National Library of Energy BETA

Sample records for telluride spot size

  1. Investigations of initiation spot size effects

    SciTech Connect (OSTI)

    Clarke, Steven A; Akinci, Adrian A; Leichty, Gary; Schaffer, Timothy; Murphy, Michael J; Munger, Alan; Thomas, Keith A

    2010-01-01

    As explosive components become smaller, a greater understanding of the effect of initiation spot size on detonation becomes increasingly critical. A series of tests of the effect of initiation spot size will be described. A series of DOI (direct optical initiation) detonators with initiation spots sizes from {approx}50 um to 1000um have been tested to determine laser parameters for threshold firing of low density PETN pressings. Results will be compared with theoretical predictions. Outputs of the initiation source (DOI ablation) have been characterized by a suite of diagnostics including PDV and schlieren imaging. Outputs of complete detonators have been characterized using PDV, streak, and/or schlieren imaging. At present, we have not found the expected change in the threshold energy to spot size relationship for DOI type detonators found in similar earlier for projectiles, slappers and EBWs. New detonators designs (Type C) are currently being tested that will allow the determination of the threshold for spot sizes from 250 um to 105um, where we hope to see change in the threshold vs. spot size relationship. Also, one test of an extremely small diameter spot size (50um) has resulted in preliminary NoGo only results even at energy densities as much as 8 times the energy density of the threshold results presented here. This gives preliminary evidence that 50um spot may be beyond the critical initiation diameter. The constant threshold energy to spot size relationship in the data to date does however still give some insight into the initiation mechanism of DOI detonators. If the DOI initiation mechanism were a 1D mechanism similar to a slapper or a flyer impact, the expected inflection point in the graph would have been between 300um and 500um diameter spot size, within the range of the data presented here. The lack of that inflection point indicates that the DOI initiation mechanism is more likely a 2D mechanism similar to a sphere or rod projectile. We expect to see a three region response as the results from the smaller spot size Type C detonators are completed.

  2. Diode magnetic-field influence on radiographic spot size

    SciTech Connect (OSTI)

    Ekdahl, Carl A. Jr.

    2012-09-04

    Flash radiography of hydrodynamic experiments driven by high explosives is a well-known diagnostic technique in use at many laboratories. The Dual-Axis Radiography for Hydrodynamic Testing (DARHT) facility at Los Alamos was developed for flash radiography of large hydrodynamic experiments. Two linear induction accelerators (LIAs) produce the bremsstrahlung radiographic source spots for orthogonal views of each experiment ('hydrotest'). The 2-kA, 20-MeV Axis-I LIA creates a single 60-ns radiography pulse. For time resolution of the hydrotest dynamics, the 1.7-kA, 16.5-MeV Axis-II LIA creates up to four radiography pulses by slicing them out of a longer pulse that has a 1.6-{micro}s flattop. Both axes now routinely produce radiographic source spot sizes having full-width at half-maximum (FWHM) less than 1 mm. To further improve on the radiographic resolution, one must consider the major factors influencing the spot size: (1) Beam convergence at the final focus; (2) Beam emittance; (3) Beam canonical angular momentum; (4) Beam-motion blur; and (5) Beam-target interactions. Beam emittance growth and motion in the accelerators have been addressed by careful tuning. Defocusing by beam-target interactions has been minimized through tuning of the final focus solenoid for optimum convergence and other means. Finally, the beam canonical angular momentum is minimized by using a 'shielded source' of electrons. An ideal shielded source creates the beam in a region where the axial magnetic field is zero, thus the canonical momentum zero, since the beam is born with no mechanical angular momentum. It then follows from Busch's conservation theorem that the canonical angular momentum is minimized at the target, at least in principal. In the DARHT accelerators, the axial magnetic field at the cathode is minmized by using a 'bucking coil' solenoid with reverse polarity to cancel out whatever solenoidal beam transport field exists there. This is imperfect in practice, because of radial variation of the total field across the cathode surface, solenoid misalignments, and long-term variability of solenoid fields for given currents. Therefore, it is useful to quantify the relative importance of canonical momentum in determining the focal spot, and to establish a systematic methodology for tuning the bucking coils for minimum spot size. That is the purpose of this article. Section II provides a theoretical foundation for understanding the relative importance of the canonical momentum. Section III describes the results of simulations used to quantify beam parameters, including the momentum, for each of the accelerators. Section IV compares the two accelerators, especially with respect to mis-tuned bucking coils. Finally, Section IV concludes with a methodology for optimizing the bucking coil settings.

  3. Impact of spot size on plan quality of spot scanning proton radiosurgery for peripheral brain lesions

    SciTech Connect (OSTI)

    Wang, Dongxu Dirksen, Blake; Hyer, Daniel E.; Buatti, John M.; Sheybani, Arshin; Dinges, Eric; Felderman, Nicole; TenNapel, Mindi; Bayouth, John E.; Flynn, Ryan T.

    2014-12-15

    Purpose: To determine the plan quality of proton spot scanning (SS) radiosurgery as a function of spot size (in-air sigma) in comparison to x-ray radiosurgery for treating peripheral brain lesions. Methods: Single-field optimized (SFO) proton SS plans with sigma ranging from 1 to 8 mm, cone-based x-ray radiosurgery (Cone), and x-ray volumetric modulated arc therapy (VMAT) plans were generated for 11 patients. Plans were evaluated using secondary cancer risk and brain necrosis normal tissue complication probability (NTCP). Results: For all patients, secondary cancer is a negligible risk compared to brain necrosis NTCP. Secondary cancer risk was lower in proton SS plans than in photon plans regardless of spot size (p = 0.001). Brain necrosis NTCP increased monotonically from an average of 2.34/100 (range 0.42/100–4.49/100) to 6.05/100 (range 1.38/100–11.6/100) as sigma increased from 1 to 8 mm, compared to the average of 6.01/100 (range 0.82/100–11.5/100) for Cone and 5.22/100 (range 1.37/100–8.00/100) for VMAT. An in-air sigma less than 4.3 mm was required for proton SS plans to reduce NTCP over photon techniques for the cohort of patients studied with statistical significance (p = 0.0186). Proton SS plans with in-air sigma larger than 7.1 mm had significantly greater brain necrosis NTCP than photon techniques (p = 0.0322). Conclusions: For treating peripheral brain lesions—where proton therapy would be expected to have the greatest depth-dose advantage over photon therapy—the lateral penumbra strongly impacts the SS plan quality relative to photon techniques: proton beamlet sigma at patient surface must be small (<7.1 mm for three-beam single-field optimized SS plans) in order to achieve comparable or smaller brain necrosis NTCP relative to photon radiosurgery techniques. Achieving such small in-air sigma values at low energy (<70 MeV) is a major technological challenge in commercially available proton therapy systems.

  4. Morphological changes in ultrafast laser ablation plumes with varying spot size

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Harilal, S. S.; Diwakar, P. K.; Polek, M. P.; Phillips, M. C.

    2015-06-04

    We investigated the role of spot size on plume morphology during ultrafast laser ablation of metal targets. Our results show that the spatial features of fs LA plumes are strongly dependent on the focal spot size. Two-dimensional self-emission images showed that the shape of the ultrafast laser ablation plumes changes from spherical to cylindrical with an increasing spot size from 100 to 600 ?m. The changes in plume morphology and internal structures are related to ion emission dynamics from the plasma, where broader angular ion distribution and faster ions are noticed for the smallest spot size used. The present resultsmoreclearly show that the morphological changes in the plume with spot size are independent of laser pulse width.less

  5. Femtosecond laser-induced size reduction of carbon nanodots in solution: Effect of laser fluence, spot size, and irradiation time

    SciTech Connect (OSTI)

    Nguyen, Vanthan; Yan, Lihe Si, Jinhai; Hou, Xun

    2015-02-28

    Photoluminescent carbon nanodots (C-dots) with size tunability and uniformity were fabricated in polyethylene glycol (PEG{sub 200N}) solution using femtosecond laser ablation method. The size distributions and photoluminescence (PL) properties of C-dots are well controlled by adjusting the combined parameters of laser fluence, spot size, and irradiation time. The size reduction efficiency of the C-dots progressively increases with decreasing laser fluence and spot size. The optimal PL spectra are red-shifted and the quantum yields decrease with the increase in C-dots size, which could be attributed to the more complex surface functional groups attached on C-dots induced at higher laser fluence and larger spot size. Moreover, an increase in irradiation time leads to a decrease in size of C-dots, but long-time irradiation will result in the generation of complex functional groups on C-dots, subsequently the PL spectra are red-shifted.

  6. Real-time spot size camera for pulsed high-energy radiographic machines

    SciTech Connect (OSTI)

    Watson, S.A.

    1993-06-01

    The focal spot size of an x-ray source is a critical parameter which degrades resolution in a flash radiograph. For best results, a small round focal spot is required. Therefore, a fast and accurate measurement of the spot size is highly desirable to facilitate machine tuning. This paper describes two systems developed for Los Alamos National Laboratory`s Pulsed High-Energy Radiographic Machine Emitting X-rays (PHERMEX) facility. The first uses a CCD camera combined with high-brightness floors, while the second utilizes phosphor storage screens. Other techniques typically record only the line spread function on radiographic film, while systems in this paper measure the more general two-dimensional point-spread function and associated modulation transfer function in real time for shot-to-shot comparison.

  7. Real-time spot size camera for pulsed high-energy radiographic machines

    SciTech Connect (OSTI)

    Watson, S.A.

    1993-01-01

    The focal spot size of an x-ray source is a critical parameter which degrades resolution in a flash radiograph. For best results, a small round focal spot is required. Therefore, a fast and accurate measurement of the spot size is highly desirable to facilitate machine tuning. This paper describes two systems developed for Los Alamos National Laboratory's Pulsed High-Energy Radiographic Machine Emitting X-rays (PHERMEX) facility. The first uses a CCD camera combined with high-brightness floors, while the second utilizes phosphor storage screens. Other techniques typically record only the line spread function on radiographic film, while systems in this paper measure the more general two-dimensional point-spread function and associated modulation transfer function in real time for shot-to-shot comparison.

  8. Process for producing large grain cadmium telluride

    DOE Patents [OSTI]

    Hasoon, Falah S. (Arvada, CO); Nelson, Art J. (Longmont, CO)

    1996-01-01

    A process for producing a cadmium telluride polycrystalline film having grain sizes greater than about 20 .mu.m. The process comprises providing a substrate upon which cadmium telluride can be deposited and placing that substrate within a vacuum chamber containing a cadmium telluride effusion cell. A polycrystalline film is then deposited on the substrate through the steps of evacuating the vacuum chamber to a pressure of at least 10.sup.-6 torr.; heating the effusion cell to a temperature whereat the cell releases stoichiometric amounts of cadmium telluride usable as a molecular beam source for growth of grains on the substrate; heating the substrate to a temperature whereat a stoichiometric film of cadmium telluride can be deposited; and releasing cadmium telluride from the effusion cell for deposition as a film on the substrate. The substrate then is placed in a furnace having an inert gas atmosphere and heated for a sufficient period of time at an annealing temperature whereat cadmium telluride grains on the substrate grow to sizes greater than about 20 .mu.m.

  9. Process for producing large grain cadmium telluride

    DOE Patents [OSTI]

    Hasoon, F.S.; Nelson, A.J.

    1996-01-16

    A process is described for producing a cadmium telluride polycrystalline film having grain sizes greater than about 20 {micro}m. The process comprises providing a substrate upon which cadmium telluride can be deposited and placing that substrate within a vacuum chamber containing a cadmium telluride effusion cell. A polycrystalline film is then deposited on the substrate through the steps of evacuating the vacuum chamber to a pressure of at least 10{sup {minus}6} torr.; heating the effusion cell to a temperature whereat the cell releases stoichiometric amounts of cadmium telluride usable as a molecular beam source for growth of grains on the substrate; heating the substrate to a temperature whereat a stoichiometric film of cadmium telluride can be deposited; and releasing cadmium telluride from the effusion cell for deposition as a film on the substrate. The substrate then is placed in a furnace having an inert gas atmosphere and heated for a sufficient period of time at an annealing temperature whereat cadmium telluride grains on the substrate grow to sizes greater than about 20 {micro}m.

  10. Effects of Fusion Zone Size on Failure Modes and Performance of Advanced High Strength Steel Spot Welds

    SciTech Connect (OSTI)

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2006-04-28

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS). DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. The critical fusion zone sizes to ensure nugget pull-out failure mode are developed for both DP800 and TRIP800 using the limit load based analytical model and the micro-hardness measurements of the weld cross sections. Static weld strength tests using cross tension samples were performed on the joint populations with controlled fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied using statistical data analysis tools. The results in this study show that the conventional weld size of 4 t can not produce nugget pullout mode for both the DP800 and TRIP800 materials. The results also suggest that performance based spot weld acceptance criteria should be developed for different AHSS spot welds.

  11. Cadmium Telluride | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics » Cadmium Telluride Cadmium Telluride Graphic showing the five layers of a cadmium telluride PV cell: aluminum, p- layer, n- layer, transparent conductive oxide, and glass. DOE supports innovative research focused on overcoming the current technological and commercial barriers for cadmium telluride (CdTe) solar cells. Below are a list of current projects, summary of the benefits, and discussion of the production and manufacturing techniques used for this solar technology.

  12. SU-D-BRE-03: Dosimetric Impact of In-Air Spot Size Variations for Commissioning a Room-Matched Beam Model for Pencil Beam Scanning Proton Therapy

    SciTech Connect (OSTI)

    Zhang, Y; Giebeler, A; Mascia, A; Piskulich, F; Perles, L; Lepage, R; Dong, L

    2014-06-01

    Purpose: To quantitatively evaluate dosimetric consequence of spot size variations and validate beam-matching criteria for commissioning a pencil beam model for multiple treatment rooms. Methods: A planning study was first conducted by simulating spot size variations to systematically evaluate dosimetric impact of spot size variations in selected cases, which was used to establish the in-air spot size tolerance for beam matching specifications. A beam model in treatment planning system was created using in-air spot profiles acquired in one treatment room. These spot profiles were also acquired from another treatment room for assessing the actual spot size variations between the two treatment rooms. We created twenty five test plans with targets of different sizes at different depths, and performed dose measurement along the entrance, proximal and distal target regions. The absolute doses at those locations were measured using ionization chambers at both treatment rooms, and were compared against the calculated doses by the beam model. Fifteen additional patient plans were also measured and included in our validation. Results: The beam model is relatively insensitive to spot size variations. With an average of less than 15% measured in-air spot size variations between two treatment rooms, the average dose difference was ?0.15% with a standard deviation of 0.40% for 55 measurement points within target region; but the differences increased to 1.4%1.1% in the entrance regions, which are more affected by in-air spot size variations. Overall, our single-room based beam model in the treatment planning system agreed with measurements in both rooms < 0.5% within the target region. For fifteen patient cases, the agreement was within 1%. Conclusion: We have demonstrated that dosimetrically equivalent machines can be established when in-air spot size variations are within 15% between the two treatment rooms.

  13. Investigations of Interfacial Structure in Thermoelectric Tellurides...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interfacial Structure in Thermoelectric Tellurides Investigations of Interfacial Structure in Thermoelectric Tellurides Discusses examples of work on the investigation of atomic...

  14. Investigations of Interfacial Structure in Thermoelectric Tellurides

    Broader source: Energy.gov [DOE]

    Discusses examples of work on the investigation of atomic structure of interfaces in thermoelectric tellurides

  15. Operational Experiences Tuning the ATF2 Final Focus Optics Towards Obtaining a 37nm Electron Beam IP Spot Size

    SciTech Connect (OSTI)

    White, Glen; Seryi, Andrei; Woodley, Mark; Bai, Sha; Bambade, Philip; Renier, Yves; Bolzon, Benoit; Kamiya, Yoshio; Komamiya, Sachio; Oroku, Masahiro; Yamaguchi, Yohei; Yamanaka, Takashi; Kubo, Kiyoshi; Kuroda, Shigeru; Okugi, Toshiyuki; Tauchi, Toshiaki; Marin, Eduardo; /CERN

    2012-07-06

    The primary aim of the ATF2 research accelerator is to test a scaled version of the final focus optics planned for use in next-generation linear lepton colliders. ATF2 consists of a 1.3 GeV linac, damping ring providing low-emittance electron beams (< 12pm in the vertical plane), extraction line and final focus optics. The design details of the final focus optics and implementation at ATF2 are presented elsewhere. The ATF2 accelerator is currently being commissioned, with a staged approach to achieving the design IP spot size. It is expected that as we implement more demanding optics and reduce the vertical beta function at the IP, the tuning becomes more difficult and takes longer. We present here a description of the implementation of the tuning procedures and describe operational experiences and performances.

  16. Effects of Fusion Zone Size on Failure Modes and Performance of Advanced High Strength Steel Spot Welds (2006-01-0531)

    SciTech Connect (OSTI)

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2007-03-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS). DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. The critical fusion zone sizes to ensure nugget pull-out failure mode are developed for both DP800 and TRIP800 using the limit load based analytical model and the micro-hardness measurements of the weld cross sections. Static weld strength tests using cross tension samples were performed on the joint populations with controlled fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied using statistical data analysis tools. The results in this study show that the conventional weld size of 4 t1/2 can not produce nugget pullout mode for both the DP800 and TRIP800 materials. The results also suggest that performance based spot weld acceptance criteria should be developed for different AHSS spot welds.

  17. TH-C-18A-10: The Influence of Tube Current On X-Ray Focal Spot Size for 70 KV CT Imaging

    SciTech Connect (OSTI)

    Duan, X; Grimes, J; Yu, L; Leng, S; McCollough, C

    2014-06-15

    Purpose: Focal spot blooming is an increase in the focal spot size at increased tube current and/or decreased tube potential. In this work, we evaluated the influence of tube current on the focal spot size at low kV for two CT systems, one of which used a tube designed to reduce blooming effects. Methods: A slit camera (10 micron slit) was used to measure focal spot size on two CT scanners from the same manufacturer (Siemens Somatom Force and Definition Flash) at 70 kV and low, medium and maximum tube currents, according to the capabilities of each system (Force: 100, 800 and 1300 mA; Flash: 100, 200 and 500 mA). Exposures were made with a stationary tube in service mode using a raised stand without table movement or flying focal spot technique. Focal spot size, nominally 0.8 and 1.2 mm, respectively, was measured parallel and perpendicular to the cathode-anode axis by calculating the full-width-at-half-maximum of the slit profile recording using computed radiographic plates. Results: Focal spot sizes perpendicular to the anode-cathode axis increased at the maximum mA by 5.7% on the Force and 39.1% on the Flash relative to that at the minimal mA, even though the mA was increased 13-fold on the Force and only 5- fold on the Flash. Focal spot size increased parallel to the anode-cathode axis by 70.4% on Force and 40.9% on Flash. Conclusion: For CT protocols using low kV, high mA is typically required. These protocols are relevant in children and smaller adults, and for dual-energy scanning. Technical measures to limit focal spot blooming are important in these settings to avoid reduced spatial resolution. The x-ray tube on a recently-introduced scanner appears to greatly reduce blooming effects, even at very high mA values. CHM has research support from Siemens Healthcare.

  18. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds

    SciTech Connect (OSTI)

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2007-01-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS). DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. The critical fusion zone sizes to ensure nugget pull-out failure mode are developed for both DP800 and TRIP800 using limit load based analytical model and micro-hardness measurements of the weld cross sections. Static weld strength tests using cross tension samples were performed on the joint populations with controlled fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 materials examined. The critical fusion zone size for nugget pullout shall be derived for individual materials based on different base metal properties as well as different heat affected zone (HAZ) and weld properties resulted from different welding parameters.

  19. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds under Lap Shear Loading Conditions

    SciTech Connect (OSTI)

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-06-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS) under lap shear loading condition. DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. Static weld strength tests using lap shear samples were performed on the joint populations with various fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with conventionally required fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 welds under lap shear loading. Moreover, failure mode has strong influence on weld peak load and energy absorption for all the DP800 welds and the TRIP800 small welds: welds failed in pullout mode have statistically higher strength and energy absorption than those failed in interfacial fracture mode. For TRIP800 welds above the critical fusion zone level, the influence of weld failure modes on peak load and energy absorption diminishes. Scatter plots of peak load and energy absorption versus weld fusion zone size were then constructed, and the results indicate that fusion zone size is the most critical factor in weld quality in terms of peak load and energy absorption for both DP800 and TRIP800 spot welds.

  20. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells

    SciTech Connect (OSTI)

    Chu, T.L. )

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

  1. Method based on atomic photoionization for spot-size measurement on focused soft x-ray free-electron laser beams

    SciTech Connect (OSTI)

    Sorokin, A. A.; Gottwald, A.; Hoehl, A.; Kroth, U.; Schoeppe, H.; Ulm, G.; Richter, M.; Bobashev, S. V.; Domracheva, I. V.; Smirnov, D. N.; Tiedtke, K.; Duesterer, S.; Feldhaus, J.; Hahn, U.; Jastrow, U.; Kuhlmann, M.; Nunez, T.; Ploenjes, E.; Treusch, R.

    2006-11-27

    A method has been developed and applied to measure the beam waist and spot size of a focused soft x-ray beam at the free-electron laser FLASH of the Deutsches Elektronen-Synchrotron in Hamburg. The method is based on a saturation effect upon atomic photoionization and represents an indestructible tool for the characterization of powerful beams of ionizing electromagnetic radiation. At the microfocus beamline BL2 at FLASH, a full width at half maximum focus diameter of (15{+-}2) {mu}m was determined.

  2. Synthesis and Characterization of Telluride Aerogels: Effect...

    Office of Scientific and Technical Information (OSTI)

    Synthesis and Characterization of Telluride Aerogels: Effect of Gelation on Thermoelectric Performance of Bi2Te3 and Bi2-xSbxTe3 Nanostructures Citation Details In-Document Search ...

  3. Process for producing cadmium sulfide on a cadmium telluride surface

    DOE Patents [OSTI]

    Levi, Dean H. (Lakewood, CO); Nelson, Art J. (Longmont, CO); Ahrenkiel, Richard K. (Lakewood, CO)

    1996-01-01

    A process for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness.

  4. Process for producing cadmium sulfide on a cadmium telluride surface

    DOE Patents [OSTI]

    Levi, D.H.; Nelson, A.J.; Ahrenkiel, R.K.

    1996-07-30

    A process is described for producing a layer of cadmium sulfide on a cadmium telluride surface to be employed in a photovoltaic device. The process comprises providing a cadmium telluride surface which is exposed to a hydrogen sulfide plasma at an exposure flow rate, an exposure time and an exposure temperature sufficient to permit reaction between the hydrogen sulfide and cadmium telluride to thereby form a cadmium sulfide layer on the cadmium telluride surface and accomplish passivation. In addition to passivation, a heterojunction at the interface of the cadmium sulfide and the cadmium telluride can be formed when the layer of cadmium sulfide formed on the cadmium telluride is of sufficient thickness. 12 figs.

  5. International Round-Robin on Transport Properties of Bismuth Telluride |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Round-Robin on Transport Properties of Bismuth Telluride International Round-Robin on Transport Properties of Bismuth Telluride IEA-AMT round-robin testing of n- and p-type bismuth telluride transport properties showed significant measurement issues and highlighted need for standardization of measurements of thermoelectric material properties PDF icon wang.pdf More Documents & Publications Reliability of Transport Properties for Bulk Thermoelectrics Thermoelectric

  6. Hot Links to Cool Spots - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fire Department Hot Links to Cool Spots Hanford Fire Department Hanford Fire Department Home About Hanford Fire Department Fire and Life Safety Information Hot Links to Cool Spots Contact Hanford Fire Department Hot Links to Cool Spots Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Federal Agencies Bureau of Land Management - Oregon/Washington National Highway Traffic Safety Administration U.S. Fire Administration Federal Emergency Management Agency U.S.

  7. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

  8. Feasibility of preparing patterned molybdenum coatings on bismuth telluride thermoelectric modules.

    SciTech Connect (OSTI)

    Sarobol, Pylin; Hall, Aaron Christopher; Miller, Stephen Samuel; Knight, Marlene E.; LePage, William S.; Sobczak, Catherine Elizabeth.; Wesolowski, Daniel Edward

    2013-09-01

    Molybdenum electrical interconnects for thermoelectric modules were produced by air plasma spraying a 30%CE%BCm size molybdenum powder through a laser-cut Kapton tape mask. Initial feasibility demonstrations showed that the molybdenum coating exhibited excellent feature and spacing retention (~170%CE%BCm), adhered to bismuth-telluride, and exhibited electrical conductivity appropriate for use as a thermoelectric module interconnect. A design of experiments approach was used to optimize air plasma spray process conditions to produce a molybdenum coating with low electrical resistivity. Finally, a molybdenum coating was successfully produced on a fullscale thermoelectric module. After the addition of a final titanium/gold layer deposited on top of the molybdenum coating, the full scale module exhibited an electrical resistivity of 128%CE%A9, approaching the theoretical resistivity value for the 6mm module leg of 112%CE%A9. Importantly, air plasma sprayed molybdenum did not show significant chemical reaction with bismuth-telluride substrate at the coating/substrate interface. The molybdenum coating microstructure consisted of lamellar splats containing columnar grains. Air plasma sprayed molybdenum embedded deeply (several microns) into the bismuth-telluride substrate, leading to good adhesion between the coating and the substrate. Clusters of round pores (and cracks radiating from the pores) were found immediately beneath the molybdenum coating. These pores are believed to result from tellurium vaporization during the spray process where the molten molybdenum droplets (2623%C2%B0C) transferred their heat of solidification to the substrate at the moment of impact. Substrate cooling during the molybdenum deposition process was recommended to mitigate tellurium vaporization in future studies.

  9. Synthesis and Characterization of Telluride Aerogels: Effect of Gelation on

    Office of Scientific and Technical Information (OSTI)

    Thermoelectric Performance of Bi2Te3 and Bi2-xSbxTe3 Nanostructures (Journal Article) | SciTech Connect Synthesis and Characterization of Telluride Aerogels: Effect of Gelation on Thermoelectric Performance of Bi2Te3 and Bi2-xSbxTe3 Nanostructures Citation Details In-Document Search Title: Synthesis and Characterization of Telluride Aerogels: Effect of Gelation on Thermoelectric Performance of Bi2Te3 and Bi2-xSbxTe3 Nanostructures Authors: Ganguly, Shreyashi ; Zhou, Chen ; Morelli, Donald T

  10. Waist parameter determination from measured spot sizes

    SciTech Connect (OSTI)

    Hajek, M. )

    1989-12-15

    A novel simple method of determination of waist parameters of a Gaussian laser beam as a consequence of geometric treatment of the problem is introduced. The method does not require any least-squares process, ordering of experimental data, or estimates of waist parameters.

  11. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells. Final subcontract report, 1 July 1988--31 December 1991

    SciTech Connect (OSTI)

    Chu, T.L.

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

  12. Synthesis of cadmium telluride quantum wires and the similarity of their band gaps to those of equidiameter cadmium telluride quantum dots

    SciTech Connect (OSTI)

    Wang, Lin-Wang; Sun, Jianwei; Wang, Lin-Wang; Buhro, William E.

    2008-07-11

    High-quality colloidal CdTe quantum wires having purposefully controlled diameters in the range of 5-11 nm are grown by the solution-liquid-solid (SLS) method, using Bi-nanoparticle catalysts, cadmium octadecylphosphonate and trioctylphosphine telluride as precursors, and a TOPO solvent. The wires adopt the wurtzite structure, and grow along the [002] direction (parallel to the c axis). The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to the experimental results for high-quality CdTe quantum dots. In contrast to the predictions of an effective-mass approximation, particle-in-a-box model, and previous experimental results from CdSe and InP dot-wire comparisons, the band gaps of CdTe dots and wires of like diameter are found to be experimentally indistinguishable. The present results are analyzed using density functional theory under the local-density approximation by implementing a charge-patching method. The higher-level theoretical analysis finds the general existence of a threshold diameter, above which dot and wire band gaps converge. The origin and magnitude of this threshold diameter is discussed.

  13. Thin film cadmium telluride and zinc phosphide solar cells

    SciTech Connect (OSTI)

    Chu, T.

    1984-10-01

    This report describes research performed from June 1982 to October 1983 on the deposition of cadmium telluride films by direct combination of the cadmium and tellurium vapor on foreign substrates. Nearly stoichiometric p-type cadmium telluride films and arsenic-doped p-type films have been prepared reproducibly. Major efforts were directed to the deposition and characterization of heterojunction window materials, indium tin oxide, fluorine-doped tin oxide, cadmium oxide, and zinc oxide. A number of heterojunction solar cells were prepared, and the best thin-film ITO/CdTe solar cells had an AMl efficiency of about 7.2%. Zinc phosphide films were deposited on W/steel substrates by the reaction of zinc and phosphine in a hydrogen flow. Films without intentional doping had an electrical resistivity on the order of 10/sup 6/ ohm-cm, and this resistivity may be reduced to about 5 x 10/sup 4/ ohm-cm by adding hydrogen chloride or hydrogen bromide to the reaction mixture. Lower resistivity films were deposited by adding a controlled amount of silver nitrate solution on to the substrate surface. Major efforts were directed to the deposition of low-resistivity zinc selenide in order to prepare ZnSe/An/sub 3/P/sub 2/ heterojunction thin-film solar cells. However, zinc selenide films deposited by vacuum evaporation and chemical vapor deposition techniques were all of high resistivity.

  14. IR Spot Weld Inspect

    Energy Science and Technology Software Center (OSTI)

    2014-01-01

    In automotive industry, destructive inspection of spot welds is still the mandatory quality assurance method due to the lack of efficient non-destructive evaluation (NDE) tools. However, it is costly and time-consuming. Recently at ORNL, a new NDE prototype system for spot weld inspection using infrared (IR) thermography has been developed to address this problem. This software contains all the key functions that ensure the NDE system to work properly: system input/output control, image acquisition, datamore » analysis, weld quality database generation and weld quality prediction, etc.« less

  15. Towards understanding junction degradation in cadmium telluride solar cells

    SciTech Connect (OSTI)

    Nardone, Marco

    2014-06-21

    A degradation mechanism in cadmium telluride (CdTe/CdS) solar cells is investigated using time-dependent numerical modeling to simulate various temperature, bias, and illumination stress conditions. The physical mechanism is based on defect generation rates that are proportional to nonequilibrium charge carrier concentrations. It is found that a commonly observed degradation mode for CdTe/CdS solar cells can be reproduced only if defects are allowed to form in a narrow region of the absorber layer close to the CdTe/CdS junction. A key aspect of this junction degradation is that both mid-gap donor and shallow acceptor-type defects must be generated simultaneously in response to photo-excitation or applied bias. The numerical approach employed here can be extended to study other mechanisms for any photovoltaic technology.

  16. Sensor Placement + Optimization Software (SPOT) | Open Energy...

    Open Energy Info (EERE)

    modeling tools User Interface: Spreadsheet Website: www.archenergy.comSPOT Cost: Free Language: English References: http:www.archenergy.comSPOT SPOT(tm) is intended to...

  17. Compensation mechanism of bromine dopants in cadmium telluride single crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bolotnikov, A. E.; Fochuk, P. M.; Verzhak, Ye. V.; Parashchuk, T. O.; Freik, D. M.; Panchuk, O. E.; James, R. B.; Gorichok, I. V.

    2015-01-02

    We grew single crystals of cadmium telluride, doped with bromine by the Bridgman method, annealed them under a cadmium overpressure (PCd = 10² - 10⁵ Pa) at 800-1100 K, and investigated their electrical properties at high- and low-temperature. The influence of impurities on the crystals' electrical properties were analyzed using the defect subsystem model; the model includes the possibility of the formation of point intrinsic defects (V²⁻Cd, Cd²⁺i, V²⁺Te, Te²⁻i), and substitutional ones (Br⁰Te, Br⁺Te), as well as complexes of point defects, i.e., (Br⁺Te V²⁻Cd)⁻ and (2Br⁺Te V²⁻Cd)⁰. We established the concentration dependence between free charge carriers and themore » parameters of the annealing process. Here, n(T) and n(PCd) are determined by two dominant defects – Br⁺Te and (2Br⁺Te V²⁻Cd)⁰. Their content varies with the annealing temperature and the vapor pressure of the component; the concentration of other defects is much smaller and almost does not affect the electron density.« less

  18. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOE Patents [OSTI]

    McQuaid, James H.; Lavietes, Anthony D.

    1998-05-29

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radio nuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components.

  19. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOE Patents [OSTI]

    McQuaid, J.H.; Lavietes, A.D.

    1998-05-26

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector is disclosed. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radionuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components. 9 figs.

  20. ARM - Datastreams - aosaeth1spot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsaosaeth1spot Documentation Data Quality Plots Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : AOSAETH1SPOT Single spot Aethalometer® Active Dates 2014.01.21 - 2016.03.10 Measurement Categories Aerosols, Atmospheric Carbon Originating Instrument Aethalometer (AETH) Measurements Only measurements considered scientifically relevant are shown below by default. Show all measurements Measurement Units Variable Altitude above

  1. Hot Spot | Open Energy Information

    Open Energy Info (EERE)

    definitions:Wikipedia Reegle Tectonic Settings List of tectonic settings known to host modern geothermal systems: Extensional Tectonics Subduction Zone Rift Zone Hot Spot...

  2. The effect of different annealing temperatures on tin and cadmium telluride phases obtained by a modified chemical route

    SciTech Connect (OSTI)

    Mesquita, Anderson Fuzer; Porto, Arilza de Oliveira; Magela de Lima, Geraldo; Paniago, Roberto; Ardisson, Jos Domingos

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ? Synthesis of cadmium and tin telluride. ? Chemical route to obtain pure crystalline cadmium and tin telluride. ? Effect of the annealing temperature on the crystalline phases. ? Removal of tin oxide as side product through thermal treatment. -- Abstract: In this work tin and cadmium telluride were prepared by a modification of a chemical route reported in the literature to obtain metallacycles formed by oxidative addition of tin-tellurium bonds to platinum (II). Through this procedure it was possible to obtain tin and cadmium telluride. X-ray diffraction and X-ray photoelectron spectroscopy were used to identify the crystalline phases obtained as well as the presence of side products. In the case of tin telluride it was identified potassium chloride, metallic tellurium and tin oxide as contaminants. The tin oxidation states were also monitored by {sup 119}Sn Mssbauer spectroscopy. The annealing in hydrogen atmosphere was chosen as a strategy to reduce the tin oxide and promote its reaction with the excess of tellurium present in the medium. The evolution of this tin oxide phase was studied through the annealing of the sample at different temperatures. Cadmium telluride was obtained with high degree of purity (98.5% relative weight fraction) according to the Rietveld refinement of X-ray diffraction data. The modified procedure showed to be very effective to obtain amorphous tin and cadmium telluride and the annealing at 450 C has proven to be useful to reduce the amount of oxide produced as side product.

  3. Method and making group IIB metal - telluride films and solar cells

    DOE Patents [OSTI]

    Basol, Bulent M. (Redondo Beach, CA); Kapur, Vijay K. (Northridge, CA)

    1990-08-21

    A technique is disclosed forming thin films (13) of group IIB metal-telluride, such as Cd.sub.x Zn.sub.1-x Te (0.ltoreq.x.ltoreq.1), on a substrate (10) which comprises depositing Te (18) and at least one of the elements (19) of Cd, Zn, and Hg onto a substrate and then heating the elements to form the telluride. A technique is also provided for doping this material by chemically forming a thin layer of a dopant on the surface of the unreacted elements and then heating the elements along with the layer of dopant. A method is disclosed of fabricating a thin film photovoltaic cell which comprises depositing Te and at least one of the elements of Cd, Zn, and Hg onto a substrate which contains on its surface a semiconductor film (12) and then heating the elements in the presence of a halide of the Group IIB metals, causing the formation of solar cell grade Group IIB metal-telluride film and also causing the formation of a rectifying junction, in situ, between the semiconductor film on the substrate and the Group IIB metal-telluride layer which has been formed.

  4. SPOT Suite Transforms Beamline Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SPOT Suite Transforms Beamline Science SPOT Suite Transforms Beamline Science SPOT Suite brings advanced algorithms, high performance computing and data management to the masses August 18, 2014 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov als.jpg Advanced Light Source (ALS) at Berkeley Lab (Photo by Roy Kaltschmidt) Some mysteries of science can only be explained on a nanometer scale -even smaller than a single strand of human DNA, which is about 2.5 nanometers wide. At this scale, scientists

  5. ClearSpot Energy | Open Energy Information

    Open Energy Info (EERE)

    ClearSpot Energy Jump to: navigation, search Name: ClearSpot Energy Sector: Solar Product: US-based solar project developer for rooftop commercial installations. References:...

  6. ARM - Datastreams - aosaeth2spot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsaosaeth2spot Documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : AOSAETH2SPOT Definition needed Active Dates 2015.09.30 - 2016.03.10 Measurement Categories Aerosols, Atmospheric Carbon Originating Instrument Aethalometer (AETH) Measurements Only measurements considered scientifically relevant are shown below by default. Show all measurements Measurement Units

  7. Fabrication and Spark plasma sintering of nanostructured bismuth telluride (Bi{sub 2}Te{sub 3})

    SciTech Connect (OSTI)

    Saleemi, Mohsin; Toprak, Muhammet S.; Li, Shanghua; Johnsson, Mats; Muhammed, Mamoun

    2012-06-26

    Thermoelectric (TE) devices can harvest residual low-grade waste heat energy. Bismuth telluride (Bi{sub 2}Te{sub 3}) and its alloys are mostly used TE materials in the bulk form for making TE modules. We report a simple, fast and very high yield synthetic process for the bulk Bi{sub 2}Te{sub 3} nanopowders with hexagonal plate like morphology. Spark plasma sintering (SPS) process has been optimized in order to preserve nanostructure while achieving a high compaction density of the pellets. Electron microscopy analysis was used to determine the effect of SPS parameters during compaction on the grain growth. Optimal conditions for the fabricated nanopowder was determined as 673 K, 70 MPa pressure with no holding time, which resulted in average lateral grain size in the range of 165-190 nm for a compact density of 98%. About 50% reduction of thermal conductivity was observed as compared to its bulk counterparts, revealing the feasibility of suggested route in the preservation of nanostructure and enhanced phonon scattering.

  8. HotSpot | Department of Energy

    Office of Environmental Management (EM)

    HotSpot HotSpot Current Central Registry Toolbox Version(s): 2.07.1 Code Owner: Department of Energy, Office of Emergency Operations and Lawrence Livermore National Laboratory (LLNL) Description: The HotSpot Health Physics Code is used for safety-analysis of DOE facilities handling nuclear material. Additionally, HotSpot provides emergency response personnel and emergency planners with a fast, field-portable set of software tools for evaluating incidents involving radioactive material. HotSpot

  9. Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering

    SciTech Connect (OSTI)

    Niedziela, J. L., E-mail: niedzielajl@ornl.gov [Instrument and Source Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Stone, M. B., E-mail: stonemb@ornl.gov [Quantum Condensed Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-09-08

    We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80?K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

  10. Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering

    SciTech Connect (OSTI)

    Niedziela, Jennifer L [ORNL; Stone, Matthew B [ORNL

    2014-01-01

    We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80~K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

  11. A procedure to determine the planar integral spot dose values of proton pencil beam spots

    SciTech Connect (OSTI)

    Anand, Aman; Sahoo, Narayan; Zhu, X. Ronald; Sawakuchi, Gabriel O.; Poenisch, Falk; Amos, Richard A.; Ciangaru, George; Titt, Uwe; Suzuki, Kazumichi; Mohan, Radhe; Gillin, Michael T.

    2012-02-15

    Purpose: Planar integral spot dose (PISD) of proton pencil beam spots (PPBSs) is a required input parameter for beam modeling in some treatment planning systems used in proton therapy clinics. The measurement of PISD by using commercially available large area ionization chambers, like the PTW Bragg peak chamber (BPC), can have large uncertainties due to the size limitation of these chambers. This paper reports the results of our study of a novel method to determine PISD values from the measured lateral dose profiles and peak dose of the PPBS. Methods: The PISDs of 72.5, 89.6, 146.9, 181.1, and 221.8 MeV energy PPBSs were determined by area integration of their planar dose distributions at different depths in water. The lateral relative dose profiles of the PPBSs at selected depths were measured by using small volume ion chambers and were investigated for their angular anisotropies using Kodak XV films. The peak spot dose along the beam's central axis (D{sub 0}) was determined by placing a small volume ion chamber at the center of a broad field created by the superposition of spots at different locations. This method allows eliminating positioning uncertainties and the detector size effect that could occur when measuring it in single PPBS. The PISD was then calculated by integrating the measured lateral relative dose profiles for two different upper limits of integration and then multiplying it with corresponding D{sub 0}. The first limit of integration was set to radius of the BPC, namely 4.08 cm, giving PISD{sub RBPC}. The second limit was set to a value of the radial distance where the profile dose falls below 0.1% of the peak giving the PISD{sub full}. The calculated values of PISD{sub RBPC} obtained from area integration method were compared with the BPC measured values. Long tail dose correction factors (LTDCFs) were determined from the ratio of PISD{sub full}/PISD{sub RBPC} at different depths for PPBSs of different energies. Results: The spot profiles were found to have angular anisotropy. This anisotropy in PPBS dose distribution could be accounted in a reasonable approximate manner by taking the average of PISD values obtained using the in-line and cross-line profiles. The PISD{sub RBPC} values fall within 3.5% of those measured by BPC. Due to inherent dosimetry challenges associated with PPBS dosimetry, which can lead to large experimental uncertainties, such an agreement is considered to be satisfactory for validation purposes. The PISD{sub full} values show differences ranging from 1 to 11% from BPC measured values, which are mainly due to the size limitation of the BPC to account for the dose in the long tail regions of the spots extending beyond its 4.08 cm radius. The dose in long tail regions occur both for high energy beams such as 221.8 MeV PPBS due to the contributions of nuclear interactions products in the medium, and for low energy PPBS because of their larger spot sizes. The calculated LTDCF values agree within 1% with those determined by the Monte Carlo (MC) simulations. Conclusions: The area integration method to compute the PISD from PPBS lateral dose profiles is found to be useful both to determine the correction factors for the values measured by the BPC and to validate the results from MC simulations.

  12. Systems and methods of varying charged particle beam spot size

    DOE Patents [OSTI]

    Chen, Yu-Jiuan

    2014-09-02

    Methods and devices enable shaping of a charged particle beam. A modified dielectric wall accelerator includes a high gradient lens section and a main section. The high gradient lens section can be dynamically adjusted to establish the desired electric fields to minimize undesirable transverse defocusing fields at the entrance to the dielectric wall accelerator. Once a baseline setting with desirable output beam characteristic is established, the output beam can be dynamically modified to vary the output beam characteristics. The output beam can be modified by slightly adjusting the electric fields established across different sections of the modified dielectric wall accelerator. Additional control over the shape of the output beam can be excreted by introducing intentional timing de-synchronization offsets and producing an injected beam that is not fully matched to the entrance of the modified dielectric accelerator.

  13. Specific features of the photoconductivity of semi-insulating cadmium telluride

    SciTech Connect (OSTI)

    Golubyatnikov, V. A.; Grigorev, F. I.; Lysenko, A. P., E-mail: aplysenko@hse.ru; Strogankova, N. I.; Shadov, M. B. [National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics (Russian Federation); Belov, A. G. [OAO GIREDMET State Research and Design Institute of the Rare-Metal Industry (Russian Federation)

    2014-12-15

    The effect of local illumination providing a high level of free-carrier injection on the conductivity of a sample of semi-insulating cadmium telluride and on the properties of ohmic contacts to the sample is studied. It is found that, irrespective of the illumination region, the contact resistance of ohmic contacts decreases and the concentration of majority carriers in the sample grows in proportion to the illumination intensity. It is shown that inherent heterogeneities in crystals of semi-insulating semiconductors can be studied by scanning with a light probe.

  14. Beamline 5.4.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diffraction limited (wavelength) Detectors Extended-range and wide-range MCT-A (mercury cadmium telluride) Spot size at sample 2-10 m (diffraction-limited), or 20 nm (AFM...

  15. HotSpot Software Configuration Management Plan

    SciTech Connect (OSTI)

    Walker, H; Homann, S G

    2009-03-12

    This Software Configuration Management Plan (SCMP) describes the software configuration management procedures used to ensure that the HotSpot dispersion model meets the requirements of its user base, which includes: (1) Users of the PC version of HotSpot for consequence assessment, hazard assessment and safety analysis calculations; and (2) Users of the NARAC Web and iClient software tools, which allow users to run HotSpot for consequence assessment modeling These users and sponsors of the HotSpot software and the organizations they represent constitute the intended audience for this document. This plan is intended to meet Critical Recommendations 1 and 3 from the Software Evaluation of HotSpot and DOE Safety Software Toolbox Recommendation for inclusion of HotSpot in the Department of Energy (DOE) Safety Software Toolbox. HotSpot software is maintained for the Department of Energy Office of Emergency Operations by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL). An overview of HotSpot and NARAC are provided.

  16. Finite Cosmology and a CMB Cold Spot

    SciTech Connect (OSTI)

    Adler, R.J.; Bjorken, J.D.; Overduin, J.M.; /Stanford U., HEPL

    2006-03-20

    The standard cosmological model posits a spatially flat universe of infinite extent. However, no observation, even in principle, could verify that the matter extends to infinity. In this work we model the universe as a finite spherical ball of dust and dark energy, and obtain a lower limit estimate of its mass and present size: the mass is at least 5 x 10{sup 23}M{sub {circle_dot}} and the present radius is at least 50 Gly. If we are not too far from the dust-ball edge we might expect to see a cold spot in the cosmic microwave background, and there might be suppression of the low multipoles in the angular power spectrum. Thus the model may be testable, at least in principle. We also obtain and discuss the geometry exterior to the dust ball; it is Schwarzschild-de Sitter with a naked singularity, and provides an interesting picture of cosmogenesis. Finally we briefly sketch how radiation and inflation eras may be incorporated into the model.

  17. Time resolved photo-luminescent decay characterization of mercury cadmium telluride focal plane arrays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Soehnel, Grant

    2015-01-20

    The minority carrier lifetime is a measurable material property that is an indication of infrared detector device performance. To study the utility of measuring the carrier lifetime, an experiment has been constructed that can time resolve the photo-luminescent decay of a detector or wafer sample housed inside a liquid nitrogen cooled Dewar. Motorized stages allow the measurement to be scanned over the sample surface, and spatial resolutions as low as 50m have been demonstrated. A carrier recombination simulation was developed to analyze the experimental data. Results from measurements performed on 4 mercury cadmium telluride focal plane arrays show strong correlationmorebetween spatial maps of the lifetime, dark current, and relative response.less

  18. Flexible cadmium telluride thin films grown on electron-beam-irradiated graphene/thin glass substrates

    SciTech Connect (OSTI)

    Seo, Won-Oh; Kim, Jihyun, E-mail: hyunhyun7@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, Anam-dong, Sungbuk-gu, Seoul 136-713 (Korea, Republic of); Koo, Yong Hwan; Kim, Byungnam; Lee, Byung Cheol [Radiation Integrated System Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353 (Korea, Republic of); Kim, Donghwan [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2014-08-25

    We demonstrate the close-spaced sublimation growth of polycrystalline cadmium telluride (CdTe) thin films on a flexible graphene electrode/thin glass substrate structure. Prior to the growth of CdTe films, chemical-vapor-deposited graphene was transferred onto a flexible glass substrate and subjected to electron-beam irradiation at an energy of 0.2?MeV in order to intentionally introduce the defects into it in a controlled manner. Micro-Raman spectroscopy and sheet resistance measurements were employed to monitor the damage and disorder in the electron-beam irradiated graphene layers. The morphology and optical properties of the CdTe thin films deposited on a graphene/flexible glass substrate were systematically characterized. The integration of the defective graphene layers with a flexible glass substrate can be a useful platform to grow various thin-film structures for flexible electronic and optoelectronic devices.

  19. Transport properties of lithium- lead-vanadium-telluride glass and glass ceramics

    SciTech Connect (OSTI)

    Sathish, M.; Eraiah, B.

    2014-04-24

    Glasses with the chemical composition 35Li{sub 2}O-(45-x)V{sub 2}O{sub 5?}20PbO-xTeO{sub 2} (where x = 2.5, 5, 7.5, 10, 15 mol %) have prepared by conventional melt quenching method. The electrical conductivity of Li{sup +} ion conducting lead vanadium telluride glass samples has been carried out both as a function of temperature and frequency in the temperature range 503K-563K and over frequencies 40 Hz to 10 MHz. The electronic conduction has been observed in the present systems. When these samples annealed around 400C for 2hour become the glass ceramic, which also shows increase tendency of conductivity. SEM confines glass and glass ceramic nature of the prepared samples.

  20. ,"Weekly Henry Hub Natural Gas Spot Price (Dollars per Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Weekly Henry Hub Natural Gas Spot Price (Dollars per ...

  1. Effects of chemical intermixing on electrical and thermal contact conductances at metallized bismuth and antimony telluride interfaces

    SciTech Connect (OSTI)

    Devender,; Mehta, Rutvik J.; Ramanath, Ganpati; Lofgreen, Kelly; Mahajan, Ravi; Yamaguchi, Masashi; Borca-Tasciuc, Theodorian

    2015-03-15

    Tailoring electrical and thermal contact conductivities (?{sub c} and ?{sub c}) across metallized pnictogen chalcogenide interfaces is key for realizing efficient thermoelectric devices. The authors report that Cu, Ni, Ti, and Ta diffusion and interfacial telluride formation with n-Bi{sub 2}Te{sub 3} and p-Sb{sub 2}Te{sub 3} influence both ?{sub c} and ?{sub c}. Cu metallization yields the highest ?{sub c} and the lowest ?{sub c}, correlating with maximal metal diffusion and copper telluride formation. Ni diffuses less and yields the highest ?{sub c} with Sb{sub 2}Te{sub 3} due to p-type nickel telluride formation, which diminishes ?{sub c} improvement with n-Bi{sub 2}Te{sub 3} interfaces. Ta and Ti contacts yield the lowest properties similar to that in Ni-metallized structures. These correlations between interfacial diffusion and phase formation on electronic and thermal transport properties will be important for devising suitable metallization for thermoelectric devices.

  2. HotSpot Health Physics Codes

    Energy Science and Technology Software Center (OSTI)

    2010-03-02

    The HotSpot Health Physics Codes were created to provide emergency response personnel and emergency planners with a fast, field-portable set of software tools for evaluating incidents involving radioactive material. The software is also used for safety-analysis of facilities handling nuclear material. HotSpot provides a fast and usually conservative means for estimation the radiation effects associated with the short-term (less than 24 hours) atmospheric release of radioactive materials.

  3. HotSpot Health Physics Codes

    Energy Science and Technology Software Center (OSTI)

    2013-04-18

    The HotSpot Health Physics Codes were created to provide emergency response personnel and emergency planners with a fast, field-portable set of software tools for evaluating insidents involving redioactive material. The software is also used for safety-analysis of facilities handling nuclear material. HotSpot provides a fast and usually conservative means for estimation the radiation effects associated with the short-term (less than 24 hours) atmospheric release of radioactive materials.

  4. Displaying and evaluating engineering properties and natural hazards using geomorphic mapping techniques: Telluride, Colorado

    SciTech Connect (OSTI)

    Gunawan, I.; Giardino, J.R.; Tchakerian, V.P. . Geography Dept.)

    1992-01-01

    Telluride, located in the San Juan mountains of southwestern Colorado, is situated in a glacially carved, fluvially modified alpine valley. Today this chic setting is experiencing rapid urban development resulting from flourishing tourist traffic during both the winter ski season and the summer vacation period. A new development, Mountain Village, is being built on an extensive and complex landslide that has only received superficial scrutiny. Recent fast growth is placing considerable pressure on pristine, undeveloped land. This timely quandary incorporates the interaction between prospective development, geomorphic processes, engineering factors, economic feasibility, and landuse adjudication. In an attempt to respond to these issues the State of Colorado enacted Senate Bill 35 (1972) and House Bills 1034 (1974) and 1041 (1974), all mandating assessment of the natural hazards of an area, preparatory to development. The key to evaluating the natural hazards is to comprehend the geomorphic processes. The area is highly-faulted with associated mineralization. Whereas the upper slopes are composed of massive rhyodacitic-tuff breccias and flows, the valley is sculpted from shales, sandstones, and conglomerates. Several periods of glaciation occurred in the area. Glacial till, talus slopes, avalanche chutes and cones, rock glaciers, alluvium, and landslides have been identified in the field and mapped on aerial photographs. Many of the slopes in the area are active. The authors have constructed a geomorphic map (1:12,500) that shows geology, landforms, geomorphic processes and engineering properties. This map can be used by regulatory agencies in identifying areas of natural hazards potentially sensitive to development.

  5. Application of cadmium-zinc-telluride detectors in U-235 enrichment measurements

    SciTech Connect (OSTI)

    Ruhter, W.D.; Gunnink, R.

    1994-04-01

    High-resolution, gamma- and x-ray spectrometry are used routinely in nuclear safeguards verification measurements of plutonium and uranium in the field. These measurements are mostly performed with high-purity germanium (HPGe) detectors, that require cooling to liquid-nitrogen temperatures, thus limiting their utility in field and unattended safeguards measurement applications. NaI scintillation detectors do not require cooling, but their moderate energy resolution (10% at 122 keV) is insufficient in most cases for reliable verification measurements. Semiconductor detectors that operate at room temperature, such as cadmium-zinc-telluride (CdZnTe) detectors, with energy resolution performance reaching 2.0% at 122 keV may complement HPGe detectors for certain safeguards verification applications. The authors used a 5x5x5 mm CdZnTe detector to measure U-235 enrichments ranging from 3% to 75%. They use a spectrum analysis technique that fits U-235, U-238, and U K x-ray response profiles to data in the 89- to 100-keV region of gamma-ray spectrum. From the relative magnitudes of the U-235 and U-238 profiles they determine the U-235 enrichment with an accuracy of about 10% with CdZnTe detectors.

  6. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    DOE Patents [OSTI]

    Krupke, W.F.; Page, R.H.; DeLoach, L.D.; Payne, S.A.

    1996-07-30

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr{sup 2+}-doped ZnS and ZnSe generate laser action near 2.3 {micro}m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d{sup 4} and d{sup 6} electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers. 18 figs.

  7. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    DOE Patents [OSTI]

    Krupke, William F.; Page, Ralph H.; DeLoach, Laura D.; Payne, Stephen A.

    1996-01-01

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr.sup.2+ -doped ZnS and ZnSe generate laser action near 2.3 .mu.m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d.sup.4 and d.sup.6 electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers.

  8. Toward Nanostructured Thermoelectrics. Synthesis and Characterization of Lead Telluride Gels and Aerogels

    SciTech Connect (OSTI)

    Ganguly, Shreyashi [Wayne State Univ., Detroit, MI (United States); Brock, Stephanie L. [Wayne State Univ., Detroit, MI (United States)

    2011-05-12

    The synthesis and characterization of lead telluride (PbTe) gels and aerogels with nanostructured features of potential benefit for enhanced thermoelectrics is reported. In this approach, discrete thiolate-capped PbTe nanoparticles were synthesized by a solution-based approach followed by oxidation-induced nanoparticle assembly with tetranitromethane or hydrogen peroxide to form wet gels. Drying of the wet gels by supercritical CO? extraction yielded aerogels, whereas xerogels were produced by ambient pressure bench top drying. The gels consist of an interconnected network of colloidal nanoparticles and pores with surface areas up to 74 m g-1. The thermal stability of the nanostructures relative to nanoparticles was probed with the help of in situ transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The aerogels were observed to sublime at a higher temperature and over a larger range (425500 C) relative to the precursor nanoparticles. TGA-DSC suggests that organic capping groups can be removed in the region 250450 C, and melting of PbTe nanoparticles occurs near the temperature for bulk materials (ca. 920 C). The good thermal stability combined with the presence of nanoscale interfaces suggests PbTe gels may show promise in thermoelectric devices.

  9. ATS Spotted MSI Analysis with Matlab

    Energy Science and Technology Software Center (OSTI)

    2012-02-09

    Samples are placed on a surface using an acoustic transfer system (ATS). This results in one ore more small droplets on a surface. Typically there are hundreds to thousands of these droplets arrayed in a regular coordinate system. The surface is analyzed using mass spectrometry imaging (MSI) and at each position, one or more mass spectra are recorded. The purpose of the software is to help the user assign locations to the spots and buildmore » a report for each spot.« less

  10. Solar Renewable Energy Credits (SRECs) Spot Market Program

    Broader source: Energy.gov [DOE]

    NOTE: While interested parties can still trade DE SRECs in the spot market, the spot market in itself is limited since most of the SRECs produced are part of the SREC Purchase Program, or the SREC...

  11. Friction Stir Spot Welding of Advanced High Strength Steels II...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Friction Stir Spot Welding of Advanced High Strength Steels II Friction Stir Spot Welding of Advanced High Strength Steels II 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

  12. ,"Henry Hub Natural Gas Spot Price (Dollars per Million Btu)...

    U.S. Energy Information Administration (EIA) Indexed Site

    12:00:20 PM" "Back to Contents","Data 1: Henry Hub Natural Gas Spot Price (Dollars per Million Btu)" "Sourcekey","RNGWHHD" "Date","Henry Hub Natural Gas Spot Price (Dollars per ...

  13. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect (OSTI)

    Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.

    2009-11-13

    Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spot welding in advanced high strength steels.

  14. Vertically-tapered optical waveguide and optical spot transformer formed therefrom

    DOE Patents [OSTI]

    Bakke, Thor; Sullivan, Charles T.

    2004-07-27

    An optical waveguide is disclosed in which a section of the waveguide core is vertically tapered during formation by spin coating by controlling the width of an underlying mesa structure. The optical waveguide can be formed from spin-coatable materials such as polymers, sol-gels and spin-on glasses. The vertically-tapered waveguide section can be used to provide a vertical expansion of an optical mode of light within the optical waveguide. A laterally-tapered section can be added adjacent to the vertically-tapered section to provide for a lateral expansion of the optical mode, thereby forming an optical spot-size transformer for efficient coupling of light between the optical waveguide and a single-mode optical fiber. Such a spot-size transformer can also be added to a III-V semiconductor device by post processing.

  15. DRAMATIC CHANGE IN JUPITER'S GREAT RED SPOT FROM SPACECRAFT OBSERVATIONS

    SciTech Connect (OSTI)

    Simon, Amy A.; Wong, Michael H.; De Pater, Imke; Rogers, John H.; Orton, Glenn S.; Carlson, Robert W.; Asay-Davis, Xylar; Marcus, Philip S.

    2014-12-20

    Jupiter's Great Red Spot (GRS) is one of its most distinct and enduring features. Since the advent of modern telescopes, keen observers have noted its appearance and documented a change in shape from very oblong to oval, confirmed in measurements from spacecraft data. It currently spans the smallest latitude and longitude size ever recorded. Here we show that this change has been accompanied by an increase in cloud/haze reflectance as sensed in methane gas absorption bands, increased absorption at wavelengths shorter than 500nm, and increased spectral slope between 500 and 630nm. These changes occurred between 2012 and 2014, without a significant change in internal tangential wind speeds; the decreased size results in a 3.2day horizontal cloud circulation period, shorter than previously observed. As the GRS has narrowed in latitude, it interacts less with the jets flanking its north and south edges, perhaps allowing for less cloud mixing and longer UV irradiation of cloud and aerosol particles. Given its long life and observational record, we expect that future modeling of the GRS's changes, in concert with laboratory flow experiments, will drive our understanding of vortex evolution and stability in a confined flow field crucial for comparison with other planetary atmospheres.

  16. On the mechanism of operation of a cathode spot cell in a vacuum arc

    SciTech Connect (OSTI)

    Mesyats, G. A.; Petrov, A. A.; Bochkarev, M. B.; Barengolts, S. A.

    2014-05-05

    The erosive structures formed on a tungsten cathode as a result of the motion of the cathode spot of a vacuum arc over the cathode surface have been examined. It has been found that the average mass of a cathode microprotrusion having the shape of a solidified jet is approximately equal to the mass of ions removed from the cathode within the lifetime of a cathode spot cell carrying a current of several amperes. The time of formation of a new liquid-metal jet under the action of the reactive force of the plasma ejected by the cathode spot is about 10?ns, which is comparable to the lifetime of a cell. The growth rate of a liquid-metal jet is ?10{sup 4}?cm/s. The geometric shape and size of a solidified jet are such that a new explosive emission center (spot cell) can be initiated within several nanoseconds during the interaction of the jet with the dense cathode plasma. This is the underlying mechanism of the self-sustained operation of a vacuum arc.

  17. Hot spot-derived shock initiation phenomena in heterogeneous nitromethane

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Hot spot-derived shock initiation phenomena in heterogeneous nitromethane Citation Details In-Document Search Title: Hot spot-derived shock initiation phenomena in heterogeneous nitromethane The addition of solid silica particles to gelled nitromethane offers a tractable model system for interrogating the role of impedance mismatches as one type of hot spot 'seed' on the initiation behaviors of explosive formulations. Gas gun-driven plate impact

  18. Hot spot-derived shock initiation phenomena in heterogeneous...

    Office of Scientific and Technical Information (OSTI)

    microm diameter silica samples at high shock input pressures, indicating that the influence of hot spots on the initiation process was minimal under these conditions....

  19. Hot spot-derived shock initiation phenomena in heterogeneous...

    Office of Scientific and Technical Information (OSTI)

    microm diameter silica samples at high shock input pressures, indicating that the influence of hot spots on the initiation process was minimal under these conditions. ...

  20. Influence of hot spot features on the initiation characteristics of heterogeneous nitromethane

    SciTech Connect (OSTI)

    Dattelbaum, Dana M; Sheffield, Stephen A; Stahl, David B; Dattelbaum, Andrew M; Engelke, Ray

    2010-01-01

    To gain insights into the critical hot spot features influencing energetic materials initiation characteristics, well-defined micron-scale particles have been intentionally introduced into the homogeneous explosive nitromethane (NM). Two types of potential hot spot origins have been examined - shock impedance mismatches using solid silica beads, and porosity using hollow microballoons - as well as their sizes and inter-particle separations. Here, we present the results of several series of gas gun-driven plate impact experiments on NM/particle mixtures with well-controlled shock inputs. Detailed insights into the nature of the reactive flow during the build-up to detonation have been obtained from the response of in-situ electromagnetic gauges, and the data have been used to establish Pop-plots (run-distance-to-detonation vs. shock input pressure) for the mixtures. Comparisons of sensitization effects and energy release characteristics relative to the initial shock front between the solid and hollow beads are presented.

  1. Friction Stir Spot Welding of DP780 Carbon Steel

    SciTech Connect (OSTI)

    Santella, M. L.; Hovanski, Yuri; Frederick, Alan; Grant, Glenn J.; Dahl, Michael E.

    2009-09-15

    Friction stir spot welds were made in uncoated and galvannneled DP780 sheets using polycrystalline boron nitride stir tools. The tools were plunged at either a single continuous rate or in two segments consisting of a relatively high rate followed by a slower rate of shorter depth. Welding times ranged from 1-10 s. Increasing tool rotation speed from 800 to 1600 rpm increased strength values. The 2-segment welding procedures also produced higher strength joints. Average lap-shear strengths exceeding 10.3 kN were consistently obtained in 4 s on both the uncoated and the galvannealed DP780. The likelihood of diffusion and mechanical interlocking contributing to bond formation was supported by metallographic examinations. A cost analysis based on spot welding in automobile assembly showed that for friction stir spot welding to be economically competitive with resistance spot welding the cost of stir tools must approach that of resistance spot welding electrode tips.

  2. Optimum focusing of Gaussian laser beams: Beam waist shift in spot size minimization

    SciTech Connect (OSTI)

    Li, Y.; Katz, J. )

    1994-04-01

    Optimum focusing of Gaussian laser beams is first discussed by Dickson, who described the change in beam radius under the effect of focusing system parameters. The purpose of this study is to present a formulation for calculating the waist shift under various optimum conditions. Because the variations of beam waist can be measured directly, the waist shift in a focused Gaussian beam is a more practical parameter than the movement of the intensity maximum that is the subject for investigators of the well-known focal shift problem.

  3. Wall and laser spot motion in cylindrical hohlraums

    SciTech Connect (OSTI)

    Huser, G.; Courtois, C.; Monteil, M.-C.

    2009-03-15

    Wall and laser spot motion measurements in empty, propane-filled and plastic (CH)-lined gold coated cylindrical hohlraums were performed on the Omega laser facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Wall motion was measured using axial two-dimensional (2D) x-ray imaging and laser spot motion was perpendicularly observed through a thinned wall using streaked hard x-ray imaging. Experimental results and 2D hydrodynamic simulations show that while empty targets exhibit on-axis plasma collision, CH-lined and propane-filled targets inhibit wall expansion, corroborated with perpendicular streaked imaging showing a slower motion of laser spots.

  4. Forecasting Crude Oil Spot Price Using OECD Petroleum Inventory Levels

    Reports and Publications (EIA)

    2003-01-01

    This paper presents a short-term monthly forecasting model of West Texas Intermediate crude oil spot price using Organization for Economic Cooperation and Development (OECD) petroleum inventory levels.

  5. Portsmouth Training Exercise Helps Radiological Trainees Spot Mistakes

    Energy Savers [EERE]

    Safely | Department of Energy Portsmouth Training Exercise Helps Radiological Trainees Spot Mistakes Safely Portsmouth Training Exercise Helps Radiological Trainees Spot Mistakes Safely February 11, 2016 - 12:10pm Addthis Connie Martin performs work inside the Error Lab while trainees observe her actions for mistakes. Connie Martin performs work inside the Error Lab while trainees observe her actions for mistakes. Lorrie Graham (left) talks with trainees in a classroom setting before

  6. Los Alamos observatory fingers cosmic ray 'hot spots'

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cosmic ray 'hot spots' Los Alamos observatory fingers cosmic ray 'hot spots' The research calls into question nearly a century of understanding about galactic magnetic fields near our solar system. November 24, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National

  7. SU-E-T-552: Minimum Monitor Unit Effects On Plan Quality for Multi-Field Optimized Spot Scanning Proton Therapy

    SciTech Connect (OSTI)

    Howard, M; Beltran, C; Herman, M

    2014-06-01

    Purpose: To investigate the influence of the minimum monitor unit (MU) on the quality of clinical treatment plans for scanned proton therapy. Methods: Delivery system characteristics limit the minimum number of protons that can be delivered per spot, resulting in a min-MU limit. Plan quality can be impacted by the min-MU limit. Two sites were used to investigate the impact of min-MU on treatment plans: pediatric brain tumor at a depth of 5-10 cm; a head and neck tumor at a depth of 1-20 cm. Three field intensity modulated spot scanning proton plans were created for each site with the following parameter variations: min-MU limit range of 0.0000-0.0060; and spot spacing range of 0.5-2.0σ of the nominal spot size at isocenter in water (σ=4mm in this work). Comparisons were based on target homogeneity and normal tissue sparing. Results: The increase of the min-MU with a fixed spot spacing decreases plan quality both in homogeneous target coverage and in the avoidance of critical structures. Both head and neck and pediatric brain plans show a 20% increase in relative dose for the hot spot in the CTV and 10% increase in key critical structures when comparing min-MU limits of 0.0000 and 0.0060 with a fixed spot spacing of 1σ. The DVHs of CTVs show min-MU limits of 0.0000 and 0.0010 produce similar plan quality and quality decreases as the min-MU limit increases beyond 0.0020. As spot spacing approaches 2σ, degradation in plan quality is observed when no min-MU limit is imposed. Conclusion: Given a fixed spot spacing of ≤ 1σ of the spot size in water, plan quality decreases as min- MU increases greater than 0.0020. The effect of min-MU should be taken into consideration while planning spot scanning proton therapy treatments to realize its full potential.

  8. Next Generation Semiconductor-Based Radiation Detectors Using Cadmium Magnesium Telluride

    SciTech Connect (OSTI)

    Trivedi, Sudhir B; Kutcher, Susan W; Palsoz, Witold; Berding, Martha; Burger, Arnold

    2014-11-17

    The primary objective of Phase I was to perform extensive studies on the purification, crystal growth and annealing procedures of CdMgTe to gain a clear understanding of the basic material properties to enable production of detector material with performance comparable to that of CdZnTe. Brimrose utilized prior experience in the growth and processing of II-VI crystals and produced high purity material and good quality single crystals of CdMgTe. Processing techniques for these crystals including annealing, mechanical and chemical polishing, surface passivation and electrode fabrication were developed. Techniques to characterize pertinent electronic characteristics were developed and gamma ray detectors were fabricated. Feasibility of the development of comprehensive defect modeling in this new class of material was demonstrated by our partner research institute SRI International, to compliment the experimental work. We successfully produced a CdMgTe detector that showed 662 keV gamma response with energy resolution of 3.4% (FWHM) at room temperature, without any additional signal correction. These results are comparable to existing CdZnTe (CZT) technology using the same detector size and testing conditions. We have successfully demonstrated detection of gamma-radiation from various isotopes/sources, using CdMgTe thus clearly proving the feasibility that CdMgTe is an excellent, low-cost alternative to CdZnTe.

  9. Friction Stir Spot Welding of DP780 Carbon Steel

    SciTech Connect (OSTI)

    Santella, Michael L [ORNL; Hovanski, Yuri [ORNL; Frederick, David Alan [ORNL; Grant, Glenn J [ORNL; Dahl, Michael E [ORNL

    2010-01-01

    Friction stir spot welds were made in uncoated and galvannealed DP780 sheets using polycrystalline boron nitride stir tools. The tools were plunged at either a single continuous rate or in two segments consisting of a relatively high rate followed by a slower rate of shorter depth. Welding times ranged from 1 to 10 s. Increasing tool rotation speed from 800 to 1600 rev min{sup -1} increased strength values. The 2-segment welding procedures also produced higher strength joints. Average lap shear strengths exceeding 10 {center_dot} 3 kN were consistently obtained in 4 s on both the uncoated and the galvannealed DP780. The likelihood of diffusion and mechanical interlocking contributing to bond formation was supported by metallographic examinations. A cost analysis based on spot welding in automobile assembly showed that for friction stir spot welding to be economically competitive with resistance spot welding the cost of stir tools must approach that of resistance spot welding electrode tips.

  10. FRICTION STIR SPOT WELDING OF 6016 ALUMINUM ALLOY

    SciTech Connect (OSTI)

    Mishra, Rajiv S.; Webb, S.; Freeney, T. A.; Chen, Y. L.; Gayden, X.; Grant, Glenn J.; Herling, Darrell R.

    2007-01-08

    Friction stir spot welding (FSSW) of 6016 aluminum alloy was evaluated with conventional pin tool and new off-center feature tools. The off-center feature tool provides significant control over the joint area. The tool rotation rate was varied between 1000 and 2500 rpm. Maximum failure strength was observed in the tool rotation range of 1200-1500 rpm. The results are interpreted in the context of material flow in the joint and influence of thermal input on microstructural changes. The off-center feature tool concept opens up new possibilities for plunge-type friction stir spot welding.

  11. REAL TIME ULTRASONIC ALUMINUM SPOT WELD MONITORING SYSTEM

    SciTech Connect (OSTI)

    Regalado, W. Perez; Chertov, A. M.; Maev, R. Gr. [Institute for Diagnostic Imaging Research, Physics Department, University of Windsor, 292 Essex Hall, 401 Sunset Ave. N9B 3P4 Windsor, Ontario (Canada)

    2010-02-22

    Aluminum alloys pose several properties that make them one of the most popular engineering materials: they have excellent corrosion resistance, and high weight-to-strength ratio. Resistance spot welding of aluminum alloys is widely used today but oxide film and aluminum thermal and electrical properties make spot welding a difficult task. Electrode degradation due to pitting, alloying and mushrooming decreases the weld quality and adjustment of parameters like current and force is required. To realize these adjustments and ensure weld quality, a tool to measure weld quality in real time is required. In this paper, a real time ultrasonic non-destructive evaluation system for aluminum spot welds is presented. The system is able to monitor nugget growth while the spot weld is being made. This is achieved by interpreting the echoes of an ultrasound transducer located in one of the welding electrodes. The transducer receives and transmits an ultrasound signal at different times during the welding cycle. Valuable information of the weld quality is embedded in this signal. The system is able to determine the weld nugget diameter by measuring the delays of the ultrasound signals received during the complete welding cycle. The article presents the system performance on aluminum alloy AA6022.

  12. Dynamic Characterization of Spot Welds for AHSS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon lm025_feng_2011_o.pdf More Documents & Publications Dynamic Characterization of Spot Welds for AHSS Overview of Joining Activities in Lightweighting Materials

  13. Dynamic Characterization of Spot Welds for AHSS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon lm025_feng_2010_o.pdf More Documents & Publications Overview of Joining Activities in Lightweighting Materials Dynamic Characterization of Spot Welds for AHSS

  14. Edison Job Size Charts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Job Size Charts Edison Job Size Charts Fraction of Hours Used per Job Size This chart shows the fraction of hours used on Edison in each of 5 job-core-size bins. 2015 Usage by Job Size Chart 2014 Fraction of Hours Used by Big Jobs This chart shows the fraction of hours used on Edison by jobs using 16,384 or more cores. 2015 Usage by Job Size Chart 2014 Last edited: 2015-02-18 16:06:26

  15. Material and detector properties of cadmium manganese telluride (Cd1-xMnxTe) crystals grown by the modified floating-zone method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hossain, A.; Gu, G. D.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Roy, U. N.; Yang, G.; Liu, T.; Zhong, R.; Schneelock, J.; et al

    2014-12-24

    We demonstrated the material- and radiation-detection properties of cadmium manganese telluride (Cd1-xMnxTe; x=0.06), a wide-band-gap semiconductor crystal grown by the modified floating-zone method. We investigated the presence of various bulk defects, such as Te inclusions, twins, and dislocations of several as-grown indium-doped Cd1-xMnxTe crystals using different techniques, viz., IR transmission microscopy, and chemical etching. We then fabricated four planar detectors from selected CdMnTe crystals, characterized their electrical properties, and tested their performance as room-temperature X- and gamma-ray detectors. Thus, our experimental results show that CMT crystals grown by the modified floating zone method apparently are free from Te inclusions. However,more » we still need to optimize our growth parameters to attain high-resistivity, large-volume single-crystal CdMnTe.« less

  16. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems...

    Office of Scientific and Technical Information (OSTI)

    Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring more of bed outlet gas CO concentrations. Hot spots are ...

  17. Hopper Job Size Charts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Job Size Charts Hopper Job Size Charts Fractional Jobs The following charts show the fraction of hours used on Hopper in each of five job-core-size bins: 2014 Usage by Job Size Chart 2013 2012 2011 Large Jobs The following charts show the fraction of hours used on Hopper by jobs using greater than 16,384 cores: 2014 2013 2012 Usage by Job Size Chart 2011 Last edited: 2014-12-22 12:16:26

  18. X-ray focal spot locating apparatus and method

    DOE Patents [OSTI]

    Gilbert, Hubert W. (Cedar Crest, NM)

    1985-07-30

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  19. The Information Role of Spot Prices and Inventories

    Gasoline and Diesel Fuel Update (EIA)

    Information Role of Spot Prices and Inventories James L. Smith, Rex Thompson, and Thomas Lee June 24, 2014 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES June 2014 James L. Smith, Rex Thomas, and Thomas K.

  20. Jefferson Lab Medical Imager Spots Breast Cancer | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PEM This PEM image shows two cancerous lesions. The one on the right was depicted by conventional mammography, but the one on the left was only identified by the PEM unit. Image courtesy: Eric Rosen, Duke University Medical Center Jefferson Lab Medical Imager Spots Breast Cancer March 3, 2005 Newport News, VA - A study published in the February issue of the journal Radiology shows that a positron emission mammography (PEM) device designed and built by Jefferson Lab scientists is capable of

  1. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect (OSTI)

    Hovanski, Yuri; Santella, M. L.; Grant, Glenn J.

    2009-12-28

    Friction stir spot welding was used to join two advanced high-strength steels using polycrystalline cubic boron nitride tooling. Numerous tool designs were employed to study the influence of tool geometry on weld joints produced in both DP780 and a hot-stamp boron steel. Tool designs included conventional, concave shouldered pin tools with several pin configurations; a number of shoulderless designs; and a convex, scrolled shoulder tool. Weld quality was assessed based on lap shear strength, microstructure, microhardness, and bonded area. Mechanical properties were functionally related to bonded area and joint microstructure, demonstrating the necessity to characterize processing windows based on tool geometry.

  2. March market review. [Spot market prices for uranium (1993)

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The spot market price for uranium in unrestricted markets weakened further during March, and at month end, the NUEXCO Exchange Value had fallen $0.15, to $7.45 per pound U3O8. The Restricted American Market Penalty (RAMP) for concentrates increased $0.15, to $2.55 per pound U3O8. Ample UF6 supplies and limited demand led to a $0.50 decrease in the UF6 Value, to $25.00 per kgU as UF6, while the RAMP for UF6 increased $0.75, to $5.25 per kgU. Nine near-term uranium transactions were reported, totalling almost 3.3 million pounds equivalent U3O8. This is the largest monthly spot market volume since October 1992, and is double the volume reported in January and February. The March 31 Conversion Value was $4.25 per kgU as UF6. Beginning with the March 31 Value, NUEXCO now reports its Conversion Value in US dollars per kilogram of uranium (US$/kgU), reflecting current industry practice. The March loan market was inactive with no transactions reported. The Loan Rate remained unchanged at 3.0 percent per annum. Low demand and increased competition among sellers led to a one-dollar decrease in the SWU Value, to $65 per SWU, and the RAMP for SWU declined one dollar, to $9 per SWU.

  3. Friction Stir Spot Welding of Advanced High Strength Steels II | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Friction Stir Spot Welding of Advanced High Strength Steels II Friction Stir Spot Welding of Advanced High Strength Steels II 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon lm030_hovanski_2011_o.pdf More Documents & Publications Friction Stir Spot Welding of Advanced High Strength Steels FY 2009 Progress Report for Lightweighting Materials - 9. Joining FY 2008

  4. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems...

    Office of Scientific and Technical Information (OSTI)

    12 MGMT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; ABSORPTION HEAT; CARBON; COMBUSTORS; GAS FLOW; HEATERS; HEATING; HOT SPOTS; IMPLEMENTATION; MERCURY;...

  5. Modeling Hot-Spot Contributions in Shocked High Explosives at the Mesoscale

    SciTech Connect (OSTI)

    Harrier, Danielle

    2015-08-12

    When looking at performance of high explosives, the defects within the explosive become very important. Plastic bonded explosives, or PBXs, contain voids of air and bonder between the particles of explosive material that aid in the ignition of the explosive. These voids collapse in high pressure shock conditions, which leads to the formation of hot spots. Hot spots are localized high temperature and high pressure regions that cause significant changes in the way the explosive material detonates. Previously hot spots have been overlooked with modeling, but now scientists are realizing their importance and new modeling systems that can accurately model hot spots are underway.

  6. Does size matter?

    SciTech Connect (OSTI)

    Carreras, B. A.; Physics Department, College of Natural Science and Mathematics and Geophysical Institute, University of Alaska, Fairbanks, Alaska 99775; Physics Department, Universidad Carlos III de Madrid, Madrid ; Newman, D. E.; Dobson, Ian

    2014-06-15

    Failures of the complex infrastructures society depends on having enormous human and economic cost that poses the question: Are there ways to optimize these systems to reduce the risks of failure? A dynamic model of one such system, the power transmission grid, is used to investigate the risk from failure as a function of the system size. It is found that there appears to be optimal sizes for such networks where the risk of failure is balanced by the benefit given by the size.

  7. Synthesis, crystal and electronic structure, and physical properties of the new lanthanum copper telluride La{sub 3}Cu{sub 5}Te{sub 7}

    SciTech Connect (OSTI)

    Zelinska, Mariya; Assoud, Abdeljalil [Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Kleinke, Holger, E-mail: kleinke@uwaterloo.c [Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada)

    2011-03-15

    The new lanthanum copper telluride La{sub 3}Cu{sub 5-x}Te{sub 7} has been obtained by annealing the elements at 1073 K. Single-crystal X-ray diffraction studies revealed that the title compound crystallizes in a new structure type, space group Pnma (no. 62) with lattice dimensions of a=8.2326(3) A, b=25.9466(9) A, c=7.3402(3) A, V=1567.9(1) A{sup 3}, Z=4 for La{sub 3}Cu{sub 4.86(4)}Te{sub 7}. The structure of La{sub 3}Cu{sub 5-x}Te{sub 7} is remarkably complex. The Cu and Te atoms build up a three-dimensional covalent network. The coordination polyhedra include trigonal LaTe{sub 6} prisms, capped trigonal LaTe{sub 7} prisms, CuTe{sub 4} tetrahedra, and CuTe{sub 3} pyramids. All Cu sites exhibit deficiencies of various extents. Electrical property measurements on a sintered pellet of La{sub 3}Cu{sub 4.86}Te{sub 7} indicate that it is a p-type semiconductor in accordance with the electronic structure calculations. -- Graphical abstract: Oligomeric unit comprising interconnected CuTe{sub 3} pyramids and CuTe{sub 4} tetrahedra. Display Omitted Research highlights: {yields} La{sub 3}Cu{sub 5-x}Te{sub 7} adopts a new structure type. {yields} All Cu sites exhibit deficiencies of various extents. {yields} The coordination polyhedra include trigonal LaTe{sub 6} prisms, capped trigonal LaTe{sub 7} prisms, CuTe{sub 4} tetrahedra and CuTe{sub 3} pyramids. {yields} La{sub 3}Cu{sub 5-x}Te{sub 7} is a p-type semiconductor.

  8. SU-E-J-72: Geant4 Simulations of Spot-Scanned Proton Beam Treatment Plans

    SciTech Connect (OSTI)

    Kanehira, T; Sutherland, K; Matsuura, T; Umegaki, K; Shirato, H [Hokkaido University, Sapporo, Hokkaido (Japan)

    2014-06-01

    Purpose: To evaluate density inhomogeneities which can effect dose distributions for real-time image gated spot-scanning proton therapy (RGPT), a dose calculation system, using treatment planning system VQA (Hitachi Ltd., Tokyo) spot position data, was developed based on Geant4. Methods: A Geant4 application was developed to simulate spot-scanned proton beams at Hokkaido University Hospital. A CT scan (0.98 0.98 1.25 mm) was performed for prostate cancer treatment with three or four inserted gold markers (diameter 1.5 mm, volume 1.77 mm3) in or near the target tumor. The CT data was read into VQA. A spot scanning plan was generated and exported to text files, specifying the beam energy and position of each spot. The text files were converted and read into our Geant4-based software. The spot position was converted into steering magnet field strength (in Tesla) for our beam nozzle. Individual protons were tracked from the vacuum chamber, through the helium chamber, steering magnets, dose monitors, etc., in a straight, horizontal line. The patient CT data was converted into materials with variable density and placed in a parametrized volume at the isocenter. Gold fiducial markers were represented in the CT data by two adjacent voxels (volume 2.38 mm3). 600,000 proton histories were tracked for each target spot. As one beam contained about 1,000 spots, approximately 600 million histories were recorded for each beam on a blade server. Two plans were considered: two beam horizontal opposed (90 and 270 degree) and three beam (0, 90 and 270 degree). Results: We are able to convert spot scanning plans from VQA and simulate them with our Geant4-based code. Our system can be used to evaluate the effect of dose reduction caused by gold markers used for RGPT. Conclusion: Our Geant4 application is able to calculate dose distributions for spot scanned proton therapy.

  9. May market review. [Spot market prices for uranium (1993)

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    Seven uranium transactions totalling nearly three million pounds equivalent U3O8 were reported during May, but only two, totalling less than 200 thousand pounds equivalent U3O8, involved concentrates. As no discretionary buying occurred during the month, and as near-term supply and demand were in relative balance, prices were steady, while both buyers and sellers appeared to be awaiting some new market development to signal the direction of future spot-market prices. The May 31, 1993, Exchange Value and the Restricted American market Penalty (RAMP) for concentrates were both unchanged at $7.10, and $2.95 per pound U3O8, respectively. NUEXCO's judgement was that transactions for significant quantities of uranium concentrates that were both deliverable in and intended for consumption in the USA could have been concluded on May 31 at $10.05 per pound U3O8. Two near-term concentrate transactions were reported in which one US utility purchased less than 200 thousand pounds equivalent U3O8 from two separate sellers. These sales occurred at price levels at or near the May 31 Exchange Value plus RAMP. No long-term uranium transactions were reported during May. Consequently, the UF6 Value decreased $0.20 to $24.30 per kgU as UF6, reflecting some weakening of the UF6 market outside the USA.

  10. Contributions to the crystal chemistry of uranium tellurides: III. Temperature-dependent structural investigations on uranium ditelluride

    SciTech Connect (OSTI)

    Stoewe, K.

    1996-12-01

    Single crystals of the title compound up to a size of 5 mm were available from the elements via chemical transport reactions with TeBr{sub 4} as transporting agent. The analysis by atomic emission spectrometry gave UTe{sub 1.99}(5), i.e., stoichiometric composition. By single-crystal structure analysis the authors confirmed earlier results, according to which UTe{sub 2} crystallizes orthorhombic in a unique structure type [space group Immm, Z = 4 with a = 416.22(3) pm, b = 613.29(4) pm, and c = 1397.1(1) pm at ambient temperature]. The structure is built up by bicapped trigonal prisms of tellurium connected via faces to fourfold capped biprisms. Because of the side-by-side arrangement pattern of the biprisms, linear chains of telluriums with distances far shorter than the nonbonding distance of Te{sup 2-} ions and slight alternation are observed. The authors report the results of an elaborate refinement of the crystal structure determined by X-ray diffraction (R{sub w} = 1.72%) and their behavior in the temperature range 10 K < T < 573 K using both powdered and single-crystalline samples to detect phase transitions as indications of structural or electronic changes.

  11. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    DOE Patents [OSTI]

    Zhang, Jian-Shi; Giometti, C.S.; Tollaksen, S.L.

    1987-09-04

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a dc power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. 8 figs.

  12. WE-E-BRE-04: Dual Focal Spot Dose Painting for Precision Preclinical Radiobiological Investigations

    SciTech Connect (OSTI)

    Stewart, J; Lindsay, P; Jaffray, D

    2014-06-15

    Purpose: Recent progress in small animal radiotherapy systems has provided the foundation for delivering the heterogeneous, millimeter scale dose distributions demanded by preclinical radiobiology investigations. Despite advances in preclinical dose planning, delivery of highly heterogeneous dose distributions is constrained by the fixed collimation systems and large x-ray focal spot common in small animal radiotherapy systems. This work proposes a dual focal spot dose optimization and delivery method with a large x-ray focal spot used to deliver homogeneous dose regions and a small focal spot to paint spatially heterogeneous dose regions. Methods: Two-dimensional dose kernels were measured for a 1 mm circular collimator with radiochromic film at 10 mm depth in a solid water phantom for the small and large x-ray focal spots on a recently developed small animal microirradiator. These kernels were used in an optimization framework which segmented a desired dose distribution into low- and high-spatial frequency regions for delivery by the large and small focal spot, respectively. For each region, the method determined an optimal set of stage positions and beam-on times. The method was demonstrated by optimizing a bullseye pattern consisting of 0.75 mm radius circular target and 0.5 and 1.0 mm wide rings alternating between 0 and 2 Gy. Results: Compared to a large focal spot technique, the dual focal spot technique improved the optimized dose distribution: 69.2% of the optimized dose was within 0.5 Gy of the intended dose for the large focal spot, compared to 80.6% for the dual focal spot method. The dual focal spot design required 14.0 minutes of optimization, and will require 178.3 minutes for automated delivery. Conclusion: The dual focal spot optimization and delivery framework is a novel option for delivering conformal and heterogeneous dose distributions at the preclinical level and provides a new experimental option for unique radiobiological investigations. Funding Support: this work is supported by funding the National Sciences and Engineering Research Council of Canada, and a Mitacs-accelerate fellowship. Conflict of Interest: Dr. Lindsay and Dr. Jaffray are listed as inventors of the small animal microirradiator described herein. This system has been licensed for commercial development.

  13. Hot spot generation in energetic materials created by long-wavelength

    Office of Scientific and Technical Information (OSTI)

    infrared radiation (Journal Article) | SciTech Connect Hot spot generation in energetic materials created by long-wavelength infrared radiation Citation Details In-Document Search Title: Hot spot generation in energetic materials created by long-wavelength infrared radiation Hot spots produced by long-wavelength infrared (LWIR) radiation in an energetic material, crystalline RDX (1,3,5-trinitroperhydro-1,3,5-triazine), were studied by thermal-imaging microscopy. The LWIR source was a CO{sub

  14. Aerosol mobility size spectrometer

    DOE Patents [OSTI]

    Wang, Jian (Port Jefferson, NY); Kulkarni, Pramod (Port Jefferson Station, NY)

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  15. April market review. [Spot market prices for uranium (1993)

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The spot market price for uranium outside the USA weakened further during April, and at month end, the NUEXCO Exchange Value had fallen $0.35, to $7.10 per pound U3O8. This is the lowest Exchange Value observed in nearly twenty years, comparable to Values recorded during the low price levels of the early 1970s. The Restricted American Market Penalty (RAMP) for concentrates increased $0.40, to $2.95 per pound U3O8. Transactions for significant quantities of uranium concentrates that are both deliverable in and intended for consumption in the USA could have been concluded on April 30 at $10.05 per pound U3O8, up $0.05 from the sum of corresponding March Values. Four near-term concentrates transactions were reported, totalling nearly 1.5 million pounds equivalent U3O8. One long-term sale was reported. The UF6 Value also declined, as increased competition among sellers led to a $0.50 decrease, to $24.50 per kgU as UF6. However, the RAMP for UF6 increased $0.65, to $5.90 per kgU as UF6, reflecting an effective US market level of $30.40 per kgU. Two near term transactions were reported totalling approximately 1.1 million pounds equivalent U3O8. In total, eight uranium transactions totalling 28 million pounds equivalent U3O8 were reported, which is about average for April market activity.

  16. ARM - Measurement - Cloud droplet size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    droplet size Linear size (e.g. radius or diameter) of a cloud particle Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  17. Calculation of the fast ion tail distribution for a spherically symmetric hot spot

    SciTech Connect (OSTI)

    McDevitt, C. J.; Tang, X.-Z.; Guo, Z.; Berk, H. L.

    2014-10-15

    The fast ion tail for a spherically symmetric hot spot is computed via the solution of a simplified Fokker-Planck collision operator. Emphasis is placed on describing the energy scaling of the fast ion distribution function in the hot spot as well as the surrounding cold plasma throughout a broad range of collisionalities and temperatures. It is found that while the fast ion tail inside the hot spot is significantly depleted, leading to a reduction of the fusion yield in this region, a surplus of fast ions is observed in the neighboring cold plasma region. The presence of this surplus of fast ions in the neighboring cold region is shown to result in a partial recovery of the fusion yield lost in the hot spot.

  18. Effects of High Shock Pressures and Pore Morphology on Hot Spot...

    Office of Scientific and Technical Information (OSTI)

    Title: Effects of High Shock Pressures and Pore Morphology on Hot Spot Mechanisms in HMX Authors: Springer, H K ; Tarver, C M ; Bastea, S Publication Date: 2015-08-20 OSTI ...

  19. Assessment of Prices of Natural Gas Futures Contracts As A Predictor of Realized Spot Prices, An

    Reports and Publications (EIA)

    2005-01-01

    This article compares realized Henry Hub spot market prices for natural gas during the three most recent winters with futures prices as they evolve from April through the following February, when trading for the March contract ends.

  20. IR-based Spot Weld NDT in Automotive Applications (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect IR-based Spot Weld NDT in Automotive Applications Citation Details In-Document Search Title: IR-based Spot Weld NDT in Automotive Applications Authors: Chen, Jian [1] ; Feng, Zhili [1] + Show Author Affiliations ORNL Publication Date: 2015-01-01 OSTI Identifier: 1185972 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Conference Resource Relation: Conference: Thermosense XXXVII - 2015, Baltimore, MD, USA, 20150420, 20150424 Research Org: Oak Ridge National Laboratory (ORNL)

  1. Electrophoretic extraction of proteins from two-dimensional electrophoresis gel spots

    DOE Patents [OSTI]

    Zhang, Jian-Shi (Shanghai, CN); Giometti, Carol S. (Glenview, IL); Tollaksen, Sandra L. (Montgomery, IL)

    1989-01-01

    After two-dimensional electrophoresis of proteins or the like, resulting in a polyacrylamide gel slab having a pattern of protein gel spots thereon, an individual protein gel spot is cored out from the slab, to form a gel spot core which is placed in an extraction tube, with a dialysis membrane across the lower end of the tube. Replicate gel spots can be cored out from replicate gel slabs and placed in the extraction tube. Molten agarose gel is poured into the extraction tube where the agarose gel hardens to form an immobilizing gel, covering the gel spot cores. The upper end portion of the extraction tube is filled with a volume of buffer solution, and the upper end is closed by another dialysis membrane. Upper and lower bodies of a buffer solution are brought into contact with the upper and lower membranes and are provided with electrodes connected to the positive and negative terminals of a DC power supply, thereby producing an electrical current which flows through the upper membrane, the volume of buffer solution, the agarose, the gel spot cores and the lower membrane. The current causes the proteins to be extracted electrophoretically from the gel spot cores, so that the extracted proteins accumulate and are contained in the space between the agarose gel and the upper membrane. A high percentage extraction of proteins is achieved. The extracted proteins can be removed and subjected to partial digestion by trypsin or the like, followed by two-dimensional electrophoresis, resulting in a gel slab having a pattern of peptide gel spots which can be cored out and subjected to electrophoretic extraction to extract individual peptides.

  2. Friction Stir Spot Welding of Advanced High Strength Steels | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Steels Friction Stir Spot Welding of Advanced High Strength Steels 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon lm_14_grant.pdf More Documents & Publications Friction Stir Spot Welding of Advanced High Strength Steels II FY 2009 Progress Report for Lightweighting Materials - 9. Joining Pulse Pressure Forming of Lightweight Materials, Development of High Strength Superplastic

  3. An investigation of the dynamic separation of spot welds under plane tensile pulses

    SciTech Connect (OSTI)

    Ma, Bohan; Fan, Chunlei; Chen, Danian Wang, Huanran; Zhou, Fenghua

    2014-08-07

    We performed ultra-high-speed tests for purely opening spot welds using plane tensile pulses. A gun system generated a parallel impact of a projectile plate onto a welded plate. Induced by the interactions of the release waves, the welded plate opened purely under the plane tensile pulses. We used the laser velocity interferometer system for any reflector to measure the velocity histories of the free surfaces of the free part and the spot weld of the welded plate. We then used a scanning electron microscope to investigate the recovered welded plates. We found that the interfacial failure mode was mainly a brittle fracture and the cracks propagated through the spot nugget, while the partial interfacial failure mode was a mixed fracture comprised ductile fracture and brittle fracture. We used the measured velocity histories to evaluate the tension stresses in the free part and the spot weld of the welded plate by applying the characteristic theory. We also discussed the different constitutive behaviors of the metals under plane shock loading and under uniaxial split Hopkinson pressure bar tests. We then compared the numerically simulated velocity histories of the free surfaces of the free part and the spot weld of the welded plate with the measured results. The numerical simulations made use of the fracture stress criteria, and then the computed fracture modes of the tests were compared with the recovered results.

  4. Usage by Job Size Table

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Usage by Job Size Table Usage by Job Size Table page loading animation Usage Query Interface System All Hopper Edison Cori Carver Planck Matgen Franklin Hopper 1 Magellan Dirac...

  5. LIQUID & GAS NITROGEN LINE SIZING

    Office of Scientific and Technical Information (OSTI)

    These calculations supplement sizing that was done in D-Zero EN-416, rev. 62695, II Pipe Sizing for SolenoidVLPC Cryogenic Systems", EN-416 only looked at the Solenoid and...

  6. Six years of monitoring annual changes in a freshwater marsh with SPOT HRV data

    SciTech Connect (OSTI)

    Mackey, H.E. Jr.

    1992-12-01

    Fifteen dates of spring-time SPOT HRV data along with near-concurrent vertical aerial photographic and phenological data from spring 1987 through spring 1992 were analyzed to monitor annual changes in a 150-hectare, southeastern floodplain marsh. The marsh underwent rapid changes during the six years from a swamp dominated by non-persistent, thermally tolerant macrophytes to persistent macrophyte and shrub-scrub communities as reactor discharges declined to Pen Branch. Savannah River flooding was also important in the timing of the shift of these wetland communities. SPOT HRV data proved to be an efficient and effective method to monitor trends in these wetland community changes.

  7. Six years of monitoring annual changes in a freshwater marsh with SPOT HRV data

    SciTech Connect (OSTI)

    Mackey, H.E. Jr.

    1992-01-01

    Fifteen dates of spring-time SPOT HRV data along with near-concurrent vertical aerial photographic and phenological data from spring 1987 through spring 1992 were analyzed to monitor annual changes in a 150-hectare, southeastern floodplain marsh. The marsh underwent rapid changes during the six years from a swamp dominated by non-persistent, thermally tolerant macrophytes to persistent macrophyte and shrub-scrub communities as reactor discharges declined to Pen Branch. Savannah River flooding was also important in the timing of the shift of these wetland communities. SPOT HRV data proved to be an efficient and effective method to monitor trends in these wetland community changes.

  8. Effects of High Shock Pressures and Pore Morphology on Hot Spot Mechanisms

    Office of Scientific and Technical Information (OSTI)

    in HMX (Conference) | SciTech Connect Conference: Effects of High Shock Pressures and Pore Morphology on Hot Spot Mechanisms in HMX Citation Details In-Document Search Title: Effects of High Shock Pressures and Pore Morphology on Hot Spot Mechanisms in HMX Authors: Springer, H K ; Tarver, C M ; Bastea, S Publication Date: 2015-08-20 OSTI Identifier: 1240059 Report Number(s): LLNL-CONF-676480 DOE Contract Number: AC52-07NA27344 Resource Type: Conference Resource Relation: Conference:

  9. Fermi surface topology and hot spot distribution in the Kondo lattice

    Office of Scientific and Technical Information (OSTI)

    system CeB 6 (Journal Article) | SciTech Connect Fermi surface topology and hot spot distribution in the Kondo lattice system CeB 6 Citation Details In-Document Search This content will become publicly available on September 17, 2016 Title: Fermi surface topology and hot spot distribution in the Kondo lattice system CeB 6 Authors: Neupane, Madhab ; Alidoust, Nasser ; Belopolski, Ilya ; Bian, Guang ; Xu, Su-Yang ; Kim, Dae-Jeong ; Shibayev, Pavel P. ; Sanchez, Daniel S. ; Zheng, Hao ; Chang,

  10. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems Citation Details In-Document Search Title: Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat

  11. Electron depletion via cathode spot dispersion of dielectric powder into an overhead plasma

    SciTech Connect (OSTI)

    Gillman, Eric D. [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, District of Columbia 20375 (United States)] [Naval Research Laboratory, 4555 Overlook Ave SW, Washington, District of Columbia 20375 (United States); Foster, John E. [Department of Nuclear Engineering and Radiological Sciences (NERS), University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, Michigan 48109 (United States)] [Department of Nuclear Engineering and Radiological Sciences (NERS), University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, Michigan 48109 (United States)

    2013-11-15

    The effectiveness of cathode spot delivered dielectric particles for the purpose of plasma depletion is investigated. Here, cathode spot flows kinetically entrain and accelerate dielectric particles originally at rest into a background plasma. The time variation of the background plasma density is tracked using a cylindrical Langmuir probe biased approximately at electron saturation. As inferred from changes in the electron saturation current, depletion fractions of up to 95% are observed. This method could be exploited as a means of communications blackout mitigation for manned and unmanned reentering spacecraft as well as any high speed vehicle enveloped by a dense plasma layer.

  12. Effects of minimum monitor unit threshold on spot scanning proton plan quality

    SciTech Connect (OSTI)

    Howard, Michelle Beltran, Chris; Mayo, Charles S.; Herman, Michael G.

    2014-09-15

    Purpose: To investigate the influence of the minimum monitor unit (MU) on the quality of clinical treatment plans for scanned proton therapy. Methods: Delivery system characteristics limit the minimum number of protons that can be delivered per spot, resulting in a min-MU limit. Plan quality can be impacted by the min-MU limit. Two sites were used to investigate the impact of min-MU on treatment plans: pediatric brain tumor at a depth of 5–10 cm; a head and neck tumor at a depth of 1–20 cm. Three-field, intensity modulated spot scanning proton plans were created for each site with the following parameter variations: min-MU limit range of 0.0000–0.0060; and spot spacing range of 2–8 mm. Comparisons were based on target homogeneity and normal tissue sparing. For the pediatric brain, two versions of the treatment planning system were also compared to judge the effects of the min-MU limit based on when it is accounted for in the optimization process (Eclipse v.10 and v.13, Varian Medical Systems, Palo Alto, CA). Results: The increase of the min-MU limit with a fixed spot spacing decreases plan quality both in homogeneous target coverage and in the avoidance of critical structures. Both head and neck and pediatric brain plans show a 20% increase in relative dose for the hot spot in the CTV and 10% increase in key critical structures when comparing min-MU limits of 0.0000 and 0.0060 with a fixed spot spacing of 4 mm. The DVHs of CTVs show min-MU limits of 0.0000 and 0.0010 produce similar plan quality and quality decreases as the min-MU limit increases beyond 0.0020. As spot spacing approaches 8 mm, degradation in plan quality is observed when no min-MU limit is imposed. Conclusions: Given a fixed spot spacing of ≤4 mm, plan quality decreases as min-MU increased beyond 0.0020. The effect of min-MU needs to be taken into consideration while planning proton therapy treatments.

  13. ARM - Measurement - Hydrometeor Size Distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of hydrometeors observed in a given size range. Categories Atmospheric State, Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  14. Friction Stir Spot Welding of DP780 and Hot-Stamp Boron Steels

    SciTech Connect (OSTI)

    Santella, Michael L.; Frederick, Alan; Hovanski, Yuri; Grant, Glenn J.

    2008-05-16

    Friction stir spot welds were made in two high-strength steels: DP780, and a hot-stamp-boron steel with tensile strength of 1500 MPa. The spot welds were made at either 800 or 1600 rpm using either of two polycrystalline boron nitride tools. One stir tool, BN77, had the relatively common pin-tool shape. The second tool, BN46, had a convex rather than a concave shoulder profile and a much wider and shorter pin. The tools were plunged to preprogrammed depths either at a continuous rate (1-step schedule) or in two segments consisting of a relatively high rate followed by a slower rate. In all cases, the welds were completed in 4s. The range of lap-shear values were compared to values required for resistance spot welds on the same steels. The minimum value of 10.3 kN was exceeded for friction stir spot welding of DP780 using a 2-step schedule and either the BN77- or the BN46-type stir tool. The respective minimum value of 12 kN was also exceeded for the HSB steel using the 2-step process and the BN46 stir tool.

  15. Pressure fluctuations beneath instability wavepackets and turbulent spots in a hypersonic boundary layer

    SciTech Connect (OSTI)

    Casper, Katya M.; Beresh, Steven J.; Schneider, Steven P.

    2014-09-09

    To investigate the pressure-fluctuation field beneath turbulent spots in a hypersonic boundary layer, a study was conducted on the nozzle wall of the Boeing/AFOSR Mach-6 Quiet Tunnel. Controlled disturbances were created by pulsed-glow perturbations based on the electrical breakdown of air. Under quiet-flow conditions, the nozzle-wall boundary layer remains laminar and grows very thick over the long nozzle length. This allows the development of large disturbances that can be well-resolved with high-frequency pressure transducers. A disturbance first grows into a second-mode instability wavepacket that is concentrated near its own centreline. Weaker disturbances are seen spreading from the centre. The waves grow and become nonlinear before breaking down to turbulence. The breakdown begins in the core of the packets where the wave amplitudes are largest. Second-mode waves are still evident in front of and behind the breakdown point and can be seen propagating in the spanwise direction. The turbulent core grows downstream, resulting in a spot with a classical arrowhead shape. Behind the spot, a low-pressure calmed region develops. However, the spot is not merely a localized patch of turbulence; instability waves remain an integral part. Limited measurements of naturally occurring disturbances show many similar characteristics. From the controlled disturbance measurements, the convection velocity, spanwise spreading angle, and typical pressure-fluctuation field were obtained.

  16. Pressure fluctuations beneath instability wavepackets and turbulent spots in a hypersonic boundary layer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Casper, Katya M.; Beresh, Steven J.; Schneider, Steven P.

    2014-09-09

    To investigate the pressure-fluctuation field beneath turbulent spots in a hypersonic boundary layer, a study was conducted on the nozzle wall of the Boeing/AFOSR Mach-6 Quiet Tunnel. Controlled disturbances were created by pulsed-glow perturbations based on the electrical breakdown of air. Under quiet-flow conditions, the nozzle-wall boundary layer remains laminar and grows very thick over the long nozzle length. This allows the development of large disturbances that can be well-resolved with high-frequency pressure transducers. A disturbance first grows into a second-mode instability wavepacket that is concentrated near its own centreline. Weaker disturbances are seen spreading from the centre. The wavesmore » grow and become nonlinear before breaking down to turbulence. The breakdown begins in the core of the packets where the wave amplitudes are largest. Second-mode waves are still evident in front of and behind the breakdown point and can be seen propagating in the spanwise direction. The turbulent core grows downstream, resulting in a spot with a classical arrowhead shape. Behind the spot, a low-pressure calmed region develops. However, the spot is not merely a localized patch of turbulence; instability waves remain an integral part. Limited measurements of naturally occurring disturbances show many similar characteristics. From the controlled disturbance measurements, the convection velocity, spanwise spreading angle, and typical pressure-fluctuation field were obtained.« less

  17. Role of hydrodynamic instability growth in hot-spot mass gain and fusion performance of inertial confinement fusion implosions

    SciTech Connect (OSTI)

    Srinivasan, Bhuvana; Tang, Xian-Zhu

    2014-10-15

    In an inertial confinement fusion target, energy loss due to thermal conduction from the hot-spot will inevitably ablate fuel ice into the hot-spot, resulting in a more massive but cooler hot-spot, which negatively impacts fusion yield. Hydrodynamic mix due to Rayleigh-Taylor instability at the gas-ice interface can aggravate the problem via an increased gas-ice interfacial area across which energy transfer from the hot-spot and ice can be enhanced. Here, this mix-enhanced transport effect on hot-spot fusion-performance degradation is quantified using contrasting 1D and 2D hydrodynamic simulations, and its dependence on effective acceleration, Atwood number, and ablation speed is identified.

  18. Projectile containing metastable intermolecular composites and spot fire method of use

    DOE Patents [OSTI]

    Asay, Blaine W.; Son, Steven F.; Sanders, V. Eric; Foley, Timothy; Novak, Alan M.; Busse, James R.

    2012-07-31

    A method for altering the course of a conflagration involving firing a projectile comprising a powder mixture of oxidant powder and nanosized reductant powder at velocity sufficient for a violent reaction between the oxidant powder and the nanosized reductant powder upon impact of the projectile, and causing impact of the projectile at a location chosen to draw a main fire to a spot fire at such location and thereby change the course of the conflagration, whereby the air near the chosen location is heated to a temperature sufficient to cause a spot fire at such location. The invention also includes a projectile useful for such method and said mixture preferably comprises a metastable intermolecular composite.

  19. X marks the spot: Researchers confirm novel method for controlling plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rotation to improve fusion performance | Princeton Plasma Physics Lab X marks the spot: Researchers confirm novel method for controlling plasma rotation to improve fusion performance By Raphael Rosen June 23, 2015 Tweet Widget Google Plus One Share on Facebook Representative plasma geometries, with the X-point location circled in red / Reprinted from T. Stoltzfus-Dueck et al., Phys. Rev. Lett. 114, 245001 (2015). Copyright 2015 by the American Physical Society. Representative plasma

  20. X marks the spot: Researchers confirm novel method for controlling plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rotation to improve fusion performance | Princeton Plasma Physics Lab X marks the spot: Researchers confirm novel method for controlling plasma rotation to improve fusion performance By Raphael Rosen June 23, 2015 Tweet Widget Google Plus One Share on Facebook Representative plasma geometries, with the X-point location circled in red / Reprinted from T. Stoltzfus-Dueck et al., Phys. Rev. Lett. 114, 245001 (2015). Copyright 2015 by the American Physical Society. Representative plasma

  1. Spot test for 1,3,5-triamino-2,4,6-trinitrobenzene, TATB

    DOE Patents [OSTI]

    Harris, B.W.

    1984-11-29

    A simple, sensitive and specific spot test for 1,3,5-triamino-2,4,6-trinitrobenzene, TATB, is described. Upon the application of the composition of matter of the subject invention to samples containing in excess of 0.1 mg of this explosive, a bright orange color results. Interfering species such as TNT and Tetryl can be removed by first treating the sample with a solvent which does not dissolve the TATB, but readily dissolves these interfering explosives.

  2. Spot test for 1,3,5-triamino-2,4,6-trinitrobenzene, TATB

    DOE Patents [OSTI]

    Harris, Betty W.

    1986-01-01

    A simple, sensitive and specific spot test for 1,3,5-triamino-2,4,6-trinitrobenzene, TATB, is described. Upon the application of the composition of matter of the present invention to samples containing in excess of 0.1 mg of this explosive, a bright orange color results. Interfering species such as TNT and Tetryl can be removed by first treating the sample with a solvent which does not dissolve much of the TATB, but readily dissolves these explosives.

  3. Macrophyte mapping in ten lakes of South Carolina with multispectral SPOT HRV data

    SciTech Connect (OSTI)

    Mackey, H.E. Jr.

    1989-01-01

    Fall and spring multispectral SPOT HRV data for 1987 and 1988 were used to evaluate the macrophyte distributions in ten freshwater reservoirs of South Carolina. The types of macrophyte and wetland communities present along the shoreline of the lakes varied depending on the age, water level fluctuations, water quality, and basin morphology. Seasonal satellite data were important for evaluation of the extent of persistent versus non-persistent macrophyte communities in the lakes. This paper contains only the view graphs of this process.

  4. SU-E-T-73: Commissioning of a Treatment Planning System for Proton Spot Scanning

    SciTech Connect (OSTI)

    Saini, J; Kang, Y; Schultz, L; Nicewonger, D; Herrera, M; Wong, T; Bowen, S; Bloch, C

    2014-06-01

    Purpose: A treatment planning system (TPS) was commissioned for clinical use with a fixed beam line proton delivery system. An outline of the data collection, modeling, and verification is provided. Methods: Beam data modeling for proton spot scanning in CMS Xio TPS requires the following measurements: (i) integral depth dose curves (IDDCs); (ii) absolute dose calibration; and (iii) beam spot characteristics. The IDDCs for 18 proton energies were measured using an integrating detector in a single spot field in a water phantom. Absolute scaling of the IDDCs were performed based on ion chamber measurements in mono-energetic 1010 cm{sup 2} fields in water. Beam spot shapes were measured in air using a flat panel scintillator detector at multiple planes. For beam model verification, more than 45 uniform dose phantom and patient plans were generated. These plans were used to measure range, point dose, and longitudinal and lateral profiles. Tolerances employed for verification are: point dose and longitudinal profiles, 2%; range, 1 mm; FWHM for lateral profiles, 2 mm; and patient plan dose distribution, gamma index of >90% at 3%/3 mm criteria. Results: More than 97% of the point dose measurements out of 115 were within +/-2% with maximum deviation of 3%. 98% of the ranges measured were within 1 mm with maximum deviation of 1.4mm. The normalized depth doses were within 2% at all depths. The maximum error in FWHM of lateral profiles was found to be less than 2mm. For 5 patient plans representing different anatomic sites, a total of 38 planes for 12 beams were analyzed for gamma index with average value of 99% and minimum of 94%. Conclusions: The planning system is successfully commissioned and can be safely deployed for clinical use. Measurements of IDDCs on user beam are highly recommended instead of using standard beam IDDCs.

  5. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    SciTech Connect (OSTI)

    Shen, Junjun, E-mail: junjun.shen@hzg.de; Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; Santos, Jorge F. dos [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Materials Mechanics, Solid-State Joining Processes, Max-Planck-Str. 1, 21502 Geesthacht (Germany)

    2014-05-12

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl{sub 2} eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.

  6. LLNL-TM-411345 HotSpot Health Physics Codes Version

    National Nuclear Security Administration (NNSA)

    TM-411345 HotSpot - Health Physics Codes Version 2.07 User's Guide Steven G. Homann March 18, 2009 Disclaimer This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

  7. Friction Stir Spot Welding (FSSW) of Advanced High Strength Steel (AHSS)

    SciTech Connect (OSTI)

    Santella, M. L.; Hovanski, Yuri; Pan, Tsung-Yu

    2012-04-16

    Friction stir spot welding (FSSW) is applied to join advanced high strength steels (AHSS): galvannealed dual phase 780 MPa steel (DP780GA), transformation induced plasticity 780 MPa steel (TRIP780), and hot-stamped boron steel (HSBS). A low-cost Si3N4 ceramic tool was developed and used for making welds in this study instead of polycrystalline cubic boron nitride (PCBN) material used in earlier studies. FSSW has the advantages of solid-state, low-temperature process, and the ability of joining dissimilar grade of steels and thicknesses. Two different tool shoulder geometries, concave with smooth surface and convex with spiral pattern, were used in the study. Welds were made by a 2-step displacement control process with weld time of 4, 6, and 10 seconds. Static tensile lap-shear strength achieved 16.4 kN for DP780GA-HSBS and 13.2kN for TRIP780-HSBS, above the spot weld strength requirements by AWS. Nugget pull-out was the failure mode of the joint. The joining mechanism was illustrated from the cross-section micrographs. Microhardness measurement showed hardening in the upper sheet steel (DP780GA or TRIP780) in the weld, but softening of HSBS in the heat-affect zone (HAZ). The study demonstrated the feasibility of making high-strength AHSS spot welds with low-cost tools.

  8. The effect of laser spot shapes on polar-direct-drive implosions on the National Ignition Facility

    SciTech Connect (OSTI)

    Weilacher, F.; Radha, P. B. Collins, T. J. B.; Marozas, J. A.

    2015-03-15

    Ongoing polar-direct-drive (PDD) implosions on the National Ignition Facility (NIF) [J. D. Lindl and E. I. Moses, Phys. Plasmas 18, 050901 (2011)] use existing NIF hardware, including indirect-drive phase plates. This limits the performance achievable in these implosions. Spot shapes are identified that significantly improve the uniformity of PDD NIF implosions; outer surface deviation is reduced by a factor of 7 at the end of the laser pulse and hot-spot distortion is reduced by a factor of 2 when the shell has converged by a factor of ?10. As a result, the neutron yield increases by approximately a factor of 2. This set of laser spot shapes is a combination of circular and elliptical spots, along with elliptical spot shapes modulated by an additional higher-intensity ellipse offset from the center of the beam. This combination is motivated in this paper. It is also found that this improved implosion uniformity is obtained independent of the heat conduction model. This work indicates that significant improvement in performance can be obtained robustly with the proposed spot shapes.

  9. Low pressure shock initiation of porous HMX for two grain size distributions and two densities

    SciTech Connect (OSTI)

    Gustavsen, R.L.; Sheffield, S.A.; Alcon, R.R.

    1995-09-01

    Shock initiation measurements have been made on granular HMX (octotetramethylene tetranitrainine) for two particle size distributions and two densities. Samples were pressed to either 65% or 73% of crystal density from fine ({approx} 10 {mu}m grain size) and coarse (broad distribution of grain sizes peaking at {approx} 150 {mu}m) powders. Planar shocks of 0.2--1 GPa were generated by impacting gas gun driven projectiles on plastic targets containing the HMX. Wave profiles were measured at the input and output of the {approx} 3.9 mm thick HMX layer using electromagnetic particle velocity gauges. The initiation behavior for the two particle size distributions was very different. The coarse HMX began initiating at input pressures as low as 0.5 GPa. Transmitted wave profiles showed relatively slow reaction with most of the buildup occurring at the shock front. In contrast, the fine particle HMX did not begin to initiate at pressures below 0.9 GPa. When the fine powder did react, however, it did so much faster than the coarse HMX. These observations are consistent with commonly held ideas about bum rates being correlated to surface area, and initiation thresholds being correlated with the size and temperature of the hot spots created by shock passage. For each size, the higher density pressings were less sensitive than the lower density pressings.

  10. MODELING OF HIGH SPEED FRICTION STIR SPOT WELDING USING A LAGRANGIAN FINITE ELEMENT APPROACH

    SciTech Connect (OSTI)

    Miles, Michael; Karki, U.; Woodward, C.; Hovanski, Yuri

    2013-09-03

    Friction stir spot welding (FSSW) has been shown to be capable of joining steels of very high strength, while also being very flexible in terms of controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding (RSW) if tool life is sufficiently high, and if machine spindle loads are sufficiently low so that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11-14 kN. Therefore, in the current work tool speeds of 3000 rpm and higher were employed, in order to generate heat more quickly and to reduce welding loads to acceptable levels. The FSSW process was modeled using a finite element approach with the Forge software package. An updated Lagrangian scheme with explicit time integration was employed to model the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate [3]. The modeling approach can be described as two-dimensional, axisymmetric, but with an aspect of three dimensions in terms of thermal boundary conditions. Material flow was calculated from a velocity field which was two dimensional, but heat generated by friction was computed using a virtual rotational velocity component from the tool surface. An isotropic, viscoplastic Norton-Hoff law was used to model the evolution of material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures and the movement of the joint interface with reasonable accuracy for the welding of a dual phase 980 steel.

  11. Strategy Guideline: HVAC Equipment Sizing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategy Guideline: HVAC Equipment Sizing Arlan Burdick IBACOS, Inc. February 2012 This report received minimal editorial review at NREL NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

  12. Numerical studies of third-harmonic generation in laser filament in air perturbed by plasma spot

    SciTech Connect (OSTI)

    Feng Liubin; Lu Xin; Liu Xiaolong; Li Yutong; Chen Liming; Ma Jinglong; Dong Quanli; Wang Weimin; Xi Tingting; Sheng Zhengming; Zhang Jie; He Duanwei

    2012-07-15

    Third-harmonic emission from laser filament intercepted by plasma spot is studied by numerical simulations. Significant enhancement of the third-harmonic generation is obtained due to the disturbance of the additional plasma. The contribution of the pure plasma effect and the possible plasma-enhanced third-order susceptibility on the third-harmonic generation enhancement are compared. It is shown that the plasma induced cancellation of destructive interference [Y. Liu et al., Opt. Commun. 284, 4706 (2011)] of two-colored filament is the dominant mechanism of the enhancement of third-harmonic generation.

  13. Strategy Guideline: HVAC Equipment Sizing

    SciTech Connect (OSTI)

    Burdick, A.

    2012-02-01

    The heating, ventilation, and air conditioning (HVAC) system is arguably the most complex system installed in a house and is a substantial component of the total house energy use. A right-sized HVAC system will provide the desired occupant comfort and will run efficiently. This Strategy Guideline discusses the information needed to initially select the equipment for a properly designed HVAC system. Right-sizing of an HVAC system involves the selection of equipment and the design of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Right-sizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space; however, a full HVAC design involves more than just the load estimate calculation - the load calculation is the first step of the iterative HVAC design procedure. This guide describes the equipment selection of a split system air conditioner and furnace for an example house in Chicago, IL as well as a heat pump system for an example house in Orlando, Florida. The required heating and cooling load information for the two example houses was developed in the Department of Energy Building America Strategy Guideline: Accurate Heating and Cooling Load Calculations.

  14. Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization

    SciTech Connect (OSTI)

    Khodabakhshi, F.; Kazeminezhad, M., E-mail: mkazemi@sharif.edu; Kokabi, A.H.

    2012-07-15

    Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to these subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.

  15. DEFINING THE 'BLIND SPOT' OF HINODE EIS AND XRT TEMPERATURE MEASUREMENTS

    SciTech Connect (OSTI)

    Winebarger, Amy R.; Cirtain, Jonathan; Mulu-Moore, Fana [NASA Marshall Space Flight Center, VP 62, Huntsville, AL 35812 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Schmelz, Joan T. [Physics Department, University of Memphis, Memphis, TN 38152 (United States); Golub, Leon [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Kobayashi, Ken, E-mail: amy.r.winebarger@nasa.gov [Center for Space Plasma and Aeronomic Research, 320 Sparkman Dr, Huntsville, AL 35805 (United States)

    2012-02-20

    Observing high-temperature, low emission measure plasma is key to unlocking the coronal heating problem. With current instrumentation, a combination of EUV spectral data from Hinode Extreme-ultraviolet Imaging Spectrometer (EIS; sensitive to temperatures up to 4 MK) and broadband filter data from Hinode X-ray Telescope (XRT; sensitive to higher temperatures) is typically used to diagnose the temperature structure of the observed plasma. In this Letter, we demonstrate that a 'blind spot' exists in temperature-emission measure space for combined Hinode EIS and XRT observations. For a typical active region core with significant emission at 3-4 MK, Hinode EIS and XRT are insensitive to plasma with temperatures greater than {approx}6 MK and emission measures less than {approx}10{sup 27} cm{sup -5}. We then demonstrate that the temperature and emission measure limits of this blind spot depend upon the temperature distribution of the plasma along the line of sight by considering a hypothetical emission measure distribution sharply peaked at 1 MK. For this emission measure distribution, we find that EIS and XRT are insensitive to plasma with emission measures less than {approx}10{sup 26} cm{sup -5}. We suggest that a spatially and spectrally resolved 6-24 Angstrom-Sign spectrum would improve the sensitivity to these high-temperature, low emission measure plasma.

  16. Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat

    SciTech Connect (OSTI)

    Melvin, J.; Lim, H.; Rana, V.; Glimm, J.; Cheng, B.; Sharp, D. H.; Wilson, D. C.

    2015-02-15

    We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results.

  17. Monitoring seasonal and annual wetland changes in a freshwater marsh with SPOT HRV data

    SciTech Connect (OSTI)

    Mackey, H.E. Jr.

    1989-12-31

    Eleven dates of SPOT HRV data along with near-concurrent vertical aerial photographic and phenological data for 1987, 1988, and 1989 were evaluated to determine seasonal and annual changes in a 400-hectare, southeastern freshwater marsh. Early April through mid-May was the best time to discriminate among the cypress (Taxodium distichum)/water tupelo (Nyssa acquatica) swamp forest and the non-persistent (Ludwigia spp.) and persistent (Typha spp.) stands in this wetlands. Furthermore, a ten-fold decrease in flow rate from 11 cubic meters per sec (cms) in 1987 to one cms in 1988 was recorded in the marsh followed by a shift to drier wetland communities. The Savannah River Site (SRS), maintained by the US Department of Energy, is a 777 km{sup 2} area located in south central South Carolina. Five tributaries of the Savannah River run southwest through the SRS and into the floodplain swamp of the Savannah River. This paper describes the use of SPOT HRV data to monitor seasonal and annual trends in one of these swamp deltas, Pen Branch Delta, during a three-year period, 1987--1989.

  18. Monitoring seasonal and annual wetland changes in a freshwater marsh with SPOT HRV data

    SciTech Connect (OSTI)

    Mackey, H.E. Jr.

    1989-01-01

    Eleven dates of SPOT HRV data along with near-concurrent vertical aerial photographic and phenological data for 1987, 1988, and 1989 were evaluated to determine seasonal and annual changes in a 400-hectare, southeastern freshwater marsh. Early April through mid-May was the best time to discriminate among the cypress (Taxodium distichum)/water tupelo (Nyssa acquatica) swamp forest and the non-persistent (Ludwigia spp.) and persistent (Typha spp.) stands in this wetlands. Furthermore, a ten-fold decrease in flow rate from 11 cubic meters per sec (cms) in 1987 to one cms in 1988 was recorded in the marsh followed by a shift to drier wetland communities. The Savannah River Site (SRS), maintained by the US Department of Energy, is a 777 km{sup 2} area located in south central South Carolina. Five tributaries of the Savannah River run southwest through the SRS and into the floodplain swamp of the Savannah River. This paper describes the use of SPOT HRV data to monitor seasonal and annual trends in one of these swamp deltas, Pen Branch Delta, during a three-year period, 1987--1989.

  19. SMART II : the spot market agent research tool version 2.0.

    SciTech Connect (OSTI)

    North, M. J. N.

    2000-12-14

    Argonne National Laboratory (ANL) has worked closely with Western Area Power Administration (Western) over many years to develop a variety of electric power marketing and transmission system models that are being used for ongoing system planning and operation as well as analytic studies. Western markets and delivers reliable, cost-based electric power from 56 power plants to millions of consumers in 15 states. The Spot Market Agent Research Tool Version 2.0 (SMART II) is an investigative system that partially implements some important components of several existing ANL linear programming models, including some used by Western. SMART II does not implement a complete model of the Western utility system but it does include several salient features of this network for exploratory purposes. SMART II uses a Swarm agent-based framework. SMART II agents model bulk electric power transaction dynamics with recognition for marginal costs as well as transmission and generation constraints. SMART II uses a sparse graph of nodes and links to model the electric power spot market. The nodes represent power generators and consumers with distinct marginal decision curves and varying investment capital as well individual learning parameters. The links represent transmission lines with individual capacities taken from a range of central distribution, outlying distribution and feeder line types. The application of SMART II to electric power systems studies has produced useful results different from those often found using more traditional techniques. Use of the advanced features offered by the Swarm modeling environment simplified the creation of the SMART II model.

  20. Joint strength in high speed friction stir spot welded DP 980 steel

    SciTech Connect (OSTI)

    Saunders, Nathan; Miles, Michael; Hartman, Trent; Hovanski, Yuri; Hong, Sung Tae; Steel, Russell

    2014-05-01

    High speed friction stir spot welding was applied to 1.2 mm thick DP 980 steel sheets under different welding conditions, using PCBN tools. The range of vertical feed rates used during welding was 2.5 mm 102 mm per minute, while the range of spindle speeds was 2500 6000 rpm. Extended testing was carried out for five different sets of welding conditions, until tool failure. These welding conditions resulted in vertical welding loads of 3.6 8.2 kN and lap shear tension failure loads of 8.9 11.1 kN. PCBN tools were shown, in the best case, to provide lap shear tension fracture loads at or above 9 kN for 900 spot welds, after which tool failure caused a rapid drop in joint strength. Joint strength was shown to be strongly correlated to bond area, which was measured from weld cross sections. Failure modes of the tested joints were a function of bond area and softening that occurred in the heat-affected zone.

  1. Wear testing of friction stir spot welding tools for joining of DP 980 Steel

    SciTech Connect (OSTI)

    Ridges, Chris; Miles, Michael; Hovanski, Yuri; Peterson, Jeremy; Steel, Russell

    2011-06-06

    Friction stir spot welding has been shown to be a viable method of joining ultra high strength steel (UHSS), both in terms of joint strength and process cycle time. However, the cost of tooling must be reasonable in order for this method to be adopted as an industrial process. Several tooling materials have been evaluated in prior studies, including silicon nitride and polycrystalline cubic boron nitride (PCBN). Recently a new tool alloy has been developed, where a blend of PCBN and tungsten rhenium (W-Re) was used in order to improve the toughness of the tool. Wear testing results are presented for two of these alloys: one with a composition of 60% PCBN and 40% W-Re (designated as Q60), and one with 70% PCBN and 30% W-Re (designated at Q70). The sheet material used for all wear testing was DP 980. Tool profiles were measured periodically during the testing process in order to show the progression of wear as a function of the number of spots produced. Lap shear testing was done each time a tool profile was taken in order to show the relationship between tool wear and joint strength. For the welding parameters chosen for this study the Q70 tool provided the best combination of wear resistance and joint strength.

  2. Crystal structure of Spot 14, a modulator of fatty acid synthesis

    SciTech Connect (OSTI)

    Colbert, Christopher L.; Kim, Chai-Wan; Moon, Young-Ah; Henry, Lisa; Palnitkar, Maya; McKean, William B.; Fitzgerald, Kevin; Deisenhofer, Johann; Horton, Jay D.; Kwon, Hyock Joo

    2011-09-06

    Spot 14 (S14) is a protein that is abundantly expressed in lipogenic tissues and is regulated in a manner similar to other enzymes involved in fatty acid synthesis. Deletion of S14 in mice decreased lipid synthesis in lactating mammary tissue, but the mechanism of S14's action is unknown. Here we present the crystal structure of S14 to 2.65 {angstrom} and biochemical data showing that S14 can form heterodimers with MIG12. MIG12 modulates fatty acid synthesis by inducing the polymerization and activity of acetyl-CoA carboxylase, the first committed enzymatic reaction in the fatty acid synthesis pathway. Coexpression of S14 and MIG12 leads to heterodimers and reduced acetyl-CoA carboxylase polymerization and activity. The structure of S14 suggests a mechanism whereby heterodimer formation with MIG12 attenuates the ability of MIG12 to activate ACC.

  3. On the development of nugget growth model for resistance spot welding

    SciTech Connect (OSTI)

    Zhou, Kang, E-mail: zhoukang326@126.com, E-mail: melcai@ust.hk; Cai, Lilong, E-mail: zhoukang326@126.com, E-mail: melcai@ust.hk [Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2014-04-28

    In this paper, we developed a general mathematical model to estimate the nugget growth process based on the heat energy delivered into the welds by the resistance spot welding. According to the principles of thermodynamics and heat transfer, and the effect of electrode force during the welding process, the shape of the nugget can be estimated. Then, a mathematical model between heat energy absorbed and nugget diameter can be obtained theoretically. It is shown in this paper that the nugget diameter can be precisely described by piecewise fractal polynomial functions. Experiments were conducted with different welding operation conditions, such as welding currents, workpiece thickness, and widths, to validate the model and the theoretical analysis. All the experiments confirmed that the proposed model can predict the nugget diameters with high accuracy based on the input heat energy to the welds.

  4. Impact of tool wear on joint strength in friction stir spot welding of DP 980 steel

    SciTech Connect (OSTI)

    Miles, Michael; Ridges, Chris; Hovanski, Yuri; Peterson, Jeremy; Santella, M. L.; Steel, Russel

    2011-09-14

    Friction stir spot welding has been shown to be a viable method of joining ultra high strength steel (UHSS), both in terms of joint strength and process cycle time. However, the cost of tooling must be reasonable in order for this method to be adopted as an industrial process. Recently a new tool alloy has been developed, using a blend of PCBN and tungsten rhenium (W-Re) in order to improve the toughness of the tool. Wear testing results are presented for two of these alloys: one with a composition of 60% PCBN and 40% W-Re, and one with 70% PCBN and 30% W-Re. The sheet material used for all wear testing was 1.4 mm DP 980. Lap shear testing was used to show the relationship between tool wear and joint strength. The Q70 tool provided the best combination of wear resistance and joint strength.

  5. Electric rate that shifts hourly may foretell spot-market kWh

    SciTech Connect (OSTI)

    Springer, N.

    1985-11-25

    Four California industrial plants have cut their electricity bills up to 16% by shifting from the traditional time-of-use rates to an experimental real-time program (RTP) that varies prices hourly. The users receive a price schedule reflecting changing generating costs one day in advance to encourage them to increase power consumption during the cheapest time periods. Savings during the pilot program range between $11,000 and $32,000 per customer. The hourly cost breakdown encourages consumption during the night and early morning. The signalling system could be expanded to cogenerators and independent small power producers. If an electricity spot market develops, forecasters think a place on the stock exchanges for future-delivery contracts could develop in the future.

  6. Ultrasonic Spot Welding of AZ31B to Galvanized Mild Steel

    SciTech Connect (OSTI)

    Pan, Dr. Tsung-Yu; Franklin, Teresa; Pan, Professor Jwo; Brown, Elliot; Santella, Michael L

    2010-01-01

    Ultrasonic spot welds were made between sheets of 0.8-mm-thick hot-dip-galvanized mild steel and 1.6-mm-thick AZ31B-H24. Lap-shear strengths of 3.0-4.2 kN were achieved with weld times of 0.3-1.2 s. Failure to achieve strong bonding of joints where the Zn coating was removed from the steel surface indicate that Zn is essential to the bonding mechanism. Microstructure characterization and microchemical analysis indicated temperatures at the AZ31-steel interfaces reached at least 344 C in less than 0.3 s. The elevated temperature conditions promoted annealing of the AZ31-H24 metal and chemical reactions between it and the Zn coating.

  7. Landsat and SPOT data for oil exploration in North-Western China

    SciTech Connect (OSTI)

    Nishidai, Takashi

    1996-07-01

    Satellite remote sensing technology has been employed by Japex to provide information related to oil exploration programs for many years. Since the beginning of the 1980`s, regional geological interpretation through to advanced studies using satellite imagery with high spectral and spatial resolutions (such as Landsat TM and SPOT HRV), have been carried out, for both exploration programs and for scientific research. Advanced techniques (including analysis of airborne hyper-multispectral imaging sensor data) as well as conventional photogeological techniques were used throughout these programs. The first program using remote sensing technology in China focused on the Tarim Basin, Xinjiang Uygur Autonomous Region, and was carried out using Landsat MSS data. Landsat MSS imagery allows us to gain useful preliminary geological information about an area of interest, prior to field studies. About 90 Landsat scenes cover the entire Xinjiang Uygru Autonomous Region, this allowed us to give comprehensive overviews of 3 hydrocarbon-bearing basins (Tarim, Junggar, and Turpan-Hami) in NW China. The overviews were based on the interpretations and assessments of the satellite imagery and on a synthesis of the most up-to-date accessible geological and geophysical data as well as some field works. Pairs of stereoscopic SPOT HRV images were used to generate digital elevation data with a 40 in grid cover for part of the Tarim Basin. Topographic contour maps, created from this digital elevation data, at scales of 1:250,000 and 1:100,000 with contour intervals of 100 m and 50 m, allowed us to make precise geological interpretation, and to carry out swift and efficient geological field work. Satellite imagery was also utilized to make medium scale to large scale image maps, not only to interpret geological features but also to support field workers and seismic survey field operations.

  8. Heat-affected zone liquation crack on resistance spot welded TWIP steels

    SciTech Connect (OSTI)

    Saha, Dulal Chandra [Department of Advanced Materials Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of); Chang, InSung [Automotive Production Development Division, Hyundai Motor Company (Korea, Republic of); Park, Yeong-Do, E-mail: ypark@deu.ac.kr [Department of Advanced Materials Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of)

    2014-07-01

    In this study, the heat affected zone (HAZ) liquation crack and segregation behavior of the resistance spot welded twinning induced plasticity (TWIP) steel have been reported. Cracks appeared in the post-welded joints that originated at the partially melted zone (PMZ) and propagated from the PMZ through the heat affected zone (HAZ) to the base metal (BM). The crack length and crack opening widths were observed increasing with heat input; and the welding current was identified to be the most influencing parameter for crack formation. Cracks appeared at the PMZ when nugget diameter reached at 4.50 mm or above; and the liquation cracks were found to occur along two sides of the notch tip in the sheet direction rather than in the electrode direction. Cracks were backfilled with the liquid films which has lamellar structure and supposed to be the eutectic constituent. Co-segregation of alloy elements such as, C and Mn were detected on the liquid films by electron-probe microanalysis (EPMA) line scanning and element map which suggests that the liquid film was enrich of Mn and C. The eutectic constituent was identified by analyzing the calculated phase diagram along with thermal temperature history of finite element simulation. Preliminary experimental results showed that cracks have less/no significant effect on the static cross-tensile strength (CTS) and the tensile-shear strength (TSS). In addition, possible ways to avoid cracking were discussed. - Highlights: The HAZ liquation crack during resistance spot welding of TWIP steel was examined. Cracks were completely backfilled and healed with divorced eutectic secondary phase. Co-segregation of C and Mn was detected in the cracked zone. Heat input was the most influencing factor to initiate liquation crack. Cracks have less/no significant effect on static tensile properties.

  9. Hazards of explosives dusts: Particle size effects

    SciTech Connect (OSTI)

    Cashdollar, K L; Hertzberg, M; Green, G M

    1992-02-01

    At the request of the Department of Energy, the Bureau of Mines has investigated the hazards of military explosives dispersed as dust clouds in a 20-L test chamber. In this report, the effect of particle size for HMX, HNS, RDX, TATB, and TNT explosives dusts is studied in detail. The explosibility data for these dusts are also compared to those for pure fuel dusts. The data show that all of the sizes of the explosives dusts that were studied were capable of sustaining explosions as dust clouds dispersed in air. The finest sizes (<10 [mu]m) of explosives dusts were less reactive than the intermediate sizes (20 to 60 [mu]m); this is opposite to the particle size effect observed previously for the pure fuel dusts. At the largest sizes studied, the explosives dusts become somewhat less reactive as dispersed dust clouds. The six sizes of the HMX dust were also studied as dust clouds dispersed in nitrogen.

  10. Statistical Analysis of Microarray Data with Replicated Spots: A Case Study with Synechococcus WH8102

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thomas, E. V.; Phillippy, K. H.; Brahamsha, B.; Haaland, D. M.; Timlin, J. A.; Elbourne, L. D. H.; Palenik, B.; Paulsen, I. T.

    2009-01-01

    Until recently microarray experiments often involved relatively few arrays with only a single representation of each gene on each array. A complete genome microarray with multiple spots per gene (spread out spatially across the array) was developed in order to compare the gene expression of a marine cyanobacterium and a knockout mutant strain in a defined artificial seawater medium. Statistical methods were developed for analysis in the special situation of this case study where there is gene replication within an array and where relatively few arrays are used, which can be the case with current array technology. Due in partmore » to the replication within an array, it was possible to detect very small changes in the levels of expression between the wild type and mutant strains. One interesting biological outcome of this experiment is the indication of the extent to which the phosphorus regulatory system of this cyanobacterium affects the expression of multiple genes beyond those strictly involved in phosphorus acquisition.« less

  11. High explosive spot test analyses of samples from Operable Unit (OU) 1111

    SciTech Connect (OSTI)

    McRae, D.; Haywood, W.; Powell, J.; Harris, B.

    1995-01-01

    A preliminary evaluation has been completed of environmental contaminants at selected sites within the Group DX-10 (formally Group M-7) area. Soil samples taken from specific locations at this detonator facility were analyzed for harmful metals and screened for explosives. A sanitary outflow, a burn pit, a pentaerythritol tetranitrate (PETN) production outflow field, an active firing chamber, an inactive firing chamber, and a leach field were sampled. Energy dispersive x-ray fluorescence (EDXRF) was used to obtain semi-quantitative concentrations of metals in the soil. Two field spot-test kits for explosives were used to assess the presence of energetic materials in the soil and in items found at the areas tested. PETN is the major explosive in detonators manufactured and destroyed at Los Alamos. No measurable amounts of PETN or other explosives were detected in the soil, but items taken from the burn area and a high-energy explosive (HE)/chemical sump were contaminated. The concentrations of lead, mercury, and uranium are given.

  12. Statistical Analysis of Microarray Data with Replicated Spots: A Case Study withSynechococcusWH8102

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thomas, E. V.; Phillippy, K. H.; Brahamsha, B.; Haaland, D. M.; Timlin, J. A.; Elbourne, L. D. H.; Palenik, B.; Paulsen, I. T.

    2009-01-01

    Until recently microarray experiments often involved relatively few arrays with only a single representation of each gene on each array. A complete genome microarray with multiple spots per gene (spread out spatially across the array) was developed in order to compare the gene expression of a marine cyanobacterium and a knockout mutant strain in a defined artificial seawater medium. Statistical methods were developed for analysis in the special situation of this case study where there is gene replication within an array and where relatively few arrays are used, which can be the case with current array technology. Due in partmoreto the replication within an array, it was possible to detect very small changes in the levels of expression between the wild type and mutant strains. One interesting biological outcome of this experiment is the indication of the extent to which the phosphorus regulatory system of this cyanobacterium affects the expression of multiple genes beyond those strictly involved in phosphorus acquisition.less

  13. High Thermoelectric Performance in Copper Telluride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    He, Ying; Zhang, Tiansong; Shi, Xun; Wei, Su-Huai; Chen, Lidong

    2015-06-21

    Recently, Cu 2-δ S and Cu 2-δ Se were reported to have an ultralow thermal conductivity and high thermoelectric figure of merit zT. Thus, as a member of the copper chalcogenide group, Cu 2-δ Te is expected to possess superior zTs because Te is less ionic and heavy. However, the zT value is low in the Cu2Te sintered using spark plasma sintering, which is typically used to fabricate high-density bulk samples. In addition, the extra sintering processes may change the samples’ compositions as well as their physical properties, especially for Cu2Te, which has many stable and meta-stable phasesmore » as well as weaker ionic bonding between Cu and Te as compared with Cu2S and Cu2Se. In this study, high-density Cu2Te samples were obtained using direct annealing without a sintering process. In the absence of sintering processes, the samples’ compositions could be well controlled, leading to substantially reduced carrier concentrations that are close to the optimal value. The electrical transports were optimized, and the thermal conductivity was considerably reduced. The zT values were significantly improved—to 1.1 at 1000 K—which is nearly 100% improvement. Furthermore, this method saves substantial time and cost during the sample’s growth. The study demonstrates that Cu 2-δ X (X=S, Se and Te) is the only existing system to show high zTs in the series of compounds composed of three sequential primary group elements.« less

  14. ARM - Measurement - Cloud particle size distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle size distribution The number of cloud particles present in any given volume of air within a specified size range, including liquid and ice. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  15. Investigation of thermochemical biorefinery sizing and environmental...

    Office of Scientific and Technical Information (OSTI)

    Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs...

  16. The net utility revenue impact of small power producing facilities operating under spot pricing policies

    SciTech Connect (OSTI)

    MacGregor, P.R.

    1989-01-01

    The National Energy Act, in general, and Section 210 of the Public Utilities Regulatory Policies Act (PURPA) of 1978 in particular, have dramatically stimulated increasing levels of independent non-utility power generation. As these levels of independent non-utility power generation increase, the electric utility is subjected to new and significant operational and financial impacts. One important concern is the net revenue impact on the utility which is the focus of the research discussed in this thesis and which is inextricably intertwined with the operational functions of the utility system. In general, non-utility generation, and specifically, cogeneration, impact utility revenues by affecting the structure and magnitude of the system load, the scheduling of utility generation, and the reliability of the composite system. These effects are examined by developing a comprehensive model non-utility independent power producing facilities, referenced as Small Power Producing Facilities, a cash-flow-based corporate model of the electric utility, a thermal plant based generation scheduling algorithm, and a system reliability evaluation. All of these components are integrated into an iterative closed loop solution algorithm to both assess and enhance the net revenue. In this solution algorithm, the spot pricing policy of the utility is the principal control mechanism in the process and the system reliability is the primary procedural constraint. A key issue in reducing the negative financial impact of non-utility generation is the possibility of shutting down utility generation units given sufficient magnitudes of non-utility generation in the system. A case study simulating the financial and system operations of the Georgia Power Company with representative cogeneration capacity and individual plant characteristics is analyzed in order to demonstrate the solution process.

  17. Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel

    SciTech Connect (OSTI)

    Miles, Michael; Karki, U.; Hovanski, Yuri

    2014-10-01

    Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 1114 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge* software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within percent, and the position of the joint interface to within 10 percent, of the experimental results.

  18. Comparing bacterial community composition of healthy and dark spot-affected Siderastrea siderea in Florida and the Caribbean

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kellogg, Christina A.; Piceno, Yvette M.; Tom, Lauren M.; DeSantis, Todd Z.; Gray, Michael A.; Andersen, Gary L.; Mormile, Melanie R.

    2014-10-07

    Coral disease is one of the major causes of reef degradation. Dark Spot Syndrome (DSS) was described in the early 1990's as brown or purple amorphous areas of tissue on a coral and has since become one of the most prevalent diseases reported on Caribbean reefs. It has been identified in a number of coral species, but there is debate as to whether it is in fact the same disease in different corals. Further, it is questioned whether these macroscopic signs are in fact diagnostic of an infectious disease at all. The most commonly affected species in the Caribbean ismore » the massive starlet coral Siderastrea siderea. We sampled this species in two locations, Dry Tortugas National Park and Virgin Islands National Park. Tissue biopsies were collected from both healthy colonies and those with dark spot lesions. Microbial-community DNA was extracted from coral samples (mucus, tissue, and skeleton), amplified using bacterial-specific primers, and applied to PhyloChip G3 microarrays to examine the bacterial diversity associated with this coral. Samples were also screened for the presence of a fungal ribotype that has recently been implicated as a causative agent of DSS in another coral species, but the amplifications were unsuccessful. S. siderea samples did not cluster consistently based on health state (i.e., normal versus dark spot). Various bacteria, including Cyanobacteria and Vibrios, were observed to have increased relative abundance in the discolored tissue, but the patterns were not consistent across all DSS samples. Overall, our findings do not support the hypothesis that DSS in S. siderea is linked to a bacterial pathogen or pathogens. This dataset provides the most comprehensive overview to date of the bacterial community associated with the scleractinian coral S. siderea.« less

  19. Magnetostatic focal spot correction for x-ray tubes operating in strong magnetic fields using iterative optimization

    SciTech Connect (OSTI)

    Lillaney, Prasheel; Shin, Mihye; Conolly, Steven M.; Fahrig, Rebecca

    2012-09-15

    Purpose: Combining x-ray fluoroscopy and MR imaging systems for guidance of interventional procedures has become more commonplace. By designing an x-ray tube that is immune to the magnetic fields outside of the MR bore, the two systems can be placed in close proximity to each other. A major obstacle to robust x-ray tube design is correcting for the effects of the magnetic fields on the x-ray tube focal spot. A potential solution is to design active shielding that locally cancels the magnetic fields near the focal spot. Methods: An iterative optimization algorithm is implemented to design resistive active shielding coils that will be placed outside the x-ray tube insert. The optimization procedure attempts to minimize the power consumption of the shielding coils while satisfying magnetic field homogeneity constraints. The algorithm is composed of a linear programming step and a nonlinear programming step that are interleaved with each other. The coil results are verified using a finite element space charge simulation of the electron beam inside the x-ray tube. To alleviate heating concerns an optimized coil solution is derived that includes a neodymium permanent magnet. Any demagnetization of the permanent magnet is calculated prior to solving for the optimized coils. The temperature dynamics of the coil solutions are calculated using a lumped parameter model, which is used to estimate operation times of the coils before temperature failure. Results: For a magnetic field strength of 88 mT, the algorithm solves for coils that consume 588 A/cm{sup 2}. This specific coil geometry can operate for 15 min continuously before reaching temperature failure. By including a neodymium magnet in the design the current density drops to 337 A/cm{sup 2}, which increases the operation time to 59 min. Space charge simulations verify that the coil designs are effective, but for oblique x-ray tube geometries there is still distortion of the focal spot shape along with deflections of approximately 3 mm in the radial and circumferential directions on the anode. Conclusions: Active shielding is an attractive solution for correcting the effects of magnetic fields on the x-ray focal spot. If extremely long fluoroscopic exposure times are required, longer operation times can be achieved by including a permanent magnet with the active shielding design.

  20. Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1998-01-01

    The Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (Y/ER-301) was prepared (1) to safely, cost-effectively, and efficiently evaluate the environmental impact of solid material in the two debris areas in the context of industrial land uses (as defined in the Bear Creek Valley Feasibility Study) to support the Engineering Evaluation/Cost Assessment and (2) to evaluate, define, and implement the actions to mitigate these impacts. This work was performed under Work Breakdown Structure 1.x.01.20.01.08.

  1. Size separation of analytes using monomeric surfactants

    DOE Patents [OSTI]

    Yeung, Edward S.; Wei, Wei

    2005-04-12

    A sieving medium for use in the separation of analytes in a sample containing at least one such analyte comprises a monomeric non-ionic surfactant of the of the general formula, B-A, wherein A is a hydrophilic moiety and B is a hydrophobic moiety, present in a solvent at a concentration forming a self-assembled micelle configuration under selected conditions and having an aggregation number providing an equivalent weight capable of effecting the size separation of the sample solution so as to resolve a target analyte(s) in a solution containing the same, the size separation taking place in a chromatography or electrophoresis separation system.

  2. Strategic Petroleum Reserve: Analysis of size options

    SciTech Connect (OSTI)

    Not Available

    1990-02-01

    This report presents the results of the deliberations of the interagency group formed to study the costs and benefits of expanding the size of the SPR. The study concentrated on severe oil supply disruptions involving sharp reductions in world oil production that were 2 to 4 times larger than the largest 1970s interruption. The disruption sizes and estimated probability of occurrence of these scenarios were supplied by the CIA. The most critical part of the CIA's analysis was the assessment of likelihood of these cases occurring. The CIA approached the likelihood problem by combining an examination of past oil supply disruptions with qualitative analysis of important oil market and regional trends. The study group then used statistical techniques and probability distributions to synthesize the historical data with CIA evaluations of as yet unobserved events. The SPR size study assumed direct purchases of SPR oil and did not assume the use of alternative financing mechanisms. Members of the working group with foreign policy and national security responsibilities provided an in-depth review of strategic considerations affecting SPR size. A number of prior studies, some classified, have addressed the strategic importance and insurance value of the SPR to the US and its allies. The results of these studies have also been incorporated in the current effort. 10 refs., 5 figs.

  3. Development of Appropriate Spot Welding Practice for Advanced High Strength Steels (TRP 0114)

    SciTech Connect (OSTI)

    Brian Girvin; Warren Peterson; Jerry Gould

    2004-09-17

    This program evaluated the effects of common manufacturing variables on spike-tempering effectiveness. The investigation used design-of-experiment (DOE) techniques, and examined both dual-phase and martensitic grades of high-strength steels (HSS). The specific grades chosen for this project were: Dual-phase (DP) 600, galvannealed (GA), 1.55 mm (DP) 600; Dual-phase (DP) 980 (uncoated), 1.55 mm (DP) 980; and Martensitic (M) 1300, 1.55 mm (M) 1300. Common manufacturing conditions of interest included tempering practice (quench and temper time), button size, simulated part fitup (sheet angular misalignment and fitup), and electrode wear (increased electrode face diameter). All of these conditions were evaluated against mechanical performance (static and dynamic tensile shear). Weld hardness data was also used to examine correlations between mechanical performance and the degree of tempering. Mechanical performance data was used to develop empirical models. The models were used to examine the robustness of weld strength and toughness to the selected processing conditions. This was done using standard EWI techniques. Graphical representations of robustness were then coupled with metallographic data to relate mechanical properties to the effectiveness of spike tempering. Mechanical properties for all three materials were relatively robust to variation in tempering. Major deviations in mechanical properties were caused by degradation of the weld itself. This was supported by a lack of correlation between hardness data and mechanical results. Small button sizes and large electrode face diameters (worn electrodes) produced large reductions in both static and dynamic strength levels when compared to standard production setups. Dynamic strength was further degraded by edge-located welds.

  4. Biomass Engineering: Size reduction, drying and densification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Biomass Engineering: Size reduction, drying and densification March 25th, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information Technology Review Area: Feedstock Supply and Logistics Jaya Shankar Tumuluru (PI) Research Team: Neal Yancey, Craig C Conner, Tyler Westover, Richard McCulloch, Kara Cafferty, and Mitch Plummer Organization: Biofuels and Renewable Energy Technology, Idaho National Laboratory DOE Bioenergy Technologies Office (BETO)

  5. Spallation as a dominant source of pusher-fuel and hot-spot mix in inertial confinement fusion capsules

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Orth, Charles D.

    2016-02-23

    We suggest that a potentially dominant but previously neglected source of pusher-fuel and hot-spot “mix” may have been the main degradation mechanism for fusion energy yields of modern inertial confinement fusion (ICF) capsules designed and fielded to achieve high yields — not hydrodynamic instabilities. This potentially dominant mix source is the spallation of small chunks or “grains” of pusher material into the fuel regions whenever (1) the solid material adjacent to the fuel changes its phase by nucleation, and (2) this solid material spalls under shock loading and sudden decompression. Finally, we describe this mix mechanism, support it with simulationsmore » and experimental evidence, and explain how to eliminate it and thereby allow higher yields for ICF capsules and possibly ignition at the National Ignition Facility.« less

  6. AVTA: Full-Size Electric Vehicle Specifications and Test Procedures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Full-Size Electric Vehicle Specifications and Test Procedures AVTA: Full-Size Electric Vehicle Specifications and Test Procedures PDF icon EV America Test Specifications PDF icon ...

  7. Sandia Energy - Self-Regulated Fabrication of Size-Controlled...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Regulated Fabrication of Size-Controlled Quantum Nanostructures Home Highlights - Energy Research Self-Regulated Fabrication of Size-Controlled Quantum Nanostructures Previous...

  8. Sandia Energy - Enhanced Nanoparticle Size Control by Extending...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Nanoparticle Size Control by Extending LaMer's Mechanism Home Office of Science Enhanced Nanoparticle Size Control by Extending LaMer's Mechanism Previous Next Enhanced...

  9. Small- and Medium-Size Building Automation and Control System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Michael ...

  10. Small- and Medium-Size Building Automation and Control System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Emerging ...

  11. Wide size range fast integrated mobility spectrometer

    DOE Patents [OSTI]

    Wang, Jian

    2013-10-29

    A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.

  12. LNG fleet increases in size and capabilities

    SciTech Connect (OSTI)

    Linser, H.J. Jr.; Drudy, M.J.; Endrizzi, F.; Urbanelli, A.A.

    1997-06-02

    The LNG fleet as of early 1997 consisted of 99 vessels with total cargo capacity of 10.7 million cu m, equivalent to approximately 4.5 million tons. One of the newest additions to the fleet, the 137,000-cu m tanker Al Zubarah, is five times the size of the original commercial vessel Methane Princess. Al Zubarah`s first loading of more than 60,000 tons occurred in December 1996 for deliver to Japanese buyers from the newly commissioned Qatargas LNG plant at Ras Laffan. That size cargo contains enough clean-burning energy to heat 60,000 homes in Japan for 1 month. Measuring nearly 1,000 ft long, the tanker is among the largest in the industry fleet and joined 70 other vessels of more than 100,000 cu m. Most LNG tankers built since 1975 have been larger-capacity vessels. The paper discusses LNG shipping requirements, containment systems, vessel design, propulsion, construction, operations and maintenance, and the future for larger vessels.

  13. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect (OSTI)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 m) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 m), known as the small mode. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice cloud optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 m wavelength relative to 11 m wavelength due to the process of wave resonance or photon tunneling more active at 12 m. This makes the 12/11 m absorption optical depth ratio (or equivalently the 12/11 m Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

  14. Offshore Lubricants Market Size | OpenEI Community

    Open Energy Info (EERE)

    Offshore Lubricants Market Size Home There are currently no posts in this category. Syndicate content...

  15. Coal Fired Power Generation Market Size | OpenEI Community

    Open Energy Info (EERE)

    Coal Fired Power Generation Market Size Home There are currently no posts in this category. Syndicate...

  16. Reduce Pumping Costs Through Optimum Pipe Sizing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pumping Costs Through Optimum Pipe Sizing Reduce Pumping Costs Through Optimum Pipe Sizing This tip sheet discusses how to reduce pumping system costs through optimum pipe sizing. PUMPING SYSTEMS TIP SHEET #9 PDF icon Reduce Pumping Costs Through Optimum Pipe Sizing (October 2005) More Documents & Publications Select an Energy-Efficient Centrifugal Pump Effect of Intake on Compressor Performance Pump Selection Considerations

  17. Sizing a New Water Heater | Department of Energy

    Energy Savers [EERE]

    Heat & Cool » Water Heating » Sizing a New Water Heater Sizing a New Water Heater Is your water heater the right size for you house? | Photo credit ENERGY STAR® Is your water heater the right size for you house? | Photo credit ENERGY STAR® A properly sized water heater will meet your household's hot water needs while operating more efficiently. Therefore, before purchasing a water heater, make sure it's the correct size. Here you'll find information about how to size these systems:

  18. Sizing a New Water Heater | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sizing a New Water Heater Sizing a New Water Heater Is your water heater the right size for you house? | Photo credit ENERGY STAR® Is your water heater the right size for you house? | Photo credit ENERGY STAR® A properly sized water heater will meet your household's hot water needs while operating more efficiently. Therefore, before purchasing a water heater, make sure it's the correct size. Here you'll find information about how to size these systems: Tankless or demand-type water heaters

  19. New program sizes pressure-relief drums

    SciTech Connect (OSTI)

    Durand, A.A.; Osorio, R.A.; Suarez, R.H.

    1996-05-06

    In accordance with API Recommended Practice 521, a new procedure has been developed for the design of relief drums. The calculation method determines by convergence the most economical length-to-diameter ratio for gas-liquid separation vessels. Drum sizing is based on the separation of a two-phase stream, taking into account the special condition of intermittent flow. Design parameters such as settling velocity and residence time also must be calculated to determine an optimum design. A new program based on a programmable algorithm can be converted from basic language to any other computer language to facilitate vessel-design computations. The program quickly and efficiently computes design values for relief systems used in refineries and petrochemical plants.

  20. AISI/DOE Technology Roadmap Program: Development of Appropriate Resistance Spot Welding Practice for Transformation-Hardened Steels

    SciTech Connect (OSTI)

    Wayne Chuko; Jerry Gould

    2002-07-08

    This report describes work accomplished in the project, titled ''Development of Appropriate Resistance Spot Welding Practice for Transformation-Hardened Steels.'' The Phase 1 of the program involved development of in-situ temper diagrams for two gauges of representative dual-phase and martensitic grades of steels. The results showed that tempering is an effective way of reducing hold-time sensitivity (HTS) in hardenable high-strength sheet steels. In Phase 2, post-weld cooling rate techniques, incorporating tempering, were evaluated to reduce HTS for the same four steels. Three alternative methods, viz., post-heating, downsloping, and spike tempering, for HTS reduction were investigated. Downsloping was selected for detailed additional study, as it appeared to be the most promising of the cooling rate control methods. The downsloping maps for each of the candidate steels were used to locate the conditions necessary for the peak response. Three specific downslope conditions (at a fix ed final current for each material, timed for a zero-, medium-, and full-softening response) were chosen for further metallurgical and mechanical testing. Representative samples, were inspected metallographically, examining both local hardness variations and microstructures. The resulting downslope diagrams were found to consist largely of a C-curve. The softening observed in these curves, however, was not supported by subsequent metallography, which showed that all welds made, regardless of material and downslope condition, were essentially martensitic. CCT/TTT diagrams, generated based on microstructural modeling done at Oak Ridge National Laboratories, showed that minimum downslope times of 2 and 10 s for the martensitic and dual-phase grades of steels, respectively, were required to avoid martensite formation. These times, however, were beyond those examined in this study. These results show that downsloping is not an effective means of reducing HTS for production resistance spot welding (RSW). The necessary downslope times (2-10s) are prohibited by the welding rates currently used today (up to 60 welds/s). Based on the observations made in this study, spike tempering appears to be the best compromise of microstructural improvement and short cycle time. It is recommended that future work be focused on exploring the robustness of this approach, and its applicability for a wider range of steels.

  1. Uranium Bioreduction Rates across Scales: Biogeochemical Hot Moments and Hot Spots during a Biostimulation Experiment at Rifle, Colorado

    SciTech Connect (OSTI)

    Bao, Chen; Wu, Hongfei; Li, Li; Newcomer, Darrell R.; Long, Philip E.; Williams, Kenneth H.

    2014-09-02

    We aim to understand the scale-dependent evolution of uranium bioreduction during a field experiment at a former uranium mill site near Rifle, Colorado. Acetate was injected to stimulate Fe-reducing bacteria (FeRB) and to immobilize aqueous U(VI) to insoluble U(IV). Bicarbonate was coinjected in half of the domain to mobilize sorbed U(VI). We used reactive transport modeling to integrate hydraulic and geochemical data and to quantify rates at the grid block (0.25 m) and experimental field scale (tens of meters). Although local rates varied by orders of magnitude in conjunction with biostimulation fronts propagating downstream, field-scale rates were dominated by those orders of magnitude higher rates at a few selected hot spots where Fe(III), U(VI), and FeRB were at their maxima in the vicinity of the injection wells. At particular locations, the hot moments with maximum rates negatively corresponded to their distance from the injection wells. Although bicarbonate injection enhanced local rates near the injection wells by a maximum of 39.4%, its effect at the field scale was limited to a maximum of 10.0%. We propose a rate-versus-measurement-length relationship (log R' = -0.63

  2. SU-D-BRE-02: Development and Commissioning of A Gated Spot Scanning Proton Beam Therapy System with Real-Time Tumor-Tracking

    SciTech Connect (OSTI)

    Umegaki, K; Matsuura, T.; Takao, S.; Nihongi, H.; Yamada, T.; Miyamoto, N.; Shimizu, S.; Shirato, H.; Matsuda, K.; Nakamura, F.; Umezawa, M.; Hiramoto, K.

    2014-06-01

    Purpose: A novel Proton Beam Therapy system has been developed by integrating Real-Time Tumor-Tracking (RTRT) and discrete spot scanning techniques. The system dedicated for spot scanning delivers significant advantages for both clinical and economical points of view. The system has the ability to control dose distribution with spot scanning beams and to gate the beams from the synchrotron to irradiate moving tumors only when the actual positions of them are within the planned position. Methods: The newly designed system consists of a synchrotron, beam transport systems, a compact and rotating gantry system with robotic couch and two orthogonal sets of X-ray fluoroscopes. The fully compact design of the system has been realized by reducing the maximum energy of the beam to 220MeV, corresponding to 30g/cm2 range and the number of circulating protons per synchrotron operation cycle, due to higher beam utilization efficiency in spot scanning. To improve the irradiation efficiency in the integration of RTRT and spot scanning, a new control system has been developed to enable multiple gated irradiation per operation cycle according to the gating signals. After the completion of the equipment installation, beam tests and commissioning has been successfully performed. Results: The basic performances and beam characteristics through the synchrotron accelerator to iso-center have been confirmed and the performance test of the irradiation nozzle and whole system has been appropriately completed. CBCT image has been checked and sufficient quality was obtained. RTRT system has been demonstrated and realized accurate dose distributions for moving targets. Conclusion: The gated spot scanning Proton Beam Therapy system with Real-Time Tumor-Tracking has been developed, successfully installed and tested. The new system enables us to deliver higher dose to the moving target tumors while sparing surrounding normal tissues and to realize the compact design of the system and facility by maximizing the efficiency of proton beam utilization. This research is granted by the Japan Society for the Promotion of Science(JSPS) through the Funding Program for World-Leading Innovative R and D on Science and Technology(FIRST Program), initiated by the Council for Science and Technology Policy(CSTP)

  3. Solar Trackers Market Size | OpenEI Community

    Open Energy Info (EERE)

    Solar Trackers Market Size Home John55364's picture Submitted by John55364(100) Contributor 12 May, 2015 - 03:54 Solar Trackers Market - Global Industry Analysis, Size, Share,...

  4. Global Nuclear Energy Partnership Triples in Size to 16 Members...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Nuclear Energy Partnership Triples in Size to 16 Members Global Nuclear Energy Partnership Triples in Size to 16 Members September 16, 2007 - 2:33pm Addthis Nations Sign On...

  5. Quantum-size-controlled photoelectrochemical etching of semiconductor

    Office of Scientific and Technical Information (OSTI)

    nanostructures (Patent) | SciTech Connect Patent: Quantum-size-controlled photoelectrochemical etching of semiconductor nanostructures Citation Details In-Document Search Title: Quantum-size-controlled photoelectrochemical etching of semiconductor nanostructures Quantum-size-controlled photoelectrochemical (QSC-PEC) etching provides a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10-nm size regime. For example, quantum dots (QDs) can be

  6. Method for determining aerosol particle size device for determining aerosol particle size

    DOE Patents [OSTI]

    Novick, Vincent J.

    1998-01-01

    A method for determining the mass median diameter D of particles contained in a fluid is provided wherein the data of the mass of a pre-exposed and then a post-exposed filter is mathematically combined with data concerning the pressure differential across the same filter before and then after exposure to a particle-laden stream. A device for measuring particle size is also provided wherein the device utilizes the above-method for mathematically combining the easily quantifiable data.

  7. Quality of Life and Toxicity From Passively Scattered and Spot-Scanning Proton Beam Therapy for Localized Prostate Cancer

    SciTech Connect (OSTI)

    Pugh, Thomas J. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Munsell, Mark F. [Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Choi, Seungtaek; Nguyen, Quyhn Nhu; Mathai, Benson [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zhu, X. Ron; Sahoo, Narayan; Gillin, Michael; Johnson, Jennifer L.; Amos, Richard A. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Dong, Lei [Scripps Proton Therapy Center, San Diego, California (United States); Mahmood, Usama; Kuban, Deborah A.; Frank, Steven J.; Hoffman, Karen E.; McGuire, Sean E. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lee, Andrew K., E-mail: aklee@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-12-01

    Purpose: To report quality of life (QOL)/toxicity in men treated with proton beam therapy for localized prostate cancer and to compare outcomes between passively scattered proton therapy (PSPT) and spot-scanning proton therapy (SSPT). Methods and Materials: Men with localized prostate cancer enrolled on a prospective QOL protocol with a minimum of 2 years' follow-up were reviewed. Comparative groups were defined by technique (PSPT vs SSPT). Patients completed Expanded Prostate Cancer Index Composite questionnaires at baseline and every 3-6 months after proton beam therapy. Clinically meaningful differences in QOL were defined as ?0.5 baseline standard deviation. The cumulative incidence of modified Radiation Therapy Oncology Group grade ?2 gastrointestinal (GI) or genitourinary (GU) toxicity and argon plasma coagulation were determined by the Kaplan-Meier method. Results: A total of 226 men received PSPT, and 65 received SSPT. Both PSPT and SSPT resulted in statistically significant changes in sexual, urinary, and bowel Expanded Prostate Cancer Index Composite summary scores. Only bowel summary, function, and bother resulted in clinically meaningful decrements beyond treatment completion. The decrement in bowel QOL persisted through 24-month follow-up. Cumulative grade ?2 GU and GI toxicity at 24 months were 13.4% and 9.6%, respectively. There was 1 grade 3 GI toxicity (PSPT group) and no other grade ?3 GI or GU toxicity. Argon plasma coagulation application was infrequent (PSPT 4.4% vs SSPT 1.5%; P=.21). No statistically significant differences were appreciated between PSPT and SSPT regarding toxicity or QOL. Conclusion: Both PSPT and SSPT confer low rates of grade ?2 GI or GU toxicity, with preservation of meaningful sexual and urinary QOL at 24 months. A modest, yet clinically meaningful, decrement in bowel QOL was seen throughout follow-up. No toxicity or QOL differences between PSPT and SSPT were identified. Long-term comparative results in a larger patient cohort are warranted.

  8. Multi-Scale Multi-physics Methods Development for the Calculation of Hot-Spots in the NGNP

    SciTech Connect (OSTI)

    Downar, Thomas; Seker, Volkan

    2013-04-30

    Radioactive gaseous fission products are released out of the fuel element at a significantly higher rate when the fuel temperature exceeds 1600C in high-temperature gas-cooled reactors (HTGRs). Therefore, it is of paramount importance to accurately predict the peak fuel temperature during all operational and design-basis accident conditions. The current methods used to predict the peak fuel temperature in HTGRs, such as the Next-Generation Nuclear Plant (NGNP), estimate the average fuel temperature in a computational mesh modeling hundreds of fuel pebbles or a fuel assembly in a pebble-bed reactor (PBR) or prismatic block type reactor (PMR), respectively. Experiments conducted in operating HTGRs indicate considerable uncertainty in the current methods and correlations used to predict actual temperatures. The objective of this project is to improve the accuracy in the prediction of local "hot" spots by developing multi-scale, multi- physics methods and implementing them within the framework of established codes used for NGNP analysis. The multi-scale approach which this project will implement begins with defining suitable scales for a physical and mathematical model and then deriving and applying the appropriate boundary conditions between scales. The macro scale is the greatest length that describes the entire reactor, whereas the meso scale models only a fuel block in a prismatic reactor and ten to hundreds of pebbles in a pebble bed reactor. The smallest scale is the micro scale--the level of a fuel kernel of the pebble in a PBR and fuel compact in a PMR--which needs to be resolved in order to calculate the peak temperature in a fuel kernel.

  9. THE SIZE DISTRIBUTION OF THE NEPTUNE TROJANS AND THE MISSING INTERMEDIATE-SIZED PLANETESIMALS

    SciTech Connect (OSTI)

    Sheppard, Scott S.; Trujillo, Chadwick A.

    2010-11-10

    We present an ultra-deep survey for Neptune Trojans using the Subaru 8.2 m and Magellan 6.5 m telescopes. The survey reached a 50% detection efficiency in the R band at m{sub R} = 25.7 mag and covered 49 deg{sup 2} of sky. m{sub R} = 25.7 mag corresponds to Neptune Trojans that are about 16 km in radius (assuming an albedo of 0.05). A paucity of smaller Neptune Trojans (radii < 45 km) compared with larger ones was found. The brightest Neptune Trojans appear to follow a steep power-law slope (q = 5 {+-} 1) similar to the brightest objects in the other known stable reservoirs such as the Kuiper Belt, Jupiter Trojans, and main belt asteroids. We find a roll-over for the Neptune Trojans that occurs around a radius of r = 45 {+-} 10 km (m{sub R} = 23.5 {+-} 0.3), which is also very similar to the other stable reservoirs. All the observed stable regions in the solar system show evidence for Missing Intermediate-Sized Planetesimals (MISPs). This indicates a primordial and not collisional origin, which suggests that planetesimal formation proceeded directly from small to large objects. The scarcity of intermediate- and smaller-sized Neptune Trojans may limit them as being a strong source for the short period comets.

  10. Identifying and Mitigating Potential Nutrient and Sediment Hot Spots under a Future Scenario in the Missouri River Basin

    SciTech Connect (OSTI)

    Wu, May; Zhang, Zhonglong

    2015-09-01

    Using the Soil and Water Assessment Tool (SWAT) for large-scale watershed modeling could be useful for evaluating the quality of the water in regions that are dominated by nonpoint sources in order to identify potential “hot spots” for which mitigating strategies could be further developed. An analysis of water quality under future scenarios in which changes in land use would be made to accommodate increased biofuel production was developed for the Missouri River Basin (MoRB) based on a SWAT model application. The analysis covered major agricultural crops and biofuel feedstock in the MoRB, including pasture land, hay, corn, soybeans, wheat, and switchgrass. The analysis examined, at multiple temporal and spatial scales, how nitrate, organic nitrogen, and total nitrogen; phosphorus, organic phosphorus, inorganic phosphorus, and total phosphorus; suspended sediments; and water flow (water yield) would respond to the shifts in land use that would occur under proposed future scenarios. The analysis was conducted at three geospatial scales: (1) large tributary basin scale (two: Upper MoRB and Lower MoRB); (2) regional watershed scale (seven: Upper Missouri River, Middle Missouri River, Middle Lower Missouri River, Lower Missouri River, Yellowstone River, Platte River, and Kansas River); and (3) eight-digit hydrologic unit (HUC-8) subbasin scale (307 subbasins). Results showed that subbasin-level variations were substantial. Nitrogen loadings decreased across the entire Upper MoRB, and they increased in several subbasins in the Lower MoRB. Most nitrate reductions occurred in lateral flow. Also at the subbasin level, phosphorus in organic, sediment, and soluble forms was reduced by 35%, 45%, and 65%, respectively. Suspended sediments increased in 68% of the subbasins. The water yield decreased in 62% of the subbasins. In the Kansas River watershed, the water quality improved significantly with regard to every nitrogen and phosphorus compound. The improvement was clearly attributable to the conversion of a large amount of land to switchgrass. The Middle Lower Missouri River and Lower Missouri River were identified as hot regions. Further analysis identified four subbasins (10240002, 10230007, 10290402, and 10300200) as being the most vulnerable in terms of sediment, nitrogen, and phosphorus loadings. Overall, results suggest that increasing the amount of switchgrass acreage in the hot spots should be considered to mitigate the nutrient loads. The study provides an analytical method to support stakeholders in making informed decisions that balance biofuel production and water sustainability.

  11. CBEI: Coordinating RTUs in Small and Medium Sized Commercial Buildings -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Peer Review | Department of Energy Coordinating RTUs in Small and Medium Sized Commercial Buildings - 2015 Peer Review CBEI: Coordinating RTUs in Small and Medium Sized Commercial Buildings - 2015 Peer Review Presenter: James Braun, Purdue University View the Presentation PDF icon CBEI: Coordinating RTUs in Small and Medium Sized Commercial Buildings - 2015 Peer Review More Documents & Publications Control and Diagnostics for Rooftop Units - 2014 BTO Peer Review CBEI: Lessons

  12. SBA Increases Size Standards for Waste Remediation Services &

    Energy Savers [EERE]

    Information/Admin Support | Department of Energy Increases Size Standards for Waste Remediation Services & Information/Admin Support SBA Increases Size Standards for Waste Remediation Services & Information/Admin Support December 12, 2012 - 10:22am Addthis John Hale III John Hale III Director, Office of Small and Disadvantaged Business Utilization Earlier this week, the U.S. Small Business Administration announced that they have revised size definitions for small businesses in

  13. Fiber Sizing Sensor and Controller | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fiber Sizing Sensor and Controller Fiber Sizing Sensor and Controller Revolutionary Optical Technology Provides Rapid Measurement of Large Samples of Fiber Diameters Fiber size (or denier) has a significant effect on the performance of fiber-based products, such as filters, insulation, and composites. Fiber samples are generally characterized by optical or electron microscopy. Flow resistance of a sample of fibers (e.g., by the Micronaire(tm) technique) is also used to estimate the mean fiber

  14. Development of Model Filtration Media for Investigating Size-Dependent

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Filtration Efficiency | Department of Energy Model Filtration Media for Investigating Size-Dependent Filtration Efficiency Development of Model Filtration Media for Investigating Size-Dependent Filtration Efficiency A novel method for fabricating custom porous filtration media for emission control has been developed. Controlled pore sizes could be used to optimize high-capture efficiency with low backpressure. PDF icon p-25_strzelec.pdf More Documents & Publications Fuel-Neutral Studies

  15. Sizing a New Water Heater | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    systems: Tankless or demand-type water heaters Solar water heating system Storage and heat pump (with tank) water heaters. For sizing combination water and space heating systems --...

  16. Property:Incentive/EligSysSize | Open Energy Information

    Open Energy Info (EERE)

    minimum
    Recycled Energy: 15 Megawatt maximum Alameda Municipal Power - Solar Photovoltaics Rebate Program (California) + Maximum size is 1 MW or 110% of customer's...

  17. Solar Trackers Market - Global Industry Analysis, Size, Share...

    Open Energy Info (EERE)

    Solar Trackers Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2010 - 2020 Home > Groups > Increase Natural Gas Energy Efficiency John55364's picture...

  18. Efficient Algorithm for Locating and Sizing Series Compensation...

    Office of Scientific and Technical Information (OSTI)

    Compensation Devices in Large Transmission Grids: Model Implementation We explore optimization methods for planning the placement, sizing and operations of Flexible Alternating...

  19. Scalable Heuristics for Planning, Placement and Sizing of Flexible...

    Office of Scientific and Technical Information (OSTI)

    SC and SVC devices are represented by modification of the transmission line inductances and reactive power nodal corrections respectively. We find one placement and sizing of FACTs ...

  20. CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings - 2015 Peer Review Presenter: Russell Taylor, United Technologies Research Center View the Presentation PDF icon ...

  1. Overview of Detailed Chemical Speciation and Particle Sizing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Exhaust, Both Real Time and Filter Based Measurements Overview of Detailed Chemical Speciation and Particle Sizing for Diesel Exhaust, Both Real Time and Filter Based ...

  2. Correlating Size and Composition-Dependent Effects with Magnetic...

    Office of Scientific and Technical Information (OSTI)

    Correlating Size and Composition-Dependent Effects with Magnetic, Mssbauer, and Pair Distribution Function Measurements in a Family of Catalytically Active Ferrite Nanoparticles ...

  3. CBEI: Coordinating RTUs in Small and Medium Sized Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RTUs in Small and Medium Sized Commercial Buildings - 2015 Peer Review Presenter: James Braun, Purdue University View the Presentation PDF icon CBEI: Coordinating RTUs in...

  4. SBA Increases Size Standards for Waste Remediation Services ...

    Broader source: Energy.gov (indexed) [DOE]

    one current revenue-based size standard in NAICS Sector 21: Mining, Quarrying, and Oil and Gas Extraction. SBA evaluated four industries in this sector to determine whether...

  5. TVA - Mid-Sized Renewable Standard Offer Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    kWh Summary The Tennessee Valley Authority (TVA) now compliments the small generation Green Power Providers Program by providing incentives for mid-sized renewable energy...

  6. Droplet sizes, dynamics and deposition in vertical annular flow

    SciTech Connect (OSTI)

    Lopes, J C.B.; Dukler, A E

    1985-10-01

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data.

  7. Comparing bacterial community composition of healthy and dark spot-affected Siderastrea siderea in Florida and the Caribbean

    SciTech Connect (OSTI)

    Kellogg, Christina A.; Piceno, Yvette M.; Tom, Lauren M.; DeSantis, Todd Z.; Gray, Michael A.; Andersen, Gary L.; Mormile, Melanie R.

    2014-10-07

    Coral disease is one of the major causes of reef degradation. Dark Spot Syndrome (DSS) was described in the early 1990's as brown or purple amorphous areas of tissue on a coral and has since become one of the most prevalent diseases reported on Caribbean reefs. It has been identified in a number of coral species, but there is debate as to whether it is in fact the same disease in different corals. Further, it is questioned whether these macroscopic signs are in fact diagnostic of an infectious disease at all. The most commonly affected species in the Caribbean is the massive starlet coral Siderastrea siderea. We sampled this species in two locations, Dry Tortugas National Park and Virgin Islands National Park. Tissue biopsies were collected from both healthy colonies and those with dark spot lesions. Microbial-community DNA was extracted from coral samples (mucus, tissue, and skeleton), amplified using bacterial-specific primers, and applied to PhyloChip G3 microarrays to examine the bacterial diversity associated with this coral. Samples were also screened for the presence of a fungal ribotype that has recently been implicated as a causative agent of DSS in another coral species, but the amplifications were unsuccessful. S. siderea samples did not cluster consistently based on health state (i.e., normal versus dark spot). Various bacteria, including Cyanobacteria and Vibrios, were observed to have increased relative abundance in the discolored tissue, but the patterns were not consistent across all DSS samples. Overall, our findings do not support the hypothesis that DSS in S. siderea is linked to a bacterial pathogen or pathogens. This dataset provides the most comprehensive overview to date of the bacterial community associated with the scleractinian coral S. siderea.

  8. Method of producing submicron size particles and product produced thereby

    DOE Patents [OSTI]

    Bourne, R.S.; Eichman, C.C.; Welbon, W.W.

    1988-05-11

    Submicron size particles are produced by using a sputtering process to deposit particles into a liquid. The liquid is processed to recover the particles therefrom, and the particles have sizes in the range of twenty to two hundred Angstroms. Either metallic or non-metallic particles can be produced, and the metallic particles can be used in ''metallic inks.'' 4 figs.

  9. Pore-size-distribution of cationic polyacrylamide hydrogels. Progress report

    SciTech Connect (OSTI)

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga`s mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  10. Pore-size-distribution of cationic polyacrylamide hydrogels

    SciTech Connect (OSTI)

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga's mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  11. Thermoelectric materials ternary penta telluride and selenide compounds

    DOE Patents [OSTI]

    Sharp, Jeffrey W.

    2001-01-01

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  12. Thermoelectric materials: ternary penta telluride and selenide compounds

    DOE Patents [OSTI]

    Sharp, Jeffrey W.

    2002-06-04

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  13. Surface Treatment And Protection Method For Cadium Zinc Telluride Crystals

    DOE Patents [OSTI]

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2006-02-21

    A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH4F and 10 w/o H2O2 in water.

  14. Method for surface treatment of a cadmium zinc telluride crystal

    DOE Patents [OSTI]

    James, Ralph; Burger, Arnold; Chen, Kuo-Tong; Chang, Henry

    1999-01-01

    A method for treatment of the surface of a CdZnTe (CZT) crystal that reduces surface roughness (increases surface planarity) and provides an oxide coating to reduce surface leakage currents and thereby, improve resolution. A two step process is disclosed, etching the surface of a CZT crystal with a solution of lactic acid and bromine in ethylene glycol, following the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, oxidizing the CZT crystal surface.

  15. Surface treatment and protection method for cadmium zinc telluride crystals

    DOE Patents [OSTI]

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2003-01-01

    A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH.sub.4 F and 10 w/o H.sub.2 O.sub.2 in water.

  16. Method for surface treatment of a cadmium zinc telluride crystal

    DOE Patents [OSTI]

    James, R.; Burger, A.; Chen, K.T.; Chang, H.

    1999-08-03

    A method for treatment of the surface of a CdZnTe (CZT) crystal is disclosed that reduces surface roughness (increases surface planarity) and provides an oxide coating to reduce surface leakage currents and thereby, improve resolution. A two step process is disclosed, etching the surface of a CZT crystal with a solution of lactic acid and bromine in ethylene glycol, following the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, oxidizing the CZT crystal surface. 3 figs.

  17. TVA - Mid-Sized Renewable Standard Offer Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0.036kWh Summary The Tennessee Valley Authority (TVA) now compliments the small generation Green Power Providers Program by providing incentives for mid-sized renewable energy...

  18. 1999 Commercial Building Characteristics--Detailed Tables--Size...

    U.S. Energy Information Administration (EIA) Indexed Site

    Complete Set of 1999 CBECS Detailed Tables Detailed Tables- of Buildings Table B6. Building Size, Number of Buildings b6.pdf (PDF file), b6.xls (Excel spreadsheet file), b6.txt...

  19. Knowledge-based sizing of cogeneration plant in buildings

    SciTech Connect (OSTI)

    Williams, J.M.; Griffiths, A.J.; Knight, I.P.

    1998-10-01

    Cogeneration is now accepted as a cost-effective and environmentally friendly means of meeting some of a building`s heating and power needs. Cogeneration plants have been installed in many buildings throughout the United Kingdom. Because of commercial pressures, building owners and cogeneration companies are keen to reduce the time and money involved in sizing units, and a decision support tool has been developed to aid the engineer in selecting the unit size. An initial assessment of the sizing can be made with only knowledge of the building`s type, size, and location, which enables the model to be used in new build situations. For an existing building, the accuracy of the predictions can then be progressively improved by providing more information about the building`s energy use, enabling the optimum unit to be identified. This paper briefly describes the model and demonstrates its use through an example feasibility study.

  20. TVA - Mid-Sized Renewable Standard Offer Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    generation Green Power Providers Program by providing incentives for mid-sized renewable energy generators between 50kW and 20MW to enter into long term price contracts. The goal...

  1. Quantum-size-controlled photoelectrochemical etching of semiconductor...

    Office of Scientific and Technical Information (OSTI)

    For example, quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and the QD sizes (and hence bandgaps and ...

  2. Model catalysis by size-selected cluster deposition

    SciTech Connect (OSTI)

    Anderson, Scott

    2015-11-20

    This report summarizes the accomplishments during the last four years of the subject grant. Results are presented for experiments in which size-selected model catalysts were studied under surface science and aqueous electrochemical conditions. Strong effects of cluster size were found, and by correlating the size effects with size-dependent physical properties of the samples measured by surface science methods, it was possible to deduce mechanistic insights, such as the factors that control the rate-limiting step in the reactions. Results are presented for CO oxidation, CO binding energetics and geometries, and electronic effects under surface science conditions, and for the electrochemical oxygen reduction reaction, ethanol oxidation reaction, and for oxidation of carbon by water.

  3. Particle size and shape distributions of hammer milled pine

    SciTech Connect (OSTI)

    Westover, Tyler Lott; Matthews, Austin Colter; Williams, Christopher Luke; Ryan, John Chadron Benjamin

    2015-04-01

    Particle size and shape distributions impact particle heating rates and diffusion of volatized gases out of particles during fast pyrolysis conversion, and consequently must be modeled accurately in order for computational pyrolysis models to produce reliable results for bulk solid materials. For this milestone, lodge pole pine chips were ground using a Thomas-Wiley #4 mill using two screen sizes in order to produce two representative materials that are suitable for fast pyrolysis. For the first material, a 6 mm screen was employed in the mill and for the second material, a 3 mm screen was employed in the mill. Both materials were subjected to RoTap sieve analysis, and the distributions of the particle sizes and shapes were determined using digital image analysis. The results of the physical analysis will be fed into computational pyrolysis simulations to create models of materials with realistic particle size and shape distributions. This milestone was met on schedule.

  4. TVA- Mid-Sized Renewable Standard Offer Program

    Broader source: Energy.gov [DOE]

    The Tennessee Valley Authority (TVA) now compliments the small generation Green Power Providers Program by providing incentives for mid-sized renewable energy generators between 50kW and 20MW to...

  5. Photoluminescent 1-2 nm sized silicon nanoparticles: A surface...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photoluminescent 1-2 nm sized silicon nanoparticles: A surface-dependent system Authors: Romero, J.J., Llansola-Portols, M.J., Dell'Arciprete, M.L., Rodrguez, H.B., Moore,...

  6. A stochastic method for stand-alone photovoltaic system sizing

    SciTech Connect (OSTI)

    Cabral, Claudia Valeria Tavora; Filho, Delly Oliveira; Martins, Jose Helvecio; Toledo, Olga Moraes

    2010-09-15

    Photovoltaic systems utilize solar energy to generate electrical energy to meet load demands. Optimal sizing of these systems includes the characterization of solar radiation. Solar radiation at the Earth's surface has random characteristics and has been the focus of various academic studies. The objective of this study was to stochastically analyze parameters involved in the sizing of photovoltaic generators and develop a methodology for sizing of stand-alone photovoltaic systems. Energy storage for isolated systems and solar radiation were analyzed stochastically due to their random behavior. For the development of the methodology proposed stochastic analysis were studied including the Markov chain and beta probability density function. The obtained results were compared with those for sizing of stand-alone using from the Sandia method (deterministic), in which the stochastic model presented more reliable values. Both models present advantages and disadvantages; however, the stochastic one is more complex and provides more reliable and realistic results. (author)

  7. AVTA: Full-Size Electric Vehicle Specifications and Test Procedures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Full-Size Electric Vehicle Specifications and Test Procedures AVTA: Full-Size Electric Vehicle Specifications and Test Procedures PDF icon EV America Test Specifications PDF icon ETA-TP001 Implementation of SAE Standard J1263, February 1996 - Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques PDF icon ETA-TP002 Implementation of SAE Standard J1666, May 1993 - Electric Vehicle Acceleration, Gradeability, and Deceleration Test Procedure PDF icon

  8. Overview of Detailed Chemical Speciation and Particle Sizing for Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust, Both Real Time and Filter Based Measurements | Department of Energy Detailed Chemical Speciation and Particle Sizing for Diesel Exhaust, Both Real Time and Filter Based Measurements Overview of Detailed Chemical Speciation and Particle Sizing for Diesel Exhaust, Both Real Time and Filter Based Measurements 2002 DEER Conference Presentation: University of Wisconsin - Madison PDF icon 2002_deer_foster.pdf More Documents & Publications The Impact of Oil Consumption Mechanisms on

  9. Global Nuclear Energy Partnership Triples in Size to 16 Members |

    Energy Savers [EERE]

    Department of Energy Triples in Size to 16 Members Global Nuclear Energy Partnership Triples in Size to 16 Members September 16, 2007 - 2:33pm Addthis Nations Sign On to International Cooperation for Safe Expansion of Nuclear Energy Worldwide VIENNA, AUSTRIA - U.S. Secretary of Energy Samuel W. Bodman and senior international officials from 16 nations today agreed to increase international nuclear energy cooperation through the Global Nuclear Energy Partnership (GNEP). China, France, Japan,

  10. Enhanced Nanoparticle Size Control by Extending LaMer's Mechanism

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Enhanced Nanoparticle Size Control by Extending LaMer's Mechanism Citation Details In-Document Search Title: Enhanced Nanoparticle Size Control by Extending LaMer's Mechanism Authors: Vreeland, Erika C. ; Watt, John ; Schober, Gretchen B. ; Hance, Bradley G. ; Austin, Mariah J. ; Price, Andrew D. ; Fellows, Benjamin D. ; Monson, Todd C. ; Hudak, Nicholas S. ; Maldonado-Camargo, Lorena ; Bohorquez, Ana C. ; Rinaldi, Carlos ; Huber, Dale L. Publication Date:

  11. Evolution of droplet size distribution and autoconversion parameterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in turbulent clouds Evolution of droplet size distribution and autoconversion parameterization in turbulent clouds McGraw, Robert Brookhaven National Laboratory Liu, Yangang Brookhaven National Laboratory Category: Modeling Effects from turbulence-induced fluctuations in water vapor saturation on cloud droplet growth are examined using a Brownian diffusion model [McGraw and Liu, 2006]. The model predicts diffusive broadening of the droplet size distribution, tempered by enhanced

  12. Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape Versatile Diesel Particulate Filter Cartridge Any Size, Any Shape Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_nixdorf.pdf More Documents & Publications Pleated Ceramic Fiber Diesel Particulate Filter Ultra-Lite Diesel Particulate Filter Cartridge for Reduced

  13. Scalable Heuristics for Planning, Placement and Sizing of Flexible AC

    Office of Scientific and Technical Information (OSTI)

    Transmission System Devices (Technical Report) | SciTech Connect Technical Report: Scalable Heuristics for Planning, Placement and Sizing of Flexible AC Transmission System Devices Citation Details In-Document Search Title: Scalable Heuristics for Planning, Placement and Sizing of Flexible AC Transmission System Devices Aiming to relieve transmission grid congestion and improve or extend feasibility domain of the operations, we build optimization heuristics, generalizing standard AC Optimal

  14. Size Effects in the Electrochemical Alloying and Cycling of

    Office of Scientific and Technical Information (OSTI)

    Electrodeposited Aluminum with Lithium. (Journal Article) | SciTech Connect Size Effects in the Electrochemical Alloying and Cycling of Electrodeposited Aluminum with Lithium. Citation Details In-Document Search Title: Size Effects in the Electrochemical Alloying and Cycling of Electrodeposited Aluminum with Lithium. Abstract not provided. Authors: Hudak, Nicholas ; Huber, Dale L. Publication Date: 2011-10-01 OSTI Identifier: 1106948 Report Number(s): SAND2011-7589J 464917 DOE Contract

  15. Microsoft PowerPoint - ARM2007LetterSize.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote sensing microphysical retrieval and cloud microphysics parameterizations rely on a knowledge of the shape of cloud drop size distributions (DSD). These are often approximated by Gamma, lognormal, or, more specifically by Khrgian-Mazin, Marshall-Palmer type distributions. We ask the question which functional form approximates best the drop size distributions in drizzling stratocumulus? Specifically, we evaluate the accuracy of lognormal and Gamma-type distributions in approximating higher

  16. Decreasing transmembrane segment length greatly decreases perfringolysin O pore size

    SciTech Connect (OSTI)

    Lin, Qingqing; Li, Huilin; Wang, Tong; London, Erwin

    2015-04-08

    Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30–50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakage assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.

  17. Decreasing transmembrane segment length greatly decreases perfringolysin O pore size

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Qingqing; Li, Huilin; Wang, Tong; London, Erwin

    2015-04-08

    Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30–50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakagemore » assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.« less

  18. Residential Variable-Capacity Heat Pumps Sized to Heating Loads

    SciTech Connect (OSTI)

    Munk, Jeffrey D.; Jackson, Roderick K.; Odukomaiya, Adewale; Gehl, Anthony C.

    2014-01-01

    Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in the cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.

  19. Size exclusion deep bed filtration: Experimental and modelling uncertainties

    SciTech Connect (OSTI)

    Badalyan, Alexander You, Zhenjiang; Aji, Kaiser; Bedrikovetsky, Pavel; Carageorgos, Themis; Zeinijahromi, Abbas

    2014-01-15

    A detailed uncertainty analysis associated with carboxyl-modified latex particle capture in glass bead-formed porous media enabled verification of the two theoretical stochastic models for prediction of particle retention due to size exclusion. At the beginning of this analysis it is established that size exclusion is a dominant particle capture mechanism in the present study: calculated significant repulsive Derjaguin-Landau-Verwey-Overbeek potential between latex particles and glass beads is an indication of their mutual repulsion, thus, fulfilling the necessary condition for size exclusion. Applying linear uncertainty propagation method in the form of truncated Taylor's series expansion, combined standard uncertainties (CSUs) in normalised suspended particle concentrations are calculated using CSUs in experimentally determined parameters such as: an inlet volumetric flowrate of suspension, particle number in suspensions, particle concentrations in inlet and outlet streams, particle and pore throat size distributions. Weathering of glass beads in high alkaline solutions does not appreciably change particle size distribution, and, therefore, is not considered as an additional contributor to the weighted mean particle radius and corresponded weighted mean standard deviation. Weighted mean particle radius and LogNormal mean pore throat radius are characterised by the highest CSUs among all experimental parameters translating to high CSU in the jamming ratio factor (dimensionless particle size). Normalised suspended particle concentrations calculated via two theoretical models are characterised by higher CSUs than those for experimental data. The model accounting the fraction of inaccessible flow as a function of latex particle radius excellently predicts normalised suspended particle concentrations for the whole range of jamming ratios. The presented uncertainty analysis can be also used for comparison of intra- and inter-laboratory particle size exclusion data.

  20. Effect of particle size reduction on anaerobic sludge digestion

    SciTech Connect (OSTI)

    Koutsospyros, A.D.

    1990-01-01

    The majority of organic pollutants in primary sludge are suspended in the form of particulate rather than soluble matter. Microbial organisms cannot assimilate this material without initial solubilization. In anaerobic digestion, the initial size breakdown is accomplished by hydrolytic bacteria. The extent of solubilization is limited by the size of particulate matter. Thus, size reduction prior to digestion is a sound alternative. Size reduction pretreatment was achieved by means of ultrasonic waves. Sonication proved an effective method for size reduction of particulate matter in primary sludge. In addition, although the method produced relatively high amounts of finely dispered solids, the filtration properties of resulting sludges were not affected. Chemical characteristics of sludge, important in anaerobic digestion, were not affected, at least within the attempted range of sonication time and amplitude. The effect of size reduction of primary sludge solids was studied under batch and semi-continuous feed conditions. Preliminary batch digestion experiments were conducted in five 1.5 liter reactors that accepted sonicated feeds of varying pretreatment at four different feed loads (3.3-13.3% by volume). The digestion efficiency and gas production were increased by as much as 30 percent as a result of sonication without any deterioration in the filtration properties of the digester effluent. At higher feed loads the digester efficiency dropped drastically and significant deterioration of the effluent filtration properties from all reactors was evident. Semi-continuous runs were conducted in four reactors. Solids retention time (SRT) was varied from 8 to 20 days. Process efficiency and gas production were enhanced as a result of sonication. Process improvement was more evident under short SRT (8-10 days).

  1. Level: National Data; Row: Employment Sizes within NAICS Codes;

    Gasoline and Diesel Fuel Update (EIA)

    4 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 562.6 4.7 2.4 50-99 673.1 5.1 2.4 100-249 1,072.8 6.5 3.0 250-499 1,564.3

  2. Level: National Data; Row: Employment Sizes within NAICS Codes;

    Gasoline and Diesel Fuel Update (EIA)

    4 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 625.5 3.3 1.7 50-99 882.3 5.8 2.5 100-249 1,114.9 5.8 2.5 250-499 2,250.4

  3. Concentrations and Size Distributions of Particulate Matter Emissions from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyzed Trap-Equipped Heavy-duty Diesel Vehicles Operating on Ultra-low Sulfur EC-D Fuel | Department of Energy Concentrations and Size Distributions of Particulate Matter Emissions from Catalyzed Trap-Equipped Heavy-duty Diesel Vehicles Operating on Ultra-low Sulfur EC-D Fuel Concentrations and Size Distributions of Particulate Matter Emissions from Catalyzed Trap-Equipped Heavy-duty Diesel Vehicles Operating on Ultra-low Sulfur EC-D Fuel 2002 DEER Conference Presentation: West Virginia

  4. Metal oxide porous ceramic membranes with small pore sizes

    DOE Patents [OSTI]

    Anderson, Marc A. (Madison, WI); Xu, Qunyin (Madison, WI)

    1992-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  5. Metal oxide porous ceramic membranes with small pore sizes

    DOE Patents [OSTI]

    Anderson, Marc A. (Madison, WI); Xu, Qunyin (Madison, WI)

    1991-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  6. Method of controlling crystallite size in nuclear-reactor fuels

    DOE Patents [OSTI]

    Lloyd, Milton H. (Oak Ridge, TN); Collins, Jack L. (Knoxville, TN); Shell, Sam E. (Oak Ridge, TN)

    1985-01-01

    Improved spherules for making enhanced forms of nuclear-reactor fuels are prepared by internal gelation procedures within a sol-gel operation and are accomplished by first boiling the concentrated HMTA-urea feed solution before engaging in the spherule-forming operation thereby effectively controlling crystallite size in the product spherules.

  7. THE STICKINESS OF MICROMETER-SIZED WATER-ICE PARTICLES

    SciTech Connect (OSTI)

    Gundlach, B.; Blum, J.

    2015-01-01

    Water ice is one of the most abundant materials in dense molecular clouds and in the outer reaches of protoplanetary disks. In contrast to other materials (e.g., silicates), water ice is assumed to be stickier due to its higher specific surface energy, leading to faster or more efficient growth in mutual collisions. However, experiments investigating the stickiness of water ice have been scarce, particularly in the astrophysically relevant micrometer-sized region and at low temperatures. In this work, we present an experimental setup to grow aggregates composed of ?m-sized water-ice particles, which we used to measure the sticking and erosion thresholds of the ice particles at different temperatures between 114 K and 260 K. We show with our experiments that for low temperatures (below ?210 K), ?m-sized water-ice particles stick below a threshold velocity of 9.6 m s{sup 1}, which is approximately 10times higher than the sticking threshold of ?m-sized silica particles. Furthermore, erosion of the grown ice aggregates is observed for velocities above 15.3 m s{sup 1}. A comparison of the experimentally derived sticking threshold with model predictions is performed to determine important material properties of water ice, i.e., the specific surface energy and the viscous relaxation time. Our experimental results indicate that the presence of water ice in the outer reaches of protoplanetary disks can enhance the growth of planetesimals by direct sticking of particles.

  8. Screen bowl centrifuge: a high-efficiency particle size separator

    SciTech Connect (OSTI)

    Mohanty, M.K.; Zhang, B.; Khanna, N.; Palit, A.; Dube, B.

    2008-05-15

    Over the years, screen bowl centrifuges have been widely used for dewatering fine coal in coal preparation plants in the United States and elsewhere. It is generally recognized in the engineering and scientific communities that screen bowl centrifuges provide some degree of particle size separation while dewatering fine coal in a common application. However, the extent of differential partitioning of coarse and fine particles achievable by a screen bowl centrifuge has not been systematically studied in the past. The present investigation was aimed at conducting a parametric study using a statistically designed experimental program to better understand and optimize the size classification performance of a screen bowl centrifuge. A continuously operating screen bowl centrifuge having a bowl diameter of 0.5 m was used for this study at the Illinois Coal Development Park. Three key operating parameters, i.e., feed flow rate, feed solid content and pool depth, were varied to conduct a total of 17 experiments using a three-level factorial test matrix. Some of the best size separation performances achieved in this study may be described as having an imperfection value of 0.13 at an effective separation size (d(50c)) of 38 mu m and an imperfection value of 0.27 at an effective separation size (d(50c)) of 2.8 mu m. Due to an effective separation of ultrafine high ash materials, the ash content of the screen bowl feed was reduced from 22.3% to a minimum of 8.84% with a combustible recovery of 84.1% and an ash rejection of 71.6%. A higher combustible recovery of 92.1% was achieved at a product ash content of 12.5% with a d(50c) of 2.8 mu m and imperfection of 0.27.

  9. Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles

    DOE Patents [OSTI]

    Huber, Dale L. (Albuquerque, NM)

    2011-07-05

    A method for controlling the size of chemically synthesized magnetic nanoparticles that employs magnetic interaction between particles to control particle size and does not rely on conventional kinetic control of the reaction to control particle size. The particles are caused to reversibly agglomerate and precipitate from solution; the size at which this occurs can be well controlled to provide a very narrow particle size distribution. The size of particles is controllable by the size of the surfactant employed in the process; controlling the size of the surfactant allows magnetic control of the agglomeration and precipitation processes. Agglomeration is used to effectively stop particle growth to provide a very narrow range of particle sizes.

  10. DNA fragment sizing and sorting by laser-induced fluorescence

    DOE Patents [OSTI]

    Hammond, Mark L.; Jett, James H.; Keller, Richard A.; Marrone, Babetta L.; Martin, John C.

    1996-01-01

    A method is provided for sizing DNA fragments using high speed detection systems, such as flow cytometry to determine unique characteristics of DNA pieces from a sample. In one characterization the DNA piece is fragmented at preselected sites to produce a plurality of DNA fragments. The DNA piece or the resulting DNA fragments are treated with a dye effective to stain stoichiometrically the DNA piece or the DNA fragments. The fluorescence from the dye in the stained fragments is then examined to generate an output functionally related to the number of nucleotides in each one of the DNA fragments. In one embodiment, the intensity of the fluorescence emissions from each fragment is linearly related to the fragment length. The distribution of DNA fragment sizes forms a characterization of the DNA piece for use in forensic and research applications.

  11. Method and apparatus for physical separation of different sized nanostructures

    DOE Patents [OSTI]

    Roberts, Christopher B.; Saunders, Steven R.

    2012-07-10

    The present application provides apparatuses and methods for the size-selective fractionation of ligand-capped nanoparticles that utilizes the tunable thermophysical properties of gas-expanded liquids. The nanoparticle size separation processes are based on the controlled reduction of the solvent strength of an organic phase nanoparticle dispersion through increases in concentration of the antisolvent gas, such as CO.sub.2, via pressurization. The method of nanomaterial separation contains preparing a vessel having a solvent and dispersed nanoparticles, pressurizing the chamber with a gaseous antisolvent, and causing a first amount of the nanoparticles to precipitate, transporting the solution to a second vessel, pressurizing the second vessel with the gaseous antisolvent and causing further nanoparticles to separate from the solution.

  12. Method for measuring the size distribution of airborne rhinovirus

    SciTech Connect (OSTI)

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.

  13. A novel hybrid (wind-photovoltaic) system sizing procedure

    SciTech Connect (OSTI)

    Hocaoglu, Fatih O.; Gerek, Oemer N.; Kurban, Mehmet

    2009-11-15

    Wind-photovoltaic hybrid system (WPHS) utilization is becoming popular due to increasing energy costs and decreasing prices of turbines and photovoltaic (PV) panels. However, prior to construction of a renewable generation station, it is necessary to determine the optimum number of PV panels and wind turbines for minimal cost during continuity of generated energy to meet the desired consumption. In fact, the traditional sizing procedures find optimum number of the PV modules and wind turbines subject to minimum cost. However, the optimum battery capacity is either not taken into account, or it is found by a full search between all probable solution spaces which requires extensive computation. In this study, a novel description of the production/consumption phenomenon is proposed, and a new sizing procedure is developed. Using this procedure, optimum battery capacity, together with optimum number of PV modules and wind turbines subject to minimum cost can be obtained with good accuracy. (author)

  14. Table B6. Building Size, Number of Buildings, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    B6. Building Size, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings ","Building Size" ,,"1,001 to 5,000 Square Feet","5,001 to 10,000 Square Feet","10,001 to 25,000 Square Feet","25,001 to 50,000 Square Feet","50,001 to 100,000 Square Feet","100,001 to 200,000 Square Feet","200,001 to 500,000 Square Feet","Over 500,000 Square Feet" "All Buildings

  15. Size and weight graded multi-ply laminar electrodes

    DOE Patents [OSTI]

    Liu, Chia-Tsun (Monroeville, PA); Demczyk, Brian G. (Rostrover Township, Westmoreland County, PA); Rittko, Irvin R. (Murrysville Borough, PA)

    1984-01-01

    An electrode is made comprising a porous backing sheet, and attached thereto a catalytically active layer having an electrolyte permeable side and a backing layer contacting side, where the active layer comprises a homogeneous mixture of active hydrophobic and hydrophilic agglomerates with catalyst disposed equally throughout the active layer, and where the agglomerate size increases from the electrolyte permeable side to the backing sheet contacting side.

  16. Synthesis of micro-sized interconnected Si-C composites

    DOE Patents [OSTI]

    Wang, Donghai; Yi, Ran; Dai, Fang

    2016-02-23

    Embodiments provide a method of producing micro-sized Si--C composites or doped Si--C and Si alloy-C with interconnected nanoscle Si and C building blocks through converting commercially available SiO.sub.x (0

  17. ARM - Publications: Science Team Meeting Documents: Stratocumulus cell size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and emittance at the ARM TWP Darwin site - implications for observations from CALIPSO Stratocumulus cell size and emittance at the ARM TWP Darwin site - implications for observations from CALIPSO Platt, C. Colorado State University and CSIRO Atmospheric Research Bennett, John CSIRO Atmospheric Research The NASA CALIPSO satellite instrument due to be launched in mid-2005 will carry a two-wavelength polarisation lidar and a scanning filter infrared radiometer viewing in the nadir. Preliminary

  18. Finite-size instabilities in nuclear energy density functionals

    SciTech Connect (OSTI)

    Hellemans, V.; Heenen, P.-H.; Bender, M.

    2012-10-20

    The systematic lack of convergence of self-consistent mean-field calculations with certain parameterizations of the Skyrme energy density functional has been attributed to the appearance of finite-size instabilities. In this contribution, we investigate what happens at the instability associated with the C{sub 0}{sup {Delta}s}s{sub 0} Dot-Operator {Delta}s{sub 0} term in a high-spin state of the superdeformed band in {sup 194}Hg.

  19. Analytical determination of critical crack size in solar cells

    SciTech Connect (OSTI)

    Chen, C.P.

    1988-05-01

    Although solar cells usually have chips and cracks, no material specifications concerning the allowable crack size on solar cells are available for quality assurance and engineering design usage. Any material specifications that the cell manufacturers use were developed for cosmetic reasons that have no technical basis. Therefore, the Applied Solar Energy Corporation (ASEC) has sponsored a continuing program for the fracture mechanics evaluation of GaAs. Fracture mechanics concepts were utilized to develop an analytical model that can predict the critical crack size of solar cells. This model indicates that the edge cracks of a solar cell are more critical than its surface cracks. In addition, the model suggests that the material specifications on the allowable crack size used for Si solar cells should not be applied to GaAs solar cells. The analytical model was applied to Si and GaAs solar cells, but it would also be applicable to the semiconductor wafers of other materials, such as a GaAs thin film on a Ge substrate, using appropriate input data.

  20. Water holding capacities of fly ashes: Effect of size fractionation

    SciTech Connect (OSTI)

    Sarkar, A.; Rano, R.

    2007-07-01

    Water holding capacities of fly ashes from different thermal power plants in Eastern India have been compared. Moreover, the effect of size fractionation (sieving) on the water holding capacities has also been determined. The desorption rate of water held by the fly ash fractions at ambient temperature (25-30{sup o}C) has been investigated. The effect of mixing various size fractions of fly ash in increasing the water holding capacities of fly ash has been studied. It is observed that the fly ash obtained from a thermal power plant working on stoker-fired combustor has the highest water holding capacity, followed by the one that works on pulverized fuel combustor. Fly ash collected from super thermal power plant has the least water holding capacity (40.7%). The coarser size fractions of fly ashes in general have higher water holding capacities than the finer ones. An attempt has been made to correlate the results obtained, with the potential use in agriculture.

  1. Method for sizing and desizing yarns with liquid and supercritical carbon dioxide solvent

    DOE Patents [OSTI]

    Fulton, J.L.; Yonker, C.R.; Hallen, R.R.; Baker, E.G.; Bowman, L.E.; Silva, L.J.

    1999-01-26

    Disclosed is a method of sizing and desizing yarn, or more specifically to a method of coating yarn with size and removing size from yarn with liquid carbon dioxide solvent. 3 figs.

  2. Method for sizing and desizing yarns with liquid and supercritical carbon dioxide solvent

    DOE Patents [OSTI]

    Fulton, John L. (Richland, WA); Yonker, Clement R. (Richland, WA); Hallen, Richard R. (Richland, WA); Baker, Eddie G. (Richland, WA); Bowman, Lawrence E. (Richland, WA); Silva, Laura J. (Richland, WA)

    1999-01-01

    Disclosed is a method of sizing and desizing yarn, or more specifically to a method of coating yarn with size and removing size from yarn with liquid carbon dioxide solvent.

  3. sup 40 Ar/ sup 39 laser-probe dating by step heating and spot fusion of phengites from the Dora Maira nappe of the western Alps, Italy

    SciTech Connect (OSTI)

    Scaillet, S.; Feraud, G. ); Lagabrielle, Y. ); Ballevre, M.; Ruffet, G. )

    1990-08-01

    {sup 40}Ar/{sup 39}Ar laser-probe dating of phengitic micas has been carried out by step-heating and spot-fusion procedures. These micas represent successive deformation stages in the structural evolution of the internal Dora Maira nappe, western Alps. Single phengites from a gneiss affected by a single ductile strain under retrogressive conditions (sample 99.1) display complete isotopic resetting with nearly homogeneous intracrystalline Ar distribution and yield plateau ages of about 40 Ma. Small clusters of phengites from an earlier foliation were selected from a polydeformed mica schist (sample PTX3). They show a partial isotopic resetting in response to overprinting during the retrogressive deformation stage with a concentric age zoning from 68 Ma on the rim to 87 Ma in the core one cleavage plane. This zonation is fully consistent with the laser-derived discordant age spectrum, which ranges from 40 to 90 Ma from low to high temperatures. According to the deformation history of both samples, these preliminary data suggest a deformation control on Ar migration during recrystallization processes, and they are consistent with the timing of the collisional evolution previously reported for southern Dora Maira units. This study shows that the {sup 40}Ar/{sup 39}Ar continuous laser-probe dating technique produces data accurate enough to discriminate several tectonometamorphic episodes recorded in single hand samples.

  4. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Consumption Ratios of Fuel, 1998;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per

  5. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2002;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." " "," ",,,"Consumption"," " " "," ",,"Consumption","per Dollar" " "," ","Consumption","per Dollar","of Value","RSE" "NAICS",,"per

  6. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2006;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic

  7. " Row: Employment Sizes within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2010;" " Level: National Data; " " Row: Employment Sizes within NAICS Codes;" " Column: Energy-Consumption Ratios;" " Unit: Varies." ,,,,"Consumption" ,,,"Consumption","per Dollar" ,,"Consumption","per Dollar","of Value" "NAICS",,"per Employee","of Value Added","of Shipments" "Code(a)","Economic

  8. Micro-size gas turbines create market opportunities

    SciTech Connect (OSTI)

    Scott, W.G.

    1997-09-01

    Power plants in the 25 to 250 kW-size range will enable utilities, IPPs and ESCOs to provide economic power for a variety of applications. Small, low-cost, highly efficient gas turbines provide the utility industry with a four-generation technology that features numerous benefits and potential applications. These include firm power to isolated communities, commercial centers and industries; peak shaving for utility systems to reduce the incremental cost of additional loads; peak shaving for large commercial and industrial establishments to reduce demand charges, as well as standby, emergency power and uninterruptible power supply (UPS).

  9. Table B10. Employment Size Category, Number of Buildings, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Employment Size Category, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","Number of Workers" ,,"Fewer than 5 Workers","5 to 9 Workers","10 to 19 Workers","20 to 49 Workers","50 to 99 Workers","100 to 249 Workers","250 or More Workers" "All Buildings ................",4657,2376,807,683,487,174,90,39 "Building Floorspace" "(Square

  10. Neutrons measure phase behavior in pores at Angstrom size

    SciTech Connect (OSTI)

    Bardoel, Agatha A; Melnichenko, Yuri B

    2012-01-01

    Researchers have measured the phase behavior of green house gases in pores at the Angstrom-level, using small angle neutron scattering (SANS) at the Oak Ridge National Laboratory's High Flux Isotope Reactor. Yuri Melnichenko, an instrument scientist on the General Purpose Small Angle Neutron Scattering (GP SANS) Diffractometer at ORNL's High Flux Isotope Reactor, his postdoctoral associate Lilin He and collaborators Nidia Gallego and Cristian Contescu from the Material Sciences Division (ORNL) were engaged in the work. They were studying nanoporous carbons to assess their attractiveness as storage media for hydrogen, with a view to potential use for on-board hydrogen storage for transportation applications. Nanoporous carbons can also serve as electrode material for supercapacitors and batteries. The researchers successfully determined that the most efficiently condensing pore size in a carbon nanoporous material for hydrogen storage is less than one nanometer. In a paper recently published by the Journal of the American Chemical Society, the collaborators used small angle neutron scattering to study how hydrogen condenses in small pores at ambient temperature. They discovered that the surface-molecule interactions create internal pressures in pores that may exceed the external gas pressure by a factor of up to 50. 'This is an exciting result,' Melnichenko said, 'as you achieve extreme densification in pores 'for free', i.e. without spending any energy. These results can be used to guide the development of new carbon adsorbents tailored to maximize hydrogen storage capacities.' Another important factor that defines the adsorption capacity of sub-nanometer pores is their shape. In order to get accurate structural information and maximize sorption capacity, it is important that pores are small and of approximately uniform size. In collaboration with Drexel University's Yury Gogotsi who supplied the samples, Melnichenko and his collaborators used the GP SANS instrument to study how the size and shape of pores in sub-nanometer porous carbons varies, depending on the manufacturing conditions. While small angle X-ray scattering (SAXS) can do the job too, Melnichenko says, the SANS method broke new ground in analyzing the shape and behavior of pores at subnanometer size, when subjected to varying synthesis temperature. 'We found that these very small pores are in fact spherical, and that when we change the synthesis conditions, they become elongated, even 'slit-like', and all of this on a subnanometer scale,' Melnichenko said.

  11. Size reduction techniques for vital compliant VHDL simulation models

    DOE Patents [OSTI]

    Rich, Marvin J.; Misra, Ashutosh

    2006-08-01

    A method and system select delay values from a VHDL standard delay file that correspond to an instance of a logic gate in a logic model. Then the system collects all the delay values of the selected instance and builds super generics for the rise-time and the fall-time of the selected instance. Then, the system repeats this process for every delay value in the standard delay file (310) that correspond to every instance of every logic gate in the logic model. The system then outputs a reduced size standard delay file (314) containing the super generics for every instance of every logic gate in the logic model.

  12. Size-dependent structure of silver nanoparticles under high pressure

    SciTech Connect (OSTI)

    Koski, Kristie Jo

    2008-12-31

    Silver noble metal nanoparticles that are<10 nm often possess multiply twinned grains allowing them to adopt shapes and atomic structures not observed in bulk materials. The properties exhibited by particles with multiply twinned polycrystalline structures are often far different from those of single-crystalline particles and from the bulk. I will present experimental evidence that silver nanoparticles<10 nm undergo a reversible structural transformation under hydrostatic pressures up to 10 GPa. Results for nanoparticles in the intermediate size range of 5 to 10 nm suggest a reversible linear pressure-dependent rhombohedral distortion which has not been previously observed in bulk silver. I propose a mechanism for this transitiion that considers the bond-length distribution in idealized multiply twinned icosahedral particles. Results for nanoparticles of 3.9 nm suggest a reversible linear pressure-dependent orthorhombic distortion. This distortion is interpreted in the context of idealized decahedral particles. In addition, given these size-dependent measurements of silver nanoparticle compression with pressure, we have constructed a pressure calibration curve. Encapsulating these silver nanoparticles in hollow metal oxide nanospheres then allows us to measure the pressure inside a nanoshell using x-ray diffraction. We demonstrate the measurement of pressure gradients across nanoshells and show that these nanoshells have maximum resolved shear strengths on the order of 500 MPa to IGPa.

  13. Particle impactor assembly for size selective high volume air sampler

    DOE Patents [OSTI]

    Langer, Gerhard (Boulder, CO)

    1988-08-16

    Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented impactor slots of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind the relatively larger particles according to the human thoracic separation system and passes through two elongate exhaust apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. The elongate exhaust apertures defining the impaction collection surface are spaced apart by a distance greater than the lengths of elongate impactor slots in the inlet element and are oriented to be normal thereto. By appropriate selection of dimensions and the number of impactor slots air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the impactor slots, in order to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks.

  14. The intrinsic two-dimensional size of Sagittarius A*

    SciTech Connect (OSTI)

    Bower, Geoffrey C.; Markoff, Sera; Brunthaler, Andreas; Falcke, Heino; Law, Casey; Maitra, Dipankar; Clavel, M.; Goldwurm, A.; Morris, M. R.; Witzel, Gunther; Meyer, Leo; Ghez, A. M.

    2014-07-20

    We report the detection of the two-dimensional structure of the radio source associated with the Galactic Center black hole, Sagittarius A*, obtained from Very Long Baseline Array observations at a wavelength of 7 mm. The intrinsic source is modeled as an elliptical Gaussian with major-axis size 35.4 12.6 R{sub S} in position angle 95 east of north. This morphology can be interpreted in the context of both jet and accretion disk models for the radio emission. There is supporting evidence in large angular-scale multi-wavelength observations for both source models for a preferred axis near 95. We also place a maximum peak-to-peak change of 15% in the intrinsic major-axis size over five different epochs. Three observations were triggered by detection of near infrared (NIR) flares and one was simultaneous with a large X-ray flare detected by NuSTAR. The absence of simultaneous and quasi-simultaneous flares indicates that not all high energy events produce variability at radio wavelengths. This supports the conclusion that NIR and X-ray flares are primarily due to electron excitation and not to an enhanced accretion rate onto the black hole.

  15. Method of assembly of molecular-sized nets and scaffolding

    DOE Patents [OSTI]

    Michl, Josef; Magnera, Thomas F.; David, Donald E.; Harrison, Robin M.

    1999-01-01

    The present invention relates to methods and starting materials for forming molecular-sized grids or nets, or other structures based on such grids and nets, by creating molecular links between elementary molecular modules constrained to move in only two directions on an interface or surface by adhesion or bonding to that interface or surface. In the methods of this invention, monomers are employed as the building blocks of grids and more complex structures. Monomers are introduced onto and allowed to adhere or bond to an interface. The connector groups of adjacent adhered monomers are then polymerized with each other to form a regular grid in two dimensions above the interface. Modules that are not bound or adhered to the interface are removed prior to reaction of the connector groups to avoid undesired three-dimensional cross-linking and the formation of non-grid structures. Grids formed by the methods of this invention are useful in a variety of applications, including among others, for separations technology, as masks for forming regular surface structures (i.e., metal deposition) and as templates for three-dimensional molecular-sized structures.

  16. Method of assembly of molecular-sized nets and scaffolding

    DOE Patents [OSTI]

    Michl, J.; Magnera, T.F.; David, D.E.; Harrison, R.M.

    1999-03-02

    The present invention relates to methods and starting materials for forming molecular-sized grids or nets, or other structures based on such grids and nets, by creating molecular links between elementary molecular modules constrained to move in only two directions on an interface or surface by adhesion or bonding to that interface or surface. In the methods of this invention, monomers are employed as the building blocks of grids and more complex structures. Monomers are introduced onto and allowed to adhere or bond to an interface. The connector groups of adjacent adhered monomers are then polymerized with each other to form a regular grid in two dimensions above the interface. Modules that are not bound or adhered to the interface are removed prior to reaction of the connector groups to avoid undesired three-dimensional cross-linking and the formation of non-grid structures. Grids formed by the methods of this invention are useful in a variety of applications, including among others, for separations technology, as masks for forming regular surface structures (i.e., metal deposition) and as templates for three-dimensional molecular-sized structures. 9 figs.

  17. SPOT Suite Transforms Beamline Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drive, import it to his computer and manually manipulate and reconstruct it. Because each image file was about 20 gigabytes, this process was very time-intensive. And while he was...

  18. Regions for Select Spot Prices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are used to represent the following regions: Region Gas Point Used Power Point Used New England Algonquin Citygate Massachusetts Hub (ISONE) New York City Transco Zone 6-NY...

  19. Size-exclusion chromatography system for macromolecular interaction analysis

    DOE Patents [OSTI]

    Stevens, Fred J.

    1988-01-01

    A low pressure, microcomputer controlled system employing high performance liquid chromatography (HPLC) allows for precise analysis of the interaction of two reversibly associating macromolecules such as proteins. Since a macromolecular complex migrates faster than its components during size-exclusion chromatography, the difference between the elution profile of a mixture of two macromolecules and the summation of the elution profiles of the two components provides a quantifiable indication of the degree of molecular interaction. This delta profile is used to qualitatively reveal the presence or absence of significant interaction or to rank the relative degree of interaction in comparing samples and, in combination with a computer simulation, is further used to quantify the magnitude of the interaction in an arrangement wherein a microcomputer is coupled to analytical instrumentation in a novel manner.

  20. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOE Patents [OSTI]

    Flinn, J.E.; Kelly, T.F.

    1999-06-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains. 20 figs.

  1. Oscillating magnetocaloric effect in size-quantized diamagnetic film

    SciTech Connect (OSTI)

    Alisultanov, Z. Z.

    2014-03-21

    We investigate the oscillating magnetocaloric effect on a size-quantized diamagnetic film in a transverse magnetic field. We obtain the analytical expression for the thermodynamic potential in case of the arbitrary spectrum of carriers. The entropy change is shown to be the oscillating function of the magnetic field and the film thickness. The nature of this effect is the same as for the de Haas–van Alphen effect. The magnetic part of entropy has a maximal value at some temperature. Such behavior of the entropy is not observed in magneto-ordered materials. We discuss the nature of unusual behavior of the magnetic entropy. We compare our results with the data obtained for 2D and 3D cases.

  2. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOE Patents [OSTI]

    Flinn, John E. (Idaho Falls, ID); Kelly, Thomas F. (Madison, WI)

    1999-01-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.

  3. Medium-size high-temperature gas-cooled reactor

    SciTech Connect (OSTI)

    Peinado, C.O.; Koutz, S.L.

    1980-08-01

    This report summarizes high-temperature gas-cooled reactor (HTGR) experience for the 40-MW(e) Peach Bottom Nuclear Generating Station of Philadelphia Electric Company and the 330-MW(e) Fort St. Vrain Nuclear Generating Station of the Public Service Company of Colorado. Both reactors are graphite moderated and helium cooled, operating at approx. 760/sup 0/C (1400/sup 0/F) and using the uranium/thorium fuel cycle. The plants have demonstrated the inherent safety characteristics, the low activation of components, and the high efficiency associated with the HTGR concept. This experience has been translated into the conceptual design of a medium-sized 1170-MW(t) HTGR for generation of 450 MW of electric power. The concept incorporates inherent HTGR safety characteristics (a multiply redundant prestressed concrete reactor vessel (PCRV), a graphite core, and an inert single-phase coolant) and engineered safety features (core auxiliary cooling, relief valve, and steam generator dump systems).

  4. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    SciTech Connect (OSTI)

    Goldman, Charles; Fuller, Merrian C.; Stuart, Elizabeth; Peters, Jane S.; McRae, Marjorie; Albers, Nathaniel; Lutzenhiser, Susan; Spahic, Mersiha

    2010-03-22

    The energy efficiency services sector (EESS) is poised to become an increasingly important part of the U.S. economy. Climate change and energy supply concerns, volatile and increasing energy prices, and a desire for greater energy independence have led many state and national leaders to support an increasingly prominent role for energy efficiency in U.S. energy policy. The national economic recession has also helped to boost the visibility of energy efficiency, as part of a strategy to support economic recovery. We expect investment in energy efficiency to increase dramatically both in the near-term and through 2020 and beyond. This increase will come both from public support, such as the American Recovery and Reinvestment Act (ARRA) and significant increases in utility ratepayer funds directed toward efficiency, and also from increased private spending due to codes and standards, increasing energy prices, and voluntary standards for industry. Given the growing attention on energy efficiency, there is a concern among policy makers, program administrators, and others that there is an insufficiently trained workforce in place to meet the energy efficiency goals being put in place by local, state, and federal policy. To understand the likelihood of a potential workforce gap and appropriate response strategies, one needs to understand the size, composition, and potential for growth of the EESS. We use a bottom-up approach based upon almost 300 interviews with program administrators, education and training providers, and a variety of EESS employers and trade associations; communications with over 50 sector experts; as well as an extensive literature review. We attempt to provide insight into key aspects of the EESS by describing the current job composition, the current workforce size, our projections for sector growth through 2020, and key issues that may limit this growth.

  5. Electric mergers: Transmission pricing, market size, and effects on competition

    SciTech Connect (OSTI)

    Legato, C.D.

    1996-06-01

    The prospect of deregulation has introducted a wave of mergers among electric utilities. Most of these mergers would fail an antitrust review because, by combining generation assets of interconnected utilities, they have substantially reduced potential competition in generation. In fact, one can predict that most mergers of utilities that operate within the same power pool or reliability region will be anticompetitive, even if they are not interconnected. Using an antitrust analysis, this article illustrates the potential anticompetitive effects of mergers between interconnected utilities. It concludes that the relevant geographic market will be an area in which a single, area-wide transmission price is charged. Moreover, it concludes that this area and, hence, the relevant market will likely span an area no larger than the Mid-American Interconnected Network or the Virginia/Carolina subregion of the Southeastern Reliability Council. Assuming markets of this size, the data on resulting concentration will show severe consequences for mergers of the sort that were announced in 1995 and 1996.

  6. Scaling Semantic Graph Databases in Size and Performance

    SciTech Connect (OSTI)

    Morari, Alessandro; Castellana, Vito G.; Villa, Oreste; Tumeo, Antonino; Weaver, Jesse R.; Haglin, David J.; Choudhury, Sutanay; Feo, John T.

    2014-08-06

    In this paper we present SGEM, a full software system for accelerating large-scale semantic graph databases on commodity clusters. Unlike current approaches, SGEM addresses semantic graph databases by only employing graph methods at all the levels of the stack. On one hand, this allows exploiting the space efficiency of graph data structures and the inherent parallelism of graph algorithms. These features adapt well to the increasing system memory and core counts of modern commodity clusters. On the other hand, however, these systems are optimized for regular computation and batched data transfers, while graph methods usually are irregular and generate fine-grained data accesses with poor spatial and temporal locality. Our framework comprises a SPARQL to data parallel C compiler, a library of parallel graph methods and a custom, multithreaded runtime system. We introduce our stack, motivate its advantages with respect to other solutions and show how we solved the challenges posed by irregular behaviors. We present the result of our software stack on the Berlin SPARQL benchmarks with datasets up to 10 billion triples (a triple corresponds to a graph edge), demonstrating scaling in dataset size and in performance as more nodes are added to the cluster.

  7. Sandia Energy - Glitter-Sized Photovoltaic Cells in Utility-Scale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glitter-Sized Photovoltaic Cells in Utility-Scale Solar Power Systems Home Renewable Energy Energy News Photovoltaic Solar Glitter-Sized Photovoltaic Cells in Utility-Scale Solar...

  8. Effect of Engine-Out NOx Control Strategies on PM Size Distribution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine-Out NOx Control Strategies on PM Size Distribution in Heavy-Duty Diesel Engines Developed for 2010 Effect of Engine-Out NOx Control Strategies on PM Size Distribution in ...

  9. Better Buildings Alliance, Advanced Rooftop Unit Campaign: RTU Sizing Guidance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    This fact sheet discusses the causes and consequences of incorrect RTU sizing (with respect to cooling tonnage and supply fan horsepower) and points to resources that can help ensure accurate sizing calculations.

  10. ON THE SIZE, SHAPE, AND DENSITY OF DWARF PLANET MAKEMAKE

    SciTech Connect (OSTI)

    Brown, M. E.

    2013-04-10

    A recent stellar occultation by the dwarf planet Makemake provided an excellent opportunity to measure the size and shape of one of the largest objects in the Kuiper belt. The analysis of these results provided what were reported to be precise measurements of the lengths of the projected axes, the albedo, and even the density of Makemake, but these results were, in part, derived from qualitative arguments. We reanalyzed the occultation timing data using a quantitative statistical description, and, in general, found the previously reported results on the shape of Makemake to be unjustified. In our solution, in which we use our inference from photometric data that Makemake is being viewed nearly pole-on, we find a 1{sigma} upper limit to the projected elongation of Makemake of 1.02, with measured equatorial diameter of 1434 {+-} 14 km and a projected polar diameter of 1422 {+-} 14 km, yielding an albedo of 0.81{sup +0.01}{sub -0.02}. If we remove the external constraint on the pole position of Makemake, we find instead a 1{sigma} upper limit to the elongation of 1.06, with a measured equatorial diameter of 1434{sup +48}{sub -18} km and a projected polar diameter of 1420{sup +18}{sub -24} km, yielding an albedo of 0.81{sup +0.03}{sub -0.05}. Critically, we find that the reported measurement of the density of Makemake was based on the misapplication of the volatile retention models. A corrected analysis shows that the occultation measurements provide no meaningful constraint on the density of Makemake.

  11. Building America Webinar: HVAC Right-Sizing Part 1-Calculating Loads |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy HVAC Right-Sizing Part 1-Calculating Loads Building America Webinar: HVAC Right-Sizing Part 1-Calculating Loads During this webinar, Building America Research Team IBACOS highlighted the key criteria required to create accurate heating and cooling load calculations. Current industry rules of thumb, perceptions and barriers to right-sizing HVAC were also discussed. File webinar_hvac_calculatingloads_20110428.wmv More Documents & Publications HVAC Right-Sizing Part 1:

  12. Comparing Server Energy Use and Efficiency Using Small Sample Sizes

    SciTech Connect (OSTI)

    Coles, Henry C.; Qin, Yong; Price, Phillip N.

    2014-11-01

    This report documents a demonstration that compared the energy consumption and efficiency of a limited sample size of server-type IT equipment from different manufacturers by measuring power at the server power supply power cords. The results are specific to the equipment and methods used. However, it is hoped that those responsible for IT equipment selection can used the methods described to choose models that optimize energy use efficiency. The demonstration was conducted in a data center at Lawrence Berkeley National Laboratory in Berkeley, California. It was performed with five servers of similar mechanical and electronic specifications; three from Intel and one each from Dell and Supermicro. Server IT equipment is constructed using commodity components, server manufacturer-designed assemblies, and control systems. Server compute efficiency is constrained by the commodity component specifications and integration requirements. The design freedom, outside of the commodity component constraints, provides room for the manufacturer to offer a product with competitive efficiency that meets market needs at a compelling price. A goal of the demonstration was to compare and quantify the server efficiency for three different brands. The efficiency is defined as the average compute rate (computations per unit of time) divided by the average energy consumption rate. The research team used an industry standard benchmark software package to provide a repeatable software load to obtain the compute rate and provide a variety of power consumption levels. Energy use when the servers were in an idle state (not providing computing work) were also measured. At high server compute loads, all brands, using the same key components (processors and memory), had similar results; therefore, from these results, it could not be concluded that one brand is more efficient than the other brands. The test results show that the power consumption variability caused by the key components as a group is similar to all other components as a group. However, some differences were observed. The Supermicro server used 27 percent more power at idle compared to the other brands. The Intel server had a power supply control feature called cold redundancy, and the data suggest that cold redundancy can provide energy savings at low power levels. Test and evaluation methods that might be used by others having limited resources for IT equipment evaluation are explained in the report.

  13. A practical and theoretical definition of very small field size for radiotherapy output factor measurements

    SciTech Connect (OSTI)

    Charles, P. H. Crowe, S. B.; Langton, C. M.; Trapp, J. V.; Cranmer-Sargison, G.; Thwaites, D. I.; Kairn, T.; Knight, R. T.; Kenny, J.

    2014-04-15

    Purpose: This work introduces the concept of very small field size. Output factor (OPF) measurements at these field sizes require extremely careful experimental methodology including the measurement of dosimetric field size at the same time as each OPF measurement. Two quantifiable scientific definitions of the threshold of very small field size are presented. Methods: A practical definition was established by quantifying the effect that a 1 mm error in field size or detector position had on OPFs and setting acceptable uncertainties on OPF at 1%. Alternatively, for a theoretical definition of very small field size, the OPFs were separated into additional factors to investigate the specific effects of lateral electronic disequilibrium, photon scatter in the phantom, and source occlusion. The dominant effect was established and formed the basis of a theoretical definition of very small fields. Each factor was obtained using Monte Carlo simulations of a Varian iX linear accelerator for various square field sizes of side length from 4 to 100 mm, using a nominal photon energy of 6 MV. Results: According to the practical definition established in this project, field sizes ?15 mm were considered to be very small for 6 MV beams for maximal field size uncertainties of 1 mm. If the acceptable uncertainty in the OPF was increased from 1.0% to 2.0%, or field size uncertainties are 0.5 mm, field sizes ?12 mm were considered to be very small. Lateral electronic disequilibrium in the phantom was the dominant cause of change in OPF at very small field sizes. Thus the theoretical definition of very small field size coincided to the field size at which lateral electronic disequilibrium clearly caused a greater change in OPF than any other effects. This was found to occur at field sizes ?12 mm. Source occlusion also caused a large change in OPF for field sizes ?8 mm. Based on the results of this study, field sizes ?12 mm were considered to be theoretically very small for 6 MV beams. Conclusions: Extremely careful experimental methodology including the measurement of dosimetric field size at the same time as output factor measurement for each field size setting and also very precise detector alignment is required at field sizes at least ?12 mm and more conservatively?15 mm for 6 MV beams. These recommendations should be applied in addition to all the usual considerations for small field dosimetry, including careful detector selection.

  14. Method and apparatus for sizing and separating warp yarns using acoustical energy

    DOE Patents [OSTI]

    Sheen, Shuh-Haw (Naperville, IL); Chien, Hual-Te (Naperville, IL); Raptis, Apostolos C. (Downers Grove, IL); Kupperman, David S. (Oak Park, IL)

    1998-01-01

    A slashing process for preparing warp yarns for weaving operations including the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns.

  15. Method and apparatus for sizing and separating warp yarns using acoustical energy

    DOE Patents [OSTI]

    Sheen, S.H.; Chien, H.T.; Raptis, A.C.; Kupperman, D.S.

    1998-05-19

    A slashing process is disclosed for preparing warp yarns for weaving operations including the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns. 2 figs.

  16. Extracting magnetic cluster size and its distributions in advanced perpendicular recording media with shrinking grain size using small angle x-ray scattering

    SciTech Connect (OSTI)

    Mehta, Virat; Ikeda, Yoshihiro; Takano, Ken; Terris, Bruce D.; Hellwig, Olav; Wang, Tianhan; Wu, Benny; Graves, Catherine; Drr, Hermann A.; Scherz, Andreas; Sthr, Jo

    2015-05-18

    We analyze the magnetic cluster size (MCS) and magnetic cluster size distribution (MCSD) in a variety of perpendicular magnetic recording (PMR) media designs using resonant small angle x-ray scattering at the Co L{sub 3} absorption edge. The different PMR media flavors considered here vary in grain size between 7.5 and 9.5?nm as well as in lateral inter-granular exchange strength, which is controlled via the segregant amount. While for high inter-granular exchange, the MCS increases rapidly for grain sizes below 8.5?nm, we show that for increased amount of segregant with less exchange the MCS remains relatively small, even for grain sizes of 7.5 and 8?nm. However, the MCSD still increases sharply when shrinking grains from 8 to 7.5?nm. We show evidence that recording performance such as signal-to-noise-ratio on the spin stand correlates well with the product of magnetic cluster size and magnetic cluster size distribution.

  17. CBEI: Lessons Learned from Integrated Retrofits in Small and Medium Sized

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings - 2015 Peer Review | Department of Energy Lessons Learned from Integrated Retrofits in Small and Medium Sized Commercial Buildings - 2015 Peer Review CBEI: Lessons Learned from Integrated Retrofits in Small and Medium Sized Commercial Buildings - 2015 Peer Review Presenter: Mark Stutman, PSU View the Presentation PDF icon CBEI: Lessons Learned from Integrated Retrofits in Small and Medium Sized Commercial Buildings - 2015 Peer Review More Documents & Publications

  18. CBEI: Packaged Masonry Wall Retrofit Solution for Small and Medium Sized

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Buildings - 2015 Peer Review | Department of Energy Packaged Masonry Wall Retrofit Solution for Small and Medium Sized Commercial Buildings - 2015 Peer Review CBEI: Packaged Masonry Wall Retrofit Solution for Small and Medium Sized Commercial Buildings - 2015 Peer Review Presenter: Mugdha Mokashi, Bayer Materials View the Presentation PDF icon CBEI: Packaged Masonry Wall Retrofit Solution for Small and Medium Sized Commercial Buildings - 2015 Peer Review More Documents &

  19. Current Size and Remaining Market Potential of the U.S. Energy Service

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Company Industry | Department of Energy Current Size and Remaining Market Potential of the U.S. Energy Service Company Industry Current Size and Remaining Market Potential of the U.S. Energy Service Company Industry The study analyzes the size, growth and trends in the U.S. energy service company (ESCO) industry, drawing on information provided by industry executives and experts in 2012. The report also provides a preliminary estimate of remaining investment potential and annual blended

  20. CBEI: AHU FDD in Small and Medium Sized Commercial Buildings - 2015 Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review | Department of Energy AHU FDD in Small and Medium Sized Commercial Buildings - 2015 Peer Review CBEI: AHU FDD in Small and Medium Sized Commercial Buildings - 2015 Peer Review Presenter: Jin Wen, Drexel View the Presentation PDF icon CBEI: AHU FDD in Small and Medium Sized Commercial Buildings - 2015 Peer Review More Documents & Publications Compatible and Cost-Effective Fault Diagnostic Solutions for Air Handling Unit-Variable Air Volume and Air Handling Unit-Constant Air Volume

  1. CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings - 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Review | Department of Energy HVAC Packages for Small and Medium Sized Commercial Buildings - 2015 Peer Review CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings - 2015 Peer Review Presenter: Russell Taylor, United Technologies Research Center View the Presentation PDF icon CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings - 2015 Peer Review More Documents & Publications CBEI: FDD for Advanced RTUs - 2015 Peer Review CBEI: Lessons Learned from

  2. Dispersion of Cloud Droplet Size Distributions, Cloud Parameterizations and Indirect Aerosol Effects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dispersion of Cloud Droplet Size Distributions, Cloud Parameterizations, and Indirect Aerosol Effects P. H. Daum and Y. Liu Brookhaven National Laboratory Upton, New York Introduction Most studies of the effect of aerosols on cloud radiative properties have considered only changes in the cloud droplet concentration, neglecting changes in the spectral shape of the cloud droplet size distribution. However, it has been shown that that the spectral dispersion of the cloud droplet size distribution

  3. Tuning Pore Size to Enhance the Capacitance of Supercapacitors | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Tuning Pore Size to Enhance the Capacitance of Supercapacitors Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications History Contact BES Home 04.27.12 Tuning Pore Size to Enhance the Capacitance of Supercapacitors Print Text Size: A A A FeedbackShare Page Scientific Achievement Simulations of nanoporous super-capacitors confirm and help to understand the anomalous increase in

  4. Current Size and Remaining Market Potential of the U.S. Energy Service

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Company Industry | Department of Energy Current Size and Remaining Market Potential of the U.S. Energy Service Company Industry Current Size and Remaining Market Potential of the U.S. Energy Service Company Industry "This report contains information on Current Size and Remaining Market Potential of the U.S. Energy Service Company Industry, prepared for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, Weatherization and Intergovernmental Program." PDF

  5. Size Dependence of Two-Photon Absorption in Semiconductor Quantum Dots

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Size Dependence of Two-Photon Absorption in Semiconductor Quantum Dots Citation Details In-Document Search Title: Size Dependence of Two-Photon Absorption in Semiconductor Quantum Dots Quantum confinement plays an important role in the optical properties of semiconductor quantum dots (QDs). In this work, we combine experiment and modeling to systematically investigate the size dependence of the degenerate two-photon absorption (TPA) of below-band-gap

  6. Energy Department Helps Manufacturers of Small and Mid-Size Wind Turbines

    Energy Savers [EERE]

    Meet Certification Requirements | Department of Energy Helps Manufacturers of Small and Mid-Size Wind Turbines Meet Certification Requirements Energy Department Helps Manufacturers of Small and Mid-Size Wind Turbines Meet Certification Requirements October 1, 2015 - 1:04pm Addthis Energy Department Helps Manufacturers of Small and Mid-Size Wind Turbines Meet Certification Requirements Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office On October 1, the Energy

  7. Disorder and size effects on Kondo interactions and magneticcorrelations in CePt2 nanoscrystals

    SciTech Connect (OSTI)

    Chen, Y.Y.; Huang, P.H.; Ou, M.N.; Wang, C.R.; Yao, Y.D.; Lee,T.K.; Ho, M.Y.; Lawrence, J.M.; Booth, C.H.

    2006-12-12

    The evolution of the Kondo effect and magnetic correlations with size reduction in CePt{sub 2} nanoparticles (3.1-26 nm) is studied by analysis of the temperature-dependent specific heat and magnetic susceptibility. The antiferromagnetic correlations diminish with size reduction. The Kondo effect predominates at small particle size with trivalent, small Kondo temperature (T{sub K}) magnetic regions coexisting with strongly mixed valent, large T{sub K} nonmagnetic regions. We discuss the role of structural disorder, background density of states and the electronic quantum size effect on the results.

  8. The Importance of Domain Size and Purity in High-Efficiency Organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymerorganic photovoltaic cells hinges on excitons-electronhole pairs energized by...

  9. The Dependence of Cirrus Cloud-Property Retrievals on Size-Distributio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    path (IWP), effective particle size (Deff), and visible extinction optical thickness (tau). During this past year we began comparing our cirrus retrieval results with aircraft...

  10. Size Dependence of the Bandgap of Plasma Synthesized Silicon Nanoparticles Through Direct Introduction of Sulfur Hexafluoride

    SciTech Connect (OSTI)

    Theingi, S.; Guan, T. Y.; Kendrick, C.; Klafehn, G.; Gorman, B. P.; Taylor, P. C.; Lusk, M. T.; Stradins, Pauls; Collins, R. T.

    2015-10-19

    Developing silicon nanoparticle (SiNP) synthesis techniques that allow for straightforward control of nanoparticle size and associated optical properties is critical to potential applications of these materials. In addition, it is, in general, hard to probe the absorption threshold in these materials due to silicon's low absorption coefficient. In this study, size is controlled through direct introduction of sulfur hexafluoride (SF6) into the dilute silane precursor of plasma synthesized SiNPs. Size reduction by nearly a factor of two with high crystallinity independent of size is demonstrated. Optical absorption spectra of the SiNPs in the vicinity of the bandgap are measured using photothermal deflection spectroscopy. Bandgap as a function of size is extracted taking into account the polydispersity of the samples. A systematic blue shift inabsorption edge due to quantum confinement in the SiNPs is observed with increasing flow of SF6. Photoluminescence (PL) spectra show a similar blue shift with size. However, a ~300 meV difference in energy between emission and absorption for all sizes suggests that PL emission involves a defect related process. While PL may allow size-induced shifts in the bandgap of SiNPs to be monitored, it cannot be relied on to give an accurate value for the bandgap as a function of size.

  11. Ultrasonic processor reduces drill-cuttings size and eliminates subsea mounds

    SciTech Connect (OSTI)

    Gaddy, D.E.

    1997-10-06

    Drill cuttings size reduction using ultrasonics eliminated a subsea clean-up and significantly reduced the environmental impact in a North Sea drilling project. Reduction in cuttings size allows for a wider areal dispersion when released into the ocean because they are held in suspension longer than larger sizes. Thus, ocean currents carry the smaller cuttings farther away from the well template, leaving a much wider footprint than larger cuttings sizes. This eliminates the pile-up of cuttings that otherwise would contaminate and harm the marine habitat.

  12. Quantitative Reflectance Spectra of Solid Powders as a Function of Particle Size

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; Blake, Thomas A.; Tonkyn, Russell G.; Ertel, Alyssa B.; Johnson, Timothy J.; Richardson, Robert L.

    2015-05-19

    We have recently developed vetted methods for obtaining quantitative infrared directional-hemispherical reflectance spectra using a commercial integrating sphere. In this paper, the effects of particle size on the spectral properties are analyzed for several samples such as ammonium sulfate, calcium carbonate, and sodium sulfate as well as one organic compound, lactose. We prepared multiple size fractions for each sample and confirmed the mean sizes using optical microscopy. Most species displayed a wide range of spectral behavior depending on the mean particle size. General trends of reflectance vs. particle size are observed such as increased albedo for smaller particles: for mostmorewavelengths, the reflectivity drops with increased size, sometimes displaying a factor of 4 or more drop in reflectivity along with a loss of spectral contrast. In the longwave infrared, several species with symmetric anions or cations exhibited reststrahlen features whose amplitude was nearly invariant with particle size, at least for intermediate- and large-sized sample fractions; that is, > ~150 microns. Trends of other types of bands (Christiansen minima, transparency features) are also investigated as well as quantitative analysis of the observed relationship between reflectance vs. particle diameter.less

  13. Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD

    SciTech Connect (OSTI)

    Wiora, M; Bruehne, K; Floeter, A; Gluche, P; Willey, T M; Kucheyev, S O; Van Buuren, A W; Hamza, A V; Biener, J; Fecht, H

    2008-08-01

    Nanocrystalline diamond (NCD) films with a thickness of {approx}6 {micro}m and with average grain sizes ranging from 60 to 9 nm were deposited on silicon wafers using a hot-filament chemical vapor deposition (HFCVD) process. These samples were then characterized with the goal to identify correlations between grain size, chemical composition and mechanical properties. The characterization reveals that our films are phase pure and exhibit a relatively smooth surface morphology. The levels of sp{sup 2}-bonded carbon and hydrogen impurities are low, and showed a systematic variation with the grain size. The hydrogen content increases with decreasing grain size, whereas the sp{sup 2} carbon content decreases with decreasing grain size. The material is weaker than single crystalline diamond, and both stiffness and hardness decrease with decreasing grain size. These trends suggest gradual changes of the nature of the grain boundaries, from graphitic in the case of the 60 nm grain size material to hydrogen terminated sp{sup 3} carbon for the 9 nm grain size material. The films exhibit low levels of internal stress and freestanding structures with a length of several centimeters could be fabricated without noticeable bending.

  14. Preparation of 1,3,5-triamino-2,4,6-trinitrobenzene of submicron particle size

    DOE Patents [OSTI]

    Rigdon, Lester P. (Livermore, CA); Moody, Gordon L. (Tracy, CA); McGuire, Raymond R. (Brentwood, CA)

    2001-01-01

    A method is disclosed for the preparation of very small particle size, relatively pure 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Particles of TATB prepared according to the disclosed method are of submicron size and have a surface area in the range from about 3.8 to 27 square meters per gram.

  15. Preparation of 1,3,5-triamo-2,4,6-trinitrobenzene of submicron particle size

    DOE Patents [OSTI]

    Rigdon, Lester P. (Livermore, CA); Moody, Gordon L. (Tracy, CA); McGuire, Raymond R. (Brentwood, CA)

    2001-05-01

    A method is disclosed for the preparation of very small particle size, relatively pure 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Particles of TATB prepared according to the disclosed method are of submicron size and have a surface area in the range from about 3.8 to 27 square meters per gram.

  16. Pyroelectric response of ferroelectric nanowires: Size effect and electric energy harvesting

    SciTech Connect (OSTI)

    Morozovska, A. N.; Eliseev, E. A.; Svechnikov, S. V.; Kalinin, Sergei V

    2010-01-01

    The size effect on pyroelectric response of ferroelectric nanowires is analyzed. The pyroelectric coefficient strongly increases with the wire radius decrease and diverges at critical radius Rcr corresponding to the size-driven transition into paraelectric phase. Size-driven enhancement of pyroelectric coupling leads to the giant pyroelectric current and voltage generation by the polarized ferroelectric nanoparticles in response to the temperature fluctuation. The maximum efficiency of the pyroelectric energy harvesting and bolometric detection is derived, and is shown to approach the Carnot limit for low temperatures.

  17. Increased InAs quantum dot size and density using bismuth as a surfactant

    SciTech Connect (OSTI)

    Dasika, Vaishno D.; Krivoy, E. M.; Nair, H. P.; Maddox, S. J.; Park, K. W.; Yu, E. T.; Bank, S. R.; Jung, D.; Lee, M. L.

    2014-12-22

    We have investigated the growth of self-assembled InAs quantum dots using bismuth as a surfactant to control the dot size and density. We find that the bismuth surfactant increases the quantum dot density, size, and uniformity, enabling the extension of the emission wavelength with increasing InAs deposition without a concomitant reduction in dot density. We show that these effects are due to bismuth acting as a reactive surfactant to kinetically suppress the surface adatom mobility. This mechanism for controlling quantum dot density and size has the potential to extend the operating wavelength and enhance the performance of various optoelectronic devices.

  18. Finite-size effects on the radiative energy loss of a fast parton in hot

    Office of Scientific and Technical Information (OSTI)

    and dense strongly interacting matter (Journal Article) | SciTech Connect Finite-size effects on the radiative energy loss of a fast parton in hot and dense strongly interacting matter Citation Details In-Document Search Title: Finite-size effects on the radiative energy loss of a fast parton in hot and dense strongly interacting matter We consider finite-size effects on the radiative energy loss of a fast parton moving in a finite-temperature, strongly interacting medium, using the

  19. Microsoft Word - GRS Review_OMB White Paper - Real Property Right-sizing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Carbon Reduction August 7 2009 _2_.docx | Department of Energy GRS Review_OMB White Paper - Real Property Right-sizing and Carbon Reduction August 7 2009 _2_.docx Microsoft Word - GRS Review_OMB White Paper - Real Property Right-sizing and Carbon Reduction August 7 2009 _2_.docx PDF icon Microsoft Word - GRS Review_OMB White Paper - Real Property Right-sizing and Carbon Reduction August 7 2009 _2_.docx More Documents & Publications Executive Branch Management Scorecard 2013 guidance

  20. Plasma size and power scaling of ion temperature gradient driven turbulence

    SciTech Connect (OSTI)

    Idomura, Yasuhiro; Nakata, Motoki

    2014-02-15

    The transport scaling with respect to plasma size and heating power is studied for ion temperature gradient driven turbulence using a fixed-flux full-f gyrokinetic Eulerian code. It is found that when heating power is scaled with plasma size, the ion heat diffusivity increases with plasma size in a local limit regime, where fixed-gradient ?f simulations predict a gyro-Bohm scaling. In the local limit regime, the transport scaling is strongly affected by the stiffness of ion temperature profiles, which is related to the power degradation of confinement.

  1. Size-Dependent Pressure-Induced Amorphization in Nanoscale TiO{sub 2}

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Size-Dependent Pressure-Induced Amorphization in Nanoscale TiO{sub 2} Citation Details In-Document Search Title: Size-Dependent Pressure-Induced Amorphization in Nanoscale TiO{sub 2} We investigated the size-dependent high-pressure phase transition behavior of nanocrystalline anatase TiO{sub 2} with synchrotron x-ray diffraction and Raman spectroscopy to 45 GPa at ambient temperature. Pressure-induced amorphization results in a high-density amorphous (HDA)

  2. Particle size effect of hydrogen-induced lattice expansion of palladium nanoclusters.

    SciTech Connect (OSTI)

    Ingham, B.; Toney, M. F.; Hendy, S. C.; Cox, T.; Fong, D. D.; Eastman, J. A.; Fuoss, P. H.; Stevens, K. J.; Lassesson, A.; Brown, S. A.; Ryan, M. P.; Materials Science Division; Industrial Research Ltd.; Stanford Synchrotron Radiation Lab.; Victoria Univ. of Wellington; Quest Reliability Ltd.; Univ. of Canterbury; Imperial Coll.

    2008-12-01

    In situ synchrotron x-ray diffraction experiments on bare palladium nanoclusters prepared by inert-gas aggregation and size selected (1.7-6.0 nm) show significant changes in lattice parameter upon hydrogen loading and a narrowing of the miscibility gap, as the cluster size decreases. The results show that the miscibility gap is open for all cluster sizes studied, in contrast to previous literature results from surfactant-encapsulated palladium clusters. We interpret these results by showing that the nature of the surface is critical in the hydrogenation behavior of the nanoclusters.

  3. Particle Size Effect of Hydrogen-Induced Lattice Expansion of Palladium Nanoclusters

    SciTech Connect (OSTI)

    Ingham, B.; Toney, M.F.; Hendy, S.C.; Cox, T.; Fong, D.D.; Eastman, J.A.; Fuoss, P.H.; Stevens, K.J.; Lassesson, A.; Brown, S.A.; Ryan, M.P.

    2009-05-18

    In situ synchrotron x-ray diffraction experiments on bare palladium nanoclusters prepared by inert-gas aggregation and size selected (1.7-6.0 nm) show significant changes in lattice parameter upon hydrogen loading and a narrowing of the miscibility gap, as the cluster size decreases. The results show that the miscibility gap is open for all cluster sizes studied, in contrast to previous literature results from surfactant-encapsulated palladium clusters. We interpret these results by showing that the nature of the surface is critical in the hydrogenation behavior of the nanoclusters.

  4. Phosphorus removal from slow-cooled steelmaking slags: Grain size determination and liberation studies

    SciTech Connect (OSTI)

    Fregeau-Wu, E.; Iwasaki, I.

    1995-07-01

    The major obstacle in recycling steelmaking slags to the blast furnace is their phosphorus content. Removal of the phosphorus, which is primarily associated with the silicate and phosphate phases, would allow for greater recycle of these slags for their iron, manganese, and lime contents. Calculations show that separation of the silicates from the oxide phases would remove nearly 90% of the phosphorus from the slag. The variable grain size of the as-received slag made liberation by fine grinding difficult. Therefore, slow-cooling experiments were undertaken to improve the grain size distribution. The grain size distributions were determined using in-situ image analysis. The samples were ground to their apparent liberation size and high gradient magnetic separation was used to separate the magnetic oxides from the nonmagnetic silicates and phosphates. Liberation analysis and modeling was performed on selected separation products for discussion of benefication characteristics.

  5. The Effects of Transient Emotional State and Workload on Size Scaling in Perspective Displays

    SciTech Connect (OSTI)

    Tuan Q. Tran; Kimberly R. Raddatz

    2006-10-01

    Previous research has been devoted to the study of perceptual (e.g., number of depth cues) and cognitive (e.g., instructional set) factors that influence veridical size perception in perspective displays. However, considering that perspective displays have utility in high workload environments that often induce high arousal (e.g., aircraft cockpits), the present study sought to examine the effect of observers emotional state on the ability to perceive and judge veridical size. Within a dual-task paradigm, observers ability to make accurate size judgments was examined under conditions of induced emotional state (positive, negative, neutral) and high and low workload. Results showed that participants in both positive and negative induced emotional states were slower to make accurate size judgments than those not under induced emotional arousal. Results suggest that emotional state is an important factor that influences visual performance on perspective displays and is worthy of further study.

  6. Current Size and Remaining Market Potential of the U.S. Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The study analyzes the size, growth and trends in the U.S. energy service company (ESCO) ... Company (ESCO) Industry and Market Trends Speaker List for EE Forum Breakout ...

  7. Effect of A-site cation size mismatch on charge ordering behavior...

    Office of Scientific and Technical Information (OSTI)

    The schematic models are proposed for the incommensurate CO modulation in the samples with size mismatch sigmasup 2le0.003. The disappearance of the CO transition in the ...

  8. Cooperative storage of shared files in a parallel computing system with dynamic block size

    DOE Patents [OSTI]

    Bent, John M.; Faibish, Sorin; Grider, Gary

    2015-11-10

    Improved techniques are provided for parallel writing of data to a shared object in a parallel computing system. A method is provided for storing data generated by a plurality of parallel processes to a shared object in a parallel computing system. The method is performed by at least one of the processes and comprises: dynamically determining a block size for storing the data; exchanging a determined amount of the data with at least one additional process to achieve a block of the data having the dynamically determined block size; and writing the block of the data having the dynamically determined block size to a file system. The determined block size comprises, e.g., a total amount of the data to be stored divided by the number of parallel processes. The file system comprises, for example, a log structured virtual parallel file system, such as a Parallel Log-Structured File System (PLFS).

  9. Geek-Up[6.24.11]: Dust-sized 'Dragonfly' Device and Tiny Microvalves

    Broader source: Energy.gov [DOE]

    A dust-size "dragonfly-inspired" device -- which won a Sandia Lab design contest -- may ultimately enable the creation of tiny microvalves for experiments in biological research laboratories and medical facilities.

  10. Colorado - C.R.S. 42-4-510, Permits for Excess Size and Weight...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Colorado - C.R.S. 42-4-510, Permits for Excess Size and WeightLegal Abstract Statute regulating...

  11. Colorado - C.R.S. 42-4-510 (3), Permits for Excess Size and Weight...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Colorado - C.R.S. 42-4-510 (3), Permits for Excess Size and WeightLegal Abstract Statute outlining...

  12. Finite-size effects on the radiative energy loss of a fast parton...

    Office of Scientific and Technical Information (OSTI)

    This is done by introducing the concept of a radiation rate in the presence of finite-size effects. This effectively extends the finite-temperature approach of Arnold, Moore, and ...

  13. Title 43 CFR 3206.12 What are the Minimum and Maximum Lease Sizes...

    Open Energy Info (EERE)

    .12 What are the Minimum and Maximum Lease Sizes? Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 43...

  14. Effect on the Pore-Size Dependence of an Organic Electrolyte Supercapacitor

    SciTech Connect (OSTI)

    Jiang, Deen; Jin, Zhehui; Henderson, Douglous; Wu, Jianzhong

    2012-01-01

    Organic electrolytes such as tetraethylammonium tetrafluoroborate dissolved in acetonitrile (TEA-BF{sub 4}/ACN) are widely used in commercial supercapacitors and academic research, but conflicting experimental results have been reported regarding the dependence of surface-area-normalized capacitance on the pore size. Here we show from a classical density functional theory the dependence of capacitance on the pore size from 0.5 to 3.0 nm for a model TEA-BF{sub 4}/ACN electrolyte. We find that the capacitance-pore size curve becomes roughly flat after the first peak around the ion diameter, and the peak capacitance is not significantly higher than the large-pore average. We attribute the invariance of capacitance with the pore size to the formation of an electric double-layer structure that consists of counterions and highly organized solvent molecules. This work highlights the role of the solvent molecules in modulating the capacitance and reconciles apparently conflicting experimental reports.

  15. Method and apparatus for controlled size distribution of gel microspheres formed from aqueous dispersions

    DOE Patents [OSTI]

    Ryon, Allen D. (Oak Ridge, TN); Haas, Paul A. (Knoxville, TN); Vavruska, John S. (Santa Fe, NM)

    1984-01-01

    The present invention is directed to a method and apparatus for making a population of dense, closely size-controlled microspheres by sol-gel procedures wherein said microspheres are characterized by a significant percentage of said population being within a predetermined, relatively narrow size range. Microsphere populations thus provided are useful in vibratory-packed processes for nuclear fuels to be irradiated in LWR- and FBR-type nuclear reactors.

  16. Strain and particle size of palladium powders by time-of-flight neutron diffraction

    SciTech Connect (OSTI)

    Lawson, A.C.; Conant, J.W.; Talcott, C.L.; David, M.A.; Vaninetti, J.; Goldstone, J.A.; Williams, A.; Von Dreele, R.B.; Roof, R.B.; Hitterman, R.L.; Richardson, J.W. Jr.; Faber, J. Jr.

    1989-01-01

    We have determined the strain and particle size for several samples of palladium powder by time-of-flight neutron powder diffraction on two different diffractometers and by x-ray powder diffraction. The results are compared and found to be in fair agreement. The time-of-flight method gives good enough precision to reveal deficiencies in the simple models used for strain and particle size line broadening. 6 refs., 4 figs., 2 tabs.

  17. Quantum-Size-Controlled Photoelectrochemical Fabrication of Epitaxial InGaN

    Office of Scientific and Technical Information (OSTI)

    Quantum Dots (Journal Article) | SciTech Connect Quantum-Size-Controlled Photoelectrochemical Fabrication of Epitaxial InGaN Quantum Dots Citation Details In-Document Search Title: Quantum-Size-Controlled Photoelectrochemical Fabrication of Epitaxial InGaN Quantum Dots Authors: Xiao, Xiaoyin ; Fischer, Arthur J. ; Wang, George T. ; Lu, Ping ; Koleske, Daniel D. ; Coltrin, Michael E. ; Wright, Jeremy B. ; Liu, Sheng ; Brener, Igal ; Subramania, Ganesh ; Tsao, Jeffrey Y. Publication Date:

  18. Dynamical Expansion of HII Regions From Ultracompact to Compact Sizes in

    Office of Scientific and Technical Information (OSTI)

    Turbulent, Self-Gravitating Molecular Clouds (Technical Report) | SciTech Connect Technical Report: Dynamical Expansion of HII Regions From Ultracompact to Compact Sizes in Turbulent, Self-Gravitating Molecular Clouds Citation Details In-Document Search Title: Dynamical Expansion of HII Regions From Ultracompact to Compact Sizes in Turbulent, Self-Gravitating Molecular Clouds Authors: Low, Mordecai-Mark Mac ; Toraskar, Jayashree ; /Amer. Museum Natural Hist. ; Oishi, Jeffrey S. ; /Amer.

  19. Small- and Medium-Size Building Automation and Control System Needs:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scoping Study | Department of Energy Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Small- and Medium-Size Building Automation and Control System Needs: Scoping Study Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech05_brambley_040213.pdf More Documents & Publications PNNL: VOLTTRON Commercialization (CBI/ET Open Call) - 2015 Peer Review U.S. Industrial Energy Efficiency Programs CX-011262:

  20. Spontaneous radiation of a finite-size dipole emitter in hyperbolic media

    SciTech Connect (OSTI)

    Poddubny, Alexander N.; Belov, Pavel A.; Kivshar, Yuri S.

    2011-08-15

    We study the radiative decay and Purcell effect for a finite-size dipole emitter placed in a homogeneous uniaxial medium. We demonstrate that the radiative rate is strongly enhanced when the signs of the medium longitudinal and transverse dielectric constants are opposite, and that the isofrequency contour corresponds to a hyperbolic medium. We reveal that the Purcell enhancement factor remains finite even in the absence of losses and that it depends on the emitter size.

  1. Real-Time Simultaneous Measurements of Size, Density, and Composition of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single Ultrafine Diesel Tailpipe Particles | Department of Energy Simultaneous Measurements of Size, Density, and Composition of Single Ultrafine Diesel Tailpipe Particles Real-Time Simultaneous Measurements of Size, Density, and Composition of Single Ultrafine Diesel Tailpipe Particles 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_zelenyuk.pdf More Documents & Publications Microsoft PowerPoint - 4. ORNL- deer.ppt [Read-Only]

  2. Effect of particle size and doses of olivine addition on carbon dioxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sequestration during anaerobic digestion of sewage sludge at ambient and mesophilic temperatures | Argonne National Laboratory Effect of particle size and doses of olivine addition on carbon dioxide sequestration during anaerobic digestion of sewage sludge at ambient and mesophilic temperatures Title Effect of particle size and doses of olivine addition on carbon dioxide sequestration during anaerobic digestion of sewage sludge at ambient and mesophilic temperatures Publication Type Journal

  3. Measuring the Raindrop Size Distribution, ARM's Efforts at Darwin and SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measuring the Raindrop Size Distribution, ARM's Efforts at Darwin and SGP Bartholomew, Mary Jane Brookhaven National Laboratory Category: Instruments ARM has purchased two impact disdrometers for indefinite deployment. One is currently installed at the Tropical Western Pacific (TWP) Darwin facility and the other will be deployed at the central facility of the Southern Great Plains Site this spring. The disdrometers make measurements of raindrop diameter in 20 size bins over the range of 0.3 to

  4. Apparatus and method for the determination of grain size in thin films

    DOE Patents [OSTI]

    Maris, Humphrey J (Barrington, RI)

    2001-01-01

    A method for the determination of grain size in a thin film sample comprising the steps of measuring first and second changes in the optical response of the thin film, comparing the first and second changes to find the attenuation of a propagating disturbance in the film and associating the attenuation of the disturbance to the grain size of the film. The second change in optical response is time delayed from the first change in optical response.

  5. Apparatus and method for the determination of grain size in thin films

    DOE Patents [OSTI]

    Maris, Humphrey J (Barrington, RI)

    2000-01-01

    A method for the determination of grain size in a thin film sample comprising the steps of measuring first and second changes in the optical response of the thin film, comparing the first and second changes to find the attenuation of a propagating disturbance in the film and associating the attenuation of the disturbance to the grain size of the film. The second change in optical response is time delayed from the first change in optical response.

  6. The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributions and Detailed Exhaust Chemical Composition | Department of Energy Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition 2003 DEER Conference Presentation: University of Wisconsin-Madison PDF icon 2003_deer_foster.pdf More Documents & Publications Mass Correlation of Engine Emissions with

  7. HVAC Right-Sizing Part 1: Calculating Loads | Department of Energy

    Energy Savers [EERE]

    HVAC Right-Sizing Part 1: Calculating Loads HVAC Right-Sizing Part 1: Calculating Loads This webinar, presented by IBACOS (a Building America Research Team) will highlight the key criteria required to create accurate heating and cooling load calculations, following the guidelines of the Air Conditioning Contractors of America (ACCA) Manual J version 8 PDF icon webinar_hvac_calculatingloads_20110428.pdf More Documents & Publications 2014-08-28 Issuance: Energy Conservation Standards for

  8. Measurements of Aerosol Charge and Size Distribution for Graphite, Gold, Palladium, and Silver Nanoparticles

    SciTech Connect (OSTI)

    Simones, Matthew P.; Gutti, Veera R.; Meyer, Ryan M.; Loyalka, Sudarshan K.

    2011-11-01

    The role of charge on aerosol evolution and hence the nuclear source term has been an issue of interest, and there is a need for both experimental techniques and modeling for quantifying this role. Our focus here is on further exploration of a tandem differential mobility analyzer (TDMA) technique to simultaneously measure both the size and charge (positive, negative and neutral) dependent aerosol distributions. We have generated graphite, gold, silver, and palladium nanoparticles (aerosol) using a spark generator. We measure the electrical mobility-size distributions for these aerosols using a TDMA, and from these data we deduce the full charge-size distributions. We observe asymmetry in the particle size distributions for negative and positive charges. This asymmetry could have a bearing on the dynamics of charged aerosols, indicating that the assumption of symmetry for size distributions of negatively and positively charged particles in source term simulations may not be always appropriate. Also, the experimental technique should find applications in measurements of aerosol rate processes that are affected by both particle charge and size (e.g. coagulation, deposition, resuspension), and hence in modeling and simulation of the nuclear source term.

  9. Using the depth-velocity-size diagram to interpret equilibrium bed configurations in river flows

    SciTech Connect (OSTI)

    Southard, J.B. (Massachusetts Institute of Technology, Cambridge, MA (USA))

    1990-05-01

    Data from flume studies that report equilibrium bed configuration as well as water temperature, flow depth, flow velocity, and sediment size were used to develop the best approximation to the relationships among the various bed phases (ripples, dunes, lower regime plane bed, upper regime plane bed, and antidunes) in a three-axis graph (depth-velocity-size diagram) with dimensionless measures of mean flow depth, mean flow velocity, and sediment size along the axis. Relationships are shown in a series of depth-velocity and velocity-size sections through the diagram. Boundaries between bed-phase stability fields are drawn as surfaces that minimize, misplacement of data points. A large subset of the data, for which reliable values of bed shear stress are reported, was also used to represent the stability relationships in a graph of dimensionless boundary shear stress against dimensionless sediment size, but with results less useful for fluvial flow interpretation. The diagram covers about one order of magnitude in flow depth. To be useful for river flows, the diagram must be extrapolated in flow depth by about one more order of magnitude, but this is not a serious problem for approximate work. The depth-velocity-size diagram permits prediction of equilibrium bed configuration in river flows when the approximate flow depth and mean flow velocity are known. Because the diagram is essentially dimensionless, the effect of water temperature (via the fluid viscosity) on the bed configuration is easily accounted for by use of the diagram.

  10. Phase Behavior and Domain Size in Sphingomyelin-Containing Lipid Bilayers

    SciTech Connect (OSTI)

    Petruzielo, Robin S [Cornell University; Heberle, Frederick A [ORNL; Drazba, Paul [ORNL; Katsaras, John [ORNL; Feigenson, Gerald [Cornell University

    2013-01-01

    Membrane raft size measurements are crucial to understanding the stability and functionality of rafts in cells. The challenge of accurately measuring raft size is evidenced by the disparate reports of domain sizes, which range from nanometers to microns for the ternary model membrane system sphingomyelin (SM)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholesterol (Chol). Using F rster resonance energy transfer (FRET) and differential scanning calorimetry (DSC), we established phase diagrams for porcine brain SM (bSM)/dioleoyl-sn-glycero-3-phosphocholine (DOPC)/Chol and bSM/POPC/Chol at 15 and 25 C. By combining two techniqueswith different spatial sensitivities, namely FRET and small-angle neutron scattering (SANS),we have significantly narrowed the uncertainty in domain size estimates for bSM/POPC/Chol mixtures. Compositional trends in FRET data revealed coexisting domains at 15 and 25 C for bothmixtures, while SANS measurements detected no domain formation for bSM/POPC/Chol. Together these results indicate that liquid domains in bSM/POPC/Chol are between 2 and 7 nmin radius at 25 C: that is, domains must be on the order of the 2 6 nmF rster distance of the FRET probes, but smaller than the ~7 nm minimum cluster size detectable with SANS. However, for palmitoyl SM (PSM)/POPC/Chol at a similar composition, SANS detected coexisting liquid domains. This increase in domain size upon replacing the natural SMcomponent (which consists of amixture of chain lengths) with synthetic PSM, suggests a role for SM chain length in modulating raft size in vivo.

  11. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from condensation of vaporized material and subsequent rapid formation of aggregates. Particles of larger size, resulting from ejection of melted material or fragments from the cutting zone, were also observed. This study presents data regarding the metal cutting rate, particle size distribution, and their generation rate, while using different cutting tools and metals. The study shows that respirable particles constitute only a small fraction of the released kerf.

  12. Size dependent compressibility of nano-ceria: Minimum near 33 nm

    SciTech Connect (OSTI)

    Rodenbough, Philip P.; Song, Junhua; Chan, Siu-Wai; Walker, David; Clark, Simon M.; Kalkan, Bora

    2015-04-20

    We report the crystallite-size-dependency of the compressibility of nanoceria under hydrostatic pressure for a wide variety of crystallite diameters and comment on the size-based trends indicating an extremum near 33 nm. Uniform nano-crystals of ceria were synthesized by basic precipitation from cerium (III) nitrate. Size-control was achieved by adjusting mixing time and, for larger particles, a subsequent annealing temperature. The nano-crystals were characterized by transmission electron microscopy and standard ambient x-ray diffraction (XRD). Compressibility, or its reciprocal, bulk modulus, was measured with high-pressure XRD at LBL-ALS, using helium, neon, or argon as the pressure-transmitting medium for all samples. As crystallite size decreased below 100 nm, the bulk modulus first increased, and then decreased, achieving a maximum near a crystallite diameter of 33 nm. We review earlier work and examine several possible explanations for the peaking of bulk modulus at an intermediate crystallite size.

  13. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    DOE Patents [OSTI]

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen; Murray, Christopher Bruce

    2015-11-17

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.

  14. Ultrashort laser ablation of bulk copper targets: Dynamics and size distribution of the generated nanoparticles

    SciTech Connect (OSTI)

    Tsakiris, N.; Gill-Comeau, M.; Lewis, L. J.; Anoop, K. K.; Ausanio, G.; Bruzzese, R.; Amoruso, S.

    2014-06-28

    We address the role of laser pulse fluence on expansion dynamics and size distribution of the nanoparticles produced by irradiating a metallic target with an ultrashort laser pulse in a vacuum, an issue for which contrasting indications are present in the literature. To this end, we have carried out a combined theoretical and experimental analysis of laser ablation of a bulk copper target with ?50 fs, 800?nm pulses, in an interval of laser fluencies going from few to several times the ablation threshold. On one side, molecular dynamics simulations, with two-temperature model, describe the decomposition of the material through the analysis of the evolution of thermodynamic trajectories in the material phase diagram, and allow estimating the size distribution of the generated nano-aggregates. On the other side, atomic force microscopy of less than one layer nanoparticles deposits on witness plates, and fast imaging of the nanoparticles broadband optical emission provide the corresponding experimental characterization. Both experimental and numerical findings agree on a size distribution characterized by a significant fraction (?90%) of small nanoparticles, and a residual part (?10%) spanning over a rather large size interval, evidencing a weak dependence of the nanoparticles sizes on the laser pulse fluence. Numerical and experimental findings show a good degree of consistency, thus suggesting that modeling can realistically support the search for experimental methods leading to an improved control over the generation of nanoparticles by ultrashort laser ablation.

  15. A NEW RECIPE FOR OBTAINING CENTRAL VOLUME DENSITIES OF PRESTELLAR CORES FROM SIZE MEASUREMENTS

    SciTech Connect (OSTI)

    Tassis, Konstantinos; Yorke, Harold W. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2011-07-10

    We propose a simple analytical method for estimating the central volume density of prestellar molecular cloud cores from their column density profiles. Prestellar cores feature a flat central part of the column density and volume density profiles of the same size indicating the existence of a uniform-density inner region. The size of this region is set by the thermal pressure force which depends only on the central volume density and temperature of the core, and can provide a direct measurement of the central volume density. Thus, a simple length measurement can immediately yield a central density estimate independent of any dynamical model for the core and without the need for fitting. Using the radius at which the column density is 90% of the central value as an estimate of the size of the flat inner part of the column density profile yields an estimate of the central volume density within a factor of two for well-resolved cores.

  16. Nano-sized particles, processes of making, compositions and uses thereof

    DOE Patents [OSTI]

    O'Brien, Stephen; Yin, Ming

    2012-05-22

    The present invention describes methods for preparing high quality nanoparticles, i.e., metal oxide based nanoparticles of uniform size and monodispersity. The nanoparticles advantageously comprise organic alkyl chain capping groups and are stable in air and in nonpolar solvents. The methods of the invention provide a simple and reproducible procedure for forming transition metal oxide nanocrystals, with yields over 80%. The highly crystalline and monodisperse nanocrystals are obtained directly without further size selection; particle size can be easily and fractionally increased by the methods. The resulting nanoparticles can exhibit magnetic and/or optical properties. These properties result from the methods used to prepare them. Also advantageously, the nanoparticles of this invention are well suited for use in a variety of industrial applications, including cosmetic and pharmaceutical formulations and compositions.

  17. Field investigation of the relationship between battery size and PV system performance

    SciTech Connect (OSTI)

    Stevens, J.; Kratochvil, J. [Sandia National Labs., Albuquerque, NM (United States); Harrington, S. [Ktech Corp., Albuquerque, NM (United States)

    1993-07-01

    Four photovoltaic-powered lighting systems were installed in a National Forest Service campground in June of 1991. These systems have identical arrays, loads and charge controllers. The only difference was in the rated capacity of the battery bank for each system. The battery banks all use the same basic battery as a building block with the four systems utilizing either one battery, two batteries, three batteries or four batteries. The purpose of the experiment is to examine the effect of the various battery sizes on the ability of the system to charge the battery, energy available to the load, and battery lifetime. Results show an important trend in system performance concerning the impact of charge controllers on the relation between array size and battery size which results in an inability to achieve the days of battery storage originally designed for.

  18. Consideration of Grain Size Distribution in the Diffusion of Fission Gas to Grain Boundaries

    SciTech Connect (OSTI)

    Paul C. Millett; Yongfeng Zhang; Michael R. Tonks; S. B. Biner

    2013-09-01

    We analyze the accumulation of fission gas on grain boundaries in a polycrystalline microstructure with a distribution of grain sizes. The diffusion equation is solved throughout the microstructure to evolve the gas concentration in space and time. Grain boundaries are treated as infinite sinks for the gas concentration, and we monitor the cumulative gas inventory on each grain boundary throughout time. We consider two important cases: first, a uniform initial distribution of gas concentration without gas production (correlating with post-irradiation annealing), and second, a constant gas production rate with no initial gas concentration (correlating with in-reactor conditions). The results show that a single-grain-size model, such as the Booth model, over predicts the gas accumulation on grain boundaries compared with a polycrystal with a grain size distribution. Also, a considerable degree of scatter, or variability, exists in the grain boundary gas accumulation when comparing all of the grain boundaries in the microstructure.

  19. Measurement of the soot concentration and soot particle sizes in propane oxygen flames

    SciTech Connect (OSTI)

    Bockhorn, H.; Fetting, F.; Meyer, U.; Reck, R.; Wannemacher, G.

    1981-01-01

    Soot concentrations and particle sizes were measured by light scattering and probe measurements in the burnt gas region of atmospheric pressure propane-oxygen flames and propane-oxygen flames to which hydrogen or ammonia were added. The results show that the soot concentrations in propane-oxygen flames, to which hydrogen is added are lower compared to propane-oxygen flames. The decrease of soot concentration is much stronger when ammonia is added. Associated with the reduction of soot concentration is a reduction of mean particle size of the soot particles and a lower breadth of the particle size distributions. Electron micrographs of soot particles from the probe measurements showed that soot particles from flames with high soot concentrations (propane oxygen flames) are aggregates with chain or cluster structure while the structure of the particles from flames with lower soot concentration (propane oxygen flames with hydrogen or ammonia added) is more compact. 24 refs.

  20. Measurement of particle size, velocity and temperature in the plasma spray coating process

    SciTech Connect (OSTI)

    Fincke, J.R.; Swank, W.D.

    1991-01-01

    The quality and uniformity of coatings fabricated by the plasma spray process is controlled by the condition of the particles on impact. In this work a measurement technique for simultaneously obtaining particle size, velocity, and temperature is used to characterize the particle spray field. Particle size and velocity are obtained from a combination laser particle sizing system and laser Doppler velocimeter (LDV). The particle temperature is determined by a two-color pyrometer technique and the relative particle number density is derived from the data rate. The fraction of unheated or unprocessed particles which result from temperature and velocity fluctuations is also obtained. This fraction can approach 10% by mass of the total particle flow. 17 refs., 10 figs.

  1. Density-functional errors in ionization potential with increasing system size

    SciTech Connect (OSTI)

    Whittleton, Sarah R.; Sosa Vazquez, Xochitl A.; Isborn, Christine M.; Johnson, Erin R.

    2015-05-14

    This work investigates the effects of molecular size on the accuracy of density-functional ionization potentials for a set of 28 hydrocarbons, including series of alkanes, alkenes, and oligoacenes. As the system size increases, delocalization error introduces a systematic underestimation of the ionization potential, which is rationalized by considering the fractional-charge behavior of the electronic energies. The computation of the ionization potential with many density-functional approximations is not size-extensive due to excessive delocalization of the incipient positive charge. While inclusion of exact exchange reduces the observed errors, system-specific tuning of long-range corrected functionals does not generally improve accuracy. These results emphasize that good performance of a functional for small molecules is not necessarily transferable to larger systems.

  2. The effects of size reduction techniques on TCLP analysis of solidified mixed waste

    SciTech Connect (OSTI)

    Thiel, R.D.; McLaurin, A.W.; Kochen, R.L.

    1993-07-01

    The Rocky Flats Plant (RFP) generates and stores mixed wastes that are subject to regulation under the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDR). Low level mixed wastes at RFP are destined for disposal at the Nevada Test Site (NTS), and thus must meet stringent NTS Waste Acceptance Criteria (WAC), including free liquids, dispersible solids, and Toxicity Characteristic Leaching Procedure (TCLP) requirements. TCLP requires size reduction of the waste form to less than 0.95 centimeters. This can be accomplished by cutting, crushing, or grinding. These classic size reduction methods have the effect of exposing more surface area of the waste. Stabilization technologies under investigation at RFP include polymer encapsulation by co-extruding the waste with low density polyethylene and microwave melting. The objective of this study is to evaluate the effects of different size reduction methods on TCLP results for polyethylene-encapsulated and microwave melted surrogate waste.

  3. Size dependence of cubic to trigonal structural distortion in silver micro- and nanocrystals under high pressure

    SciTech Connect (OSTI)

    Guo, Qixum; Zhao, Yusheng; Zin, Zhijun; Wang, Zhongwu; Skrabalak, Sara E; Xia, Younan

    2008-01-01

    Silver micro- and nanocrystals with sizes of {approx}2--3.5 {mu}m and {approx}50--100 nm were uniaxially compressed under nonhydrostatic pressures (strong deviatoric stress) up to {approx}30 GPa at room temperature in a symmetric diamond-anvil cell and studied in situ using angle-dispersive synchrotron X-ray diffraction. A cubic to trigonal structural distortion along a 3-fold rotational axis was discovered by careful and comprehensive analysis of the apparent lattice parameter and full width at half-maximum, which are strongly dependent upon the Miller index and crystal size.

  4. Method and apparatus for controlled size distribution of gel microspheres formed from aqueous dispersions. [Patent application

    DOE Patents [OSTI]

    Ryon, A.D.; Haas, P.A.; Vavruska, J.S.

    1982-01-19

    The present invention is directed to a method and apparatus for making a population of dense, closely size-controlled microspheres by sol-gel procedures wherein said microspheres are characterized by a significant percentage of said population being within a predetermined, relatively narrow size range. This is accomplished by subjecting aqueous dispersions of a sol, within a water-immiscible organic liquid to a turbulent flow. Microsphere populations thus provided are useful in vibratory-packed processes for nuclear fuels to be irradiated in LWR- and FBR-type nuclear reactors.

  5. Waste Tank Size Determination for the Hanford River Protection Project Cold Test, Training, and Mockup Facility

    SciTech Connect (OSTI)

    Onishi, Yasuo; Wells, Beric E.; Kuhn, William L.

    2001-03-30

    The objective of the study was to determine the minimum tank size for the Cold Test Facility process testing of Hanford tank waste. This facility would support retrieval of waste in 75-ft-diameter DSTs with mixer pumps and SSTs with fluidic mixers. The cold test model will use full-scale mixer pumps, transfer pumps, and equipment with simulated waste. The study evaluated the acceptability of data for a range of tank diameters and depths and included identifying how the test data would be extrapolated to predict results for a full-size tank.

  6. Increased CPC batch size study for Tank 42 sludge in the Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Daniel, W.E.

    2000-01-06

    A series of experiments have been completed at TNX for the sludge-only REDOX adjusted flowsheet using Tank 42 sludge simulant in response to the Technical Task Request HLW/DWPT/TTR-980013 to increase CPC batch sizes. By increasing the initial SRAT batch size, a melter feed batch at greater waste solids concentration can be prepared and thus increase melter output per batch by about one canister. The increased throughput would allow DWPF to dispose of more waste in a given time period thus shortening the overall campaign.

  7. Repository size for deep geological disposal of partitioning and transmutation high level waste

    SciTech Connect (OSTI)

    Nishihara, Kenji; Nakayama, Shinichi; Oigawa, Hiroyuki

    2007-07-01

    In order to reveal the impact of the partitioning and transmutation (PT) technology on the geological disposal, we investigated the production and disposal of the radioactive wastes from the PT facilities including the dry reprocessing for the spent fuel from accelerator-driven system. After classifying the PT wastes according to the heat generations, the emplacement configurations in the repository were assumed for each group based on the several disposal concepts proposed for the conventional glass waste form. Then, the sizes of the repositories represented by the vault length, emplacement area and excavation volume were estimated. The repository sizes were reduced by PT technology for all disposal concepts. (authors)

  8. Wake Flow Simulations for a Mid-Sized Rim Driven Wind Turbine

    SciTech Connect (OSTI)

    Rob O. Hovsapian; Various

    2014-06-01

    The onshore land where wind farms with conventional wind turbines can be places is limited by various factors including a requirement for relatively high wind speed for turbines' efficient operations. Where such a requirement cannot be met, mid-and small-sized turbines can be a solution. In the current paper simulations for near and for wakes behind a mid-sized Rim Driven Wind Turbine developed by Keuka Energy LLC is analyzed. The purposes of this study is to better understand the wake structure for more efficient wind farm planning. Simulations are conducted with the commercial CFD software STARCCM+

  9. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print Wednesday, 27 March 2013 00:00 The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the

  10. Communication: Nucleation of water on ice nanograins: Size, charge, and quantum effects

    SciTech Connect (OSTI)

    Marciante, Mathieu; Calvo, Florent

    2015-05-07

    The sticking cross sections of water molecules on cold size-selected water clusters have been simulated using classical and quantum (path-integral) molecular dynamics trajectories under realistic conditions. The integrated cross sections for charged clusters show significant size effects with comparable trends as in experiments, as well as essentially no sign effect. Vibrational delocalization, although it contributes to enlarging the geometric cross sections, leads to a counter-intuitive decrease in the dynamical cross section obtained from the trajectories. These results are interpreted based on the apparent reduction in the effective interaction between the projectile and the target owing to zero-point effects.

  11. Impact of magnification and size bias on the weak lensing power spectrum

    Office of Scientific and Technical Information (OSTI)

    and peak statistics (Journal Article) | SciTech Connect Impact of magnification and size bias on the weak lensing power spectrum and peak statistics Citation Details In-Document Search Title: Impact of magnification and size bias on the weak lensing power spectrum and peak statistics Authors: Liu J. ; May M. ; Haiman, Z. ; Hui, L. ; Kratochvil, J.M. Publication Date: 2014-01-21 OSTI Identifier: 1132481 Report Number(s): BNL--104426-2014-JA KA3201020 DOE Contract Number: DE-AC02-98CH10886

  12. Influence of pH on the quantum-size-controlled photoelectrochemical etching

    Office of Scientific and Technical Information (OSTI)

    of epitaxial InGaN quantum dots (Journal Article) | SciTech Connect Influence of pH on the quantum-size-controlled photoelectrochemical etching of epitaxial InGaN quantum dots Citation Details In-Document Search This content will become publicly available on November 18, 2016 Title: Influence of pH on the quantum-size-controlled photoelectrochemical etching of epitaxial InGaN quantum dots Illumination by a narrow-band laser has been shown to enable photoelectrochemical (PEC) etching of InGaN

  13. A micrometer-size movable light emitting area in a resonant tunneling light emitting diode

    SciTech Connect (OSTI)

    Pettinari, G., E-mail: giorgio.pettinari@cnr.it [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); National Research Council (CNR), Institute for Photonics and Nanotechnologies (IFN-CNR), Via Cineto Romano 42, 00156 Roma (Italy); Balakrishnan, N.; Makarovsky, O.; Campion, R. P.; Patan, A. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)] [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Polimeni, A.; Capizzi, M. [CNISM-Dipartimento di Fisica, Sapienza Universit di Roma, P.le A. Moro 2, 00185 Roma (Italy)] [CNISM-Dipartimento di Fisica, Sapienza Universit di Roma, P.le A. Moro 2, 00185 Roma (Italy)

    2013-12-09

    We report on the fabrication of a micrometer-size movable light emitting area in a GaAs/AlAs quantum well resonant tunneling p-i-n diode. The spatial position of the micrometer-size light emitting area shifts linearly with increasing applied bias, up to 30??m for a bias increment of 0.2?V. Also, the simultaneous resonant tunneling injection of both electrons and holes into the quantum well states is achieved at specific positions of the diode, thus resulting in a tenfold increase of the electroluminescence intensity.

  14. Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator

    SciTech Connect (OSTI)

    Godin, Michel; Bryan, Andrea K.; Burg, Thomas P.; Babcock, Ken; Manalis, Scott R.

    2007-09-17

    We demonstrate the measurement of mass, density, and size of cells and nanoparticles using suspended microchannel resonators. The masses of individual particles are quantified as transient frequency shifts, while the particles transit a microfluidic channel embedded in the resonating cantilever. Mass histograms resulting from these data reveal the distribution of a population of heterogeneously sized particles. Particle density is inferred from measurements made in different carrier fluids since the frequency shift for a particle is proportional to the mass difference relative to the displaced solution. We have characterized the density of polystyrene particles, Escherichia coli, and human red blood cells with a resolution down to 10{sup -4} g/cm{sup 3}.

  15. What Is the Size of the Atomic Nucleus? | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    What Is the Size of the Atomic Nucleus? Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » 02.29.16 What Is the Size of the Atomic Nucleus? The neutron skin of the nucleus

  16. Size-Dependent Specific Surface Area of Nanoporous Film Assembled by Core-Shell Iron Nanoclusters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Antony, Jiji; Nutting, Joseph; Baer, Donald R.; Meyer, Daniel; Sharma, Amit; Qiang, You

    2006-01-01

    Nanoporous films of core-shell iron nanoclusters have improved possibilities for remediation, chemical reactivity rate, and environmentally favorable reaction pathways. Conventional methods often have difficulties to yield stable monodispersed core-shell nanoparticles. We produced core-shell nanoclusters by a cluster source that utilizes combination of Fe target sputtering along with gas aggregations in an inert atmosphere at 7 ∘ C . Sizes of core-shell iron-iron oxide nanoclusters are observed with transmission electron microscopy (TEM). The specific surface areas of the porous films obtained from Brunauer-Emmett-Teller (BET) process are size-dependent and compared with the calculated data.more »« less

  17. Fact #785: June 24, 2013 Many Cars Pollute Less Despite Increases in Size |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5: June 24, 2013 Many Cars Pollute Less Despite Increases in Size Fact #785: June 24, 2013 Many Cars Pollute Less Despite Increases in Size As new vehicles become more efficient, the amount of carbon dioxide (CO2) they produce decreases. Shown below are several examples of model year (MY) 2012 cars that have decreased the amount of CO2 they produce (in grams per mile) despite the fact that they are larger (in interior volume) than they were ten years ago. Of the

  18. Effect of Engine-Out NOx Control Strategies on PM Size Distribution in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Diesel Engines Developed for 2010 | Department of Energy Engine-Out NOx Control Strategies on PM Size Distribution in Heavy-Duty Diesel Engines Developed for 2010 Effect of Engine-Out NOx Control Strategies on PM Size Distribution in Heavy-Duty Diesel Engines Developed for 2010 A distinct relationship was found between engine-out and SCR-out PM distributions for single-mode testing. PDF icon deer08_ardanese.pdf More Documents & Publications Development of ADECS to Meet 2010

  19. Method of making metal oxide ceramic membranes with small pore sizes

    DOE Patents [OSTI]

    Anderson, Marc A. (Madison, WI); Xu, Qunyin (Madison, WI)

    1992-01-01

    A method for the production of metal oxide ceramic membranes is composed of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  20. 5 Super-Sized Solar Projects Transforming the Clean Energy Landscape |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Super-Sized Solar Projects Transforming the Clean Energy Landscape 5 Super-Sized Solar Projects Transforming the Clean Energy Landscape April 8, 2013 - 4:00pm Addthis The California Valley Solar Ranch has a capacity of 250 MW -- enough energy to power the equivalent of every home in San Luis Obispo County. | Photo courtesy of SunPower. The California Valley Solar Ranch has a capacity of 250 MW -- enough energy to power the equivalent of every home in San Luis Obispo

  1. Environmentally responsible recycling of thin-film cadmium telluride photovoltaic modules. Final technical report

    SciTech Connect (OSTI)

    Bohland, John

    2002-09-09

    Continuing from the third quarter, all technical objectives of this Phase II SBIR work were previously and successfully completed. This report is therefore brief and contains two elements (1) a comparison of technical objective accomplishments to the stated goals in the original grant proposal (2) a summary of the third key element of this work; a market analysis for the developed recycling technology systems.

  2. Polycrystalline thin-film cadmium telluride solar cells fabricated by electrodeposition. Annual technical report

    SciTech Connect (OSTI)

    Trefny, J.U.; Mao, D.

    1998-01-01

    During the past year, Colorado School of Mines (CSM) researchers performed systematic studies of the growth and properties of electrodeposition CdS and back-contact formation using Cu-doped ZnTe, with an emphasis on low Cu concentrations. CSM also started to explore the stability of its ZnTe-Cu contacted CdTe solar cells. Researchers investigated the electrodeposition of CdS and its application in fabricating CdTe/CdS solar cells. The experimental conditions they explored in this study were pH from 2.0 to 3.0; temperatures of 80 and 90 C; CdCl{sub 2} concentration of 0.2 M; deposition potential from {minus}550 to {minus}600 mV vs. Ag/AgCl electrode; [Na{sub 2}S{sub 2}O{sub 4}] concentration between 0.005 and 0.05 M. The deposition rate increases with increase of the thiosulfate concentration and decrease of solution pH. Researchers also extended their previous research of ZnTe:Cu films by investigating films doped with low Cu concentrations (< 5 at. %). The low Cu concentration enabled them to increase the ZnTe:Cu post-annealing temperature without causing excessive Cu diffusion into CdTe or formation of secondary phases. The effects of Cu doping concentration and post-deposition annealing temperature on the structural, compositional, and electrical properties of ZnTe were studied systematically using X-ray diffraction, atomic force microscopy, electron microprobe, Hall effect, and conductivity measurements.

  3. Chapter 1.19: Cadmium Telluride Photovoltaic Thin Film: CdTe

    SciTech Connect (OSTI)

    Gessert, T. A.

    2012-01-01

    The chapter reviews the history, development, and present processes used to fabricate thin-film, CdTe-based photovoltaic (PV) devices. It is intended for readers who are generally familiar with the operation and material aspects of PV devices but desire a deeper understanding of the process sequences used in CdTe PV technology. The discussion identifies why certain processes may have commercial production advantages and how the various process steps can interact with each other to affect device performance and reliability. The chapter concludes with a discussion of considerations of large-area CdTe PV deployment including issues related to material availability and energy-payback time.

  4. Method for surface passivation and protection of cadmium zinc telluride crystals

    DOE Patents [OSTI]

    Mescher, Mark J.; James, Ralph B.; Schlesinger, Tuviah E.; Hermon, Haim

    2000-01-01

    A method for reducing the leakage current in CZT crystals, particularly Cd.sub.1-x Zn.sub.x Te crystals (where x is greater than equal to zero and less than or equal to 0.5), and preferably Cd.sub.0.9 Zn.sub.0.1 Te crystals, thereby enhancing the ability of these crystal to spectrally resolve radiological emissions from a wide variety of radionuclides. Two processes are disclosed. The first method provides for depositing, via reactive sputtering, a silicon nitride hard-coat overlayer which provides significant reduction in surface leakage currents. The second method enhances the passivation by oxidizing the CZT surface with an oxygen plasma prior to silicon nitride deposition without breaking the vacuum state.

  5. Ferro-Orbital Ordering Transition in Iron Telluride Fe1+yTe ...

    Office of Scientific and Technical Information (OSTI)

    frustration effects of the interstitial Fe decouple different orders, leading to a sequence of transitions. While the lattice distortion is closely followed by incommensurate...

  6. Solar heating and cooling of residential buildings: sizing, installation and operation of systems. 1980 edition

    SciTech Connect (OSTI)

    1980-09-01

    This manual was prepared as a text for a training course on solar heating and cooling of residential buildings. The course and text are directed toward sizing, installation, operation, and maintenance of solar systems for space heating and hot water supply, and solar cooling is treated only briefly. (MHR)

  7. Characteristics and sources of intermediate size particles in recovery boilers : final project report.

    SciTech Connect (OSTI)

    Baxter, Larry L.; Shaddix, Christopher R.; Verrill, Christopher L.; Wessel, Richard A.

    2005-02-01

    As part of the U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) Industries of the Future (IOF) Forest Products research program, a collaborative investigation was conducted on the sources, characteristics, and deposition of particles intermediate in size between submicron fume and carryover in recovery boilers. Laboratory experiments on suspended-drop combustion of black liquor and on black liquor char bed combustion demonstrated that both processes generate intermediate size particles (ISP), amounting to 0.5-2% of the black liquor dry solids mass (BLS). Measurements in two U.S. recovery boilers show variable loadings of ISP in the upper furnace, typically between 0.6-3 g/Nm{sup 3}, or 0.3-1.5% of BLS. The measurements show that the ISP mass size distribution increases with size from 5-100 {micro}m, implying that a substantial amount of ISP inertially deposits on steam tubes. ISP particles are depleted in potassium, chlorine, and sulfur relative to the fuel composition. Comprehensive boiler modeling demonstrates that ISP concentrations are substantially overpredicted when using a previously developed algorithm for ISP generation. Equilibrium calculations suggest that alkali carbonate decomposition occurs at intermediate heights in the furnace and may lead to partial destruction of ISP particles formed lower in the furnace. ISP deposition is predicted to occur in the superheater sections, at temperatures greater than 750 C, when the particles are at least partially molten.

  8. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOE Patents [OSTI]

    Vajda, Stefan; Pellin, Michael J.; Elam, Jeffrey W.; Marshall, Christopher L.; Winans, Randall A.; Meiwes-Broer, Karl-Heinz

    2012-03-27

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  9. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOE Patents [OSTI]

    Vajda, Stefan , Pellin, Michael J.; Elam, Jeffrey W.; Marshall, Christopher L.; Winans, Randall A.; Meiwes-Broer, Karl-Heinz

    2012-04-03

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  10. Magnetic nanoparticles for power absorption: Optimizing size, shape and magnetic properties

    SciTech Connect (OSTI)

    Gonzalez-Fernandez, M.A.; Torres, T.E.; Andres-Verges, M.; Costo, R.; Presa, P. de la; Serna, C.J.; Morales, M.P.; Marquina, C.; Ibarra, M.R.; Goya, G.F.

    2009-10-15

    We present a study on the magnetic properties of naked and silica-coated Fe{sub 3}O{sub 4} nanoparticles with sizes between 5 and 110 nm. Their efficiency as heating agents was assessed through specific power absorption (SPA) measurements as a function of particle size and shape. The results show a strong dependence of the SPA with the particle size, with a maximum around 30 nm, as expected for a Neel relaxation mechanism in single-domain particles. The SiO{sub 2} shell thickness was found to play an important role in the SPA mechanism by hindering the heat outflow, thus decreasing the heating efficiency. It is concluded that a compromise between good heating efficiency and surface functionality for biomedical purposes can be attained by making the SiO{sub 2} functional coating as thin as possible. - Graphical Abstract: The magnetic properties of Fe{sub 3}O{sub 4} nanoparticles from 5 to 110 nm are presented, and their efficiency as heating agents discussed as a function of particle size, shape and surface functionalization.

  11. Estimated size and performance of a natural gas fired duplex Stirling for domestic refrigeration applications

    SciTech Connect (OSTI)

    Berchowitz, D.M. ); Shonder, J. )

    1991-01-01

    Calibrated calculations are used to size an integrated Stirling cooler and engine (Duplex configuration). Fuel for the engine is natural gas and the working fluid is helium. The potential exists for long life and low noise. Performance is shown to be very competitive when compared to standard vapor compression systems. 10 refs., 8 figs., 1 tab.

  12. Small- and Medium-Sized Commercial Building Monitoring and Controls Needs: A Scoping Study

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Underhill, Ronald M.; Goddard, James K.; Taasevigen, Danny J.; Piette, M. A.; Granderson, J.; Brown, Rich E.; Lanzisera, Steven M.; Kuruganti, T.

    2012-10-31

    Buildings consume over 40% of the total energy consumption in the U.S. A significant portion of the energy consumed in buildings is wasted because of the lack of controls or the inability to use existing building automation systems (BASs) properly. Much of the waste occurs because of our inability to manage and controls buildings efficiently. Over 90% of the buildings are either small-size (<5,000 sf) or medium-size (between 5,000 sf and 50,000 sf); these buildings currently do not use BASs to monitor and control their building systems from a central location. According to Commercial Building Energy Consumption Survey (CBECS), about 10% of the buildings in the U.S. use BASs or central controls to manage their building system operations. Buildings that use BASs are typically large (>100,000 sf). Lawrence Berkeley National Laboratory (LBNL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) were asked by the U.S. Department of Energys (DOEs) Building Technologies Program (BTP) to identify monitoring and control needs for small- and medium-sized commercial buildings and recommend possible solutions. This study documents the needs and solutions for small- and medium-sized buildings.

  13. Control of both particle and pore size in nanoporous palladium alloy powders

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jones, Christopher G.; Cappillino, Patrick J.; Stavila, Vitalie; Robinson, David B.

    2014-07-15

    Energy storage materials often involve chemical reactions with bulk solids. Porosity within the solids can enhance reaction rates. The porosity can be either within or between individual particles of the material. Greater control of the size and uniformity of both types of pore should lead to enhancements of charging and discharging rates in energy storage systems. Furthermore, to control both particle and pore size in nanoporous palladium (Pd)-based hydrogen storage materials, first we created uniformly sized copper particles of about 1 μm diameter by the reduction of copper sulfate with ascorbic acid. In turn, these were used as reducing agentsmore » for tetrachloropalladate in the presence of a block copolymer surfactant. The copper reductant particles are geometrically self-limiting, so the resulting Pd particles are of similar size. The surfactant induces formation of 10 nm-scale pores within the particles. Some residual copper is alloyed with the Pd, reducing hydrogen storage capacity; use of a more reactive Pd salt can mitigate this. The reaction is conveniently performed in gram-scale batches.« less

  14. Control of both particle and pore size in nanoporous palladium alloy powders

    SciTech Connect (OSTI)

    Jones, Christopher G.; Cappillino, Patrick J.; Stavila, Vitalie; Robinson, David B.

    2014-07-15

    Energy storage materials often involve chemical reactions with bulk solids. Porosity within the solids can enhance reaction rates. The porosity can be either within or between individual particles of the material. Greater control of the size and uniformity of both types of pore should lead to enhancements of charging and discharging rates in energy storage systems. Furthermore, to control both particle and pore size in nanoporous palladium (Pd)-based hydrogen storage materials, first we created uniformly sized copper particles of about 1 ?m diameter by the reduction of copper sulfate with ascorbic acid. In turn, these were used as reducing agents for tetrachloropalladate in the presence of a block copolymer surfactant. The copper reductant particles are geometrically self-limiting, so the resulting Pd particles are of similar size. The surfactant induces formation of 10 nm-scale pores within the particles. Some residual copper is alloyed with the Pd, reducing hydrogen storage capacity; use of a more reactive Pd salt can mitigate this. The reaction is conveniently performed in gram-scale batches.

  15. Effect of wood chip size on update gasifier-combustor operation

    SciTech Connect (OSTI)

    Payne, F.A.; Dunlap, J.L.; Caussanel, P.

    1984-01-01

    Three wood chip sizes were tested in a 0.3 GJ/h updraft gasifier-combustor. Thermal output did not vary significantly between wood chips. Pressure and temperature profiles were measured in the gasifier bed. Channeling occurred with the small wood chips. Efficiency of the combustor was determined by a mass and energy balance and an enthalpy technique.

  16. An analytical and computational study of combined rate and size effects on material properties.

    SciTech Connect (OSTI)

    Fang, Huei Eliot; Chen, Zhen; Shen, Luming University of Missouri-Columbia, Columbia, MO); Gan, Yong

    2005-05-01

    The recent interests in developing multiscale model-based simulation procedures have brought about the challenging tasks of bridging different spatial and temporal scales within a unified framework. However, the research focus has been on the scale effect in the spatial domain with the loading rate being assumed to be quasi-static. Although material properties are rate-dependent in nature, little has been done in understanding combined loading rate and specimen size effects on the material properties at different scales. In addition, the length and time scales that can be probed by the molecular level simulations are still fairly limited due to the limitation of computational capability. Based on the experimental and computational capabilities available, therefore, an attempt is made in this report to formulate a hyper-surface in both spatial and temporal domains to predict combined size and rate effects on the mechanical properties of engineering materials. To demonstrate the features of the proposed hyper-surface, tungsten specimens of various sizes under various loading rates are considered with a focus on the uniaxial loading path. The mechanical responses of tungsten specimens under other loading paths are also explored to better understand the size effect. It appears from the preliminary results that the proposed procedure might provide an effective means to bridge different spatial and temporal scales in a unified multiscale modeling framework, and facilitate the application of nanoscale research results to engineering practice.

  17. Estimating payload internal temperatures and radiator size for multimegawatt space platforms

    SciTech Connect (OSTI)

    Dobranich, D.

    1987-08-01

    A conceptual space platform consists of a payload, a power conditioning unit (PCU), and two radiators: the main radiator and a secondary radiator. A computer program was written to determine the required size of the two radiators and the temperatures of the PCU and payload for a given platform power level. An iterative approach is necessary because the required size of the main radiator depends on the size of the secondary radiator and vice versa. Also, the temperatures of the payload and PCU depend on the size of the radiators. The program user can subdivide the two radiators into any number of nodes to increase the accuracy of the radiant heat transfer solution. The use of more nodes also allows better prediction of the nonlinear temperature drop that occurs across the radiators as the working fluid deposits the platform's waste heat in the radiator. View factor expressions are automatically calculated for different choices of the number of nodes. The user can also select different separation distances between the various platform structures. A model is included to couple the radiant and conduction heat transfer that occurs between the payload and its meteoroid shell and between the PCU and its shell. Also, the program allows the use of a refrigerator to cool the payload. If a refrigerator is used, the program determines the amount of additional thermal power needed to run the refrigerator. The results of parametric calculations are included to demonstrate the use of the program.

  18. Probing the size and environment induced phase transformation in CdSe quantum dots

    SciTech Connect (OSTI)

    Karakoti, Ajay S.; Sanghavi, Shail P.; Nachimuthu, Ponnusamy; Yang, Ping; Thevuthasan, Suntharampillai

    2011-11-17

    The structural and electronic properties of CdSe quantum dots in toluene and drop-casted on Si wafer were investigated by in-situ micro X-ray diffraction, X-ray photoelectron spectroscopy and UV-Vis absorption and emission spectroscopy. The in-situ micro diffraction data show that the CdSe quantum dots capped with TOPO or hexadecylamine (HDA) in toluene exhibit predominantly wurtzite crystal structure, which undergoes a phase transformation to zinc blende crystal structure following drop casting on Si and this phase transition increases with decreasing the size of the CdSe quantum dots. Decreasing the size of quantum dots also increases the Se vacancies that facilitate the phase transformation. The X-ray photoelectron spectra show a systematic increase in the core level binding energies of Cd 3d and Se 3d, the band gap and the Cd/Se ratio as the size of the quantum dots decreases from 6.6nm to 2.1nm. This is attributed to the quantum confinement of CdSe crystallites by the capping ligands in toluene which increases with decreasing the size of the quantum dots. However, drop-casting quantum dots on Si alter the density and arrangement of capping ligands and solvent molecules on the quantum dots which causes significant phase transformation.

  19. An instrument to measure extended particle size and velocity ranges in multiphase flows

    SciTech Connect (OSTI)

    Wood, C.P.; Hess, C.F.

    1995-12-31

    This paper describes a miniaturized particle sizing velocimeter developed and built by MetroLaser to measure the spatial and temporal distributions of particle size and velocity. The instrument is the first of its kind to utilize the pulse displacement technique (PDT) to measure particle size. PDT is based on the detection of scattered refraction and reflection pulses which sweep past a detector at different times as a particle traverses a narrow laser sheet. In conjunction with Mie scattering and a time-of-fight velocity measuring technique, the instrument provides detailed distributions of particle size from 2 {micro}m to 6,000 {micro}m in two optical configurations, and particle velocity from 0.5 m/s to 150 m/s. This paper summarizes the theoretical foundation of PDT which allows the calculation of particle diameter from various optical parameters such as refractive index and collection angle. An overview of the instrument is presented, followed by a brief description of the miniaturized optical probe. The processing of data is described and, lastly, the results of experimental studies are presented which verify the accuracy and versatility of the instrument.

  20. Effects of Compressive Force, Particle Size and Moisture Content on Mechanical Properties of Biomass Grinds

    SciTech Connect (OSTI)

    Mani, Sudhagar; Tabil, Lope Jr.; Sokhansanj, Shahabaddine

    2006-03-01

    Chemical composition, moisture content, bulk and particle densities, and geometric mean particle size were determined to characterize grinds from wheat and barley straws, corn stover and switchgrass. The biomass grinds were compressed for five levels of compressive forces (1000, 2000, 3000, 4000, 4400 N) and three levels of particle sizes (3.2, 1.6 and 0.8 mm) at two levels of moisture contents (12% and 15% (wb) to establish the compression and relaxation data. Corn stover grind produced the highest compact density at low pressure during compression. Compressive force, particle size and moisture content of grinds significantly affected the compact density of barley straw, corn stover and switchgrass grinds. However, different particle sizes of wheat straw grind did not produce any significant difference on compact density. Barley straw grind had the highest asymptotic modulus among all other biomass grinds indicating that compact from barley straw grind were more rigid than those of other compacts. Asymptotic modulus increased with an increase in maximum compressive pressure. The trend of increase in asymptotic modulus (EA) with the maximum compressive pressure ( 0) was fitted to a second order polynomial equation. Keywords: Biomass grinds, chemical composition, compact density and asymptotic modulus

  1. Size and spacial distribution of micropores in SBA-15 using CM-SANS

    SciTech Connect (OSTI)

    Pollock, Rachel A; Walsh, Brenna R; Fry, Jason A; Ghampson, Tyrone; Centikol, Ozgul; Melnichenko, Yuri B; Kaiser, Helmut; Pynn, Roger; Frederick, Brian G

    2011-01-01

    Diffraction intensity analysis of small-angle neutron scattering measurements of dry SBA-15 have been combined with nonlocal density functional theory (NLDFT) analysis of nitrogen desorption isotherms to characterize the micropore, secondary mesopore, and primary mesopore structure. The radial dependence of the scattering length density, which is sensitive to isolated surface hydroxyls, can only be modeled if the NLDFT pore size distribution is distributed relatively uniformly throughout the silica framework, not localized in a 'corona' around the primary mesopores. Contrast matching-small angle neutron scattering (CM-SANS) measurements, using water, decane, tributylamine, cyclohexane, and isooctane as direct probes of the size of micropores indicate that the smallest pores in SBA-15 have diameter between 5.7 and 6.2 {angstrom}. Correlation of the minimum pore size with the onset of the micropore size distribution provides direct evidence that the shape of the smallest micropores is cylinderlike, which is consistent with their being due to unraveling of the polymer template.

  2. Business Continuity Planning Resources for Small- and Medium-Sized Businesses

    SciTech Connect (OSTI)

    Judd, Kathleen S.; Lesperance, Ann M.

    2010-05-14

    This document/memo summarizes existing resources and guidance on business continuity planning for small- to medium-sized businesses. DTRA will share this information with large commercial businesses who identified the need to help their suppliers and other key collaborators prepare business continuity plans in order to speed recovery from a wide-area bioterrorism incident.

  3. Effect of Particle Size and Operating Conditions on Pt3Co PEMFC Cathode Catalyst Durability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gummalla, Mallika; Ball, Sarah; Condit, David; Rasouli, Somaye; Yu, Kang; Ferreira, Paulo; Myers, Deborah; Yang, Zhiwei

    2015-05-29

    The initial performance and decay trends of polymer electrolyte membrane fuel cells (PEMFC) cathodes with Pt3Co catalysts of three mean particle sizes (4.9 nm, 8.1 nm, and 14.8 nm) with identical Pt loadings are compared. Even though the cathode based on 4.9 nm catalyst exhibited the highest initial electrochemical surface area (ECA) and mass activity, the cathode based on 8.1 nm catalyst showed better initial performance at high currents. Owing to the low mass activity of the large particles, the initial performance of the 14.8 nm Pt3Co-based electrode was the lowest. The performance decay rate of the electrodes with themore » smallest Pt3Co particle size was the highest and that of the largest Pt3Co particle size was lowest. Interestingly, with increasing number of decay cycles (0.6 to 1.0 V, 50 mV/s), the relative improvement in performance of the cathode based on 8.1 nm Pt3Co over the 4.9 nm Pt3Co increased, owing to better stability of the 8.1 nm catalyst. The electron microprobe analysis (EMPA) of the decayed membrane-electrode assembly (MEA) showed that the amount of Co in the membrane was lower for the larger particles, and the platinum loss into the membrane also decreased with increasing particle size. This suggests that the higher initial performance at high currents with 8.1 nm Pt3Co could be due to lower contamination of the ionomer in the electrode. Furthermore, lower loss of Co from the catalyst with increased particle size could be one of the factors contributing to the stability of ECA and mass activity of electrodes with larger cathode catalyst particles. To delineate the impact of particle size and alloy effects, these results are compared with prior work from our research group on size effects of pure platinum catalysts. The impact of PEMFC operating conditions, including upper potential, relative humidity, and temperature on the alloy catalyst decay trends, along with the EMPA analysis of the decayed MEAs, are reported.« less

  4. Deformation Behavior of Sub-micron and Micron Sized Alumina Particles in Compression.

    SciTech Connect (OSTI)

    Sarobol, Pylin; Chandross, Michael E.; Carroll, Jay; Mook, William; Boyce, Brad; Kotula, Paul G.; McKenzie, Bonnie B.; Bufford, Daniel Charles; Hall, Aaron Christopher.

    2014-09-01

    The ability to integrate ceramics with other materials has been limited due to high temperature (>800degC) ceramic processing. Recently, researchers demonstrated a novel process , aerosol deposition (AD), to fabricate ceramic films at room temperature (RT). In this process, sub - micro n sized ceramic particles are accelerated by pressurized gas, impacted on the substrate, plastically deformed, and form a dense film under vacuum. This AD process eliminates high temperature processing thereby enabling new coatings and device integration, in which ceramics can be deposited on metals, plastics, and glass. However, k nowledge in fundamental mechanisms for ceramic particle s to deform and form a dense ceramic film is still needed and is essential in advancing this novel RT technology. In this wo rk, a combination of experimentation and atomistic simulation was used to determine the deformation behavior of sub - micron sized ceramic particle s ; this is the first fundamental step needed to explain coating formation in the AD process . High purity, singl e crystal, alpha alumina particles with nominal size s of 0.3 um and 3.0 um were examined. Particle characterization, using transmission electron microscopy (TEM ), showed that the 0.3 u m particles were relatively defect - free single crystals whereas 3.0 u m p articles were highly defective single crystals or particles contained low angle grain boundaries. Sub - micron sized Al 2 O 3 particles exhibited ductile failure in compression. In situ compression experiments showed 0.3um particles deformed plastically, fractured, and became polycrystalline. Moreover, dislocation activit y was observed within the se particles during compression . These sub - micron sized Al 2 O 3 particles exhibited large accum ulated strain (2 - 3 times those of micron - sized particles) before first fracture. I n agreement with the findings from experimentation , a tomistic simulation s of nano - Al 2 O 3 particles showed dislocation slip and significant plastic deformation during compressi on . On the other hand, the micron sized Al 2 O 3 particles exhibited brittle f racture in compression. In situ compression experiments showed 3um Al 2 O 3 particles fractured into pieces without observable plastic deformation in compression. Particle deformation behaviors will be used to inform Al 2 O 3 coating deposition parameters and particle - particle bonding in the consolidated Al 2 O 3 coatings.

  5. Uncertainty in Modeling Dust Mass Balance and Radiative Forcing from Size Parameterization

    SciTech Connect (OSTI)

    Zhao, Chun; Chen, Siyu; Leung, Lai-Yung R.; Qian, Yun; Kok, Jasper; Zaveri, Rahul A.; Huang, J.

    2013-11-05

    This study examines the uncertainties in simulating mass balance and radiative forcing of mineral dust due to biases in the aerosol size parameterization. Simulations are conducted quasi-globally (180oW-180oE and 60oS-70oN) using the WRF24 Chem model with three different approaches to represent aerosol size distribution (8-bin, 4-bin, and 3-mode). The biases in the 3-mode or 4-bin approaches against a relatively more accurate 8-bin approach in simulating dust mass balance and radiative forcing are identified. Compared to the 8-bin approach, the 4-bin approach simulates similar but coarser size distributions of dust particles in the atmosphere, while the 3-mode pproach retains more fine dust particles but fewer coarse dust particles due to its prescribed og of each mode. Although the 3-mode approach yields up to 10 days longer dust mass lifetime over the remote oceanic regions than the 8-bin approach, the three size approaches produce similar dust mass lifetime (3.2 days to 3.5 days) on quasi-global average, reflecting that the global dust mass lifetime is mainly determined by the dust mass lifetime near the dust source regions. With the same global dust emission (~6000 Tg yr-1), the 8-bin approach produces a dust mass loading of 39 Tg, while the 4-bin and 3-mode approaches produce 3% (40.2 Tg) and 25% (49.1 Tg) higher dust mass loading, respectively. The difference in dust mass loading between the 8-bin approach and the 4-bin or 3-mode approaches has large spatial variations, with generally smaller relative difference (<10%) near the surface over the dust source regions. The three size approaches also result in significantly different dry and wet deposition fluxes and number concentrations of dust. The difference in dust aerosol optical depth (AOD) (a factor of 3) among the three size approaches is much larger than their difference (25%) in dust mass loading. Compared to the 8-bin approach, the 4-bin approach yields stronger dust absorptivity, while the 3-mode approach yields weaker dust absorptivity. Overall, on quasi-global average, the three size parameterizations result in a significant difference of a factor of 2~3 in dust surface cooling (-1.02~-2.87 W m-2) and atmospheric warming (0.39~0.96 W m-2) and in a tremendous difference of a factor of ~10 in dust TOA cooling (-0.24~-2.20 W m-2). An uncertainty of a factor of 2 is quantified in dust emission estimation due to the different size parameterizations. This study also highlights the uncertainties in modeling dust mass and number loading, deposition fluxes, and radiative forcing resulting from different size parameterizations, and motivates further investigation of the impact of size parameterizations on modeling dust impacts on air quality, climate, and ecosystem.

  6. Composition and grain size effects on the structural and mechanical properties of CuZr nanoglasses

    SciTech Connect (OSTI)

    Adibi, Sara [Institute of High Performance Computing, A*STAR, 138632 Singapore (Singapore); Mechanical Engineering Department, National University of Singapore, 117576 Singapore (Singapore); Branicio, Paulo S., E-mail: branicio@ihpc.a-star.edu.sg; Zhang, Yong-Wei [Institute of High Performance Computing, A*STAR, 138632 Singapore (Singapore); Joshi, Shailendra P., E-mail: Shailendra@nus.edu.sg [Mechanical Engineering Department, National University of Singapore, 117576 Singapore (Singapore)

    2014-07-28

    Nanoglasses (NGs), metallic glasses (MGs) with a nanoscale grain structure, have the potential to considerably increase the ductility of traditional MGs while retaining their outstanding mechanical properties. We investigated the effects of composition on the structural and mechanical properties of CuZr NG films with grain sizes between 3 to 15?nm using molecular dynamics simulations. Results indicate a transition from localized shear banding to homogeneous superplastic flow with decreasing grain size, although the critical average grain size depends on composition: 5?nm for Cu{sub 36}Zr{sub 64} and 3?nm for Cu{sub 64}Zr{sub 36}. The flow stress of the superplastic NG at different compositions follows the trend of the yield stress of the parent MG, i.e., Cu{sub 36}Zr{sub 64} yield/flow stress: 2.54?GPa/1.29?GPa and Cu{sub 64}Zr{sub 36} yield/flow stress: 3.57?GPa /1.58?GPa. Structural analysis indicates that the differences in mechanical behavior as a function of composition are rooted at the distinct statistics of prominent atomic Voronoi polyhedra. The mechanical behavior of NGs is also affected by the grain boundary thickness and the fraction of atoms at interfaces for a given average grain size. The results suggest that the composition dependence of the mechanical behavior of NGs follows that of their parent MGs, e.g., a stronger MG will generate a stronger NG, while the intrinsic tendency for homogeneous deformation occurring at small grain size is not affected by composition.

  7. Size-dependent error of the density functional theory ionization potential in vacuum and solution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sosa Vazquez, Xochitl A.; Isborn, Christine M.

    2015-12-22

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. As a result, in vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less

  8. Larger sized wire arrays on 1.5 MA Z-pinch generator

    SciTech Connect (OSTI)

    Safronova, A. S. Kantsyrev, V. L. Weller, M. E. Shlyaptseva, V. V. Shrestha, I. K. Esaulov, A. A. Stafford, A.; Chuvatin, A. S.; Coverdale, C. A.; Jones, B.

    2014-12-15

    Experiments on the UNR Zebra generator with Load Current Multiplier (LCM) allow for implosions of larger sized wire array loads than at standard current of 1 MA. Advantages of larger sized planar wire array implosions include enhanced energy coupling to plasmas, better diagnostic access to observable plasma regions, and more complex geometries of the wire loads. The experiments with larger sized wire arrays were performed on 1.5 MA Zebra with LCM (the anode-cathode gap was 1 cm, which is half the gap used in the standard mode). In particular, larger sized multi-planar wire arrays had two outer wire planes from mid-atomic-number wires to create a global magnetic field (gmf) and plasma flow between them. A modified central plane with a few Al wires at the edges was put in the middle between outer planes to influence gmf and to create Al plasma flow in the perpendicular direction (to the outer arrays plasma flow). Such modified plane has different number of empty slots: it was increased from 6 up to 10, hence increasing the gap inside the middle plane from 4.9 to 7.7 mm, respectively. Such load configuration allows for more independent study of the flows of L-shell mid-atomic-number plasma (between the outer planes) and K-shell Al plasma (which first fills the gap between the edge wires along the middle plane) and their radiation in space and time. We demonstrate that such configuration produces higher linear radiation yield and electron temperatures as well as advantages of better diagnostics access to observable plasma regions and how the load geometry (size of the gap in the middle plane) influences K-shell Al radiation. In particular, K-shell Al radiation was delayed compared to L-shell mid-atomic-number radiation when the gap in the middle plane was large enough (when the number of empty slots was increased up to ten)

  9. Size-dependent error of the density functional theory ionization potential in vacuum and solution

    SciTech Connect (OSTI)

    Sosa Vazquez, Xochitl A.; Isborn, Christine M.

    2015-12-22

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potential for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. As a result, in vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.

  10. Implications of access hole size on tank waste retrieval system design and cost

    SciTech Connect (OSTI)

    Babcock, S.M.; Kwon, D.S.; Burks, B.L.; Stoughton, R.S.; Evans, M.S.

    1994-05-01

    The DOE Environmental Restoration and Waste Management Robotics Technology Development Program has been investigating the application of robotics technology to the retrieval of waste from single-shell storage tanks for several years. The use of a large, ``long-reach`` manipulator to position and orient a variety of tools and other equipment has been recommended. The objective of this study is to determine the appropriate access hole size for the tank waste retrieval system installation. Previous reports on the impact of access hole size on manipulator performance are summarized. In addition, the practical limitation for access hole size based on structural limitations of the waste storage tanks, the state-of-the-art size limitations for the installation of new risers, the radiation safety implications of various access hole sizes, and overall system cost implications are considered. Basic conclusions include: (1) overall cost of remediation will; be dominated by the costs of the balance of plant and time required to perform the task rather than the cost of manipulator hardware or the cost of installing a riser, (2) the most desirable solution from a manipulator controls point of view is to make the manipulator as stiff as possible and have as high as possible a natural frequency, which implies a large access hole diameter, (3) beyond some diameter; simple, uniform cross-section elements become less advantageous from a weight standpoint and alternative structures should be considered, and (4) additional shielding and contamination control measures would be required for larger holes. Parametric studies summarized in this report considered 3,790,000 1 (1,000,000 gal) tanks, while initial applications are likely to be for 2,840,000 1 (750,000 gal) tanks. Therefore, the calculations should be somewhat conservative, recognizing the limitations of the specific conditions considered.

  11. Spot test kit for explosives detection

    DOE Patents [OSTI]

    Pagoria, Philip F; Whipple, Richard E; Nunes, Peter J; Eckels, Joel Del; Reynolds, John G; Miles, Robin R; Chiarappa-Zucca, Marina L

    2014-03-11

    An explosion tester system comprising a body, a lateral flow membrane swab unit adapted to be removeably connected to the body, a first explosives detecting reagent, a first reagent holder and dispenser operatively connected to the body, the first reagent holder and dispenser containing the first explosives detecting reagent and positioned to deliver the first explosives detecting reagent to the lateral flow membrane swab unit when the lateral flow membrane swab unit is connected to the body, a second explosives detecting reagent, and a second reagent holder and dispenser operatively connected to the body, the second reagent holder and dispenser containing the second explosives detecting reagent and positioned to deliver the second explosives detecting reagent to the lateral flow membrane swab unit when the lateral flow membrane swab unit is connected to the body.

  12. Recent Trends in Natural Gas Spot Prices

    Reports and Publications (EIA)

    1997-01-01

    This article focuses primarily on conditions and developments in the East Consuming Region and their connection to prices at the Henry Hub in the Producing Region.

  13. Importance of Size and Distribution of Ni Nanoparticles for the Hydrodeoxygenation of Microalgae Oil

    SciTech Connect (OSTI)

    Song, Wenji; Zhao, Chen; Lercher, Johannes A.

    2013-07-22

    Improved synthetic approaches for preparing small-sized Ni nanoparticles (d=3 nm) supported on HBEA zeolite have been explored and compared with the traditional impregnation method. The formation of surface nickel silicate/aluminate involved in the two precipitation processes are inferred to lead to the stronger interaction between the metal and the support. The lower Brnsted acid concentrations of these two Ni/HBEA catalysts compared with the parent zeolite caused by the partial exchange of Brnsted acid sites by Ni2+ cations do not influence the hydrodeoxygenation rates, but alter the product selectivity. Higher initial rates and higher stability have been achieved with these optimized catalysts for the hydrodeoxygenation of stearic acid and microalgae oil. Small metal particles facilitate high initial catalytic activity in the fresh sample and size uniformity ensures high catalyst stability.

  14. Porous silicon structures with high surface area/specific pore size

    DOE Patents [OSTI]

    Northrup, M. Allen (Berkeley, CA); Yu, Conrad M. (Antioch, CA); Raley, Norman F. (Danville, CA)

    1999-01-01

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  15. TECHNOLOGY EVALUATION FOR CONDITIONING OF HANFORD TANK WASTE USING SOLIDS SEGREGATION AND SIZE REDUCTION

    SciTech Connect (OSTI)

    Restivo, M.; Stone, M.; Herman, D.; Lambert, D.; Duignan, M.; SMITH, G.; WELLS, B.; LUMETTA, G.; ENDRELIN, C.; ADKINS, H.

    2014-04-15

    The Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) team performed a literature search on current and proposed technologies for solids segregation and size reduction of particles in the slurry feed from the Hanford Tank Farm (HTF). The team also investigated technology research performed on waste tank slurries, both real and simulated, and reviewed academic theory applicable to solids segregation and size reduction. This review included text book applications and theory, commercial applications suitable for a nuclear environment, research of commercial technologies suitable for a nuclear environment, and those technologies installed in a nuclear environment, including technologies implemented at Department of Energy (DOE) facilities. Information on each technology is provided in this report along with the advantages and disadvantages of the technologies for this application.

  16. Synthesis of supported bimetallic nanoparticles with controlled size and composition distributions for active site elucidation

    SciTech Connect (OSTI)

    Hakim, Sikander H.; Sener, Canan; Alba Rubio, Ana C.; Gostanian, Thomas M.; O'neill, Brandon J; Ribeiro, Fabio H.; Miller, Jeffrey T.; Dumesic, James A

    2015-08-01

    Elucidation of active sites in supported bimetallic catalysts is complicated by the high level of dispersity in the nanoparticle size and composition that is inherent in conventional methods of catalyst preparation. We present a synthesis strategy that leads to highly dispersed, bimetallic nanoparticles with uniform particle size and composition by means of controlled surface reactions. We demonstrate the synthesis of three systems, RhMo, PtMo, and RhRe, consisting of a highly reducible metal with an oxophilic promoter. These catalysts are characterized by FTIR, CO chemisorption, STEM/EDS, TPR, and XAS analysis. The catalytic properties of these bimetallic nanoparticles were probed for the selective CO hydrogenolysis of (hydroxymethyl)tetrahydropyran to produce 1,6 hexanediol. Based on the characterization results and reactivity trends, the active sites in the hydrogenolysis reaction are identified to be small ensembles of the more noble metal (Rh, Pt) adjacent to highly reduced moieties of the more oxophilic metal (Mo, Re).

  17. Technology Evaluation for Conditioning of Hanford Tank Waste Using Solids Segregation and Size Reduction

    SciTech Connect (OSTI)

    Restivo, Michael L.; Stone, M. E.; Herman, D. T.; Lambert, Daniel P.; Duignan, Mark R.; Smith, Gary L.; Wells, Beric E.; Lumetta, Gregg J.; Enderlin, Carl W.; Adkins, Harold E.

    2014-04-24

    The Savannah River National Laboratory and the Pacific Northwest National Laboratory team performed a literature search on current and proposed technologies for solids segregation and size reduction of particles in the slurry feed from the Hanford Tank Farm. The team also investigated technology research performed on waste tank slurries, both real and simulated, and reviewed academic theory applicable to solids segregation and size reduction. This review included text book applications and theory, commercial applications suitable for a nuclear environment, research of commercial technologies suitable for a nuclear environment, and those technologies installed in a nuclear environment, including technologies implemented at Department of Energy facilities. Information on each technology is provided in this report along with the advantages and disadvantages of the technologies for this application. Any technology selected would require testing to verify the ability to meet the High-Level Waste Feed Waste Acceptance Criteria to the Hanford Tank Waste Treatment and Immobilization Plant Pretreatment Facility.

  18. Water Desalination Using Nanoporous Single-Layer Graphene with Tunable Pore Size

    SciTech Connect (OSTI)

    Surwade, Sumedh P [ORNL; Smirnov, Sergei N [ORNL; Vlassiouk, Ivan V [ORNL; Unocic, Raymond R [ORNL; Veith, Gabriel M [ORNL; Dai, Sheng [ORNL; Mahurin, Shannon Mark [ORNL

    2015-01-01

    Graphene has great potential to serve as a separation membrane due to its unique properties such as chemical and mechanical stability, flexibility and most importantly its one-atom thickness. In this study, we demonstrate first experimental evidence of the use of single-layer porous graphene as a desalination membrane. Nanometer-sized pores are introduced into single layer graphene using a convenient oxygen plasma etching process that permits tuning of the pore size. The resulting porous graphene membrane exhibited high rejection of salt ions and rapid water transport, thus functioning as an efficient water desalination membrane. Salt rejection selectivity of nearly 100% and exceptionally high water fluxes exceeding 105 g m-2 s-1 at 40 C were measured using saturated water vapor as a driving force.

  19. Porous silicon structures with high surface area/specific pore size

    DOE Patents [OSTI]

    Northrup, M.A.; Yu, C.M.; Raley, N.F.

    1999-03-16

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.

  20. A simulator designated to the help sizing of waste incineration plant with energy valorization

    SciTech Connect (OSTI)

    Lemoult, B.

    1998-07-01

    The integrated waste treatment (sorting, recycling, composting, incineration, tip) concept is increasing. In this concept, incineration remains the last way of destruction before tipping of refuse. With the aim to improve thermal and economic efficiencies of this kind of treatment, thermal and/or electrical energy are produced in incineration plants. If environmental rules lead to a steady increase of such plants, a lot of data have to be evaluated to find the best size, especially under economic aspects, for a given project. The author presents the specification of the software ARTEMIS, which helps a project manager to find the optimal size of a plant, to quantify the effect of various technical options, and to compare some operating management. Garbage deposit (quantity and quality), energy valorization (electricity price, thermal needs), machines (furnace, high and low pressure turbines, heat exchanger, auxiliary boiler) are taken into account. Energy and economic annual balance are also calculated with a hourly simulation step.

  1. Guidelines for conservation levels and for sizing passive-solar collection area

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01

    Guidelines are given for selecting R-values and infiltration levels, and determining the size of the solar collection area for passive solar building. The guidelines are based on balancing the incremental cost/benefit of conservation and solar strategies. Tables are given for 209 cities in the US and the results are also displayed on maps. The procedures are developed in an appendix, which gives the cost assumptions used and explains how to develop different guidelines for different costs.

  2. Platinum nanoparticle during electrochemical hydrogen evolution: Adsorbate distribution, active reaction species, and size effect

    SciTech Connect (OSTI)

    Tan, Teck L.; Wang, Lin -Lin; Zhang, Jia; Johnson, Duane D.; Bai, Kewu

    2015-03-02

    For small Pt nanoparticles (NPs), catalytic activity is, as observed, adversely affected by size in the 13 nm range. We elucidate, via first-principles-based thermodynamics, the operation H* distribution and cyclic voltammetry (CV) during the hydrogen evolution reaction (HER) across the electrochemical potential, including the underpotential region (U ? 0) that is difficult to assess in experiment. We consider multiple adsorption sites on a 1 nm Pt NP model and show that the characteristic CV peaks from different H* species correspond well to experiment. We next quantify the activity contribution from each H* species to explain the adverse effect of size. From the resolved CV peaks at the standard hydrogen electrode potential (U = 0), we first deduce that the active species for the HER are the partially covered (100)-facet bridge sites and the (111)-facet hollow sites. Upon evaluation of the reaction barriers at operation H* distribution and microkinetic modeling of the exchange current, we find that the nearest-neighbor (100)-facet bridge site pairs have the lowest activation energy and contribute to ~75% of the NP activity. Edge bridge sites (fully covered by H*) per se are not active; however, they react with neighboring (100)-facet H* to account for ~18% of the activity, whereas (111)-facet hollow sites contribute little. As a result, extrapolating the relative contributions to larger NPs in which the ratio of facet-to-edge sites increases, we show that the adverse size effect of Pt NP HER activity kicks in for sizes below 2 nm.

  3. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy

  4. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy

  5. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy

  6. Tensile strains give rise to strong size effects for thermal conductivities of silicene, germanene and stanene

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kuang, Youdi D.; Lindsay, Lucas R.; Shi, Sanqiang Q.; Zhen, Guangping P.

    2016-01-11

    Based on first principles calculations and self-consistent solution of linearized Boltzmann-Peierls equation for phonon transport approach within a three-phonon scattering framework, we characterize lattice thermal conductivities k of freestanding silicene, germanene and stanene under different isotropic tensile strains and temperatures. We find a strong size dependence of k for silicene with tensile strain, i.e., divergent k with increasing system size, in contrast, the intrinsic room temperature k for unstrained silicene converges with system size to 19.34 W/m–1 K–1 by 178 nm. The room temperature k of strained silicene becomes as large as that of bulk silicon by 84 m, indicatingmore » the possibility of using strain in silicene to manipulate k for thermal management. The relative contribution to the intrinsic k from out-of-plane acoustic modes is largest for unstrained silicene, –39% at room temperature. The single mode relaxation time approximation, which works reasonably well for bulk silicon, fails to appropriately describe phonon thermal transport in silicene, germanene and stanene within the temperature range considered. For large samples of silicene, k increases with tensile strain, peaks at –7% strain and then decreases with further strain. In germanene and stanene increasing strain hardens and stabilizes long wavelength out-of-plane acoustic phonons, and leads to similar k behaviors to those of silicene. As a result, these findings further our understanding of phonon dynamics in group-IV buckled monolayers and may guide transfer and fabrication techniques of these freestanding samples and engineering k by size and strain for applications of thermal management and thermoelectricity.« less

  7. EVIDENCE FOR (AND AGAINST) PROGENITOR BIAS IN THE SIZE GROWTH OF COMPACT RED GALAXIES

    SciTech Connect (OSTI)

    Keating, Stephanie K.; Abraham, Roberto G.; Schiavon, Ricardo; Graves, Genevieve; Damjanov, Ivana; Yan, Renbin; Newman, Jeffrey; Simard, Luc

    2015-01-01

    Most massive, passive galaxies are compact at high redshifts, but similarly compact massive galaxies are rare in the local universe. The most common interpretation of this phenomenon is that massive galaxies have grown in size by a factor of about five since redshift z = 2. An alternative explanation is that recently quenched massive galaxies are larger (a {sup p}rogenitor bias{sup )}. In this paper, we explore the importance of progenitor bias by looking for systematic differences in the stellar populations of compact early-type galaxies in the DEEP2 survey as a function of size. Our analysis is based on applying the statistical technique of bootstrap resampling to constrain differences in the median ages of our samples and to begin to characterize the distribution of stellar populations in our co-added spectra. The light-weighted ages of compact early-type galaxies at redshifts 0.5 < z < 1.4 are compared to those of a control sample of larger galaxies at similar redshifts. We find that massive compact early-type galaxies selected on the basis of red color and high bulge-to-total ratio are younger than similarly selected larger galaxies, suggesting that size growth in these objects is not driven mainly by progenitor bias, and that individual galaxies grow as their stellar populations age. However, compact early-type galaxies selected on the basis of image smoothness and high bulge-to-total ratio are older than a control sample of larger galaxies. Progenitor bias will play a significant role in defining the apparent size changes of early-type galaxies if they are selected on the basis of the smoothness of their light distributions.

  8. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy

  9. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy

  10. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy

  11. The Importance of Domain Size and Purity in High-Efficiency Organic Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells The Importance of Domain Size and Purity in High-Efficiency Organic Solar Cells Print The efficiency of polymer/organic photovoltaic cells hinges on excitons-electron/hole pairs energized by sunlight-getting to the interfaces of donor and acceptor domains quickly, before recombining. At the interfaces, they become free charges that must then reach device electrodes. With the discovery of mixed domains of donor and acceptor molecules, many have pictured the excitons' journey as easy

  12. Ultrasonic Phased Array Technique for Accurate Flaw Sizing in Dissimilar Metal Welds

    SciTech Connect (OSTI)

    Jonathan D Buttram

    2005-03-11

    Described is a manual,portable non-destructive technique to determine the through wall height of cracks present in dissimilar metal welds used in the primary coolling systems of pressure water and boiler light water reactors. Current manual methods found in industry have proven not to exhibit the sizing accuracy required by ASME inspection requirement. The technique described demonstrated an accuracy approximately three times that required to ASME Section XI, Appendix 8 qualification.

  13. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    2 Capability to Switch LPG to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Barrels. Coal Coke NAICS Total Not Electricity Natural Distillate Residual and Code(a) Selected Subsectors and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil Coal Breeze Other(e) Total United States 311 Food 1 * 1 * * * * 0 0 * 3112 Grain and Oilseed Milling * * * * * * * 0

  14. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Barrels. Coal Coke NAICS Total Not Electricity Natural Residual and Code(a) Selected Subsectors and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 4 * 3 * * * 0 * 0 * 3112 Grain and Oilseed Milling * * * * * * 0 *

  15. " Row: NAICS Codes, Value of Shipments and Employment Sizes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  16. " Row: NAICS Codes, Value of Shipments and Employment Sizes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010;" " Level: National and Regional Data;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  17. " Row: NAICS Codes, Value of Shipments and Employment Sizes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Capability to Switch Electricity to Alternative Energy Sources, 2010; " " Level: National and Regional Data;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Kilowatthours." ,,"Electricity Receipts",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  18. " Row: NAICS Codes, Value of Shipments and Employment Sizes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010; " " Level: National and Regional Data;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  19. Platinum nanoparticle during electrochemical hydrogen evolution: Adsorbate distribution, active reaction species, and size effect

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tan, Teck L.; Wang, Lin -Lin; Zhang, Jia; Johnson, Duane D.; Bai, Kewu

    2015-03-02

    For small Pt nanoparticles (NPs), catalytic activity is, as observed, adversely affected by size in the 1–3 nm range. We elucidate, via first-principles-based thermodynamics, the operation H* distribution and cyclic voltammetry (CV) during the hydrogen evolution reaction (HER) across the electrochemical potential, including the underpotential region (U ≤ 0) that is difficult to assess in experiment. We consider multiple adsorption sites on a 1 nm Pt NP model and show that the characteristic CV peaks from different H* species correspond well to experiment. We next quantify the activity contribution from each H* species to explain the adverse effect of size.more » From the resolved CV peaks at the standard hydrogen electrode potential (U = 0), we first deduce that the active species for the HER are the partially covered (100)-facet bridge sites and the (111)-facet hollow sites. Upon evaluation of the reaction barriers at operation H* distribution and microkinetic modeling of the exchange current, we find that the nearest-neighbor (100)-facet bridge site pairs have the lowest activation energy and contribute to ~75% of the NP activity. Edge bridge sites (fully covered by H*) per se are not active; however, they react with neighboring (100)-facet H* to account for ~18% of the activity, whereas (111)-facet hollow sites contribute little. As a result, extrapolating the relative contributions to larger NPs in which the ratio of facet-to-edge sites increases, we show that the adverse size effect of Pt NP HER activity kicks in for sizes below 2 nm.« less

  20. What Is the Size of the Atomic Nucleus? | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Highlights » 2016 » What Is the Size of the Atomic Nucleus? Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: Email Us More

  1. Flutter Speed Predictions for MW-Sized Wind Turbine Blades Don W. Lobitz

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Introduction Flutter Speed Predictions for MW-Sized Wind Turbine Blades Don W. Lobitz Sandia National Laboratories* Albuquerque, New Mexico 87185 dwlobit@sandia.gov Classical aeroelastic flutter instability historically has not been a driving issue in wind turbine design. In fact, rarely has this issue even been addressed in the past. Commensurately, of the wind turbines that have been built, rarely has classical flutter ever been observed. However, with the advent of larger turbines fitted

  2. Size reduction of high- and low-moisture corn stalks by linear knife grid system

    SciTech Connect (OSTI)

    Womac, A.R. [University of Tennessee; Igathinathane, C. [Mississippi State University (MSU); Sokhansanj, Shahabaddine [ORNL; Narayan, S. [First American Scientific Co.

    2009-04-01

    High- and low-moisture corn stalks were tested using a linear knife grid size reduction device developed for first-stage size reduction. The device was used in conjunction with a universal test machine that quantified shearing stress and energy characteristics for forcing a bed of corn stalks through a grid of sharp knives. No published engineering performance data for corn stover with similar devices are available to optimize performance; however, commercial knife grid systems exist for forage size reduction. From the force displacement data, mean and maximum ultimate shear stresses, cumulative and peak mass-based cutting energies for corn stalks, and mean new surface area-based cutting energies were determined from 4 5 refill runs at two moisture contents (78.8% and 11.3% wet basis), three knife grid spacings (25.4, 50.8, and 101.6 mm), and three bed depths (50.8, 101.6, and 152.4 mm). In general, the results indicated that peak failure load, ultimate shear stress, and cutting energy values varied directly with bed depth and inversely with knife grid spacing. Mean separation analysis established that high- and low-moisture conditions and bed depths 101.6 mm did not differ significantly (P < 0.05) for ultimate stress and cutting energy values, but knife grid spacing were significantly different. Linear knife grid cutting energy requirements for both moisture conditions of corn stalks were much smaller than reported cutting energy requirements. Ultimate shear stress and cutting energy results of this research should aid the engineering design of commercial scale linear knife gird size reduction equipment for various biomass feedstocks.

  3. Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Software-Defined Solutions for Managing Energy Use in Small to Medium Sized Commercial Buildings 2014 Building Technologies Office Peer Review Building System Services Application Stack Physical Data/Device sMAP driver sMAP driver sMAP driver sMAP driver sMAP driver sMAP driver occupancy light HVAC lighting appliance sensors Database (Time series service) Transaction Manager Thermostat Light control Appliance control temperature actuators Building Operating System Services (BOSS) User

  4. Betatron radiation based measurement of the electron-beam size in a wakefield accelerator

    SciTech Connect (OSTI)

    Schnell, Michael; Saevert, Alexander; Reuter, Maria; and others

    2012-07-09

    We present a spatial and spectral characterization of a laser-plasma based betatron source which allows us to determine the betatron oscillation amplitude of the electrons which decreases with increasing electron energies. Due to the observed oscillation amplitude and the independently measured x-ray source size of (1.8{+-}0.3){mu}m we are able to estimate the electron bunch diameter to be (1.6{+-}0.3){mu}m.

  5. Size and composition-controlled fabrication of VO2 nanocrystals by terminated cluster growth

    SciTech Connect (OSTI)

    Anders, Andre; Slack, Jonathan

    2013-05-14

    A physical vapor deposition-based route for the fabrication of VO2 nanoparticles is demonstrated, consisting of reactive sputtering and vapor condensation at elevated pressures. The oxidation of vanadium atoms is an efficient heterogeneous nucleation method, leading to high nanoparticle throughtput. Fine control of the nanoparticle size and composition is obtained. Post growth annealing leads to crystalline VO2 nanoparticles with optimum thermocromic and plasmonic properties.

  6. COLOR DEPENDENCE IN THE SIZE DISTRIBUTION OF MAIN BELT ASTEROIDS REVISITED

    SciTech Connect (OSTI)

    August, Tyler M.; Wiegert, Paul A.

    2013-06-15

    The size distribution of the asteroid belt is examined with 16956 main belt asteroids detected in data taken from the Canada-France-Hawaii Telescope Legacy Survey in two filters (g' and r'). The cumulative H (absolute magnitude) distribution is examined in both filters, and both match well to simple power laws down to H = 17, with slopes in rough agreement with those reported the literature. This implies that disruptive collisions between asteroids are gravitationally dominated down to at least this size, and probably sub-kilometer scales. The slopes of these distributions appear shallower in the outer belt than the inner belt, and the g' distributions appear slightly steeper than the r'. The slope shallowing in the outer belt may reflect a real compositional difference: the inner asteroid belt has been suggested to consist mostly of stony and/or metallic S-type asteroids, whereas carbonaceous C-types are thought to be more prevalent further from the Sun. No waves are seen in the size distribution above H = 15. Since waves are expected to be produced at the transition from gravitationally-dominated to internal strength-dominated collisions, their absence here may imply that the transition occurs at sub-kilometer scales, much smaller than the H = 17 (diameter {approx} 1.6 km) cutoff of this study.

  7. A method for preparation and cleaning of uniformly sized arsenopyrite particles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Parthasarathy, Hariprasad; Baltrus, John P; Dzombak, David A; Karamalidis, Athanasios K

    2014-10-11

    The oxidative dissolution of sulfide minerals, such as arsenopyrite (FeAsS), is of critical importance in many geochemical systems. A comprehensive understanding of their dissolution rates entails careful preparation of the mineral surface. Measurements of dissolution rates of arsenic from arsenopyrite are dependent on the size and degree of oxidation of its particles, among other factors. In this work, a method was developed for preparation and cleaning of arsenopyrite particles with size range of 150–250 μm. Four different cleaning methods were evaluated for effectiveness based on the removal of oxidized species of iron (Fe), arsenic (As) and sulfur (S) from themore » surface. The percentage oxidation of the surface was determined using X-ray photoelectron spectroscopy (XPS), and surface stoichiometry was measured using scanning electron microscopy – energy dispersive X-ray spectroscopy (SEM-EDS). Results indicate that sonicating the arsenopyrite particles and then cleaning them with 12N HCl followed by 50% ethanol, and drying in nitrogen was the most effective method. This method was successful in greatly reducing the oxide species of Fe while completely removing oxides of As and S from the arsenopyrite surface. Although sonication and acid cleaning have been widely used for mineral preparation, the method described in this study can significantly reduce grain size heterogeneity as well as surface oxidation, which enables greater control in surface and dissolution experiments.« less

  8. A method for preparation and cleaning of uniformly sized arsenopyrite particles

    SciTech Connect (OSTI)

    Parthasarathy, Hariprasad; Baltrus, John P; Dzombak, David A; Karamalidis, Athanasios K

    2014-10-11

    The oxidative dissolution of sulfide minerals, such as arsenopyrite (FeAsS), is of critical importance in many geochemical systems. A comprehensive understanding of their dissolution rates entails careful preparation of the mineral surface. Measurements of dissolution rates of arsenic from arsenopyrite are dependent on the size and degree of oxidation of its particles, among other factors. In this work, a method was developed for preparation and cleaning of arsenopyrite particles with size range of 150250 ?m. Four different cleaning methods were evaluated for effectiveness based on the removal of oxidized species of iron (Fe), arsenic (As) and sulfur (S) from the surface. The percentage oxidation of the surface was determined using X-ray photoelectron spectroscopy (XPS), and surface stoichiometry was measured using scanning electron microscopy energy dispersive X-ray spectroscopy (SEM-EDS). Results indicate that sonicating the arsenopyrite particles and then cleaning them with 12N HCl followed by 50% ethanol, and drying in nitrogen was the most effective method. This method was successful in greatly reducing the oxide species of Fe while completely removing oxides of As and S from the arsenopyrite surface. Although sonication and acid cleaning have been widely used for mineral preparation, the method described in this study can significantly reduce grain size heterogeneity as well as surface oxidation, which enables greater control in surface and dissolution experiments.

  9. The influence of size, shape, and surface coating on the stability of aqueous nanoparticle suspensions

    SciTech Connect (OSTI)

    Mulvihill, M.J.; Habas, S.E.; La Plante, I.J.; Wan, J.; Mokari, T.

    2010-09-03

    In response to the rapid development and emerging commercialization of nanoparticles, fundamental studies concerning the fate of nanoparticles in the environment are needed. Precise control over the nanoparticle size, shape, and surface coating of cadmium selenide particles modified with thiolate ligands has been used to analyze the effects of nanoparticle design on their stability in aqueous environments. Nanoparticle stability was quantified using the concept of critical coagulation concentration (CCC) in solutions of sodium chloride. These investigations characterized the instability of the ligand coatings, which varied directly with chain length of the capping ligands. The stability of the ligand coatings were characterized as a function of time, pH, and ionic strength. Ligand dissociation has been shown to be a primary mechanism for nanoparticle aggregation when short-chain (C2-C6) ligands are used in the ligand shell. Stable nanoparticle suspensions prepared with long chain ligands (C11) were used to characterize nanoparticle stability as a function of size and shape. A linear relationship between particle surface area and the CCC was discovered and was found to be independent of nanoparticle shape. Quantitative analysis of nanoparticle size, shape, and surface coating demonstrated the importance of ligand stability and particle surface area for the prediction of nanoparticle stability.

  10. Examination of a Size-Change Test for Photovoltaic Encapsulation Materials: Preprint

    SciTech Connect (OSTI)

    Miller, D. C.; Wohlgemuth, J. H.; Gu, X.; Ji, L.; Kelly, G.; Gu, X.; Nickel, N.; Norum, P.; Shioda, T.; Tamizhmani, G.

    2012-08-01

    We examine a proposed test standard that can be used to evaluate the maximum representative change in linear dimensions of sheet encapsulation products for photovoltaic modules (resulting from their thermal processing). The proposed protocol is part of a series of material-level tests being developed within Working Group 2 of the Technical Committee 82 of the International Electrotechnical Commission. The characterization tests are being developed to aid module design (by identifying the essential characteristics that should be communicated on a datasheet), quality control (via internal material acceptance and process control), and failure analysis. Discovery and interlaboratory experiments were used to select particular parameters for the size-change test. The choice of a sand substrate and aluminum carrier is explored relative to other options. The temperature uniformity of +/- 5C for the substrate was confirmed using thermography. Considerations related to the heating device (hot-plate or oven) are explored. The time duration of 5 minutes was identified from the time-series photographic characterization of material specimens (EVA, ionomer, PVB, TPO, and TPU). The test procedure was revised to account for observed effects of size and edges. The interlaboratory study identified typical size-change characteristics, and also verified the absolute reproducibility of +/- 5% between laboratories.

  11. Size and concentration measurements of particles produced in commercial chromium plating processes

    SciTech Connect (OSTI)

    Bonin, M.P.; Flower, W.L.; Renzi, R.F.; Peng, L.W.

    1995-11-01

    Optical measurements of particle size and concentration were made at the chromium plating tank and exhaust system at a commercial hexavalent chromium plating facility. Particles were examined at three locations in the exhaust system: (1) directly at the hexavalent chromium plating bath surface, (2) at the exit of a cyclone separator located in the exhaust system approximately three to four meters downstream of the bath, and (3) in the exhaust stack, downstream of the induced draft fan and all abatement devices. Particle diameters at the bath surface ranged from 0.3 to 25 {mu}m. Downstream of the cyclone exit and mesh pad filters, particle top sizes were approximately 5 and 0.7 mm, respectively. On a mass basis, the collection efficiency of all abatement devices was 99.997%. Assuming that droplets in the flow consist primarily of water and chromium, correcting the total particle mass flow against water content gives a chromium emission rate of 64,000 {mu}g/hr, which compares favorably with a value of 77,000 {mu}g/hr measured with EPA methods. This initial agreement, which should be validated through additional measurements over a broad range of flow conditions, raises the possibility of continuous monitoring for chromium metal emissions using particle size/mass as a surrogate. 6 refs., 7 figs.

  12. Photophysics of size-selected InP nanocrystals: Exciton recombination kinetics

    SciTech Connect (OSTI)

    Kim, S.; Wolters, R.H.; Heath, J.R.

    1996-11-01

    We report here on the size-dependent kinetics of exciton recombination in a III{endash}V quantum dot system, InP. The measurements reported include various frequency dependent quantum yields as a function of temperature, frequency dependent luminescence decay curves, and time-gated emission spectra. This data is fit to a three-state quantum model which has been previously utilized to explain photophysical phenomena in II{endash}VI quantum dots. The initial photoexcitation is assumed to place an electron in a (delocalized) bulk conduction band state. Activation barriers for trapping and detrapping of the electron to surface states, as well as activation barriers for surface-state radiationless relaxation processes are measured as a function of particle size. The energy barrier to detrapping is found to be the major factor limiting room temperature band-edge luminescence. This barrier increases with decreasing particle size. For 30 A particles, this barrier is found to be greater than 6 kJ/mol{emdash}a barrier which is more than an order of magnitude larger than that previously found for 32 A CdS nanocrystals. {copyright} {ital 1996 American Institute of Physics.}

  13. Oxidation of activated carbon fibers: Effect on pore size, surface chemistry, and adsorption properties

    SciTech Connect (OSTI)

    Mangun, C.L.; Benak, K.R.; Daley, M.A.; Economy, J.

    1999-12-01

    Activated carbon fibers (ACFs) were oxidized using both aqueous and nonaqueous treatments. As much as 29 wt% oxygen can be incorporated onto the pore surface in the form of phenolic hydroxyl, quinine, and carboxylic acid groups. The effect of oxidation on the pore size, pore volume, and the pore surface chemistry was thoroughly examined. The average micropore size is typically affected very little by aqueous oxidation while the micropore volume and surface area decreases with such a treatment. In contrast, the micropore size and micropore volume both increase with oxidation in air. Oxidation of the fibers produces surface chemistries in the pore that provide for enhanced adsorption of basic (ammonia) and polar (acetone) molecules at ambient and nonambient temperatures. The adsorption capacity of the oxidized fibers for acetone is modestly better than the untreated ACFs while the adsorption capacity for ammonia can increase up to 30 times compared to untreated ACFs. The pore surface chemical makeup was analyzed using elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and X-ray photoelectron spectroscopy (XPS).

  14. Design consideration and economic analysis of a community size biogas unit

    SciTech Connect (OSTI)

    Abbus, S.P.

    1983-12-01

    At present, various organizations in Pakistan are involved in RandD work in biogas technology. Most of them are government organizations. The units developed or advertised by these organizations are of small size, i.e., for a single family, to provide gas for cooking and lighting only. In this paper, the design of a community-size biogas unit for power generation has been discussed based on hydraulic flow characteristics. The type of digesters which have been discussed are plug flow, arbitrary flow and complete mix flow. As the biological activity of the organic material in the reactor depends on the residence time and also on the temperature of the digesting liquor, hence the flow characteristics play a major role in the sizing of the digestion reactor tank. A diesel engine coupled with the biogas unit has been discussed. This not only provides power for pumping water, power for cottage industries, etc., but also the waste heat from the internal combustion engine can be used to heat the digester or for other heating needs. The economic evaluation of such a plant has been completed and the payback period has been calculated.

  15. Supercapacitor Capacitance Exhibits Oscillatory Behavior as a Function of Nanopore Size

    SciTech Connect (OSTI)

    Feng, Guang; Cummings, Peter T

    2011-01-01

    Supercapacitors composed of slit-shaped micropores ranging in size from 0.67 to 1.8 nm in a room-temperature ionic liquid were studied to investigate the dependence of capacitance (C) on the pore size (d) using molecular dynamics simulations. The capacitance versus pore size (i.e., the Cd curve) was found to exhibit two peaks located at 0.7 and 1.4 nm, respectively. Specifically, as the pore shrinks from 1.0 to 0.7 nm, the capacitance of the micropore increases anomalously, in good agreement with experimental observations. We report herein that the second peak within 1.0 to 1.8 nm is a new feature of the Cd curve. Furthermore, by analogy to the wave interference, we demonstrate that the interference of two electrical double layers near each slit wall does not only explain the entire Cd curve, including the anomalous character, but also predicts the oscillatory behavior of Cd curve beyond 1.8 nm.

  16. Assessment of Available Particle Size Data to Support an Analysis of the Waste Feed Delivery System Transfer System

    SciTech Connect (OSTI)

    JEWETT, J.R.

    2000-08-10

    Available data pertaining to size distribution of the particulates in Hanford underground tank waste have been reviewed. Although considerable differences exist between measurement methods, it may be stated with 95% confidence that the median particle size does not exceed 275 {micro}m in at least 95% of the ten tanks selected as sources of HLW feed for Phase 1 vitrification in the RPP. This particle size is recommended as a design basis for the WFD transfer system.

  17. Exact solution of the thermodynamics and size parameters of a polymer confined to a lattice of finite size: Large chain limit

    SciTech Connect (OSTI)

    Snyder, Chad R. Guttman, Charles M.; Di Marzio, Edmund A.

    2014-01-21

    We extend the exact solutions of the Di Marzio-Rubin matrix method for the thermodynamic properties, including chain density, of a linear polymer molecule confined to walk on a lattice of finite size. Our extensions enable (a) the use of higher dimensions (explicit 2D and 3D lattices), (b) lattice boundaries of arbitrary shape, and (c) the flexibility to allow each monomer to have its own energy of attraction for each lattice site. In the case of the large chain limit, we demonstrate how periodic boundary conditions can also be employed to reduce computation time. Advantages to this method include easy definition of chemical and physical structure (or surface roughness) of the lattice and site-specific monomer-specific energetics, and straightforward relatively fast computations. We show the usefulness and ease of implementation of this extension by examining the effect of energy variation along the lattice walls of an infinite rectangular cylinder with the idea of studying the changes in properties caused by chemical inhomogeneities on the surface of the box. Herein, we look particularly at the polymer density profile as a function of temperature in the confined region for very long polymers. One particularly striking result is the shift in the critical condition for adsorption due to surface energy inhomogeneities and the length scale of the inhomogeneities; an observation that could have important implications for polymer chromatography. Our method should have applications to both copolymers and biopolymers of arbitrary molar mass.

  18. Beam Size Measurement by Optical Diffraction Radiation and Laser System for Compton Polarimeter

    SciTech Connect (OSTI)

    Chuyu Liu

    2012-12-31

    Beam diagnostics is an essential constituent of any accelerator, so that it is named as "organs of sense" or "eyes of the accelerator." Beam diagnostics is a rich field. A great variety of physical effects or physical principles are made use of in this field. Some devices are based on electro-magnetic influence by moving charges, such as faraday cups, beam transformers, pick-ups; Some are related to Coulomb interaction of charged particles with matter, such as scintillators, viewing screens, ionization chambers; Nuclear or elementary particle physics interactions happen in some other devices, like beam loss monitors, polarimeters, luminosity monitors; Some measure photons emitted by moving charges, such as transition radiation, synchrotron radiation monitors and diffraction radiation-which is the topic of the first part of this thesis; Also, some make use of interaction of particles with photons, such as laser wire and Compton polarimeters-which is the second part of my thesis. Diagnostics let us perceive what properties a beam has and how it behaves in a machine, give us guideline for commissioning, controlling the machine and indispensable parameters vital to physics experiments. In the next two decades, the research highlight will be colliders (TESLA, CLIC, JLC) and fourth-generation light sources (TESLA FEL, LCLS, Spring 8 FEL) based on linear accelerator. These machines require a new generation of accelerator with smaller beam, better stability and greater efficiency. Compared with those existing linear accelerators, the performance of next generation linear accelerator will be doubled in all aspects, such as 10 times smaller horizontal beam size, more than 10 times smaller vertical beam size and a few or more times higher peak power. Furthermore, some special positions in the accelerator have even more stringent requirements, such as the interaction point of colliders and wigglor of free electron lasers. Higher performance of these accelerators increases the difficulty of diagnostics. For most cases, intercepting measurements are no longer acceptable, and nonintercepting method like synchrotron radiation monitor can not be applied to linear accelerators. The development of accelerator technology asks for simutanous diagnostics innovations, to expand the performance of diagnostic tools to meet the requirements of the next generation accelerators. Diffraction radiation and inverse Compton scattering are two of the most promising techniques, their nonintercepting nature avoids perturbance to the beam and damage to the instrumentation. This thesis is divided into two parts, beam size measurement by optical diffraction radiation and Laser system for Compton polarimeter. Diffraction radiation, produced by the interaction between the electric field of charged particles and the target, is related to transition radiation. Even though the theory of diffraction radiation has been discussed since 1960s, there are only a few experimental studies in recent years. The successful beam size measurement by optical diffraction radiation at CEBAF machine is a milestone: First of all, we have successfully demonstrated diffraction radiation as an effective nonintercepting diagnostics; Secondly, the simple linear relationship between the diffraction radiation image size and the actual beam size improves the reliability of ODR measurements; And, we measured the polarized components of diffraction radiation for the first time and I analyzed the contribution from edge radiation to diffraction radiation.

  19. Effect of bubble size and density on methane conversion to hydrate

    SciTech Connect (OSTI)

    Leske, J.; Taylor, C.E.; Ladner, E.P.

    2007-03-01

    Research is underway at NETL to understand the physical properties of methane hydrates. One area of investigation is the storage of methane as methane hydrates. An economical and efficient means of storing methane in hydrates opens many commercial opportunities such as transport of stranded gas, off-peak storage of line gas, etc.We have observed during our investigations that the ability to convert methane to methane hydrate is enhanced by foaming of the methanewater solution using a surfactant. The density of the foam, along with the bubble size, is important in the conversion of methane to methane hydrate.

  20. Pore size distribution and methane equilibrium conditions at Walker Ridge Block 313, northern Gulf of Mexico

    SciTech Connect (OSTI)

    Bihani, Abhishek; Daigle, Hugh; Cook, Ann; Glosser, Deborah; Shushtarian, Arash

    2015-12-15

    Coexistence of three methane phases (liquid (L), gas (G), hydrate (H)) in marine gas hydrate systems may occur according to in-situ pressure, temperature, salinity and pore size. In sediments with salinity close to seawater, a discrete zone of three-phase (3P) equilibrium may occur near the base of the regional hydrate stability zone (RHSZ) due to capillary effects. The existence of a 3P zone influences the location of the bottom-simulating reflection (BSR) and has implications for methane fluxes at the base of the RHSZ. We studied hydrate stability conditions in two wells, WR313-G and WR313-H, at Walker Ridge Block 313 in the northern Gulf of Mexico. We determined pore size distributions (PSD) by constructing a synthetic nuclear magnetic resonance (NMR) relaxation time distribution. Correlations were obtained by non-linear regression on NMR, gamma ray, and bulk density logs from well KC-151 at Keathley Canyon. The correlations enabled construction of relaxation time distributions for WR313-G and WR313-H, which were used to predict PSD through comparison with mercury injection capillary pressure measurements. With the computed PSD, L+H and L+G methane solubility was determined from in-situ pressure and temperature. The intersection of the L+G and L+H curves for various pore sizes allowed calculation of the depth range of the 3P equilibrium zone. As in previous studies at Blake Ridge and Hydrate Ridge, the top of the 3P zone moves upwards with increasing water depth and overlies the bulk 3P equilibrium depth. In clays at Walker Ridge, the predicted thickness of the 3P zone is approximately 35 m, but in coarse sands it is only a few meters due to the difference in absolute pore sizes and the width of the PSD. The thick 3P zone in the clays may explain in part why the BSR is only observed in the sand layers at Walker Ridge, although other factors may influence the presence or absence of a BSR.

  1. A vent sizing program with particular reference to hybrid runaway reaction systems

    SciTech Connect (OSTI)

    Leung, J.C.; Noronha, J.A.; Torres, A.J.

    1995-12-31

    VSSPH (Vent Sizing Software Program for Hybrid System) is a software program designed to yield rapid evaluation of emergency requirements requirements for a general class of hybrid system runaway reaction - a system which generate both condensable vapor and noncondensable gases. The calculational method is based on transient numerical solutions as well as analytical solutions. This program only requires a few key input parameters as well as physical properties. The program also incorporates the latest two-phase pipe flow model based on the {omega} methodology. This paper describes the model construction and summarizes the results of sample runs. 5 refs., 5 figs.

  2. Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy

    SciTech Connect (OSTI)

    Zhang, Zhi; Xu, Hong-Yi; Guo, Ya-Nan; Liao, Zhi-Ming; Lu, Zhen-Yu; Chen, Ping-Ping; Shi, Sui-Xing; Lu, Wei; Zou, Jin; Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland 4072

    2013-08-12

    In this study, the structural quality of Au-catalyzed InAs nanowires grown by molecular beam epitaxy is investigated. Through detailed electron microscopy characterizations and analysis of binary Au-In phase diagram, it is found that defect-free InAs nanowires can be induced by smaller catalysts with a high In concentration, while comparatively larger catalysts containing less In induce defected InAs nanowires. This study indicates that the structural quality of InAs nanowires can be controlled by the size of Au catalysts when other growth conditions remain as constants.

  3. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    0 Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Short Tons. NAICS Total Not Electricity Natural Distillate Residual Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil LPG Other(e) Total United States 311 Food 6,603 1,013 5,373 27 981 303 93 271 86 3112 Grain and Oilseed Milling 5,099 658 4,323

  4. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    2 Capability to Switch LPG to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke NAICS Total Not Electricity Natural Distillate Residual and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil Coal Breeze Other(e) Total United States 311 Food 850 159 549 Q 86 8 * 0 0 Q 3112 Grain and Oilseed Milling Q 2 Q 1 Q

  5. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Billion Cubic Feet. Coal Coke NAICS Total Not Electricity Distillate Residual and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 618 165 379 8 109 12 1 38 0 10 3112 Grain and Oilseed Milling 115

  6. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke NAICS Total Not Electricity Natural Distillate and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 4,124 2,134 454 0 1,896 284 0 Q 0 Q 3112 Grain and Oilseed Milling

  7. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    6 Capability to Switch Electricity to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Kilowatthours. Coal Coke NAICS Total Not Natural Distillate Residual and Code(a) Subsector and Industry Receipts(c) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(d) Total United States 311 Food 73,551 1,887 55,824 711 823 0 111 45 0 205 3112 Grain and Oilseed Milling

  8. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Barrels. Coal Coke NAICS Total Not Electricity Natural Residual and Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 2,723 127 2,141 4 111 * 0 5 0 7 3112 Grain and Oilseed Milling 153 6

  9. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    0 Capability to Switch Coal to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Short Tons. NAICS Total Not Electricity Natural Distillate Residual Code(a) Selected Subsectors and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil LPG Other(e) Total United States 311 Food 8 2 7 * 1 * * * * 3112 Grain and Oilseed Milling 6 1 4 0 1 * 0 * * 311221 Wet Corn

  10. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Billion Cubic Feet. Coal Coke NAICS Total Not Electricity Distillate Residual and Code(a) Selected Subsectors and Industry Consumed(c) Switchable Switchable Receipts(d) Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 563 139 416 12 72 26 4 35 * 13 3112 Grain and Oilseed Milling

  11. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Barrels. Coal Coke NAICS Total Not Electricity Natural Distillate and Code(a) Selected Subsectors and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 2 1 1 * 1 * 0 0 0 * 3112 Grain and Oilseed Milling * * * 0 * * 0 0

  12. Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    6 Capability to Switch Electricity to Alternative Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Million Kilowatthours. Coal Coke NAICS Total Not Natural Distillate Residual and Code(a) Selected Subsectors and Industry Receipts(c) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(d) Total United States 311 Food 75,673 2,403 70,987 666 1,658 Q 406 Q Q 141 3112 Grain and Oilseed

  13. Level: National and Regional Data; Row: Values of Shipments and Employment Sizes

    Gasoline and Diesel Fuel Update (EIA)

    1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments Economic Net Residual Distillate LPG and Coke and of Energy Sources Characteristic(a) Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,166 367 23

  14. Level: National and Regional Data; Row: Values of Shipments and Employment Sizes

    Gasoline and Diesel Fuel Update (EIA)

    2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes Column: Energy Sources Unit: Trillion Btu Economic Residual Distillate LPG and Coke and Characteristic(a) Total Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal Breeze Other(e) Total United States Value of Shipments and Receipts (million dollars) Under 20 47 0 3 5 Q 20 1 17 20-49 112 7 Q 20 1 12 1 64 50-99 247 29 Q 26 88 33 * 68 100-249 313 28 1 97 12 48 43 85

  15. Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    2 Electricity: Components of Net Demand, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Electricity Components; Unit: Million Kilowatthours. Sales and Net Demand Economic Total Onsite Transfers for Characteristic(a) Purchases Transfers In(b) Generation(c) Offsite Electricity(d) Total United States Value of Shipments and Receipts (million dollars) Under 20 107,618 56 1,447 28 109,094 20-49 97,570 181 5,220 307 102,664 50-99 104,082 Q 3,784 2,218

  16. Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    4 Electricity: Components of Onsite Generation, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Onsite-Generation Components; Unit: Million Kilowatthours. Renewable Energy (excluding Wood Economic Total Onsite and Characteristic(a) Generation Cogeneration(b) Other Biomass)(c) Other(d) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,447 450 Q Q 20-49 5,220 5,106 29 Q 50-99 3,784 3,579 29 Q 100-249 17,821 17,115 484

  17. Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    6 Electricity: Sales to Utility and Nonutility Purchasers, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of Economic Sales and Utility Nonutility Characteristic(a) Transfers Offsite Purchaser(b) Purchaser(c) Total United States Value of Shipments and Receipts (million dollars) Under 20 28 28 0 20-49 307 227 80 50-99 2,218 1,673 545 100-249 2,647 1,437 1,210 250-499 3,736 2,271

  18. Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    3.3 Fuel Consumption, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Net Residual Distillate LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,139 367 23 45 535 14 21 3 131 20-49 1,122 333 13 19 530 8 93 5 122 50-99 1,309 349 22 17 549 10 157 8 197

  19. Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    4.3 Offsite-Produced Fuel Consumption, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Residual Distillate Natural LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,066 367 23 45 535 13 21 3 59 20-49 1,063 334 13 18 530 8 93 5 63 50-99 1,233 357 22 16 549 10 157 8

  20. Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;

    Gasoline and Diesel Fuel Update (EIA)

    2 Consumption Ratios of Fuel, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value Economic per Employee of Value Added of Shipments Characteristic(a) (million Btu) (thousand Btu) (thousand Btu) Total United States Value of Shipments and Receipts (million dollars) Under 20 405.4 4.0 2.1 20-49 631.3 4.7 2.2 50-99 832.0 4.9 2.3 100-249 1,313.4 6.2