap reference circuits. This paper proposes a different approach to band-gap reference design to alleviate the radiation susceptibility presented by the p-n junction diodes.

  9. Development of Polybenzimidazole-Based High-Temperature Membrane and Electrode Assemblies for Stationary and Automotive Applications

    SciTech Connect (OSTI)

    Vogel, John A.

    2008-09-03

    The program began on August 1, 2003 and ended on July 31, 2007. The goal of the project was to optimize a high-temperature polybenzimidazole (PBI) membrane to meet the performance, durability, and cost targets required for stationary fuel cell applications. These targets were identified in the Fuel Cell section (3.4) of DOEs Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. A membrane that operates at high temperatures is important to the fuel cell industry because it is insensitive to carbon monoxide (a poison to low-temperature fuel cells), and does not require complex water management strategies. Together, these two benefits greatly simplify the fuel cell system. As a result, the high-temperature fuel cell system realizes a cost benefit as the number of components is reduced by nearly 30%. There is also an inherent reliability benefit as components such as humidifiers and pumps for water management are unnecessary. Furthermore, combined heat and power (CHP) systems may be the best solution for a commercial, grid-connected, stationary product that must offer a cost benefit to the end user. For a low-temperature system, the quality of the heat supplied is insufficient to meet consumer needs and comfort requirements, so peak heaters or supplemental boilers are required. The higher operating temperature of PBI technology allows the fuel cell to meet the heat and comfort demand without the additional equipment. Plug Power, working with the Rensselaer Polytechnic Institute (RPI) Polymer Science Laboratory, made significant advances in optimizing the PBI membrane material for operation at temperatures greater than 160oC with a lifetime of 40,000 hours. Supporting hardware such as flow field plates and a novel sealing concept were explored to yield the lower-cost stack assembly and corresponding manufacturing process. Additional work was conducted on acid loss, flow field design and cathode electrode development. Membranes and MEAs were supplied by team member BASF Fuel Cell (formerly PEMEAS), a manufacturer of polymer and fiber. Additional subcontractors Entegris, the University of South Carolina (USC) Fuel Cell Center, and RPIs Fuel Cell Center conducted activities with regard to stack sealing, acid modeling, and electrode development.

  10. Extreme dynamic compression with a low energy laser pulse (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Extreme dynamic compression with a low energy laser pulse Citation Details In-Document Search Title: Extreme dynamic compression with a low energy laser pulse Authors: Armstrong, M R ; Crowhurst, J C ; Zaug, J M ; Radousky, H B Publication Date: 2015-08-18 OSTI Identifier: 1234612 Report Number(s): LLNL-PROC-676476 DOE Contract Number: AC52-07NA27344 Resource Type: Conference Resource Relation: Conference: Presented at: Extreme dynamic compression with a low

  11. HPSS in the Extreme Scale Era (2018-2022)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home » Events » HPC Workshops » July 2009: HPSS in the Extreme Scale Era HPSS in the Extreme Scale Era (2018-2022) This paper, from a workshop held at the National Energy Research Scientific Computing (NERSC) Facility in Oakland, CA, on July 14-15, 2009, is a report on the feasibility of using HPSS into the Extreme Scale era of storage (2018 - 2022). Workshop Participants: Danny Cook, LANL; Jason Hick, LBNL (chair); Jim Minton, LLNL; Henry Newman, Instrumental; Timothy Preston, SNL; Gary

  12. Negative ion source with low temperature transverse divergence optical system

    DOE Patents [OSTI]

    Whealton, J.H.; Stirling, W.L.

    1985-03-04

    A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.

  13. Best Practices in Literature Research for the 10-Year Extreme...

    Office of Environmental Management (EM)

    Best Practices in Literature Review for the 10 Year Extreme Wind Update at the DOE Pantex Site Presented by October 26, 2011 DOE Standards * DOE O 420.1 - Basis of Requirements *...

  14. The Universe at Extreme Scale - Multi-Petaflop Sky Simulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Universe at Extreme Scale - Multi-Petaflop Sky Simulation on the BGQ Authors: S. Habib, V. Morozov, H. Finkel, A. Pope, K. Heitmann, K. Kumaran, T. Peterka, J. Insley, D....

  15. New analogies between extreme QCD and cold atoms

    SciTech Connect (OSTI)

    Nishida, Yusuke

    2012-08-15

    We discuss two new analogies between extreme QCD and cold atoms. One is the analogue of 'hard probes' in cold atoms. The other is the analogue of 'quark-hadron continuity' in cold atoms.

  16. Preservation of an extreme transient geotherm in the Raft River...

    Open Energy Info (EERE)

    of an extreme transient geotherm in the Raft River detachment shear zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Preservation of an...

  17. Scientists use world's fastest computer to model materials under extreme

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions Materials under extreme conditions Scientists use world's fastest computer to model materials under extreme conditions Materials scientists are for the first time attempting to create atomic-scale models that describe how voids are created, grow, and merge. October 30, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable

  18. Emerging Nanoscale Memory Technologies: The Solution to Extreme Scale

    Office of Scientific and Technical Information (OSTI)

    Problems. (Conference) | SciTech Connect Emerging Nanoscale Memory Technologies: The Solution to Extreme Scale Problems. Citation Details In-Document Search Title: Emerging Nanoscale Memory Technologies: The Solution to Extreme Scale Problems. Abstract not provided. Authors: Marinella, Matthew Publication Date: 2014-03-01 OSTI Identifier: 1140869 Report Number(s): SAND2014-2102C 505337 DOE Contract Number: DE-AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Nano and

  19. Evolution of extreme resistance to ionizing radiation via genetic

    Office of Scientific and Technical Information (OSTI)

    adaptation of DNA repair (Journal Article) | DOE PAGES DOE PAGES Search Results Published Article: Evolution of extreme resistance to ionizing radiation via genetic adaptation of DNA repair « Prev Next » Title: Evolution of extreme resistance to ionizing radiation via genetic adaptation of DNA repair Authors: Byrne, Rose T. ; Klingele, Audrey J. ; Cabot, Eric L. ; Schackwitz, Wendy S. ; Martin, Jeffrey A. ; Martin, Joel ; Wang, Zhong ; Wood, Elizabeth A. ; Pennacchio, Christa ; Pennacchio,

  20. Extremely durable biofouling-resistant metallic surfaces based on

    Office of Scientific and Technical Information (OSTI)

    electrodeposited nanoporous tungstite films on steel (Journal Article) | DOE PAGES Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel « Prev Next » Title: Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel Formation of unwanted deposits on steels during their interaction with liquids is an inherent problem that often leads to corrosion, biofouling and

  1. Extremely durable biofouling-resistant metallic surfaces based on

    Office of Scientific and Technical Information (OSTI)

    electrodeposited nanoporous tungstite films on steel (Journal Article) | DOE PAGES Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel « Prev Next » Title: Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel × You are accessing a document from the Department of Energy's (DOE) Public Access Gateway for Energy & Science (PAGES). This site is a product of

  2. Bianchi Attractors: A Classification of Extremal Black Brane Geometries

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Bianchi Attractors: A Classification of Extremal Black Brane Geometries Citation Details In-Document Search Title: Bianchi Attractors: A Classification of Extremal Black Brane Geometries Authors: Iizuka, Norihiro ; /CERN ; Kachru, Shamit ; /Stanford U., ITP /SLAC ; Kundu, Nilay ; Narayan, Prithvi ; Sircar, Nilanjan ; Trivedi, Sandip P. ; /Tata Inst. Publication Date: 2013-07-10 OSTI Identifier: 1087393 Report Number(s): SLAC-PUB-15686 arXiv:1201.4861 DOE

  3. Inventors in Action: Extreme Subsea Machines | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inventors in Action: Extreme Subsea Machines Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Inventors in Action: Extreme Subsea Machines GE Researchers Oliver Astley, Power Conversion and Delivery Technology Leader, Konrad Weeber, Chief Engineer, Electrical Technologies and Systems, and Sergio Sabedotti, Offshore and

  4. Supercomputers: Extreme Computing at the National Labs | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Supercomputers: Extreme Computing at the National Labs Supercomputers: Extreme Computing at the National Labs September 4, 2013 - 1:08pm Addthis Titan 1 of 5 Titan Oak Ridge National Laboratory's Titan has a theoretical peak performance of more than 20 petaflops, or more than 20 quadrillion calculations per second. This will enable researchers across the scientific arena, from materials to climate change to astrophysics, to acquire unparalleled accuracy in their simulations and

  5. Thermoelectric refrigerator having improved temperature stabilization means

    DOE Patents [OSTI]

    Falco, Charles M.

    1982-01-01

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

  6. Low-temperature random matrix theory at the soft edge

    SciTech Connect (OSTI)

    Edelman, Alan; Persson, Per-Olof; Sutton, Brian D.

    2014-06-15

    Low temperature random matrix theory is the study of random eigenvalues as energy is removed. In standard notation, ? is identified with inverse temperature, and low temperatures are achieved through the limit ? ? ?. In this paper, we derive statistics for low-temperature random matrices at the soft edge, which describes the extreme eigenvalues for many random matrix distributions. Specifically, new asymptotics are found for the expected value and standard deviation of the general-? Tracy-Widom distribution. The new techniques utilize beta ensembles, stochastic differential operators, and Riccati diffusions. The asymptotics fit known high-temperature statistics curiously well and contribute to the larger program of general-? random matrix theory.

  7. Characterization of extreme precipitation within atmospheric river events over California

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jeon, S.; Prabhat,; Byna, S.; Gu, J.; Collins, W. D.; Wehner, M. F.

    2015-11-17

    Atmospheric rivers (ARs) are large, spatially coherent weather systems with high concentrations of elevated water vapor. These systems often cause severe downpours and flooding over the western coastal United States – and with the availability of more atmospheric moisture in the future under global warming we expect ARs to play an important role as potential causes of extreme precipitation changes. Therefore, we aim to investigate changes in extreme precipitation properties correlated with AR events in a warmer climate, which are large-scale meteorological patterns affecting the weather and climate of California. We have recently developed the TECA (Toolkit for Extreme Climatemore » Analysis) software for automatically identifying and tracking features in climate data sets. Specifically, we can now identify ARs that make landfall on the western coast of North America. Based on this detection procedure, we can investigate the impact of ARs by exploring the spatial extent of AR precipitation using climate model (CMIP5) simulations and characterize spatial patterns of dependence for future projections between AR precipitation extremes under climate change within the statistical framework. Our results show that AR events in the future RCP (Representative Concentration Pathway)8.5 scenario (2076–2100) tend to produce heavier rainfall with higher frequency and longer days than events from the historical run (1981–2005). We also find that the dependence between extreme precipitation events has a shorter spatial range, within localized areas in California, under the high future emissions scenario than under the historical run.« less

  8. The Reactivity of Energetic Materials At Extreme Conditions

    SciTech Connect (OSTI)

    Fried, L E

    2006-10-23

    Energetic materials are unique for having a strong exothermic reactivity, which has made them desirable for both military and commercial applications. Energetic materials are commonly divided into high explosives, propellants, and pyrotechnics. We will focus on high explosive (HE) materials here, although there is a great deal of commonality between the classes of energetic materials. Although the history of HE materials is long, their condensed-phase properties are poorly understood. Understanding the condensed-phase properties of HE materials is important for determining stability and performance. Information regarding HE material properties (for example, the physical, chemical, and mechanical behaviors of the constituents in plastic-bonded explosive, or PBX, formulations) is necessary for efficiently building the next generation of explosives as the quest for more powerful energetic materials (in terms of energy per volume) moves forward. In modeling HE materials there is a need to better understand the physical, chemical, and mechanical behaviors from fundamental theoretical principles. Among the quantities of interest in plastic-bonded explosives (PBXs), for example, are thermodynamic stabilities, reaction kinetics, equilibrium transport coefficients, mechanical moduli, and interfacial properties between HE materials and the polymeric binders. These properties are needed (as functions of stress state and temperature) for the development of improved micro-mechanical models, which represent the composite at the level of grains and binder. Improved micro-mechanical models are needed to describe the responses of PBXs to dynamic stress or thermal loading, thus yielding information for use in developing continuum models. Detailed descriptions of the chemical reaction mechanisms of condensed energetic materials at high densities and temperatures are essential for understanding events that occur at the reactive front under combustion or detonation conditions. Under shock conditions, for example, energetic materials undergo rapid heating to a few thousand degrees and are subjected to a compression of hundreds of kilobars, resulting in almost 30% volume reduction. Complex chemical reactions are thus initiated, in turn releasing large amounts of energy to sustain the detonation process. Clearly, understanding of the various chemical events at these extreme conditions is essential in order to build predictive material models. Scientific investigations into the reactive process have been undertaken over the past two decades. However, the sub-{micro}s time scale of explosive reactions, in addition to the highly exothermic conditions of an explosion, make experimental investigation of the decomposition pathways difficult at best. More recently, new computational approaches to investigate condensed-phase reactivity in energetic materials have been developed. Here we focus on two different approaches to condensed-phase reaction modeling: chemical equilibrium methods and atomistic modeling of condensed-phase reactions. These are complementary approaches to understanding the chemical reactions of high explosives. Chemical equilibrium modeling uses a highly simplified thermodynamic picture of the reaction process, leading to a convenient and predictive model of detonation and other decomposition processes. Chemical equilibrium codes are often used in the design of new materials, both at the level of synthesis chemistry and formulation. Atomistic modeling is a rapidly emerging area. The doubling of computational power approximately every 18 months has made atomistic condensed-phase modeling more feasible. Atomistic calculations employ far fewer empirical parameters than chemical equilibrium calculations. Nevertheless, the atomistic modeling of chemical reactions requires an accurate global Born-Oppenheimer potential energy surface. Traditionally, such a surface is constructed by representing the potential energy surface with an analytical fit. This approach is only feasible for simple chemical reactions involving a small number of atoms

  9. Intensification of hot extremes in the United States

    SciTech Connect (OSTI)

    Diffenbaugh, Noah [Stanford University; Ashfaq, Moetasim [ORNL

    2010-01-01

    Governments are currently considering policies that will limit greenhouse gas concentrations, including negotiation of an international treaty to replace the expiring Kyoto Protocol. Existing mitigation targets have arisen primarily from political negotiations, and the ability of such policies to avoid dangerous impacts is still uncertain. Using a large suite of climate model experiments, we find that substantial intensification of hot extremes could occur within the next 3 decades, below the 2 C global warming target currently being considered by policy makers. We also find that the intensification of hot extremes is associated with a shift towards more anticyclonic atmospheric circulation during the warm season, along with warm-season drying over much of the U.S. The possibility that intensification of hot extremes could result from relatively small increases in greenhouse gas concentrations suggests that constraining global warming to 2 C may not be sufficient to avoid dangerous climate change.

  10. Extreme high-head portables provide more pumping options

    SciTech Connect (OSTI)

    Fiscor, S.

    2006-10-15

    Three years ago, Godwin Pumps, one of the largest manufacturers of portable pumps, introduced its Extreme Duty High Lift (HL) series of pumps and more mines are finding unique applications for these pumps. The Extreme HL series is a range single-stage Dri-Prime pumps with heads up to 600 feet and flows up to 5,000 gallons per minute. The American Coal Co.'s Galatia mine, an underground longwall mine in southern Illinois, used an HL 160 to replace a multiple-staged centrifugal pump. It provided Galatia with 1,500 gpm at 465 ft. 3 photos.

  11. DISCOVERY AND CHARACTERIZATION OF AN EXTREMELY DEEP-ECLIPSING CATACLYSMIC

    Office of Scientific and Technical Information (OSTI)

    VARIABLE: LSQ172554.8-643839 (Journal Article) | SciTech Connect DISCOVERY AND CHARACTERIZATION OF AN EXTREMELY DEEP-ECLIPSING CATACLYSMIC VARIABLE: LSQ172554.8-643839 Citation Details In-Document Search Title: DISCOVERY AND CHARACTERIZATION OF AN EXTREMELY DEEP-ECLIPSING CATACLYSMIC VARIABLE: LSQ172554.8-643839 We report the discovery of an eclipsing cataclysmic variable with eclipse depths >5.7 mag, orbital period 94.657 minutes, and peak brightness V {approx} 18 at J2000 position

  12. TECA: A Parallel Toolkit for Extreme Climate Analysis

    SciTech Connect (OSTI)

    Prabhat, Mr; Ruebel, Oliver; Byna, Surendra; Wu, Kesheng; Li, Fuyu; Wehner, Michael; Bethel, E. Wes

    2012-03-12

    We present TECA, a parallel toolkit for detecting extreme events in large climate datasets. Modern climate datasets expose parallelism across a number of dimensions: spatial locations, timesteps and ensemble members. We design TECA to exploit these modes of parallelism and demonstrate a prototype implementation for detecting and tracking three classes of extreme events: tropical cyclones, extra-tropical cyclones and atmospheric rivers. We process a modern TB-sized CAM5 simulation dataset with TECA, and demonstrate good runtime performance for the three case studies.

  13. COLLOQUIUM: In Silico Plasmas Under Extreme Intensities | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab May 12, 2015, 4:15pm to 6:30pm Colloquia MBG Auditorium COLLOQUIUM: In Silico Plasmas Under Extreme Intensities Professor Luis Silva, Department of Physics Instituto Superior Técnico Intense laser and particle beams can be focused down to intensities in excess of 10^23 W/cm^2. Similar intensities are also present in extreme astrophysical scenarios. Under these conditions, the interaction of these intense beams and fields with plasmas is very rich, permeated by collective

  14. Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography

    DOE Patents [OSTI]

    Hassanein, Ahmed (Bolingbrook, IL); Konkashbaev, Isak (Bolingbrook, IL)

    2006-10-03

    A device and method for generating extremely short-wave ultraviolet electromagnetic wave uses two intersecting plasma beams generated by two plasma accelerators. The intersection of the two plasma beams emits electromagnetic radiation and in particular radiation in the extreme ultraviolet wavelength. In the preferred orientation two axially aligned counter streaming plasmas collide to produce an intense source of electromagnetic radiation at the 13.5 nm wavelength. The Mather type plasma accelerators can utilize tin, or lithium covered electrodes. Tin, lithium or xenon can be used as the photon emitting gas source.

  15. ITEP Webinar: Extreme Weather Events and Climate Change

    Broader source: Energy.gov [DOE]

    Attend this Institute for Tribal Environmental Professionals (ITEP) webinar and hear about the known variability in extreme weather such as excessive heat, cold waves, floods, droughts, hurricanes, severe thunderstorms and tornadoes. Projections and uncertainties of how these hazards might change due to global warming will be reviewed.

  16. Causal Analysis of the Unanticipated Extremity Exposure at HFEF

    SciTech Connect (OSTI)

    David E. James; Charles R. Posegate; Thomas P. Zahn; Alan G. Wagner

    2011-11-01

    This report covers the unintended extremity exposure to an operator while handling a metallurgical mount sample of irradiated fuel following an off-scale high beta radiation reading of the sample. The decision was made to continue working after the meter indicated high off-scale by the HPT Supervisor, which resulted in the operator at the next operation being exposed.

  17. Diffractive element in extreme-UV lithography condenser

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Ray-Chaudhurl, Avijit K. (Livermore, CA)

    2000-01-01

    Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

  18. Diffractive element in extreme-UV lithography condenser

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Ray-Chaudhuri, Avijit (Livermore, CA)

    2001-01-01

    Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

  19. Complete genome sequences for the anaerobic, extremely thermophilic plant

    Office of Scientific and Technical Information (OSTI)

    biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensenis, and Caldicellulosiruptor lactoaceticus (Journal Article) | SciTech Connect Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensenis, and

  20. The electronic structure of heavy fermions: Narrow temperature independent bands

    SciTech Connect (OSTI)

    Arko, A.J.; Joyce, J.J.; Smith, J.L.; Andrews, A.B.

    1996-08-01

    The electronic structure of both Ce and U heavy fermions appears to consist of extremely narrow temperature independent bands. There is no evidence from photoemission for a collective phenomenon normally referred to as the Kondo resonance. In uranium compounds a small dispersion of the bands is easily measurable.

  1. Osmotic Heat Engine for Energy Production from Low Temperature Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources | Department of Energy Osmotic Heat Engine for Energy Production from Low Temperature Geothermal Resources Osmotic Heat Engine for Energy Production from Low Temperature Geothermal Resources Project objective: to demonstrate the economic viability of an Osmotic Heat Engine for electricity production from extremely low-grade geothermal resources. PDF icon low_mcginnis_osmotic_heat_engine.pdf More Documents & Publications Osmotic Heat Engine for Energy Production from Low

  2. Investigations into High Temperature Components and Packaging

    SciTech Connect (OSTI)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the temperature increase inside the device due the internal heat that is generated due to conduction and switching losses. Capacitors and high current switches that are reliable and meet performance specifications over an increased temperature range are necessary to realize electronics needed for hybrid-electric vehicles (HEVs), fuel cell (FC) and plug-in HEVs (PHEVs). In addition to individual component level testing, it is necessary to evaluate and perform long term module level testing to ascertain the effects of high temperature operation on power electronics.

  3. Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, C.; Zheng, S.; Wei, C. C.; Wu, Y.; Shao, L.; Yang, Y.; Hartwig, K. T.; Maloy, S. A.; Zinkle, S. J.; Allen, T. R.; et al

    2015-01-15

    Nuclear energy provides more than 10% of electrical power internationally, and the increasing engagement of nuclear energy is essential to meet the rapid worldwide increase in energy demand. A paramount challenge in the development of advanced nuclear reactors is the discovery of advanced structural materials that can endure extreme environments, such as severe neutron irradiation damage at high temperatures. It has been known for decades that high dose radiation can introduce significant void swelling accompanied by precipitation in austenitic stainless steel (SS). Here we report, however, that through nanoengineering, ultra-fine grained (UFG) 304L SS with an average grain size ofmore » ~100 nm, can withstand Fe ion irradiation at 500°C to 80 displacements-per-atom (dpa) with moderate grain coarsening. Compared to coarse grained (CG) counterparts, swelling resistance of UFG SS is improved by nearly an order of magnitude and swelling rate is reduced by a factor of 5. M₂₃C₆ precipitates, abundant in irradiated CG SS, are largely absent in UFG SS. This study provides a nanoengineering approach to design and discover radiation tolerant metallic materials for applications in extreme radiation environments.« less

  4. Optimizing laser produced plasmas for efficient extreme ultraviolet and soft X-ray light sources

    SciTech Connect (OSTI)

    Sizyuk, Tatyana; Hassanein, Ahmed [Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2014-08-15

    Photon sources produced by laser beams with moderate laser intensities, up to 10{sup 14?}W/cm{sup 2}, are being developed for many industrial applications. The performance requirements for high volume manufacture devices necessitate extensive experimental research supported by theoretical plasma analysis and modeling predictions. We simulated laser produced plasma sources currently being developed for several applications such as extreme ultraviolet lithography using 13.5%??1% nm bandwidth, possibly beyond extreme ultraviolet lithography using 6. nm wavelengths, and water-window microscopy utilizing 2.48?nm (La-?) and 2.88?nm (He-?) emission. We comprehensively modeled plasma evolution from solid/liquid tin, gadolinium, and nitrogen targets as three promising materials for the above described sources, respectively. Results of our analysis for plasma characteristics during the entire course of plasma evolution showed the dependence of source conversion efficiency (CE), i.e., laser energy to photons at the desired wavelength, on plasma electron density gradient. Our results showed that utilizing laser intensities which produce hotter plasma than the optimum emission temperatures allows increasing CE for all considered sources that, however, restricted by the reabsorption processes around the main emission region and this restriction is especially actual for the 6.?nm sources.

  5. Response of precipitation extremes to idealized global warming in an aqua-planet climate model: Towards robust projection across different horizontal resolutions

    SciTech Connect (OSTI)

    Li, F.; Collins, W.D.; Wehner, M.F.; Williamson, D.L.; Olson, J.G.

    2011-04-15

    Current climate models produce quite heterogeneous projections for the responses of precipitation extremes to future climate change. To help understand the range of projections from multimodel ensembles, a series of idealized 'aquaplanet' Atmospheric General Circulation Model (AGCM) runs have been performed with the Community Atmosphere Model CAM3. These runs have been analysed to identify the effects of horizontal resolution on precipitation extreme projections under two simple global warming scenarios. We adopt the aquaplanet framework for our simulations to remove any sensitivity to the spatial resolution of external inputs and to focus on the roles of model physics and dynamics. Results show that a uniform increase of sea surface temperature (SST) and an increase of low-to-high latitude SST gradient both lead to increase of precipitation and precipitation extremes for most latitudes. The perturbed SSTs generally have stronger impacts on precipitation extremes than on mean precipitation. Horizontal model resolution strongly affects the global warming signals in the extreme precipitation in tropical and subtropical regions but not in high latitude regions. This study illustrates that the effects of horizontal resolution have to be taken into account to develop more robust projections of precipitation extremes.

  6. Science at the Theatre - Extreme Science - Promo Video

    ScienceCinema (OSTI)

    Klein, Spencer

    2013-05-29

    On Feb. 27 at 7 pm at the Berkeley Repertory Theatre, join four Berkeley Lab scientists as they discuss extreme science -- and what it means to you. Topics include: Neutrino hunting in Antarctica. Learn why Spencer Klein goes to the ends of the Earth to search for these ghostly particles. From Chernobyl to Central Asia, Tamas Torok travels the globe to study microbial diversity in extreme environments. Andrew Minor uses the world's most advanced electron microscopes to explore materials at ultrahigh stresses and in harsh environments. And microbes that talk to computers? Caroline Ajo-Franklin is pioneering cellular-electrical connections that could help transform sunlight into fuel. Go here for more information and to view videos of previous Science at the Theater events: http://www.lbl.gov/LBL-PID/fobl/

  7. A Network Contention Model for the Extreme-scale Simulator

    SciTech Connect (OSTI)

    Engelmann, Christian [ORNL; Naughton, III, Thomas J [ORNL

    2015-01-01

    The Extreme-scale Simulator (xSim) is a performance investigation toolkit for high-performance computing (HPC) hardware/software co-design. It permits running a HPC application with millions of concurrent execution threads, while observing its performance in a simulated extreme-scale system. This paper details a newly developed network modeling feature for xSim, eliminating the shortcomings of the existing network modeling capabilities. The approach takes a different path for implementing network contention and bandwidth capacity modeling using a less synchronous and accurate enough model design. With the new network modeling feature, xSim is able to simulate on-chip and on-node networks with reasonable accuracy and overheads.

  8. Science at the Theatre - Extreme Science - Promo Video

    SciTech Connect (OSTI)

    Klein, Spencer

    2012-01-01

    On Feb. 27 at 7 pm at the Berkeley Repertory Theatre, join four Berkeley Lab scientists as they discuss extreme science -- and what it means to you. Topics include: Neutrino hunting in Antarctica. Learn why Spencer Klein goes to the ends of the Earth to search for these ghostly particles. From Chernobyl to Central Asia, Tamas Torok travels the globe to study microbial diversity in extreme environments. Andrew Minor uses the world's most advanced electron microscopes to explore materials at ultrahigh stresses and in harsh environments. And microbes that talk to computers? Caroline Ajo-Franklin is pioneering cellular-electrical connections that could help transform sunlight into fuel. Go here for more information and to view videos of previous Science at the Theater events: http://www.lbl.gov/LBL-PID/fobl/

  9. VALIDATION OF HANFORD PERSONNEL AND EXTREMITY DOSIMETERS IN PLUTONIUM ENVIRONMENTS

    SciTech Connect (OSTI)

    Scherpelz, Robert I.; Fix, John J.; Rathbone, Bruce A.

    2000-02-10

    A study was performed in the Plutonium Finishing Plant to assess the performance of Hanford personnel neutron dosimetry. The study was assessed whole body dosimetry and extremity dosimetry performance. For both parts of the study, the TEPC was used as the principle instrument for characterizing workplace neutron fields. In the whole body study, 12.7-cm-diameter TEPCs were used in ten different locations in the facility. TLD and TED personnel dosimeters were exposed on a water-filled phantom to enable a comparison of TEPC and dosimeter response. In the extremity study, 1.27-cm-diameter TEPCs were exposed inside the fingers of a gloveboxe glove. Extremity dosimeters were wrapped around the TEPCs. The glove was then exposed to six different cans of plutonium, simulating the exposure that a worker's fingers would receive in a glovebox. The comparison of TEPC-measured neutron dose equivalent to TLD-measured gamma dose equivalent provided neutron-to-gamma ratios that can be used to estimate the neutron dose equivalent received by a worker's finger based on the gamma readings of an extremity dosimeter. The study also utilized a Snoopy and detectors based on bubble technology for assessing neutron exposures, providing a comparison of the effectiveness of these instruments for workplace monitoring. The study concludes that the TLD component of the HCND performs adequately overall, with a positive bias of 30%, but exhibits excessive variability in individual results due to instabilities in the algorithm. The TED response was less variable but only 20% of the TEPC reference dose on average because of the low neutron energies involved. The neutron response of the HSD was more variable than the TLD component of the HCND and biased high by a factor of 8 overall due to its calibration to unmoderated 252Cf. The study recommends further work to correct instabilities in the HCND algorithm and to explore the potential shown by the bubble-based dosimeters.

  10. Preliminary Wave Energy Converters Extreme Load Analysis: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preliminary Wave Energy Converters Extreme Load Analysis Preprint Y-H. Yu, J. Van Rij, and M. Lawson National Renewable Energy Laboratory R. Coe Sandia National Laboratories To be presented at the 34 th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2015) St. John's, Newfoundland, Canada May 31-June 5, 2015 Conference Paper NREL/CP-5000-63677 March 2015 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC

  11. Tribal Energy System Vulnerabilities to Climate Change and Extreme Weather

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Energy System Vulnerabilities to Climate Change and Extreme Weather ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use

  12. Hig Resolution Seismometer Insensitive to Extremely Strong Magnetic Fields

    SciTech Connect (OSTI)

    Abramovich, Igor A

    2009-07-14

    A highly sensitive broadband seismic sensor has been developed successfully to be used in beam focusing systems of particale accelerators. The sensor is completely insensitive to extremely strong magnetic fields and to hard radiation conditions that exist at the place of their installation. A unique remote sensor calibration method has been invented and implemented. Several such sensors were sold to LAPP (LAPP-IN2P3/CNRS-Universit de Savoie; Laboratoire d'Annecy-le-Vieux de Physique des Particules)

  13. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Nastasi image of George Gray Contact Information Professor, University of Nebraska-Lincoln Email: Mike Nastasi Phone: 402-472-3852 Bio Education Ph.D., Materials Science and Engineering, Cornell University, 1986 M.S., Materials Science and Engineering, Cornell University, 1983 B.S., Materials Science and Engineering, Cornell University, 1981 Research and Professional Experience Director, Center for Materials at Irradiation and Mechanical Extremes, 2009-present Nano

  14. Center for Materials at Irradiation and Mechanical Extremes: Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Others Participants Summer School Contacts Project Office Director Amit Misra (505) 667-9860 Co-Director Irene J. Beyerlein (505) 665-2231 Administrator Linda Chavez (505) 665-2266 cmime@lanl.gov Resources About CMIME Documents Employment Opportunities News & Highlights | Archive Related EFRC News Upcoming Events | Archive CMIME Featured Projects image for movie Irradiation Extremes Thrust The movie shows our molecular dynamics simulation of a collision cascade near

  15. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOE Patents [OSTI]

    Kublak, Glenn D. (124 Turquoise Way, Livermore, Alameda County, CA 94550); Richardson, Martin C. (CREOL

    1996-01-01

    Method and apparatus for producing extreme ultra violet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10.sup.11 -10.sup.12 watts/cm.sup.2) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10-30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle.

  16. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOE Patents [OSTI]

    Kublak, G.D.; Richardson, M.C.

    1996-11-19

    Method and apparatus for producing extreme ultraviolet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10{sup 11}--10{sup 12} watts/cm{sup 2}) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10--30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle. 5 figs.

  17. Exascale Co-design for Modeling Materials in Extreme Environments

    SciTech Connect (OSTI)

    Germann, Timothy C.

    2014-07-08

    Computational materials science has provided great insight into the response of materials under extreme conditions that are difficult to probe experimentally. For example, shock-induced plasticity and phase transformation processes in single-crystal and nanocrystalline metals have been widely studied via large-scale molecular dynamics simulations, and many of these predictions are beginning to be tested at advanced 4th generation light sources such as the Advanced Photon Source (APS) and Linac Coherent Light Source (LCLS). I will describe our simulation predictions and their recent verification at LCLS, outstanding challenges in modeling the response of materials to extreme mechanical and radiation environments, and our efforts to tackle these as part of the multi-institutional, multi-disciplinary Exascale Co-design Center for Materials in Extreme Environments (ExMatEx). ExMatEx has initiated an early and deep collaboration between domain (computational materials) scientists, applied mathematicians, computer scientists, and hardware architects, in order to establish the relationships between algorithms, software stacks, and architectures needed to enable exascale-ready materials science application codes within the next decade. We anticipate that we will be able to exploit hierarchical, heterogeneous architectures to achieve more realistic large-scale simulations with adaptive physics refinement, and are using tractable application scale-bridging proxy application testbeds to assess new approaches and requirements. Such current scale-bridging strategies accumulate (or recompute) a distributed response database from fine-scale calculations, in a top-down rather than bottom-up multiscale approach.

  18. Polycrystalline gamma plutonium's elastic moduli versus temperature

    SciTech Connect (OSTI)

    Migliori, Albert; Betts, J; Trugman, A; Mielke, C H; Mitchell, J N; Ramos, M; Stroe, I

    2009-01-01

    Resonant ultrasound spectroscopy was used to measure the elastic properties of pure polycrystalline {sup 239}Pu in the {gamma} phase. Shear and longitudinal elastic moduli were measured simultaneously and the bulk modulus was computed from them. A smooth, linear, and large decrease of all elastic moduli with increasing temperature was observed. They calculated the Poisson ratio and found that it increases from 0.242 at 519 K to 0.252 at 571 K. These measurements on extremely well characterized pure Pu are in agreement with other reported results where overlap occurs.

  19. High Temperature ESP Monitoring

    Broader source: Energy.gov [DOE]

    The purpose of the High Temperature ESP Monitoring project is to develop a down-hole monitoring system to be used in wells with bottom hole temperature up to 300 °C for measuring motor temperature; pump discharge pressure; and formation temperature and pressure.

  20. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-01-01

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  1. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-08-04

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  2. LITHIUM ABUNDANCES OF EXTREMELY METAL-POOR TURNOFF STARS (Journal...

    Office of Scientific and Technical Information (OSTI)

    Effective temperatures are determined by a profile analysis of Halpha and Hbeta. While ... Koenigstuhl 12, D-69117 Heidelberg (Germany) Centre for Astrophysics Research, STRI ...

  3. High temperature furnace

    DOE Patents [OSTI]

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  4. Method for Synthesizing Extremeley High Temperature Melting Materials

    DOE Patents [OSTI]

    Saboungi, Marie-Louise and Glorieux, Benoit

    2005-11-22

    The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.

  5. Broadband extreme ultraviolet probing of transient gratings in vanadium dioxide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sistrunk, Emily; Lawrence Livermore National Lab.; Grilj, Jakob; Ecole Polytechnique Federal de Lausanne; Jeong, Jaewoo; Samant, Mahesh G.; Gray, Alexander X.; Temple Univ. Philadelphia, PA; Drr, Hermann A.; Parkin, Stuart S. P.; et al

    2015-02-11

    Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). We demonstrate a step on this path showing core-valence sensitivity in transient grating spectroscopy with EUV probing. We study the optically induced insulator-to-metal transition (IMT) of a VO? film with EUV diffraction from the optically excited sample. The VO? exhibits a change in the 3p-3d resonance of V accompanied by an acoustic response. Due to the broadband probing we are able to separate the two features.

  6. Extreme nonlinear optics of two-level systems

    SciTech Connect (OSTI)

    Tritschler, T.; Muecke, O. D.; Wegener, M.

    2003-09-01

    For Rabi frequencies comparable to, or even larger than, the transition frequency of a two-level system, the regime of extreme nonlinear optics is reached. Here, we give an overview of the radiated light intensity as a function of carrier frequency of light, transition frequency, Rabi frequency, spectrometer frequency, as well as of the shape and duration of the exciting optical pulses. The graphical representations reveal an amazing complexity and beauty of the nonlinear optical response. Analytical results within the ''square-wave approximation'' qualitatively reproduce many of the intricate features of the exact numerical calculations.

  7. Development of an Extreme Environment Materials Research Facility at Princeton

    SciTech Connect (OSTI)

    Cohen, A B; Tully, C G; Austin, R; Calaprice, F; McDonald, K; Ascione, G; Baker, G; Davidson, R; Dudek, L; Grisham, L; Kugel, H; Pagdon, K; Stevenson, T; Woolley, R

    2010-11-17

    The need for a fundamental understanding of material response to a neutron and/or high heat flux environment can yield development of improved materials and operations with existing materials. Such understanding has numerous applications in fields such as nuclear power (for the current fleet and future fission and fusion reactors), aerospace, and other research fields (e.g., high-intensity proton accelerator facilities for high energy physics research). A proposal has been advanced to develop a facility for testing various materials under extreme heat and neutron exposure conditions at Princeton. The Extreme Environment Materials Research Facility comprises an environmentally controlled chamber (48 m^3) capable of high vacuum conditions, with extreme flux beams and probe beams accessing a central, large volume target. The facility will have the capability to expose large surface areas (1 m^2) to 14 MeV neutrons at a fluence in excess of 10^13 n/s. Depending on the operating mode. Additionally beam line power on the order of 15-75 MW/m2 for durations of 1-15 seconds are planned... The multi-second duration of exposure can be repeated every 2-10 minutes for periods of 10-12 hours. The facility will be housed in the test cell that held the Tokamak Fusion Test Reactor (TFTR), which has the desired radiation and safety controls as well as the necessary loading and assembly infrastructure. The facility will allow testing of various materials to their physical limit of thermal endurance and allow for exploring the interplay between radiation-induced embrittlement, swelling and deformation of materials, and the fatigue and fracturing that occur in response to thermal shocks. The combination of high neutron energies and intense fluences will enable accelerated time scale studies. The results will make contributions for refining predictive failure modes (modeling) in extreme environments, as well as providing a technical platform for the development of new alloys, new materials, and the investigation of repair mechanisms. Effects on materials will be analyzed with in situ beam probes and instrumentation as the target is exposed to radiation, thermal fluxes and other stresses. Photon and monochromatic neutron fluxes, produced using a variable-energy (4-45 MeV) electron linac and the highly asymmetric electron-positron collisions technique used in high-energy physics research, can provide non-destructive, deep-penetrating structural analysis of materials while they are undergoing testing. The same beam lines will also be able to generate neutrons from photonuclear interactions using existing Bremsstrahlung and positrons on target quasi-monochromatic gamma rays. Other diagnostics will include infrared cameras, residual gas analyzer (RGA), and thermocouples; additional diagnostic capability will be added.

  8. Low-cost method for producing extreme ultraviolet lithography optics

    DOE Patents [OSTI]

    Folta, James A. (Livermore, CA); Montcalm, Claude (Fort Collins, CO); Taylor, John S. (Livermore, CA); Spiller, Eberhard A. (Mt. Kisco, NY)

    2003-11-21

    Spherical and non-spherical optical elements produced by standard optical figuring and polishing techniques are extremely expensive. Such surfaces can be cheaply produced by diamond turning; however, the roughness in the diamond turned surface prevent their use for EUV lithography. These ripples are smoothed with a coating of polyimide before applying a 60 period Mo/Si multilayer to reflect a wavelength of 134 .ANG. and have obtained peak reflectivities close to 63%. The savings in cost are about a factor of 100.

  9. Evolution of Grain Boundary Networks in Extreme Radiation Environments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent Publications Evolution of Grain Boundary Networks in Extreme Radiation Environments Recent Publications J. K. Mason, O. K. Johnson, B. W. Reed, S. F. Li, J. S. Stolken, and M. Kumar; "Statistics of twin related domains and the grain boundary network," Acta Materialia, in press (2013) Y. M. Wang, F. Sansoz, T. LaGrange, R. T. Ott, J. Marian, T. W. Barbee Jr and A. V. Hamza; "Defective twin boundaries in nanotwinned metals", Nature Materials, 12, pp. 697 (2013).

  10. MoRu/Be multilayers for extreme ultraviolet applications

    DOE Patents [OSTI]

    Bajt, Sasa C. (Livermore, CA); Wall, Mark A. (Stockton, CA)

    2001-01-01

    High reflectance, low intrinsic roughness and low stress multilayer systems for extreme ultraviolet (EUV) lithography comprise amorphous layers MoRu and crystalline Be layers. Reflectance greater than 70% has been demonstrated for MoRu/Be multilayers with 50 bilayer pairs. Optical throughput of MoRu/Be multilayers can be 30-40% higher than that of Mo/Be multilayer coatings. The throughput can be improved using a diffusion barrier to make sharper interfaces. A capping layer on the top surface of the multilayer improves the long-term reflectance and EUV radiation stability of the multilayer by forming a very thin native oxide that is water resistant.

  11. Solidification at the High and Low Rate Extreme

    SciTech Connect (OSTI)

    Halim Meco

    2004-12-19

    The microstructures formed upon solidification are strongly influenced by the imposed growth rates on an alloy system. Depending on the characteristics of the solidification process, a wide range of growth rates is accessible. The prevailing solidification mechanisms, and thus the final microstructure of the alloy, are governed by these imposed growth rates. At the high rate extreme, for instance, one can have access to novel microstructures that are unattainable at low growth rates. While the low growth rates can be utilized for the study of the intrinsic growth behavior of a certain phase growing from the melt. Although the length scales associated with certain processes, such as capillarity, and the diffusion of heat and solute, are different at low and high rate extremes, the phenomena that govern the selection of a certain microstructural length scale or a growth mode are the same. Consequently, one can analyze the solidification phenomena at both high and low rates by using the same governing principles. In this study, we examined the microstructural control at both low and high extremes. For the high rate extreme, the formation of crystalline products and factors that control the microstructure during rapid solidification by free-jet melt spinning are examined in Fe-Si-B system. Particular attention was given to the behavior of the melt pool at different quench-wheel speeds. Since the solidification process takes place within the melt-pool that forms on the rotating quench-wheel, we examined the influence of melt-pool dynamics on nucleation and growth of crystalline solidification products and glass formation. High-speed imaging of the melt-pool, analysis of ribbon microstructure, and measurement of ribbon geometry and surface character all indicate upper and lower limits for melt-spinning rates for which nucleation can be avoided, and fully amorphous ribbons can be achieved. Comparison of the relevant time scales reveals that surface-controlled melt-pool oscillation may be the dominant factor governing the onset of unsteady thermal conditions accompanied by varying amounts of crystalline nucleation observed near the lower limit. At high quench-wheel velocities, the influence of these oscillations is minimal due to very short melt-pool residence times. However, microstructural evidence suggests that the entrapment of gas pockets at the wheel-metal interface plays a critical role in establishing the upper rate limit. An observed transition in wheel-side surface character with increasing melt-spinning rate supports this conclusion.

  12. Self-cleaning optic for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Klebanoff, Leonard E.; Stulen, Richard H.

    2003-12-16

    A multilayer reflective optic or mirror for lithographic applications, and particularly extreme ultraviolet (EUV) lithography, having a surface or "capping" layer which in combination with incident radiation and gaseous molecular species such as O.sub.2, H.sub.2, H.sub.2 O provides for continuous cleaning of carbon deposits from the optic surface. The metal capping layer is required to be oxidation resistant and capable of transmitting at least 90% of incident EUV radiation. Materials for the capping layer include Ru, Rh, Pd, Ir, Pt and Au and combinations thereof.

  13. High numerical aperture projection system for extreme ultraviolet projection lithography

    DOE Patents [OSTI]

    Hudyma, Russell M. (San Ramon, CA)

    2000-01-01

    An optical system is described that is compatible with extreme ultraviolet radiation and comprises five reflective elements for projecting a mask image onto a substrate. The five optical elements are characterized in order from object to image as concave, convex, concave, convex, and concave mirrors. The optical system is particularly suited for ring field, step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width which effectively minimizes dynamic distortion. The present invention allows for higher device density because the optical system has improved resolution that results from the high numerical aperture, which is at least 0.14.

  14. Best Practices in Literature Review for the 10 Year Extreme Wind...

    Office of Environmental Management (EM)

    Best Practices in Literature Review for the 10 Year Extreme Wind Update at the DOE Pantex Site Best Practices in Literature Review for the 10 Year Extreme Wind Update at the DOE...

  15. Special Report: Graphics Processing Units Speed Results in Extreme-Scale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputers | Princeton Plasma Physics Lab Special Report: Graphics Processing Units Speed Results in Extreme-Scale Supercomputers American Fusion News Category: U.S. Universities Link: Special Report: Graphics Processing Units Speed Results in Extreme-Scale Supercomputers

  16. Approaching isotropy in the vortex system of SmFeAs(O,F) at extreme...

    Office of Scientific and Technical Information (OSTI)

    vortex system of SmFeAs(O,F) at extreme magnetic fields Citation Details In-Document Search Title: Approaching isotropy in the vortex system of SmFeAs(O,F) at extreme magnetic ...

  17. Enzymatic temperature change indicator

    DOE Patents [OSTI]

    Klibanov, Alexander M.; Dordick, Jonathan S.

    1989-01-21

    A temperature change indicator is described which is composed of an enzyme and a substrate for that enzyme suspended in a solid organic solvent or mixture of solvents as a support medium. The organic solvent or solvents are chosen so as to melt at a specific temperature or in a specific temperature range. When the temperature of the indicator is elevated above the chosen, or critical temperature, the solid organic solvent support will melt, and the enzymatic reaction will occur, producing a visually detectable product which is stable to further temperature variation.

  18. Basic Research Needs for Materials Under Extreme Environments. Report of the Basic Energy Sciences Workshop on Materials Under Extreme Environments, June 11-13, 2007

    SciTech Connect (OSTI)

    Wadsworth, J.; Crabtree, G. W.; Hemley, R. J.; Falcone, R.; Robertson, I.; Stringer, J.; Tortorelli, P.; Gray, G. T.; Nicol, M.; Lehr, J.; Tozer, S. W.; Diaz de la Rubia, T.; Fitzsimmons, T.; Vetrano, J. S.; Ashton, C. L.; Kitts, S.; Landson, C.; Campbell, B.; Gruzalski, G.; Stevens, D.

    2008-02-01

    To evaluate the potential for developing revolutionary new materials that will meet demanding future energy requirements that expose materials to environmental extremes.

  19. SUMMARY OF REVISED TORNADO, HURRICANE AND EXTREME STRAIGHT WIND CHARACTERISTICS AT NUCLEAR FACILITY SITES

    Broader source: Energy.gov [DOE]

    Summary of Revised Tornado, Hurricane and Extreme Straight Wind Characteristics at Nuclear Facility Sites BY: John D. Stevenson Consulting Engineer

  20. Graphene defect formation by extreme ultraviolet generated photoelectrons

    SciTech Connect (OSTI)

    Gao, A. Lee, C. J.; Bijkerk, F.

    2014-08-07

    We have studied the effect of photoelectrons on defect formation in graphene during extreme ultraviolet (EUV) irradiation. Assuming the major role of these low energy electrons, we have mimicked the process by using low energy primary electrons. Graphene is irradiated by an electron beam with energy lower than 80?eV. After e-beam irradiation, it is found that the D peak, I(D), appears in the Raman spectrum, indicating defect formation in graphene. The evolution of I(D)/I(G) follows the amorphization trajectory with increasing irradiation dose, indicating that graphene goes through a transformation from microcrystalline to nanocrystalline and then further to amorphous carbon. Further, irradiation of graphene with increased water partial pressure does not significantly change the Raman spectra, which suggests that, in the extremely low energy range, e-beam induced chemical reactions between residual water and graphene are not the dominant mechanism driving defect formation in graphene. Single layer graphene, partially suspended over holes was irradiated with EUV radiation. By comparing with the Raman results from e-beam irradiation, it is concluded that the photoelectrons, especially those from the valence band, contribute to defect formation in graphene during irradiation.

  1. Radiography Capabilities for Matter-Radiation Interactions in Extremes

    SciTech Connect (OSTI)

    Walstrom, Peter Lowell; Garnett, Robert William; Chapman, Catherine A. B; Salazar, Harry Richard; Otoole, Joseph Alfred; Barber, Ronald L.; Gomez, Tony Simon

    2015-04-28

    The Matter-Radiation Interactions in Extremes (MaRIE) experimental facility will be used to discover and design the advanced materials needed to meet 21st century national security and energy security challenges. This new facility will provide the new tools scientists need to develop next-generation materials that will perform predictably and on-demand for currently unattainable lifetimes in extreme environments. The MaRIE facility is based on upgrades to the existing LANSCE 800-MeV proton linac and a new 12-GeV electron linac and associated X-ray FEL to provide simultaneous multiple probe beams, and new experimental areas. In addition to the high-energy photon probe beam, both electron and proton radiography capabilities will be available at the MaRIE facility. Recently, detailed radiography system studies have been performed to develop conceptual layouts of high-magnification electron and proton radiography systems that can meet the experimental requirements for the expected first experiments to be performed at the facility. A description of the radiography systems, their performance requirements, and a proposed facility layout are presented.

  2. Development of a low-cost integrated 20-kW-AC solar tracking subarray for grid-connected PV power system applications. Final technical report

    SciTech Connect (OSTI)

    Stern, M.; Duran, G.; Fourer, G.; Mackamul, K.; Whalen, W.; Loo, M. van; West, R.

    1998-06-01

    This report chronicles Utility Power Group's (UPG) successful two-year Photovoltaic Manufacturing Technology (PVMaT) Phase 4A1 work effort which began in July, 1995. During this period, UPG completed design, fabrication, testing and demonstration of a modular and fully integrated 15-kW-ac, solar tracking PV power system sub-array. The two key and innovative components which were developed are a Modular Panel which optimizes factory assembly of PV modules into a large area, field-deployable, structurally-integrated PV panel, and an Integrated Power Processing Unit which combines all dc and ac power collection, conversion and control functions within a single, field-deployable structurally-integrated electrical enclosure. These two key sub-array elements, when combined with a number of other electrical, mechanical, and structural components, create a low-cost and high-performance PV power system. This system, or sub-array, can be deployed in individual units, or paralleled with any number of other sub-arrays, to construct multi-megawatt P fields. 21 figs.

  3. High temperature measuring device

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  4. Temperature-profile detector

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors creating short circuits which are detectable as to location.

  5. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors, creating short circuits which are detectable as to location.

  6. High temperature sensor

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  7. ACTIVE REGION MOSS: DOPPLER SHIFTS FROM HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS

    SciTech Connect (OSTI)

    Tripathi, Durgesh [Inter-University Centre for Astronomy and Astrophysics, Pune University Campus, Pune 411007 (India); Mason, Helen E. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Klimchuk, James A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-07-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper, we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode on 2007 December 12 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low-density cutoff as derived by Tripathi et al. in 2010. We have carried out a very careful analysis of the EIS wavelength calibration based on the method described by Young et al. in 2012. For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km s{sup -1} with an estimated error of 4-5 km s{sup -1}. The width of the distribution decreases with temperature. The mean of the distribution shows a blueshift which increases with increasing temperature and the distribution also shows asymmetries toward blueshift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s{sup -1} is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.

  8. Method for the protection of extreme ultraviolet lithography optics

    DOE Patents [OSTI]

    Grunow, Philip A.; Clift, Wayne M.; Klebanoff, Leonard E.

    2010-06-22

    A coating for the protection of optical surfaces exposed to a high energy erosive plasma. A gas that can be decomposed by the high energy plasma, such as the xenon plasma used for extreme ultraviolet lithography (EUVL), is injected into the EUVL machine. The decomposition products coat the optical surfaces with a protective coating maintained at less than about 100 .ANG. thick by periodic injections of the gas. Gases that can be used include hydrocarbon gases, particularly methane, PH.sub.3 and H.sub.2S. The use of PH.sub.3 and H.sub.2S is particularly advantageous since films of the plasma-induced decomposition products S and P cannot grow to greater than 10 .ANG. thick in a vacuum atmosphere such as found in an EUVL machine.

  9. Gamma ray bursts and extreme energy cosmic rays

    SciTech Connect (OSTI)

    Scarsi, Livio

    1998-06-15

    Extreme Energy Cosmic Ray particles (EECR) with E>10{sup 20} eV arriving on Earth with very low flux ({approx}1 particle/Km{sup 2}-1000yr) require for their investigation very large detecting areas, exceeding values of 1000 km{sup 2} sr. Projects with these dimensions are now being proposed: Ground Arrays ('Auger' with 2x3500 km{sup 2} sr) or exploiting the Earth Atmosphere as seen from space ('AIR WATCH' and OWL,'' with effective area reaching 1 million km{sup 2} sr). In this last case, by using as a target the 10{sup 13} tons of air viewed, also the high energy neutrino flux can be investigated conveniently. Gamma Rays Bursts are suggested as a possible source for EECR and the associated High Energy neutrino flux.

  10. Extremely strong tubular stacking of aromatic oligoamide macrocycles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kline, Mark A.; Wei, Xiaoxi; Horner, Ian J.; Liu, Rui; Chen, Shuang; Chen, Si; Yung, Ka Yi; Yamato, Kazuhiro; Cai, Zhonghou; Bright, Frank V.; et al

    2015-01-01

    As the third-generation rigid macrocycles evolved from progenitor 1, cyclic aromatic oligoamides 3, with a backbone of reduced constraint, exhibit extremely strong stacking with an astoundingly high affinity (estimated lower limit of Kdimer > 1013 M-1 in CHCl3), which leads to dispersed tubular stacks that undergo further assembly in solution. Computational study reveals a very large binding energy (-49.77 kcal mol-1) and indicates highly cooperative local dipole interactions that account for the observed strength and directionality for the stacking of 3. In the solid-state, X-ray diffraction (XRD) confirms that the aggregation of 3 results in well-aligned tubular stacks. The persistentmore » tubular assemblies of 3, with their non-deformable sub-nm pore, are expected to possess many interesting functions. One such function, transmembrane ion transport, is observed for 3.« less

  11. Amplitude variations on the Extreme Adaptive Optics testbed

    SciTech Connect (OSTI)

    Evans, J; Thomas, S; Dillon, D; Gavel, D; Phillion, D; Macintosh, B

    2007-08-14

    High-contrast adaptive optics systems, such as those needed to image extrasolar planets, are known to require excellent wavefront control and diffraction suppression. At the Laboratory for Adaptive Optics on the Extreme Adaptive Optics testbed, we have already demonstrated wavefront control of better than 1 nm rms within controllable spatial frequencies. Corresponding contrast measurements, however, are limited by amplitude variations, including those introduced by the micro-electrical-mechanical-systems (MEMS) deformable mirror. Results from experimental measurements and wave optic simulations of amplitude variations on the ExAO testbed are presented. We find systematic intensity variations of about 2% rms, and intensity variations with the MEMS to be 6%. Some errors are introduced by phase and amplitude mixing because the MEMS is not conjugate to the pupil, but independent measurements of MEMS reflectivity suggest that some error is introduced by small non-uniformities in the reflectivity.

  12. THE EXTREME-ULTRAVIOLET EMISSION FROM SUN-GRAZING COMETS

    SciTech Connect (OSTI)

    Bryans, P.; Pesnell, W. D.

    2012-11-20

    The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory has observed two Sun-grazing comets as they passed through the solar atmosphere. Both passages resulted in a measurable enhancement of extreme-ultraviolet (EUV) radiance in several of the AIA bandpasses. We explain this EUV emission by considering the evolution of the cometary atmosphere as it interacts with the ambient solar atmosphere. Molecules in the comet rapidly sublimate as it approaches the Sun. They are then photodissociated by the solar radiation field to create atomic species. Subsequent ionization of these atoms produces a higher abundance of ions than normally present in the corona and results in EUV emission in the wavelength ranges of the AIA telescope passbands.

  13. Extremely strong tubular stacking of aromatic oligoamide macrocycles

    SciTech Connect (OSTI)

    Kline, Mark A.; Wei, Xiaoxi; Horner, Ian J.; Liu, Rui; Chen, Shuang; Chen, Si; Yung, Ka Yi; Yamato, Kazuhiro; Cai, Zhonghou; Bright, Frank V.; Zeng, Xiao Cheng; Gong, Bing

    2015-01-01

    As the third-generation rigid macrocycles evolved from progenitor 1, cyclic aromatic oligoamides 3, with a backbone of reduced constraint, exhibit extremely strong stacking with an astoundingly high affinity (estimated lower limit of Kdimer > 1013 M-1 in CHCl3), which leads to dispersed tubular stacks that undergo further assembly in solution. Computational study reveals a very large binding energy (-49.77 kcal mol-1) and indicates highly cooperative local dipole interactions that account for the observed strength and directionality for the stacking of 3. In the solid-state, X-ray diffraction (XRD) confirms that the aggregation of 3 results in well-aligned tubular stacks. The persistent tubular assemblies of 3, with their non-deformable sub-nm pore, are expected to possess many interesting functions. One such function, transmembrane ion transport, is observed for 3.

  14. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  15. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  16. BAL QSOs AND EXTREME UFOs: THE EDDINGTON CONNECTION

    SciTech Connect (OSTI)

    Zubovas, Kastytis; King, Andrew

    2013-05-20

    We suggest a common physical origin connecting the fast, highly ionized winds (UFOs) seen in nearby active galactic nuclei (AGNs), and the slower and less ionized winds of broad absorption line (BAL) QSOs. The primary difference is the mass-loss rate in the wind, which is ultimately determined by the rate at which mass is fed toward the central supermassive black hole (SMBH) on large scales. This is below the Eddington accretion rate in most UFOs, and slightly super-Eddington in extreme UFOs such as PG1211+143, but ranges up to {approx}10-50 times this in BAL QSOs. For UFOs this implies black hole accretion rates and wind mass-loss rates which are at most comparable to Eddington, giving fast, highly ionized winds. In contrast, BAL QSO black holes have mildly super-Eddington accretion rates, and drive winds whose mass-loss rates are significantly super-Eddington, and so are slower and less ionized. This picture correctly predicts the velocities and ionization states of the observed winds, including the recently discovered one in SDSS J1106+1939. We suggest that luminous AGNs may evolve through a sequence from BAL QSO through LoBAL to UFO-producing Seyfert or quasar as their Eddington factors drop during the decay of a bright accretion event. LoBALs correspond to a short-lived stage in which the AGN radiation pressure largely evacuates the ionization cone, but before the large-scale accretion rate has dropped to the Eddington value. We show that sub-Eddington wind rates would produce an M-{sigma} relation lying above that observed. We conclude that significant SMBH mass growth must occur in super-Eddington phases, either as BAL QSOs, extreme UFOs, or obscured from direct observation.

  17. Magnetic nanoparticle temperature estimation

    SciTech Connect (OSTI)

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-05-15

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 deg. K between 20 and 50 deg. C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  18. High temperature refrigerator

    DOE Patents [OSTI]

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  19. Automatic temperature adjustment apparatus

    DOE Patents [OSTI]

    Chaplin, James E.

    1985-01-01

    An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.

  20. ARM - Measurement - Atmospheric temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric temperature The temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar radiation. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list

  1. High-temperature sensor

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  2. Low temperature cryoprobe

    DOE Patents [OSTI]

    Sungaila, Zenon F. (Orland Park, IL)

    1989-01-01

    A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperature of 77 degrees Kelvin.

  3. Temperature and RH Targets

    Broader source: Energy.gov [DOE]

    Presented by Vishal O Mittal of the Florida Solar Energy Center at the High Temperature Membrane Working Group Meeting, San Francisco, September 14, 2006.

  4. Four-mirror extreme ultraviolet (EUV) lithography projection system

    DOE Patents [OSTI]

    Cohen, Simon J (Pleasonton, CA); Jeong, Hwan J (Los Altos, CA); Shafer, David R (Fairfield, CT)

    2000-01-01

    The invention is directed to a four-mirror catoptric projection system for extreme ultraviolet (EUV) lithography to transfer a pattern from a reflective reticle to a wafer substrate. In order along the light path followed by light from the reticle to the wafer substrate, the system includes a dominantly hyperbolic convex mirror, a dominantly elliptical concave mirror, spherical convex mirror, and spherical concave mirror. The reticle and wafer substrate are positioned along the system's optical axis on opposite sides of the mirrors. The hyperbolic and elliptical mirrors are positioned on the same side of the system's optical axis as the reticle, and are relatively large in diameter as they are positioned on the high magnification side of the system. The hyperbolic and elliptical mirrors are relatively far off the optical axis and hence they have significant aspherical components in their curvatures. The convex spherical mirror is positioned on the optical axis, and has a substantially or perfectly spherical shape. The spherical concave mirror is positioned substantially on the opposite side of the optical axis from the hyperbolic and elliptical mirrors. Because it is positioned off-axis to a degree, the spherical concave mirror has some asphericity to counter aberrations. The spherical concave mirror forms a relatively large, uniform field on the wafer substrate. The mirrors can be tilted or decentered slightly to achieve further increase in the field size.

  5. Extreme argon purity in a large, non-evacuated cryostat

    SciTech Connect (OSTI)

    Tope, Terry; Adamowski, Mark; Carls, B.; Hahn, A.; Jaskierny, W.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Skup, E.; Stancari, M.; Yang, T.

    2014-01-29

    Liquid Argon Time Projection Chambers (LArTPCs) show promise as scalable devices for the large detectors needed for long-baseline neutrino oscillation physics. Over the last several years at Fermilab a staged approach to developing the technology for large detectors has been developed. The TPC detectors require ultra-pure liquid argon with respect to electronegative contaminants such as oxygen and water. The tolerable electronegative contamination level may be as pure as 60 parts per trillion of oxygen. Three liquid argon cryostats operated at Fermilab have achieved the extreme purity required by TPCs. These three cryostats used evacuation to remove atmospheric contaminants as the first purification step prior to filling with liquid argon. Future physics experiments may require very large detectors with tens of kilotonnes of liquid argon mass. The capability to evacuate such large cryostats adds significant cost to the cryostat itself in addition to the cost of a large scale vacuum pumping system. This paper describes a 30 ton liquid argon cryostat at Fermilab which uses purging to remove atmospheric contaminants instead of evacuation as the first purification step. This cryostat has achieved electronegative contamination levels better than 60 parts per trillion of oxygen equivalent. The results of this liquid argon purity demonstration will strongly influence the design of future TPC cryostats.

  6. AN EXTREME-ULTRAVIOLET WAVE ASSOCIATED WITH A SURGE

    SciTech Connect (OSTI)

    Zheng, Ruisheng; Jiang, Yunchun; Yang, Jiayan; Bi, Yi; Hong, Junchao; Yang, Bo; Yang, Dan

    2013-02-10

    Taking advantage of the high temporal and spatial resolution observations from the Solar Dynamics Observatory, we present an extreme-ultraviolet (EUV) wave associated with a surge on 2010 November 13. Due to the magnetic flux cancelation, some surges formed in the source active region (AR). The strongest surge produced our studied event. The surge was deflected by the nearby loops that connected to another AR, and disrupted the overlying loops that slowly expanded and eventually evolved into a weak coronal mass ejection (CME). The surge was likely associated with the core of the CME. The EUV wave happened after the surge deflected. The wave departed far from the flare center and showed a close location relative to the deflected surge. The wave propagated in a narrow angular extent, mainly in the ejection direction of the surge. The close timing and location relations between the EUV wave and the surge indicate that the wave was closely associated with the CME. The wave had a velocity of 310-350 km s{sup -1}, while the speeds of the surge and the expanding loops were about 130 and 150 km s{sup -1}, respectively. All of the results suggest that the EUV wave was a fast-mode wave and was most likely triggered by the weak CME.

  7. ARM - Word Seek: Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Word Seek: Temperature

  8. Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel

    SciTech Connect (OSTI)

    Tesler, Alexander B.; Kim, Philseok; Kolle, Stefan; Howell, Caitlin; Ahanotu, Onye; Aizenberg, Joanna

    2015-10-20

    Formation of unwanted deposits on steels during their interaction with liquids is an inherent problem that often leads to corrosion, biofouling and results in reduction in durability and function. Here we report a new route to form anti-fouling steel surfaces by electrodeposition of nanoporous tungsten oxide (TO) films. TO-modified steels are as mechanically durable as bare steel and highly tolerant to compressive and tensile stresses due to chemical bonding to the substrate and island-like morphology. When inherently superhydrophilic TO coatings are converted to superhydrophobic, they remain non-wetting even after impingement with yttria-stabilized-zirconia particles, or exposure to ultraviolet light and extreme temperatures. Upon lubrication, these surfaces display omniphobicity against highly contaminating media retaining hitherto unseen mechanical durability. Furthermore, to illustrate the applicability of such a durable coating in biofouling conditions, we modified naval construction steels and surgical instruments and demonstrated significantly reduced marine algal film adhesion, Escherichia coli attachment and blood staining.

  9. High Temperature ESP Monitoring

    SciTech Connect (OSTI)

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 C based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 C system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 C.

  10. High temperature probe

    DOE Patents [OSTI]

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  11. Extreme Balance of System Hardware Cost Reduction (BOS-X) Funding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity | Department of Energy Extreme Balance of System Hardware Cost Reduction (BOS-X) Funding Opportunity Extreme Balance of System Hardware Cost Reduction (BOS-X) Funding Opportunity Under the Extreme Balance of System Hardware Cost Reduction (BOS-X) program, DOE is funding new components and system designs to overcome scientific, technological, and engineering barriers to achieving safe, very low-cost, high-reliability balance of system (BOS) hardware. BOS-X projects are focused on

  12. Secretary Chu to Appear This Sunday on ABC's Extreme Makeover: Home Edition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Appear This Sunday on ABC's Extreme Makeover: Home Edition Secretary Chu to Appear This Sunday on ABC's Extreme Makeover: Home Edition February 12, 2010 - 12:00am Addthis Washington - This Sunday, February 14th, Energy Secretary Steven Chu will appear on the show Extreme Makeover: Home Edition. The Department of Energy and Oak Ridge National Laboratory worked with the builders to offer technical assistance as they designed and built a super high efficiency home and a

  13. DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin

    Energy Savers [EERE]

    Homes, Garland, TX | Department of Energy Green Extreme Homes & Carl Franklin Homes, Garland, TX DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes, Garland, TX DOE Zero Energy Ready Home Case Study: Green Extreme Homes & Carl Franklin Homes, Garland, TX Case study of a DOE Zero Energy Ready affordable home in Garland, TX, that was the first retrofit home certified to the DOE Zero Energy Ready home requirements. The construction team achieved a HERS

  14. Deflagration Behavior of PBX 9501 at Elevated Temperature and Pressure

    SciTech Connect (OSTI)

    Maienschein, J L; Koerner, J G

    2008-04-15

    We report the deflagration behavior of PBX 9501 at pressures up to 300 MPa and temperatures of 150-180 C where the sample has been held at the test temperature for several hours before ignition. The purpose is to determine the effect on the deflagration behavior of material damage caused by prolonged exposure to high temperature. This conditioning is similar to that experienced by an explosive while it being heated to eventual explosion. The results are made more complicated by the presence of a significant thermal gradient along the sample during the temperature ramp and soak. Three major conclusions are: the presence of nitroplasticizer makes PBX 9501 more thermally sensitive than LX-04 with an inert Viton binder; the deflagration behavior of PBX 9501 is more extreme and more inconsistent than that of LX-04; and something in PBX 9501 causes thermal damage to 'heal' as the deflagration proceeds, resulting in a decelerating deflagration front as it travels along the sample.

  15. TRISO-Coated Fuel Durability Under Extreme Conditions

    SciTech Connect (OSTI)

    Reimanis, Ivar; Gorman, Brian; Butt, Darryl

    2014-03-30

    The PIs propose to examine TRISO-coated particles (SiC and ZrC coatings) in an integrated two-part study. In the first part, experiments will be performed to assess the reaction kinetics of the carbides under CO-CO2 environments at temperatures up to 1800 degree C. Kinetic model will be applied to describe the degradation. Scanning and transmission electron microscopy will be employed to establish the chemical and microstructure evolution under the imposed environmental conditions. The second part of the proposed work focuses on establishing the role of the high temperature, environmental exposure described above on the mechanical behavior of TRISO-coated particles. Electron microscopy and other advanced techniques will be subsequently performed to evaluate failure mechanisms. The work is expected to reveal relationships between corrosion reactions, starting material characteristics (polytype of SiC, impurity concentration, flaw distribution), flaw healing behavior, and crack growth.

  16. Radiation-induced decomposition of explosives under extreme conditions

    SciTech Connect (OSTI)

    Giefers, Hubertus; Pravica, Michael; Yang, Wenge; Liermann, Peter

    2008-11-03

    We present high-pressure and high temperature studies of the synchrotron radiation-induced decomposition of powder secondary high explosives pentaerythritol tetranitrate (PETN) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) using white beam synchrotron radiation at the 16 BM-B and 16 BM-D sectors of the HP-CAT beamline at the Advanced Photon Source. The radiation-induced decomposition rate TATB showed dramatic slowing with pressure up to 26.6 GPa (the highest pressure studied), implying a positive activation volume of the activated complex. The decomposition rate of PETN varied little with pressure up to 15.7 GPa (the highest pressure studied). Diffraction line intensities were measured as a function of time using energy-dispersive methods. By measuring the decomposition rate as a function of pressure and temperature, kinetic and other constants associated with the decomposition reactions were extracted.

  17. Probing matter at extreme Gbar pressures at the NIF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kritcher, A. L.; Doeppner, T.; Swift, D.; Hawreliak, J.; Collins, G.; Nilsen, J.; Bachmann, B.; Dewald, E.; Strozzi, D.; Felker, S.; et al

    2013-12-04

    Here we describe a platform to measure the material properties, specifically the equation of state and electron temperature, at pressures of 100 Mbar to a Gbar at the National Ignition Facility (NIF). In our experiments we launch spherically convergent shock waves into solid CH, CD, or diamond samples using a hohlraum radiation drive, in an indirect drive laser geometry. X-ray radiography is applied to measure the shock speed and infer the mass density profile, enabling determination of the material pressure and Hugoniot equation of state. X-ray scattering is applied to measure the electron temperature through probing of the electron velocitymore » distribution via Doppler broadening.« less

  18. On the use of Extreme Value Theory in analyses of continuum gamma decay

    SciTech Connect (OSTI)

    Garcia-Ruiz, R. F.; Cristancho, F.

    2010-08-04

    Extreme Value theory seems to be a promising tool for analysing experimental continuum gamma decay spectra in order to obtain physical parameters at high excitation energy.

  19. Detection of Coherent Structures in Extreme-Scale Simulations

    SciTech Connect (OSTI)

    Kamath, C; Iverson, J; Kirk, R; Karypis, G

    2012-03-24

    The analysis of coherent structures is a common problem in many scientific domains ranging from astrophysics to combustion, fusion, and materials science. The data from three-dimensional simulations are analyzed to detect the structures, extract statistics on them, and track them over time to gain insights into the phenomenon being modeled. This analysis is typically done off-line, using data that have been written out by the simulations. However, the move towards extreme scale architectures, with multi-core processors and graphical processing units, will affect how such analysis is done as it is unlikely that the systems will support the I/O bandwidth required for off-line analysis. Moving the analysis in-situ is a solution only if we know a priori what analysis will be done, as well as the algorithms used and their parameter settings. Even then, we need to ensure that this will not substantially increase the memory requirements or the data movement as the former will be limited and the latter will be expensive. In the Exa-DM project, a collaboration between Lawrence Livermore National Laboratory and University of Minnesota, we are exploring ways in which we can address the conflicting demands of coherent structure analysis of simulation data and the architecture of modern parallel systems, while enabling scientific discovery at the exascale. In this paper, we describe our work in two areas: the in situ implementation of an existing algorithm for coherent structure analysis and the use of graph-based techniques to efficiently compress the data.

  20. Electrode configuration for extreme-UV electrical discharge source

    DOE Patents [OSTI]

    Spence, Paul Andrew (Pleasanton, CA); Fornaciari, Neal Robert (Tracey, CA); Chang, Jim Jihchyun (San Ramon, CA)

    2002-01-01

    It has been demonstrated that debris generation within an electric capillary discharge source, for generating extreme ultraviolet and soft x-ray, is dependent on the magnitude and profile of the electric field that is established along the surfaces of the electrodes. An electrode shape that results in uniform electric field strength along its surface has been developed to minimize sputtering and debris generation. The electric discharge plasma source includes: (a) a body that defines a circular capillary bore that has a proximal end and a distal end; (b) a back electrode positioned around and adjacent to the distal end of the capillary bore wherein the back electrode has a channel that is in communication with the distal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is concave, and a third region which is convex wherein the regions are viewed outwardly from the inner surface of the channel that is adjacent the distal end of the capillary bore so that the first region is closest to the distal end; (c) a front electrode positioned around and adjacent to the proximal end of the capillary bore wherein the front electrode has an opening that is communication with the proximal end and that is defined by a non-uniform inner surface which exhibits a first region which is convex, a second region which is substantially linear, and third region which is convex wherein the regions are viewed outwardly from the inner surface of the opening that is adjacent the proximal end of the capillary bore so that the first region is closest to the proximal end; and (d) a source of electric potential that is connected across the front and back electrodes.

  1. Temperature-sensitive optrode

    DOE Patents [OSTI]

    Hirschfeld, T.B.

    1985-09-24

    Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime. 10 figs.

  2. ARM - Measurement - Virtual temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsVirtual temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Virtual temperature The virtual temperature Tv = T(1 + rv/{epsilon}), where rv is the mixing ratio, and {epsilon} is the ratio of the gas constants of air and water vapor ( 0.622). Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to

  3. Temperature | Open Energy Information

    Open Energy Info (EERE)

    C Property:Combustion Intake Air Temperature F Property:FirstWellTemp G Property:GeochemReservoirTemp Property:GeofluidTemp M Property:MeanReservoirTemp R...

  4. High-Temperature Superconductivity

    ScienceCinema (OSTI)

    Peter Johnson

    2010-01-08

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  5. Low temperature cryoprobe

    DOE Patents [OSTI]

    Sungaila, Z.F.

    1988-04-12

    A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperatures of 77 degrees Kelvin, is discussed. 3 figs.

  6. Penrose Well Temperatures

    SciTech Connect (OSTI)

    Christopherson, Karen

    2013-03-15

    Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

  7. Low temperature reactive bonding

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Bionta, Richard M. (Livermore, CA)

    1995-01-01

    The joining technique requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process.

  8. Temperature measuring device

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Bible, Don W. (Clinton, TN); Sohns, Carl W. (Oak Ridge, TN)

    1999-01-01

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  9. High temperature pressure gauge

    DOE Patents [OSTI]

    Echtler, J. Paul (Pittsburgh, PA); Scandrol, Roy O. (Library, PA)

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  10. High Temperature Aqueous Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accurate knowledge of aqueous chemistry at high temperatures and pressures is important in many applications including nuclear waste disposal and energy extraction. Sandia's Defense Waste Management Programs is equipped with a state-of-the-art hydrothermal experimental system that allows us to obtain high quality kinetic and equilibrium data at temperatures and pressures of interest up to 600 o C and 1,000 bars (100 MPa). This state-of-the-art hydrothermal experimental system includes the

  11. ARM - Temperature Converter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsTemperature Converter Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Temperature Converter The Fahrenheit scale, invented by German physicist Daniel Gabriel Fahrenheit (1686-1736), is based on 32 °F for the freezing point of water and 212 °F for the boiling point of water. The

  12. PROMINENCE PLASMA DIAGNOSTICS THROUGH EXTREME-ULTRAVIOLET ABSORPTION

    SciTech Connect (OSTI)

    Landi, E.; Reale, F.

    2013-07-20

    In this paper, we introduce a new diagnostic technique that uses EUV and UV absorption to determine the electron temperature and column emission measure, as well as the He/H relative abundance of the absorbing plasma. If a realistic assumption on the geometry of the latter can be made and a spectral code such as CHIANTI is used, then this technique can also yield the absorbing plasma hydrogen and electron density. This technique capitalizes on the absorption properties of hydrogen and helium at different wavelength ranges and temperature regimes. Several cases where this technique can be successfully applied are described. This technique works best when the absorbing plasma is hotter than 15,000 K. We demonstrate this technique on AIA observations of plasma absorption during a coronal mass ejection eruption. This technique can be easily applied to existing observations of prominences and cold plasmas in the Sun from almost all space missions devoted to the study of the solar atmosphere, which we list.

  13. Matter in Extreme Conditions Instrument - Conceptual Design Report

    SciTech Connect (OSTI)

    Boyce, R.F.; Boyce, R.M.; Haller, G.; Hastings, J.B.; Hays, G.; Lee, H.J.; Lee, R.W.; Nagler, B.; Scharfenstein, M.; Marsh, D.; White, W.E.; ,

    2009-12-09

    The SLAC National Accelerator Laboratory (SLAC), in collaboration with Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL), and the University of California at Los Angeles (UCLA), is constructing a Free-Electron Laser (FEL) research facility. The FEL has already met its performance goals in the wavelength range 1.5 nm - 0.15 nm. This facility, the Linac Coherent Light Source (LCLS), utilizes the SLAC 2-Mile Linear Accelerator (linac) and will produce sub-picosecond pulses of short wavelength X-rays with very high peak brightness and almost complete transverse coherence. The final one-third of the SLAC linac is used as the source of electrons for the LCLS. The high energy electrons are transported across the SLAC Research Yard, into a tunnel which houses a long undulator. In passing through the undulator, the electrons are bunched by the force of their own synchrotron radiation and produce an intense, monochromatic, spatially coherent beam of X-rays. By varying the electron energy, the FEL X-ray wavelength is tunable from 1.5 nm to 0.15 nm. The LCLS includes two experimental halls as well as X-ray optics and infrastructure necessary to create a facility that can be developed for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of designing and constructing an X-ray instrument in order to exploit the unique scientific capability of LCLS by creating extreme conditions and study the behavior of plasma under those controlled conditions. This instrument will address the Office of Science, Fusion Energy Sciences, mission objective related to study of Plasma and Warm Dense Matter as described in the report titled LCLS, the First Experiments, prepared by the LCLS Scientific Advisory Committee (SAC) in September 2000. The technical objective of the LCLS Matter in Extreme Conditions (MEC) Instrument project is to design, build, and install at the LCLS an X-ray instrument that will complement the initial instrument suite included in the LCLS construction and the LUSI Major Item of Equipment (MIE) Instruments. As the science programs advance and new technological challenges appear, instrumentation must be developed and ready to conquer these new opportunities. The MEC concept has been developed in close consultation with the scientific community through a series of workshops team meetings and focused reviews. In particular, the MEC instrument has been identified as meeting one of the most urgent needs of the scientific community based on the advice of the LCLS Scientific Advisory Committee (SAC) in response to an open call for letters of intent (LOI) from the breadth of the scientific community. The primary purpose of the MEC instrument is to create High Energy Density (HED) matter and measure its physical properties. There are three primary elements of the MEC instrument: (A) Optical laser drivers that will create HED states by irradiation in several ways and provide diagnostics capability; (B) The LCLS x-ray free electron laser, which will provide the unique capability to create, probe and selectively pump HED states; and, (C) A suite of diagnostic devices required to observe the evolution of the HED state. These elements when combined in the MEC instrument meet the 'Mission Need' as defined in CD-0. For the purposes of the description we separate the types of experiments to be performed into three categories: (1) High pressure: Here we are interested in the generation of high pressure using the optical lasers to irradiate a surface that ablates and drives a pressure wave into a sample, similar to a piston. The pressures that can be reached exceed 1 Mbar and the properties of interest are for example, the reflectivity, conductivity, opacity as well as the changes driven by the pressure wave on, e.g., condensed matter structure. These phenomena will be studied by means of diffraction measurements, measurements of the pressure wave characteristics, in situ probing by x-ray scattering of various types all time resolved. The necessary diagnostics are discussed.

  14. High Temperature, high pressure equation of state density correlations and viscosity correlations

    SciTech Connect (OSTI)

    Tapriyal, D.; Enick, R.; McHugh, M.; Gamwo, I.; Morreale, B.

    2012-07-31

    Global increase in oil demand and depleting reserves has derived a need to find new oil resources. To find these untapped reservoirs, oil companies are exploring various remote and harsh locations such as deep waters in Gulf of Mexico, remote arctic regions, unexplored deep deserts, etc. Further, the depth of new oil/gas wells being drilled has increased considerably to tap these new resources. With the increase in the well depth, the bottomhole temperature and pressure are also increasing to extreme values (i.e. up to 500 F and 35,000 psi). The density and viscosity of natural gas and crude oil at reservoir conditions are critical fundamental properties required for accurate assessment of the amount of recoverable petroleum within a reservoir and the modeling of the flow of these fluids within the porous media. These properties are also used to design appropriate drilling and production equipment such as blow out preventers, risers, etc. With the present state of art, there is no accurate database for these fluid properties at extreme conditions. As we have begun to expand this experimental database it has become apparent that there are neither equations of state for density or transport models for viscosity that can be used to predict these fundamental properties of multi-component hydrocarbon mixtures over a wide range of temperature and pressure. Presently, oil companies are using correlations based on lower temperature and pressure databases that exhibit an unsatisfactory predictive capability at extreme conditions (e.g. as great as {+-} 50%). From the perspective of these oil companies that are committed to safely producing these resources, accurately predicting flow rates, and assuring the integrity of the flow, the absence of an extensive experimental database at extreme conditions and models capable of predicting these properties over an extremely wide range of temperature and pressure (including extreme conditions) makes their task even more daunting.

  15. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  16. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  17. Extreme hydrogen plasma densities achieved in a linear plasma generator

    SciTech Connect (OSTI)

    Rooij, G. J. van; Veremiyenko, V. P.; Goedheer, W. J.; de Groot, B.; Kleyn, A. W.; Smeets, P. H. M.; Versloot, T. W.; Whyte, D. G.; Engeln, R.; Schram, D. C.; Cardozo, N. J. Lopes

    2007-03-19

    A magnetized hydrogen plasma beam was generated with a cascaded arc, expanding in a vacuum vessel at an axial magnetic field of up to 1.6 T. Its characteristics were measured at a distance of 4 cm from the nozzle: up to a 2 cm beam diameter, 7.5x10{sup 20} m{sup -3} electron density, {approx}2 eV electron and ion temperatures, and 3.5 km/s axial plasma velocity. This gives a 2.6x10{sup 24} H{sup +} m{sup -2} s{sup -1} peak ion flux density, which is unprecedented in linear plasma generators. The high efficiency of the source is obtained by the combined action of the magnetic field and an optimized nozzle geometry. This is interpreted as a cross-field return current that leads to power dissipation in the beam just outside the source.

  18. Extreme solid state refrigeration using nanostructured Bi-Te alloys.

    SciTech Connect (OSTI)

    Lima Sharma, Ana L.; Spataru, Dan Catalin; Medlin, Douglas L.; Sharma, Peter Anand; Morales, Alfredo Martin

    2009-09-01

    Materials are desperately needed for cryogenic solid state refrigeration. We have investigated nanostructured Bi-Te alloys for their potential use in Ettingshausen refrigeration to liquid nitrogen temperatures. These alloys form alternating layers of Bi{sub 2} and Bi{sub 2}Te{sub 3} blocks in equilibrium. The composition Bi{sub 4}Te{sub 3} was identified as having the greatest potential for having a high Ettingshausen figure of merit. Both single crystal and polycrystalline forms of this material were synthesized. After evaluating the Ettingshausen figure of merit for a large, high quality polycrystal, we simulated the limits of practical refrigeration in this material from 200 to 77 K using a simple device model. The band structure was also computed and compared to experiments. We discuss the crystal growth, transport physics, and practical refrigeration potential of Bi-Te alloys.

  19. High temperature lubricating process

    DOE Patents [OSTI]

    Taylor, Robert W. (Livermore, CA); Shell, Thomas E. (Livermore, CA)

    1982-01-01

    It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  20. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, R.D.

    1983-10-11

    Disclosed is a temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles. 8 figs.

  1. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  2. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  3. Reservoir Temperature Estimator

    Energy Science and Technology Software Center (OSTI)

    2014-12-08

    The Reservoir Temperature Estimator (RTEst) is a program that can be used to estimate deep geothermal reservoir temperature and chemical parameters such as CO2 fugacity based on the water chemistry of shallower, cooler reservoir fluids. This code uses the plugin features provided in The Geochemist’s Workbench (Bethke and Yeakel, 2011) and interfaces with the model-independent parameter estimation code Pest (Doherty, 2005) to provide for optimization of the estimated parameters based on the minimization of themore » weighted sum of squares of a set of saturation indexes from a user-provided mineral assemblage.« less

  4. Fluorescent temperature sensor

    DOE Patents [OSTI]

    Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-03-03

    The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  5. Low temperature reactive bonding

    DOE Patents [OSTI]

    Makowiecki, D.M.; Bionta, R.M.

    1995-01-17

    The joining technique is disclosed that requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process. 5 figures.

  6. Temperature determination using pyrometry

    DOE Patents [OSTI]

    Breiland, William G.; Gurary, Alexander I.; Boguslavskiy, Vadim

    2002-01-01

    A method for determining the temperature of a surface upon which a coating is grown using optical pyrometry by correcting Kirchhoff's law for errors in the emissivity or reflectance measurements associated with the growth of the coating and subsequent changes in the surface thermal emission and heat transfer characteristics. By a calibration process that can be carried out in situ in the chamber where the coating process occurs, an error calibration parameter can be determined that allows more precise determination of the temperature of the surface using optical pyrometry systems. The calibration process needs only to be carried out when the physical characteristics of the coating chamber change.

  7. Ch. VII, Temperature, heat flow maps and temperature gradient...

    Open Energy Info (EERE)

    Report: Ch. VII, Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation...

  8. Temperature, heat flow maps and temperature gradient holes |...

    Open Energy Info (EERE)

    to library Report: Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Organization Colorado Geological Survey in Cooperation with the U.S....

  9. Intensity, duration, and frequency of precipitation extremes under 21st-century warming scenarios

    SciTech Connect (OSTI)

    Kao, Shih-Chieh; Ganguly, Auroop R

    2011-01-01

    Recent research on the projection of precipitation extremes has either focused on conceptual physical mechanisms that generate heavy precipitation or rigorous statistical methods that extrapolate tail behavior. However, informing both climate prediction and impact assessment requires concurrent physically and statistically oriented analysis. A combined examination of climate model simulations and observation-based reanalysis data sets suggests more intense and frequent precipitation extremes under 21st-century warming scenarios. Utilization of statistical extreme value theory and resampling-based uncertainty quantification combined with consideration of the Clausius-Clapeyron relationship reveals consistently intensifying trends for precipitation extremes at a global-average scale. However, regional and decadal analyses reveal specific discrepancies in the physical mechanisms governing precipitation extremes, as well as their statistical trends, especially in the tropics. The intensifying trend of precipitation extremes has quantifiable impacts on intensity-duration-frequency curves, which in turn have direct implications for hydraulic engineering design and water-resources management. The larger uncertainties at regional and decadal scales suggest the need for caution during regional-scale adaptation or preparedness decisions. Future research needs to explore the possibility of uncertainty reduction through higher resolution global climate models, statistical or dynamical downscaling, as well as improved understanding of precipitation extremes processes.

  10. Temperature differential detection device

    DOE Patents [OSTI]

    Girling, P.M.

    1986-04-22

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions. 2 figs.

  11. Temperature differential detection device

    DOE Patents [OSTI]

    Girling, Peter M.

    1986-01-01

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions.

  12. How Do You Stay Warm While Saving Money and Energy in Extreme Weather? |

    Energy Savers [EERE]

    Department of Energy Stay Warm While Saving Money and Energy in Extreme Weather? How Do You Stay Warm While Saving Money and Energy in Extreme Weather? February 3, 2011 - 6:30am Addthis Many states are getting extreme weather this week, with deep freezes, huge blizzards, and ice storms causing various problems across the country. Such weather can cause us to use energy a bit differently to stay warm and keep things running. Depending on where you are, you may be keeping the faucet dripping

  13. Bright high-repetition-rate source of narrowband extreme-ultraviolet

    Office of Scientific and Technical Information (OSTI)

    harmonics beyond 22 eV (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV Citation Details In-Document Search Title: Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV Table-top sources of extreme ultraviolet (XUV) light based on high-harmonic generation (HHG) provide novel insight into the fundamental properties of molecules,

  14. DOE Tour of Zero: McKinley Project by Carl Franklin Homes and Green Extreme

    Energy Savers [EERE]

    Homes | Department of Energy McKinley Project by Carl Franklin Homes and Green Extreme Homes DOE Tour of Zero: McKinley Project by Carl Franklin Homes and Green Extreme Homes 1 of 9 Carl Franklin Homes and Green Extreme Homes Community Development Corporation built this 1,594-square-foot two-story home in Garland, Texas, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 9 This affordable energy-efficient home was built for a husband and

  15. DOE Tour of Zero: McKinley Project by Carl Franklin Homes and Green Extreme

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homes | Department of Energy McKinley Project by Carl Franklin Homes and Green Extreme Homes DOE Tour of Zero: McKinley Project by Carl Franklin Homes and Green Extreme Homes Addthis 1 of 9 Carl Franklin Homes and Green Extreme Homes Community Development Corporation built this 1,594-square-foot two-story home in Garland, Texas, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 9 This affordable energy-efficient home was built for a

  16. Assessing Regional Scale Variability in Extreme Value Statistics Under Altered Climate Scenarios

    SciTech Connect (OSTI)

    Brunsell, Nathaniel; Mechem, David; Ma, Chunsheng

    2015-02-20

    Recent studies have suggested that low-frequency modes of climate variability can significantly influence regional climate. The climatology associated with extreme events has been shown to be particularly sensitive. This has profound implications for droughts, heat waves, and food production. We propose to examine regional climate simulations conducted over the continental United States by applying a recently developed technique which combines wavelet multiresolution analysis with information theory metrics. This research is motivated by two fundamental questions concerning the spatial and temporal structure of extreme events. These questions are 1) what temporal scales of the extreme value distributions are most sensitive to alteration by low-frequency climate forcings and 2) what is the nature of the spatial structure of variation in these timescales? The primary objective is to assess to what extent information theory metrics can be useful in characterizing the nature of extreme weather phenomena. Specifically, we hypothesize that (1) changes in the nature of extreme events will impact the temporal probability density functions and that information theory metrics will be sensitive these changes and (2) via a wavelet multiresolution analysis, we will be able to characterize the relative contribution of different timescales on the stochastic nature of extreme events. In order to address these hypotheses, we propose a unique combination of an established regional climate modeling approach and advanced statistical techniques to assess the effects of low-frequency modes on climate extremes over North America. The behavior of climate extremes in RCM simulations for the 20th century will be compared with statistics calculated from the United States Historical Climatology Network (USHCN) and simulations from the North American Regional Climate Change Assessment Program (NARCCAP). This effort will serve to establish the baseline behavior of climate extremes, the validity of an innovative multiresolution information theory approach, and the ability of the RCM modeling framework to represent the low-frequency modulation of extreme climate events. Once the skill of the modeling and analysis methodology has been established, we will apply the same approach for the AR5 (IPCC Fifth Assessment Report) climate change scenarios in order to assess how climate extremes and the the influence of lowfrequency variability on climate extremes might vary under changing climate. The research specifically addresses the DOE focus area 2. Simulation of climate extremes under a changing climate. Specific results will include (1) a better understanding of the spatial and temporal structure of extreme events, (2) a thorough quantification of how extreme values are impacted by low-frequency climate teleconnections, (3) increased knowledge of current regional climate models ability to ascertain these influences, and (4) a detailed examination of the how the distribution of extreme events are likely to change under different climate change scenarios. In addition, this research will assess the ability of the innovative wavelet information theory approach to characterize extreme events. Any and all of these results will greatly enhance societys ability to understand and mitigate the regional ramifications of future global climate change.

  17. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells.

  18. ARM - Measurement - Sea surface temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sea surface temperature The temperature of sea water near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the...

  19. Zero Temperature Hope Calculations

    SciTech Connect (OSTI)

    Rozsnyai, B F

    2002-07-26

    The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task. The Amaldi correction is an attempt to address this problem by distorting the outer part of the self-consistent potential in such a way that in the final state after photoexcitation or photoionization the newly occupied orbital sees the hole left in the initial state. This is very important to account for the large number of Rydberg states in the case of low densities. In the next Section we show calculated photoabsorptions compared with experimental data in figures with some rudimentary explanations.

  20. Localized temperature stability of low temperature cofired ceramics

    DOE Patents [OSTI]

    Dai, Steven Xunhu

    2013-11-26

    The present invention is directed to low temperature cofired ceramic modules having localized temperature stability by incorporating temperature coefficient of resonant frequency compensating materials locally into a multilayer LTCC module. Chemical interactions can be minimized and physical compatibility between the compensating materials and the host LTCC dielectrics can be achieved. The invention enables embedded resonators with nearly temperature-independent resonance frequency.

  1. Engine Cylinder Temperature Control

    DOE Patents [OSTI]

    Kilkenny, Jonathan Patrick (Peoria, IL); Duffy, Kevin Patrick (Metamora, IL)

    2005-09-27

    A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.

  2. Extremal covariant positive operator valued measures: The case of a compact symmetry group

    SciTech Connect (OSTI)

    Carmeli, Claudio; Heinosaari, Teiko; Pellonpaeae, Juha-Pekka; Toigo, Alessandro

    2008-06-15

    Given a unitary representation U of a compact group G and a transitive G-space {omega}, we characterize the extremal elements of the convex set of all U-covariant positive operator valued measures.

  3. Europium (Z=63) n=3-3 lines in the extreme ultraviolet: Na- through...

    Office of Scientific and Technical Information (OSTI)

    ultraviolet: Na- through Si-like ions Citation Details In-Document Search Title: Europium (Z63) n3-3 lines in the extreme ultraviolet: Na- through Si-like ions Authors: ...

  4. Extreme Balance of System Hardware Cost Reduction (BOS-X) Funding Opportunity

    Broader source: Energy.gov [DOE]

    Under the Extreme Balance of System Hardware Cost Reduction (BOS-X) program, DOE is funding new components and system designs to overcome scientific, technological, and engineering barriers to...

  5. How Do You Stay Warm While Saving Money and Energy in Extreme...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    faucet dripping (so pipes don't freeze), your furnace might be working overtime in the cold, or you may be spending extra time warming up your car. In extreme conditions, it's...

  6. COLLOQUIUM: The MaRIE (Matter-Radiation Interactions in Extremes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 27, 2016, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: The MaRIE (Matter-Radiation Interactions in Extremes) Project Dr. Cris Barnes Los Alamos National Laboratory...

  7. MaRIE 1.0 -- The Matter-Radiation Interactions in Extremes Project...

    Office of Scientific and Technical Information (OSTI)

    MaRIE 1.0 -- The Matter-Radiation Interactions in Extremes Project: Accelerating Qualification, Certification, and Assessment Citation Details In-Document Search Title: MaRIE 1.0...

  8. Northeast Climate Science Center: Transposing Extreme Rainfall to Assess Climate Vulnerability

    Broader source: Energy.gov [DOE]

    Climate models predict significant increases in the magnitude and frequency of extreme rainfalls.  However, climate model projections of precipitation vary greatly across models.  For communities...

  9. MaRIE 1.0 -- The Matter-Radiation Interactions in Extremes Project...

    Office of Scientific and Technical Information (OSTI)

    MaRIE 1.0 -- The Matter-Radiation Interactions in Extremes Project: Accelerating Qualification, Certification, and Assessment Citation Details In-Document Search Title: MaRIE 1.0 ...

  10. A Better Way to ID Extreme Weather Events in Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    develop ever-more sophisticated computer models to predict the effects of climate change, one of the things they'll look for are changes in the frequency of extreme weather...

  11. Approaching isotropy in the vortex system of SmFeAs(O,F) at extreme...

    Office of Scientific and Technical Information (OSTI)

    Approaching isotropy in the vortex system of SmFeAs(O,F) at extreme magnetic fields Citation Details In-Document Search Title: Approaching isotropy in the vortex system of...

  12. High-Temperature Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature Materials - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  13. Organizing the Extremely Large LSST Database forReal-Time Astronomical

    Office of Scientific and Technical Information (OSTI)

    Processing (Conference) | SciTech Connect Organizing the Extremely Large LSST Database forReal-Time Astronomical Processing Citation Details In-Document Search Title: Organizing the Extremely Large LSST Database forReal-Time Astronomical Processing The Large Synoptic Survey Telescope (LSST) will catalog billions of astronomical objects and trillions of sources, all of which will be stored and managed by a database management system. One of the main challenges is real-time alert generation.

  14. Organizing the Extremely Large LSST Database forReal-Time Astronomical

    Office of Scientific and Technical Information (OSTI)

    Processing (Conference) | SciTech Connect Organizing the Extremely Large LSST Database forReal-Time Astronomical Processing Citation Details In-Document Search Title: Organizing the Extremely Large LSST Database forReal-Time Astronomical Processing × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional

  15. MaRIE 1.0 -- The Matter-Radiation Interactions in Extremes Project:

    Office of Scientific and Technical Information (OSTI)

    Accelerating Qualification, Certification, and Assessment (Technical Report) | SciTech Connect MaRIE 1.0 -- The Matter-Radiation Interactions in Extremes Project: Accelerating Qualification, Certification, and Assessment Citation Details In-Document Search Title: MaRIE 1.0 -- The Matter-Radiation Interactions in Extremes Project: Accelerating Qualification, Certification, and Assessment Authors: Barnes, Cris William [1] + Show Author Affiliations Los Alamos National Laboratory Publication

  16. Single-crystal X-ray diffraction at extreme conditions: a review (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Single-crystal X-ray diffraction at extreme conditions: a review Citation Details In-Document Search Title: Single-crystal X-ray diffraction at extreme conditions: a review Authors: Ballaran, Tiziana Boffa ; Kurnosov, Alexander ; Trots, Dmytro [1] + Show Author Affiliations (Bayreuth) [Bayreuth Publication Date: 2013-12-12 OSTI Identifier: 1107433 Resource Type: Journal Article Resource Relation: Journal Name: High Pressure Res.; Journal Volume: 33; Journal Issue:

  17. A centennial record of anthropogenic impacts and extreme weather events in

    Office of Scientific and Technical Information (OSTI)

    southwestern Taiwan: Evidence from sedimentary molecular markers in coastal margin (Journal Article) | SciTech Connect Journal Article: A centennial record of anthropogenic impacts and extreme weather events in southwestern Taiwan: Evidence from sedimentary molecular markers in coastal margin Citation Details In-Document Search Title: A centennial record of anthropogenic impacts and extreme weather events in southwestern Taiwan: Evidence from sedimentary molecular markers in coastal margin A

  18. Asking the right questions: benchmarking fault-tolerant extreme-scale

    Office of Scientific and Technical Information (OSTI)

    systems. (Conference) | SciTech Connect Asking the right questions: benchmarking fault-tolerant extreme-scale systems. Citation Details In-Document Search Title: Asking the right questions: benchmarking fault-tolerant extreme-scale systems. Abstract not provided. Authors: Widener, Patrick ; Ferreira, Kurt Brian ; Levy, Scott N. ; Brightwell, Ronald B. ; Bridges, Patrick G. ; Arnold, Dorian Publication Date: 2013-06-01 OSTI Identifier: 1083655 Report Number(s): SAND2013-4732C 456253 DOE

  19. The matter in extreme conditions instrument at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nagler, Bob; Arnold, Brice; Bouchard, Gary; Boyce, Richard F.; Boyce, Richard M.; Callen, Alice; Campell, Marc; Curiel, Ruben; Galtier, Eric; Garofoli, Justin; et al

    2015-04-21

    The LCLS beam provides revolutionary capabilities for studying the transient behavior of matter in extreme conditions. The particular strength of the Matter in Extreme Conditions instrument is that it combines the unique LCLS beam with high-power optical laser beams, and a suite of dedicated diagnostics tailored for this field of science. In this paper an overview of the beamline, the capabilities of the instrumentation, and selected highlights of experiments and commissioning results are presented.

  20. U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather This report-part of the Administration's efforts to support national climate change adaptation planning through the Interagency Climate Change Adaptation Task Force and Strategic Sustainability Planning process established under Executive Order 13514 and to advance the U.S. Department of Energy's goal of promoting energy

  1. 2012 Scientific Collaborations at Extreme-Scale | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) 2 Scientific Collaborations at Extreme-Scale Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Next Generation Networking 2012 Scientific Collaborations at Extreme-Scale Scientific Discovery through Advanced Computing (SciDAC) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced

  2. Energy Frontier Research in Extreme Environments (EFree) | U.S. DOE Office

    Office of Science (SC) Website

    of Science (SC) Frontier Research in Extreme Environments (EFree) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Energy Frontier Research in Extreme Environments (EFree) Print Text Size: A A A FeedbackShare Page EFree Header Director Russell Hemley Lead Institution Carnegie Institution of Washington Year Established 2009 Mission To accelerate the discovery and

  3. Single-Particle Dynamics in Electron Storage Rings with Extremely Low

    Office of Scientific and Technical Information (OSTI)

    Emittance (Conference) | SciTech Connect Conference: Single-Particle Dynamics in Electron Storage Rings with Extremely Low Emittance Citation Details In-Document Search Title: Single-Particle Dynamics in Electron Storage Rings with Extremely Low Emittance Electron storage rings are widely used for high luminosity colliders, damping rings in high-energy linear colliders, and synchrotron light sources. They have become essential facilities to study high-energy physics and material and medical

  4. Argonne Training Program on Extreme-Scale Computing Scheduled for July

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31-August 12, 2016 | Argonne Leadership Computing Facility Argonne Training Program on Extreme-Scale Computing Scheduled for July 31-August 12, 2016 Author: Brian Grabowski January 25, 2016 Facebook Twitter LinkedIn Google E-mail Printer-friendly version ARGONNE, Ill., January 25, 2016 - Computational scientists now have the opportunity to apply for the upcoming Argonne Training Program on Extreme-Scale Computing (ATPESC), to take place from July 31-August 12, 2016. With the challenges posed

  5. Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes

    SciTech Connect (OSTI)

    Ghosh, Subimal [ORNL; Das, Debasish [ORNL; Kao, Shih-Chieh [ORNL; Ganguly, Auroop R [ORNL

    2012-01-01

    Recent studies disagree on how rainfall extremes over India have changed in space and time over the past half century, as well as on whether the changes observed are due to global warming or regional urbanization. Although a uniform and consistent decrease in moderate rainfall has been reported, a lack of agreement about trends in heavy rainfall may be due in part to differences in the characterization and spatial averaging of extremes. Here we use extreme value theory to examine trends in Indian rainfall over the past half century in the context of long-term, low-frequency variability.We show that when generalized extreme value theory is applied to annual maximum rainfall over India, no statistically significant spatially uniform trends are observed, in agreement with previous studies using different approaches. Furthermore, our space time regression analysis of the return levels points to increasing spatial variability of rainfall extremes over India. Our findings highlight the need for systematic examination of global versus regional drivers of trends in Indian rainfall extremes, and may help to inform flood hazard preparedness and water resource management in the region.

  6. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  7. The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Mao, Ho-kwang (Director, Center for Energy Frontier Research in Extreme Environments); EFree Staff

    2011-11-02

    'The Behavior of Hydrogen Under Extreme Conditions on Ultrafast Timescales ' was submitted by the Center for Energy Frontier Research in Extreme Environments (EFree) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFree is directed by Ho-kwang Mao at the Carnegie Institute of Washington and is a partnership of scientists from thirteen institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Energy Frontier Research in Extreme Environments is 'to accelerate the discovery and creation of energy-relevant materials using extreme pressures and temperatures.' Research topics are: catalysis (CO{sub 2}, water), photocatalysis, solid state lighting, optics, thermelectric, phonons, thermal conductivity, solar electrodes, fuel cells, superconductivity, extreme environment, radiation effects, defects, spin dynamics, CO{sub 2} (capture, convert, store), greenhouse gas, hydrogen (fuel, storage), ultrafast physics, novel materials synthesis, and defect tolerant materials.

  8. AAPG Low-Temperature Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Name or Ancillary Text eere.energy.gov Low Temperature Geothermal Resources Tim Reinhardt Low Temperature and Coproduced Resources Team Lead Geothermal Technologies Program U.S. Department of Energy AAPG's Low Temperature Webinar November 18, 2010 Energy Efficiency & Renewable Energy eere.energy.gov Presentation Overview * What are Low Temperature Geothermal Resources? * Where do low temperature geothermal resources fit within petroleum exploration and production? * What is

  9. High temperature detonator

    DOE Patents [OSTI]

    Johnson, James O. (Los Alamos, NM); Dinegar, Robert H. (Los Alamos, NM)

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  10. Thermionic converter temperature controller

    DOE Patents [OSTI]

    Shaner, Benjamin J. (McMurray, PA); Wolf, Joseph H. (Pittsburgh, PA); Johnson, Robert G. R. (Trafford, PA)

    2001-04-24

    A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

  11. Drexel University Temperature Sensors

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

    2014-09-01

    This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) Drexel University Project 31091 irradiation. The objective of this test was to assess the radiation performance of new ceramic materials for advanced reactor applications. Accordingly, irradiations of transition metal carbides and nitrides were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in static capsules inserted into the A-3 and East Flux Trap Position 5 locations of the ATR.

  12. Liquid Fuel from Heat-Loving Microorganisms: H2-Dependent Conversion of CO2 to Liquid Electrofuels by Extremely Thermophilic Archaea

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: NC State is working with the University of Georgia to create Electrofuels from primitive organisms called extremophiles that evolved before photosynthetic organisms and live in extreme, hot water environments with temperatures ranging from 167-212 degrees Fahrenheit The team is genetically engineering these microorganisms so they can use hydrogen to turn carbon dioxide directly into alcohol-based fuels. High temperatures are required to distill the biofuels from the water where the organisms live, but the heat-tolerant organisms will continue to thrive even as the biofuels are being distilledmaking the fuel-production process more efficient. The microorganisms dont require light, so they can be grown anywhereinside a dark reactor or even in an underground facility.

  13. Modified Inverse First Order Reliability Method (I-FORM) for Predicting Extreme Sea States.

    SciTech Connect (OSTI)

    Eckert-Gallup, Aubrey Celia; Sallaberry, Cedric Jean-Marie; Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-09-01

    Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulation s as a part of the stand ard current practice for designing marine structure s to survive extreme sea states. Such environmental contours are characterized by combinations of significant wave height ( ) and energy period ( ) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first - order reliability method (IFORM) i s standard design practice for generating environmental contours. In this paper, the traditional appli cation of the IFORM to generating environmental contours representing extreme sea states is described in detail and its merits and drawbacks are assessed. The application of additional methods for analyzing sea state data including the use of principal component analysis (PCA) to create an uncorrelated representation of the data under consideration is proposed. A reexamination of the components of the IFORM application to the problem at hand including the use of new distribution fitting techniques are shown to contribute to the development of more accurate a nd reasonable representations of extreme sea states for use in survivability analysis for marine struc tures. Keywords: In verse FORM, Principal Component Analysis , Environmental Contours, Extreme Sea State Characteri zation, Wave Energy Converters

  14. Response of snow-dependent hydrologic extremes to continued global warming

    SciTech Connect (OSTI)

    Diffenbaugh, Noah; Scherer, Martin; Ashfaq, Moetasim

    2012-01-01

    Snow accumulation is critical for water availability in the Northern Hemisphere1,2, raising concern that global warming could have important impacts on natural and human systems in snow-dependent regions1,3. Although regional hydrologic changes have been observed (for example, refs 1,3 5), the time of emergence of extreme changes in snow accumulation and melt remains a key unknown for assessing climate- change impacts3,6,7. We find that the CMIP5 global climate model ensemble exhibits an imminent shift towards low snow years in the Northern Hemisphere, with areas of western North America, northeastern Europe and the Greater Himalaya showing the strongest emergence during the near- termdecadesandat2 Cglobalwarming.Theoccurrenceof extremely low snow years becomes widespread by the late twenty-first century, as do the occurrences of extremely high early-season snowmelt and runoff (implying increasing flood risk), and extremely low late-season snowmelt and runoff (implying increasing water stress). Our results suggest that many snow-dependent regions of the Northern Hemisphere are likely to experience increasing stress from low snow years within the next three decades, and from extreme changes in snow-dominated water resources if global warming exceeds 2 C above the pre-industrial baseline.

  15. Remote high-temperature insulatorless heat-flux gauge

    DOE Patents [OSTI]

    Noel, Bruce W. (Espanola, NM)

    1993-01-01

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge.

  16. Remote high-temperature insulatorless heat-flux gauge

    DOE Patents [OSTI]

    Noel, B.W.

    1993-12-28

    A remote optical heat-flux gauge for use in extremely high temperature environments is described. This application is possible because of the use of thermographic phosphors as the sensing media, and the omission of the need for an intervening layer of insulator between phosphor layers. The gauge has no electrical leads, but is interrogated with ultraviolet or laser light. The luminescence emitted by the two phosphor layers, which is indicative of the temperature of the layers, is collected and analyzed in order to determine the heat flux incident on the surface being investigated. The two layers of thermographic phosphor must be of different materials to assure that the spectral lines collected will be distinguishable. Spatial heat-flux measurements can be made by scanning the light across the surface of the gauge. 3 figures.

  17. Electromagnetic Isolation Solutions in Low Temperature Cofired Ceramic (LTCC)

    SciTech Connect (OSTI)

    Krueger, Daniel; Peterson, Ken; Euler, Laurie

    2011-10-09

    Low Temperature Cofired Ceramic (LTCC) is a commercial ceramic-glass multilayer technology with compelling advantages for microelectronics, microsystems and sensors. High frequency applications require good electrical properties such as low dielectric loss and newer applications require extreme isolation from electromagnetic interference (EMI) that is even difficult to measure (-150db). Approaches to providing this isolation, once provided by via fences, have included sidewall coating and full tape thickness features (FTTF) that have been introduced by the filling of slots with via-fill compositions. Several techniques for creating these structures have been modeled for stress and temperature effects in the face of other necessary attachments, such as metallic seal frames. The relative effects of attachment media, FTTF geometry, and alternative measures will be reported. Approaches for thick film and thin film implementations are described.

  18. High-temperature-measuring device

    DOE Patents [OSTI]

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  19. Aqueous Geochemistry at High Pressures and High Temperatures

    SciTech Connect (OSTI)

    Bass, Jay D.

    2015-05-21

    This project is aimed at experimental characterization of the sound velocities, equations of state (EOS), and derived physical and chemical properties of aqueous solutions and carbon dioxide at extreme pressure and temperature conditions relevant to processes occurring in the interior of the Earth. Chemical transport, phase changes (including melting), fluid-solid reactions, and formation of magmatic liquids at convergent plat boundaries are a key motivation for this project. Research in this area has long been limited by the extreme experimental challenges and lack of data under the appropriate pressure-temperature (P-T) conditions. The vast majority of studies of aqueous geochemistry relevant to terrestrial problems of fluid-rock interactions have been conducted at 0.3 GPa or less, and the widely used Helgeson-Kirkham-Flowers equation of state for aqueous species is applicable only at ~ < 0.5 GPa. These limits are unfortunate because fluid flow and reactions plays a central role in many deeper environments. Recent efforts including our own, have resulted in new experimental techniques that now make it possible to investigate properties of homogeneous and heterogeneous equilibria involving aqueous species and minerals over a much broader range of pressure and temperature appropriate for deep crustal and upper mantle processes involving water-rich fluids. We carried out 1) Brillouin scattering measurements of the equations of state and molar volume of water and carbon dioxide to over 10 GPa and 870K using precise resistance heating of samples under pressure in the diamond anvil cell, and 2) the phase diagrams of the water and CO2, and 3) Exploring new experimental approaches, including CO2 laser heating of samples in a diamond cell, to measurements of sound velocities, EOS, and phase relations by Brillouin scattering to far greater pressures and temperatures.

  20. ARM - Measurement - Surface skin temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    skin temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface skin temperature The radiative surface skin temperature, from an IR thermometer measuring the narrowband radiating temperature of the ground surface in its field of view. Categories Radiometric, Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the

  1. Facilitating Co-Design for Extreme-Scale Systems Through Lightweight Simulation

    SciTech Connect (OSTI)

    Engelmann, Christian; Lauer, Frank

    2010-01-01

    This work focuses on tools for investigating algorithm performance at extreme scale with millions of concurrent threads and for evaluating the impact of future architecture choices to facilitate the co-design of high-performance computing (HPC) architectures and applications. The approach focuses on lightweight simulation of extreme-scale HPC systems with the needed amount of accuracy. The prototype presented in this paper is able to provide this capability using a parallel discrete event simulation (PDES), such that a Message Passing Interface (MPI) application can be executed at extreme scale, and its performance properties can be evaluated. The results of an initial prototype are encouraging as a simple 'hello world' MPI program could be scaled up to 1,048,576 virtual MPI processes on a four-node cluster, and the performance properties of two MPI programs could be evaluated at up to 16,384 virtual MPI processes on the same system.

  2. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  3. Wave-mixing with high-order harmonics in extreme ultraviolet region

    SciTech Connect (OSTI)

    Dao, Lap Van; Dinh, Khuong Ba; Le, Hoang Vu; Gaffney, Naylyn; Hannaford, Peter

    2015-01-12

    We report studies of the wave-mixing process in the extreme ultraviolet region with two near-infrared driving and controlling pulses with incommensurate frequencies (at 1400 nm and 800 nm). A non-collinear scheme for the two beams is used in order to spatially separate and to characterise the properties of the high-order wave-mixing field. We show that the extreme ultraviolet frequency mixing can be treated by perturbative, very high-order nonlinear optics; the modification of the wave-packet of the free electron needs to be considered in this process.

  4. A Better Way to ID Extreme Weather Events in Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Better Way to ID Extreme Weather Events in Climate Models A Better Way to ID Extreme Weather Events in Climate Models Berkeley Lab scientists help automate the search for hurricanes and other storms in huge datasets December 7, 2011 Dan Krotz, dakrotz@lbl.gov, +1 510-486-4019 You'd think that spotting a category 5 hurricane would never be difficult. But when the hurricane is in a global climate model that spans several decades, it becomes a fleeting wisp among mountains of data. That's a

  5. HPC Colony II: FAST_OS II: Operating Systems and Runtime Systems at Extreme

    Office of Scientific and Technical Information (OSTI)

    Scale (Technical Report) | SciTech Connect HPC Colony II: FAST_OS II: Operating Systems and Runtime Systems at Extreme Scale Citation Details In-Document Search Title: HPC Colony II: FAST_OS II: Operating Systems and Runtime Systems at Extreme Scale HPC Colony II has been a 36-month project focused on providing portable performance for leadership class machines-a task made difficult by the emerging variety of more complex computer architectures. The project attempts to move the burden of

  6. HPC Colony II: FAST_OS II: Operating Systems and Runtime Systems at Extreme

    Office of Scientific and Technical Information (OSTI)

    Scale (Technical Report) | SciTech Connect HPC Colony II: FAST_OS II: Operating Systems and Runtime Systems at Extreme Scale Citation Details In-Document Search Title: HPC Colony II: FAST_OS II: Operating Systems and Runtime Systems at Extreme Scale × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional

  7. Approaching isotropy in the vortex system of SmFeAs(O,F) at extreme

    Office of Scientific and Technical Information (OSTI)

    magnetic fields (Technical Report) | SciTech Connect Approaching isotropy in the vortex system of SmFeAs(O,F) at extreme magnetic fields Citation Details In-Document Search Title: Approaching isotropy in the vortex system of SmFeAs(O,F) at extreme magnetic fields Authors: Moll, Philip J.W. [1] ; Zhidadlo, Nikolai D. [1] ; Karpinski, J. [1] ; Batlog, B. [1] ; Balakirev, Fedor F. [2] ; McDonald, Ross David [2] ; Betts, Jonathan B. [2] + Show Author Affiliations ETH Zurich, Switzerland [ETH

  8. Characterizing the Impact of Rollback Avoidance at Extreme-Scale: A

    Office of Scientific and Technical Information (OSTI)

    Modeling Approach. (Conference) | SciTech Connect Characterizing the Impact of Rollback Avoidance at Extreme-Scale: A Modeling Approach. Citation Details In-Document Search Title: Characterizing the Impact of Rollback Avoidance at Extreme-Scale: A Modeling Approach. Abstract not provided. Authors: Ferreira, Kurt Brian ; Bridges, Patrick G. ; Levy, Scott N. Publication Date: 2014-03-01 OSTI Identifier: 1141101 Report Number(s): SAND2014-1831C 505184 DOE Contract Number: DE-AC04-94AL85000

  9. Wafer chamber having a gas curtain for extreme-UV lithography

    DOE Patents [OSTI]

    Kanouff, Michael P. (Livermore, CA); Ray-Chaudhuri, Avijit K. (Livermore, CA)

    2001-01-01

    An EUVL device includes a wafer chamber that is separated from the upstream optics by a barrier having an aperture that is permeable to the inert gas. Maintaining an inert gas curtain in the proximity of a wafer positioned in a chamber of an extreme ultraviolet lithography device can effectively prevent contaminants from reaching the optics in an extreme ultraviolet photolithography device even though solid window filters are not employed between the source of reflected radiation, e.g., the camera, and the wafer. The inert gas removes the contaminants by entrainment.

  10. #LabChat: Extreme Circumstances, Unique Solutions, June 28 at 1pm EDT |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Extreme Circumstances, Unique Solutions, June 28 at 1pm EDT #LabChat: Extreme Circumstances, Unique Solutions, June 28 at 1pm EDT June 27, 2012 - 2:31pm Addthis The simple, portable device identifies materials through their characteristic energy signals as unique as fingerprints. The three detectors are housed in a thermos-sized container that is connected to a laptop computer. The device issues a signal turning the laptop display bright red when nuclear material of

  11. High temperature interfacial superconductivity

    DOE Patents [OSTI]

    Bozovic, Ivan (Mount Sinai, NY); Logvenov, Gennady (Port Jefferson Station, NY); Gozar, Adrian Mihai (Port Jefferson, NY)

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  12. Hot Pot Contoured Temperature Gradient Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-28

    Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

  13. Hot Pot Contoured Temperature Gradient Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

  14. Bioenergetic studies of coal sulfur oxidation by extremely thermophilic bacteria. Final report, September 15, 1992--August 31, 1997

    SciTech Connect (OSTI)

    Kelly, R.M.; Han, C.J.

    1997-12-31

    Thermoacidophilic microorganisms have been considered for inorganic sulfur removal from coal because of expected improvements in rates of both biotic and abiotic sulfur oxidation reactions with increasing temperature. In this study, the bioenergetic response of the extremely thermoacidophilic archaeon, Metallosphaera sedula, to environmental changes have been examined in relation to its capacity to catalyze pyrite oxidation in coal. Given an appropriate bioenergetic challenge, the metabolic response was to utilize additional amounts of energy sources (i.e., pyrite) to survive. Of particular interest were the consequences of exposing the organism to various forms of stress (chemical, nutritional, thermal, pH) in the presence of coal pyrite. Several approaches to take advantage of stress response to accelerate pyrite oxidation by this organism were examined, including attempts to promote acquired thermal tolerance to extend its functional range, exposure to chemical uncouplers and decouplers, and manipulation of heterotrophic and chemolithotrophic tendencies to optimize biomass concentration and biocatalytic activity. Promising strategies were investigated in a continuous culture system. This study identified environmental conditions that promote better coupling of biotic and abiotic oxidation reactions to improve biosulfurization rates of thermoacidophilic microorganisms.

  15. Extreme Climate Event Trends: The Data Mining and Evaluation of the A1FI Scenario for 2000???2100

    SciTech Connect (OSTI)

    Erickson III, David J; Ganguly, Auroop R; Steinhaeuser, Karsten J K; Branstetter, Marcia L; Oglesby, Robert; Hoffman, Forrest M; Buja, Lawrence

    2008-01-01

    The authors discuss the implications and resulting alterations of the hydrologic cycle as Earth climate evolves from 2000-2100. Climate simulations based on the assumptions implicit in the A1F1 scenario for the period 2000-2100 using CCSM3 are analyzed. In particular, we will assess the changes in the surface latent and sensible heat energy budget, the Indian regional water budgets including trends in the timing and duration of the Indian monsoon and the resulting impacts on mean river flow and hydroelectric power generation potential. These analyses will also be examined within the context of heat index, droughts, floods and related estimates of societal robustness and resiliency. We will interpret these new A1F1 results within the context of the previous climate simulations based on the SRES A2 and B1 scenarios forced with land cover and atmospheric CO2. Analyses of historical records in the context of the Indian Monsoon Rainfall (IMR) have suggested an evolving relation of IMR with natural climate variability caused by El Nino events. We will report on the combined effects of natural climate variability and global warming on IMR and assess the trend of extreme rain and temperature events in a warming environment.

  16. Amplitude modulation of quantum-ion-acoustic wavepackets in electron-positron-ion plasmas: Modulational instability, envelope modes, extreme waves

    SciTech Connect (OSTI)

    Rahman, Ata-ur-; Kerr, Michael Mc Kourakis, Ioannis; El-Taibany, Wael F.; Qamar, A.

    2015-02-15

    A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrdinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.

  17. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect (OSTI)

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I.

    2013-09-11

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  18. Approaching the exa-scale: a real-world evaluation of rendering extremely large data sets

    SciTech Connect (OSTI)

    Patchett, John M; Ahrens, James P; Lo, Li - Ta; Browniee, Carson S; Mitchell, Christopher J; Hansen, Chuck

    2010-10-15

    Extremely large scale analysis is becoming increasingly important as supercomputers and their simulations move from petascale to exascale. The lack of dedicated hardware acceleration for rendering on today's supercomputing platforms motivates our detailed evaluation of the possibility of interactive rendering on the supercomputer. In order to facilitate our understanding of rendering on the supercomputing platform, we focus on scalability of rendering algorithms and architecture envisioned for exascale datasets. To understand tradeoffs for dealing with extremely large datasets, we compare three different rendering algorithms for large polygonal data: software based ray tracing, software based rasterization and hardware accelerated rasterization. We present a case study of strong and weak scaling of rendering extremely large data on both GPU and CPU based parallel supercomputers using Para View, a parallel visualization tool. Wc use three different data sets: two synthetic and one from a scientific application. At an extreme scale, algorithmic rendering choices make a difference and should be considered while approaching exascale computing, visualization, and analysis. We find software based ray-tracing offers a viable approach for scalable rendering of the projected future massive data sizes.

  19. Overspinning a nearly extreme black hole and the weak cosmic censorship conjecture

    SciTech Connect (OSTI)

    Richartz, Mauricio; Saa, Alberto

    2008-10-15

    We revisit here the recent proposal for overspinning a nearly extreme black hole by means of a quantum tunneling process. We show that electrically neutral massless fermions evade possible backreaction effects related to superradiance, confirming the view that it would be indeed possible to form a naked singularity due to quantum effects.

  20. Preliminary Results of a RANS Simulation for a Floating Point Absorber Wave Energy System Under Extreme Wave Conditions

    SciTech Connect (OSTI)

    Yu, Y.; Li, Y.

    2011-10-01

    This paper presents the results of a preliminary study on the hydrodynamics of a moored floating-point absorber (FPA) wave energy system under extreme wave conditions.

  1. Sensors for low temperature application

    DOE Patents [OSTI]

    Henderson, Timothy M.; Wuttke, Gilbert H.

    1977-01-01

    A method and apparatus for low temperature sensing which uses gas filled micro-size hollow glass spheres that are exposed in a confined observation area to a low temperature range (Kelvin) and observed microscopically to determine change of state, i.e., change from gaseous state of the contained gas to condensed state. By suitable indicia and classification of the spheres in the observation area, the temperature can be determined very accurately.

  2. ARM - Measurement - Soil surface temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surface temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil surface temperature The temperature of the soil measured near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  3. Actinide Thermodynamics at Elevated Temperatures

    SciTech Connect (OSTI)

    Friese, Judah I.; Rao, Linfeng; Xia, Yuanxian; Bachelor, Paula P.; Tian, Guoxin

    2007-11-16

    The postclosure chemical environment in the proposed Yucca Mountain repository is expected to experience elevated temperatures. Predicting migration of actinides is possible if sufficient, reliable thermodynamic data on hydrolysis and complexation are available for these temperatures. Data are scarce and scattered for 25 degrees C, and nonexistent for elevated temperatures. This collaborative project between LBNL and PNNL collects thermodynamic data at elevated temperatures on actinide complexes with inorganic ligands that may be present in Yucca Mountain. The ligands include hydroxide, fluoride, sulfate, phosphate and carbonate. Thermodynamic parameters of complexation, including stability constants, enthalpy, entropy and heat capacity of complexation, are measured with a variety of techniques including solvent extraction, potentiometry, spectrophotometry and calorimetry

  4. Low temperature material bonding technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2002-02-12

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  5. Low Temperature Material Bonding Technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2000-10-10

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  6. NOx/O2 Sensors for High-Temperature Applications | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory NOx/O2 Sensors for High-Temperature Applications Technology available for licensing: Low-cost bifunctional high-temperature NOx/oxygen sensor that provides real-time sensing inside a combustion chamber without the requirement of a reference air supply. Placement in combustion chamber provide accurate oxygen-sensing, extremely low drift 2-10% energy saving from sensor optimization of air-flow ratio and fuel oil viscosity PDF icon high-temp_NOx-O2_sensor

  7. Low Temperature/Coproduced/Geopressured Subprogram Overview ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low TemperatureCoproducedGeopressured Subprogram Overview Low TemperatureCoproducedGeopressured Subprogram Overview This overview of GTP's Low TemperatureCoproduced...

  8. Ultra High Temperature | Open Energy Information

    Open Energy Info (EERE)

    Ultra High Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Ultra High Temperature Dictionary.png Ultra High...

  9. High temperature turbine engine structure

    DOE Patents [OSTI]

    Boyd, Gary L. (Tempe, AZ)

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  10. Pion dynamics at finite temperature

    SciTech Connect (OSTI)

    Toublan, D.

    1997-11-01

    The pion decay constant and mass are computed at low temperature within chiral perturbation theory to two loops. The effects of the breaking of Lorentz symmetry by the thermal equilibrium state are discussed. The validity of the Gell-Mann{endash}Oakes{endash}Renner relation at finite temperature is examined. {copyright} {ital 1997} {ital The American Physical Society}

  11. DEFINING THE 'BLIND SPOT' OF HINODE EIS AND XRT TEMPERATURE MEASUREMENTS

    SciTech Connect (OSTI)

    Winebarger, Amy R.; Cirtain, Jonathan; Mulu-Moore, Fana [NASA Marshall Space Flight Center, VP 62, Huntsville, AL 35812 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Schmelz, Joan T. [Physics Department, University of Memphis, Memphis, TN 38152 (United States); Golub, Leon [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Kobayashi, Ken, E-mail: amy.r.winebarger@nasa.gov [Center for Space Plasma and Aeronomic Research, 320 Sparkman Dr, Huntsville, AL 35805 (United States)

    2012-02-20

    Observing high-temperature, low emission measure plasma is key to unlocking the coronal heating problem. With current instrumentation, a combination of EUV spectral data from Hinode Extreme-ultraviolet Imaging Spectrometer (EIS; sensitive to temperatures up to 4 MK) and broadband filter data from Hinode X-ray Telescope (XRT; sensitive to higher temperatures) is typically used to diagnose the temperature structure of the observed plasma. In this Letter, we demonstrate that a 'blind spot' exists in temperature-emission measure space for combined Hinode EIS and XRT observations. For a typical active region core with significant emission at 3-4 MK, Hinode EIS and XRT are insensitive to plasma with temperatures greater than {approx}6 MK and emission measures less than {approx}10{sup 27} cm{sup -5}. We then demonstrate that the temperature and emission measure limits of this blind spot depend upon the temperature distribution of the plasma along the line of sight by considering a hypothetical emission measure distribution sharply peaked at 1 MK. For this emission measure distribution, we find that EIS and XRT are insensitive to plasma with emission measures less than {approx}10{sup 26} cm{sup -5}. We suggest that a spatially and spectrally resolved 6-24 Angstrom-Sign spectrum would improve the sensitivity to these high-temperature, low emission measure plasma.

  12. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy

    SciTech Connect (OSTI)

    Stoica, Grigoreta M [ORNL; Stoica, Alexandru Dan [ORNL; Miller, Michael K [ORNL; Ma, Dong [ORNL

    2014-01-01

    Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization of anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.

  13. Method and apparatus for measuring gravitational acceleration utilizing a high temperature superconducting bearing

    DOE Patents [OSTI]

    Hull, John R.

    2000-01-01

    Gravitational acceleration is measured in all spatial dimensions with improved sensitivity by utilizing a high temperature superconducting (HTS) gravimeter. The HTS gravimeter is comprised of a permanent magnet suspended in a spaced relationship from a high temperature superconductor, and a cantilever having a mass at its free end is connected to the permanent magnet at its fixed end. The permanent magnet and superconductor combine to form a bearing platform with extremely low frictional losses, and the rotational displacement of the mass is measured to determine gravitational acceleration. Employing a high temperature superconductor component has the significant advantage of having an operating temperature at or below 77K, whereby cooling may be accomplished with liquid nitrogen.

  14. Condenser for ring-field deep ultraviolet and extreme ultraviolet lithography

    DOE Patents [OSTI]

    Chapman, Henry N. (Livermore, CA); Nugent, Keith A. (North Fitzroy, AU)

    2002-01-01

    A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated or converging beam at grazing incidence. The ripple plate comprises a flat or curved plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

  15. Modeling Requirements for Simulating the Effects of Extreme Acts of Terrorism: A White Paper

    SciTech Connect (OSTI)

    Allen, M.; Hiebert-Dodd, K.; Marozas, D.; Paananen, O.; Pryor, R.J.; Reinert, R.K.

    1998-10-01

    This white paper presents the initial requirements for developing a new computer model for simulating the effects of extreme acts of terrorism in the United States. General characteristics of the model are proposed and the level of effort to prepare a complete written description of the model, prior to coding, is detailed. The model would simulate the decision processes and interactions of complex U. S. systems engaged in responding to and recovering from four types of terrorist incidents. The incident scenarios span the space of extreme acts of terrorism that have the potential to affect not only the impacted area, but also the entire nation. The model would be useful to decision-makers in assessing and analyzing the vulnerability of the nation's complex infrastructures, in prioritizing resources to reduce risk, and in planning strategies for immediate response and for subsequent recovery from terrorist incidents.

  16. Joint probability safety assessment for NPP defense infrastructure against extreme external natural hazards

    SciTech Connect (OSTI)

    Guilin, L.; Defu, L.; Huajun, L.; Fengqing, W.; Tao, Z.

    2012-07-01

    With the increasing tendency of natural hazards, the typhoon, hurricane and tropical Cyclone induced surge, wave, precipitation, flood and wind as extreme external loads menacing Nuclear Power Plants (NPP) in coastal and inland provinces of China. For all of planned, designed And constructed NPP the National Nuclear Safety Administration of China and IAEA recommended Probable Maximum Hurricane /Typhoon/(PMH/T), Probable Maximum Storm Surge (PMSS), Probable Maximum Flood (PMF), Design Basis Flood (DBF) as safety regulations for NPP defense infrastructures. This paper discusses the joint probability analysis of simultaneous occurrence typhoon induced extreme external hazards and compare with IAEA 2006-2009 recommended safety regulation design criteria for some NPP defense infrastructures along China coast. (authors)

  17. Estimating the Spatial Distribution of Population without Power during Extreme Weather Events

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Fernandez, Steven J; Bhaduri, Budhendra L

    2010-01-01

    One challenge in emergency preparedness and response during extreme weather events such as hurricanes and ice storms is estimating how many people may be without power and how long they could be without power. In this presentation, we will discuss a method for estimating the spatial distribution of people without power during extreme weather events. The method is based on a directional nearest-neighbor approach in which grid cells representing substation locations acquire other grid cells representing customers/population demand with respect to the capacity of each substation. We also present a method for estimating restoration time in case of an outage. The application of these methods during the 2008 hurricane season will also be discussed.

  18. Supersonic cluster jet source for debris-free extreme ultraviolet production

    SciTech Connect (OSTI)

    Kubiak, G.D.; Bernardez, L.J.

    1997-09-01

    The supersonic cluster jet has been developed and characterized for use as a target medium to produce a clean source of extreme ultraviolet radiation for extreme ultraviolet lithography and other applications. Spectroscopic characterization of the laser plasma emission produced from Xe, O{sub 2} and Kr cluster gas targets has been performed. Xe is the most efficient target gas, exhibiting a conversion efficiency at 13.5 nm of 0.8% into the relevant 2.5% spectral bandwidth. The other target gases are less efficient in the spectral region of interest and, in the case of oxygen, emit {approximately}5 times less off-band radiation. The angular distribution of the Xe plasma emission has also been characterized.

  19. AN EXTREME GRAVITATIONALLY REDSHIFTED IRON LINE AT 4.8 KeV IN Mrk 876

    SciTech Connect (OSTI)

    Bottacini, Eugenio; Orlando, Elena; Moskalenko, Igor [W. W. Hansen Experimental Physics Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, Stanford University (United States); Greiner, Jochen [Max-Planck-Institut fr extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Ajello, Marco [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978 (United States); Persic, Massimo, E-mail: eugenio.bottacini@stanford.edu [INAF-Trieste, via G.B.Tiepolo 11, I-34143 Trieste (Italy)

    2015-01-01

    X-ray spectral lines at unforeseen energies are important because they can shed light on the extreme physical conditions of the environment around the supermassive black holes of active galactic nuclei (AGNs). Mrk 876 displays such a line at 4.80{sub ?0.04}{sup +0.05} rest-frame energy. A possible interpretation of its origin can be found in the hotspot scenario. In this scenario, the primary radiation from a flare in the hot corona of an AGN illuminates a limited portion of the accretion disk that emits by fluorescence. In this context, the line can represent an extreme gravitationally redshifted Fe line originating on the accretion disk below six gravitational radii from a rotating supermassive black hole. The correct estimate of the line significance requires a dedicated approach. Based on an existing rigorous approach, we have performed extensive Monte Carlo simulations. We determine that the line is a real feature at a ?99% confidence level.

  20. Method for plasma formation for extreme ultraviolet lithography-theta pinch

    DOE Patents [OSTI]

    Hassanein, Ahmed (Naperville, IL); Konkashbaev, Isak (Bolingbrook, IL); Rice, Bryan (Hillsboro, OR)

    2007-02-20

    A device and method for generating extremely short-wave ultraviolet electromagnetic wave, utilizing a theta pinch plasma generator to produce electromagnetic radiation in the range of 10 to 20 nm. The device comprises an axially aligned open-ended pinch chamber defining a plasma zone adapted to contain a plasma generating gas within the plasma zone; a means for generating a magnetic field radially outward of the open-ended pinch chamber to produce a discharge plasma from the plasma generating gas, thereby producing a electromagnetic wave in the extreme ultraviolet range; a collecting means in optical communication with the pinch chamber to collect the electromagnetic radiation; and focusing means in optical communication with the collecting means to concentrate the electromagnetic radiation.

  1. Charged annular disks and Reissner-Nordstroem type black holes from extremal dust

    SciTech Connect (OSTI)

    Lora-Clavijo, F. D.; Ospina-Henao, P. A.; Pedraza, J. F.

    2010-10-15

    We present the first analytical superposition of a charged black hole with an annular disk of extremal dust. In order to obtain the solutions, we first solve the Einstein-Maxwell field equations for sources that represent disklike configurations of matter in confomastatic spacetimes by assuming a functional dependence among the metric function, the electric potential, and an auxiliary function, which is taken as a solution of the Laplace equation. We then employ the Lord Kelvin inversion method applied to models of finite extension in order to obtain annular disks. The structures obtained extend to infinity, but their total masses are finite and all the energy conditions are satisfied. Finally, we observe that the extremal Reissner-Nordstroem black hole can be embedded into the center of the disks by adding a boundary term in the inversion.

  2. Condenser for ring-field deep-ultraviolet and extreme-ultraviolet lithography

    DOE Patents [OSTI]

    Chapman, Henry N. (Livermore, CA); Nugent, Keith A. (North Fitzroy, AU)

    2001-01-01

    A condenser for use with a ring-field deep ultraviolet or extreme ultraviolet lithography system. A condenser includes a ripple-plate mirror which is illuminated by a collimated beam at grazing incidence. The ripple plate comprises a plate mirror into which is formed a series of channels along an axis of the mirror to produce a series of concave surfaces in an undulating pattern. Light incident along the channels of the mirror is reflected onto a series of cones. The distribution of slopes on the ripple plate leads to a distribution of angles of reflection of the incident beam. This distribution has the form of an arc, with the extremes of the arc given by the greatest slope in the ripple plate. An imaging mirror focuses this distribution to a ring-field arc at the mask plane.

  3. SNL-ESSC (Sandia National Laboratories - Extreme Sea State Contour) Code

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESSC (Sandia National Laboratories - Extreme Sea State Contour) Code - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel

  4. Extremely Low-Energy Design for Army Buildings: Tactical Equipment Maintenance Facility: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extremely Low-Energy Design for Army Buildings: Tactical Equipment Maintenance Facility Preprint Rois Langner and Michael Deru National Renewable Energy Laboratory Alexander Zhivov, Richard Liesen, and Dale Herron U.S. Army Engineer Research and Development Center Presented at the 2012 ASHRAE Winter Conference Chicago, Illinois January 21-25, 2012 Conference Paper NREL/CP-5500-53810 March 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy,

  5. Center for Materials at Irradiation and Mechanical Extremes: Los Alamos Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Project Office Director Michael Nastasi (505) 667-7007 Co-Director Amit Misra (505) 667-9860 cmime@lanl.gov Resources Employment Opportunities News Related EFRC News - What are EFRCs? - Another LANL EFRC - Materials at Extremes EFRCs Upcoming Events Scientific Hypotheses Absorption and recombination of point and line defects at interfaces Hypotheses: The atomic structure of the interface controls the absorption, emission, storage and annihilation of defects at the interface. Misfit

  6. Center for Materials at Irradiation and Mechanical Extremes: Los Alamos Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Materials at Irradiation and Mechanical Extremes A BES Energy Frontier Research Center Home Teams Partners Others Summer School G. R. Odette Professional Preparation Department of Mechanical Engineering and Department of Materials University of California Santa Barbara, Santa Barbara, CA 93016 odette@engineering.ucsb.edu , 805-893-3525 1965 Rensselaer Polytechnic Institute, Engineering Science, B.S.; 1968 Massachusetts Institute of Technology, Nuclear Engineering, M.S; 1971

  7. Argonne National Laboratory Develops Extreme-Scale Wind Farm Simulation Capabilities

    Broader source: Energy.gov [DOE]

    Researchers at DOE's Argonne National Laboratory are developing a computational simulation tool to conduct studies of complex flow and wind turbine interactions in large land-based and offshore wind farms that will improve wind plant design and reduce the levelized cost of energy. Simulations on a wind-plant-scale require accurate simultaneous resolution of multiple flow scales, from mesoscale weather to turbine-blade scale turbulence, which presents special demands on the computational solver efficiency and requires extreme scalability.

  8. Professor and Director of the Fusion Science Center of Extreme States of

    National Nuclear Security Administration (NNSA)

    Matter and Fast Ignition, University of Rochester | National Nuclear Security Administration Professor and Director of the Fusion Science Center of Extreme States of Matter and Fast Ignition, University of Rochester | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History

  9. Increasing water cycle extremes in California and relation to ENSO cycle under global warming

    SciTech Connect (OSTI)

    Yoon, Jin-Ho; Wang, S-Y; Gillies, Robert R.; Kravitz, Benjamin S.; Hipps, Lawrence; Rasch, Philip J.

    2015-10-21

    California has experienced its most severe drought in recorded history since the winter of 2013-2014. The long duration of drought has stressed statewide water resources and the economy, while fueling an extraordinary increase in wildfires. The effects of global warming on the regional climate include a hotter and drier climate, as well as earlier snowmelt, both of which exacerbate drought conditions. However, connections between a changing climate and how climate oscillations modulate regional water cycle extremes are not well understood. Here we analyze large-ensemble simulations of future climate change in California using the Community Earth System Model version 1 (CESM1) and multiple climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Both intense drought and excessive flooding are projected to increase by at least 50% toward the end of the 21st century. The projected increase in water cycle extremes is associated with tighter relation to El Nio and Southern Oscillation (ENSO), particularly extreme El Nio and La Nia events, which modulates Californias climate not only through its warm and cold phases, but also ENSOs precursor patterns.

  10. Fish Producers Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Fish Producers Aquaculture Low Temperature Geothermal Facility Facility Fish Producers...

  11. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Characterization Capabilities at the High Temperature Materials Laboratory: ... Success Stories from the High Temperature Materials Laboratory (HTML) User ...

  12. Biodiesel's Enabling Characteristics in Attaining Low Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel's Enabling Characteristics in Attaining Low Temperature Diesel Combustion Biodiesel's Enabling Characteristics in Attaining Low Temperature Diesel Combustion Discusses ...

  13. Research Initiative Will Demonstrate Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems Using Oilfield Fluids Research Initiative Will Demonstrate Low Temperature ...

  14. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Characterization Capabilities at the High Temperature Materials Laboratory and ... Materials Characterization Capabilities at the High Temperature Materials Laboratory and ...

  15. Jackson Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Jackson...

  16. Aqua Farms International Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Farms International Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Aqua Farms International Aquaculture Low Temperature Geothermal Facility...

  17. Flint Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Flint Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Flint...

  18. Sunnybrook Farms Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Sunnybrook Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Sunnybrook Farms Aquaculture Low Temperature Geothermal Facility Facility...

  19. Bigfork Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Bigfork Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Bigfork Greenhouses Greenhouse Low Temperature Geothermal Facility Facility...

  20. Crook's Greenhouse Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Crook's Greenhouse Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Crook's Greenhouse Greenhouse Low Temperature Geothermal Facility Facility...

  1. Duckwater Aquaculture Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Duckwater Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Duckwater Aquaculture Low Temperature Geothermal Facility Facility Duckwater Sector...

  2. Castlevalley Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Castlevalley Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Castlevalley Greenhouses Greenhouse Low Temperature Geothermal Facility...

  3. Method for measuring surface temperature

    DOE Patents [OSTI]

    Baker, Gary A. (Los Alamos, NM); Baker, Sheila N. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM)

    2009-07-28

    The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  4. Microstructure, Processing, Performance Relationships for High Temperature Coatings

    SciTech Connect (OSTI)

    Thomas M. Lillo

    2011-04-01

    This work evaluates the suitability of iron aluminide coatings for use in high temperature fossil fuel combustion environments, such as boiler applications. The coatings are applied using High Velocity Oxy-Fuel (HVOF) thermal spray techniques. Iron aluminide coatings, with the nominal composition of Fe3Al, were applied to various high temperature structural materials (316 Stainless Steel, 9Cr-1Mo steel and Inconel 600) that typically lack inherent resistance to environmental degradation found in fossil fuel combustion atmospheres. Coating/substrate combinations were subjected to thermal cycling to evaluate the effect of HVOF parameters, coating thickness, substrate material and substrate surface roughness on the resistance to coating delamination and cracking. It was found that substrate surface roughness had a profound influence on the performance of a given substrate/coating system and that surface preparation techniques will need to be tailored to the specific substrate material. Also, higher particle velocity during HVOF thermal spray deposition of the iron aluminide coatings tended to result in better-performing coating/substrate systems with less delamination at the coating/substrate interface. Some combinations of HVOF parameters, coating thickness and substrate materials were found to perform extremely well even at temperatures up to 900oC. However, in some cases, substantial reactions at the interface were observed.

  5. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  6. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  7. Moderate Temperature | Open Energy Information

    Open Energy Info (EERE)

    temperature level. Thus, reservoirs in the 190 to 230C range should have liquid water as the mobile fluid phase, and as such, this class is reasonably well constrained....

  8. High temperature current mirror amplifier

    DOE Patents [OSTI]

    Patterson, III, Raymond B. (Melbourne, FL)

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  9. Investigating the Effects of Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating the Effects of Temperature on Power Output Objective: Students will use concepts learned in class to explore the many variables that effect the efficiency of solar panels in regards to power output. Materials: * PV Array or Solar Panel * 2 Multimeter * Frozen Ice Packs * Low Power DC Bulb * Halogen Lamp (500 Watts) * 4 or 5 Alligator clip wires * Timer Investigative Question: How does the power output change as the temperature of the PV system changes. Procedure: 1) Attach the

  10. The impacts of electronic state hybridization on the binding energy of single phosphorus donor electrons in extremely downscaled silicon nanostructures

    SciTech Connect (OSTI)

    The Anh, Le Manoharan, Muruganathan; Moraru, Daniel; Tabe, Michiharu; Mizuta, Hiroshi

    2014-08-14

    We present the density functional theory calculations of the binding energy of the Phosphorus (P) donor electrons in extremely downscaled single P-doped Silicon (Si) nanorods. In past studies, the binding energy of donor electrons was evaluated for the Si nanostructures as the difference between the ionization energy for the single P-doped Si nanostructures and the electron affinity for the un-doped Si nanostructures. This definition does not take into account the strong interaction of donor electron states and Si electron states explicitly at the conductive states and results in a monotonous increase in the binding energy by reducing the nanostructure's dimensions. In this paper, we introduce a new approach to evaluate the binding energy of donor electrons by combining the projected density of states (PDOS) analysis and three-dimensional analysis of associated electron wavefunctions. This enables us to clarify a gradual change of the spatial distribution of the 3D electron wavefunctions (3DWFs) from the donor electron ground state, which is fully localized around the P donor site to the first conductive state, which spreads over the outer Si nanorods contributing to current conduction. We found that the energy of the first conductive state is capped near the top of the atomistic effective potential at the donor site with respect to the surrounding Si atoms in nanorods smaller than about 27 a{sub 0}. This results in the binding energy of approximately 1.5?eV, which is virtually independent on the nanorod's dimensions. This fact signifies a good tolerance of the binding energy, which governs the operating temperature of the single dopant-based transistors in practice. We also conducted the computationally heavy transmission calculations of the single P-doped Si nanorods connected to the source and drain electrodes. The calculated transmission spectra are discussed in comparison with the atomistic effective potential distributions and the PDOS-3DWFs method.

  11. Temperature sensors for OTEC applications

    SciTech Connect (OSTI)

    Seren, L.; Panchal, C.B.; Rote, D.M.

    1984-05-01

    Ocean thermal energy conversion (OTEC) applications require accurate measurement of temperatures in the 0 to 30/sup 0/C range. This report documents an experimental examination of commercially available quartz-crystal thermometers and thermistors. Three fixed-point baths were used for temperature measurements: the distilled-water/distilled-ice-water slurry, the triple-point-of-water cell, and the gallium melting-point cell. The temperature of carefully prepared ice-water slurries was verified routinely as 0.001 +- 0.003/sup 0/C. Quartz-crystal probes proved accurate to about 1 to 2 mK, with drift errors of the same order over a few days. Bead- and disk-type thermistor probes were found to be about equally stable with time in the 0 to 30/sup 0/C range. The overall probable error of using thermistors was found to be +-4 mK. A solid-block temperature bath suitable for on-site calibrations in OTEC work was used in the temperature-sweeping mode. Various polynomial fits were examined for the purpose of thermistor calibration; fits of order two and higher yielded about equally accurate calculated temperatures.

  12. Radiation-Induced Decomposition of PETN and TATB under Extreme Conditions

    SciTech Connect (OSTI)

    Giefers, Hubertus; Pravica, Michael

    2008-11-03

    We conducted a series of experiments investigating decomposition of secondary explosives PETN and TATB at varying static pressures and temperatures using synchrotron radiation. As seen in our earlier work, the decomposition rate of TATB at ambient temperature slows systematically with increasing pressure up to at least 26 GPa but varies little with pressure in PETN at ambient temperature up to 15.7 GPa, yielding important information pertaining to the activation complex volume in both cases. We also investigated the radiation-induced decomposition rate as a function of temperature at ambient pressure and 26 GPa for TATB up to 403 K, observing that the decomposition rate increases with increasing temperature as expected. The activation energy for the TATB reaction at ambient temperature was experimentally determined to be 16 {+-} 3 kJ/mol.

  13. High temperature thermometric phosphors for use in a temperature sensor

    DOE Patents [OSTI]

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  14. High temperature thermometric phosphors for use in a temperature sensor

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1998-03-24

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  15. Apparatus and method for high temperature viscosity and temperature measurements

    DOE Patents [OSTI]

    Balasubramaniam, Krishnan; Shah, Vimal; Costley, R. Daniel; Singh, Jagdish P.

    2001-01-01

    A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

  16. Low to moderate temperature nanolaminate heater

    DOE Patents [OSTI]

    Eckels, J. Del; Nunes, Peter J.; Simpson, Randall L.; Hau-Riege, Stefan; Walton, Chris; Carter, J. Chance; Reynolds, John G.

    2011-01-11

    A low to moderate temperature heat source comprising a high temperature energy source modified to output low to moderate temperatures wherein the high temperature energy source modified to output low to moderate temperatures is positioned between two thin pieces to form a close contact sheath. In one embodiment the high temperature energy source modified to output low to moderate temperatures is a nanolaminate multilayer foil of reactive materials that produces a heating level of less than 200.degree. C.

  17. Segmented Ultralight Pre-Aligned Rotor for Extreme-Scale Wind Turbines

    SciTech Connect (OSTI)

    Loth, E.; Steele, A.; Ichter, B.; Selig, M.; Moriarty, P.

    2012-01-01

    To alleviate the mass-scaling issues associated with conventional upwind rotors of extreme-scale turbines, a downwind rotor concept is proposed which employs fixed blade curvature based on force alignment at rated conditions. For a given peak stress constraint, the reduction in downwind cantilever loads allows reduced shell and spar thickness, and thus a reduced blade mass as compared with a conventional upwind rotor, especially as rotor sizes approach extreme-scales. To quantify this mass reduction, a Finite Element Analysis was conducted for a 10 MW rated rotor based on the NREL offshore 5 MW baseline wind turbine. The results show that this 'pre-alignment' yields a net downstream deflection of 32 deg, a downward hub-pitch angle of 6 deg, a 20% increase in blade length (to maintain the same radius as the conventional blade), and a net mass savings of about 50% through decreased shell and spar thicknesses. The pre-alignment may also allow a more straightforward and efficient segmentation of the blade since shear stresses near joints are substantially reduced. Segmenting, in turn, can dramatically reduce costs associated with fabrication, transport and assembly for extreme-scale off-shore systems. The pre-aligned geometric curvature can also help alleviate tower wake effects on the blades since blade tips (where shadow effects can be most problematic) are shifted downstream where the tower wake is weaker. In addition, the portion of the tower that is upstream of the blade tips can be faired with an externally-rotating aerodynamic shroud. Furthermore, the downwind rotor can allow a floating off-shore tri-pod platform to reduce tower weight and yaw-control requirements. A simple economic analysis of the segmented ultralight pre-aligned rotor (SUPAR) concept suggests that the overall system cost savings can be as much as 25%, indicating that more detailed (numerical and experimental) investigations are warranted.

  18. Megaparsec relativistic jets launched from an accreting supermassive black hole in an extreme spiral galaxy

    SciTech Connect (OSTI)

    Bagchi, Joydeep; Vivek, M.; Srianand, Raghunathan; Gopal-Krishna; Vikram, Vinu; Hota, Ananda; Biju, K. G.; Sirothia, S. K.; Jacob, Joe

    2014-06-20

    The radio galaxy phenomenon is directly connected to mass-accreting, spinning supermassive black holes found in the active galactic nuclei. It is still unclear how the collimated jets of relativistic plasma on hundreds to thousands of kiloparsec scales form and why they are nearly always launched from the nuclei of bulge-dominated elliptical galaxies and not flat spirals. Here we present the discovery of the giant radio source J23450449 (z = 0.0755), a clear and extremely rare counterexample where relativistic jets are ejected from a luminous and massive spiral galaxy on a scale of ?1.6 Mpc, the largest known so far. Extreme physical properties observed for this bulgeless spiral host, such as its high optical and infrared luminosity, large dynamical mass, rapid disk rotation, and episodic jet activity, are possibly the results of its unusual formation history, which has also assembled, via gas accretion from a disk, its central black hole of mass >2 10{sup 8} M {sub ?}. The very high mid-IR luminosity of the galaxy suggests that it is actively forming stars and still building a massive disk. We argue that the launch of these powerful jets is facilitated by an advection-dominated, magnetized accretion flow at a low Eddington rate onto this unusually massive (for a bulgeless disk galaxy) and possibly fast spinning central black hole. Therefore, J23450449 is an extremely rare, unusual galactic system whose properties challenge the standard paradigms for black hole growth and the formation of relativistic jets in disk galaxies. Thus, it provides fundamental insight into accretion disk-relativistic jet coupling processes.

  19. Interaction of extremely-low-frequency electromagnetic fields with living systems

    SciTech Connect (OSTI)

    Tenforde, T.S.

    1991-11-01

    The sources and physical properties of extremely-low-frequency (ELF) electromagnetic fields are described in this paper. Biological effects and mechanisms through which ELF fields interact with humans and other organisms are discussed, including several aspects of this subject that are presently under active laboratory investigation. Studies on the potential health effects of ELF fields present in the home and workplace are also summarized, including a critical evaluation of evidence for a possible linkage between exposure to ELF fields and cancer risk. 53 refs.

  20. Improving Ramsey spectroscopy in the extreme-ultraviolet region with a random-sampling approach

    SciTech Connect (OSTI)

    Eramo, R.; Bellini, M. [Istituto Nazionale di Ottica (INO-CNR), Largo E. Fermi 6, I-50125 Florence (Italy); European Laboratory for Non-linear Spectroscopy (LENS), I-50019 Sesto Fiorentino, Florence (Italy); Corsi, C.; Liontos, I. [European Laboratory for Non-linear Spectroscopy (LENS), I-50019 Sesto Fiorentino, Florence (Italy); Cavalieri, S. [European Laboratory for Non-linear Spectroscopy (LENS), I-50019 Sesto Fiorentino, Florence (Italy); Department of Physics, University of Florence, I-50019 Sesto Fiorentino, Florence (Italy)

    2011-04-15

    Ramsey-like techniques, based on the coherent excitation of a sample by delayed and phase-correlated pulses, are promising tools for high-precision spectroscopic tests of QED in the extreme-ultraviolet (xuv) spectral region, but currently suffer experimental limitations related to long acquisition times and critical stability issues. Here we propose a random subsampling approach to Ramsey spectroscopy that, by allowing experimentalists to reach a given spectral resolution goal in a fraction of the usual acquisition time, leads to substantial improvements in high-resolution spectroscopy and may open the way to a widespread application of Ramsey-like techniques to precision measurements in the xuv spectral region.

  1. Minimizing System Noise Effects For Extreme-Scale Scientific Simulation Through Function Delegation

    SciTech Connect (OSTI)

    Dongarra, Jack J.; Bosilca, George

    2013-06-11

    The primary goal of the Minimizing System Noise Effects For Extreme-Scale Scientific Simulation through Function Delegation project is to eliminate or at best strongly minimize the impact of the noise introduced by the operating system, during large scale parallel applications runs. Collective communication operations are a basic building block for parallel programing models and scientific applications. These operations often dominate execution time of applications and tend to limit their scalability. In order to address this challenge, we evaluated different strategies to adapt the collective communications underlying topologies to the hardware architecture in order to provide increased levels of performance to the parallel applications.

  2. Passivating overcoat bilayer for multilayer reflective coatings for extreme ultraviolet lithography

    DOE Patents [OSTI]

    Montcalm, Claude (Livermore, CA); Stearns, Daniel G. (Los Altos, CA); Vernon, Stephen P. (Pleasanton, CA)

    1999-01-01

    A passivating overcoat bilayer is used for multilayer reflective coatings for extreme ultraviolet (EUV) or soft x-ray applications to prevent oxidation and corrosion of the multilayer coating, thereby improving the EUV optical performance. The overcoat bilayer comprises a layer of silicon or beryllium underneath at least one top layer of an elemental or a compound material that resists oxidation and corrosion. Materials for the top layer include carbon, palladium, carbides, borides, nitrides, and oxides. The thicknesses of the two layers that make up the overcoat bilayer are optimized to produce the highest reflectance at the wavelength range of operation. Protective overcoat systems comprising three or more layers are also possible.

  3. Properites of ultrathin films appropriate for optics capping layers in extreme ultraviolet lithography (EUVL)

    SciTech Connect (OSTI)

    Bajt, S; Edwards, N V; Madey, T E

    2007-06-25

    The contamination of optical surfaces by irradiation shortens optics lifetime and is one of the main concerns for optics used in conjunction with intense light sources, such as high power lasers, 3rd and 4th generation synchrotron sources or plasma sources used in extreme ultraviolet lithography (EUVL) tools. This paper focuses on properties and surface chemistry of different materials, which as thin layers, could be used as capping layers to protect and extend EUVL optics lifetime. The most promising candidates include single element materials such as ruthenium and rhodium, and oxides such as TiO{sub 2} and ZrO{sub 2}.

  4. Compact multi-bounce projection system for extreme ultraviolet projection lithography

    DOE Patents [OSTI]

    Hudyma, Russell M. (San Ramon, CA)

    2002-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four optical elements providing five reflective surfaces for projecting a mask image onto a substrate. The five optical surfaces are characterized in order from object to image as concave, convex, concave, convex and concave mirrors. The second and fourth reflective surfaces are part of the same optical element. The optical system is particularly suited for ring field step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width, which effectively minimizes dynamic distortion.

  5. Utility-Scale Solar Power Converter: Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices

    SciTech Connect (OSTI)

    2012-01-25

    Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levelseliminating the need for large transformers. Transformers step up the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually stepped down to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcons new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcons modular devices are designed to ensure reliabilityif one device fails it can be bypassed and the system can continue to run.

  6. Integrated Emissivity And Temperature Measurement

    DOE Patents [OSTI]

    Poulsen, Peter (Livermore, CA)

    2005-11-08

    A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

  7. Best Practices in Literature Review for the 10 Year Extreme Wind Update at the DOE Pantex Site

    Broader source: Energy.gov [DOE]

    Best Practices in Literature Review for the 10 Year Extreme Wind Update at the DOE Pantex Site Presented by B&W Technical Services, Pantex, Pro2Serve and EKU October 26, 2011

  8. High Temperature Thermoelectric Materials Characterization for Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program | Department of Energy High Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program High Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program 2009 DOE

  9. High Temperature Superconductivity Partners | Department of Energy

    Office of Environmental Management (EM)

    High Temperature Superconductivity Partners High Temperature Superconductivity Partners Map showing DOE's partners/stakeholders in the High Temperature Superconductivity Program PDF icon High Temperature Superconductivity Partners More Documents & Publications DOE Superconductivity Program Stakeholders DOE Provides up to $51.8 Million to Modernize the U.S. Electric Grid System. June 27, 2007 High-Temperature Superconductivity Cable Demonstration Projects

  10. High temperature superconductor current leads

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL)

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  11. Crystal face temperature determination means

    DOE Patents [OSTI]

    Nason, D.O.; Burger, A.

    1994-11-22

    An optically transparent furnace having a detection apparatus with a pedestal enclosed in an evacuated ampule for growing a crystal thereon is disclosed. Temperature differential is provided by a source heater, a base heater and a cold finger such that material migrates from a polycrystalline source material to grow the crystal. A quartz halogen lamp projects a collimated beam onto the crystal and a reflected beam is analyzed by a double monochromator and photomultiplier detection spectrometer and the detected peak position in the reflected energy spectrum of the reflected beam is interpreted to determine surface temperature of the crystal. 3 figs.

  12. High temperature superconductor current leads

    DOE Patents [OSTI]

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  13. High temperature current mirror amplifier

    DOE Patents [OSTI]

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  14. Process for producing modified microorganisms for oil treatment at high temperatures, pressures and salinity

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

    1996-02-20

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. The processes are comprised of steps which successively limit the carbon sources and increase the temperature, pressure and salinity of the media. This is done until microbial strains are obtained that are capable of growing in essentially crude oil as a carbon source and at a temperature range from about 70.degree. C. to 90.degree. C., at a pressure range from about 2,000 to 2,500 psi and at a salinity range from about 1.3 to 35%.

  15. Process for producing modified microorganisms for oil treatment at high temperatures, pressures and salinity

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1996-02-20

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. The processes are comprised of steps which successively limit the carbon sources and increase the temperature, pressure and salinity of the media. This is done until microbial strains are obtained that are capable of growing in essentially crude oil as a carbon source and at a temperature range from about 70 C to 90 C, at a pressure range from about 2,000 to 2,500 psi and at a salinity range from about 1.3 to 35%. 68 figs.

  16. Finite ballooning angle effects on ion temperature gradient driven mode in gyrokinetic flux tube simulations

    SciTech Connect (OSTI)

    Singh, Rameswar, E-mail: rameswar.singh@lpp.polytechnique.fr [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India) [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India); Laboratoire de Physique des Plasmas, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Brunner, S. [CRPP, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)] [CRPP, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Ganesh, R. [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India)] [Institute for Plasma Research, Bhat Gandhinagar, Gujarat 2382 428 (India); Jenko, F. [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)] [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    2014-03-15

    This paper presents effects of finite ballooning angles on linear ion temperature gradient (ITG) driven mode and associated heat and momentum flux in Gyrokinetic flux tube simulation GENE. It is found that zero ballooning angle is not always the one at which the linear growth rate is maximum. The ITG mode acquires a short wavelength (SW) branch (k{sub ?}?{sub i}?>?1) when growth rates maximized over all ballooning angles are considered. However, the SW branch disappears on reducing temperature gradient showing characteristics of zero ballooning angle SWITG in case of extremely high temperature gradient. Associated heat flux is even with respect to ballooning angle and maximizes at nonzero ballooning angle while the parallel momentum flux is odd with respect to the ballooning angle.

  17. TEMP: a computer code to calculate fuel pin temperatures during a transient. [LMFBR

    SciTech Connect (OSTI)

    Bard, F E; Christensen, B Y; Gneiting, B C

    1980-04-01

    The computer code TEMP calculates fuel pin temperatures during a transient. It was developed to accommodate temperature calculations in any system of axi-symmetric concentric cylinders. When used to calculate fuel pin temperatures, the code will handle a fuel pin as simple as a solid cylinder or as complex as a central void surrounded by fuel that is broken into three regions by two circumferential cracks. Any fuel situation between these two extremes can be analyzed along with additional cladding, heat sink, coolant or capsule regions surrounding the fuel. The one-region version of the code accurately calculates the solution to two problems having closed-form solutions. The code uses an implicit method, an explicit method and a Crank-Nicolson (implicit-explicit) method.

  18. Microstructure in the extreme environment: understanding and predicting dynamic damage processes

    SciTech Connect (OSTI)

    Dennis-koller, Darcie L [Los Alamos National Laboratory; Cerreta, Ellen K [Los Alamos National Laboratory; Bronkhorst, Curt A [Los Alamos National Laboratory; Escobedo-diaz, Juan P [Los Alamos National Laboratory

    2010-12-21

    The future of materials science: strategic application for functionally controlled materials properties is emphasized by the need to control material performance in extreme environments. To this end, this study examines the separate effects of kinetics (in the form of dynamic loading rate and shock wave shape) from that of length-scale effects (in the form of microstructural defect distributions). Recently available mesoscale modeling techniques are being used to capture a physical link between kinetic and length-scale influences on dynamic loading. This work contributes innovative new tools in the form of shock-wave shaping techniques in dynamic experimentation, materials characterization, lending insight into 3D damage field analysis at micron resolution, and the physics necessary to provide predictive capabilities for dynamic damage evolution. Experimental results tailored for the discreet understanding of length-scale and kinetic effects during dynamic loading are obtained to provide the basis for the development of process-aware material performance models. The understanding of length-scale and kinetic effects in extreme environments of dynamic loading advances the understanding of current emerging issues relevant to phenomena such as inclusion related failure in metals, grain size dependence on ejecta, and benefits of interfaces in mitigating defect development specifically driven by the need to tailor material response. Finally, the coupling of experimental techniques with theory and simulation is aimed at advancing process-aware damage modeling as well as transitioning materials science from observation to property control.

  19. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi (Mastic Beach, NY)

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  20. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  1. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-05-26

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  2. Temperature controlled high voltage regulator

    DOE Patents [OSTI]

    Chiaro, Jr., Peter J. (Clinton, TN); Schulze, Gerald K. (Knoxville, TN)

    2004-04-20

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  3. High temperature two component explosive

    DOE Patents [OSTI]

    Mars, James E. (Vashon, WA); Poole, Donald R. (Woodinville, WA); Schmidt, Eckart W. (Bellevue, WA); Wang, Charles (Lafayette, IN)

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  4. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM)

    1985-01-01

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  5. High temperature turbine engine structure

    DOE Patents [OSTI]

    Boyd, Gary L. (Tempe, AZ)

    1991-01-01

    A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

  6. Catalysts for low temperature oxidation

    DOE Patents [OSTI]

    Toops, Todd J.; Parks, III, James E.; Bauer, John C.

    2016-03-01

    The invention provides a composite catalyst containing a first component and a second component. The first component contains nanosized gold particles. The second component contains nanosized platinum group metals. The composite catalyst is useful for catalyzing the oxidation of carbon monoxide, hydrocarbons, oxides of nitrogen, and other pollutants at low temperatures.

  7. Litchfield Correctional Center District Heating Low Temperature...

    Open Energy Info (EERE)

    Litchfield Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature...

  8. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  9. High-Temperature Thermoelectric Materials Characterization for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  10. Lakeview Residences Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Lakeview Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lakeview Residences Space Heating Low Temperature Geothermal Facility...

  11. Acid Doped Membranes for High Temperature PEMFC

    Broader source: Energy.gov [DOE]

    Presentation on Acid Doped Membranes for High Temperature PEMFC to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

  12. Nichinghsiang Fish Farm Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Nichinghsiang Fish Farm Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Nichinghsiang Fish Farm Aquaculture Low Temperature Geothermal Facility...

  13. Oregon Trail Mushrooms Industrial Low Temperature Geothermal...

    Open Energy Info (EERE)

    Mushrooms Industrial Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Trail Mushrooms Industrial Low Temperature Geothermal Facility Facility Oregon...

  14. Ennis Laundry Industrial Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Ennis Laundry Industrial Low Temperature Geothermal Facility Jump to: navigation, search Name Ennis Laundry Industrial Low Temperature Geothermal Facility Facility Ennis Laundry...

  15. Gone Fishing Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Gone Fishing Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Gone Fishing Aquaculture Low Temperature Geothermal Facility Facility Gone Fishing...

  16. Temperature effects on airgun signatures (Journal Article) |...

    Office of Scientific and Technical Information (OSTI)

    Search Title: Temperature effects on airgun signatures Experiments in an 850 liter water tank were performed in order to study temperature effects on airgun signatures, and to...

  17. Understanding the Temperature and Humidity Environment Inside...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Understanding the Temperature and Humidity Environment Inside a PV Module (Presentation), NREL (National Renewable Energy Laboratory) Understanding the Temperature and Humidity ...

  18. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste ...

  19. Manufacturing Barriers to High Temperature PEM Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D ...

  20. Advanced Low Temperature Absorption Chiller Module Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature Absorption Chiller Module Integrated with a CHP System at a Distributed Data Center - Presentation by Exergy Partners Corp., June 2011 Advanced Low Temperature ...

  1. Thermodynamic Advantages of Low Temperature Combustion Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Low Temperature Combustion Engines Including the Use of Low Heat Rejection Concepts Thermodynamic Advantages of Low Temperature Combustion Engines Including the Use of ...

  2. High Temperature Thermoelectric Materials Characterization for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program High Temperature Thermoelectric ...

  3. Accelerated Laboratory Tests Using Simultaneous UV, Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Tests Using Simultaneous UV, Temperature, and Moisture for PV Encapsulants, Frontsheets, and Backsheets Accelerated Laboratory Tests Using Simultaneous UV, Temperature, ...

  4. Hyder Valley Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Valley Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Hyder Valley Aquaculture Low Temperature Geothermal Facility Facility Hyder Valley Sector...

  5. Countryman Well Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Countryman Well Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Countryman Well Greenhouse Low Temperature Geothermal Facility Facility Countryman...

  6. Wards Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Wards Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Wards Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Wards...

  7. Express Farms Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Express Farms Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Express Farms Greenhouse Low Temperature Geothermal Facility Facility Express Farms...

  8. Hyder Ranch Aquaculture Low Temperature Geothermal Facility ...

    Open Energy Info (EERE)

    Hyder Ranch Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Hyder Ranch Aquaculture Low Temperature Geothermal Facility Facility Hyder Ranch Sector...

  9. Manzanita Estates District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Manzanita Estates District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Manzanita Estates District Heating Low Temperature Geothermal Facility...

  10. Opline Farms Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Opline Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Opline Farms Aquaculture Low Temperature Geothermal Facility Facility Opline Farms...

  11. Liskey Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Liskey Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Liskey Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Liskey...

  12. Summer Lake Aquaculture Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Summer Lake Aquaculture Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Aquaculture Aquaculture Low Temperature Geothermal Facility...

  13. Marana Aquaculture Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Marana Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Marana Aquaculture Low Temperature Geothermal Facility Facility Marana Sector Geothermal...

  14. The Greenhouse Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name The Greenhouse Greenhouse Low Temperature Geothermal Facility Facility The Greenhouse Sector...

  15. Bliss Greenhouse Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouse Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Bliss Greenhouse Greenhouse Low Temperature Geothermal Facility Facility Bliss Greenhouse...

  16. Jackpot Aquaculture Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Jackpot Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Jackpot Aquaculture Low Temperature Geothermal Facility Facility Jackpot Sector Geothermal...

  17. Safford Aquaculture Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Safford Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Safford Aquaculture Low Temperature Geothermal Facility Facility Safford Sector Geothermal...

  18. Warm Springs Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility...

  19. Belmont Springs Hatchery Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Springs Hatchery Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Belmont Springs Hatchery Aquaculture Low Temperature Geothermal Facility Facility...

  20. Room Temperature Dispenser Photocathode Using Elemental Cesium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room Temperature Dispenser Photocathode Using Elemental Cesium Room Temperature Dispenser Photocathode Using Elemental Cesium Los Alamos National Laboratory (LANL) researchers have...