National Library of Energy BETA

Sample records for temperature cdiac climate

  1. Climate Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. CDIAC lists the following collections under the broad heading of climate information: Global Temperature, Precipitation, Sea Level Pressure, and Station Pressure Data, United States Temperature, Precipitation, and Snow Data, USSR and People's Republic of China Climate Data, Cloud and Sunshine Data, and Other Climatic Data.

  2. Vegetation Response to Carbon Dioxide and Climate: Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to vegetation response to carbon dioxide and climate includes: • Area and Carbon Content of Sphagnum Since Last Glacial Maximum (2002) (Trends Online) • TDE Model Intercomparison Project Data Archive • Presentations and abstracts from the recent DOE Terrestrial Science Team Meeting (Argonne National Laboratory, October 29-31, 2001) • FACE (Free-Air CO2 Enrichment) • Walker Branch Throughfall Displacement Experiment Data Report: Site Characterization, System Performance, Weather, Species Composition, and Growth (2001) • Bibliography on CO2 Effects on Vegetation and Ecosystems: 1990-1999 Literature (2000) • Direct effects of atmospheric CO2 enrichment on plants and ecosystems: An updated bibliographic data base (1994) • A Database of Herbaceous Vegetation Responses to Elevated Atmospheric CO2 (1999) • A Database of Woody Vegetation Responses to Elevated Atmospheric CO2 (1999) • Forest Responses to Anthropogenic Stress (FORAST) Database (1995) • Effects of CO2 and Nitrogen Fertilization on Growth and Nutrient Content of Juvenile Ponderosa Pine (1998) • Carbon Dioxide Enrichment: Data on the Response of Cotton to Varying CO2Irrigation, and Nitrogen (1992) • Growth and Chemical Responses to CO2 Enrichment Virginia Pine Pinus Virginiana Mill.(1985)

  3. Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel...

    Open Energy Info (EERE)

    Fuel CO2 Emissions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions AgencyCompany...

  4. Atmospheric Trace Gases from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication, Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. The collections under the CDIAC heading of Atmospheric Trace Gases include: Atmospheric Carbon Dioxide, Atmospheric Methane, Atmospheric Carbon Monoxide, Atmospheric Hydrogen, Isotopes in Greenhouse Gases, Radionuclides, Aerosols, and Other Trace Gases.

  5. New numeric data packages from CDIAC

    SciTech Connect (OSTI)

    Hahn, C.J.; Warren, S.G.; London, J.

    1995-12-31

    This article describes 6 numerical data packages related to climate and greenhouse gas concentrations: Edited synoptic cloud reports from ships and land stations (1982-1991); Carbon dioxide concentrations in surface water and the atmosphere (1986-1989); Carbon-13 isotopic abundance and concentration of atmospheric methane for background air (1978-1989); Six and Three hourly meteorological observations from 223 USSR stations; Global, regional and national annual CO2 emission estimates from fossil-fuel burning, hydraulic-cement production, and gas flaring (1950-1992); continental-scale estimates of biotic carbon flux from land-cover change (1850-1980); Carbon dioxide, hydrographic and chemical data in the south Atlantic Ocean (February-March 1991).

  6. Oceanic Trace Gases Numeric Data Packages from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Most data sets or packages, many with numerous data files, are free to download from CDIAC's ftp area. The collection provides access to the Oceanographic Numeric Data Packages (NDPs).

  7. Global Carbon Budget from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Global Carbon Project (GCP) was established in 2001 in recognition of the scientific challenge and critical importance of the carbon cycle for Earth's sustainability. The growing realization that anthropogenic climate change is a reality has focused the attention of the scientific community, policymakers and the general public on the rising concentration of greenhouse gases, especially carbon dioxide (CO2) in the atmosphere, and on the carbon cycle in general. Initial attempts, through the United Nations Framework Convention on Climate Change and its Kyoto Protocol, are underway to slow the rate of increase of greenhouse gases in the atmosphere. These societal actions require a scientific understanding of the carbon cycle, and are placing increasing demands on the international science community to establish a common, mutually agreed knowledge base to support policy debate and action. The Global Carbon Project is responding to this challenge through a shared partnership between the International Geosphere-Biosphere Programme (IGBP), the International Human Dimensions Programme on Global Environmental Change (IHDP), the World Climate Research Programme (WCRP) and Diversitas. This partnership constitutes the Earth Systems Science Partnership (ESSP). This CDIAC collection includes datasets, images, videos, presentations, and archived data from previous years.

  8. Land Use and Ecosystems Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication titled Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Land Use and Ecosystems information includes Terrestrial Carbon Sequestration Data Sets, data sets from Africa and Asia, the Worldwide Organic Soil Carbon and Nitrogen Dataset, and much more.

  9. Trace Gas Emissions Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Collections under the broad heading of Trace Gas Emissions are organized as Fossil-Fuel CO2 Emissions, Land-Use CO2 Emissions, Soil CO2 Emissions, and Methane.

  10. Carbon Cycle Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to carbon cycle includes: • Terrestrial Carbon Sequestration Data Sets • Area and Carbon Content of Sphagnum Since Last Glacial Maximum (2002) (Trends Online) • Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2002) (Trends Online) • Estimates of Monthly CO2 Emissions and Associated 13C/12C Values from Fossil-Fuel Consumption in the U.S.A., (2004) (Trends Online) • Estimates of Annual Fossil-Fuel CO2 Emitted for Each State in the U.S.A. and the District of Columbia for Each Year from 1960 through 2001 (Trends Online) • Global, Regional, and National Annual CO2 Emissions from Fossil-Fuel Burning, Cement Production, and Gas Flaring: 1751-1999 (updated 2002) • Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring on a One Degree by One Degree Grid Cell Basis: 1950 to 1990 (1997) • Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis (1998) • AmeriFlux - Terrestrial Carbon Dioxide, Water Vapor, and Energy Balance Measurements Intergovernmental Panel on Climate Change (IPCC), Working Group 1, 1994: Modelling Results Relating Future Atmospheric CO2 Concentrations to Industrial Emissions (1995) • Interannual Variability in Global Soil Respiration on a 0.5 Degree Grid Cell Basis (1980-1994) (2003) • Global

  11. PACIFICA (PACIFic ocean Interior CArbon) Database: A Data Synthesis Resource (NDP-92, ORNL/CDIAC-159)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Suzuki, T.; Ishii, M.; Aoyama, M. R; Christian, J. R.; Enyo, K.; Kawano, T.; Key, R. M.; Kosugi, N.; Kozyr, A.; Miller, L. A.; Murata, A.; Nakano, T.; Ono, T.; Saino, T.; Sasaki, K.; Sasano, D; Takatani, Y.; Wakita, M.; Sabine, C.

    PACIFICA (PACIFic ocean Interior CArbon) was an international collaborative project for synthesis of data on ocean interior carbon and its related parameters in the Pacific Ocean. The North Pacific Marine Science Organization (PICES), Section on Carbon and Climate (S-CC) supported the project. Hydrographic/hydrochemical datasets have been merged from a total of 272 cruises, including those from cruises conducted between the late 1980s and 2000 but not included in GLODAP, as well as CLIVAR/CO2 Repeat Hydrography datasets from the 2000s. Adjustments were calculated to account for analytical offsets in dissolved inorganic carbon, total alkalinity, salinity, oxygen, and nutrients (nitrate and nitrite, phosphate, and silicic acid) for each cruise as a result of the secondary quality control procedure, based on crossover analysis using data from deep layers (Tanhua et al., 2010). A total of 59 adjusted datasets from Line P off the west coast of Canada were also merged. Finally, the authors have produced the adjusted PACIFICA database that consists of datasets from a total of 306 cruises that also includes 34 datasets from WOCE Hydrographic Program cruises in the Pacific Ocean conducted in the 1990s. The PACIFICA database is available free of charge as a numeric data package (NDP-92) from the Carbon Dioxide Information Analysis Center (CDIAC) and the primary PACIFICA data site at pacifica.pices.jp. The NDP consists of the original cruise data files, adjusted data product, and the documentation.

  12. Ocean Carbon Cycle Models from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The following Ocean Carbon Cycle models and modeling results are available from CDIAC: • CSIRO/Matear Data [Model simulation of climate change from 1880 till 2100 (Matear and Hirst 2003, GBC) • Lequere Data, Model Results • McKinley MITgcm offline biogeochemical model - posted May 2004 • McKinley MITgcm offline biogeochemical model - posted December 2004 • NCOM-Pacific-Biogeochemical Modeling Results from Fei Chai • ROMS-Pacific-Biogeochemical Modeling Results from Fei CHai • WHOI/NCAR/Irvine Eco-BGC (Doney, Moore, Lindsay, and Lima) - Posted May 2005 • Max-Planck-Institut f?r Biogeochemie (Lequere, Buitenhuis) Modeling Results • Max-Planck-Institut f?r Biogeochemie (Lequere, Buitenhuis) Modeling Results - Posted March 2005 • Jim Christian model output for (a) Climatologies of T, S, PO4 at 50 m depth intervals; (b) SST, SSS, MLD, pCO2, CO2 flux from 1990-2003, and (c) climatological surface horizontal velocity • Max-Planck-Institut f?r Biogeochemie (Lequere, Buitenhuis) Modeling Results • Deutsch (UW) model output results for Oxygen variability in the North Pacific • Pacific data-model intercomparison from Patrick Wetzel (Max Planck Institute for Meteorology, Germany)

  13. CARINA (Carbon dioxide in the Atlantic Ocean) Data from CDIAC

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The idea for CARINA developed at a workshop (CO2 in the northern North Atlantic) that was held at the HANSE-Wissenschaftskolleg (HANSE Institute for Advanced Study) in Delmenhorst, Germany from June 9 to 11, 1999. While the main scientific focus is the North Atlantic, some data from the South Atlantic have been included in the project, along with data from the Arctic Ocean. Data sets go back to 1972, and more than 100 are currently available. The data are also being used in conjunction with other projects and research groups, such as the Atlantic Ocean Carbon Synthesis Group. See the inventory of data at http://store.pangaea.de/Projects/CARBOOCEAN/carina/data_inventory.htm See a detailed table of information on the cruises at http://cdiac.ornl.gov/oceans/CARINA/Carina_table.html and also provides access to data files. The CARBOOCEAN data portal provides a specialized interface for CARINA data, a reference list for historic carbon data, and password protected access to the "Data Underway Warehouse.".

  14. Variable temperature seat climate control system

    DOE Patents [OSTI]

    Karunasiri, Tissa R.; Gallup, David F.; Noles, David R.; Gregory, Christian T.

    1997-05-06

    A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.

  15. Terrestrial Carbon Management Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Collections under the broad heading of Terrestrial Carbon Management are organized as Carbon Accumulation with Cropland Management, Carbon Accumulation with Grassland Management, Carbon Loss Following Cultivation, Carbon Accumulation Following Afforestation, and Carbon Sources and Sinks Associated with U.S. Cropland Production.

  16. Coastal Sensitivity to Sea Level: Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Information related to coastal sensitivity to sea level includes: • A Coastal Hazards Data Base for the U.S. East Coast (1992) • A Coastal Hazards Data Base for the U.S. Gulf Coast (1993) • A Coastal Hazards Data Base for the U.S. West Coast (1997)

  17. United States Historical Climatology Network Daily Temperature and Precipitation Data (1871-1997)

    SciTech Connect (OSTI)

    Easterling, D.R.

    2002-10-28

    This document describes a database containing daily observations of maximum and minimum temperature, precipitation amount, snowfall amount, and snow depth from 1062 observing stations across the contiguous US. This database is an expansion and update of the original 138-station database previously released by the Carbon Dioxide Information Analysis Center (CDIAC) as CDIAC numeric data package NDP-042. These 1062 stations are a subset of the 1221-station US Historical Climatology Network (HCN), a monthly database compiled by the National Climatic Data Center (Asheville, North Carolina) that has been widely used in analyzing US climate. Data from 1050 of these daily records extend into the 1990s, while 990 of these extend through 1997. Most station records are essentially complete for at least 40 years; the latest beginning year of record is 1948. Records from 158 stations begin prior to 1900, with that of Charleston, South Carolina beginning the earliest (1871). The daily resolution of these data makes them extremely valuable for studies attempting to detect and monitor long-term climatic changes on a regional scale. Studies using daily data may be able to detect changes in regional climate that would not be apparent from analysis of monthly temperature and precipitation data. Such studies may include analyses of trends in maximum and minimum temperatures, temperature extremes, daily temperature range, precipitation ''event size'' frequency, and the magnitude and duration of wet and dry periods. The data are also valuable in areas such as regional climate model validation and climate change impact assessment. This database is available free of charge from CDIAC as a numeric data package (NDP).

  18. Global Coastal Carbon Program Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC provides data management support for the Global Coastal Carbon Data Project. The coastal regions data are very important for the understanding of carbon cycle on the continental margins. The Coastal Project data include the bottle (discrete) and surface (underway) carbon-related measurements from coastal research cruises, the data from time series cruises, and coastal moorings. The data from US East Coast, US West Coast, and European Coastal areas are available. CDIAC provides a map interface with vessel or platform names. Clicking on the name brings up information about the vessel or the scientific platform, the kinds of measurements collected and the timeframe, links to project pages, when available, and the links to the data files themselves.

  19. Daily temperature and precipitation data for 223 USSR Stations

    SciTech Connect (OSTI)

    Razuvaev, V.N.; Apasova, E.G.; Martuganov, R.A.; Vose, R.S.; Steurer, P.M.

    1993-11-01

    On- May 23, 1972, the United States and the USSR established a bilateral initiative known as the Agreement on Protection of the Environment. Given recent interest in possible greenhouse gas-induced climate change, Working Group VIII (Influence of Environmental Changes on Climate) has become particularly useful to the scientific communities of both nations. Among its many achievements, Working Group VIII has been instrumental in the exchange of climatological information between the principal climate data centers of each country [i.e., the National Climatic Data Center (NCDC) in Asheville, North Carolina, and the Research Institute of Hydrometeorological Information in Obninsk, Russia]. Considering the relative lack of climate records previously available for the USSR, data obtained via this bilateral exchange are particularly valuable to researchers outside the former Soviet Union. To expedite the dissemination of these data, NOAA`s Climate and Global Change Program funded the Carbon Dioxide Information Analysis Center (CDIAC) and NCDC to distribute one of the more useful archives acquired through this exchange: a 223-station daily data set covering the period 1881-1989. This data set contains: (1) daily mean, minimum, and maximum temperature data; (2) daily precipitation data; (3) station inventory information (WMO No., name, coordinates, and elevation); (4) station history information (station relocation and rain gauge replacement dates); and (5) quality assurance information (i.e., flag codes that were assigned as a result of various data checks). The data set is available, free of charge, as a Numeric Data Package (NDP) from CDIAC. The NDP consists of 18 data files and a printed document which describes both the data files and the 223-station network in detail.

  20. Oceanic Trace Gases Numeric Data Packages from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Most data sets or packages, many with numerous data files, are free to download from CDIAC's ftp area. CDIAC lists the following numeric data packages under the broad heading of Oceanic Trace Gases: Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16S_2005 ( 01/11/05 - 022405) Determination of Carbon Dioxide, Hydrographic, and Chemical Parameters during the R/V Nathaniel B. Palmer Cruise in the Southern Indian Ocean (WOCE Section S04I, 050396 - 070496) Inorganic Carbon, Nutrient, and Oxygen Data from the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16N_2003a (060403 081103) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Maurice Ewing Cruise in the Atlantic Ocean (WOCE Section A17, 010494 - 032194) Global Ocean Data Analysis Project GLODAP: Results and Data Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruises in the North Atlantic Ocean on WOCE Sections AR24 (1102 120596) and A24, A20, and A22 (053097 090397) Carbon Dioxide, Hydrographic and Chemical Data Obtained During the Nine R/V Knorr Cruises Comprising the Indian Ocean CO2 Survey (WOCE Sections I8SI9S, I9N, I8NI5E, I3, I5WI4, I7N, I1, I10, and I2; 120 194 012296) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 28/1 in the South Atlantic Ocean (WOCE Section A8, 032994 - 051294) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruise 138-3, -4, and -5 in the South Pacific Ocean (WOCE Sections P6E, P6C, and P6W, 050292 - 073092) Global Distribution of Total Inorganic Carbon and Total

  1. Influence of climate model biases and daily-scale temperature...

    Office of Scientific and Technical Information (OSTI)

    The Intergovernmental Panel on Climate Change's Fourth Assessment Report concludes that climate change is now unequivocal, and associated increases in evaporation and atmospheric ...

  2. Effect of ocean temperature on southwestern U.S. climate analyzed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December » Effect of ocean temperature on southwestern climate Effect of ocean temperature on southwestern U.S. climate analyzed Researchers concluded that only part of the recent temperature rise in the Southwest could be attributed to greenhouse gases. December 19, 2013 Image from National Oceanic and Atmospheric Administration's Environmental Visualization Laboratory depicts sea surface temperatures around Greenland from October 2010. Image from National Oceanic and Atmospheric

  3. Effect of ocean temperature on southwestern U.S. climate analyzed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effect of ocean temperature on southwestern climate Effect of ocean temperature on southwestern U.S. climate analyzed Researchers concluded that only part of the recent temperature rise in the Southwest could be attributed to greenhouse gases. December 19, 2013 Image from National Oceanic and Atmospheric Administration's Environmental Visualization Laboratory depicts sea surface temperatures around Greenland from October 2010. Image from National Oceanic and Atmospheric Administration's

  4. The Global Historical Climatology Network: Long-term monthly temperature, precipitation, sea level pressure, and station pressure data

    SciTech Connect (OSTI)

    Vose, R.S. . Energy, Environment and Resources Center); Schmoyer, R.L. ); Steurer, P.M.; Peterson, T.C.; Heim, R.; Karl, T.R. ); Eischeid, J.K. . Cooperative Inst. for Research in Environmental Sciences)

    1992-07-01

    Interest in global climate change has risen dramatically during the last several years. In a similar fashion, the number of data sets available to study global change has also increased. Unfortunately, these data sets have been compiled by many different organizations/researchers, making it confusing and time consuming for individual researchers to acquire the best'' data. In response to this rapid growth in the number of global data sets, the Carbon Dioxide Information Analysis Center (CDIAC) and the National Climatic Data Center (NCDC) commenced the Global Historical Climatology Network (GHCN) project. The purpose of this project is to compile an improved global base-line data set of long-term monthly mean temperature, precipitation, sea level pressure, and station pressure for a dense network. of worldwide meteorological stations. Specifically, the GHCN project seeks to consolidate the numerous preexisting national-, regional-, and global-scale data sets into a single global climate data base that can be updated, enhanced, and distributed at regular intervals. The first version of the GHCN data base was completed during the summer of 1992. It contains 6039 temperature, 7533 precipitation, 1883 sea level pressure, and 1873 station pressure stations. All stations have at least 10 years of data, 40% have more than 50 years of data, and 10% have more than 100 years of data. Spatial coverage is good over most of the globe, particularly for the United States and central Europe. In comparison to other major global data sets, dramatic improvements are evident over South America, Africa, and Asia. The GHCN data base is available as a Numeric Data Package (NDP) from CDIAC. The NDP consists of this document and two magnetic tapes that contain machine-readable data files and accompanying retrieval codes. This document describes, in detail, both the GHCN data base and the contents of the magnetic tap

  5. The Global Historical Climatology Network: Long-term monthly temperature, precipitation, sea level pressure, and station pressure data

    SciTech Connect (OSTI)

    Vose, R.S.; Schmoyer, R.L.; Steurer, P.M.; Peterson, T.C.; Heim, R.; Karl, T.R.; Eischeid, J.K.

    1992-07-01

    Interest in global climate change has risen dramatically during the last several years. In a similar fashion, the number of data sets available to study global change has also increased. Unfortunately, these data sets have been compiled by many different organizations/researchers, making it confusing and time consuming for individual researchers to acquire the ``best`` data. In response to this rapid growth in the number of global data sets, the Carbon Dioxide Information Analysis Center (CDIAC) and the National Climatic Data Center (NCDC) commenced the Global Historical Climatology Network (GHCN) project. The purpose of this project is to compile an improved global base-line data set of long-term monthly mean temperature, precipitation, sea level pressure, and station pressure for a dense network. of worldwide meteorological stations. Specifically, the GHCN project seeks to consolidate the numerous preexisting national-, regional-, and global-scale data sets into a single global climate data base that can be updated, enhanced, and distributed at regular intervals. The first version of the GHCN data base was completed during the summer of 1992. It contains 6039 temperature, 7533 precipitation, 1883 sea level pressure, and 1873 station pressure stations. All stations have at least 10 years of data, 40% have more than 50 years of data, and 10% have more than 100 years of data. Spatial coverage is good over most of the globe, particularly for the United States and central Europe. In comparison to other major global data sets, dramatic improvements are evident over South America, Africa, and Asia. The GHCN data base is available as a Numeric Data Package (NDP) from CDIAC. The NDP consists of this document and two magnetic tapes that contain machine-readable data files and accompanying retrieval codes. This document describes, in detail, both the GHCN data base and the contents of the magnetic tap

  6. HIPPO (HIAPER Pole-to-Pole Observations) Data from CDIAC's HIPPO Data Archive

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The HIPPO (HIAPER Pole-to-Pole Observations) study of the carbon cycle and greenhouse gases measured meteorology, atmospheric chemistry, and aerosol constituents along transects from approximately pole-to-pole over the Pacific Ocean. HIPPO flew hundreds of vertical profiles from the ocean/ice surface to as high as the tropopause, at five times during different seasons over a three year period from 2009-2011. HIPPO provides the first high-resolution vertically-resolved global survey of a comprehensive suite of atmospheric trace gases and aerosols pertinent to understanding the carbon cycle and challenging global climate models.

  7. Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Climate HomeTag:Climate Electricity use by water service sector and county. Shown are electricity use by (a) large-scale ...

  8. Climate Perspectives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Perspectives Climate Perspectives: Change in the Terrestrial Arctic Rising temperatures are rapidly reshaping the terrestrial Arctic. Climate Perspectives: Change in the Terrestrial Arctic is an interactive look at Arctic climate change and climate science through the eyes of scientists and artists. Climate Perspectives slide 1 Climate Perspectives Climate Perspectives is interactive. This slideshow represents a sample of the content within the exhibit. Climate Perspectives slide 2

  9. Low Frequency Modulation of Extreme Temperature Regimes in a Changing Climate

    SciTech Connect (OSTI)

    Black, Robert X.

    2014-11-24

    The project examines long-term changes in extreme temperature episodes (ETE) associated with planetary climate modes (PCMs) in both the real atmospheric and climate model simulations. The focus is on cold air outbreaks (CAOs) and warm waves (WWs) occurring over the continental US during the past 60 winters. No significant long-term trends in either WWs or CAOs are observed over the US. The annual frequency of CAOs is affected by the (i) North Atlantic Oscillation (NAO) over the Southeast US and (ii) PacificNorth American (PNA) pattern over the Northwest US. WW frequency is influenced by the (i) NAO over the eastern US and (ii) combined influence of PNA, Pacific decadal oscillation (PDO), and ENSO over the southern US. The collective influence of PCMs accounts for as much as 50% of the regional variability in ETE frequency. During CAO (WW) events occurring over the southeast US, there are low (high) pressure anomalies at higher atmospheric levels over the southeast US with oppositely-signed pressure anomalies in the lower atmosphere over the central US. These patterns lead to anomalous northerly (for CAOs) or southerly (for WWs) flow into the southeast leading to cold or warm surface air temperature anomalies, respectively. One distinction is that CAOs involve substantial air mass transport while WW formation is more local in nature. The primary differences among event categories are in the origin and nature of the pressure anomaly features linked to ETE onset. In some cases, PCMs help to provide a favorable environment for event onset. Heat budget analyses indicate that latitudinal transport in the lower atmosphere is the main contributor to regional cooling during CAO onset. This is partly offset by adiabatic warming associated with subsiding air. Additional diagnoses reveal that this latitudinal transport is partly due to the remote physical influence of a shallow cold pool of air trapped along the east side of the Rocky Mountains. ETE and PCM behavior is also

  10. Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  11. Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  12. Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  13. Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  14. Elevated air temperature alters an old-field insect community in a multi-factor climate change experiment

    SciTech Connect (OSTI)

    Villalpando, Sean [Appalachian State University; Williams, Ray [ORNL; Norby, Richard J [ORNL

    2009-01-01

    To address how multiple, interacting climate drivers may affect plant-insect community associations, we sampled the insect community from a constructed old-field plant community grown under simultaneous [CO2], temperature, and water manipulation. Insects were identified to morphospecies, assigned to feeding guilds and abundance, richness and evenness quantified. Warming significantly increased Order Thysanoptera abundance and reduced overall morphospecies richness and evenness. Non-metric multidimensional scaling clearly supported the effect of warming on insect community composition. Reductions in richness for herbivores and parasitoids suggest trophic-level effects within the insect community. Analysis of dominant insects demonstrated the effects of warming were limited to a relatively small number of morphospecies. Reported reductions in whole-community foliar N at elevated [CO2] unexpectedly did not result in any effects on herbivores. These results demonstrate climatic warming may alter certain insect communities via effects on insect species most responsive to higher temperature, contributing to a change in community structure.

  15. Effect of ocean temperature on southwestern U.S. climate analyzed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    depicts sea surface temperatures around Greenland from October 2010. Assuming that the past is a good indicator of the future, the scientists conclude that there should be...

  16. Interactions of CO{sub 2} with temperature and other climate variables: response of vegetation. Final report

    SciTech Connect (OSTI)

    Knipling, E.B.

    1995-02-28

    The overall objectives of this project were: (1) to examine experimentally, for major crop species, the interacting effects of CO{sub 2} concentration, temperature, and water availability on plant growth and development, (2) to model these interactions, and (3) to continue developing physiologically-based mechanistic models for predicting crop response to increased CO{sub 2} concentration and future global climate change. To meet these objectives, controlled-environment studies were conducted on cotton, lemon, rice, and soybean and a long-term open-top chamber study was continued on orange. Much progress was made on development of plant growth models for cotton, wheat, rice, and soybean. In addition, there were two special modeling efforts which have the potential for contributing to all of the crop models. These efforts are concerned with modeling root growth and physical and chemical processes in soil and with modeling the effect of stomatal aperture on photosynthesis and transpiration rates as a function of CO{sub 2} concentration, temperature, and vapor pressure deficit. The root growth and soil process modeling is important because it enables us to estimate the water available to the plant. The modeling of effects of stomatal aperture on photosynthesis and transpiration rates enables them to estimate dry weight gain and water use by the plant. These are both important components of the interaction of CO{sub 2} concentration with temperature and water availability. The work on stomatal aperture, photosynthesis, and transpiration has the added benefit of allowing us to improve predictions of energy partitioning by the terrestrial biosphere. The lack of realistic energy partitioning is a serious deficiency of the present general circulation models which are used to predict how climate will change. An additional important aspect of the rice experiments is a study of methane emissions of paddy-grown (i.e., flooded) rice grown under two levels of CO{sub 2} and three

  17. Effect of ocean temperature on southwestern U.S. climate analyzed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oscillation, observed in the sea-surface temperatures of the North Atlantic. Data stretching back 1,000 years shows that the AMO cycles through cooler and warmer phases...

  18. Five-years of microenvironment data along an urban-rural transect; temperature and CO2 concentrations in urban area at levels expected globally with climate change.

    SciTech Connect (OSTI)

    George, Kate; Ziska, Lewis H; Bunce, James A; Quebedeaux, Bruno

    2007-11-01

    The heat island effect and the high use of fossil fuels in large city centers is well documented, but by how much fossil fuel consumption is elevating atmospheric CO2 concentrations and whether elevations in both atmospheric CO2 and air temperature are consistent from year to year are less well known. Our aim was to record atmospheric CO2 concentrations, air temperature and other environmental variables in an urban area and compare it to suburban and rural sites to see if urban sites are experiencing climates expected globally in the future with climate change. A transect was established from Baltimore city center (Urban site), to the outer suburbs of Baltimore (suburban site) and out to an organic farm (rural site). At each site a weather station was set-up to monitor environmental variables annually for five years. Atmospheric CO2 was significantly increased on average by 66 ppm from the rural to the urban site over the five years of the study. Air temperature was significantly higher at the urban site (14.8 oC) compared to the suburban (13.6 oC) and rural (12.7 oC) sites. Relative humidity was not different between sites but vapor pressure deficit (VPD) was significantly higher at the urban site compared to the suburban and rural sites. During wet years relative humidity was significantly increased and VPD significantly reduced. Increased nitrogen deposition at the rural site (2.1 % compared to 1.8 and 1.2 % at the suburban and urban sites) was small enough not to affect soil nitrogen content. Dense urban areas with large populations and high vehicular traffic have significantly different microclimates compared to outlying suburban and rural areas. The increases in atmospheric CO2 and air temperature are similar to changes predicted in the short term with global climate change, therefore providing an environment suitable for studying future effects of climate change on terrestrial ecosystems.

  19. Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate

    SciTech Connect (OSTI)

    Deng, Yi

    2014-11-24

    DOE-GTRC-05596 11/24/2104 Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate PI: Dr. Yi Deng (PI) School of Earth and Atmospheric Sciences Georgia Institute of Technology 404-385-1821, yi.deng@eas.gatech.edu El Niño-Southern Oscillation (ENSO) and Annular Modes (AMs) represent respectively the most important modes of low frequency variability in the tropical and extratropical circulations. The projection of future changes in the ENSO and AM variability, however, remains highly uncertain with the state-of-the-science climate models. This project conducted a process-resolving, quantitative evaluations of the ENSO and AM variability in the modern reanalysis observations and in climate model simulations. The goal is to identify and understand the sources of uncertainty and biases in models’ representation of ENSO and AM variability. Using a feedback analysis method originally formulated by one of the collaborative PIs, we partitioned the 3D atmospheric temperature anomalies and surface temperature anomalies associated with ENSO and AM variability into components linked to 1) radiation-related thermodynamic processes such as cloud and water vapor feedbacks, 2) local dynamical processes including convection and turbulent/diffusive energy transfer and 3) non-local dynamical processes such as the horizontal energy transport in the oceans and atmosphere. In the past 4 years, the research conducted at Georgia Tech under the support of this project has led to 15 peer-reviewed publications and 9 conference/workshop presentations. Two graduate students and one postdoctoral fellow also received research training through participating the project activities. This final technical report summarizes key scientific discoveries we made and provides also a list of all publications and conference presentations resulted from research activities at Georgia Tech. The main findings include

  20. Temperature System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Soil Water and Temperature System SWATS In the realm of global climate modeling, ... An example is the soil water and temperature system (SWATS) (Figure 1). A SWATS is located ...

  1. Role of Low Frequency Sea Surface Temperature Modes with a Changing Climate in Modulating Atlantic Hurricane Activity

    SciTech Connect (OSTI)

    LaRow, Timothy

    2014-08-03

    The SSTs used in our study come from the Community Climate System Model version 4 (CCSM4) (Gent et al 2011) and from the Canadian Centre for Climate Modeling and Analysis (CanESM2) (Chylek et al20ll) climate models from the fifth Coupled Model Intercomparison Project (CMIP5) (Taylor et al2012). We've examined the tropical cyclones using both the historical simulation that employs volcanic and aerosol forcing as well as the representative concentration pathway 4.5 (RCP4.5). In addition, we've compared the present day North Atlantic tropical cyclone metrics from a previous study (LaRow, 2013) to these climate change experiments. The experimental setup is shown in Table 1. We considered the CMIP5 experiment number '3.2 historical' (Taylor et al,201l), which provides simulations of the recent past (1850-2005). The second set of CMIP5 SSTs is the RCp4.5 experiment where the radiative forcing stabilizes at 45W m-2 after 2100 (experiment number 4.1 in Taylor etal2}ll).

  2. Climate Data Operators (CDO)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change: Effects on Our Energy Climate Change: Effects on Our Energy July 11, 2013 - 9:00am Addthis The Energy Sector's Vulnerabilities to Climatic Conditions x Impacts Due to... Increasing Temperatures Decreasing Water Availability Increasing Storms, Flooding, and Sea Level Rise See All Impacts Map locations are approximate. Find out more about this data here. Click and drag the map to read about each location. April Saylor April Saylor Former Digital Outreach Strategist, Office of

  3. Interactions of CO{sub 2} with temperature and other climate variables: Response of vegetation. Final report, September 1, 1988--August 31, 1993

    SciTech Connect (OSTI)

    Acock, B.; Kimball, B.A.

    1995-02-01

    The current project was initiated in 1991, and full details of the scope of the project are contained in the original proposal. that original proposal was reviewed and approved for three years funding. Progress made in 1991-92 and 1992-93 was described in annual Progress Reports and Statements of Work. This document summarizes progress made over the duration of the project, but with an emphasis on the final year`s (1993-94) results. Several of the important experiments are ongoing, to the extent that alternative funding could be arranged, and analyses of data from several of the earlier completed experiments is continuing. Therefore, this Final Report is also intermediary in nature, and additional results from this project will be reported in the open literature in the future. The overall objectives of the project were: (1) to examine experimentally, for major crop species, the interacting effects of CO{sub 2} concentration, temperature, and water availability on plant growth and development, (2) to model these interactions, and (3) to continue developing physiologically-based mechanistic models for predicting crop response to increased CO{sub 2} concentration and future global climate change.

  4. Climate Vulnerabilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Vulnerabilities Climate Vulnerabilities The Energy Sector's Vulnerabilities to Climatic Conditions x Impacts Due to... Increasing Temperatures Decreasing Water Availability Increasing Storms, Flooding, and Sea Level Rise See All Impacts Map locations are approximate. Find out more about this data here. Click and drag the map to read about each location

  5. Carbon Dioxide Information Analysis Center and World Data Center-A for atmospheric trace gases: FY 1993 activities

    SciTech Connect (OSTI)

    Cushman, R.M.; Stoss, F.W. |

    1994-01-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provide technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC (including World Data Center-A for Atmospheric Trace Gases) during the period October 1, 1992, to September 30, 1993. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of NDPS, CMPS, technical reports, newsletters, fact sheets, specialty publications, and reprints are provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also presented.

  6. Carbon Dioxide Information Analysis Center: FY 1991 activities

    SciTech Connect (OSTI)

    Cushman, R.M.; Stoss, F.W.

    1992-06-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

  7. Climate Change/Paleoclimate & Geochronology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Climate Change The historic global agreement signed by nearly 200 nations at COP21 in Paris in November 2015 was a critical step forward on climate change. But we need ambitious action on clean energy to meet our climate goals, starting with greatly accelerated investment in innovation. Learn more about our plan to secure a better, safer future. Addressing the effects of climate change is a top priority of the Energy Department. As global temperature rise, wildfires, drought and

  8. Questions of bias in climate models

    SciTech Connect (OSTI)

    Smith, Steven J.; Wigley, Tom M.; Meinshausen, Malte; Rogelj, Joeri

    2014-08-27

    The recent work by Shindell usefully contributes to the debate over estimating climate sensitivity by highlighting an important aspect of the climate system: that climate forcings that occur over land result in a more rapid temperature response than forcings that are distributed more uniformly over the globe. While, as noted in this work, simple climate models may be biased by assuming the same temperature response for all forcing agents, the implication that the MAGICC model is biased in this way is not correct.

  9. ARM - Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Climate Climate refers to the long-term changes in ...

  10. Carbon Dioxide Information Analysis Center: FY 1992 activities

    SciTech Connect (OSTI)

    Cushman, R.M.; Stoss, F.W.

    1993-03-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIACs staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1991 to September 30, 1992. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. As analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, fact sheets, specialty publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

  11. Climate Change

    Broader source: Energy.gov [DOE]

    The Energy Department is fighting climate change with research, clean fossil energy technology, domestic renewable energy development and more energy efficient appliances, homes, businesses and vehicles.

  12. Arctic Climate Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable ... Arctic Climate Measurements Global Climate Models Software Sustainable Subsurface ...

  13. Global Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable ... Climate & Earth Systems Climate Measurement & Modeling Arctic Climate Measurements Global ...

  14. The global climate for December 1990-February 1991: Strong temperature and precipitation contrasts over North America and Eurasia; mixed ENSO conditions in the tropics

    SciTech Connect (OSTI)

    Chelliah, M. )

    1993-07-01

    During most of the December 1990-February 1991 season sharp transcontinental temperature anomaly contrasts were evident in North America, Eurasia, and Australia. Large-scale atmospheric precipitations are more difficult to characterize. In the equatorial tropics there was some evidence of conditions similar to ENSO near the date line, but an almost complete failure of other ENSO components to appear in the east Pacific and in the tropical atmospheric circulation. 12 refs., 21 figs., 1 tab.

  15. Climate Zones

    Broader source: Energy.gov [DOE]

    Building America determines building practices based on climate zones to achieve the most energy savings in a home. This page offers some general guidelines on the definitions of the various...

  16. Climate Change and National Security

    SciTech Connect (OSTI)

    Malone, Elizabeth L.

    2013-02-01

    Climate change is increasingly recognized as having national security implications, which has prompted dialogue between the climate change and national security communities – with resultant advantages and differences. Climate change research has proven useful to the national security community sponsors in several ways. It has opened security discussions to consider climate as well as political factors in studies of the future. It has encouraged factoring in the stresses placed on societies by climate changes (of any kind) to help assess the potential for state stability. And it has shown that, changes such as increased heat, more intense storms, longer periods without rain, and earlier spring onset call for building climate resilience as part of building stability. For the climate change research community, studies from a national security point of view have revealed research lacunae, for example, such as the lack of usable migration studies. This has also pushed the research community to consider second- and third-order impacts of climate change, such as migration and state stability, which broadens discussion of future impacts beyond temperature increases, severe storms, and sea level rise; and affirms the importance of governance in responding to these changes. The increasing emphasis in climate change science toward research in vulnerability, resilience, and adaptation also frames what the intelligence and defense communities need to know, including where there are dependencies and weaknesses that may allow climate change impacts to result in security threats and where social and economic interventions can prevent climate change impacts and other stressors from resulting in social and political instability or collapse.

  17. Climate Change Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing the Impact of Climate Change on America's Water, Land, and Other Natural and Cultural Resources Energy and Climate Change Council DOI Climate Science Centers ...

  18. Special Lecture - Climate Prisms: Understanding Climate Change...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Special Lecture - Climate Prisms Special Lecture - Climate Prisms: Understanding Climate Change for All WHEN: Feb 17, 2015 5:30 PM - 7:00 PM WHERE: Bradbury Science Museum, 1350...

  19. Climate SIGNATURES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SIGNATURES Fingerprints of a Dynamic Planet A Science of Signatures Plan 2 Climate Signatures for National Security Century of Change Los Alamos National Laboratory's charge is to develop science and technology that will make the Nation safer and enhance our global standing. This breadth of mission scope requires careful planning and effective cooperation with partners and other governmental agencies. The document you are holding is one of the products of ongoing efforts that are designed to

  20. Climate change

    ScienceCinema (OSTI)

    Iversen, Colleen

    2014-05-23

    Ecologist Colleen Iversen uses field study in Minnesota and Alaska to understand how increased atmospheric carbon dioxide and warmer temperatures affect plant growth.

  1. Climate change

    SciTech Connect (OSTI)

    Iversen, Colleen

    2014-05-02

    Ecologist Colleen Iversen uses field study in Minnesota and Alaska to understand how increased atmospheric carbon dioxide and warmer temperatures affect plant growth.

  2. Forest phenology and a warmer climate - Growing season extension...

    Office of Scientific and Technical Information (OSTI)

    Predicting forest responses to warming climates relies on assumptions about niche and ... northern species advanced, despite temperatures well beyond those of the realized niche. ...

  3. Energy Department Releases Climate Plans on Fifth Anniversary...

    Broader source: Energy.gov (indexed) [DOE]

    of Energy today released plans for reducing greenhouse gas emissions and preparing for climate change impacts such as flooding, sea level rise, severe weather and temperature...

  4. Tribal Climate Change Webinars: BIA's Climate Change Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Climate Change Webinars: BIA's Climate Change Competitive Award Process Overview Tribal Climate Change Webinars: BIA's Climate Change Competitive Award Process Overview...

  5. MCA4Climate - Guidance for scientifically sound climate change...

    Open Energy Info (EERE)

    MCA4Climate - Guidance for scientifically sound climate change planning Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Multicriteria Analysis for Climate (MCA4climate)...

  6. On solar geoengineering and climate uncertainty

    SciTech Connect (OSTI)

    MacMartin, Douglas; Kravitz, Benjamin S.; Rasch, Philip J.

    2015-09-03

    Uncertainty in the climate system response has been raised as a concern regarding solar geoengineering. Here we show that model projections of regional climate change outcomes may have greater agreement under solar geoengineering than with CO2 alone. We explore the effects of geoengineering on one source of climate system uncertainty by evaluating the inter-model spread across 12 climate models participating in the Geoengineering Model Intercomparison project (GeoMIP). The model spread in regional temperature and precipitation changes is reduced with CO2 and a solar reduction, in comparison to the case with increased CO2 alone. That is, the intermodel spread in predictions of climate change and the model spread in the response to solar geoengineering are not additive but rather partially cancel. Furthermore, differences in efficacy explain most of the differences between models in their temperature response to an increase in CO2 that is offset by a solar reduction. These conclusions are important for clarifying geoengineering risks.

  7. Climate Leadership Conference

    Broader source: Energy.gov [DOE]

    The annual Climate Leadership Conference convenes a global audience of climate, energy, and sustainability professionals to address climate change through policy, innovation, and business solutions. Now in its fifth year, the 2016 event will host the first U.S. climate conference post-Paris to further accelerate climate solutions and a low-carbon economy.

  8. Climate Data Operators (CDO)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Data Operators (CDO) Climate Data Operators (CDO) Description and Overview CDO is a large tool set for working on climate data. NetCDF 34, GRIB including SZIP compression, ...

  9. Assessing Climate Uncertainty

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Uncertainty The uncertainty in climate change and in its impacts is of great concern to the international community. While the ever-growing body of scientific evidence substantiates present climate change, the driving concern about this issue lies in the consequences it poses to humanity. Policy makers will most likely need to make decisions about climate policy before climate scientists have quantified all relevant uncertainties about the impacts of climate change. Sandia scientists

  10. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman ... DOESC-ARM-14-003 ARM Climate Research Facility Quarterly Ingest Report First Quarter: ...

  11. Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Global Climate & Energy HomeTag:Global Climate & Energy Electricity use by water service sector and county. Shown are electricity ...

  12. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman ... DOESC-ARM-14-028 ARM Climate Research Facility Quarterly Ingest Report Fourth Quarter: ...

  13. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman ... DOESC-ARM-15-003 ARM Climate Research Facility Quarterly Ingest Report First Quarter: ...

  14. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate change cripples forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality ...

  15. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOESC-ARM-15-019 ARM Climate Research Facility Quarterly Value-Added Product Report ... implemented by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. ...

  16. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOESC-ARM-15-020 ARM Climate Research Facility Quarterly Ingest Report Second Quarter: ... maintained by the Atmospheric Radiation Measurement (ARM) Climate Research Facility. ...

  17. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman April ... DOESC-ARM-14-014 ARM Climate Research Facility Quarterly Ingest Report Second Quarter: ...

  18. Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Team Attends World Water Week in Stockholm Climate, Energy, Global Climate & Energy, Modeling, Modeling & Analysis, News, News & Events, Water Security Sandia Team Attends World ...

  19. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    during years with abnormally wet winters While we cannot observe future climate, Williams said, we can consider projections of future climate trends produced by a collection of...

  20. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Cripples Forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality...

  1. Climate selection and development of climate indicators

    SciTech Connect (OSTI)

    Bowen, W.M.; Moreno, S.; Olsen, A.R.

    1982-09-01

    A climate analysis procedure for selecting climate locations which would represent the variation in climate conditions throughout the United States is documented. Separate energy analysis projects for three building categories were to use the results of the climate location project. The categories are: commercial buildings (including multifamily residences), single family residences, and mobile homes. The overall objectives, approach, and method used for all three categories are presented, then the specific application of the general method to each building category is discussed. Climate selection results, conclusions, recommendations, and limits for each building category are presented within the description of the application of the method for that category. (LEW)

  2. The instrumental climate history of southwestern Colorado

    SciTech Connect (OSTI)

    Doesken, N.J.; McKee, T.B.

    1995-09-01

    Instrumental observations of the climate of southwestern Colorado date back to about 1880. Climatic conditions since the late 19th century will be described with emphasis on temperatures, temperature ranges and observed precipitation. Typical seasonal patterns of temperature and precipitation will be shown, and variations and apparent trends over time will be discussed. Drought characteristics will be described based on a standardized precipitation index developed for Colorado. Finally, brief comments on the challenge of collecting accurate and consistent long-term data will be given.

  3. Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CRF_climatechange Permalink Gallery Understanding Hazardous Combustion Byproducts Reduces Factors Impacting Climate Change CRF, Global Climate & Energy, News, News & Events, Transportation Energy Understanding Hazardous Combustion Byproducts Reduces Factors Impacting Climate Change By Micheal Padilla Researchers at Sandia's Combustion Research Facility are developing the understanding necessary to build cleaner combustion technologies that will in turn reduce climate impact. Their work

  4. EPA Climate Leadership Conference

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA), in collaboration with the Association of Climate Change Officers (ACCO), Center for Climate and Energy Solutions (C2ES), and the Climate Registry, is hosting the Climate Leadership Conference in Washington, D.C., on Feb. 23-25, 2015.

  5. Climate Leadership Conference

    Broader source: Energy.gov [DOE]

    Hosted and organized by the Association of Climate Change Officers (ACCO), Center for Climate and Energy Solutions (C2ES), and the Climate Registry, the three-day conference will showcase how new business opportunities, current policies, technologies, climate solutions and energy transformation will drive our low-carbon future.

  6. Electric vehicle climate control

    SciTech Connect (OSTI)

    Dauvergne, J.

    1994-04-01

    EVs have insufficient energy sources for a climatic comfort system. The heat rejection of the drivetrain is dispersed in the vehicle (electric motor, batteries, electronic unit for power control). Its level is generally low (no more than 2-kW peaks) and variable according to the trip profile, with no heat rejection at rest and a maximum during regenerative braking. Nevertheless, it must be used for heating. It is not realistic to have the A/C compressor driven by the electric traction motor: the motor does not operate when the vehicle is at rest, precisely when maximum cooling power is required. The same is true for hybrid vehicles during electric operation. It is necessary to develop solutions that use stored onboard energy either from the traction batteries or specific storage source. In either case, it is necessary to design the climate control system to use the energy efficiently to maximize range and save weight. Heat loss through passenger compartment seals and the walls of the passenger compartment must be limited. Plastic body panes help to reduce heat transfer, and heat gain is minimized with insulating glazing. This article describes technical solutions to solve the problem of passenger thermal comfort. However, the heating and A/C systems of electrically operated vehicles may have marginal performance at extreme outside temperatures.

  7. NREL: Climate Neutral Research Campuses - Implementing the Climate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implementing the Climate Action Plan When implementing climate action plans on research campuses, two important and related questions must be answered. How do we pay for climate ...

  8. Formulating Climate Change Scenarios to Inform Climate - Resilient...

    Open Energy Info (EERE)

    Formulating Climate Change Scenarios to Inform Climate - Resilient Development Strategies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Formulating Climate Change...

  9. Energy Department Releases Climate Plans on Fifth Anniversary of President Obama’s Sustainability Initiative

    Broader source: Energy.gov [DOE]

    As a part of the President’s Climate Action Plan, the Department of Energy today released plans for reducing greenhouse gas emissions and preparing for climate change impacts such as flooding, sea level rise, severe weather and temperature extremes.

  10. Time varying arctic climate change amplification

    SciTech Connect (OSTI)

    Chylek, Petr; Dubey, Manvendra K; Lesins, Glen; Wang, Muyin

    2009-01-01

    During the past 130 years the global mean surface air temperature has risen by about 0.75 K. Due to feedbacks -- including the snow/ice albedo feedback -- the warming in the Arctic is expected to proceed at a faster rate than the global average. Climate model simulations suggest that this Arctic amplification produces warming that is two to three times larger than the global mean. Understanding the Arctic amplification is essential for projections of future Arctic climate including sea ice extent and melting of the Greenland ice sheet. We use the temperature records from the Arctic stations to show that (a) the Arctic amplification is larger at latitudes above 700 N compared to those within 64-70oN belt, and that, surprisingly; (b) the ratio of the Arctic to global rate of temperature change is not constant but varies on the decadal timescale. This time dependence will affect future projections of climate changes in the Arctic.

  11. Eos Climate | Open Energy Information

    Open Energy Info (EERE)

    Eos Climate Place: South San Francisco, California Zip: 94080 Product: California-based firm focused on developing climate change mitigation strategies. References: Eos Climate1...

  12. Climatic Solar | Open Energy Information

    Open Energy Info (EERE)

    Climatic Solar Jump to: navigation, search Logo: Climatic Solar Name: Climatic Solar Address: 650 2nd Lane Place: Vero Beach, Florida Zip: 32962 Sector: Solar Product: solar energy...

  13. Future warming patterns linked to today’s climate variability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dai, Aiguo

    2016-01-11

    The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations during 1950–1979more » having more GHG-induced warming in the 21st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less

  14. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman April ... DOESC-ARM-14-009 ARM Climate Research Facility Quarterly Value-Added Product Report First ...

  15. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman January ... DOESC-ARM-14-002 ARM Climate Research Facility Quarterly Value-Added Product Report First ...

  16. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman October ... DOESC-ARM-14-027 ARM Climate Research Facility Quarterly Value-Added Product Report ...

  17. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman ... DOESC-ARM-11-023 ARM Climate Research Facility Quarterly Value-Added Product Report ...

  18. ARM - Climate Change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Climate Change A Student's Guide to Global Climate Change ...

  19. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ARM Climate Research Facility Quarterly Ingest Status Report A Koontz C Sivaraman July ... DOESC-ARM-14-023 ARM Climate Research Facility Quarterly Ingest Report Third Quarter: ...

  20. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman July 2015 ... DOESC-ARM-15-038 ARM Climate Research Facility Quarterly Value-Added Product Report Third ...

  1. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman January ... DOESC-ARM-15-002 ARM Climate Research Facility Quarterly Value-Added Product Report First ...

  2. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman July 2014 ... DOESC-ARM-14-020 ARM Climate Research Facility Quarterly Value-Added Product Report Third ...

  3. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman February ... DOESC-ARM-12-002 ARM Climate Research Facility Quarterly Value-Added Product Report First ...

  4. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman ... DOESC-ARM-11-021 ARM Climate Research Facility Quarterly Value-Added Product Report Third ...

  5. Climate Leadership Conference

    Broader source: Energy.gov [DOE]

    The Climate Leadership Conference is your annual exchange for addressing global climate change through policy, innovation, and business solutions. Forward-thinking lead­ers from busi­ness, gov­ern...

  6. Indigenous Climate Justice Symposium

    Broader source: Energy.gov [DOE]

    The Indigenous Climate Justice Symposium brings together Native speakers who are working to keep fossil fuels in the ground, by stopping coals terminals, oil trains and fracking, and protecting treaty resources from the threat of climate change.

  7. Climate change stored below the earth`s surface

    SciTech Connect (OSTI)

    Cermak, V.; Safanda, J.; Kresl, M.

    1997-12-31

    Earth`s subsurface has a certain capability to remember what has happened on its surface tens to hundreds (or even thousands) years ago. Long-term climate changes accompanied by variations in tile mean annual temperature determine tile soil temperature, the time variations of which then propagate downwards with an attenuated amplitude and delayed phase. Ground surface temperature (GST) history, reflecting the past climate, can thus be evaluated by analysing its excursions left on the present-day temperature-depth T(z) distribution measured by precise temperature logging in the boreholes. Whereas the depths of several hundred metres may still keep and reveal a reliable record oil the climate of the past several centuries, tile uppermost layer of 100-150 in presents a plentiful archive of the recent global warming. Several characteristic examples of extracted climate recollections from holes all over the world will be resented and discussed.

  8. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2001 Annual Report

    SciTech Connect (OSTI)

    Cushman, R.M.

    2002-10-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels. CDIAC is located within the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. CDIAC is co-located with ESD researchers investigating global-change topics, such as the global carbon cycle and the effects of carbon dioxide on climate and vegetation. CDIAC staff are also connected with current ORNL research on related topics, such as renewable energy and supercomputing technologies. CDIAC is supported by the Environmental Sciences Division (Jerry Elwood, Director) of DOE's Office of Biological and Environmental Research. CDIAC represents DOE in the multi-agency Global Change Data and Information System (GCDIS). Wanda Ferrell is DOE's Program Manager with overall responsibility for CDIAC. Roger Dahlman is responsible for CDIAC's AmeriFlux tasks, and Anna Palmisano for CDIAC's Ocean Data tasks. CDIAC is made up of three groups: Data

  9. Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Participated in the 2013 Domenici Public Policy Conference Carbon Capture & Storage, Carbon Storage, Climate, Earth Sciences Research Center, Energy, Global Climate & Energy, Global Climate & Energy, News, News & Events, Systems Analysis, Systems Engineering, Water Security Sandia Participated in the 2013 Domenici Public Policy Conference Marianne Walck, Director of Sandia's Geoscience, Climate, and Consequence Effects Center, spoke on "Hydraulic Fracturing: The Role

  10. ACCO Climate Change Adaptation Workshop

    Broader source: Energy.gov [DOE]

    The Association of Climate Change Officers (ACCO) is hosting a two-day training workshop titled, "Climate Change Adaptation" to cover climate science, impacts from severe climate events, tools to screen and access vulnerabilities, and strategies to lead organizational change.

  11. Carbon Dioxide Information Analysis Center: FY 1991 activities

    SciTech Connect (OSTI)

    Cushman, R.M.; Stoss, F.W.

    1992-06-01

    During the course of a fiscal year, Oak Ridge National Laboratory's Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC's staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC's staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC's response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC's information management systems, professional networking, and special bilateral agreements are also described.

  12. Global Climate Change and Agriculture

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.

    2009-01-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change released in 2007 significantly increased our confidence about the role that humans play in forcing climate change. There is now a high degree of confidence that the (a) current atmospheric concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) far exceed those of the pre-industrial era, (b) global increases in CO2 arise mainly from fossil fuel use and land use change while those of CH4 and N2O originate primarily from agricultural activities, and (c) the net effect of human activities since 1750 has led to a warming of the lower layers of the atmosphere, with an increased radiative forcing of 1.6 W m-2. Depending on the scenario of human population growth and global development, mean global temperatures could rise between 1.8 and 4.0 C by the end of the 21st century.

  13. Terrestrial Climate Change and Ecosystem Response Recorded in Lake

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sediments and Related Deposits terrestrial climate change Terrestrial Climate Change and Ecosystem Response Recorded in Lake Sediments and Related Deposits Reconstruction of past terrestrial climate and ecosystem response relies on archives that incorporate and preserve information about changes in temperature, precipitation, nutrients, vegetation, fire history, etc. The resolution and length of such paleoclimate/ecological records is dependent on the type of archive. Although much

  14. Climate Change: Effects on Our Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change: Effects on Our Energy Climate Change: Effects on Our Energy July 11, 2013 - 9:00am Addthis The Energy Sector's Vulnerabilities to Climatic Conditions x Impacts Due to... Increasing Temperatures Decreasing Water Availability Increasing Storms, Flooding, and Sea Level Rise See All Impacts Map locations are approximate. Find out more about this data here. Click and drag the map to read about each location. April Saylor April Saylor Former Digital Outreach Strategist, Office of

  15. Climate, Earth system project draws on science powerhouses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate, Earth system project draws on science powerhouses Climate, Earth system project draws on science powerhouses The project will focus initially on three climate-change science drivers and corresponding questions to be answered during the project's initial phase. September 25, 2014 Computer modeling provides policymakers with essential information on such data as global sea surface temperatures related to specific currents. Computer modeling provides policymakers with essential information

  16. Climate change and maize yield in Iowa

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Hong; Twine, Tracy E.; Girvetz, Evan

    2016-05-24

    Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21st century as compared with late 20th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model with output frommore » six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20th century to middle and late 21st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Lastly, our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10-20% by the end of the 21st century.« less

  17. Climate Change Projections of the North American Regional Climate Change Assessment Program (NARCCAP)

    SciTech Connect (OSTI)

    Mearns, L. O.; Sain, Steve; Leung, Lai-Yung R.; Bukovsky, M. S.; McGinnis, Seth; Biner, S.; Caya, Daniel; Arritt, R.; Gutowski, William; Takle, Eugene S.; Snyder, Mark A.; Jones, Richard; Nunes, A M B.; Tucker, S.; Herzmann, D.; McDaniel, Larry; Sloan, Lisa

    2013-10-01

    We investigate major results of the NARCCAP multiple regional climate model (RCM) experiments driven by multiple global climate models (GCMs) regarding climate change for seasonal temperature and precipitation over North America. We focus on two major questions: How do the RCM simulated climate changes differ from those of the parent GCMs and thus affect our perception of climate change over North America, and how important are the relative contributions of RCMs and GCMs to the uncertainty (variance explained) for different seasons and variables? The RCMs tend to produce stronger climate changes for precipitation: larger increases in the northern part of the domain in winter and greater decreases across a swath of the central part in summer, compared to the four GCMs driving the regional models as well as to the full set of CMIP3 GCM results. We pose some possible process-level mechanisms for the difference in intensity of change, particularly for summer. Detailed process-level studies will be necessary to establish mechanisms and credibility of these results. The GCMs explain more variance for winter temperature and the RCMs for summer temperature. The same is true for precipitation patterns. Thus, we recommend that future RCM-GCM experiments over this region include a balanced number of GCMs and RCMs.

  18. OVERVIEW OF THE CLIMATE OF THE NEVADA TEST SITE (NTS) General

    National Nuclear Security Administration (NNSA)

    Consequently, the climate is arid with limited precipitation, low humidity, large daily temperature ranges, and intense solar radiation during the summer months. Precipitation Two ...

  19. The Climate Policy Narrative for a Dangerously Warming World

    SciTech Connect (OSTI)

    Sanford, Todd; Frumhoff, Peter; Luers, Amy; Gulledge, Jay

    2014-01-01

    It is time to acknowledge that global average temperatures will likely rise above the 2 C policy target and consider how that deeply troubling prospect should affect priorities for communicating and managing the risks of a dangerously warming climate.

  20. Changes in Concurrent Precipitation and Temperature Extremes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hao, Zengchao; AghaKouchak, Amir; Phillips, Thomas J.

    2013-08-01

    While numerous studies have addressed changes in climate extremes, analyses of concurrence of climate extremes are scarce, and climate change effects on joint extremes are rarely considered. This study assesses the occurrence of joint (concurrent) monthly continental precipitation and temperature extremes in Climate Research Unit (CRU) and University of Delaware (UD) observations, and in 13 Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate simulations. Moreover, the joint occurrences of precipitation and temperature extremes simulated by CMIP5 climate models are compared with those derived from the CRU and UD observations for warm/wet, warm/dry, cold/wet, and cold/dry combinations of joint extremes.more » The number of occurrences of these four combinations during the second half of the 20th century (1951–2004) is assessed on a common global grid. CRU and UD observations show substantial increases in the occurrence of joint warm/dry and warm/wet combinations for the period 1978–2004 relative to 1951–1977. The results show that with respect to the sign of change in the concurrent extremes, the CMIP5 climate model simulations are in reasonable overall agreement with observations. The results reveal notable discrepancies between regional patterns and the magnitude of change in individual climate model simulations relative to the observations of precipitation and temperature.« less

  1. Changes in Concurrent Precipitation and Temperature Extremes

    SciTech Connect (OSTI)

    Hao, Zengchao; AghaKouchak, Amir; Phillips, Thomas J.

    2013-08-01

    While numerous studies have addressed changes in climate extremes, analyses of concurrence of climate extremes are scarce, and climate change effects on joint extremes are rarely considered. This study assesses the occurrence of joint (concurrent) monthly continental precipitation and temperature extremes in Climate Research Unit (CRU) and University of Delaware (UD) observations, and in 13 Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate simulations. Moreover, the joint occurrences of precipitation and temperature extremes simulated by CMIP5 climate models are compared with those derived from the CRU and UD observations for warm/wet, warm/dry, cold/wet, and cold/dry combinations of joint extremes. The number of occurrences of these four combinations during the second half of the 20th century (1951–2004) is assessed on a common global grid. CRU and UD observations show substantial increases in the occurrence of joint warm/dry and warm/wet combinations for the period 1978–2004 relative to 1951–1977. The results show that with respect to the sign of change in the concurrent extremes, the CMIP5 climate model simulations are in reasonable overall agreement with observations. The results reveal notable discrepancies between regional patterns and the magnitude of change in individual climate model simulations relative to the observations of precipitation and temperature.

  2. Climate Change Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Interior Climate Change Response "From the Everglades to the Great Lakes to Alaska and everywhere in between, climate change is a leading threat to natural and cultural resources across America, and tribal communities are often the hardest hit by severe weather events such as droughts, floods and wildfires" - Secretary of the Interior Sally Jewell "Impacts of climate change are increasingly evident for American Indian and Alaska Native communities and, in some cases, threaten

  3. Climate Change Webinar Series

    Broader source: Energy.gov [DOE]

    Experts will provide findings from the Quadrennial Energy Review (QER) and outline federal energy policy objectives, proposals, and actions as they relate to climate change and resilience for...

  4. Climate & Earth Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human-Induced Climate Change Reduces Chance of Flooding in Okavango Delta Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear...

  5. Climate Time-Machine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Time-Machine Climate Time-Machine 20th Century Reanalysis Project Explores Earth's Past and Future Climate January 25, 2011 Berkeley Lab Contact: Jon Bashor, jbashor@lbl.gov, +1 510 486 5849 Wiley-Blackwell Contact: Ben Norman, lifesciencenews@wiley.com,+44(0)1243 770 375 Science Contact: Jeffrey Whitaker, Jeffrey.S.Whitaker@noaa.gov, +1 303 497 6313 2011-01-25-20C-Climate.jpg A dust storm approaching Stratford, TX on April 18, 1935. The 20th Century Reanalysis Project will provide

  6. Uncertainty in Simulating Wheat Yields Under Climate Change

    SciTech Connect (OSTI)

    Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, Jerry; Ruane, Alex; Boote, K. J.; Thorburn, Peter; Rotter, R.P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P.K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, AJ; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, Robert; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, Roberto C.; Kersebaum, K.C.; Mueller, C.; Naresh Kumar, S.; Nendel, C.; O'Leary, G.O.; Olesen, JE; Osborne, T.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stockle, Claudio O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J.

    2013-09-01

    Anticipating the impacts of climate change on crop yields is critical for assessing future food security. Process-based crop simulation models are the most commonly used tools in such assessments1,2. Analysis of uncertainties in future greenhouse gas emissions and their impacts on future climate change has been increasingly described in the literature3,4 while assessments of the uncertainty in crop responses to climate change are very rare. Systematic and objective comparisons across impact studies is difficult, and thus has not been fully realized5. Here we present the largest coordinated and standardized crop model intercomparison for climate change impacts on wheat production to date. We found that several individual crop models are able to reproduce measured grain yields under current diverse environments, particularly if sufficient details are provided to execute them. However, simulated climate change impacts can vary across models due to differences in model structures and algorithms. The crop-model component of uncertainty in climate change impact assessments was considerably larger than the climate-model component from Global Climate Models (GCMs). Model responses to high temperatures and temperature-by-CO2 interactions are identified as major sources of simulated impact uncertainties. Significant reductions in impact uncertainties through model improvements in these areas and improved quantification of uncertainty through multi-model ensembles are urgently needed for a more reliable translation of climate change scenarios into agricultural impacts in order to develop adaptation strategies and aid policymaking.

  7. Predicting the Response of Electricity Load to Climate Change

    SciTech Connect (OSTI)

    Sullivan, Patrick; Colman, Jesse; Kalendra, Eric

    2015-07-28

    Our purpose is to develop a methodology to quantify the impact of climate change on electric loads in the United States. We perform simple linear regression, assisted by geospatial smoothing, on paired temperature and load time-series to estimate the heating- and coolinginduced sensitivity to temperature across 300 transmission zones and 16 seasonal and diurnal time periods. The estimated load sensitivities can be coupled with climate scenarios to quantify the potential impact of climate change on load, with a primary application being long-term electricity scenarios. The method allows regional and seasonal differences in climate and load response to be reflected in the electricity scenarios. While the immediate product of this analysis was designed to mesh with the spatial and temporal resolution of a specific electricity model to enable climate change scenarios and analysis with that model, we also propose that the process could be applied for other models and purposes.

  8. HVAC design considerations for cold climates

    SciTech Connect (OSTI)

    Armstrong, R.S. )

    1993-09-01

    The design of heating, ventilating and air-conditioning (HVAC) systems in cold climate areas requires modifications to the standard designs used in more temperate climates. While most of the US experiences freezing temperatures at least once during the winter months, certain areas experience several months of extended cold. No single location in the US experiences these extended cold conditions more than Alaska. While most areas in the continental US will not require modifications to standard design guidelines, many design modifications commonly used in the Arctic regions of Alaska and Canada can also be applied to any cold climate area in the continental US. The geographic area of Alaska is about one-third the size of the continental US. Climatic extremes range from Ketchikan with 6.697 heating degree days (at 55[degree]21 minutes N latitude) to Barrow with 20,341 heating degree days (at 71[degree]18 minutes N latitude), according to the Arctic Environmental Information and Data Center. The suggestions in this article are a compilation of general approaches the authors used to address the challenge of cold climate design. Of course, each detail design must be adapted to the specific climate and application at hand.

  9. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 1999 Annual Report

    SciTech Connect (OSTI)

    Cushman, R.M.

    2000-03-31

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global-change data and information analysis center of the Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has--since its inception in 1982--enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea level. CDIAC is located within the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. CDIAC is co-located with ESD researchers investigating global-change topics, such as the global carbon cycle and the effects of carbon dioxide on vegetation. CDIAC staff are also connected with current ORNL research on related topics, such as renewable energy and supercomputing technologies. CDIAC is supported by the Environmental Sciences Division (Jerry Elwood, Acting Director) of DOE's Office of Biological and Environmental Research. CDIAC's FY 1999 budget was 2.2M dollars. CDIAC represents the DOE in the multi-agency Global Change Data and Information System. Bobbi Parra, and Wanda Ferrell on an interim basis, is DOE's Program Manager with responsibility for CDIAC. CDIAC comprises three groups, Global Change Data, Computer Systems, and Information

  10. Climate Change Adaptation | Department of Energy

    Energy Savers [EERE]

    Climate Change Adaptation Climate Change Adaptation DOE is adapting to climate change by applying a risk-based resiliency approach to identify and minimize climate-related...

  11. NREL Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    NREL Climate Activities (Redirected from Climate Activities at NREL) Jump to: navigation, search Logo: Climate Activities at NREL Name Climate Activities at NREL AgencyCompany...

  12. European Climate Foundation (ECF) | Open Energy Information

    Open Energy Info (EERE)

    European Climate Foundation (ECF) (Redirected from European Climate Foundation) Jump to: navigation, search Logo: European Climate Foundation (ECF) Name: European Climate...

  13. Regional Climate Change Webinar Presentation | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change Webinar Presentation Regional Climate Change Webinar Presentation Regional Climate Change Webinar presentation dated August 6, 2015. Regional Climate Change Webinar ...

  14. Near-Term Climate Mitigation by Short-Lived Forcers

    SciTech Connect (OSTI)

    Smith, Steven J.; Mizrahi, Andrew H.

    2013-08-12

    Emissions reductions focused on anthropogenic climate forcing agents with relatively short atmospheric lifetimes such as methane (CH4) and black carbon (BC) have been suggested as a strategy to reduce the rate of climate change over the next several decades. We find that reductions of methane and BC would likely have only a modest impact on near-term climate warming. Even with maximally feasible reductions phased in from 2015 to 2035, global mean temperatures in 2050 are reduced by 0.16 °C, with an uncertainty range of 0.04-0.36°C, with the high end of this range only possible if total historical aerosol forcing is small. More realistic mitigation scenarios would likely provide a smaller climate benefit. The climate benefits from targeted reductions in short-lived forcing agents are smaller than previously estimated and are not substantially different in magnitude from the benefits due to a comprehensive climate policy.

  15. ClimateChangeLIVE Webcast: Join the Climate Conversation

    Broader source: Energy.gov [DOE]

    Join ClimateChangeLIVE's webcast, bringing together students and climate experts for a discussion about climate change and what students and classes around the country are doing to be part of the climate solution. Students will be able to interact with climate scientists and experts online through Facebook and Twitter. A GreenWorks! grant will be offered to help schools with climate action projects.

  16. Tree Death Study's Climate Change Connections

    ScienceCinema (OSTI)

    McDowell, Nate

    2014-06-25

    What are the exact physiological mechanisms that lead to tree death during prolonged drought and rising temperatures? These are the questions that scientists are trying to answer at a Los Alamos National Laboratory research project called SUMO. SUMO stands for SUrvival/MOrtality study; it's a plot of land on the Lab's southern border that features 18 climate controlled tree study chambers and a large drought structure that limits rain and snowfall. Scientists are taking a wide variety of measurements over a long period of time to determine what happens during drought and warming, and what the connections and feedback loops might be between tree death and climate change.

  17. Tree Death Study's Climate Change Connections

    SciTech Connect (OSTI)

    McDowell, Nate

    2012-09-10

    What are the exact physiological mechanisms that lead to tree death during prolonged drought and rising temperatures? These are the questions that scientists are trying to answer at a Los Alamos National Laboratory research project called SUMO. SUMO stands for SUrvival/MOrtality study; it's a plot of land on the Lab's southern border that features 18 climate controlled tree study chambers and a large drought structure that limits rain and snowfall. Scientists are taking a wide variety of measurements over a long period of time to determine what happens during drought and warming, and what the connections and feedback loops might be between tree death and climate change.

  18. Indigenous Climate Justice Symposium

    Broader source: Energy.gov [DOE]

    The Indigenous Climate Justice Symposium brings together Native speakers who are working to keep fossil fuels in the ground, by stopping coals terminals, oil trains and fracking, and protecting treaty resources from the threat of climate change. All events are free and open to Evergreen students and the public.

  19. NERSC Climate PIs Telecon!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Applications at NERSC Climate Projects --- 2 --- 75 Climate Projects at NERSC (AY2015) * Awards a re p ublished a t: - h%ps://www.nersc.gov/users/accounts/awarded---projects/2015--- alloca<on---awards/ * Or y ou c an s earch i n N IM * 29 p rojects u se C ESM o r C ESM c omponents. 2 47 u sers * 16 p rojects u se W RF. 3 6 u sers. --- 3 --- Climate Projects at NERSC (AY2015)-1 Repo Project T itle PI OrganizaMon Codes mp9 Climate C hange S imula<ons w ith C ESM: M oderate a nd H igh

  20. Economic impact of climate

    SciTech Connect (OSTI)

    Eddy, A.

    1980-05-01

    This volume summarizes the first two of a series of six workshops to investigate the economic impact of climate. These two workshops dealt mainly with input-output and econometric models. Potential for introducing weather and climate variables was discussed. A listing of topics and authors follows: Economic Models and the Identification of Climatic Effects on Economic Processes, Stan Johnson; Economic Modeling, Jim Morgan; Econometric Modeling: State of the Arts for the US Agricultural Industry, Abner Womack; Regional Input-Output Models: Understanding Their Application, Charles Lamphear; Measuring Regional Economic Impact Associated With Unfavorable Conditions During Crop Production Periods: A concept Paper, Charles Lamphear; Possible Applications of Input-Output Models in Climatic Impact Analysis, William Cooter; and Aspects of Input-Output Analysis Pertinent to Climate-Economic Modeling: Three Short Notes, William Cooter. (PSB)

  1. OPEN HOUSE - Climate Prisms: Arctic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An interactive exploration of Arctic climate science through prisms of the visual arts, literary arts, info-vis, scientific presentations and more. Climate Prisms: Arctic is...

  2. Climate Advisers | Open Energy Information

    Open Energy Info (EERE)

    and climate-related forest conservation. Climate Advisers is known for its vision, policy expertise, political acumen, and access to senior policymakers in the United States...

  3. IP_Climate_Poster 121312

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Title: Northern New Mexico Climate, Water Year 2012 at Los Alamos National Laboratory, ... The water year is a more hydrologically sound measure of climate and hydrological activity ...

  4. Changing Climate Doug Sisterson Environmental ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Change Minds about our Changing Climate Doug Sisterson Environmental Science Division, ... We are regularly confronted with arguments that deny climate change is happening or is a ...

  5. Climate Energy | Open Energy Information

    Open Energy Info (EERE)

    Climate Energy Jump to: navigation, search Name: Climate Energy Place: Witham, England, United Kingdom Zip: CM8 3UN Sector: Efficiency Product: Essex, UK, based provider of advice...

  6. New climate model predicts likelihood of Greenland ice melt, sea level rise

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and dangerous temperatures New climate model predicts likelihood of Greenland ice melt New climate model predicts likelihood of Greenland ice melt, sea level rise and dangerous temperatures A new computer model of accumulated carbon emissions predicts the likelihood of crossing several dangerous climate change thresholds. November 20, 2015 Greenland ice loss. Greenland ice loss. Contact Kevin Roark Communications Office (505) 665-9202 Email "The model is based on idealized

  7. Six- and three-hourly meteorological observations from 223 USSR stations

    SciTech Connect (OSTI)

    Razuvaev, V.N.; Apasova, E.B.; Martuganov, R.A.; Kaiser, D.P.

    1995-04-01

    This document describes a database containing 6- and 3-hourly meteorological observations from a 223-station network of the former Soviet Union. These data have been made available through cooperation between the two principal climate data centers of the United States and Russia: the National Climatic Data Center (NCDC), in Asheville, North Carolina, and the All-Russian Research Institute of Hydrometeorological Information -- World Data Centre (RIHMI-WDC) in Obninsk. Station records consist of 6- and 3-hourly observations of some 24 meteorological variables including temperature, weather type, precipitation amount, cloud amount and type, sea level pressure, relative humidity, and wind direction and speed. The 6-hourly observations extend from 1936 to 1965; the 3-hourly observations extend from 1966 through the mid-1980s (1983, 1984, 1985, or 1986; depending on the station). These data have undergone extensive quality assurance checks by RIHMI-WDC, NCDC, and the Carbon Dioxide Information Analysis Center (CDIAC). The database represents a wealth of meteorological information for a large and climatologically important portion of the earth`s land area, and should prove extremely useful for a wide variety of regional climate change studies. These data are available free of charge as a numeric data package (NDP) from CDIAC. The NDP consists of this document and 40 data files that are available via the Internet or on 8mm tape. The total size of the database is {approximately}2.6 gigabytes.

  8. Refining climate models

    ScienceCinema (OSTI)

    Warren, Jeff; Iversen, Colleen; Brooks, Jonathan; Ricciuto, Daniel

    2014-06-26

    Using dogwood trees, Oak Ridge National Laboratory researchers are gaining a better understanding of the role photosynthesis and respiration play in the atmospheric carbon dioxide cycle. Their findings will aid computer modelers in improving the accuracy of climate simulations.

  9. Climate Change Adaptation Planning

    Broader source: Energy.gov [DOE]

    This course provides an introduction to planning for climate change impacts, with examples of tribes that have been going through the adaptation planning process. The course is intended for tribal...

  10. Refining climate models

    SciTech Connect (OSTI)

    Warren, Jeff; Iversen, Colleen; Brooks, Jonathan; Ricciuto, Daniel

    2012-10-31

    Using dogwood trees, Oak Ridge National Laboratory researchers are gaining a better understanding of the role photosynthesis and respiration play in the atmospheric carbon dioxide cycle. Their findings will aid computer modelers in improving the accuracy of climate simulations.

  11. Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandians Published in American Chemical Society's Environmental Science & Technology Analysis, Climate, Energy, Global Climate & Energy, Modeling, Modeling & Analysis, News, News & Events, Systems Analysis, Water Security Sandians Published in American Chemical Society's Environmental Science & Technology Electricity use by water service sector and county. Shown are electricity use by (a) large-scale conveyance, (b) groundwater irrigation pumping, (c) surface water irrigation

  12. Arctic Climate Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Measurements - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  13. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate change cripples forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality will cause forest and species distributions to change substantially. October 1, 2012 A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the

  14. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Cripples Forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality will cause forest and species distributions to change substantially. October 1, 2012 A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the

  15. Climate change cripples forests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Cripples Forests Climate change cripples forests A team of scientists concluded that in the warmer and drier Southwest of the near future, widespread tree mortality will cause forest and species distributions to change substantially. October 1, 2012 A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the Southwest United States. Photo courtesy A. Park Williams. A dead pinon at the edge of the Grand Canyon, harbinger of the future for trees in the

  16. Climate Action Champion: Technical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy.gov/betterbuildings Climate Action Champion: Technical Assistance to the City of Seattle Planning for Seattle's new Building Energy Code Overview The City of Seattle, identified as a Climate Action Champion (CAC) by the Department of Energy (DOE), is revising its 2012 Energy Code, already one of the most progressive in the country. Seattle has made a pledge to be carbon neutral by 2050. Seattle received technical assistance from the Pacific Northwest National Laboratory in order to

  17. Climate Action Champions: Southeast Florida Regional Climate Change

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compact, FL | Department of Energy Southeast Florida Regional Climate Change Compact, FL Climate Action Champions: Southeast Florida Regional Climate Change Compact, FL The Southeast Florida Regional Climate Change Compact was executed by Broward, Miami-Dade, Monroe, and Palm Beach Counties in January 2010 to coordinate mitigation and adaptation efforts across county lines. The Compact represents a new form of regional climate governance designed to allow local governments to set the agenda

  18. Supercharger for Heat Pumps in Cold Climates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supercharger for Heat Pumps in Cold Climates Thomas J. Walter Mechanical Solutions, Inc. tjw@mechsol.com 518-320-8552 April 3, 2013 DOE SBIR Grant No. SC0006162 Concept is similar to superchargers for piston engine aircraft 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Electrically driven heat pumps are an effective method of extracting heat from ambient air. As air temperature falls, however, heat pump performance falls off, essentially limiting

  19. Beamline Temperatures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperatures Energy: 3.0000 GeV Current: 495.5347 mA Date: 09-Jan-2016 04:18:38 Beamline Temperatures Energy 3.0000 GeV Current 495.5 mA 09-Jan-2016 04:18:38 LN:MainTankLevel 112.0...

  20. Geoengineering the Earth's Climate

    ScienceCinema (OSTI)

    Google Tech Talks

    2009-09-01

    Emergency preparedness is generally considered to be a good thing, yet there is no plan regarding what we might do should we be faced with a climate emergency. Such an emergency could take the form of a rapid shift in precipitation patterns, a collapse of the great ice sheets, the imminent triggering of strong climate system feedbacks, or perhaps the loss of valuable ecosystems. Over the past decade, we have used climate models to investigate the potential to reverse some of the effects of greenhouse gases in the atmosphere by deflecting some incoming sunlight back to space. This would probably be most cost-effectively achieved with the placement of small particles in or above the stratosphere. Our model simulations indicate that such geoengineering approaches could potentially bring our climate closer to the state is was in prior to the introduction of greenhouse gases. This talk will present much of what is known about such geoengineering approaches, and raise a range of issues likely to stimulate lively discussion. Speaker: Ken Caldeira Ken Caldeira is a scientist at the Carnegie Institution Department of Global Ecology and a Professor (by courtesy) at the Stanford University Department of Environmental and Earth System Sciences. Previously, he worked for 12 years in the Energy and Environment Directorate at the Lawrence Livermore National Laboratory (Department of Energy). His research interests include the numerical simulation of Earth's climate, carbon, and biogeochemistry; ocean acidification; climate emergency response systems; evaluating approaches to supplying environmentally-friendly energy services; ocean carbon sequestration; long-term evolution of climate and geochemical cycles; and marine biogeochemical cycles. Caldeira has a B.A. in Philosophy from Rutgers College and an M.S. and Ph.D. in Atmospheric Sciences from New York University.

  1. Modeling Transient Response of Forests to Climate Change

    SciTech Connect (OSTI)

    Dale, Virginia H; Tharp, M Lynn; Lannom, Karen O.; Hodges, Donald G

    2010-01-01

    Our hypothesis is that a high diversity of dominant life forms in Tennessee forests conveys resilience to disturbance such as climate change. Because of uncertainty in climate change and their effects, three climate change scenarios for 2030 and 2080 from three General Circulation Models (GCMs) were used to simulate a range of potential climate conditions for the state. These climate changes derive from the Intergovernmental Panel on Climate Change (IPCC) A1B storyline that assumes rapid global economic growth. The precipitation and temperature projections from the three GCMs for 2030 and 2080 were related to changes in five ecological provinces using the monthly record of temperature and precipitation from 1980 to 1997 for each 1 km cell across the state as aggregated into the provinces. Temperatures are projected to increase in all ecological provinces in all months for all three GCMs for both 2030 and 2080. Precipitation differences from the long-term average are more complex but less striking. The forest ecosystem model LINKAGES was used to simulate conditions for five ecological provinces from 1989 to 2300. Average output projects changes in tree diversity and species composition in all ecological provinces in Tennessee with the greatest changes in the Southern Mixed Forest province. Projected declines in total tree biomass are followed by biomass recovery as species replacement occurs in stands. The Southern Mixed Forest province results in less diversity in dominant trees as well as lower overall biomass than projections for the other four provinces. The biomass and composition changes projected in this study differ from forest dynamics expected without climate change. These results suggest that biomass recovery following climate change is linked to dominant tree diversity in the southeastern forest of the US. The generality of this observation warrants further investigation, for it relates to ways that forest management may influence climate change effects.

  2. Active Climate Stabilization: Practical Physics-Based Approaches to Prevention of Climate Change

    DOE R&D Accomplishments [OSTI]

    Teller, E.; Hyde, T.; Wood, L.

    2002-04-18

    We offer a case for active technical management of the radiative forcing of the temperatures of the Earth's fluid envelopes, rather than administrative management of atmospheric greenhouse gas inputs, in order to stabilize both the global- and time-averaged climate and its mesoscale features. We suggest that active management of radiative forcing entails negligible--indeed, likely strongly negative--economic costs and environmental impacts, and thus best complies with the pertinent mandate of the UN Framework Convention on Climate Change. We propose that such approaches be swiftly evaluated in sub-scale in the course of an intensive international program.

  3. Global temperature deviations as a random walk

    SciTech Connect (OSTI)

    Karner, O.

    1996-12-31

    Surface air temperature is the main parameter to represent the earth`s contemporary climate. Several historical temperature records on a global/monthly basis are available. Time-series analysis shows that they can be modelled via autoregressive moving average models closely connected to the classical random walk model. Fitted models emphasize a nonstationary character of the global/monthly temperature deviation from a certain level. The nonstationarity explains all trends and periods, found in the last century`s variability of global mean temperature. This means that the short-term temperature trends are inevitable and may have little in common with a currently increasing carbon dioxide amount. The calculations show that a reasonable understanding of the contemporary global mean climate is attainable, assuming random forcing to the climate system and treating temperature deviation as a response to it. The forcings occur due to volcanic eruptions, redistribution of cloudiness, variations in snow and ice covered areas, changes in solar output, etc. Their impact can not be directly estimated from changes of the earth`s radiation budget at the top of the atmosphere, because actual measurements represent mixture of the forcings and responses. Thus, it is impossible empirically to separate the impact of one particular forcing (e.g., that due to increase of CO{sub 2} amount) from the sequence of all existing forcings in the earth climate system. More accurate modelling involving main feedback loops is necessary to ease such a separation.

  4. Climate Change Science Program Issues Report on Climate Models | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Climate Change Science Program Issues Report on Climate Models Climate Change Science Program Issues Report on Climate Models July 31, 2008 - 2:40pm Addthis WASHINGTON, DC - The U.S. Climate Change Science Program (CCSP) today announced the release of the report "Climate Models: An Assessment of Strengths and Limitations," the 10th in a series of 21 Synthesis and Assessment Products (SAPs) managed by U.S. federal agencies. Developed under the leadership of the U.S.

  5. Sandia Wins Funding for High-Temperature Falling-Particle Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Temperature Falling-Particle Solar-Energy Receiver - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable ...

  6. Sandia Energy - High-Pressure and High-Temperature Neutron Reflectomet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Pressure and High-Temperature Neutron Reflectometry Cell for Solid-Fluid Interface Studies Home Carbon Capture & Storage Climate News News & Events Carbon Capture Carbon...

  7. Regional analysis of ground and above-ground climate

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  8. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    SciTech Connect (OSTI)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  9. The effect of climate change, population distribution, and climate...

    Office of Scientific and Technical Information (OSTI)

    and China Citation Details In-Document Search Title: The effect of climate change, population distribution, and climate mitigation on building energy use in the U.S. and China A ...

  10. Ocean Carbon Cycle Models from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    \tPacific data-model intercomparison from Patrick Wetzel (Max Planck Institute for Meteorology, Germany)

  11. NREL Climate Activities | Open Energy Information

    Open Energy Info (EERE)

    NREL Climate Activities Jump to: navigation, search Logo: Climate Activities at NREL Name Climate Activities at NREL AgencyCompany Organization National Renewable Energy...

  12. Climate Change Press Release | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change Press Release Community Leaders Institutes (CLIs) to be conducted to promote awareness of climate change impacts. CLI Climate Change Press Release (118.51 KB) More ...

  13. Climate Adaptation for Transportation | Open Energy Information

    Open Energy Info (EERE)

    Climate Adaptation for Transportation (Redirected from 03 Climate Adaptation for Transportation) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: 03 Climate Adaptation...

  14. European Climate Foundation (ECF) | Open Energy Information

    Open Energy Info (EERE)

    European Climate Foundation (ECF) Jump to: navigation, search Logo: European Climate Foundation (ECF) Name: European Climate Foundation (ECF) Address: Tournooiveld 4 2511 CX Place:...

  15. Climate Change Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change Assessment Climate Change Assessment Climate Change Assessment 66climornlsalev2mjs.ppt (11.1 MB) More Documents & Publications 2014 Water Power Program Peer ...

  16. Regional Climate Change Webinar Presentation | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Regional Climate Change Webinar presentation dated August 6, 2015. Regional Climate Change Webinar Presentation More Documents & Publications Regional Climate Change Webinar...

  17. A New Method of Comparing Forcing Agents in Climate Models

    SciTech Connect (OSTI)

    Kravitz, Benjamin S.; MacMartin, Douglas; Rasch, Philip J.; Jarvis, Andrew

    2015-10-14

    We describe a new method of comparing different climate forcing agents (e.g., CO2, CH4, and solar irradiance) that avoids many of the ambiguities introduced by temperature-related climate feedbacks. This is achieved by introducing an explicit feedback loop external to the climate model that adjusts one forcing agent to balance another while keeping global mean surface temperature constant. Compared to current approaches, this method has two main advantages: (i) the need to define radiative forcing is bypassed and (ii) by maintaining roughly constant global mean temperature, the effects of state dependence on internal feedback strengths are minimized. We demonstrate this approach for several different forcing agents and derive the relationships between these forcing agents in two climate models; comparisons between forcing agents are highly linear in concordance with predicted functional forms. Transitivity of the relationships between the forcing agents appears to hold within a wide range of forcing. The relationships between the forcing agents obtained from this method are consistent across both models but differ from relationships that would be obtained from calculations of radiative forcing, highlighting the importance of controlling for surface temperature feedback effects when separating radiative forcing and climate response.

  18. Climate System Response to External Forcings and Climate Change Projections

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in CCSM4 | Argonne Leadership Computing Facility Climate System Response to External Forcings and Climate Change Projections in CCSM4 Authors: Meehl, G.A., Washington, WM, Arblaster, JM, Hu, A., Teng, H., Tebaldi, C., White III, J.B., Strand Jr., WG Results are presented from experiments performed with the Community Climate System Model version 4 (CCSM4) for the Coupled Model Intercomparison Project phase 5 (CMIP5). These include multiple ensemble members of 20th century climate with

  19. Forest phenology and a warmer climate - Growing season extension in relation to climatic provenance

    SciTech Connect (OSTI)

    Gunderson, Carla A; Edwards, Nelson T; Walker, Ashley V; O'Hara, Keiran H; Campion, Christina M; Hanson, Paul J

    2012-01-01

    Predicting forest responses to warming climates relies on assumptions about niche and temperature sensitivity that remain largely untested. Observational studies have related current and historical temperatures to phenological shifts, but experimental evidence is sparse, particularly for autumn responses. A five-year field experiment exposed four deciduous forest species from contrasting climates (Liquidambar styraciflua, Quercus rubra, Populus grandidentata, and Betula alleghaniensis) to air temperatures 2 and 4 C above ambient controls. Impacts of year-round warming on bud burst (BB), senescence and abscission were evaluated in relation to thermal provenance. Leaves emerged earlier in all species, by an average of 6-9 days at +2 and +4 C. Magnitude of advance varied with species and year, but was larger for the first 2 C increment than the second. The effect of warming increased with early BB, favoring Liquidambar, from the warmest climate, but even BB in northern species advanced, despite temperatures well beyond those of the realized niche. Treatment differences in BB were poorly explained by temperature sums, which increased with treatment. In autumn, chlorophyll was retained an average of 4 and 7 days longer in +2 and +4 C treatments, and abscission delayed by 8 and 13 days. Species differences in autumn responses were marginally significant. Growing seasons in the warmer atmospheres were 6 - 28 days longer, with the least impact in Quercus. Results are compared with a 16-year record of canopy onset and offset in a nearby upland deciduous forest, where BB showed similar responsiveness to spring temperatures (2 - 4 days C-1). Offset dates in the stand tracked August-September temperatures, except when late summer drought caused premature senescence. The common garden-like experimental approach provides evidence that warming alone extends the growing season, at both ends, even if stand-level impacts are complicated by other environmental factors.

  20. ARM Climate Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    banner Home | People | Site Index Atmospheric Radiation Measurement Climate Research Facility US Department of Energy About Science Campaigns Sites Instruments Measurements Data News Publications Education Become a User Recovery Act Mission FAQ Outreach Displays History Organization Participants Facility Statistics Forms Contacts Research Themes LES ARM Symbiotic Simulation and Observation Workflow Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science

  1. Climate Care | Open Energy Information

    Open Energy Info (EERE)

    Climate Care Jump to: navigation, search Name: Climate Care Place: Oxford, England, United Kingdom Zip: OX4 1RQ Sector: Carbon Product: Oxford-based carbon offsetting firm- making...

  2. Climate Consulting | Open Energy Information

    Open Energy Info (EERE)

    Indonesia and China, gives assistance to companies and governments in climate change strategy plan. References: Climate Consulting1 This article is a stub. You can help OpenEI...

  3. OPEN HOUSE - Climate Prisms: Arctic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OPEN HOUSE - Climate Prisms: Arctic OPEN HOUSE - Climate Prisms: Arctic WHEN: Jul 17, 2015 12:00 PM - 1:00 PM WHERE: Bradbury Science Museum 1350 Central Ave, Los Alamos, NM 87544, ...

  4. Climate Policies | Open Energy Information

    Open Energy Info (EERE)

    Climate Policies Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleClimatePolicies&ol...

  5. ARM - Predictions of Climate Change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TeachersTopic ListPredictions of Climate Change Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Predictions of Climate Change There are no accurate predictions of what will happen to earth's climate with an increase in greenhouse gases. The climate system is very complex, so that scientists

  6. Climate Financing Options | Open Energy Information

    Open Energy Info (EERE)

    Guidemanual, Training materials Website: www.climatefinanceoptions.orgcfo Language: English References: Climate Finance Options1 New climate finance tool for...

  7. SEAB Climate Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SEAB Climate Action Plan SEAB Climate Action Plan A presentation on the Climate Action Plan presented by Dr. Jonathan Pershing, Deputy Assistant Secretary for Climate Change at the U.S. Department of Energy. Climate Action Plan (pdf) (998.5 KB) More Documents & Publications U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather Climate Change and the U.S. Energy Sector: Regional Vulnerabilities and Resilience Solutions Climate Change: Energy and Community Impacts

  8. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites ...

  9. Climate Funds Update | Open Energy Information

    Open Energy Info (EERE)

    Political Foundation Sector Climate Topics Finance Resource Type Training materials, Lessons learnedbest practices Website http:www.climatefundsupdate. References Climate...

  10. Princeton Plasma Physics Lab - Climate change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    climate-change Climate change en Using powerful computers, physicists uncover mechanism that stabilizes plasma within tokamaks...

  11. Where does the carbon go?–Plant carbon allocation under climate change

    SciTech Connect (OSTI)

    Sevanto, Sanna; Dickman, L. Turin

    2015-06-01

    The ability of terrestrial vegetation to both take up and release carbon and water makes understanding climate change effects on plant function critical. These effects could alter the impacts and feedbacks of vegetation on climate and either slow down or accelerate climatic warming (Bonan 2008). In conclusion, studies on plant responses to increased atmospheric CO2 concentration and elevated temperatures have become abundant in the last 20 years (for reviews, see Way and Oren 2010, Franks et al. 2013).

  12. Where does the carbon go?Plant carbon allocation under climate change

    SciTech Connect (OSTI)

    Sevanto, Sanna; Dickman, L. Turin

    2015-06-01

    The ability of terrestrial vegetation to both take up and release carbon and water makes understanding climate change effects on plant function critical. These effects could alter the impacts and feedbacks of vegetation on climate and either slow down or accelerate climatic warming (Bonan 2008). In conclusion, studies on plant responses to increased atmospheric CO2 concentration and elevated temperatures have become abundant in the last 20 years (for reviews, see Way and Oren 2010, Franks et al. 2013).

  13. Where does the carbon go?–Plant carbon allocation under climate change

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sevanto, Sanna; Dickman, L. Turin

    2015-06-01

    The ability of terrestrial vegetation to both take up and release carbon and water makes understanding climate change effects on plant function critical. These effects could alter the impacts and feedbacks of vegetation on climate and either slow down or accelerate climatic warming (Bonan 2008). In conclusion, studies on plant responses to increased atmospheric CO2 concentration and elevated temperatures have become abundant in the last 20 years (for reviews, see Way and Oren 2010, Franks et al. 2013).

  14. A tropical influence on global climate

    SciTech Connect (OSTI)

    Schneider, E.K.; Kirtman, B.P.; Lindzen, R.S.

    1997-05-15

    A potential influence of tropical sea surface temperature on the global climate response to a doubling of the CO{sub 2} concentration is tested using an atmospheric general circulation model coupled to a slab mixed layer ocean. The warming is significantly reduced when sea surface temperatures in the eastern equatorial Pacific cold tongue region between latitudes 2.25{degrees}N and 2.25{degrees}S are held at the control simulation values. Warming of the global mean temperature outside of the cold tongue region is reduced from 2.4{degrees}C in the unconstrained case to 1.9{degrees}C when the sea surface temperature constraint is applied. The decrease in the warming results from a positive net heat flux into the ocean cold tongue region and implicit heat storage in the subsurface ocean, induced by horizontal atmospheric heat fluxes. The reduced surface temperature warming outside of the cold tongue region is due to reduction in the downward longwave radiative flux at the surface, caused in turn by reduced atmospheric temperature and moisture. The global mean surface temperature responds to the heat storage in the ocean as if the global mean radiative forcing due to the doubled CO{sub 2} (approximately 4 W m{sup {minus}2}) was reduced by the value of the global mean heat flux into the ocean. This mechanism also provides a possible explanation for the observed high correlation on interannual timescales between the global mean tropospheric temperature and sea surface temperature in the eastern tropical Pacific. The results emphasize the importance of correctly modeling the dynamical processes in the ocean and atmosphere that help determine the sea surface temperature in the equatorial eastern Pacific, in addition to the thermodynamical processes, in projecting global warming. 23 refs., 8 figs.

  15. World agriculture and climate change: Current modeling issues

    SciTech Connect (OSTI)

    Darwin, R.

    1996-12-31

    Recent studies suggest that although global increases in temperature and changes in precipitation patterns during the next century will affect world agriculture, farmer adaptations are likely to prevent climate change from jeopardizing world food production. The costs and benefits of global climate change, however, are not equally distributed around the world. Agricultural production may increase in high latitude and alpine areas, but decrease in tropical and some other areas. Also, land use changes that accompany climate-induced shifts in cropland and permanent pasture are likely to raise additional social and environmental issues. Despite these advances, some important aspects of climate change have not been adequately simulated in global models. These include the effects that climate-induced changes in water resources are likely to have on agricultural production, the well-documented beneficial effects of higher concentrations of atmospheric carbon dioxide on plant growth and water use, and the cooling effects of tropospheric emissions of sulfur dioxide. In addition, past research generally relied on equilibrium climates based on a doubling of atmospheric carbon dioxide. Now, however, results from transient climate change experiments are available.

  16. Global Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page 2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  17. Climate Measurement & Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement & Modeling - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  18. Global Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  19. Climate-Energy Nexus

    SciTech Connect (OSTI)

    Sayler, Gary; Gentry, Randall; Zhuang, Jie

    2010-07-01

    The 140-page published proceedings of the workshop include individual articles and PowerPoint slides for all workshop presentations. The proceedings also contain pertinent background information on the China-US Joint Research Center, partnering organizations, and workshop goals and objectives. Overall, the workshop increased the understanding of the impacts of climate change on energy use and renewable energy production as well as the complex relationships among land use, energy production, and ecological restoration. The workshop served as an international platform for scientists and students of different research backgrounds to develop a unified perspective on energy and climate relationships. Such understanding will benefit future cooperation between China and the US in mitigating global climate change. The workshop’s agenda, which is highly interdisciplinary, explored many potential opportunities for international collaboration in ecosystem management, climate modeling, greenhouse gas emissions, and bioenergy sustainability. International research groups have been suggested in the areas of genomes and biotechnology of energy plants, sustainable management of soil and water resources, carbon sequestration, and microbial processes for ecological cycles. The project has attracted considerable attention from institutes beyond the China-US Joint Research Center partners, and several of them (such as Institute of Qing-Tibet Plateau Research, Institute of Soil and Water Conservation, Institute of Applied Ecology, CAS) have expressed interest in joining the partnership. In addition, the workshop played a significant role in facilitating establishment of private-public partnerships between government and private bioenergy companies (such as L.R. Shugarts and Associates, Inc.), including seed providers (Blade Energy Crops, Thousand Oaks, CA), pilot demonstration projects at coal-producing cities (e.g., Huaibei, Anhui province, China), and the development of methodology

  20. Carbon dioxide and climate

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

  1. Climate system research

    SciTech Connect (OSTI)

    Bradley, R.S. ); Diaz, H.F. . Environmental Research Labs.); Jones, P.D.; Kelly, P.M. . Climatic Research Unit)

    1990-09-01

    This document discusses activities during year 2 of the grant period. Major topics include precipitation data; temperature data; and international activities. (FI)

  2. Linking the uncertainty of low frequency variability in tropical forcing in regional climate change

    SciTech Connect (OSTI)

    Forest, Chris E.; Barsugli, Joseph J.; Li, Wei

    2015-02-20

    The project utilizes multiple atmospheric general circulation models (AGCMs) to examine the regional climate sensitivity to tropical sea surface temperature forcing through a series of ensemble experiments. The overall goal for this work is to use the global teleconnection operator (GTO) as a metric to assess the impact of model structural differences on the uncertainties in regional climate variability.

  3. Relative outcomes of climate change mitigation related to global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    temperature versus sea-level rise | Argonne Leadership Computing Facility Relative outcomes of climate change mitigation related to global temperature versus sea-level rise Authors: Gerald A. Meehl, Aixue Hu, Claudia Tebaldi, Julie M. Arblaster, Warren M. Washington, Haiyan Teng, Benjamin M. Sanderson, Toby Ault, Warren G. Strand & James B. White III There is a common perception that, if human societies make the significant adjustments necessary to substantively cut emissions of

  4. Evaluating Water Vapor in the NCAR CAM3 Climate Model with RRTMG...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Vapor in the NCAR CAM3 Climate Model with RRTMGMcICA using Modeled and Observed ... Objectives: * Evaluate water vapor and temperature simulation in two versions of CAM3 by ...

  5. Plants found to regulate leaf temperature to boost carbon uptake

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plants found to regulate leaf temperature to boost carbon uptake Plants found to regulate leaf temperature to boost carbon uptake The research offers promise for refining Earth system models that help predict climate change impacts and feedbacks. August 30, 2016 The thermal traits of a leaf, critical for photosynthesis, may be under strong evolutionary selection that occurs in response to environmental temperatures. Here a thermal leaf image details temperature variation, which greatly affects

  6. Climate change and health: Indoor heat exposure in vulnerable populations

    SciTech Connect (OSTI)

    White-Newsome, Jalonne L.; Sanchez, Brisa N.; Jolliet, Olivier; Zhang, Zhenzhen; Parker, Edith A.; Timothy Dvonch, J.; O'Neill, Marie S.

    2012-01-15

    Introduction: Climate change is increasing the frequency of heat waves and hot weather in many urban environments. Older people are more vulnerable to heat exposure but spend most of their time indoors. Few published studies have addressed indoor heat exposure in residences occupied by an elderly population. The purpose of this study is to explore the relationship between outdoor and indoor temperatures in homes occupied by the elderly and determine other predictors of indoor temperature. Materials and methods: We collected hourly indoor temperature measurements of 30 different homes; outdoor temperature, dewpoint temperature, and solar radiation data during summer 2009 in Detroit, MI. We used mixed linear regression to model indoor temperatures' responsiveness to weather, housing and environmental characteristics, and evaluated our ability to predict indoor heat exposures based on outdoor conditions. Results: Average maximum indoor temperature for all locations was 34.85 Degree-Sign C, 13.8 Degree-Sign C higher than average maximum outdoor temperature. Indoor temperatures of single family homes constructed of vinyl paneling or wood siding were more sensitive than brick homes to outdoor temperature changes and internal heat gains. Outdoor temperature, solar radiation, and dewpoint temperature predicted 38% of the variability of indoor temperatures. Conclusions: Indoor exposures to heat in Detroit exceed the comfort range among elderly occupants, and can be predicted using outdoor temperatures, characteristics of the housing stock and surroundings to improve heat exposure assessment for epidemiological investigations. Weatherizing homes and modifying home surroundings could mitigate indoor heat exposure among the elderly.

  7. U.S. Mayor's Climate Protection Agreement: Climate Action Handbook...

    Open Energy Info (EERE)

    Action Handbook offers examples of actions that local governments can take to reduce global warming emissions and implement the commitments for climate protection called out...

  8. Thermal Plasticity of Photosynthesis: the Role of Acclimation in Forest Responses to a Warming Climate

    SciTech Connect (OSTI)

    Gunderson, Carla A; O'Hara, Keiran H; Campion, Christina M; Walker, Ashley V; Edwards, Nelson T

    2010-01-01

    The increasing air temperatures central to climate change predictions have the potential to alter forest ecosystem function and structure by exceeding temperatures optimal for carbon gain. Such changes are projected to threaten survival of sensitive species, leading to local extinctions, range migrations, and altered forest composition. This study investigated photosynthetic sensitivity to temperature and the potential for acclimation in relation to the climatic provenance of five species of deciduous trees, Liquidambar styraciflua, Quercus rubra, Quercus falcata, Betula alleghaniensis, and Populus grandidentata. Open-top chambers supplied three levels of warming (+0, +2, and +4 C above ambient) over 3 years, tracking natural temperature variability. Optimal temperature for CO2 assimilation was strongly correlated with daytime temperature in all treatments, but assimilation rates at those optima were comparable. Adjustment of thermal optima was confirmed in all species, whether temperatures varied with season or treatment, and regardless of climate in the species' range or provenance of the plant material. Temperature optima from 17 to 34 were observed. Across species, acclimation potentials varied from 0.55 C to 1.07 C per degree change in daytime temperature. Responses to the temperature manipulation were not different from the seasonal acclimation observed in mature indigenous trees, suggesting that photosynthetic responses should not be modeled using static temperature functions, but should incorporate an adjustment to account for acclimation. The high degree of homeostasis observed indicates that direct impacts of climatic warming on forest productivity, species survival, and range limits may be less than predicted by existing models.

  9. Cenozoic climates: evidence from the North Atlantic

    SciTech Connect (OSTI)

    Berggren, W.A.

    1985-01-01

    Cenozoic biostratigraphy and climatology of the North Atlantic and adjacent land areas reflects the continuing fragmentation of Eurasia and concomitant changes on ocean-continent geometry. A latitudinal (zonal) Mesozoic circulation pattern evolved into a predominantly longitudinal (meridional) pattern during the Cenozoic in which the development of oceanic gateways and barriers gradually decreased the efficiency of poleward heat transfer resulting in the progressive climatic change which has taken place over the past 50 million years. Cenozoic distributional data from the North Atlantic and adjacent land areas will be reviewed from the following fields: a) terrestrial vertebrates and floras: b) marine calcareous microplankton and benthic foraminifera; c) other marine invertebrates. Available data suggests that the present climate in the northern hemisphere has resulted from a gradual, but inexorable, strengthening of latitudinal and vertical temperature gradients punctuated by several brief intervals of accelerated change. The absence of evidence for northern hemisphere polar glaciation prior to the late Neogene does not preclude seasonal cooling near the freezing point in post-Eocene time. Evidence for early Paleogene cold climates is not reflected in the fossil record.

  10. Trends `91: A compendium of data on global change---highlights

    SciTech Connect (OSTI)

    Boden, T.A.; Sepanski, R.J.; Stoss, F.W.

    1992-03-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) has been prompted to produce the series Trends, a concise inventory of data in response to heightened concern about global environmental issues, in particular climate changes induced by the greenhouse effect. This report contains extracts from Trends `91 to illustrate the content, style, and presentation of data contained in the full 700-page report. This report includes a listing of the investigators contributing data for Trends `91. In addition, it contains the abstract, foreword, and acknowledgments, as well as the introduction and a sample data record from each of the reports`s five chapters. The chapters are ``Atmospheric CO{sub 2},`` ``Atmospheric CH{sub 4},`` ``Other Trace Gases,`` ``CO{sub 2} Emissions,`` and ``Temperature.`` Appendix A provides information about CDIAC and its activities related to global environmental issues. Appendix B lists the contents of the full report. An order form for obtaining a free copy of Trends `91 is found in Appendix C.

  11. Trends '91: A compendium of data on global change---highlights

    SciTech Connect (OSTI)

    Boden, T.A.; Sepanski, R.J.; Stoss, F.W.

    1992-03-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) has been prompted to produce the series Trends, a concise inventory of data in response to heightened concern about global environmental issues, in particular climate changes induced by the greenhouse effect. This report contains extracts from Trends '91 to illustrate the content, style, and presentation of data contained in the full 700-page report. This report includes a listing of the investigators contributing data for Trends '91. In addition, it contains the abstract, foreword, and acknowledgments, as well as the introduction and a sample data record from each of the reports's five chapters. The chapters are Atmospheric CO[sub 2],'' Atmospheric CH[sub 4],'' Other Trace Gases,'' CO[sub 2] Emissions,'' and Temperature.'' Appendix A provides information about CDIAC and its activities related to global environmental issues. Appendix B lists the contents of the full report. An order form for obtaining a free copy of Trends '91 is found in Appendix C.

  12. Climate Change | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Climate Change Climate Change May 31, 2016 Global Energy Leaders Gather in California to Drive Clean Energy Development and Deployment Goal of meetings will be to expand international collaboration in clean energy research, development, demonstration and deployment to combat climate change. May 27, 2016 Secretary Moniz sits with Under Secretary of Commerce for Oceans & Atmosphere and NOAA Administrator Dr. Kathy Sullivan (center) and Energy Department Senior

  13. Climate Change | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Highlights substantial growing efforts to support developing countries in the global response to climate change. Also details the financial assistance, education programs, and ...

  14. Climate Strategy | Open Energy Information

    Open Energy Info (EERE)

    Strategy Jump to: navigation, search Name: Climate Strategy Place: Madrid, Spain Zip: 28006 Sector: Efficiency Product: Madrid-based consulting firm specialising in projects in...

  15. Renewable Energy and Climate Change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy and Climate Change Symposium in Honor of 2009 and 2010 ACS Fellows in ... Engineering Chemistry -- Cellulose and Renewable Materials, Chemicals, Fuels, and Energy ...

  16. Climate Leadership Conference (Seattle, WA)

    Broader source: Energy.gov [DOE]

    Sustainability leaders from the private, public, academic, and non-profit communities meet to explore market transformation, carbon management, and building climate resilience on an annual basis.

  17. Climate Consultant | Open Energy Information

    Open Energy Info (EERE)

    Climate Consultant AgencyCompany Organization: United States Department of Energy Sector: Energy Focus Area: Buildings, Energy Efficiency, Solar, Wind Resource Type: Dataset,...

  18. Climate change and the Arctic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate change and the Arctic Climate change and the Arctic WHEN: May 19, 2016 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central Park Square, Los Alamos, New Mexico 87544 USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description Join us for convivial discussion on May 19 at 5:30 p.m. at UnQuarked Cathy Wilson, who heads the Lab's Atmosphere, Climate and Ecosystem Science team, is working to better understand what happens when warming climate

  19. ARM - Different Climates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The temperature decreases with height in the troposphere at a rate of 6.5 degrees for every 1000 meters. This is why glaciers can be found in Papua New Guinea, although it is very ...

  20. Climate Model Output Rewriter

    Energy Science and Technology Software Center (OSTI)

    2004-06-21

    CMOR comprises a set of FORTRAN 90 dunctions that can be used to produce CF-compliant netCDF files. The structure of the files created by CMOR and the metadata they contain fulfill the requirements of many of the climate community’s standard model experiments (which are referred to here as "MIPS", which stands for "model intercomparison project", including, for example, AMIP, CMIP, CFMIP, PMIP, APE, and IPCC scenario runs), CMOR was not designed to serve as anmore » all-purpose wfiter of CF-compliant netCDF files, but simply to reduce the effort required to prepare and manage MIP data. Although MIPs encourage systematic analysis of results across models, this is only easy to do if the model output is written in a common format with files structured similarly and with sufficient metadata uniformly stored according to a common standard. Individual modeling groups store their data in different ways. but if a group can read its own data with FORTRAN, then it should easily be able to transform the data, using CMOR, into the common format required by the MIPs, The adoption of CMOR as a standard code for exchanging climate data will facilitate participation in MIPs because after learning how to satisfy the output requirements of one MIP, it will be easy to prepare output for the other MIPs.« less

  1. Cold Climate Heat Pumps Using Tandem Compressors

    SciTech Connect (OSTI)

    Shen, Bo; Abdelaziz, Omar; Rice, C Keith; Baxter, Van D

    2016-01-01

    In cold climate zones, e.g. ASHRAE climate regions IV and V, conventional electric air-source heat pumps (ASHP) do not work well, due to high compressor discharge temperatures, large pressure ratios and inadequate heating capacities at low ambient temperatures. Consequently, significant use of auxiliary strip heating is required to meet the building heating load. We introduce innovative ASHP technologies as part of continuing efforts to eliminate auxiliary strip heat use and maximize heating COP with acceptable cost-effectiveness and reliability. These innovative ASHP were developed using tandem compressors, which are capable of augmenting heating capacity at low temperatures and maintain superior part-load operation efficiency at moderate temperatures. Two options of tandem compressors were studied; the first employs two identical, single-speed compressors, and the second employs two identical, vapor-injection compressors. The investigations were based on system modeling and laboratory evaluation. Both designs have successfully met the performance criteria. Laboratory evaluation showed that the tandem, single-speed compressor ASHP system is able to achieve heating COP = 4.2 at 47 F (8.3 C), COP = 2.9 at 17 F (-8.3 C), and 76% rated capacity and COP = 1.9 at -13 F (-25 C). This yields a HSPF = 11.0 (per AHRI 210/240). The tandem, vapor-injection ASHP is able to reach heating COP = 4.4 at 47 F, COP = 3.1 at 17 F, and 88% rated capacity and COP = 2.0 at -13 F. This yields a HSPF = 12.0. The system modeling and further laboratory evaluation are presented in the paper.

  2. Global surface temperature changes since the 1850s

    SciTech Connect (OSTI)

    Jones, P.D.

    1996-12-31

    Temperature data from land and marine areas form the basis for many studies of climatic variations on local, regional and hemispheric scales, and the global mean temperature is a fundamental measure of the state of the climate system. In this paper it is shown that the surface temperature of the globe has warmed by about 0.5{degrees}C since the mid-nineteenth century. This is an important part of the evidence in the {open_quote}global warming{close_quote} debate. How certain are we about the magnitude of the warming? Where has it been greatest? In this paper, these and related issues will be addressed.

  3. Task Force on Climate Preparedness and Resilience Announces Tribal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Task Force on Climate Preparedness and Resilience Announces Tribal Climate Resilience Program Task Force on Climate Preparedness and Resilience Announces Tribal Climate Resilience ...

  4. China-Climate Change Research Center | Open Energy Information

    Open Energy Info (EERE)

    China-Climate Change Research Center (Redirected from ClimateWorks-China Climate Change Research Center) Jump to: navigation, search Name China-Climate Change Research Center...

  5. Adams County, Washington ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Washington ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

  6. Climate VISION Progress Report 2007 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate VISION Progress Report 2007 Climate VISION Progress Report 2007 There is a growing recognition that climate change cannot be dealt with effectively in isolation Climate ...

  7. Evaluating climate models: Should we use weather or climate observations?

    SciTech Connect (OSTI)

    Oglesby, Robert J; Erickson III, David J

    2009-12-01

    Calling the numerical models that we use for simulations of climate change 'climate models' is a bit of a misnomer. These 'general circulation models' (GCMs, AKA global climate models) and their cousins the 'regional climate models' (RCMs) are actually physically-based weather simulators. That is, these models simulate, either globally or locally, daily weather patterns in response to some change in forcing or boundary condition. These simulated weather patterns are then aggregated into climate statistics, very much as we aggregate observations into 'real climate statistics'. Traditionally, the output of GCMs has been evaluated using climate statistics, as opposed to their ability to simulate realistic daily weather observations. At the coarse global scale this may be a reasonable approach, however, as RCM's downscale to increasingly higher resolutions, the conjunction between weather and climate becomes more problematic. We present results from a series of present-day climate simulations using the WRF ARW for domains that cover North America, much of Latin America, and South Asia. The basic domains are at a 12 km resolution, but several inner domains at 4 km have also been simulated. These include regions of complex topography in Mexico, Colombia, Peru, and Sri Lanka, as well as a region of low topography and fairly homogeneous land surface type (the U.S. Great Plains). Model evaluations are performed using standard climate analyses (e.g., reanalyses; NCDC data) but also using time series of daily station observations. Preliminary results suggest little difference in the assessment of long-term mean quantities, but the variability on seasonal and interannual timescales is better described. Furthermore, the value-added by using daily weather observations as an evaluation tool increases with the model resolution.

  8. Pacific Northwest Climate Science Conference

    Broader source: Energy.gov [DOE]

    The Pacific Northwest Climate Science Conference brings together more than 250 researchers and practitioners from around the region to discuss science results, challenges, and solutions related to the impacts of climate on people, natural resources, and infrastructure in the Pacific Northwest.

  9. Mississippi Climate & Hydrology Conference

    SciTech Connect (OSTI)

    Lawford, R.; Huang, J.

    2002-05-01

    The GEWEX Continental International Project (GCIP), which started in 1995 and completed in 2001, held its grand finale conference in New Orleans, LA in May 2002. Participants at this conference along with the scientists funded through the GCIP program are invited to contribute a paper to a special issue of Journal of Geophysical Research (JGR). This special JGR issue (called GCIP3) will serve as the final report on scientific research conducted by GCIP investigators. Papers are solicited on the following topical areas, but are not limited to, (1) water energy budget studies; (2) warm season precipitation; (3) predictability and prediction system; (4) coupled land-atmosphere models; (5) climate and water resources applications. The research areas cover observations, modeling, process studies and water resources applications.

  10. Delays in Reducing Waterborne and Water-related Infectious Diseases in China under Climate Change

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hodges, Maggie; Belle, Jessica; Carlton, Elizabeth; Liang, Song; Li, Huazhong; Luo, Wei; Freeman, Matthew C.; Liu, Yang; Gao, Yang; Hess, Jeremy; et al

    2014-11-02

    Despite China’s rapid progress improving water, sanitation and hygiene (WSH) infrastructure and access, in 2011, 471 million people lacked access to improved sanitation, and 401 million people lacked access to household piped water. Infectious diseases are sensitive to changes in climate, particularly temperature, and WSH conditions. To explore possible impacts of climate change on these diseases in China in 2020 and 2030, we coupled estimates of the temperature sensitivity of diarrheal disease and three vector-borne diseases, temperature projections from global climate models using four emissions pathways, WSH-infrastructure development scenarios and projected demographic changes. By 2030, the projected impacts would delaymore » China’s historically rapid progress toward reducing the burden of WSH-attributable infectious disease by 8-85 months. This developmental delay provides a key summary measure of the impact of climate change in China, and in other societies undergoing rapid social, economic, and environmental change.« less

  11. Delays in Reducing Waterborne and Water-related Infectious Diseases in China under Climate Change

    SciTech Connect (OSTI)

    Hodges, Maggie; Belle, Jessica; Carlton, Elizabeth; Liang, Song; Li, Huazhong; Luo, Wei; Freeman, Matthew C.; Liu, Yang; Gao, Yang; Hess, Jeremy; Remais, Justin V.

    2014-11-02

    Despite China’s rapid progress improving water, sanitation and hygiene (WSH) infrastructure and access, in 2011, 471 million people lacked access to improved sanitation, and 401 million people lacked access to household piped water. Infectious diseases are sensitive to changes in climate, particularly temperature, and WSH conditions. To explore possible impacts of climate change on these diseases in China in 2020 and 2030, we coupled estimates of the temperature sensitivity of diarrheal disease and three vector-borne diseases, temperature projections from global climate models using four emissions pathways, WSH-infrastructure development scenarios and projected demographic changes. By 2030, the projected impacts would delay China’s historically rapid progress toward reducing the burden of WSH-attributable infectious disease by 8-85 months. This developmental delay provides a key summary measure of the impact of climate change in China, and in other societies undergoing rapid social, economic, and environmental change.

  12. Delays in Reducing Waterborne and Water-related Infectious Diseases in China under Climate Change

    SciTech Connect (OSTI)

    Hodges, Maggie; Belle, Jessica; Carlton, Elizabeth; Liang, Song; Li, Huazhong; Luo, Wei; Freeman, Matthew C.; Liu, Yang; Gao, Yang; Hess, Jeremy; Remais, Justin V.

    2014-12-01

    Despite China’s rapid progress improving water, sanitation and hygiene (WSH) infrastructure and access, in 2011, 471 million people lacked access to improved sanitation, and 401 million people lacked access to household piped water. Infectious diseases are sensitive to changes in climate, particularly temperature, and WSH conditions. To explore possible impacts of climate change on these diseases in China in 2020 and 2030, we coupled estimates of the temperature sensitivity of diarrheal disease and three vector-borne diseases, temperature projections from global climate models using four emissions pathways, WSH-infrastructure development scenarios and projected demographic changes. By 2030, the projected impacts would delay China’s historically rapid progress toward reducing the burden of WSH-attributable infectious disease by 8-85 months. This developmental delay provides a key summary measure of the impact of climate change in China, and in other societies undergoing rapid social, economic, and environmental change.

  13. City of Boulder- Climate Action Plan Fund

    Broader source: Energy.gov [DOE]

    Note: As of 2015, the Climate Action Plan is now referred to as the Climate Commitment. In November 2015, Boulder voters approved an extension of the  Climate Action Plan tax through 2020, with...

  14. DOE Climate Change Adaptation Training (Richland, WA)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This free training is a primer on climate science, identifying climate hazards, conducting vulnerability assessments, leveraging climate change data and tools and understanding the energy-water-food nexus.

  15. ATNI Tribal Leaders Summit on Climate Change

    Broader source: Energy.gov [DOE]

    The Affiliated Tribes of Northwest Indians is hosting the Tribal Leaders Summit on Climate Change. This two-day conference will discuss climate change impacts, policy on climate change, tribal...

  16. ATNI Tribal Leaders Summit on Climate Change

    Broader source: Energy.gov [DOE]

    The Affiliated Tribes of Northwest Indians is hosting the Tribal Leaders Summit on Climate Change. This two-day conference will discuss climate change impacts, policy on climate change, tribal needs, funding opportunities, and more.

  17. 2014 DOE Climate Change Adaptation Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 U.S. Department of Energy June 2014 DOE Climate Change Adaptation Plan Table of Contents Climate Change Adaptation Plan ................................................................................................................................2 Impetus for Action ..................................................................................................................................................2 The DOE Mission and Climate Change Adaptation

  18. Climate Zone Number 5 | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 5 Jump to: navigation, search A type of climate defined in the ASHRAE 169-2006 standard. Climate Zone Number 5 is defined as Cool- Humid(5A) with IP Units 5400...

  19. Climate variability and climate change vulnerability and adaptation. Workshop summary

    SciTech Connect (OSTI)

    Bhatti, N.; Cirillo, R.R.; Dixon, R.K.

    1995-12-31

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country`s vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations.

  20. Atmospheric Radiation Measurement Climate Research Facility | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Atmospheric Radiation Measurement Climate Research Facility Argonne scientists study climate change 1 of 22 Argonne scientists study climate change The U.S. Department of Energy's Office of Science provided $60 million in ARRA funding for climate research to the Atmospheric Radiation Measurement (ARM) Climate Research Facility, a DOE national user facility that has been operating climate observing sites around the world for nearly two decades. These sites help scientists

  1. Climate Action Champions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiatives » Climate Action Champions Climate Action Champions Climate Action Champions The White House launched the Climate Action Champions (CAC) Initiative in December 2014 with the U.S. Department of Energy (DOE) as lead Agency. The Administration expanded the Initiative in December 2015 through a strategic partnership with the Corporation for National Community Service (CNCS). PROGRAM POLICY OBJECTIVES The Climate Action Champions Initiative supports local and tribal government climate

  2. Climate Change Adaptation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change Adaptation Climate Change Adaptation Mission The Climate Change Adaption team affirms the overall DOE commitment to plan for and manage the short- and long-term effects of climate change, as deemed appropriate for LM operations and approved by LM, as defined in: Executive Order (EO) 13693, Planning for Federal Sustainability in the Next Decade, and EO 13653, Preparing the United States for the Impacts of Climate Change The team endorses the President's Climate Action Plan,

  3. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases, Fiscal Year 2002 Annual Report

    SciTech Connect (OSTI)

    Cushman, R.M.

    2003-08-28

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including atmospheric concentrations and atmospheric emissions of carbon dioxide (CO{sub 2}) and other radiatively active gases; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  4. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-027 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  5. AUDIT REPORT Atmospheric Radiation Measurement Climate Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atmospheric Radiation Measurement Climate Research Facility OAI-M-16-10 May 2016 U.S. ... Audit Report on the "Atmospheric Radiation Measurement Climate Research Facility" ...

  6. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-037 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  7. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    01 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-16-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  8. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-069 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  9. Climate Financing for Cities | Open Energy Information

    Open Energy Info (EERE)

    Framework1 "Cities in a Post-2012 Climate Policy Framework: Climate Financing for City Development? Views from Local Governments, Experts, and Businesses" This study...

  10. Climate Technology Initiative Training Courses | Open Energy...

    Open Energy Info (EERE)

    Training Courses Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Technology Initiative Training Courses AgencyCompany Organization: Climate Technology...

  11. Climate Investment Funds | Open Energy Information

    Open Energy Info (EERE)

    Climate Fund (SCF), Forest Investment Program (FIP) Pilot Program for Climate Resilience (PPCR) Program for Scaling Up Renewable Energy in Low Income Countries (SREP)...

  12. Uncertainty Quantification in Climate Modeling - Discovering...

    Office of Scientific and Technical Information (OSTI)

    in Climate Modeling - Discovering Sparsity and Building Surrogates. Citation Details In-Document Search Title: Uncertainty Quantification in Climate Modeling - Discovering ...

  13. Climate Technology Initiative (CTI) | Open Energy Information

    Open Energy Info (EERE)

    search Logo: Climate Technology Initiative Name: Climate Technology Initiative Place: Japan Year Founded: 1995 Website: www.climatetech.net Coordinates: 36.204824,...

  14. Climate Change: Science and Policy Robert...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Entering the Cauldron of Climate Change: Science and Policy Robert Rosner University of ... of the American Physical Society "climate statement" - I chaired the Panel on ...

  15. Climate, Ocean and Sea Ice Modeling (COSIM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth, Space Sciences Climate, Ocean and Sea Ice Modeling (COSIM) Climate, Ocean and Sea Ice Modeling (COSIM) The COSIM project develops advanced ocean and ice models for ...

  16. Climate Perspectives: Change in the Terrestrial Arctic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perspectives: Change in the Terrestrial Arctic Climate Perspectives An interactive exploration of Arctic climate science through prisms of the visual arts, literary arts, info-vis, ...

  17. Climate Change Adaptation Technical Fact Sheet: Contaminated...

    Office of Environmental Management (EM)

    of potential climate change vulnerabilities and (2) presenting possible adaptation measures that may be considered to increase a remedy's resilience to climate change impacts. ...

  18. Regional Climate Vulnerabilities and Resilience Solutions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Climate Vulnerabilities and Resilience Solutions Regional Climate Vulnerabilities and Resilience Solutions This interactive map is not viewable in your browser. Please ...

  19. Climate Action Plan | OpenEI Community

    Open Energy Info (EERE)

    actions that the administration believes will mitigate the environmental and economic costs of climate change. Obama's six Climate Action Initiatives: 1. Phasing out Fossil Fuels...

  20. California Climate Action Registry | Open Energy Information

    Open Energy Info (EERE)

    Climate Action Registry Jump to: navigation, search Name: California Climate Action Registry Place: Los Angeles, California Zip: 90014 Product: Los Angeles-based NPO which develops...

  1. The Climate Registry | Open Energy Information

    Open Energy Info (EERE)

    North America should partner with The Climate Registry as a cost effective central repository or clearinghouse for reporting andor tracking GHG data." "Members of The Climate...

  2. Climate Action Tracker | Open Energy Information

    Open Energy Info (EERE)

    References: Climate Action Tracker1 "This "Climate Action Tracker" is an independent science-based assessment, which tracks the emission commitments and actions of countries. The...

  3. Natural Climate Systems | Open Energy Information

    Open Energy Info (EERE)

    search Name: Natural Climate Systems Place: Spain Product: Develops bioclimatic architecture projects. References: Natural Climate Systems1 This article is a stub. You can...

  4. Training for Climate Adaptation in Conservation

    Broader source: Energy.gov [DOE]

    The Wildlife Conservation Society and the Northern Institute of Applied Climate Science are hosting this two-day training for climate adaptation.

  5. Climate Energy LLC | Open Energy Information

    Open Energy Info (EERE)

    Climate Energy LLC Jump to: navigation, search Name: Climate Energy LLC Place: Medfield, Massachusetts Zip: 2052 Product: Develops and markets micro-combined heat power systems for...

  6. Presidential Climate Action Project | Open Energy Information

    Open Energy Info (EERE)

    Page Edit with form History Presidential Climate Action Project Jump to: navigation, search Name: Presidential Climate Action Project Place: Denver, Colorado Zip: 80217-3364...

  7. Climate Adaptation for Transportation | Open Energy Information

    Open Energy Info (EERE)

    Climate Adaptation for Transportation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: 03 Climate Adaptation for Transportation AgencyCompany Organization: AASHTO...

  8. Atmosclear Climate Club | Open Energy Information

    Open Energy Info (EERE)

    Atmosclear Climate Club Jump to: navigation, search Name: Atmosclear Climate Club Place: Northborough, Massachusetts Zip: 1532 Product: AtmosClear is an offset provider that sells...

  9. Climate Bridge Ltd | Open Energy Information

    Open Energy Info (EERE)

    Bridge Ltd Jump to: navigation, search Name: Climate Bridge Ltd Place: Shanghai, Shanghai Municipality, China Zip: 200031 Product: Climate Bridge Ltd is an international company...

  10. Atmospheric Radiation Measurement Climate Research Facility Annual...

    Office of Scientific and Technical Information (OSTI)

    Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006 Citation Details In-Document Search Title: Atmospheric Radiation Measurement Climate Research ...

  11. Symbiosis: Addressing Biomass Production Challenges and Climate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Symbiosis: Addressing Biomass Production Challenges and Climate Change Symbiosis: Addressing Biomass Production Challenges and Climate Change This presentation was the opening ...

  12. E ON Climate Renewables | Open Energy Information

    Open Energy Info (EERE)

    ON Climate Renewables Jump to: navigation, search Name: E.ON Climate & Renewables Place: Dusseldorf, North Rhine-Westphalia, Germany Sector: Renewable Energy Product:...

  13. ARM - Lesson Plans: Historical Climate Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Historical Climate Statistics Outreach Home Room News Publications Traditional Knowledge ... Teachers' Toolbox Lesson Plans Lesson Plans: Historical Climate Statistics Objective The ...

  14. Assessing Climate Change Impacts, Vulnerability and Adaptation...

    Open Energy Info (EERE)

    Climate Change Impacts, Vulnerability and Adaptation: The Case of Pantabangan-Carranglan Watershed Jump to: navigation, search Name Assessing Climate Change Impacts, Vulnerability...

  15. Climate Change Simulations with CCSM & CESM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Simulations with CCSM & CESM Climate Change Simulations with CCSM & CESM Key Challenges: Perform fundamental research on the processes that influence the natural...

  16. Committee on Climate Change | Open Energy Information

    Open Energy Info (EERE)

    Committee on Climate Change Jump to: navigation, search Name: Committee on Climate Change Place: United Kingdom Product: String representation "As a key part o ... 2020 and 2050."...

  17. London Climate Change Agency | Open Energy Information

    Open Energy Info (EERE)

    Climate Change Agency Jump to: navigation, search Name: London Climate Change Agency Place: London, Greater London, United Kingdom Zip: SE1 8AA Product: Agency responsible for...

  18. Global Climate Change Institute | Open Energy Information

    Open Energy Info (EERE)

    Change Institute Jump to: navigation, search Name: Global Climate Change Institute Place: Tsinghua University, Beijing Municipality, China Zip: 100084 Product: Global Climate...

  19. Brazil Interministerial Commission on Global Climate Change ...

    Open Energy Info (EERE)

    Interministerial Commission on Global Climate Change Jump to: navigation, search Name: Brazil Interministerial Commission on Global Climate Change Place: Distrito Federal...

  20. Buildings and Climate Change | Open Energy Information

    Open Energy Info (EERE)

    and Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Buildings and Climate Change AgencyCompany Organization: United Nations Environment Programme...

  1. Technologies for Climate Change Mitigation: Transport Sector...

    Open Energy Info (EERE)

    Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector...

  2. Mainstreaming Climate Change Adaptation into Development Planning...

    Open Energy Info (EERE)

    Climate Change Adaptation into Development Planning: A Guide for Practitioners Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Mainstreaming Climate Change Adaptation...

  3. Office of Climate Change | Open Energy Information

    Open Energy Info (EERE)

    Change Jump to: navigation, search Name: Office of Climate Change Place: United Kingdom Product: UK government organisation that supports analytical work on climate change and the...

  4. Ambient temperature thermal battery

    SciTech Connect (OSTI)

    Fletcher, A. N.; Bliss, D. E.; McManis III

    1985-11-26

    An ambient temperature thermal battery having two relatively high temperature melting electrolytes which form a low melting temperature electrolyte upon activation.

  5. The Effects of Climate Sensitivity and Carbon Cycle Interactions on Mitigation Policy Stringency

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Bond-Lamberty, Benjamin; Edmonds, James A.; Hejazi, Mohamad I.; Waldhoff, Stephanie T.; Wise, Marshall A.; Zhou, Yuyu

    2015-07-01

    Climate sensitivity and climate-carbon cycle feedbacks interact to determine how global carbon and energy cycles will change in the future. While the science of these connections is well documented, their economic implications are not well understood. Here we examine the effect of climate change on the carbon cycle, the uncertainty in climate outcomes inherent in any given policy target, and the economic implications. We examine three policy scenarios—a no policy “Reference” (REF) scenario, and two policies that limit total radiative forcing—with four climate sensitivities using a coupled integrated assessment model. Like previous work, we find that, within a given scenario, there is a wide range of temperature change and sea level rise depending on the realized climate sensitivity. We expand on this previous work to show that temperature-related feedbacks on the carbon cycle result in more mitigation required as climate sensitivity increases. Thus, achieving a particular radiative forcing target becomes increasingly expensive as climate sensitivity increases.

  6. Climate Sensitivity of the Community Climate System Model, Version 4

    SciTech Connect (OSTI)

    Bitz, Cecilia M.; Shell, K. M.; Gent, P. R.; Bailey, D. A.; Danabasoglu, G.; Armour, K. C.; Holland, M. M.; Kiehl, J. T.

    2012-05-01

    Equilibrium climate sensitivity of the Community Climate System Model Version 4 (CCSM4) is 3.20°C for 1° horizontal resolution in each component. This is about a half degree Celsius higher than in the previous version (CCSM3). The transient climate sensitivity of CCSM4 at 1° resolution is 1.72°C, which is about 0.2°C higher than in CCSM3. These higher climate sensitivities in CCSM4 cannot be explained by the change to a preindustrial baseline climate. We use the radiative kernel technique to show that from CCSM3 to CCSM4, the global mean lapse-rate feedback declines in magnitude, and the shortwave cloud feedback increases. These two warming effects are partially canceled by cooling due to slight decreases in the global mean water-vapor feedback and longwave cloud feedback from CCSM3 to CCSM4. A new formulation of the mixed-layer, slab ocean model in CCSM4 attempts to reproduce the SST and sea ice climatology from an integration with a full-depth ocean, and it is integrated with a dynamic sea ice model. These new features allow an isolation of the influence of ocean dynamical changes on the climate response when comparing integrations with the slab ocean and full-depth ocean. The transient climate response of the full-depth ocean version is 0.54 of the equilibrium climate sensitivity when estimated with the new slab ocean model version for both CCSM3 and CCSM4. We argue the ratio is the same in both versions because they have about the same zonal mean pattern of change in ocean surface heat flux, which broadly resembles the zonal mean pattern of net feedback strength.

  7. Climate Sensitivity of the Community Climate System Model, Version 4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bitz, Cecilia M.; Shell, K. M.; Gent, P. R.; Bailey, D. A.; Danabasoglu, G.; Armour, K. C.; Holland, M. M.; Kiehl, J. T.

    2012-05-01

    Equilibrium climate sensitivity of the Community Climate System Model Version 4 (CCSM4) is 3.20°C for 1° horizontal resolution in each component. This is about a half degree Celsius higher than in the previous version (CCSM3). The transient climate sensitivity of CCSM4 at 1° resolution is 1.72°C, which is about 0.2°C higher than in CCSM3. These higher climate sensitivities in CCSM4 cannot be explained by the change to a preindustrial baseline climate. We use the radiative kernel technique to show that from CCSM3 to CCSM4, the global mean lapse-rate feedback declines in magnitude, and the shortwave cloud feedback increases. These twomore » warming effects are partially canceled by cooling due to slight decreases in the global mean water-vapor feedback and longwave cloud feedback from CCSM3 to CCSM4. A new formulation of the mixed-layer, slab ocean model in CCSM4 attempts to reproduce the SST and sea ice climatology from an integration with a full-depth ocean, and it is integrated with a dynamic sea ice model. These new features allow an isolation of the influence of ocean dynamical changes on the climate response when comparing integrations with the slab ocean and full-depth ocean. The transient climate response of the full-depth ocean version is 0.54 of the equilibrium climate sensitivity when estimated with the new slab ocean model version for both CCSM3 and CCSM4. We argue the ratio is the same in both versions because they have about the same zonal mean pattern of change in ocean surface heat flux, which broadly resembles the zonal mean pattern of net feedback strength.« less

  8. temperatures | OpenEI Community

    Open Energy Info (EERE)

    with NOAA, released an extensive National Climate Assessment report, projecting future climate changes in the United States under different scenarios. The 1,200 page report...

  9. Arctic Climate Systems Analysis

    SciTech Connect (OSTI)

    Ivey, Mark D.; Robinson, David G.; Boslough, Mark B.; Backus, George A.; Peterson, Kara J.; van Bloemen Waanders, Bart G.; Swiler, Laura Painton; Desilets, Darin Maurice; Reinert, Rhonda Karen

    2015-03-01

    This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in the Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.

  10. Global climate feedbacks

    SciTech Connect (OSTI)

    Manowitz, B.

    1990-10-01

    The important physical, chemical, and biological events that affect global climate change occur on a mesoscale -- requiring high spatial resolution for their analysis. The Department of Energy has formulated two major initiatives under the US Global Change Program: ARM (Atmospheric Radiation Measurements), and CHAMMP (Computer Hardware Advanced Mathematics and Model Physics). ARM is designed to use ground and air-craft based observations to document profiles of atmospheric composition, clouds, and radiative fluxes. With research and models of important physical processes, ARM will delineate the relationships between trace gases, aerosol and cloud structure, and radiative transfer in the atmosphere, and will improve the parameterization of global circulation models. The present GCMs do not model important feedbacks, including those from clouds, oceans, and land processes. The purpose of this workshop is to identify such potential feedbacks, to evaluate the uncertainties in the feedback processes (and, if possible, to parameterize the feedback processes so that they can be treated in a GCM), and to recommend research programs that will reduce the uncertainties in important feedback processes. Individual reports are processed separately for the data bases.

  11. Overview of different aspects of climate change effects on soils.

    SciTech Connect (OSTI)

    Qafoku, Nikolla

    2014-08-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2 and create organic carbon (C) that is either reprocessed to CO2 or stored in soils, are the subject of active current investigations with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries and identifies key research needs required to understand the effects of climate change on soils.

  12. Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program

    SciTech Connect (OSTI)

    SA Edgerton; LR Roeder

    2008-09-30

    The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

  13. Climate Trust | Open Energy Information

    Open Energy Info (EERE)

    Place: Portland, Oregon Zip: OR 97204 Product: The Climate Trust is a non-profit organization providing solutions to reduce GHG emissions Coordinates: 45.511795, -122.675629...

  14. Behavior, Energy and Climate Change

    Broader source: Energy.gov [DOE]

    The Behavior, Energy and Climate Change Conference (BECC) is the premier international conference focused on understanding human behavior and decision making so that this knowledge can accelerate the transition to an energy-efficient and low-carbon future.

  15. SPRUCE: Spruce and Peatland Responses under Climatic and Environmental Change

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    SPRUCE is an experiment to assess the response of northern peatland ecosystems to increases in temperature and exposures to elevated atmospheric CO2 concentrations. It is the primary component of the Terrestrial Ecosystem Science Scientific Focus Area of ORNL's Climate Change Program, focused on terrestrial ecosystems and the mechanisms that underlie their responses to climatic change. The experimental work is to be conducted in a Picea mariana [black spruce] - Sphagnum spp. bog forest in northern Minnesota, 40 km north of Grand Rapids, in the USDA Forest Service Marcell Experimental Forest (MEF). The site is located at the southern margin of the boreal peatland forest. It is an ecosystem considered especially vulnerable to climate change, and anticipated to be near its tipping point with respect to climate change. Responses to warming and interactions with increased atmospheric CO2 concentration are anticipated to have important feedbacks on the atmosphere and climate, because of the high carbon stocks harbored by such ecosystems.[copied from http://mnspruce.ornl.gov/] While some data files are restricted to access by project members only, others are available for public download now, even as research is being actively conducted.

  16. Enhancing Middle East climate change monitoring and indexes

    SciTech Connect (OSTI)

    Sensoy, S.; Peterson, T.C.; Zhang, X.

    2007-08-15

    Extreme climate events can have significant impacts on both natural and human systems, and therefore it is important to know if and how climate extremes are changing. Analysis of extremes requires long-term daily station data and, unfortunately, there are many regions in the world where these data are not internationally exchanged. The Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report (Folland et al. 2001) relied heavily on the multinational analysis of Frich et al (2002). However, Frich et al. had no results from all of Central and South America, and most of Africa and southern Asia, including the Middle East. To remedy this situation for the IPCC Fourth Assessment Report, the joint World Meteorological Organization Commission for Climatology/World Climate Research Programme (WCRP) project on Climate Variability and Predictability (CLIVAR) Expert Team on Climate Change Detection, Monitoring, and Indices (Zwiers et al. 2003) internationally coordinated a series of five regional climate change workshops and a set of indices for analyses of extremes. Two workshops covered the Americas, one in Brazil and one in Guatemala. One workshop addressed southern Africa. A workshop in India involved south and central Asia, while the workshop for the Middle East sought to address the region from Turkey to Iran and from Georgia to the southern tip of the Arabian Peninsula. The key to a successful workshop is a collaborative approach between outside experts and regional participants. The participants here broght long-term daily precipitation and maximum and minimum temperature data, station history information, an understanding of their country's climate, and a willingness to analyze thse data under the tutelage of outside experts. The outside experts brought knowledge of the crucial data and climate change issues, presentations to explain these issues, and user-friendly software to aid the analyses. Xuebin Zhang of Environment Canada wrote the workshop

  17. ORISE: Climate and Atmospheric Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge Institute for Science Education Climate and Atmospheric Research Conducting climate research focused on issues of national and global importance is one of the primary objectives of the Atmospheric Turbulence and Diffusion Division (ATDD)-a field division of the National Oceanic and Atmospheric Administration. ORAU partners with ATDD-and in collaboration with scientists and engineers from Oak Ridge National Laboratory (ORNL) as well as government agencies, universities, and private

  18. Radiation Measurement (ARM) Climate Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    overview Sponsored by the U.S. Department of Energy's (DOE) Office of Science, the Atmospheric Radiation Measurement (ARM) Climate Research Facility was established in 1990 to improve global climate models by increasing understanding of clouds and radiative feedbacks. Through the ARM Facility, DOE funded the development of highly instrumented research sites at strategic locations around the world: the Southern Great Plains (SGP), Tropical Western Pacific (TWP), and North Slope of Alaska (NSA).

  19. Glossary: Carbon dioxide and climate

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    This Glossary contains definitions of selected CO{sub 2}-related terms as well as tables containing information related to CO{sub 2} and climate. Each term is defined with an emphasis on its relationship to CO{sub 2} and climate. Many of the definitions are then followed by a more detailed description of the term and its use. References to the literature from which the definitions were taken are listed at the end of the Glossary.

  20. Property:Buildings/ModelClimateZone | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone 7A Climate Zone 7B Climate Zone 8A Climate Zone 8B Pages using the property "BuildingsModelClimateZone" Showing 12 pages using this property. G General Merchandise...

  1. Far-infrared surface emissivity and climate

    SciTech Connect (OSTI)

    Feldman, Daniel R.; Collins, William D.; Pincus, Robert; Huang, Xianglei; Chen, Xiuhong

    2014-11-03

    Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate model projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8–2.0 W m⁻² difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m⁻², and 15%, respectively, after only 25 y of integration. The calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.

  2. Far-infrared surface emissivity and climate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feldman, Daniel R.; Collins, William D.; Pincus, Robert; Huang, Xianglei; Chen, Xiuhong

    2014-11-03

    Presently, there are no global measurement constraints on the surface emissivity at wavelengths longer than 15 μm, even though this surface property in this far-IR region has a direct impact on the outgoing longwave radiation (OLR) and infrared cooling rates where the column precipitable water vapor (PWV) is less than 1 mm. Such dry conditions are common for high-altitude and high-latitude locations, with the potential for modeled climate to be impacted by uncertain surface characteristics. This paper explores the sensitivity of instantaneous OLR and cooling rates to changes in far-IR surface emissivity and how this unconstrained property impacts climate modelmore » projections. At high latitudes and altitudes, a 0.05 change in emissivity due to mineralogy and snow grain size can cause a 1.8–2.0 W m⁻² difference in the instantaneous clear-sky OLR. A variety of radiative transfer techniques have been used to model the far-IR spectral emissivities of surface types defined by the International Geosphere-Biosphere Program. Incorporating these far-IR surface emissivities into the Representative Concentration Pathway (RCP) 8.5 scenario of the Community Earth System Model leads to discernible changes in the spatial patterns of surface temperature, OLR, and frozen surface extent. The model results differ at high latitudes by as much as 2°K, 10 W m⁻², and 15%, respectively, after only 25 y of integration. The calculated difference in far-IR emissivity between ocean and sea ice of between 0.1 and 0.2, suggests the potential for a far-IR positive feedback for polar climate change.« less

  3. High resolution climate simulation over Europe

    SciTech Connect (OSTI)

    Deque, M.; Piedelievre, J.Ph.

    1995-08-01

    Three AMIP-type 10 year simulations have been performed with climate versions of the AR-PEGE-IFS model in order to simulate the European climate. The first one uses the standard T42 truncation. The second one uses a high resolution T106 truncation. The horizontal resolution of the third one varies between about T200 over Europe and T21 over the southern Pacific. The winter time general circulation improves in the Atlantic sector as the resolution increases. This is true for the time-mean pattern and for the transient and low-frequency variability. In summer time and in the southern hemisphere, the 3 versions of the model produce reasonable climatologies. When restricted to the European continent, the model verification against the observed climatology shows a reduction of the biases in temperature and, to a lesser extent, in precipitation with the increase in resolution. The use of a variable resolution GCM is a valid alternative to model nesting. The model is too warm in winter and too cold in summer, too wet in northern Europe and too dry in southern Europe. 33 refs., 16 figs., 6 tabs.

  4. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Andrews, Timothy; Gregory, Jonathan M.; Webb, Mark J.; Taylor, Karl E.

    2012-05-15

    We quantify forcing and feedbacks across available CMIP5 coupled atmosphere-ocean general circulation models (AOGCMs) by analysing simulations forced by an abrupt quadrupling of atmospheric carbon dioxide concentration. This is the first application of the linear forcing-feedback regression analysis of Gregory et al. (2004) to an ensemble of AOGCMs. The range of equilibrium climate sensitivity is 2.1–4.7 K. Differences in cloud feedbacks continue to be important contributors to this range. Some models show small deviations from a linear dependence of top-of-atmosphere radiative fluxes on global surface temperature change. We show that this phenomenon largely arises from shortwave cloud radiative effects overmore » the ocean and is consistent with independent estimates of forcing using fixed sea-surface temperature methods. Moreover, we suggest that future research should focus more on understanding transient climate change, including any time-scale dependence of the forcing and/or feedback, rather than on the equilibrium response to large instantaneous forcing.« less

  5. Modeling the response of plants and ecosystems to elevated CO sub 2 and climate change

    SciTech Connect (OSTI)

    Reynolds, J.F.; Hilbert, D.W.; Chen, Jia-lin; Harley, P.C.; Kemp, P.R.; Leadley, P.W.

    1992-03-01

    While the exact effects of elevated CO{sub 2} on global climate are unknown, there is a growing consensus among climate modelers that global temperature and precipitation will increase, but that these changes will be non-uniform over the Earth's surface. In addition to these potential climatic changes, CO{sub 2} also directly affects plants via photosynthesis, respiration, and stomatal closure. Global climate change, in concert with these direct effects of CO{sub 2} on plants, could have a significant impact on both natural and agricultural ecosystems. Society's ability to prepare for, and respond to, such changes depends largely on the ability of climate and ecosystem researchers to provide predictions of regional level ecosystem responses with sufficient confidence and adequate lead time.

  6. Modeling the response of plants and ecosystems to elevated CO{sub 2} and climate change

    SciTech Connect (OSTI)

    Reynolds, J.F.; Hilbert, D.W.; Chen, Jia-lin; Harley, P.C.; Kemp, P.R.; Leadley, P.W.

    1992-03-01

    While the exact effects of elevated CO{sub 2} on global climate are unknown, there is a growing consensus among climate modelers that global temperature and precipitation will increase, but that these changes will be non-uniform over the Earth`s surface. In addition to these potential climatic changes, CO{sub 2} also directly affects plants via photosynthesis, respiration, and stomatal closure. Global climate change, in concert with these direct effects of CO{sub 2} on plants, could have a significant impact on both natural and agricultural ecosystems. Society`s ability to prepare for, and respond to, such changes depends largely on the ability of climate and ecosystem researchers to provide predictions of regional level ecosystem responses with sufficient confidence and adequate lead time.

  7. Effects of Projected Transient Changes in Climate on Tennessee Forests

    SciTech Connect (OSTI)

    Dale, Virginia H; Tharp, M Lynn; Lannom, Karen O.; Hodges, Donald G.

    2010-01-01

    This study examines transient effects of projected climate change on the structure and species composition of forests in Tennessee. The climate change scenarios for 2030 and 2080 were provided by the National Center for Atmospheric Research (NCAR) from three General Circulation Models (GCMs) that simulate the range of potential climate conditions for the state. The precipitation and temperature projections from the three GCMs for 2030 and 2080 were related to changes in the ecoregions by using the monthly record of temperature and precipitation from 1980 to 1997 for each 1 km cell across the state as aggregated into the five ecological provinces. Temperatures are projected to increase in all ecological provinces in all months for all three GCMs for both 2030 and 2080. Precipitation patterns are more complex with one model projecting wetter summers and two models projecting drier summers. The forest ecosystem model LINKAGES was used to simulate conditions in forest stands for the five ecological provinces of Tennessee from 1989 to 2300. These model runs suggest there will be a change in tree diversity and species composition in all ecological provinces with the greatest changes occurring in the Southern Mixed Forest province. Most projections show a decline in total tree biomass followed by recovery as species replacement occurs in stands. The changes in forest biomass and composition, as simulated in this study, are likely to have implications on forest economy, tourism, understory conditions, wildlife habitat, mast provisioning, and other services provided by forest systems.

  8. Long-term successional forest dynamics: species and community responses to climatic variability

    SciTech Connect (OSTI)

    Kardol, Paul; Todd Jr, Donald E; Hanson, Paul J; Mulholland, Patrick J

    2010-01-01

    Question: Are tree dynamics sensitive to climatic variability, and do tree species differ in their responses to climatic variability? Hence, is vulnerability of forest communities to climatic variability depending on stand composition? Location: Mixed young forest at Walker Branch Watershed near Oak Ridge, East-Tennessee, USA. Methods: Using a long-term data set (1967-2006), we analyzed temporal forest dynamics at the tree and species level, and we analyzed community dynamics for forest stands that different in their initial species composition (i.e., Chestnut Oak, Oak-Hickory, Pine, and Yellow poplar stands). Using summer drought and growing season temperature as defined climate drivers, we evaluated relationships between forest dynamics and climate across levels of organization. Results: Over the 4-decade studied period, forest communities underwent successional change and substantially increased their biomass. Variation in summer drought and growing season temperature contributed to temporal biomass dynamics for some tree species, but not for others. Stand-level responses to climatic variability were shown to be related to responses of specific component species; however, not for Pine stands. Pinus echinata, the dominant species in stands initially identified as Pine stands, decreased over time due to periodical outbreaks of the pine bark beetle (Dendroctonus frontalis). The outbreaks on Walker Branch could not be directly related to climatic conditions. Conclusions: Our results imply that vulnerability of developing forests to predicted climate conditions is stand-type dependent, and hence, is a function of species composition. Autogenic successional processes (or insect outbreaks) were found to prevail over climatic variability in determining long-term forest dynamics for stands dominated by sensitive species, emphasizing the importance of studying interactions between forest succession and climate change.

  9. How Do We Know that Human Activities Have Influenced Global Climate?

    SciTech Connect (OSTI)

    Santer, Benjamin D.

    2007-11-05

    Human activities have significantly altered not only the chemical composition of Earth's atmosphere, but also the climate system. Human influences have led to increases in well-mixed greenhouse gases, decreases in stratospheric ozone, and changes in the atmospheric burdens of sulfate and soot aerosols. All of these atmospheric constituents interact with incoming solar and outgoing terrestrial radiation. Human-induced changes in the concentrations of these constituents modify the natural radiative balance of Earth's atmosphere, and therefore perturb climate. Quantifying the size of the human effect on climate is a difficult statistical problem. 'Fingerprint' methods are typically used for this purpose. These methods involve rigorous statistical comparisons of modeled and observed climate change patterns. Fingerprinting assumes that each individual influence on climate has a unique signature in climate records. The climate fingerprints in response to different forcing factors are typically estimated with computer models, which can be used to perform the controlled experiments that we cannot conduct in the real world. One criticism of the findings of previous scientific assessments is that they have relied heavily on fingerprint studies involving changes in near-surface temperature. Recent fingerprint work, however, has considered a variety of other climate variables, such as ocean heat content, stratospheric temperatures, Northern Hemisphere sea ice extent, sea level pressure, atmospheric water vapor, and the height of the tropopause. These studies illustrate that a human-induced climate change signal is identifiable in many different variables and geographic regions, and that the climate system is telling us an internally- and physically-consistent story.

  10. Economics, ethics, and climate policy

    SciTech Connect (OSTI)

    Howarth, R.B.; Monahan, P.A.

    1992-11-01

    Are the costs of greenhouse gas emissions abatement justified by the perceived benefits of sustained climate stability Do people of the present generation have a moral right to impose climate risks on their descendants in generations to come This report examines these questions in light of the emergent facts of climate science and their socioeconomic implications. We consider alternative normative criteria for social decision-making with particular emphasis on cost-benefit analysis and the principle of sustainable development. While each framework yields important insights, we argue that the gross uncertainties associated with climate change and the distribution of impacts between present and future generations constrain the usefulness of cost-benefit criteria in evaluating climate policy. If one accepts the ethical proposition that it is morally wrong to impose catastrophic risks on unborn generations when reducing those risks would not noticeably diminish the quality of life of existing persons, a case can be made for concerted policy action to reduce greenhouse gas emissions.

  11. Economics, ethics, and climate policy

    SciTech Connect (OSTI)

    Howarth, R.B.; Monahan, P.A.

    1992-11-01

    Are the costs of greenhouse gas emissions abatement justified by the perceived benefits of sustained climate stability? Do people of the present generation have a moral right to impose climate risks on their descendants in generations to come? This report examines these questions in light of the emergent facts of climate science and their socioeconomic implications. We consider alternative normative criteria for social decision-making with particular emphasis on cost-benefit analysis and the principle of sustainable development. While each framework yields important insights, we argue that the gross uncertainties associated with climate change and the distribution of impacts between present and future generations constrain the usefulness of cost-benefit criteria in evaluating climate policy. If one accepts the ethical proposition that it is morally wrong to impose catastrophic risks on unborn generations when reducing those risks would not noticeably diminish the quality of life of existing persons, a case can be made for concerted policy action to reduce greenhouse gas emissions.

  12. #ActOnClimate: It's Earth Week on Energy.gov | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    #ActOnClimate: It's Earth Week on Energy.gov #ActOnClimate: It's Earth Week on Energy.gov April 21, 2014 - 9:36am Addthis The Energy Sector's Vulnerabilities to Climatic Conditions x Impacts Due to... Increasing Temperatures Decreasing Water Availability Increasing Storms, Flooding, and Sea Level Rise See All Impacts Map locations are approximate. Find out more about this data here. Click and drag the map to read about each location. Marissa Newhall Marissa Newhall Director of Digital Strategy

  13. Watershed response and land energy feedbacks under climate change depend upon groundwater.

    SciTech Connect (OSTI)

    Maxwell, R M; Kollet, S J

    2008-06-10

    Human induced climate change will have a significant impact on the hydrologic cycle, creating changes in fresh water resources, land cover, and feedbacks that are difficult to characterize, which makes it an issue of global importance. Previous studies have not included subsurface storage in climate change simulations and feedbacks. A variably-saturated groundwater flow model with integrated overland flow and land surface model processes is used to examine the interplay between coupled water and energy processes under climate change conditions. A case study from the Southern Great Plains (SGP) USA, an important agricultural region that is susceptible to drought, is used as the basis for three scenarios simulations using a modified atmospheric forcing dataset to reflect predicted effects due to human-induced climate change. These scenarios include an increase in the atmospheric temperature and variations in rainfall amount and are compared to the present-day climate case. Changes in shallow soil saturation and groundwater levels are quantified as well as the corresponding energy fluxes at the land surface. Here we show that groundwater and subsurface lateral flow processes are critical in understanding hydrologic response and energy feedbacks to climate change and that certain regions are more susceptible to changes in temperature, while others to changes in precipitation. This groundwater control is critical for understanding recharge and drought processes, possible under future climate conditions.

  14. Regional Climate Modeling: Progress, Challenges, and Prospects

    SciTech Connect (OSTI)

    Wang, Yuqing; Leung, Lai R.; McGregor, John L.; Lee, Dong-Kyou; Wang, Wei-Chyung; Ding, Yihui; Kimura, Fujio

    2004-12-01

    Regional climate modeling with regional climate models (RCMs) has matured over the past decade and allows for meaningful utilization in a broad spectrum of applications. In this paper, latest progresses in regional climate modeling studies are reviewed, including RCM development, applications of RCMs to dynamical downscaling for climate change assessment, seasonal climate predictions and climate process studies, and the study of regional climate predictability. Challenges and potential directions of future research in this important area are discussed, with the focus on those to which less attention has been given previously, such as the importance of ensemble simulations, further development and improvement of regional climate modeling approach, modeling extreme climate events and sub-daily variation of clouds and precipitation, model evaluation and diagnostics, applications of RCMs to climate process studies and seasonal predictions, and development of regional earth system models. It is believed that with both the demonstrated credibility of RCMs capability in reproducing not only monthly to seasonal mean climate and interannual variability but also the extreme climate events when driven by good quality reanalysis and the continuous improvements in the skill of global general circulation models (GCMs) in simulating large-scale atmospheric circulation, regional climate modeling will remain an important dynamical downscaling tool for providing the needed information for assessing climate change impacts and seasonal climate predictions, and a powerful tool for improving our understanding of regional climate processes. An internationally coordinated effort can be developed with different focuses by different groups to advance regional climate modeling studies. It is also recognized that since the final quality of the results from nested RCMs depends in part on the realism of the large-scale forcing provided by GCMs, the reduction of errors and improvement in

  15. Analysis of climatic conditions and preliminary assessment of alternative cooling strategies for houses in California transition climate zones

    SciTech Connect (OSTI)

    Huang, Y.J.; Zhang, H.

    1995-07-01

    This is a preliminary scoping study done as part of the {open_quotes}Alternatives to Compressive Cooling in California Transition Climates{close_quotes} project, which has the goal of demonstrating that houses in the transitional areas between the coast and the Central Valley of California do not require air-conditioning if they are properly designed and operated. The first part of this report analyzes the climate conditions within the transitional areas, with emphasis on design rather than seasonal conditions. Transitional climates are found to be milder but more variable than those further inland. The design temperatures under the most stringent design criteria, e.g. 0.1 % annual, are similar to those in the Valley, but significantly lower under more relaxed design criteria, e.g., 2% annual frequency. Transition climates also have large day-night temperature swings, indicating significant potential for night cooling, and wet-bulb depressions in excess of 25 F, indicating good potential for evaporative cooling. The second part of the report is a preliminary assessment using DOE-2 computer simulations of the effectiveness of alternative cooling and control strategies in improving indoor comfort conditions in two conventional Title-24 houses modeled in various transition climate locations. The cooling measures studied include increased insulation, light colors, low-emissivity glazing, window overhangs, and exposed floor slab. The control strategies studied include natural and mechanical ventilation, and direct and two-stage evaporative cooling. The results indicate the cooling strategies all have limited effectiveness, and need to be combined to produce significant improvements in indoor comfort. Natural and forced ventilation provide similar improvements in indoor conditions, but during peak cooling periods, these will still be above the comfort zone. Two-stage evaporative coolers can maintain indoor comfort at all hours, but not so direct evaporative coolers.

  16. Climate change and water supply, management and use: A literature review

    SciTech Connect (OSTI)

    Chang, L.H.; Draves, J.D.; Hunsaker, C.T.

    1992-05-01

    There is evidence that atmospheric concentrations Of C0{sub 2}, tropospheric 0{sub 3}, and CH{sub 4}, among other gases that contribute to the greenhouse effect, have increased in recent decades, and that these changes may induce changes in global air temperatures and regional climate features in coming years. A literature review was conducted to sample the literature base on which our understanding of the water resource impacts of climate change rests. Water resource issues likely to be important include hydrologic response to climate change, the resilience of water supply systems to changing climatic and hydrologic conditions, and the effects of climate change on water quality and water uses (such as navigation and energy generation). A computer-assisted search of literature on the effects of climate change on these subjects was conducted. All studies were classified by type of paper (e.g., review, discussion, case study), region, water resource variable studied, and source of climate scenario. The resulting bibliography containing more than 200 references was largely annotated. Case studies of potential hydrologic impacts have been more common than studies of impacts on water management or water use, but this apparent research gap is decreasing. Case studies demonstrating methods of incorporating potential risks of climate change into water project planning and management have been performed. Considerable variability in regional coverage exists; the Great Lakes basin and California receive relatively more attention than such regions as New England and the Missouri River basin. General circulation model-based and hypothetical climate scenarios have been the dominant sources of climate scenarios used in case studies, although a variety of other methods for developing climate scenarios have been developed.

  17. Farming: A Climate Change Culprit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Farming: A Climate Change Culprit Farming: A Climate Change Culprit Simulations run at NERSC show impact of land-use change on African monsoon precipitation June 7, 2014 SahelMap Africarough The Sahel region is a narrow swath of semi-arid land that spans the African continent, from the Atlantic Ocean in the west to the Red Sea in the east. The low annual precipitation indicates the region is strongly reliant on the monsoon season for water supply. Increased agricultural activity is a rain taker,

  18. Impact of modern climate change on the intercommunication: Global ocean-land (Northern Hemisphere)

    SciTech Connect (OSTI)

    Lobanova, H.V.; Lobanov, V.A.; Stepanenko, S.R.

    1996-12-31

    Two main temperature gradients define the synoptic and climatic conditions on the earth in general: equator-pole gradient and ocean-land gradient. The analysis of temperature on the basis of new cyclic-different-scales conception has been fulfilled in every important part of the climatic system in the Northern Hemisphere for assessment of their vulnerability to modern climate change. Historical time series of monthly surface temperature have been used for this aim in the points of regular grid over the Northern Hemisphere from 1891 to 1992. The main feature of the temperature in main climatic parts of the earth is a complexity of its spatial structure. New methods of spatial decomposition have been developed for the division of this complex fields structure into characteristics of mean value of the field and index of its non-homogeneity or spatial variation. It has been established, that the temperature gradient between ocean and land is increasing that is characterized of the increasing of an intensity of synoptic processes, their spatial non-homogeneity and more frequent appearance of the extreme synoptic events. The models of intercommunications between coefficients of temperature spatial decomposition over the ocean and land have been developed for two time period and the increasing of the relationships closeness has been established between ocean and land as well as the decrease of main planet gradient: the pole(the Polar ocean)-equator.

  19. A National Strategy for Advancing Climate Modeling

    SciTech Connect (OSTI)

    Dunlea, Edward; Elfring, Chris

    2012-12-04

    Climate models are the foundation for understanding and projecting climate and climate-related changes and are thus critical tools for supporting climate-related decision making. This study developed a holistic strategy for improving the nation’s capability to accurately simulate climate and related Earth system changes on decadal to centennial timescales. The committee’s report is a high level analysis, providing a strategic framework to guide progress in the nation’s climate modeling enterprise over the next 10-20 years. This study was supported by DOE, NSF, NASA, NOAA, and the intelligence community.

  20. Cambodia-Pilot Program for Climate Resilience (PPCR) | Open Energy...

    Open Energy Info (EERE)

    Pilot Program for Climate Resilience (PPCR) Jump to: navigation, search Logo: Cambodia-Pilot Program for Climate Resilience (PPCR) Name Cambodia-Pilot Program for Climate...

  1. Barron County, Wisconsin ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Barron County, Wisconsin ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Barron County, Wisconsin ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  2. Becker County, Minnesota ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Becker County, Minnesota ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Becker County, Minnesota ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  3. Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alfalfa County, Oklahoma ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  4. Atkinson County, Georgia ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Atkinson County, Georgia ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Atkinson County, Georgia ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  5. Supercomputers Fuel Global High-Resolution Climate Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputers Fuel Global High-Resolution Climate Models Supercomputers Fuel Global High-Resolution Climate Models Berkeley Lab Researcher Says Climate Science is Entering New ...

  6. Climate, Earth system project draws on science powerhouses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate, Earth system project draws on science powerhouses Climate, Earth system project draws on science powerhouses The project will focus initially on three climate-change ...

  7. 2014 DOE Climate Change Adaptation Plan | Department of Energy

    Office of Environmental Management (EM)

    Climate Change Adaptation Plan 2014 DOE Climate Change Adaptation Plan Document presents the U.S. Department of Energy (DOE) 2014 plan for adapting to climate change....

  8. China-Climate Change Research Center | Open Energy Information

    Open Energy Info (EERE)

    China-Climate Change Research Center Jump to: navigation, search Name China-Climate Change Research Center AgencyCompany Organization ClimateWorks, Energy Foundation Sector...

  9. El Salvador - National Climate Change Strategy Support | Open...

    Open Energy Info (EERE)

    El Salvador - National Climate Change Strategy Support Jump to: navigation, search Name National Climate Change Strategy of El Salvador AgencyCompany Organization Climate and...

  10. Ethiopia-Strategic Climate Institutions Programme (SCIP) | Open...

    Open Energy Info (EERE)

    Ethiopia-Strategic Climate Institutions Programme (SCIP) (Redirected from Strategic Climate Institutions Programme (SCIP)) Jump to: navigation, search Name Strategic Climate...

  11. Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy...

    Open Energy Info (EERE)

    Nepal-Sectoral Climate Impacts Economic Assessment (Redirected from Nepal Sectoral Climate impacts Economic Assessment) Jump to: navigation, search Name Nepal Sectoral Climate...

  12. Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy...

    Open Energy Info (EERE)

    Nepal-Sectoral Climate Impacts Economic Assessment Jump to: navigation, search Name Nepal Sectoral Climate impacts Economic Assessment AgencyCompany Organization Climate and...

  13. Climate Analysis Indicators Tool (CAIT) | Open Energy Information

    Open Energy Info (EERE)

    Climate Analysis Indicators Tool (CAIT) (Redirected from WRI Climate Analysis Indicators Tool) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: WRI Climate Analysis...

  14. Climate Analysis Indicators Tool (CAIT) | Open Energy Information

    Open Energy Info (EERE)

    Climate Analysis Indicators Tool (CAIT) (Redirected from Climate Analysis Indicators Tool) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: WRI Climate Analysis...

  15. Adams County, Pennsylvania ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Adams County, Pennsylvania ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Pennsylvania ASHRAE Standard ASHRAE 169-2006 Climate...

  16. Adams County, Mississippi ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Adams County, Mississippi ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Mississippi ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  17. China-Partnership for Climate Action | Open Energy Information

    Open Energy Info (EERE)

    Partnership for Climate Action (Redirected from Partnership for Climate Action - China) Jump to: navigation, search Name Partnership for Climate Action - China AgencyCompany...

  18. Anderson County, Tennessee ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Anderson County, Tennessee ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Tennessee ASHRAE Standard ASHRAE 169-2006 Climate...

  19. Anderson County, Kentucky ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Anderson County, Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  20. Alameda County, California ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Alameda County, California ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alameda County, California ASHRAE Standard ASHRAE 169-2006 Climate...

  1. Australia Department of Climate Change | Open Energy Information

    Open Energy Info (EERE)

    Department of Climate Change Jump to: navigation, search Logo: Australia Department of Climate Change Name: Australia Department of Climate Change Address: 2 Constitution Ave...

  2. UNEP-Southeast Asia Climate Change Network | Open Energy Information

    Open Energy Info (EERE)

    Southeast Asia Climate Change Network Jump to: navigation, search Logo: UNEP-Southeast Asia Climate Change Network Name UNEP-Southeast Asia Climate Change Network AgencyCompany...

  3. Ethiopia-African Climate Change Resilience Alliance | Open Energy...

    Open Energy Info (EERE)

    Ethiopia-African Climate Change Resilience Alliance Jump to: navigation, search Logo: Ethiopia-African Climate Change Resilience Alliance Name Ethiopia-African Climate Change...

  4. DB Climate Change Advisors DBCCA | Open Energy Information

    Open Energy Info (EERE)

    DB Climate Change Advisors DBCCA Jump to: navigation, search Name: DB Climate Change Advisors (DBCCA) Place: New York, New York Product: New York-based climate change investement...

  5. World Bank-Climate Change Knowledge Portal | Open Energy Information

    Open Energy Info (EERE)

    Climate Change Knowledge Portal Jump to: navigation, search Logo: World Bank-Climate Change Knowledge Portal Name World Bank-Climate Change Knowledge Portal AgencyCompany...

  6. Regional Climate Change Adaptation Platform for Asia | Open Energy...

    Open Energy Info (EERE)

    Climate Change Adaptation Platform for Asia Jump to: navigation, search Logo: Regional Climate Change Adaptation Platform for Asia Name Regional Climate Change Adaptation Platform...

  7. Mozambique-African Climate Change Resilience Alliance | Open...

    Open Energy Info (EERE)

    African Climate Change Resilience Alliance Jump to: navigation, search Logo: Mozambique-African Climate Change Resilience Alliance Name Mozambique-African Climate Change Resilience...

  8. Caribbean Community Climate Change Centre | Open Energy Information

    Open Energy Info (EERE)

    Caribbean Community Climate Change Centre Jump to: navigation, search Logo: Caribbean Community Climate Change Centre Name Caribbean Community Climate Change Centre AgencyCompany...

  9. Uganda-African Climate Change Resilience Alliance | Open Energy...

    Open Energy Info (EERE)

    African Climate Change Resilience Alliance Jump to: navigation, search Logo: Uganda-African Climate Change Resilience Alliance Name Uganda-African Climate Change Resilience...

  10. Estimating present climate in a warming world: a model-based approach

    SciTech Connect (OSTI)

    Raeisaenen, J.; Ruokolainen, L. [University of Helsinki (Finland). Division of Atmospheric Sciences and Geophysics

    2008-09-30

    Weather services base their operational definitions of 'present' climate on past observations, using a 30-year normal period such as 1961-1990 or 1971-2000. In a world with ongoing global warming, however, past data give a biased estimate of the actual present-day climate. Here we propose to correct this bias with a 'delta change' method, in which model-simulated climate changes and observed global mean temperature changes are used to extrapolate past observations forward in time, to make them representative of present or future climate conditions. In a hindcast test for the years 1991-2002, the method works well for temperature, with a clear improvement in verification statistics compared to the case in which the hindcast is formed directly from the observations for 1961-1990. However, no improvement is found for precipitation, for which the signal-to-noise ratio between expected anthropogenic changes and interannual variability is much lower than for temperature. An application of the method to the present (around the year 2007) climate suggests that, as a geographical average over land areas excluding Antarctica, 8-9 months per year and 8-9 years per decade can be expected to be warmer than the median for 1971-2000. Along with the overall warming, a substantial increase in the frequency of warm extremes at the expense of cold extremes of monthly-to-annual temperature is expected.

  11. The AmeriFlux Data Activity and Data System: An Evolving Collection of Data Management Techniques, Tools, Products and Services

    SciTech Connect (OSTI)

    Boden, Thomas A; Krassovski, Misha B; Yang, Bai

    2013-01-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL), USA has provided scientific data management support for the U.S. Department of Energy and international climate change science since 1982. Over this period, climate change science has expanded from research focusing on basic understanding of geochemical cycles, particularly the carbon cycle, to integrated research addressing climate change impacts, vulnerability, adaptation, and mitigation. Interests in climate change data and information worldwide have grown remarkably and, as a result, so have demands and expectations for CDIAC s data systems. To meet the growing demands, CDIAC s strategy has been to design flexible data systems using proven technologies blended with new, evolving technologies and standards. CDIAC development teams are multidisciplinary and include computer science and information technology expertise, but also scientific expertise necessary to address data quality and documentation issues and to identify data products and system capabilities needed by climate change scientists. CDIAC has learned there is rarely a single commercial tool or product readily available to satisfy long-term scientific data system requirements (i.e., one size does not fit all and the breadth and diversity of environmental data are often too complex for easy use with commercial products) and typically deploys a variety of tools and data products in an effort to provide credible data freely to users worldwide. Like many scientific data management applications, CDIAC s data systems are highly customized to satisfy specific scientific usage requirements (e.g., developing data products specific for model use) but are also designed to be flexible and interoperable to take advantage of new software engineering techniques, standards (e.g., metadata standards) and tools and to support future Earth system data efforts (e.g., ocean acidification). CDIAC has provided data management

  12. Earths Climate Sensitivity: Apparent Inconsistencies in Recent Assessments

    SciTech Connect (OSTI)

    Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph; Rodhe, Henning

    2014-12-08

    Earth's equilibrium climate sensitivity (ECS) and forcing of Earth's climate system over the industrial era have been re-examined in two new assessments: the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and a study by Otto et al. (2013). The ranges of these quantities given in these assessments and also in the Fourth (2007) IPCC Assessment are analyzed here within the framework of a planetary energy balance model, taking into account the observed increase in global mean surface temperature over the instrumental record together with best estimates of the rate of increase of planetary heat content. This analysis shows systematic differences among the several assessments and apparent inconsistencies within individual assessments. Importantly, the likely range of ECS to doubled CO? given in AR5, 1.54.5 K/(3.7 W m?) exceeds the range inferred from the assessed likely range of forcing, 1.22.9 K/(3.7 W m?), where 3.7 W ? denotes the forcing for doubled CO?. Such differences underscore the need to identify their causes and reduce the underlying uncertainties. Explanations might involve underestimated negative aerosol forcing, overestimated total forcing, overestimated climate sensitivity, poorly constrained ocean heating, limitations of the energy balance model, or a combination of effects.

  13. Earths Climate Sensitivity: Apparent Inconsistencies in Recent Assessments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwartz, Stephen E.; Charlson, Robert J.; Kahn, Ralph; Rodhe, Henning

    2014-12-08

    Earth's equilibrium climate sensitivity (ECS) and forcing of Earth's climate system over the industrial era have been re-examined in two new assessments: the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and a study by Otto et al. (2013). The ranges of these quantities given in these assessments and also in the Fourth (2007) IPCC Assessment are analyzed here within the framework of a planetary energy balance model, taking into account the observed increase in global mean surface temperature over the instrumental record together with best estimates of the rate of increase of planetary heat content.more » This analysis shows systematic differences among the several assessments and apparent inconsistencies within individual assessments. Importantly, the likely range of ECS to doubled CO₂ given in AR5, 1.5–4.5 K/(3.7 W m⁻²) exceeds the range inferred from the assessed likely range of forcing, 1.2–2.9 K/(3.7 W m⁻²), where 3.7 W ⁻² denotes the forcing for doubled CO₂. Such differences underscore the need to identify their causes and reduce the underlying uncertainties. Explanations might involve underestimated negative aerosol forcing, overestimated total forcing, overestimated climate sensitivity, poorly constrained ocean heating, limitations of the energy balance model, or a combination of effects.« less

  14. Sunnyvale Marine Climate Deep Retrofit

    SciTech Connect (OSTI)

    German, A.; Siddiqui, A.; Dakin, B.

    2014-11-01

    The Alliance for Residential Building Innovation (ARBI) and Allen Gilliland of One Sky Homes collaborated on a marine climate retrofit project designed to meet both Passive House (PH) and Building America program standards. The scope included sealing, installing wall, roof and floor insulation (previously lacking), replacing windows, upgrading the heating and cooling system, and installing mechanical ventilation.

  15. Sunnyvale Marine Climate Deep Retrofit

    SciTech Connect (OSTI)

    German, A.; Siddiqui, A.; Dakin, B.

    2014-11-01

    The Alliance for Residential Building Innovation (ARBI) and Allen Gilliland of One Sky Homes collaborated on a marine climate retrofit project designed to meet both Passive House (PH) and Building America (BA) program standards. The scope included sealing, installing wall, roof and floor insulation (previously lacking), replacing windows, upgrading the heating and cooling system, and installing.

  16. Impacts of Climate Change on Tribal Health

    Broader source: Energy.gov [DOE]

    Climate change, together with other natural and human-made health stressors, threatens our health and well-being in many ways. This webinar will provide an overview of climate-related health...

  17. Chicago Climate Exchange CCX | Open Energy Information

    Open Energy Info (EERE)

    Illinois Zip: 60604 Product: Chicago Climate Exchange (CCX) is aiming at reduction of CO2 emission. References: Chicago Climate Exchange (CCX)1 This article is a stub. You can...

  18. Integrated Climate and Carbon-cycle Model

    Energy Science and Technology Software Center (OSTI)

    2006-03-06

    The INCCA model is a numerical climate and carbon cycle modeling tool for use in studying climate change and carbon cycle science. The model includes atmosphere, ocean, land surface, and sea ice components.

  19. 2016 Behavior, Energy, and Climate Change Conference

    Broader source: Energy.gov [DOE]

    The Behavior, Energy, and Climate Change Conference is the premiere event focused on understanding individual and organizational behavior and decision making related to energy usage, greenhouse gas emissions, climate change, and sustainability.

  20. Watershed Academy Webcast on Climate Resilience

    Office of Energy Efficiency and Renewable Energy (EERE)

    "Climate Resilience: What to Expect, How to Prepare, and  What you can Learn from Others." This webcast will share findings from the most recent National Climate Assessment report concerning...

  1. Utilizing The US Climate Resilience Toolkit

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Climate Resilience Toolkit provides scientific tools, information, and expertise to help professionals manage their climate-related risks and opportunities, and improve their resilience to extreme events.

  2. Behavior, Energy & Climate Change (BECC) Conference | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Behavior, Energy & Climate Change (BECC) Conference Behavior, Energy & Climate Change (BECC) Conference October 20, 2016 9:00AM EDT to October 22, 2016 5:00PM EDT Renaissance ...

  3. Climate Zone 8B | Open Energy Information

    Open Energy Info (EERE)

    Subtype B. Climate Zone 8B is defined as Subarctic with IP Units 12600 < HDD65F and SI Units 7000 < HDD18C . The following places are categorized as class 8B climate zones:...

  4. Climate Zone 8A | Open Energy Information

    Open Energy Info (EERE)

    A. Climate Zone Number 8A is defined as Subarctic with IP Units 12600 < HDD65F and SI Units 7000 < HDD18C . The following places are categorized as class 8A climate zones:...

  5. Climate Zone 1B | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype B. Climate Zone 1B is defined as Dry with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C . The following places are categorized as class 1B climate zones:...

  6. Climate Zone 1A | Open Energy Information

    Open Energy Info (EERE)

    A. Climate Zone 1A is defined as Very Hot - Humid with IP Units 9000 < CDD50F and SI Units 5000 < CDD10C . The following places are categorized as class 1A climate zones:...

  7. Sequoia Climate Investment Ltd | Open Energy Information

    Open Energy Info (EERE)

    Climate Investment Ltd Jump to: navigation, search Name: Sequoia Climate Investment Ltd Place: London, United Kingdom Zip: EC1V 4PY Sector: Carbon Product: Start-up carbon credit...

  8. climate change | OpenEI Community

    Open Energy Info (EERE)

    climate change Home Graham7781's picture Submitted by Graham7781(2017) Super contributor 18 January, 2013 - 15:46 U.S. Global Change Research Program publishes "National Climate...

  9. Compressor Selection and Equipment Sizing for Cold Climate Heat Pumps

    SciTech Connect (OSTI)

    Shen, Bo; Abdelaziz, Omar; Rice, C Keith

    2014-01-01

    In order to limit heating capacity degradation at -25 C (-13 F) ambient to 25%, compared to the nominal rating point capacity at 8.3 C (47 F), an extensive array of design and sizing options were investigated, based on fundamental equipment system modeling and building energy simulation. Sixteen equipment design options were evaluated in one commercial building and one residential building, respectively in seven cities. The energy simulation results were compared to three baseline cases: 100% electric resistance heating, a 9.6 HSPF single-speed heat pump unit, and 90% AFUE gas heating system. The general recommendation is that variable-speed compressors and tandem compressors, sized such that their rated heating capacity at a low speed matching the building design cooling load, are able to achieve the capacity goal at low ambient temperatures by over-speeding, for example, a home with a 3.0 ton design cooling load, a tandem heat pump could meet this cooling load running a single compressor, while running both compressors to meet heating load at low ambient temperatures in a cold climate. Energy savings and electric resistance heat reductions vary with building types, energy codes and climate zones. Oversizing a heat pump can result in larger energy saving in a less energy efficient building and colder regions due to reducing electric resistance heating. However, in a more energy-efficient building or for buildings in warmer climates, one has to consider balance between reduction of resistance heat and addition of cyclic loss.

  10. NREL: Technology Deployment - Climate Action Planning Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Technology Deployment Climate Action Planning Tool Technology Deployment - Climate Action Planning Tool NREL's Climate Action Planning Tool provides a quick, basic estimate of how various technology options can contribute to an overall climate action plan for your research campus. Use the tool to identify which options will lead to the most significant reductions in consumption of fossil fuels and in turn meet greenhouse gas reduction goals. Follow these four steps: Gather baseline energy

  11. Climate Action Champions: Metropolitan Washington Council of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    baseline regional greenhouse gas inventory, examines potential climate change impacts, evaluates mitigation and adaptation strategies, and establishes greenhouse gas emission ...

  12. Details of U.S. Climate Zones:

    U.S. Energy Information Administration (EIA) Indexed Site

    that show the NOAA climate divisions by county, see http:www.cpc.ncep.noaa.govproductsanalysismonitoringregionalmonitoringCLIMDIVSstatescountiesclimate-divisions.shtml....

  13. Climate Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Action Plan Climate Action Plan Since President Obama's announcement of the Climate Action Plan (CAP) on June 25, 2013, the Department of Energy (DOE) has moved forward to lead initiatives and support interagency efforts that cut carbon pollution, augment resilience and preparedness in the face of climate impacts, and strengthen international partnerships addressing the issue. This effort involves activities all across the Department, including actions led by the Office of International

  14. Climate Models: Rob Jacob | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science & technology Environmental modeling tools Programs Mathematics, computing, & computer science Modeling, simulation, & visualization Rob Jacob, Computational Climate...

  15. Climate, Community and Biodiversity Project Design Standards...

    Open Energy Info (EERE)

    Topics: Implementation, Co-benefits assessment, Pathways analysis Resource Type: Guidemanual Website: www.climate-standards.orgstandardspdfccbstandardssecondeditiond...

  16. Southeast Florida Regional Climate Change Compact A White House Climate Action Champions Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Florida Regional Climate Change Compact A White House Climate Action Champions Case Study INDEX Executive Summary..............................2 Climate Action Champion...................2 Project Spotlight...............................2-4 Co-benefits...........................................4 Challenges and lessons learned.........5 Resources & Contacts......................5-6 2 Executive Summary The Southeast Florida Regional Climate Change Compact, a collaboration among the

  17. ASHRAE Climate Zones | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Subtype A Subtype B Subtype C Climate Zone Number 1 Zone 1A Zone 1B NA Climate Zone Number 2 Zone 2A Zone 2B NA Climate Zone Number 3 Zone 3A Zone 3B Zone...

  18. Portland, Oregon Climate-Friendly Infrastructure:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Portland, Oregon Climate-Friendly Infrastructure: Tilikum Crossing, Bridge of the People A White House Climate Action Champions Case Study INDEX Executive Summary...............................2 Climate Action Champion.....................2 Project Spotlight.................................3-5 Co-benefits.............................................6 Challenges and lessons learned...........6 Resources & Contacts............................7 2 Executive Summary The City of Portland's 2015

  19. BIA Climate Change Adaption—Tribal Liaison

    Broader source: Energy.gov [DOE]

    The U.S. Department of the Interior (DOI) Bureau of Indian Affairs (BIA) is accepting proposals from eligible entities impacted by climate change to enter into a cooperative agreement for the identification and hiring of tribal climate change liaisons to address tribal climate change science needs.

  20. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-08-04

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  1. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-01-01

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  2. U.S. Climate Zones Map for Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Climate Zone U. S. Climate Zones for 2003 CBECS: climate zones map Note:Map updated with corrections, February 2012 Further Explanation on How Climate Zones are Defined...

  3. U.S. Climate Zones Map for Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Past Climate Zones U. S. Climate Zones for 1979-1999 CBECS: climate zone map Return to Climate Zones for 2003 CBECS Return to CBECS Home Page Note:Map updated with corrections,...

  4. Property:ASHRAE 169 Climate Zone Subtype | Open Energy Information

    Open Energy Info (EERE)

    A + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + Climate Zone Subtype A + Adams County, Colorado ASHRAE 169-2006 Climate Zone + Climate Zone Subtype B + Adams County,...

  5. Property:ASHRAE 169 Climate Zone Number | Open Energy Information

    Open Energy Info (EERE)

    5 + Adair County, Oklahoma ASHRAE 169-2006 Climate Zone + Climate Zone Number 3 + Adams County, Colorado ASHRAE 169-2006 Climate Zone + Climate Zone Number 5 + Adams County,...

  6. High temperature furnace

    DOE Patents [OSTI]

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  7. What is the importance of climate model bias when projecting the impacts of climate change on land surface processes?

    SciTech Connect (OSTI)

    Liu, M. L.; Rajagopalan, K.; Chung, S. H.; Jiang, X.; Harrison, J. H.; Nergui, T.; Guenther, Alex B.; Miller, C.; Reyes, J.; Tague, C. L.; Choate, J. S.; Salathe, E.; Stockle, Claudio O.; Adam, J. C.

    2014-05-16

    , significant differences rise from projected SWE, crop yield from dry lands, and HJ Andrews’s ET between BC and NBC data. Even though BC post-processing has no significant impacts on most of the studied variables when taking PNW as a whole, their effects have large spatial variations and some local areas are substantially influenced. In addition, there are months during which BC and NBC post-processing produces significant differences in projected changes, such as summer runoff. Factor-controlled simulations indicate that BC post-processing of precipitation and temperature both substantially contribute to these differences at region scales. We conclude that there are trade-offs between using BC climate data for offline CCI studies vs. direct modeled climate data. These trade-offs should be considered when designing integrated modeling frameworks for specific applications; e.g., BC may be more important when considering impacts on reservoir operations in mountainous watersheds than when investigating impacts on biogenic emissions and air quality (where VOCs are a primary indicator).

  8. Siberian climate poses new challenge for compressor package design

    SciTech Connect (OSTI)

    Walker, J.D.; Mottram, A.W.T.

    1980-03-01

    The severe conditions of Siberia's climate have tested the engineering skill and ingenuity of British pumping-station manufacturers, a consortium of companies formed to meet the challenge of transporting natural gas to the Soviet Union's demand centers. The route, crossing mountains, forests, permafrost, and marsh lands, makes access difficult and requires equipment that can withstand a temperature range of 90/sup 0/C, high winds, and heavy snowfalls. Avon-powered Coberrow compression equipment was selected and has helped with the project's success. The modifications and engineering designs specified for the project are described. Ecperience and reliability in cold climates were the prinicpal criteria for selecting equipment. The value of close quality control and pre-fabricated, pre-assembled and pre-tested equipment was demonstrated. (DCK)

  9. Changes in Dimethyl Sulfide Oceanic Distribution due to Climate Change

    SciTech Connect (OSTI)

    Cameron-Smith, P; Elliott, S; Maltrud, M; Erickson, D; Wingenter, O

    2011-02-16

    Dimethyl sulfide (DMS) is one of the major precursors for aerosols and cloud condensation nuclei in the marine boundary layer over much of the remote ocean. Here they report on coupled climate simulations with a state-of-the-art global ocean biogeochemical model for DMS distribution and fluxes using present-day and future atmospheric CO{sub 2} concentrations. They find changes in zonal averaged DMS flux to the atmosphere of over 150% in the Southern Ocean. This is due to concurrent sea ice changes and ocean ecosystem composition shifts caused by changes in temperature, mixing, nutrient, and light regimes. The largest changes occur in a region already sensitive to climate change, so any resultant local CLAW/Gaia feedback of DMS on clouds, and thus radiative forcing, will be particularly important. A comparison of these results to prior studies shows that increasing model complexity is associted with reduced DMS emissions at the equator and increased emissions at high latitudes.

  10. Upper Permian fluviolacustrine deposits of southern Africa and the late Permian climate southern Gondwana

    SciTech Connect (OSTI)

    Yemane, K. . Dept. of Geology Bryn Mawr Coll., PA . Dept. of Geology)

    1993-03-01

    Upper Permian-age fluviolacustrine deposits are widespread throughout southern Africa. In the southern part of the subcontinent, where deposition took place in foreland basin settings, the sequences are thicker and fluvial-dominated whereas, lacustrine-dominated deposits accumulated in settings of low relief, broad warping and mild faulting at the northern end. The geographic extent and lateral correlatability of these deposits suggest the existence of concurrent, perhaps interconnected, giant lakes within major fluvial frameworks throughout the subcontinent, thousands of miles inland from the sea. This period of major lake development within fluvial depositional settings suggests climatic conditions that sustained a uniquely wet continental environment, deep in the heart of the Gondwanan supercontinent. Simulations based on various general circulation and energy balance climate models predict extreme seasonal temperatures and aridity for Gondwana at the palaeolatitudes of southern Africa during the Late Permian. On the other hand, distribution of climate-sensitive rocks, palynologic and palaeobotanic data and vertebrate fossils, coroborate the temperature climate documented by sedimentologic studies. The erroneous modeling results may have arisen from the fact that the models do not employ palaeogeographies that accommodate the existence of the vast lakes and rivers of Gondwana. The Late Permian palaeogeography of series of giant lakes within major fluvial frameworks would have had considerable influences on the regional climate. This suggests that it is imperative that numerical modeling studies incorporate accurate palaeogeographies, constructed based on available geological data, in order to recreate past climates with acceptable degree of accuracy.

  11. Data Products from W.A.V.E.S: Web-Accessible Visualization and Extraction System (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    W.A.V.E.S. stands for the Web-Accessible Visualization and Extraction System. Implemented in 2007, this specialized data interface allows users to search for ocean carbon data and receive on screen tables of data, data plots, or data files to download. An interactive map assists in the search, which has many customized search and output parameters. Both discrete data and underway data from ships' cruises are available for search.

  12. Regional Climate Effects of Aerosols Over China: Modeling and Observation

    SciTech Connect (OSTI)

    Qian, Yun; Leung, Lai R.; Ghan, Steven J.; Giorgi, Filippo

    2003-09-01

    We present regional simulations of aerosol properties, direct radiative forcing and aerosol climatic effects over China, and compare the simulations with observed aerosol characteristics and climatic data over the region. The climate simulations are performed with a regional climate model, which is shown to capture the spatial distribution and seasonal pattern of temperature and precipitation. Aerosol concentrations are obtained from a global tracer-transport model and are provided to the regional model for the calculation of radiative forcing. Different aerosols are included: sulfate, organic carbon, black carbon, mineral dust, and sea salt and MSA particles. Generally, the aerosol optical depth is well simulated in both magnitude and spatial distribution. The direct radiative forcing of the aerosol is in the range of –1 to –14 W m-2 in autumn and summer and -1 to –9 W m-2 in spring and winter, with substantial spatial variability at the regional scale. A strong maximum in aerosol optical depth and negative radiative forcing is found over the Sichuan Basin. The negative radiative forcing of aerosol induces a surface cooling in the range of –0.6 to –1.2oC in autumn and winter, –0.3 to –0.6oC in spring and 0.0 to –0.9oC in summer throughout East China. The aerosol-induced cooling is mainly due to a decrease in day-time maximum temperature. The cooling is maximum and is statistically significant over the Sichuan Basin. The effect of aerosol on precipitation is not evident in our simulations. The temporal and spatial patterns of the temperature trends observed in the second half of the twentieth century, including different trends for daily maximum and minimum temperature, are at least qualitatively consistent with the simulated aerosol-induced cooling over the Sichuan Basin and East China. This result supports the hypothesis that the observed temperature trends during the latter decades of the twentieth century, especially the cooling trends over the

  13. Climate Impacts of Atmospheric Sulfate and Black Carbon Aerosols

    SciTech Connect (OSTI)

    Qian, Yun; Song, Qingyuan; Menon, Surabi; Yu, Shaocai; Liu, Shaw C.; Shi, Guangyu; Leung, Lai R.; Luo, Yunfeng

    2008-09-19

    Although the global average surface temperature has increased by about 0.6°C during the last century (IPCC, 2001), some regions such as East Asia, Eastern North America, and Western Europe have cooled rather than warmed during the past decades (Jones, 1988; Qian and Giorgi, 2000). Coherent changes at the regional scale may reflect responses to different climate forcings that need to be understood in order to predict the future net climate response at the global and regional scales under different emission scenarios. Atmospheric aerosols play an important role in global climate change (IPCC 2001). They perturb the earth’s radiative budget directly by scattering and absorbing solar and long wave radiation, and indirectly by changing cloud reflectivity, lifetime, and precipitation efficiency via their role as cloud condensation nuclei. Because aerosols have much shorter lifetime (days to weeks) compared to most greenhouse gases, they tend to concentrate near their emission sources and distribute very unevenly both in time and space. This non-uniform distribution of aerosols, in conjunction with the greenhouse effect, may lead to differential net heating in some areas and net cooling in others (Penner et al. 1994). Sulfate aerosols come mainly from the oxidation of sulfur dioxide (SO2) emitted from fossil fuel burning. Black carbon aerosols are directly emitted during incomplete combustion of biomass, coal, and diesel derived sources. Due to the different optical properties, sulfate and black carbon affect climate in different ways. Because of the massive emissions of sulfur and black carbon that accompany the rapid economic expansions in East Asia, understanding the effects of aerosols on climate is particularly important scientifically and politically in order to develop adaptation and mitigation strategies.

  14. Structural Design Feasibility Study for the Global Climate Experiment

    SciTech Connect (OSTI)

    Lewin,K.F.; Nagy, J.

    2008-12-01

    Neon, Inc. is proposing to establish a Global Change Experiment (GCE) Facility to increase our understanding of how ecological systems differ in their vulnerability to changes in climate and other relevant global change drivers, as well as provide the mechanistic basis for forecasting ecological change in the future. The experimental design was initially envisioned to consist of two complementary components; (A) a multi-factor experiment manipulating CO{sub 2}, temperature and water availability and (B) a water balance experiment. As the design analysis and cost estimates progressed, it became clear that (1) the technical difficulties of obtaining tight temperature control and maintaining elevated atmospheric carbon dioxide levels within an enclosure were greater than had been expected and (2) the envisioned study would not fit into the expected budget envelope if this was done in a partially or completely enclosed structure. After discussions between NEON management, the GCE science team, and Keith Lewin, NEON, Inc. requested Keith Lewin to expand the scope of this design study to include open-field exposure systems. In order to develop the GCE design to the point where it can be presented within a proposal for funding, a feasibility study of climate manipulation structures must be conducted to determine design approaches and rough cost estimates, and to identify advantages and disadvantages of these approaches including the associated experimental artifacts. NEON, Inc requested this design study in order to develop concepts for the climate manipulation structures to support the NEON Global Climate Experiment. This study summarizes the design concepts considered for constructing and operating the GCE Facility and their associated construction, maintenance and operations costs. Comparisons and comments about experimental artifacts, construction challenges and operational uncertainties are provided to assist in selecting the final facility design. The overall goal

  15. TROPICAL METEOROLOGY & Climate: Hadley Circulation

    SciTech Connect (OSTI)

    Lu, Jian; Vecchi, Gabriel A.

    2015-01-30

    The Hadley circulation, a prominent circulation feature characterized by rising air near the Equator and sinking air in the subtropics, defines the position of dry subtropical areas and is a fundamental regulator of the earth’s energy and momentum budgets. The character of the Hadley circulation, and its related precipitation regimes, exhibits variation and change in response to both climate variability and radiative forcing changes. The strength and position of the Hadley circulation change from year to year paced by El Niño and La Niña events. Over the last few decades of the twentieth century, the Hadley cell has expanded poleward in both hemispheres, with changes in atmospheric composition (including stratospheric ozone depletion and greenhouse gas increases) thought to have contributed to its expansion. This article introduces the basic phenomenology and driving mechanism of the Hadley circulation and discusses its variations under both natural and anthropogenic climate forcings.

  16. Climate Action Champions: Portland, OR

    Broader source: Energy.gov [DOE]

    In 1993, Portland became the first local government in the U.S. to adopt a plan for reducing carbon emissions. The current Portland Climate Action Plan was adopted by Portland City Council in 2009. Portland’s overarching climate objective is to reduce emissions to 80 percent below 1990 levels by 2050, with an interim goal of a 40 percent reduction by 2030. Portland has reduced emissions by 14 percent as of 2013, through a combination of improved efficiency in buildings, appliances, and vehicles; a shift to lower-carbon energy sources; a focus on a compact urban development pattern; and a rise in walking, biking and transit made possible by shifts in infrastructure investment.

  17. Perspective: The Climate-Population-Infrastructure Modeling and Simulation Fertile Area for New Research

    SciTech Connect (OSTI)

    Allen, Melissa R; Fernandez, Steven J; Walker, Kimberly A; Fu, Joshua S

    2014-01-01

    Managing the risks posed by climate change and extreme weather to energy production and delivery is a challenge to communities worldwide. As climate conditions change, populations will shift, and demand will re-locate; and networked infrastructures will evolve to accommodate new load centers, and, hopefully, minimize vulnerability to natural disaster. Climate effects such as sea level rise, increased frequency and intensity of natural disasters, force populations to move locations. Displaced population creates new demand for built infrastructure that in turn generates new economic activity that attracts new workers and associated households to the new locations. Infrastructures and their interdependencies will change in reaction to climate drivers as the networks expand into new population areas and as portions of the networks are abandoned as people leave. Thus, infrastructures will evolve to accommodate new load centers while some parts of the network are underused, and these changes will create emerging vulnerabilities. Forecasting the location of these vulnerabilities by combining climate predictions and agent based population movement models shows promise for defining these future population distributions and changes in coastal infrastructure configurations. By combining climate and weather data, engineering algorithms and social theory it has been only recently possible to examine electricity demand response to increased climactic temperatures, population relocation in response to extreme cyclonic events, consequent net population changes and new regional patterns in electricity demand. These emerging results suggest a research agenda of coupling these disparate modelling approaches to understand the implications of climate change for protecting the nation s critical infrastructure.

  18. Climate Change Alters Seedling Emergence and Establishment in an Old-Field Ecosystem

    SciTech Connect (OSTI)

    Classen, Aimee T; Norby, Richard J; Campany, Courtney E; Sides, Katherine E; Weltzin, Jake

    2010-01-01

    In shaping how ecosystems respond to climatic change, ecosystem structure can dominate over physiological responses of individuals, especially under conditions of multiple, simultaneous changes in environmental factors. Ecological succession drives large-scale changes in ecosystem structure over time, but the mechanisms whereby climatic change alters succession remain unresolved. Here, we investigate effects of atmospheric and climatic change on seedling establishment, recognizing that small shifts in seedling establishment of different species may have long-term repercussions on the transition of fields to forests in the future. Our 4-year experiment in an old-field ecosystem revealed that response of seedling emergence to different combinations of atmospheric CO2 concentration, air temperature, and soil moisture depends on seed phenology, the timing of seed arrival into an ecosystem. We conclude that seed phenology is an important plant trait that can shape, and help predict, the trajectories of ecosystems under climatic change.

  19. climate | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    climate NNSA labs fight fire with simulation Fire season is in full swing in the driest parts of the United States, and capabilities of NNSA's labs are helping equip firefighters in the heated battle to save property and environment. NNSA's labs are perfectly suited to support emergency response related to fire. A long history of... Sandia's ice sheet modeling of Greenland, Antarctica helps predict sea-level rise The Greenland and Antarctic ice sheets will make a dominant contribution to 21st

  20. Climate Impacts of Ice Nucleation

    SciTech Connect (OSTI)

    Gettelman, A.; Liu, Xiaohong; Barahona, Donifan; Lohmann, U.; Chen, Chih-Chieh

    2012-10-27

    Several different ice nucleation parameterizations in two different General Circulation Models are used to understand the effects of ice nucleation on the mean climate state, and the climate effect of aerosol perturbations to ice clouds. The simulations have different ice microphysical states that are consistent with the spread of observations. These different states occur from different parameterizations of the ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. At reasonable efficiencies, consistent with laboratory measurements and constrained by the global radiative balance, black carbon has a small (-0.06 Wm?2) and not statistically significant climate effect. Indirect effects of anthropogenic aerosols on cirrus clouds occur mostly due to increases in homogeneous nucleation fraction as a consequence of anthropogenic sulfur emissions. The resulting ice indirect effects do not seem strongly dependent on the ice micro-physical balance, but are slightly larger for those states with less homogeneous nucleation in the base state. The total ice AIE is estimated at 0.260.09 Wm?2 (1? uncertainty). This represents an offset of 20-30% of the simulated total Aerosol Indirect Effect for ice and liquid clouds.

  1. Enzymatic temperature change indicator

    DOE Patents [OSTI]

    Klibanov, Alexander M.; Dordick, Jonathan S.

    1989-01-21

    A temperature change indicator is described which is composed of an enzyme and a substrate for that enzyme suspended in a solid organic solvent or mixture of solvents as a support medium. The organic solvent or solvents are chosen so as to melt at a specific temperature or in a specific temperature range. When the temperature of the indicator is elevated above the chosen, or critical temperature, the solid organic solvent support will melt, and the enzymatic reaction will occur, producing a visually detectable product which is stable to further temperature variation.

  2. Dissemination of Climate Model Output to the Public and Commercial Sector

    SciTech Connect (OSTI)

    Robert Stockwell, PhD

    2010-09-23

    Climate is defined by the Glossary of Meteorology as the mean of atmospheric variables over a period of time ranging from as short as a few months to multiple years and longer. Although the term climate is often used to refer to long-term weather statistics, the broader definition of climate is the time evolution of a system consisting of the atmosphere, hydrosphere, lithosphere, and biosphere. Physical, chemical, and biological processes are involved in interactions among the components of the climate system. Vegetation, soil moisture, and glaciers are part of the climate system in addition to the usually considered temperature and precipitation (Pielke, 2008). Climate change refers to any systematic change in the long-term statistics of climate elements (such as temperature, pressure, or winds) sustained over several decades or longer. Climate change can be initiated by external forces, such as cyclical variations in the Earth's solar orbit that are thought to have caused glacial and interglacial periods within the last 2 million years (Milankovitch, 1941). However, a linear response to astronomical forcing does not explain many other observed glacial and interglacial cycles (Petit et al., 1999). It is now understood that climate is influenced by the interaction of solar radiation with atmospheric greenhouse gasses (e.g., carbon dioxide, chlorofluorocarbons, methane, nitrous oxide, etc.), aerosols (airborne particles), and Earth's surface. A significant aspect of climate are the interannual cycles, such as the El Nino La Nina cycle which profoundly affects the weather in North America but is outside the scope of weather forecasts. Some of the most significant advances in understanding climate change have evolved from the recognition of the influence of ocean circulations upon the atmosphere (IPCC, 2007). Human activity can affect the climate system through increasing concentrations of atmospheric greenhouse gases, air pollution, increasing concentrations of

  3. Identification of external influences on temperatures in California

    SciTech Connect (OSTI)

    Bonfils, C; Duffy, P; Santer, B; Wigley, T; Lobell, D; Phillips, T; Doutriaux, C

    2006-06-01

    We use eight different observational datasets to estimate California-average temperature trends over 1950-1999. Observed results are compared to trends from a suite of control simulations of natural internal climate variability. Observed increases in annual-mean surface temperature are distinguishable from climate noise in some but not all observational datasets. The most robust results are large positive trends in mean and maximum daily temperatures in late winter/early spring, as well as increases in minimum daily temperatures from January to September. These trends are inconsistent with model-based estimates of natural internal climate variability, and thus require one or more external forcing agents to be explained. Our results suggest that the warming of Californian winters over the second half of the twentieth century is associated with human-induced changes in large-scale atmospheric circulation. We also hypothesize that the lack of a detectable increase in summertime maximum temperature arises from a cooling associated with large-scale irrigation. This cooling may have, until now, counteracted the warming induced by increasing greenhouse gases and urbanization effects.

  4. A new scenario framework for climate change research: The concept of Shared Climate Policy Assumptions

    SciTech Connect (OSTI)

    Kriegler, Elmar; Edmonds, James A.; Hallegatte, Stephane; Ebi, Kristie L.; Kram, Tom; Riahi, Keywan; Winkler, Harald; Van Vuuren, Detlef

    2014-04-01

    The paper presents the concept of shared climate policy assumptions as an important element of the new scenario framework. Shared climate policy assumptions capture key climate policy dimensions such as the type and scale of mitigation and adaptation measures. They are not specified in the socio-economic reference pathways, and therefore introduce an important third dimension to the scenario matrix architecture. Climate policy assumptions will have to be made in any climate policy scenario, and can have a significant impact on the scenario description. We conclude that a meaningful set of shared climate policy assumptions is useful for grouping individual climate policy analyses and facilitating their comparison. Shared climate policy assumptions should be designed to be policy relevant, and as a set to be broad enough to allow a comprehensive exploration of the climate change scenario space.

  5. High temperature measuring device

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  6. Temperature-profile detector

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors creating short circuits which are detectable as to location.

  7. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors, creating short circuits which are detectable as to location.

  8. Non-stationary Return Levels of CMIP5 Multi-model Temperature Extremes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, L.; Phillips, T. J.; AghaKouchak, A.

    2015-05-01

    The objective of this study is to evaluate to what extent the CMIP5 climate model simulations of the climate of the twentieth century can represent observed warm monthly temperature extremes under a changing environment. The biases and spatial patterns of 2-, 10-, 25-, 50- and 100-year return levels of the annual maxima of monthly mean temperature (hereafter, annual temperature maxima) from CMIP5 simulations are compared with those of Climatic Research Unit (CRU) observational data considered under a non-stationary assumption. The results show that CMIP5 climate models collectively underestimate the mean annual maxima over arid and semi-arid regions that are mostmore » subject to severe heat waves and droughts. Furthermore, the results indicate that most climate models tend to underestimate the historical annual temperature maxima over the United States and Greenland, while generally disagreeing in their simulations over cold regions. Return level analysis shows that with respect to the spatial patterns of the annual temperature maxima, there are good agreements between the CRU observations and most CMIP5 simulations. However, the magnitudes of the simulated annual temperature maxima differ substantially across individual models. Discrepancies are generally larger over higher latitudes and cold regions.« less

  9. Non-stationary Return Levels of CMIP5 Multi-model Temperature Extremes

    SciTech Connect (OSTI)

    Cheng, L.; Phillips, T. J.; AghaKouchak, A.

    2015-05-01

    The objective of this study is to evaluate to what extent the CMIP5 climate model simulations of the climate of the twentieth century can represent observed warm monthly temperature extremes under a changing environment. The biases and spatial patterns of 2-, 10-, 25-, 50- and 100-year return levels of the annual maxima of monthly mean temperature (hereafter, annual temperature maxima) from CMIP5 simulations are compared with those of Climatic Research Unit (CRU) observational data considered under a non-stationary assumption. The results show that CMIP5 climate models collectively underestimate the mean annual maxima over arid and semi-arid regions that are most subject to severe heat waves and droughts. Furthermore, the results indicate that most climate models tend to underestimate the historical annual temperature maxima over the United States and Greenland, while generally disagreeing in their simulations over cold regions. Return level analysis shows that with respect to the spatial patterns of the annual temperature maxima, there are good agreements between the CRU observations and most CMIP5 simulations. However, the magnitudes of the simulated annual temperature maxima differ substantially across individual models. Discrepancies are generally larger over higher latitudes and cold regions.

  10. PERFORMANCE EVALUATION OF CEILING RADIANT COOLING SYSTEM IN COMPOSITE CLIMATE

    SciTech Connect (OSTI)

    Sharma, Anuj; Mathur, Jyotirmay; Bhandari, Mahabir S

    2015-01-01

    Radiant cooling systems are proving to be an energy efficient solution due to higher thermal capacity of cooling fluid especially for the buildings that require individual zone controls and where the latent loads are moderate. The Conventional air conditioners work at very low temperature i.e.5-8 c (refrigerant evaporator inlet) while the radiant cooling systems, also referred as high temperature cooling system, work at high temperatures i.e. 14-18 c. The radiant cooling systems can maintain lower MRT (Mean Radiant Temperature) as ceiling panels maintain uniform temperature gradient inside room and provide higher human comfort. The radiant cooling systems are relatively new systems and their operation and energy savings potential are not quantified for a large number of buildings and operational parameters. Moreover, there are only limited numbers of whole building simulation studies have been carried out for these systems to have a full confidence in the capability of modelling tools to simulate these systems and predict the impact of various operating parameters. Theoretically, savings achieve due to higher temperature set point of chilled water, which reduces chiller-running time. However, conventional air conditioner runs continuously to maintain requisite temperature. In this paper, experimental study for performance evaluation of radiant cooling system carried out on system installed at Malaviya National Institute of Technology Jaipur. This paper quantifies the energy savings opportunities and effective temperature by radiant cooling system at different chilled water flow rates and temperature range. The data collected/ analysed through experimental study will used for calibration and validation of system model of building prepared in building performance simulation software. This validated model used for exploring optimized combinations of key parameters for composite climate. These optimized combinations will used in formulation of radiant cooling system

  11. DEVELOPMENT OF A HIGH PERFORMANCE COLD CLIMATE HEAT PUMP

    SciTech Connect (OSTI)

    Horton, W. Travis; Groll, Eckhard A.; Braun, James E.

    2014-06-01

    The primary goals of the proposed project were to develop, test, and evaluate a high performance and cost-effective vapor compression air-source heat pump for use in cold climate regions. Vapor compression heat pumps are a proven technology, and have been used for many years to meet heating requirements for buildings in residential, commercial, and industrial applications. However, in climate regions that experience very low outdoor ambient temperatures both the heating capacity and coefficient of performance (COP) of traditional air-source vapor compression heat pumps drops dramatically with a decrease in the outdoor air temperature. The efficiency of heat pumping equipment has improved substantially over the past 20 years; however, the efficiencies of the highest rated equipment on the market are approaching practical limits that cannot be surpassed without modifications to the basic cycle and possibly the use of additional hardware. In this report, three technologies to improve the efficiency of vapor compression systems are described. These are a) vapor injected compression, b) oil flooded compression and c) hybrid flow control of the evaporator. Compressor prototypes for both, oil flooded and vapor injected compression were developed by Emerson Climate Technologies. For the oil flooded compressor, the oil injection port location was optimized and an internal oil separator was added using several design iterations. After initial testing at Emerson Climate Technologies, further testing was done at Purdue University, and compressor models were developed. These models were then integrated into a system model to determine the achievable improvement of seasonal energy efficiency (SEER) for Minneapolis (Minnesota) climate. For the oil flooded compression, a 34% improvement in seasonal energy efficiency was found while a 21% improvement in seasonal energy efficiency ratio was found for the vapor injected compression. It was found that one benefit of both tested

  12. High temperature sensor

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  13. A Hierarchical Evaluation of Regional Climate Simulations

    SciTech Connect (OSTI)

    Leung, Lai-Yung R.; Ringler, Todd; Collins, William D.; Taylor, Mark; Ashfaq, Moetasim

    2013-08-20

    Global climate models (GCMs) are the primary tools for predicting the evolution of the climate system. Through decades of development, GCMs have demonstrated useful skill in simulating climate at continental to global scales. However, large uncertainties remain in projecting climate change at regional scales, which limit our ability to inform decisions on climate change adaptation and mitigation. To bridge this gap, different modeling approaches including nested regional climate models (RCMs), global stretch-grid models, and global high-resolution atmospheric models have been used to provide regional climate simulations (Leung et al. 2003). In previous efforts to evaluate these approaches, isolating their relative merits was not possible because factors such as dynamical frameworks, physics parameterizations, and model resolutions were not systematically constrained. With advances in high performance computing, it is now feasible to run coupled atmosphere-ocean GCMs at horizontal resolution comparable to what RCMs use today. Global models with local refinement using unstructured grids have become available for modeling regional climate (e.g., Rauscher et al. 2012; Ringler et al. 2013). While they offer opportunities to improve climate simulations, significant efforts are needed to test their veracity for regional-scale climate simulations.

  14. Climate, extreme heat, and electricity demand in California

    SciTech Connect (OSTI)

    Miller, N.L.; Hayhoe, K.; Jin, J.; Auffhammer, M.

    2008-04-01

    Climate projections from three atmosphere-ocean climate models with a range of low to mid-high temperature sensitivity forced by the Intergovernmental Panel for Climate Change SRES higher, middle, and lower emission scenarios indicate that, over the 21st century, extreme heat events for major cities in heavily air-conditioned California will increase rapidly. These increases in temperature extremes are projected to exceed the rate of increase in mean temperature, along with increased variance. Extreme heat is defined here as the 90 percent exceedance probability (T90) of the local warmest summer days under the current climate. The number of extreme heat days in Los Angeles, where T90 is currently 95 F (32 C), may increase from 12 days to as many as 96 days per year by 2100, implying current-day heat wave conditions may last for the entire summer, with earlier onset. Overall, projected increases in extreme heat under the higher A1fi emission scenario by 2070-2099 tend to be 20-30 percent higher than those projected under the lower B1 emission scenario, ranging from approximately double the historical number of days for inland California cities (e.g. Sacramento and Fresno), up to four times for previously temperate coastal cities (e.g. Los Angeles, San Diego). These findings, combined with observed relationships between high temperature and electricity demand for air-conditioned regions, suggest potential shortfalls in transmission and supply during T90 peak electricity demand periods. When the projected extreme heat and peak demand for electricity are mapped onto current availability, maintaining technology and population constant only for demand side calculations, we find the potential for electricity deficits as high as 17 percent. Similar increases in extreme heat days are suggested for other locations across the U.S. southwest, as well as for developing nations with rapidly increasing electricity demands. Electricity response to recent extreme heat events, such

  15. Global climate change crosses state boundaries

    SciTech Connect (OSTI)

    Changnon, S.A.

    1996-12-31

    The hot, dry summer of 1988 brought the specter of global warming a bit too close for comfort. {open_quotes}Scorching heat, not scientific models, attracted media attention,{close_quotes} says Stanley A. Changnon, senior scientist with the Illinois State Water Survey in Champaign, Illinois. Rising temperatures in the late 1980`s prompted individual states to begin to take action to curb greenhouse-gas emissions. A 1990 report by the National Governors Association identified two guiding principles for addressing climate change issues. {open_quotes}First, that energy policy must be at the center of any efforts to control greenhouse-gas emissions. Second, that state can...restrict emissions through state policies related to public utilities, land use, transportation, and even taxation,{close_quotes} Changnon says. Even if concerns for global warming prove to be overblown, states decided to act for broader economic and environmental reasons. Such initiatives not only save money, but they improve air quality and leave the nation more energy independent,{close_quotes} Changnon says.

  16. climate

    National Nuclear Security Administration (NNSA)

    p>

    The research appears in the Dec. 10 edition of the journal Nature.

  17. Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  18. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  19. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  20. Climate Vision Progress Report 2007 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Vision Progress Report 2007 Climate Vision Progress Report 2007 An intensive report on climate change an the establishment of Climate Vision which is a voluntary partnership that stands for (Voluntary Innovative Sector Initiatives: Opportunities Now). Climate Vision Progress Report 2007 (1.92 MB) More Documents & Publications Climate VISION Progress Report 2007 Fact Sheet -- Climate VISION 02-12-031.doc&#0; ITP Forest Products: Energy and Environmental Profile of the U.S. Pulp

  1. Global climate change and international security

    SciTech Connect (OSTI)

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  2. Model simulation of climate changes in China

    SciTech Connect (OSTI)

    Chen Ming; Fu Congbin

    1997-12-31

    At present there are a large amount of work about influence of human activities and industrization on global climate changes. But due to the non-homogeneous boundary layer between earth and atmosphere there exist distinct difference of climate changes between different regions. China locates in the cast edge of Eurasian continent and border on the Pacific Ocean, it is the most famous monsoon region in the world. Climate of this region is very complex not only because of monsoon but also because its complicated topography. Researches about climate change in this region arc far from adequate. For this reason we use the Australia CSIRO 9-level truncated spectral model to nest with our regional climate model to simulate climate changes of China under conditions of double co2. Models arc running continuously for three years in both conditions of present co2 level and double co2 ppm.

  3. Atmospheric Radiation Measurement Climate Research Facility Operations

    Office of Scientific and Technical Information (OSTI)

    Quarterly Report October 1-December 31, 2012 (Program Document) | SciTech Connect Program Document: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2012 Citation Details In-Document Search Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report October 1-December 31, 2012 Individual datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility

  4. Atmospheric and Climate Science | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric and Climate Science Argonne research in aerosols, micro-meteorology, remote sensing, and atmospheric chemistry combined with our scalable, portable, high-performance climate and weather applications offer a unique look at the complexities of a dynamic planet. Changes in climate can affect biodiversity, the cost of food, our health, and even whole economies. Argonne is developing computational models and tools designed to shed light on complex biological processes and their economic,

  5. Climate Education Update_Jan07.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Editing and Layout: Andrea Maestas LALP-06-073 ACRF Climate Education Update  Climate Education Update by Dr. Hans Verlinde, ARM Scientist In the last year, the subject of climate change at the two poles has been in the news more than ever before. Ice cover in the Arctic is decreasing in extent and area; icebergs are breaking off Antarctica because of thinning ice shelves; permafrost is melting in Alaska, causing ground heaving and destroying roads and houses; bird migratory patterns are

  6. Climate, Ocean and Sea Ice Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ocean and Sea Ice Modeling (COSIM) Summary The COSIM project develops advanced ocean and ice models for evaluating the role of ocean and ice in high-latitude climate change and projecting the impacts of high-latitude change on regions throughout the globe. COSIM researchers develop, test and apply ocean and ice models in support of DOE Climate Change Research and the broader international climate science community. Additional research includes developing a set of next-generation ocean and ice

  7. Existing climate data sources and Their Use in Heat IslandResearch

    SciTech Connect (OSTI)

    Akbari, Hashem; Pon, Brian; Smith, Craig Kenton; Stamper-Kurn, Dan Moses

    1998-10-01

    Existing climate data sources can be used in two general types of analysis for the detection of urban heat islands. Historical analyses use long-term data records-preferentially from several locations in and around an urban area-to trace the gradual influence of urban development on its climate. Primary sources of such data include the cooperative network, first-order National Weather Service stations, and military weather stations. Analyses of short-term data use information from a dense urban weather station network to discern the location, extent, and magnitude of urban heat islands. Such analyses may use the aforementioned national networks or regional networks such as agricultural, air quality monitoring, or utility networks. We demonstrate the use of existing data sources with a historical analysis of temperature trends in Los Angeles, California, and an analysis of short-term data of the urban temperature profile for Phoenix, Arizona. The Los Angeles climate was examined with eleven long-term data records from the cooperative network. Statistically significant trends of rising temperature were detected at Los Angeles Civic Center and other stations over some parts of the year, although timing of the increase varied from station to station. Observed increases in temperatures maybe due to long-term climate changes, microclimate influences, or local-scale heat islands. The analysis of short-term data was made for Phoenix using the PRISMS station network. Mean diurnal temperature profiles for a month were examined and compared with those for adjacent rural areas. Data fi-om stations in the center of Phoenix showed clear and significant nighttime and daytime temperature differences of 1- 2K (3 - 4"F). These temperature increases maybe attributable to a local-scale heat island.

  8. Environmental Tracers for Determining Water Resource Vulnerability to Climate Change

    SciTech Connect (OSTI)

    Singleton, M

    2009-07-08

    Predicted changes in the climate will have profound impacts on water availability in the Western US, but large uncertainties exist in our ability to predict how natural and engineered hydrological systems will respond. Most predictions suggest that the impacts of climate change on California water resources are likely to include a decrease in the percentage of precipitation that falls as snow, earlier onset of snow-pack melting, and an increase in the number of rain on snow events. These processes will require changes in infrastructure for water storage and flood control, since much of our current water supply system is built around the storage of winter precipitation as mountain snow pack. Alpine aquifers play a critical role by storing and releasing snowmelt as baseflow to streams long after seasonal precipitation and the disappearance of the snow pack, and in this manner significantly impact the stream flow that drives our water distribution systems. Mountain groundwater recharge and, in particular, the contribution of snowmelt to recharge and baseflow, has been identified as a potentially significant effect missing from current climate change impact studies. The goal of this work is to understand the behavior of critical hydrologic systems, with an emphasis on providing ground truth for next generation models of climate-water system interactions by implementing LLNL capabilities in environmental tracer and isotopic science. We are using noble gas concentrations and multiple isotopic tracers ({sup 3}H/{sup 3}He, {sup 35}S, {sup 222}Rn, {sup 2}H/{sup 1}H, {sup 18}O/{sup 16}O, and {sup 13}C/{sup 12}C) in groundwater and stream water in a small alpine catchment to (1) provide a snapshot of temperature, altitude, and physical processes at the time of recharge, (2) determine subsurface residence times (over time scales ranging from months to decades) of different groundwater age components, and (3) deconvolve the contribution of these different groundwater components

  9. Northeast Climate Science Center: Transposing Extreme Rainfall to Assess Climate Vulnerability

    Broader source: Energy.gov [DOE]

    Climate models predict significant increases in the magnitude and frequency of extreme rainfalls.  However, climate model projections of precipitation vary greatly across models.  For communities...

  10. Climate Compatible Development Tools | Open Energy Information

    Open Energy Info (EERE)

    Development Studies (IDS) Sector: Climate, Energy Website: www.climateplanning.org Language: English References: Tools Directory1 This article is a stub. You can help OpenEI...

  11. Climate Clean Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Climate Clean, Inc. Place: Portland, Oregon Zip: 97205 Sector: Carbon Product: Early stage carbon offset buyer with focus on CDMJI projects...

  12. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... are collected and sent to the Data Management Facility (DMF) at Pacific Northwest ...

  13. Atmospheric Radiation Measurement Program Climate Research Facility...

    Office of Scientific and Technical Information (OSTI)

    Title: Atmospheric Radiation Measurement Program Climate Research Facility Operations ... are collected and sent to the Data Management Facility (DMF) at Pacific Northwest ...

  14. Strategic Climate Fund (SCF) | Open Energy Information

    Open Energy Info (EERE)

    There are three funds under the SCF framework: the Pilot Program for Climate Resilience (PPCR), the Forest Investment Program (FIP) and the Program for Scaling Up Renewable...

  15. Climate Responsive Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... could serve as precedents across these zones Evaluate the thermal environments produced by climate-responsive design strategies in India and the US, with a focus on strategies ...

  16. Atmospheric Radiation Measurement (ARM) Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) Science and Infrastructure Steering Committee CHARTER June 2012 DISCLAIMER ...

  17. Tianjin Climate Exchange TCX | Open Energy Information

    Open Energy Info (EERE)

    (TCX) Place: Tianjin Municipality, China Product: Exchange platform for emission and energy conservation trading products. References: Tianjin Climate Exchange (TCX)1 This...

  18. Nuclear energy output slows as climate warms

    SciTech Connect (OSTI)

    Kramer, David

    2014-06-01

    New reports from the Intergovernmental Panel on Climate Change and the US government say the window is closing for actions to avert the worst effects of warming.

  19. Big Tree Climate Fund | Open Energy Information

    Open Energy Info (EERE)

    Big Tree Climate Fund Place: Boulder, Colorado Zip: 80307 Sector: Carbon Product: Finances clean energy and carbon reduction projects through customers who buy RECs and VERs...

  20. Climate Leaders Management | Open Energy Information

    Open Energy Info (EERE)

    Leaders Fund (CLF) is an investment vehicle in the climate change arena. CLF will invest in the massive infrastructure and manufacturing improvements. Coordinates: 42.74962,...

  1. Climate Registry Information System | Open Energy Information

    Open Energy Info (EERE)

    CRIS may be used not only to calculate and report, but also to verify GHG emissions inventory. Through The Climate Registry, emissions reports are verified by independent,...

  2. Climate Human Capital | Open Energy Information

    Open Energy Info (EERE)

    Human Capital Jump to: navigation, search Name: Climate Human Capital Place: London, United Kingdom Zip: W1K 6NG Sector: Carbon, Renewable Energy, Services Product: Green executive...

  3. The Climate Challenge... and What's at Stake

    Broader source: Energy.gov [DOE]

    Secretary Chu uses a famous moment from the Apollo 8 mission to lay out what's at stake as we take on the climate challenge.

  4. Chicago Climate Action Plan | Open Energy Information

    Open Energy Info (EERE)

    Low emission development planning Resource Type Case studiesexamples Availability Free Website http:www.chicagoclimateactio Locality Chicago, IL References Chicago Climate...

  5. The Climate Challenge... and What's at Stake

    ScienceCinema (OSTI)

    Chu, Steven

    2013-05-29

    Secretary Chu uses a famous moment from the Apollo 8 mission to lay out what's at stake as we take on the climate challenge.

  6. Climate Resilience Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    resilience technical assistance, complete the online technical assistance request form. Read about the impacts of climate change and extreme weather events on tribal infrastructure ...

  7. Climate Policy Initiative | Open Energy Information

    Open Energy Info (EERE)

    Initiative Jump to: navigation, search Name: Climate Policy Initiative Address: 235 Montgomery Street, 13th Floor San Francisco, CA 94104 Place: San Francisco, California Website:...

  8. ClimateWorks Feed | Open Energy Information

    Open Energy Info (EERE)

    US Savannah River National Laboratory (SRNL) UNEP-Risoe Centre on Energy, Climate and Sustainable Development United Nations Environment Programme (UNEP) United Nations...

  9. Climate Technology Initiative Feed | Open Energy Information

    Open Energy Info (EERE)

    US Savannah River National Laboratory (SRNL) UNEP-Risoe Centre on Energy, Climate and Sustainable Development United Nations Environment Programme (UNEP) United Nations...

  10. Climate Finance Options Platform | Open Energy Information

    Open Energy Info (EERE)

    comprehensive guidance on financial options available for climate action in developing countries. Here you can find information on where to access the wide range of funds...

  11. US Energy Sector Vulnerabilities to Climate Change

    Broader source: Energy.gov (indexed) [DOE]

    Photo credits: iStockphoto U.S. ENERGY SECTOR VULNERABILITIES TO CLIMATE CHANGE AND ... and International Affairs (DOE-PI) and the National Renewable Energy Laboratory (NREL). ...

  12. ClimateTechWiki | Open Energy Information

    Open Energy Info (EERE)

    Climate, Energy Focus Area: Non-renewable Energy, Agriculture, Biomass, Buildings, Energy Efficiency, Forestry, Geothermal, Greenhouse Gas, Ground Source Heat Pumps, Hydrogen,...

  13. Climate Change: Energy and Community Impacts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Day - Energy Performance Contracting 24 February 2015 Key Points Up Front * Climate change is real and will have significant impacts * The emissions that drive the change - ...

  14. Climate Zone 2B | Open Energy Information

    Open Energy Info (EERE)

    are categorized as class 2B climate zones: Bandera County, Texas Dimmit County, Texas Edwards County, Texas Frio County, Texas Imperial County, California Kinney County, Texas La...

  15. Climate Modeling using High-Performance Computing

    SciTech Connect (OSTI)

    Mirin, A A

    2007-02-05

    The Center for Applied Scientific Computing (CASC) and the LLNL Climate and Carbon Science Group of Energy and Environment (E and E) are working together to improve predictions of future climate by applying the best available computational methods and computer resources to this problem. Over the last decade, researchers at the Lawrence Livermore National Laboratory (LLNL) have developed a number of climate models that provide state-of-the-art simulations on a wide variety of massively parallel computers. We are now developing and applying a second generation of high-performance climate models. Through the addition of relevant physical processes, we are developing an earth systems modeling capability as well.

  16. Climate Protection Action Fund | Open Energy Information

    Open Energy Info (EERE)

    Repower America References The Climate Protetion Action Fund - Contact Us Learn More About Repower America Retrieved from "http:en.openei.orgw...

  17. Climate Protection Action Fund | Open Energy Information

    Open Energy Info (EERE)

    Repower America Retrieved from "http:en.openei.orgwindex.php?titleClimateProtectionActionFund&oldid767417" Categories: Organizations Political Action Committees Policy...

  18. Approaches for Effective Climate Change Communication (NPS)

    Broader source: Energy.gov [DOE]

    Register here. Join us for a webinar exploring the importance of effective communication strategies as a key component of climate change response. The presentation will highlight examples and...

  19. Climate Leaders Joint Venture | Open Energy Information

    Open Energy Info (EERE)

    Leaders Joint Venture Jump to: navigation, search Name: Climate Leaders' Joint Venture Place: Dallas, Texas Product: Tudor Investment and Camco International have partnered to...

  20. Climate Change Advisory Ltd | Open Energy Information

    Open Energy Info (EERE)

    Advisory Ltd Jump to: navigation, search Name: Climate Change Advisory Ltd Place: London, United Kingdom Zip: W1K 3HP Sector: Renewable Energy, Services Product: CCA provides...

  1. Netherlands Climate Assistance Program | Open Energy Information

    Open Energy Info (EERE)

    search Name: Netherlands Climate Assistance Program Address: ETC International P.O.Box 64, 3830 AB Place: Leusden, Netherlands Phone Number: 31 (0) 33 432 6000 Website:...

  2. High-Temperature Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  3. Magnetic nanoparticle temperature estimation

    SciTech Connect (OSTI)

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-05-15

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 deg. K between 20 and 50 deg. C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  4. The Program for climate Model diagnosis and Intercomparison: 20-th anniversary Symposium

    SciTech Connect (OSTI)

    Potter, Gerald L; Bader, David C; Riches, Michael; Bamzai, Anjuli; Joseph, Renu

    2011-01-05

    Twenty years ago, W. Lawrence (Larry) Gates approached the U.S. Department of Energy (DOE) Office of Energy Research (now the Office of Science) with a plan to coordinate the comparison and documentation of climate model differences. This effort would help improve our understanding of climate change through a systematic approach to model intercomparison. Early attempts at comparing results showed a surprisingly large range in control climate from such parameters as cloud cover, precipitation, and even atmospheric temperature. The DOE agreed to fund the effort at the Lawrence Livermore National Laboratory (LLNL), in part because of the existing computing environment and because of a preexisting atmospheric science group that contained a wide variety of expertise. The project was named the Program for Climate Model Diagnosis and Intercomparison (PCMDI), and it has changed the international landscape of climate modeling over the past 20 years. In spring 2009 the DOE hosted a 1-day symposium to celebrate the twentieth anniversary of PCMDI and to honor its founder, Larry Gates. Through their personal experiences, the morning presenters painted an image of climate science in the 1970s and 1980s, that generated early support from the international community for model intercomparison, thereby bringing PCMDI into existence. Four talks covered Gates???¢????????s early contributions to climate research at the University of California, Los Angeles (UCLA), the RAND Corporation, and Oregon State University through the founding of PCMDI to coordinate the Atmospheric Model Intercomparison Project (AMIP). The speakers were, in order of presentation, Warren Washington [National Center for Atmospheric Research (NCAR)], Kelly Redmond (Western Regional Climate Center), George Boer (Canadian Centre for Climate Modelling and Analysis), and Lennart Bengtsson [University of Reading, former director of the European Centre for Medium-Range Weather Forecasts (ECMWF)]. The

  5. LINKING MICROBES TO CLIMATE: INCORPORATING MICROBIAL ACTIVITY INTO CLIMATE MODELS COLLOQUIUM

    SciTech Connect (OSTI)

    DeLong, Edward; Harwood, Caroline; Reid, Ann

    2011-01-01

    This report explains the connection between microbes and climate, discusses in general terms what modeling is and how it applied to climate, and discusses the need for knowledge in microbial physiology, evolution, and ecology to contribute to the determination of fluxes and rates in climate models. It recommends with a multi-pronged approach to address the gaps.

  6. Sonoma County Regional Climate Protection Authority A White House Climate Action Champions Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sonoma County Regional Climate Protection Authority A White House Climate Action Champions Case Study INDEX Executive Summary..............................x Climate Action Champion...................x Project Spotlight...............................x-x Co-benefits...........................................x Challenges and lessons learned.........x Resources & Contacts..........................x 2 Executive Summary The communities of Sonoma County are employing regional collaboration,

  7. Task Force on Climate Preparedness and Resilience Announces Tribal Climate Resilience Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    On July 16, at the fourth and final meeting of the White House State, Local, and Tribal Leaders Task Force on Climate Preparedness and Resilience, the Administration announced the new Tribal Climate Resilience Program to help tribes prepare for climate change.

  8. High-temperature sensor

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  9. High temperature refrigerator

    DOE Patents [OSTI]

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  10. Automatic temperature adjustment apparatus

    DOE Patents [OSTI]

    Chaplin, James E.

    1985-01-01

    An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.

  11. Large climate-moderating envelopes for enclosed structures: a preliminary evaluation of energy conservation potential

    SciTech Connect (OSTI)

    Wendt, R.L.; Giles, G.E.; Park, J.E.

    1981-12-01

    An investigation was made of the basic impacts of putting a large secondary enclosure around a number of functions and thereby creating a Large Climate Moderating Envelope (LCME). This study is a preliminary estimate of the energy conservation benefits of an LCME. A hypothetical LMCE design was chosen and a coupled fluid dynamic and energy transport analysis was performed to estimate the energy conservation potential of this design. The heat transfer models included insolation, outside air temperature and wind, thermal radiation exchange with the sky, and between the fabric and ground and thermal storage in the earth mass beneath the LCME. The energy transported within the fluid by the buoyancy driven circulation was modeled as an incompressible fluid utilizing the Boussinesq approximation. The climatic conditions were assumed to vary in smooth repeating daily cycles. The numerical simulation of climatic variation was continued until the results within the LCME achieved a repeating daily cycle. The results for selected seasonally characteristic days were utilized to estimate the annual energy consumption of structures within an LCME relative to similar structures exposed to the exterior environment. The relative annual energy savings for summer-dominated climates was estimated to be approx. 70%. The energy savings for a winter-dominated climate LCME were estimated to be somewhat smaller but the LCME concept could offer significant benefits for agricultural applications for this type of climate.

  12. Collaborative Research. Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    SciTech Connect (OSTI)

    Zhuang, Qianlai; Schlosser, Courtney; Melillo, Jerry; Walter, Katey

    2015-09-15

    Our overall goal is to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically-forced climate warming, and the conditions under which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes to the landscape of wetlands and lakes, especially thermokarst (thaw) lakes, across the Arctic. Through a suite of numerical experiments that encapsulate the fundamental processes governing methane emissions and carbon exchanges – as well as their coupling to the global climate system - we intend to test the following hypothesis in the proposed research: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and stimulates large increases in methane emissions (via thermokarst lakes and poorly-drained wetland areas upon thawing permafrost along with microbial metabolic responses to higher temperatures) and increases in carbon dioxide emissions from well-drained areas. Besides changes in biogeochemistry, this threshold will also influence global energy dynamics through effects on surface albedo, evapotranspiration and water vapor. These changes would outweigh any increased uptake of carbon (e.g. from peatlands and higher plant photosynthesis) and would result in a strong, positive feedback to global climate warming.

  13. Global warming and climate change - predictive models for temperate and tropical regions

    SciTech Connect (OSTI)

    Malini, B.H.

    1997-12-31

    Based on the assumption of 4{degree}C increase of global temperature by the turn of 21st century due to the accumulation of greenhouse gases an attempt is made to study the possible variations in different climatic regimes. The predictive climatic water balance model for Hokkaido island of Japan (a temperate zone) indicates the possible occurrence of water deficit for two to three months, which is a unknown phenomenon in this region at present. Similarly, India which represents tropical region also will experience much drier climates with increased water deficit conditions. As a consequence, the thermal region of Hokkaido which at present is mostly Tundra and Micro thermal will change into a Meso thermal category. Similarly, the moisture regime which at present supports per humid (A2, A3 and A4) and Humid (B4) climates can support A1, B4, B3, B2 and B1 climates indicating a shift towards drier side of the climatic spectrum. Further, the predictive modes of both the regions have indicated increased evapotranspiration rates. Although there is not much of change in the overall thermal characteristics of the Indian region the moisture regime indicates a clear shift towards the aridity in the country.

  14. Terrestrial biogeochemical feedbacks in the climate system: from past to future

    SciTech Connect (OSTI)

    Arneth, A.; Harrison, S. P.; Zaehle, S.; Tsigaridis, K; Menon, S; Bartlein, P.J.; Feichter, J; Korhola, A; Kulmala, M; O'Donnell, D; Schurgers, G; Sorvari, S; Vesala, T

    2010-01-05

    The terrestrial biosphere plays a major role in the regulation of atmospheric composition, and hence climate, through multiple interlinked biogeochemical cycles (BGC). Ice-core and other palaeoenvironmental records show a fast response of vegetation cover and exchanges with the atmosphere to past climate change, although the phasing of these responses reflects spatial patterning and complex interactions between individual biospheric feedbacks. Modern observations show a similar responsiveness of terrestrial biogeochemical cycles to anthropogenically-forced climate changes and air pollution, with equally complex feedbacks. For future conditions, although carbon cycle-climate interactions have been a major focus, other BGC feedbacks could be as important in modulating climate changes. The additional radiative forcing from terrestrial BGC feedbacks other than those conventionally attributed to the carbon cycle is in the range of 0.6 to 1.6 Wm{sup -2}; all taken together we estimate a possible maximum of around 3 Wm{sup -2} towards the end of the 21st century. There are large uncertainties associated with these estimates but, given that the majority of BGC feedbacks result in a positive forcing because of the fundamental link between metabolic stimulation and increasing temperature, improved quantification of these feedbacks and their incorporation in earth system models is necessary in order to develop coherent plans to manage ecosystems for climate mitigation.

  15. Low temperature cryoprobe

    DOE Patents [OSTI]

    Sungaila, Zenon F.

    1989-01-01

    A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperature of 77 degrees Kelvin.

  16. Temperature and productivity

    Office of Scientific and Technical Information (OSTI)

    ... and performance of office work under combined exposure to temperature, noise and air pollution. PhD Thesis. International Centre for Indoor Environment and Energy, Department of ...

  17. FY08 LDRD Final Report Regional Climate

    SciTech Connect (OSTI)

    Bader, D C; Chin, H; Caldwell, P M

    2009-05-19

    An integrated, multi-model capability for regional climate change simulation is needed to perform original analyses to understand and prepare for the impacts of climate change on the time and space scales that are critical to California's future environmental quality and economic prosperity. Our intent was to develop a very high resolution regional simulation capability to address consequences of climate change in California to complement the global modeling capability that is supported by DOE at LLNL and other institutions to inform national and international energy policies. The California state government, through the California Energy Commission (CEC), institutionalized the State's climate change assessment process through its biennial climate change reports. The bases for these reports, however, are global climate change simulations for future scenarios designed to inform international policy negotiations, and are primarily focused on the global to continental scale impacts of increasing emissions of greenhouse gases. These simulations do not meet the needs of California public and private officials who will make major decisions in the next decade that require an understanding of climate change in California for the next thirty to fifty years and its effects on energy use, water utilization, air quality, agriculture and natural ecosystems. With the additional development of regional dynamical climate modeling capability, LLNL will be able to design and execute global simulations specifically for scenarios important to the state, then use those results to drive regional simulations of the impacts of the simulated climate change for regions as small as individual cities or watersheds. Through this project, we systematically studied the strengths and weaknesses of downscaling global model results with a regional mesoscale model to guide others, particularly university researchers, who are using the technique based on models with less complete parameterizations or

  18. Effects of climate change on Pacific Northwest water-related resources: Summary of preliminary findings

    SciTech Connect (OSTI)

    Scott, M.J.; Sands, R.D.; Vail, L.W.; Chatters, J.C.; Neitzel, D.A.; Shankle, S.A.

    1993-12-01

    The Pacific Northwest Case Study is a multi-agency analysis of atmospheric/climatic change impacts on the Pacific Northwest (which includes Washington, Oregon, Idaho, and portions of the Columbia River Basin in Western Montana). The purpose of the case study, which began in fiscal year 1991, was to develop and test analytical tools, as well as to develop an assessment of the effects of climate change on climate-sensitive natural resources of the Pacific Northwest and economic sectors dependent on them. The overall study, jointly funded by the US Department of Energy (DOE) and the US Environmental Protection Agency, was a broad-based, reconnaissance-level study to identify potential climate impacts on agriculture, coastal resources, forest resources, and irrigation in the Pacific Northwest. DOE participated in the reconnaissance study, with responsibility for hydroelectric and water supply issues. While this report briefly discusses a broader array of water issues, attention is mainly focused on three aspects of the water study: (1) the effects of the region`s higher temperatures on the demand for electric power (which in turn puts additional demand on hydroelectric resources of the region); (2) the effects of higher temperatures and changes, both in precipitation amounts and seasonality, on river flows and hydroelectric supply; and (3) the effect of higher temperatures and changed precipitation amounts and seasonality on salmonid resources -- particularly the rearing conditions in tributaries of the Columbia River Basin. Because the meaning of regional climate forecasts is still quite uncertain, most of the preliminary findings are based on sensitivity analyses and historical analog climate scenarios.

  19. Thermal performance of a Concrete Cool Roof under different climatic conditions of Mexico

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hernández-Pérez, I.; Álvarez, G.; Gilbert, H.; Xamán, J.; Chávez, Y.; Shah, B.

    2014-11-27

    A cool roof is an ordinary roof with a reflective coating on the exterior surface which has a high solar reflectance and high thermal emittance. These properties let the roof keep a lower temperature than a standard roof under the same conditions. In this work, the thermal performance of a concrete roof with and without insulation and with two colors has been analyzed using the finite volume method. The boundary conditions of the external roof surface were taken from hourly averaged climatic data of four cities. For the internal surface, it is considered that the building is air-conditioned and themore » inside air has a constant temperature. The interior surface temperature and the heat flux rates into the roofs were obtained for two consecutive days in order to assess the benefits of a cool roofs in different climates.« less

  20. Adams County, Colorado ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Colorado ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

  1. Baxter County, Arkansas ASHRAE 169-2006 Climate Zone | Open Energy...

    Open Energy Info (EERE)

    ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Baxter County, Arkansas ASHRAE Standard ASHRAE 169-2006 Climate Zone Number Climate Zone...

  2. Aridity changes in the Tibetan Plateau in a warming climate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Yanhong; Li, Xia; Leung, Lai-Yung R.; Chen, Deliang; Xu, Jianwei

    2015-03-10

    Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of P/PET (precipitation to potential evapotranspiration) as an aridity index to indicate changes in dryness and wetness in a given area, P/PET was calculated using observed records at 83 stations in the TP, with PET calculated using the Penman–Monteith (PM) algorithm. Spatial and temporal changes of P/PET in 1979-2011 are analyzed.more » Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter and stations in the semi-humid southeastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with precipitation, sunshine duration and diurnal temperature range changes at confidence level of 99.9% from two-tail t-test. Temporal correlations also confirm the significant correlation between aridity changes with the three variables, with precipitation being the most dominant driver of P/PET changes at interannual time scale. PET changes are insignificant but negatively correlated with P/PET in the cold season. In the warm season, however, correlation between PET changes and P/PET changes are significant at confidence level of 99.9% when the cryosphere melts near the surface. Significant correlation between wind speed changes and aridity changes occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring.« less

  3. Aridity changes in the Tibetan Plateau in a warming climate

    SciTech Connect (OSTI)

    Gao, Yanhong; Li, Xia; Leung, Lai-Yung R.; Chen, Deliang; Xu, Jianwei

    2015-03-10

    Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of P/PET (precipitation to potential evapotranspiration) as an aridity index to indicate changes in dryness and wetness in a given area, P/PET was calculated using observed records at 83 stations in the TP, with PET calculated using the Penman–Monteith (PM) algorithm. Spatial and temporal changes of P/PET in 1979-2011 are analyzed. Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter and stations in the semi-humid southeastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with precipitation, sunshine duration and diurnal temperature range changes at confidence level of 99.9% from two-tail t-test. Temporal correlations also confirm the significant correlation between aridity changes with the three variables, with precipitation being the most dominant driver of P/PET changes at interannual time scale. PET changes are insignificant but negatively correlated with P/PET in the cold season. In the warm season, however, correlation between PET changes and P/PET changes are significant at confidence level of 99.9% when the cryosphere melts near the surface. Significant correlation between wind speed changes and aridity changes occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring.

  4. Temperature-associated increases in the global soil respiration record

    SciTech Connect (OSTI)

    Bond-Lamberty, Benjamin; Thomson, Allison M.

    2010-03-25

    Soil respiration (RS), the flux of CO2 from the soil surface to the atmosphere, comprises the second-largest terrestrial carbon flux, but its dynamics are incompletely understood, and the global flux remains poorly constrained. Ecosystem warming experiments, modelling analyses, and biokinetics all suggest that RS should change with climate. This has been difficult to confirm observationally because of the high spatial variability of RS, inaccessibility of the soil medium, and inability of remote sensing instruments to measure large-scale RS fluxes. Given these constraints, is it possible to discern climate-driven changes in regional or global RS fluxes in the extant four-decade record of RS chamber measurements? Here we use a database of worldwide RS observations, matched with high-resolution historical climate data, to show a previously unknown temporal trend in the RS record after accounting for mean annual climate, leaf area, nitrogen deposition, and changes in CO2 measurement technique. Air temperature anomaly (deviation from the 1961-1990 mean) is significantly and positively correlated with changes in RS fluxes; both temperature and precipitation anomalies exert effects in specific biomes. We estimate that the current (2008) annual global RS flux is 9812 Pg and has increased 0.1 Pg yr-1 over the last 20 years, implying a global RS temperature response (Q10) of 1.5. An increasing global RS flux does not necessarily constitute a positive feedback loop to the atmosphere; nonetheless, the available data are consistent with an acceleration of the terrestrial carbon cycle in response to global climate change.

  5. White House Highlights Climate Action Champions' Achievements

    Broader source: Energy.gov [DOE]

    After a competitive application process, the Department of Energy designated 16 communities as Climate Action Champions, including two tribes: the Sault Ste. Marie Tribe of Chippewa Indians (Michigan) and the Blue Lake Rancheria Tribe (California). These tribes were selected for their local leadership in climate mitigation and adaptation.

  6. ATNI Tribal Leaders Summit on Climate Change

    Broader source: Energy.gov [DOE]

    The Affiliated Tribes of Northwest Indians (ATNI) is hosting the Tribal Leaders Summit on Climate Change conference. The conference will share tribal strategies, plans, and regional, national, and international policies on climate change, energy and carbon emissions as well as discuss tribal needs and funding opportunities.

  7. 2015 Paris Climate Conference- COP21

    Broader source: Energy.gov [DOE]

    The U.S. Office of Energy Efficiency and Renewable Energy (EERE) supported international efforts to reach an ambitious, effective climate agreement in Paris at the 21st Session of the Conference of the Parties to the UN Framework Convention on Climate Change.

  8. Energy & Climate - Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate - Sandia National Laboratories Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  9. Climate Science: Tropical Expansion by Ocean Swing

    SciTech Connect (OSTI)

    Lu, Jian

    2014-04-01

    The tropical belt has become wider over the past decades, but climate models fall short of capturing the full rate of the expansion. The latest analysis of the climate simulations suggests that a long-term swing of the Pacific Decadal Oscillation is the main missing cause.

  10. Climate change: Update on international negotiations

    SciTech Connect (OSTI)

    Silverman, L.

    1997-12-31

    This paper outlines the following: United Nations` framework convention on climatic change; the United States` climate change action plan; current issues to be resolved (targets/timetables, policies, advancing commitments of all parties, and compliance); and implications for clean coal technologies.

  11. Climate wise case study compendium: Report 1

    SciTech Connect (OSTI)

    1997-02-01

    This case study compendium is one of several Climate Wise tools available to help interested companies identify cost-effective options. Climate Wise, a private-public partnership program, is a key Federal initiative to return greenhouse gas emissions to 1990 levels by 2000.

  12. Toward reflexive climate adaptation research

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Preston, Benjamin L.; Rickards, Lauren; Fünfgeld, Hartmut; Keenan, Rodney J.

    2015-06-22

    Climate adaptation research is expanding very quickly within an increasingly reflexive society where the relationship between academia and other social institutions is in a state of flux. Tensions exist between the two dominant research orientations of research about and research for adaptation. In particular, the research community is challenged to develop processes for successfully executing transdisciplinary research for adaptation when academic institutions and researchers are largely structured around traditional, disciplinary expertise and funding models. One tool for helping to manage this tension is a third, more reflexive, orientation toward adaptation research that is emerging in the literature. Finally, this newmore » ‘research on adaptation research’ promises to help enhance understanding of the research enterprise itself and how it can become more adaptive.« less

  13. ARM - Word Seek: Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Word Seek: Temperature

  14. Fiber optic temperature sensor

    SciTech Connect (OSTI)

    Rabold, D.

    1995-12-01

    Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

  15. Basin scale assessment of gas hydrate dissociation in response to climate change

    SciTech Connect (OSTI)

    Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.; Cameron-Smith, P.

    2011-07-01

    Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating climate. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those now occurring in the arctic and those predicted under future climate change scenarios, has only recently been investigated. Field investigations have discovered substantial methane gas plumes exiting the seafloor along the Arctic Ocean margin, and the plumes appear at depths corresponding to the upper limit of a receding gas hydrate stability zone. It has been suggested that these plumes may be the first visible signs of the dissociation of shallow hydrate deposits due to ongoing climate change in the arctic. We simulate the release of methane from oceanic deposits, including the effects of fully-coupled heat transfer, fluid flow, hydrate dissociation, and other thermodynamic processes, for systems representative of segments of the Arctic Ocean margins. The modeling encompasses a range of shallow hydrate deposits from the landward limit of the hydrate stability zone down to water depths beyond the expected range of century-scale temperature changes. We impose temperature changes corresponding to predicted rates of climate change-related ocean warming and examine the possibility of hydrate dissociation and the release of methane. The assessment is performed at local-, regional-, and basin-scales. The simulation results are consistent with the hypothesis that dissociating shallow hydrates alone can result in significant methane fluxes at the seafloor. However, the methane release is likely to be confined to a narrow region of high dissociation susceptibility, defined by depth and temperature, and that any release will be continuous and controlled, rather than explosive. This modeling also establishes the first realistic bounds for methane release along the arctic continental shelf for potential hydrate

  16. High Temperature ESP Monitoring

    SciTech Connect (OSTI)

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 C based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 C system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 C.

  17. High temperature probe

    DOE Patents [OSTI]

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  18. Projections of Future Climate Change (Book) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Projections of Future Climate Change Contents: Executive Summary 9.1 Introduction 9.2 Climate and Climate Change 9.3 Projections of ...

  19. Category:ASHRAE Climate Zones | Open Energy Information

    Open Energy Info (EERE)

    Category Edit History Category:ASHRAE Climate Zones Jump to: navigation, search Climate Zones defined in the ASHRAE 169-2006 standards. Pages in category "ASHRAE Climate Zones" The...

  20. ARM Climate Modeling Best Estimate Data - A new data product...

    Office of Scientific and Technical Information (OSTI)

    ARM Climate Modeling Best Estimate Data - A new data product for climate modelers Citation Details In-Document Search Title: ARM Climate Modeling Best Estimate Data - A new data ...