National Library of Energy BETA

Sample records for telephone area code

  1. Kliniken und Notrufnummern / Clinics and Energency Numbers Area Code / Vorwahl: 06221

    E-Print Network [OSTI]

    Heermann, Dieter W.

    Kliniken und Notrufnummern / Clinics and Energency Numbers Area Code / Vorwahl: 06221 Klinik für Anästhesiologie Clinic for Aneasthesiology Im Neuenheimer Feld 110 56 63 51 Medizinische Klinik Medical Hospital area code) 110 Deutsches Rotes Kreuz Heidelberg Rescue service German red Cross Heidelberg 19222

  2. CELLULAR TELEPHONE FACILITIES A White Paper

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    1 CELLULAR TELEPHONE FACILITIES ON CAMPUS A White Paper May 1, 2003 #12;2 TABLE OF CONTENTS Background on Cellular Telephones.......................................................... 5 History of Cellular Telephone Sites on Campus.............................................. 7 Current Terms

  3. When Both Transmitting and Receiving Energies Matter: An Application of Network Coding in Wireless Body Area Networks

    E-Print Network [OSTI]

    Shi, Xiaomeng

    A network coding scheme for practical implementations of wireless body area networks is presented, with the objective of providing reliability under low-energy constraints. We propose a simple network layer protocol for ...

  4. Your T7316 telephone Mute button

    E-Print Network [OSTI]

    Your T7316 telephone © Mute button Turns the microphone off or on when you are on a call. ¬ Headset display Shows the time and date, call and feature information. Display buttons The label for display label D E F Wall mount with a telephone stand Mount the telephone onto the screws and slide it down

  5. Your T7208 telephone Mute button

    E-Print Network [OSTI]

    Your T7208 telephone © Mute button Turns the microphone off or on when you are on a call. ¬ Headset. Press when finished. Use the button label strip on the telephone to show what is programmed on the buttons. Spare button label strips are provided with your telephone. How to label your buttons 1. Remove

  6. Weather and emotional state: a search for associations between weather and calls to telephone counseling services 

    E-Print Network [OSTI]

    Stillman, Daniel Noah

    2000-01-01

    Calls to four telephone counseling services, or "hotlines", each serving communities in a major metropolitan area of the United States (Detroit, Washington DC, Dallas and Seattle), were analyzed for influence from daily weather. Associations...

  7. The Telephone: An Invention with Many Fathers

    ScienceCinema (OSTI)

    Brenni, Paolo [CNR-FST-IMSS, Florence, Italy

    2010-01-08

    The names of A.G. Bell, A. Meucci, P.Reis, E. Gray, just to mention the most important ones, are all connected with the invention of the telephone. Today, the Italian inventor A. Meucci is recognized as being the first to propose a working prototype of the electric telephone. However, for a series of reasons his strenuous efforts were not rewarded. I will not repeat here the endless and complex disputes about the ?real father? of the telephone. From an historical point of view it is more interesting to understand why so many individuals from different backgrounds conceived of a similar apparatus and why most of these devices were simply forgotten or just remained laboratory curiosities. The case of the development of the telephone is an emblematic and useful example for better understanding the intricate factors which are involved in the birth of an invention and reasons for its success and failure.

  8. A Graph Theoretical Approach for Network Coding in Wireless Body Area Networks

    E-Print Network [OSTI]

    Byrne, Eimear; Marinkovic, Stevan; Popovici, Emanuel

    2011-01-01

    Modern medical wireless systems, such as wireless body area networks (WBANs), are applications of wireless networks that can be used as a tool of data transmission between patients and doctors. Accuracy of data transmission is an important requirement for such systems. In this paper, we will propose a WBAN which is robust against erasures and describe its properties using graph theoretic techniques.

  9. Cellular telephone-based wide-area radiation detection network

    DOE Patents [OSTI]

    Craig, William W. (Pittsburg, CA); Labov, Simon E. (Berkeley, CA)

    2009-06-09

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  10. 16 au Spring 2012 esri.com Areas of concern defined by ZIP Code Water quality monitoring station and hydro buffers

    E-Print Network [OSTI]

    Short, Daniel

    Carolina Department of Health and Environmental Control (SCDHEC) Bureau of Water, Division of Water Quality) Control Projects on impaired water bodies in South Carolina. Water bodies that do not meet water quality16 au Spring 2012 esri.com Areas of concern defined by ZIP Code Water quality monitoring station

  11. Speech coding

    SciTech Connect (OSTI)

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the coding techniques are equally applicable to any voice signal whether or not it carries any intelligible information, as the term speech implies. Other terms that are commonly used are speech compression and voice compression since the fundamental idea behind speech coding is to reduce (compress) the transmission rate (or equivalently the bandwidth) And/or reduce storage requirements In this document the terms speech and voice shall be used interchangeably.

  12. CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Energy Savers [EERE]

    LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Engineering Services 541330 Drafting Services 541340 Geophysical Surveying and Mapping Services...

  13. Energy Savings by Wideband Temperature Control in Telephone Offices 

    E-Print Network [OSTI]

    Lingousky, J. E.; McKay, J. R.

    1983-01-01

    In 1982, 6.9 million BOE of energy costing nearly $600 million was used in approximately 16,000 Bell System Telephone equipment buildings. About 27% of that energy was used for heating, ventilating and air conditioning. ...

  14. Product (a) Type (b) Time of Harvest Gear Code (c) Area of catch (d) Net Weight No. of Fish F/FR RD/GG/DR/FL/OT (mm/yy) (kg) (when RD, GG or DR)

    E-Print Network [OSTI]

    Product (a) Type (b) Time of Harvest Gear Code (c) Area of catch (d) Net Weight No. of Fish F/FR RD=Other (describe the type of product; ____________________.) (c): If the Gear Code is OT, describe the type of gear

  15. 2012 Annual Report: Simulate and Evaluate the Cesium Transport and Accumulation in Fukushima-Area Rivers by the TODAM Code

    SciTech Connect (OSTI)

    Onishi, Yasuo; Yokuda, Satoru T.

    2013-03-28

    Pacific Northwest National Laboratory initiated the application of the time-varying, one-dimensional sediment-contaminant transport code, TODAM (Time-dependent, One-dimensional, Degradation, And Migration) to simulate the cesium migration and accumulation in the Ukedo River in Fukushima. This report describes the preliminary TODAM simulation results of the Ukedo River model from the location below the Ougaki Dam to the river mouth at the Pacific Ocean. The major findings of the 100-hour TODAM simulation of the preliminary Ukedo River modeling are summarized as follows:

  16. IRS-Impersonation SCAMS IRS-Impersonation Telephone Scam

    E-Print Network [OSTI]

    Dennett, Daniel

    making the rounds throughout the country. Callers claim to be employees of the IRS, but are not directory (http://whitepages.tufts.edu) as the fraudulent caller appears to be obtaining mobile phone numbers from this directory. This may help reduce your exposure to telephone scams and other unwanted

  17. Stratified random sampling plan for an irrigation customer telephone survey

    SciTech Connect (OSTI)

    Johnston, J.W.; Davis, L.J.

    1986-05-01

    This report describes the procedures used to design and select a sample for a telephone survey of individuals who use electricity in irrigating agricultural cropland in the Pacific Northwest. The survey is intended to gather information on the irrigated agricultural sector that will be useful for conservation assessment, load forecasting, rate design, and other regional power planning activities.

  18. Financial Policy Manual 2360 TRAVEL AND ENTERTAINMENT POLICY TELEPHONE USAGE

    E-Print Network [OSTI]

    George, Edward I.

    Financial Policy Manual Page 1 2360 ­ TRAVEL AND ENTERTAINMENT POLICY ­ TELEPHONE USAGE Resp expenses incurred when traveling on behalf of the University. SCOPE This policy applies responsibilities of the employee, student or postdoc can be found in Policy #2352. RESPONSIBILITY OF APPROVERS

  19. EMERGENCY PREPAREDNESS INFORMATION FOR MTL Important Telephone Numbers

    E-Print Network [OSTI]

    Reif, Rafael

    EMERGENCY PREPAREDNESS INFORMATION FOR MTL Important Telephone Numbers Dial 100 from a campus land Emergencies Alternatively dial 617 253-1212 for an ambulance or emergency assistance Dial 617- 253-open 24/7) for a non-emergency medical issue: 617- 253-1311 Dial 617-452-3477 for the EHS office

  20. Telephone enquires +44 (0)20 7040 8095

    E-Print Network [OSTI]

    Weyde, Tillman

    strategy and policy · Transport energy and emissions · Management and leadership Electives · OptimisationTelephone enquires +44 (0)20 7040 8095 Find out more, visit www.city.ac.uk/transport-msc Email enquiries pgtransport@city.ac.uk Academic excellence for business and the professions Transport Systems

  1. Coding theory basics Toric codes

    E-Print Network [OSTI]

    Little, John B.

    Coding theory basics Toric codes Tools from the toric world Higher-dimensional polytopes. Little Toric Varieties in Coding Theory #12;Coding theory basics Toric codes Tools from the toric world(!) John B. Little Toric Varieties in Coding Theory #12;Coding theory basics Toric codes Tools from

  2. Alaska Power and Telephone Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -Telephone Co Jump to: navigation, search Name:

  3. Alaska Power and Telephone Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5 -Telephone Co Jump to: navigation, search Name:and

  4. Telephoning for Energy Efficiency in Vermont | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaics Ā»Tankless WaterEnergyJanuary28-982ThisTelephoning for Energy

  5. Appropriate Technology Small Grants Program. Code case studies

    SciTech Connect (OSTI)

    Not Available

    1981-05-01

    The first year's operation of the Small Grants Program at a national scale was evaluated. The purpose of this management evaluation is to provide the headquarters Office of Inventions and Small Scale Technology and the ten regional program managers with findings and recommendations which will be useful to more effectively administer in the future. These conclusions are based on responses to a questionnaire from 197 program participants as well as personal interviews and telephone conversations with roughly half of the respondents. This report presents a compilation of case studies of projects which were funded during FY 78 and FY 79. These case studies focus on code issues (e.g., building, zoning, planning) that grantees may have dealt with. Possible problems that may have been encountered and resolution actions that grantees may have taken were researched. The results are presented in the form of a brief discussion of code issues followed by the case studies of relevant projects. The technological areas of interest are: Utility interconnection case studies, grants in which electric power is produced by small scale wind and hydroelectric facilities and for which interconnection with a utility grid is possible; Biomass case studies, grants involving composting and small scale methane production; and Geothermal case studies, grants in which either groundwater or the earth's thermal energy is used as a source for heating and cooling. Each case study provides a brief overview of a grantee's project including its objective, description, and benefits.

  6. Code constructions and code families for nonbinary quantum stabilizer code 

    E-Print Network [OSTI]

    Ketkar, Avanti Ulhas

    2005-11-01

    Stabilizer codes form a special class of quantum error correcting codes. Nonbinary quantum stabilizer codes are studied in this thesis. A lot of work on binary quantum stabilizer codes has been done. Nonbinary stabilizer codes have received much...

  7. Cellular telephone-based radiation sensor and wide-area detection network

    DOE Patents [OSTI]

    Craig, William W. (Pittsburg, CA); Labov, Simon E. (Berkeley, CA)

    2006-12-12

    A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.

  8. SCHOOL OF DENTISTRY TELEPHONE DIRECTORY Administration Phone Room Human Resources Phone Room

    E-Print Network [OSTI]

    Minnesota, University of

    SCHOOL OF DENTISTRY TELEPHONE DIRECTORY Administration Phone Room Human Resources Phone Room Leon Employee Administrative Support 5-5751 15-136 Janet Campanaro Administrative Support, PASS 5-6950 15

  9. Consensual Listening-in to or Recording Telephone/Radio Conversations (restricted)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-11-12

    This Order specifies the Department of Energy (DOE) policy regarding the consensual listening-in to or recording of conversations on radio and telephone systems. Canceled by DOE N 251.107.

  10. Coding for Wireless Relay Networks Alphabet Soups and the Network Cutlet Bound

    E-Print Network [OSTI]

    California at San Diego, University of

    Coding for Wireless Relay Networks Alphabet Soups and the Network Cutlet Bound Young-Han Kim, 2015 #12;Theorem 1 history of communication = history of wireless #12;Japanese scientists dug 50 meters ago had cellular telephones. #12;Theorem 2 history of wireless = history of relaying #12;#12;#12;#12

  11. CURRICULUM CODE: 611 & 613 MINOR CODE 061 DEGREE CODE: 31

    E-Print Network [OSTI]

    Qiu, Weigang

    CURRICULUM CODE: 611 & 613 MINOR CODE 061 DEGREE CODE: 31 DAAF 12/09 Hunter College of the City Stamp THIS AUDIT IS NOT OFFICIAL UNTIL APPROVED BY THE OFFICE OF THE REGISTRAR DEGREE AUDIT UNIT Student Specialization Section #12;CURRICULUM CODE: 611 & 613 MINOR CODE 061 DEGREE CODE: 31 DAAF 12/09 *****A SEPARATE

  12. CURRICULUM CODE_611 & 613 MINOR CODE 062 DEGREE CODE _31_

    E-Print Network [OSTI]

    Qiu, Weigang

    CURRICULUM CODE_611 & 613 MINOR CODE 062 DEGREE CODE _31_ 1/24/2006 Hunter College of the City-mail address Department Stamp THIS AUDIT IS NOT OFFICIAL UNTIL APPROVED BY THE OFFICE OF THE REGISTRAR, DEGREE Section Only For January 2010 Graduate #12;CURRICULUM CODE_611 & 613 MINOR CODE 062 DEGREE CODE _31_ 1

  13. Two Experiments Comparing Reading with Listening for Human Processing of Conversational Telephone Speech

    E-Print Network [OSTI]

    Two Experiments Comparing Reading with Listening for Human Processing of Conversational Telephone of no experiment that directly compares Switchboard and Fishertype CTS transcripts with audio in terms of human. Abstract We report on results of two experiments designed to compare subjects' ability to extract

  14. Princeton University Vice President and Secretary Telephone: 609-258-6428

    E-Print Network [OSTI]

    Bou-Zeid, Elie

    Princeton University Vice President and Secretary Telephone: 609-258-6428 One Nassau Hall, light, and materials. He is the recipient of the 2002 American Academy of Arts and letters Award, Princeton, New Jersey 08544 Email: durkee@princeton.edu February 2, 2012 To: Members of the Planning Board

  15. Miscellaneous Numbers FAX ~ Area Code 410

    E-Print Network [OSTI]

    Boynton, Walter R.

    .8390 Maintenance 221.8333 Main House 228.3843 Sea Grant 221.8456 Misc. Phones Salisbury Line 410.883.3021 Trappe Maintenance 8334 Marine Science Lab 8271 MEERC Lab (109) 8226 MEERC Lab (114) 8229 Morris Marine Lobby 8387 Oxford NOAA Lab 410.226.5193 People, Land, Water project 8227 (old GIS lab) Pfiesteria Lab 8421 Pump

  16. Approved Module Information for BSM929, 2014/5 Module Title/Name: Strategic Management Module Code: BSM929

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Approved Module Information for BSM929, 2014/5 Module Title/Name: Strategic Management Module Code foundation and a good working knowledge of the analytic frameworks of strategic management. The course Module Management Information Module Leader Name Carola Wolf Email Address wolfc@aston.ac.uk Telephone

  17. Approved Module Information for PY3472, 2014/5 Module Title/Name: Autistic Spectrum Module Code: PY3472

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Approved Module Information for PY3472, 2014/5 Module Title/Name: Autistic Spectrum Module Code: PY3472 School: Life and Health Sciences Module Type: Standard Module New Module? No Module Credits: 10 Module Management Information Module Leader Name Gina Rippon Email Address rippong@aston.ac.uk Telephone

  18. Approved Module Information for CE3112, 2014/5 Module Title/Name: Nanomaterials Module Code: CE3112

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Approved Module Information for CE3112, 2014/5 Module Title/Name: Nanomaterials Module Code: CE3112 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module Credits: 10 Module Management Information Module Leader Name Qingchun Yuan Email Address q.yuan@aston.ac.uk Telephone

  19. Approved Module Information for LT1319, 2014/5 Module Title/Name: Air Transport Module Code: LT1319

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Approved Module Information for LT1319, 2014/5 Module Title/Name: Air Transport Module Code: LT1319 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module Credits: 10 Module Management Information Module Leader Name James Stone Email Address j.stone@aston.ac.uk Telephone

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Bureau of Construction Codes is responsible for the administration of the State Construction Code Act (1972 PA 230), also known as the Uniform Construction Code.

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    Georgia's Department of Community Affairs periodically reviews, amends and/or updates the state minimum standard codes. Georgia has "mandatory" and "permissive" codes. Georgia State Energy Code...

  2. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsCluster Compatibilitydefault SignEnvironmentAprilCompilerCompiling Codes

  3. CURRICULUM CODE 308 DEGREE CODE _40

    E-Print Network [OSTI]

    Qiu, Weigang

    CURRICULUM CODE 308 DEGREE CODE _40 Hunter College of the City University of New York - Office Print) E-mail address OES Stamp THIS AUDIT IS NOT OFFICIAL UNTIL APPROVED BY THE OFFICE OF THE REGISTRAR Specialization Section #12;CURRICULUM CODE_308_ DEGREE CODE _40__ Course Prefix & Number Course Title Credits

  4. From seconds to months: multi-scale dynamics of mobile telephone calls

    E-Print Network [OSTI]

    Saramaki, Jari

    2015-01-01

    Big Data on electronic records of social interactions allow approaching human behaviour and sociality from a quantitative point of view with unforeseen statistical power. Mobile telephone Call Detail Records (CDRs), automatically collected by telecom operators for billing purposes, have proven especially fruitful for understanding one-to-one communication patterns as well as the dynamics of social networks that are reflected in such patterns. We present an overview of empirical results on the multi-scale dynamics of social dynamics and networks inferred from mobile telephone calls. We begin with the shortest timescales and fastest dynamics, such as burstiness of call sequences between individuals, and "zoom out" towards longer temporal and larger structural scales, from temporal motifs formed by correlated calls between multiple individuals to long-term dynamics of social groups. We conclude this overview with a future outlook.

  5. New residential construction compliance: Evaluation of the Washington State Energy Code program

    SciTech Connect (OSTI)

    Warwick, W.M.; Lee, A.D.; Sandahl, L.J.; Durfee, D.L.; Richman, E.E.

    1993-07-01

    This report describes the Pacific Northwest Laboratory`s (PNL`s) evaluation of the Washington State Energy Code Program (WSECP). In 1990, the Washington State Legislature passed a residential energy efficiency code to be effective July 1, 1992. Bonneville supported passage and implementation of the code to ensure that new residences in the State of Washington were as energy efficient as economically feasible. The Washington State Energy Office (WSEO) is conducting the WSECP for Bonneville to support code implementation. This support takes several forms, including providing training to code enforcement officials, technical support both in the field and through telephone ``hot lines,`` and computerized tools to review house plans for code compliance. WSEO began implementing the WSECP in 1992, prior to the effective date of the new code. This first phase of the WSECP was the subject of an earlier process evaluation conducted by PNL. From that evaluation PNL found that most new homes being built immediately after the code went into effect were ``grand-fathered`` under the old code. The training program for the new code was in place and sessions were being attended by the jurisdictions but it was too early to determine if the training was effective in improving code compliance and easing the transition to the new energy code. That is the subject of this evaluation.

  6. Approved Module Information for EE1F06, 2014/5 Module Title/Name: Mathematics Module Code: EE1F06

    E-Print Network [OSTI]

    Rebollo-Neira, Laura

    Approved Module Information for EE1F06, 2014/5 Module Title/Name: Mathematics Module Code: EE1F06 School: Engineering and Applied Science Module Type: Foundation New Module? No Module Credits: 20 Module Management Information Module Leader Name Mike Stephenson Email Address Not Specified Telephone Number

  7. Approved Module Information for LT2F04, 2014/5 Module Title/Name: Inventory Module Code: LT2F04

    E-Print Network [OSTI]

    Rebollo-Neira, Laura

    Approved Module Information for LT2F04, 2014/5 Module Title/Name: Inventory Module Code: LT2F04 School: Engineering and Applied Science Module Type: Foundation New Module? No Module Credits: 20 Module Management Information Module Leader Name Constant Iannacci Email Address c.iannacci@aston.ac.uk Telephone

  8. Approved Module Information for LT1F04, 2014/5 Module Title/Name: Warehousing Module Code: LT1F04

    E-Print Network [OSTI]

    Rebollo-Neira, Laura

    Approved Module Information for LT1F04, 2014/5 Module Title/Name: Warehousing Module Code: LT1F04 School: Engineering and Applied Science Module Type: Foundation New Module? No Module Credits: 20 Module Management Information Module Leader Name Constant Iannacci Email Address c.iannacci@aston.ac.uk Telephone

  9. Approved Module Information for AM30OT, 2014/5 Module Title/Name: Option Theory Module Code: AM30OT

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Approved Module Information for AM30OT, 2014/5 Module Title/Name: Option Theory Module Code: AM30OT School: Engineering and Applied Science Module Type: Standard Module New Module? No Module Credits: 10 Module Management Information Module Leader Name Sudhir Jain Email Address jains@aston.ac.uk Telephone

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    Tennessee is a "home rule" state which leaves adoption of codes up to the local codes jurisdictions. State energy codes are passed through the legislature, apply to all construction and must be...

  11. Quantum convolutional stabilizer codes 

    E-Print Network [OSTI]

    Chinthamani, Neelima

    2004-09-30

    Quantum error correction codes were introduced as a means to protect quantum information from decoherance and operational errors. Based on their approach to error control, error correcting codes can be divided into two different classes: block codes...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    In 2009 S.B. 1182 created the Oklahoma Uniform Building Code Commission. The 11-member Commission was given the power to conduct rulemaking processes to adopt new building codes. The codes adopted...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Kentucky Building Code (KBC) is updated every three years on a cycle one year behind the publication year for the International Building Code. Any changes to the code by the state of Kentucky...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    The State Building Code Council revised the Washington State Energy Code (WESC) in February 2013, effective July 1, 2013. The WESC is a state-developed code based upon ASHRAE 90.1-2010 and the...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    Mississippi's existing state code is based on the 1977 Model Code for Energy Conservation (MCEC). The existing law does not mandate enforcement by localities, and any revised code will probably...

  16. Building Energy Code

    Broader source: Energy.gov [DOE]

    The West Virginia State Fire Commission is responsible for adopting and promulgating statewide construction codes. These codes may be voluntarily adopted at the local level. Local jurisdictions...

  17. Building Energy Code

    Broader source: Energy.gov [DOE]

    The North Carolina State Building Code Council is responsible for developing all state codes. By statute, the Commissioner of Insurance has general supervision over the administration and...

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Rhode Island Building Code Standards Committee adopts, promulgates and administers the state building code. Compliance is determined through the building permit and inspection process by local...

  19. Validation issues for SSI codes

    SciTech Connect (OSTI)

    Philippacopoulos, A.J.

    1995-02-01

    The paper describes the results of a recent work which was performed to verify computer code predictions in the SSI area. The first part of the paper is concerned with analytic solutions of the system response. The mathematical derivations are reasonably reduced by the use of relatively simple models which capture fundamental ingredients of the physics of the system motion while allowing for the response to be obtained analytically. Having established explicit forms of the system response, numerical solutions from three computer codes are presented in comparative format.

  20. Texas’ Senate Bill 5 Legislation for Reducing Pollution in Non-Attainment and Affected Areas: Procedures for Measuring Electricity Savings from the Adoption of the International Energy Conservation Code (IRC/IECC 2001) in New Residences 

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Yazdani, B.; Fitzpatrick, T.; Turner, W. D.

    2002-01-01

    Four areas in Texas have been designated by the EPA as non-attainment areas because ozone levels exceed the NAAQS maximum allowable limits, Beaumont-Port Arthur, El Paso, Dallas-Ft. Worth, and Houston-Galveston-Brazoria. These areas face severe...

  1. Unfolding the color code

    E-Print Network [OSTI]

    Aleksander Kubica; Beni Yoshida; Fernando Pastawski

    2015-03-06

    The topological color code and the toric code are two leading candidates for realizing fault-tolerant quantum computation. Here we show that the color code on a $d$-dimensional closed manifold is equivalent to multiple decoupled copies of the $d$-dimensional toric code up to local unitary transformations and adding or removing ancilla qubits. Our result not only generalizes the proven equivalence for $d=2$, but also provides an explicit recipe of how to decouple independent components of the color code, highlighting the importance of colorability in the construction of the code. Moreover, for the $d$-dimensional color code with $d+1$ boundaries of $d+1$ distinct colors, we find that the code is equivalent to multiple copies of the $d$-dimensional toric code which are attached along a $(d-1)$-dimensional boundary. In particular, for $d=2$, we show that the (triangular) color code with boundaries is equivalent to the (folded) toric code with boundaries. We also find that the $d$-dimensional toric code admits logical non-Pauli gates from the $d$-th level of the Clifford hierarchy, and thus saturates the bound by Bravyi and K\\"{o}nig. In particular, we show that the $d$-qubit control-$Z$ logical gate can be fault-tolerantly implemented on the stack of $d$ copies of the toric code by a local unitary transformation.

  2. Coding AuthentiCity

    E-Print Network [OSTI]

    Mercier, Rachel Havens

    2008-01-01

    This thesis analyzes the impact of form-based codes, focusing on two research questions: (1) What is the underlying motivation for adopting a form-based code? (2) What motivations have the most significant impact on ...

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    New Hampshire adopted a mandatory statewide building code in 2002 based on the 2000 IECC. SB 81 was enacted in July 2007, and it upgraded the New Hampshire Energy Code to the 2006 IECC. In...

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more deta...

  5. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Indiana Residential Building Code is based on the 2003 IRC with state amendments (eff. 9/11/05). This code applies to 1 and 2 family dwellings and townhouses. During the adoption process,...

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    Changes to the energy code are submitted to the Uniform Building Code Commission. The proposed change is reviewed by the Commission at a monthly meeting to decide if it warrants further...

  7. Guam- Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    In 2006 Iowa enacted H.F. 2361, requiring the State Building Commissioner to adopt energy conservation requirements based on a nationally recognized building energy code. The State Building Code...

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    Prior to 1997, South Carolina's local governments adopted and enforced the building codes. In 1997, the law required statewide use of the most up-to-date building codes, which then required the...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    The New Jersey Uniform Construction Code Act provides that model codes and standards publications shall not be adopted more frequently than once every three years. However, a revision or amendment...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 2012 IECC is in effect for all residential and commercial buildings, Idaho schools, and Idaho jurisdictions that adopt and enforce building codes, unless a local code exists that is more...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    Delaware Energy Code is reviewed by Delaware Energy Office every three years for potential updates to the most recent version of International Energy Conservation Code (IECC) and ASHRAE Standard ...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    Legislation passed in March 2010 authorized the Alabama Energy and Residential Code (AERC) Board to adopt mandatory residential and commercial energy codes for all jurisdictions. This is the firs...

  16. Building Energy Code

    Broader source: Energy.gov [DOE]

    All residential and commercial structures are required to comply with the state’s energy code. The 2009 New Mexico Energy Conservation Code (NMECC), effective June 2013, is based on 2009...

  17. Building Energy Code

    Broader source: Energy.gov [DOE]

    In September 2011 the Nebraska Building Energy Code was updated to the 2009 International Energy Conservation Code (IECC) standards.  As with the previous 2003 IECC standards, which had been in...

  18. Green Construction Codes 

    E-Print Network [OSTI]

    Blake, S.

    2011-01-01

    The network coding is a new paradigm that has been shown to improve throughput, fault tolerance, and other quality of service parameters in communication networks. The basic idea of the network coding techniques is to ...

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Florida Building Commission (FBC) is directed to adopt, revise, update, and maintain the Florida Building Code in accordance with Chapter 120 of the state statutes. The code is mandatory...

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    A mandatory energy code is not enforced at the state level. If a local energy code is adopted, it is enforced at the local level. Builders or sellers of new residential buildings (single-family or...

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 1993 State Legislature updated the state energy code to the 1989 Model Energy Code (MEC) and established a procedure to update the standard. Then in 1995, following consultation with an...

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    Public Act 093-0936 (Illinois Energy Conservation Code for Commercial Buildings) was signed into law in August, 2004. The Illinois Energy Conservation Code for Commercial Buildings became effective...

  3. Coding with side information 

    E-Print Network [OSTI]

    Cheng, Szeming

    2005-11-01

    Source coding and channel coding are two important problems in communications. Although side information exists in everyday scenario, the e?ect of side information is not taken into account in the conventional setups. ...

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Virginia Uniform Statewide Building Code (USBC) is a statewide minimum requirement that local jurisdictions cannot amend. The code is applicable to all new buildings in the commonwealth. The...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    In March 2006, SB 459 was enacted to promote renewable energy and update the state's building energy codes.

  6. Room C180 Administration Building, 105 Administration Place, Saskatoon SK S7N 5A2 Telephone (306) 966-5760; Fax (306) 966-5756; E-mail: gradstudies.awards@usask.ca

    E-Print Network [OSTI]

    Saskatchewan, University of

    Room C180 Administration Building, 105 Administration Place, Saskatoon SK S7N 5A2 Telephone (306 Administration Building, 105 Administration Place, Saskatoon SK S7N 5A2 Telephone (306) 966-5760; Fax (306) 966

  7. Coding theory basics Evaluation codes from algebraic varieties

    E-Print Network [OSTI]

    Little, John B.

    Coding theory basics Evaluation codes from algebraic varieties Interlude Ā­ counting rational points theory basics Evaluation codes from algebraic varieties Interlude Ā­ counting rational points on varieties Cubic surfaces and codes Outline 1 Coding theory basics 2 Evaluation codes from algebraic varieties 3

  8. Geothermal Target Areas in Colorado as Identified by Remote Sensing Techniques

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Target Areas Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the areas identified as targets of potential geothermal activity. The Criteria used to identify the target areas include: hot/warm surface exposures modeled from ASTER/Landsat satellite imagery and geological characteristics, alteration mineral commonly associated with hot springs (clays, Si, and FeOx) modeled from ASTER and Landsat data, Coloradodo Geological Survey (CGS) known thermal hot springs/wells and heat-flow data points, Colorado deep-seated fault zones, weakened basement identified from isostatic gravity data, and Colorado sedimentary and topographic characteristics Spatial Domain: Extent: Top: 4546251.530446 m Left: 151398.567298 m Right: 502919.587395 m Bottom: 4095100.068903 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  9. Areas of Anomalous Surface Temperature in Chaffee County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Chaffee Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4333432.368072 m Left: 366907.700763 m Right: 452457.816015 m Bottom: 4208271.566715 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  10. Areas of Anomalous Surface Temperature in Garfield County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Garfield Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4441550.552290 m Left: 271445.053363 m Right: 359825.053363 m Bottom: 4312490.552290 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  11. Areas of Anomalous Surface Temperature in Dolored County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Dolores Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4186234.213315 m Left: 212558.673056 m Right: 232922.811862 m Bottom: 4176781.467043 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  12. Areas of Anomalous Surface Temperature in Archuleta County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Archuleta Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4144691.792023 m Left: 285531.662851 m Right: 348694.182686 m Bottom: 4097005.210304 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  13. Areas of Anomalous Surface Temperature in Routt County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Routt Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4501071.574000 m Left: 311351.975000 m Right: 359681.975000 m Bottom: 4447251.574000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  14. Mechanical code comparator

    DOE Patents [OSTI]

    Peter, Frank J. (Albuquerque, NM); Dalton, Larry J. (Bernalillo, NM); Plummer, David W. (Albuquerque, NM)

    2002-01-01

    A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.

  15. PERMITTING OF A PROJECT INVOLVING HYDROGEN: A CODE OFFICIAL’S PERSPECTIVE

    SciTech Connect (OSTI)

    Kallman, Richard A.; Barilo, Nick F.; Murphy, W. F.

    2012-05-11

    Recent growth in the development of hydrogen infrastructure has led to more requests for code officials to approve hydrogen-related projects and facilities. To help expedite the review and approval process, significant efforts have been made to educate code officials on permitting hydrogen vehicle fueling stations and facilities using stationary fuel cells (e.g., backup power for telephone cell tower sites). Despite these efforts, project delays continue because of several factors, including the limited experience of code officials with these types of facilities, submittals that lack the required information (including failure to adequately address local requirements), and submission of poor quality documents. The purpose of this paper is to help project proponents overcome these potential roadblocks and obtain timely approval for a project. A case study of an actual stationary application permitting request is provided to illustrate the value of addressing these issues.

  16. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Office of the State Fire Marshal is granted the authority to promulgate amendments, revisions, and alternative compliance methods for the code.

  17. Tokamak Systems Code

    SciTech Connect (OSTI)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    Kansas adopted the 2006 International Energy Conservation Code (IECC) as "the applicable state standard" for commercial and industrial buildings. Enforcement is provided by local jurisdictions; t...

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    Pennsylvania Department of Labor and Industry (DLI) has the authority to upgrade commercial and residential energy standards through the regulatory process. The current code, the 2009 UCC, became...

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Energy Conservation Construction Code of New York State (ECCCNYS) requires that all government, commercial and residential buildings, including renovations involving building system replaceme...

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Maryland Building Performance Standards (MBPS) are adopted by the Maryland Department of Housing and Community Development (DHCD) Codes Administration. As required by legislation passed in...

  2. Distinctive characteristics of ASME performance test code 47, and comparison with performance test code 46

    SciTech Connect (OSTI)

    Horazak, D.A.; Bannister, R.L.; Archer, D.H.; Zachary, J.J.

    1998-07-01

    Performance Test Code 47, Gasification Combined Cycle Plant Performance, is being written to define the significant performance factors in a gasification combined cycle plant and recommend how these factors should be calculated from measurements. PTC 47 is unique in that it provides a test code for a technology that is now being demonstrated, but has not yet been commercialized. PTC 47 is similar to PTC 46, Overall Plant Performance, in its evaluation of overall plant performance, but is unlike PTC 46 in several areas. PTC 47 also extends beyond the scope of PTC 46 into areas of power generation technology now being demonstrated. The code will indicate where improved instrumentation and measurement techniques may be required to achieve a desired degree of certainty in the determination of performance factors. By providing a means for accurate testing, this code should also help develop this important technology, leading to full commercialization.

  3. Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments

    SciTech Connect (OSTI)

    1999-02-01

    This document is the Comments and Responses to Comments volume of the Final Environmental Impact Statement and Environmental Impact Report prepared for the proposed Telephone Flat Geothermal Development Project (Final EIS/EIR). This volume of the Final EIS/EIR provides copies of the written comments received on the Draft EIS/EIR and the leady agency responses to those comments in conformance with the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA).

  4. Dartmouth College HANOVER NEW HAMPSHIRE 03755-1420 Safety and Security 5 Rope Ferry Road #6156 Telephone (603) 646-4000 Fax (603) 646-1603

    E-Print Network [OSTI]

    Dartmouth College HANOVER · NEW HAMPSHIRE · 03755-1420 Safety and Security · 5 Rope Ferry Road #6156 · Telephone (603) 646-4000 · Fax (603) 646-1603 Dear New Students; I want to welcome each of you

  5. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  6. TRANSF code user manual

    SciTech Connect (OSTI)

    Weaver, H.J.

    1981-11-01

    The TRANSF code is a semi-interactive FORTRAN IV program which is designed to calculate the model parameters of a (structural) system by performing a least square parameter fit to measured transfer function data. The code is available at LLNL on both the 7600 and the Cray machines. The transfer function data to be fit is read into the code via a disk file. The primary mode of output is FR80 graphics, although, it is also possible to have results written to either the TTY or to a disk file.

  7. Nevada Energy Code for Buildings

    Broader source: Energy.gov [DOE]

    Legislation signed in 2009 changed the process of adopting building codes in the state. Previously, the statewide code would only apply to local governments that had not already adopted a code,...

  8. Compiling Codes on Euclid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    example.x example.c For C++ source code use mpiCC: % mpiCC -o example.x example.C PGI Compilers (CC++Fortran) See PGI compiler for information about this compiler. GNU Compilers...

  9. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    example.x example.c For C++ source code use CC % CC -fast -o example.x example.C All compilers on Hopper, PGI, Pathscale, Cray, GNU, and Intel, are provided via five programming...

  10. Climate Code Foundation

    E-Print Network [OSTI]

    Barnes, Nick; Jones, David

    2011-07-05

    Climate Code Foundation - who are we? A non-profit organisation founded in August 2010; our goal is to promote the public understanding of climate science, by increasing the visibility and clarity of the software used in climate science...

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    Missouri does not have a statewide building or energy code for private residential and commercial buildings, and there currently is no state regulatory agency authorized to promulgate, adopt, or...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Oregon Energy Code amendments were most recently updated for both residential and non-residential construction in 2014. In October 2010 Oregon also adopted the Oregon Solar Installation...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Texas State Energy Conservation Office (SECO) by rule may choose to adopt the latest published editions of the energy efficiency provisions of the International Residential Code (IRC) or the...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    Authority for adopting the state energy codes was previously vested in the Energy Security Office of the Department of Commerce (originally the Department of Public Services). In 1999-2000, the...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Massachusetts Board of Building Regulations and Standards has authority to promulgate the Massachusetts State Building Code (MSBC). The energy provisions in the MSBC were developed by the Boa...

  16. Systematic wireless network coding

    E-Print Network [OSTI]

    Shrader, Brooke E.

    We present a systematic network coding strategy for cooperative communication, in which some nodes may replicate-and-forward packets in addition to sending random linear combinations of the packets. We argue that if this ...

  17. UNSAT-H, an unsaturated soil water flow code for use at the Hanford site: code documentation

    SciTech Connect (OSTI)

    Fayer, M.J.; Gee, G.W.

    1985-10-01

    The unsaturated soil moisture flow code, UNSAT-H, which was developed at Pacific Northwest Laboratory for assessing water movement at waste sites on the Hanford site, is documented in this report. This code is used in simulating the water dynamics of arid sites under consideration for waste disposal. The results of an example simulation of constant infiltration show excellent agreement with an analytical solution and another numerical solution, thus providing some verification of the UNSAT-H code. Areas of the code are identified for future work and include runoff, snowmelt, long-term climate and plant models, and parameter measurement. 29 refs., 7 figs., 2 tabs.

  18. Areas of Anomalous Surface Temperature in Alamosa and Saguache Counties, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Alamosa Saguache Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4217727.601630 m Left: 394390.400264 m Right: 460179.841813 m Bottom: 4156258.036086 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  19. Integrating S6 Code Search and Code Bubbles

    E-Print Network [OSTI]

    Reiss, Steven P.

    the results of the search. Index Terms--Code search, integrated development envi- ronments, test-based searchIntegrating S6 Code Search and Code Bubbles Steven P. Reiss Department of Computer Science Brown search over open source repositories as part of the Code Bub- bles integrated development environment

  20. Quantum error control codes 

    E-Print Network [OSTI]

    Abdelhamid Awad Aly Ahmed, Sala

    2008-10-10

    by SALAH ABDELHAMID AWAD ALY AHMED Submitted to the O–ce of Graduate Studies of Texas A&M University in partial fulflllment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2008 Major Subject: Computer Science QUANTUM ERROR CONTROL CODES A... Members, Mahmoud M. El-Halwagi Anxiao (Andrew) Jiang Rabi N. Mahapatra Head of Department, Valerie Taylor May 2008 Major Subject: Computer Science iii ABSTRACT Quantum Error Control Codes. (May 2008) Salah Abdelhamid Awad Aly Ahmed, B.Sc., Mansoura...

  1. Country 8+1+Area Code 8+011+Country

    E-Print Network [OSTI]

    .1683 Colombia (Mobile Termination - 3) * 57 $0.3000 Comoros * 269 $0.5400 Comoros (Mobile Termination - 3, 9

  2. Building America Expert Meeting: Code Challenges with Multifamily Area

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power, IncBio CentersBreaking UpWhole-House

  3. Student Code Number: Thermodynamics

    E-Print Network [OSTI]

    Feeny, Brian

    Student Code Number: Thermodynamics Ph.D. Qualifying Exam Department of Mechanical Engineering;Thermodynamics Qualifier January 2013 Problem 1 Air is compressed in an axial-flow compressor operating at steady of exergy destruction within the compressor, in kJ per kg of air flowing. #12;Thermodynamics Qualifier

  4. Introduction to Algebraic Codes

    E-Print Network [OSTI]

    Purdue University. W.Lafayette, Indiana ..... information. It motivated many scientists to study the codes transmitted by living beings, ...... We have the following diagram, where lines indicate inclusion relation,. ?. Fp4 Fp6 Fp10 ...... K over. the field K. There is a serious problem of being incomplete for the affine spaces: 69 ...

  5. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen Generation |Publications TheGashome /Areas Research Areas

  6. 9. Driver's Age 13. Driver's Date of Birth 14. Driver's Social Security Number 19. Driver's Telephone

    E-Print Network [OSTI]

    Gering, Jon C.

    of Accident (city, state; if on a highway, give number and nearest community) DRIVER INFORMATION OTHER VEHICLE OR PROPERTY Occupied Unoccupied 17. Driver's Age VEHICLE OPERATED BY UNIVERSITY EMPLOYEE Occupied Unoccupied 8. Driver's Name 16. Driver's Name TRUMAN STATE UNIVERSITY VEHICLE ACCIDENT REPORT NAME AND ADDRESS AREA

  7. Bath BA2 7AY United Kingdom Telephone: +44 (0)1225 386822

    E-Print Network [OSTI]

    Scheichl, Robert

    the high non-linear properties of the material. The University of Bath has a strong track record://www.bath.ac.uk/elec-eng/research/cast/ Short description of research area to investigate with a potential MC Fellow The semiconductor Gallium. It is arguably the most important electronic material behind silicon. Group III-Nitride technology has taken

  8. Office of Admissions 1062 Campus Delivery

    E-Print Network [OSTI]

    by an official in the school district. Be sure all sections are complete and contain the appropriate signature State Zip Code Telephone Numbers: Home ( ) Cell Phone ( ) Area Code Number Area Code Number Student email: ________________________________________ Parent Phone: ( ) Area Code Number Parent email

  9. What's the Code? Automatic Classification of Source Code Archives

    E-Print Network [OSTI]

    Giles, C. Lee

    show that source code can be accurately and automatically classified into topical categories and canWhat's the Code? Automatic Classification of Source Code Archives Secil Ugurel1, Robert Krovetz2, C.psu.edu 2NECResearchInstitute 4 IndependenceWay, Princeton,NJ 08540 {krovetz, dpennock, compuman} @research

  10. Space time coded code division multiplexing on SC140 DSP 

    E-Print Network [OSTI]

    Menon, Murali P

    2001-01-01

    is implemented on StarCore's SC140 fixed-point DSP core. The very large instruction word architecture of the SC140 is utilized to efficiently implement space-time coded code-division multiplexing system. The goal is to evaluate the suitability of space-time coded...

  11. Generating Code for High-Level Operations through Code Composition

    E-Print Network [OSTI]

    Generating Code for High-Level Operations through Code Composition James M. Stichnoth August 1997 of the authors and should not be interpreted as necessarily representing the official policies or endorsements: Compilers, code generation, parallelism, communication generation #12;Abstract A traditional compiler

  12. Adaptive code generators for tree coding of speech 

    E-Print Network [OSTI]

    Dong, Hui

    1998-01-01

    Tree coding is a promising way of obtaining good performance for medium-to-low rate speech coding. The key part of a tree coder is the code generator which consists of a short-term predictor and a long-term predictor. The ...

  13. Code Completion From Abbreviated Input

    E-Print Network [OSTI]

    Miller, Robert C.

    Abbreviation Completion is a novel technique to improve the efficiency of code-writing by supporting code completion of multiple keywords based on non-predefined abbreviated input - a different approach from conventional ...

  14. Network coding for anonymous broadcast

    E-Print Network [OSTI]

    Sergeev, Ivan A

    2013-01-01

    This thesis explores the use of network coding for anonymous broadcast. Network coding, the technique of transmitting or storing mixtures of messages rather than individual messages, can provide anonymity with its mixing ...

  15. Rotationally invariant multilevel block codes 

    E-Print Network [OSTI]

    Kulandaivelu, Anita

    1993-01-01

    The objective of this thesis is to evaluate the performance of block codes that are designed to be rotationally invariant, in a multilevel coding scheme, over a channel modelled to be white gaussian noise. Also, the use ...

  16. Confocal coded aperture imaging

    DOE Patents [OSTI]

    Tobin, Jr., Kenneth William (Harriman, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2001-01-01

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  17. Improving Code Compliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingREnergy ToolsCoordinationDepartmentImproving Code

  18. MELCOR computer code manuals

    SciTech Connect (OSTI)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A.; Hyman, C.R.; Sanders, R.L. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.

  19. Design of proximity detecting codes 

    E-Print Network [OSTI]

    Perisetty, Srinivas

    1997-01-01

    class of codes called Proximity Detecting Codes can be used to overcome this problem associated with asynchronous channels. A t-proximity detecting (t-PD) code can detect when a received word is within distance t from the transmitted codeword, when using...

  20. A Mechanically Verified Code Generator

    E-Print Network [OSTI]

    Boyer, Robert Stephen

    A Mechanically Verified Code Generator William D. Young Technical Report 37 January, 1989, one which generates semantically equivalent target language code for any given source language program we describe the implementation and proof of a code generator, a major component of a compiler

  1. DOE Coordination Meeting CODES & STANDARDS

    E-Print Network [OSTI]

    industry and code officials, develop templates of commercially viable footprints for fueling stations-order continuing education for code officials. 3 Date (FY)DescriptionMilestone #12;Hydrogen Safety Neil RossmeisslDOE Coordination Meeting DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES

  2. Southeast Energy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013...

  3. Dartmouth College HANOVER NEW HAMPSHIRE 03755-1420 Safety and Security 5 Rope Ferry Road #6156 Telephone (603) 646-4000 Fax (603) 646-1603

    E-Print Network [OSTI]

    Dartmouth College HANOVER · NEW HAMPSHIRE · 03755-1420 Safety and Security · 5 Rope Ferry Road students; and that is our greatest concern. New Hampshire laws pertaining to underage drinking, hazing #6156 · Telephone (603) 646-4000 · Fax (603) 646-1603 Dear New Student Parents and Families

  4. University of Hawai`i, Board of Regents, Bachman 209, 2444 Dole Street, Honolulu, HI 96822 Telephone No. (808) 956-8213; Fax No. (808) 956-5156

    E-Print Network [OSTI]

    University of Hawai`i, Board of Regents, Bachman 209, 2444 Dole Street, Honolulu, HI 96822 4303 Diamond Head Road Honolulu, HI 96816 AGENDA I. Call Meeting to Order II. Approval of Meeting, Bachman 209, 2444 Dole Street, Honolulu, HI 96822 Telephone No. (808) 956-8213; Fax No. (808) 956-5156 VI

  5. Wyner-Ziv coding based on TCQ and LDPC codes and extensions to multiterminal source coding 

    E-Print Network [OSTI]

    Yang, Yang

    2005-11-01

    performs only 0.2 dB away from the Wyner-Ziv limit D??W Z(R) at high rate, which mirrors the performance of entropy-coded TCQ in classic source coding. Practical designs perform 0.83 dB away from D??W Z(R) at medium rates. With 2-D trellis-coded vector...

  6. Coding Archives - Nercenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsCluster Compatibility Mode Cluster CompatibilityCoalCode of

  7. Coding for Cooperative Communications 

    E-Print Network [OSTI]

    Uppal, Momin Ayub

    2011-10-21

    The area of cooperative communications has received tremendous research interest in recent years. This interest is not unwarranted, since cooperative communications promises the ever-so-sought after diversity and ...

  8. HOTSPOT Health Physics codes for the PC

    SciTech Connect (OSTI)

    Homann, S.G.

    1994-03-01

    The HOTSPOT Health Physics codes were created to provide Health Physics personnel with a fast, field-portable calculation tool for evaluating accidents involving radioactive materials. HOTSPOT codes are a first-order approximation of the radiation effects associated with the atmospheric release of radioactive materials. HOTSPOT programs are reasonably accurate for a timely initial assessment. More importantly, HOTSPOT codes produce a consistent output for the same input assumptions and minimize the probability of errors associated with reading a graph incorrectly or scaling a universal nomogram during an emergency. The HOTSPOT codes are designed for short-term (less than 24 hours) release durations. Users requiring radiological release consequences for release scenarios over a longer time period, e.g., annual windrose data, are directed to such long-term models as CAPP88-PC (Parks, 1992). Users requiring more sophisticated modeling capabilities, e.g., complex terrain; multi-location real-time wind field data; etc., are directed to such capabilities as the Department of Energy`s ARAC computer codes (Sullivan, 1993). Four general programs -- Plume, Explosion, Fire, and Resuspension -- calculate a downwind assessment following the release of radioactive material resulting from a continuous or puff release, explosive release, fuel fire, or an area contamination event. Other programs deal with the release of plutonium, uranium, and tritium to expedite an initial assessment of accidents involving nuclear weapons. Additional programs estimate the dose commitment from the inhalation of any one of the radionuclides listed in the database of radionuclides; calibrate a radiation survey instrument for ground-survey measurements; and screen plutonium uptake in the lung (see FIDLER Calibration and LUNG Screening sections).

  9. What's coming in 2012 codes 

    E-Print Network [OSTI]

    Lacey, E

    2011-01-01

    The 2012 IECC America?s Model Building Energy Code November 9, 2011 Presentation to Clean Air Through Energy Efficiency Conference Dallas, TX Eric Lacey Responsible Energy Codes Alliance Responsible Energy Codes Alliance ? A broad... Texas Building Energy Performance Standards What is effective now? ? 2009 IRC ? January 1, 2012 ? Applies to all 1- and 2-family dwellings ? 2009 IECC ? April 1, 2011 ? Applies to all other buildings Texas Websites ? http://www.seco.cpa.s tate...

  10. GENII Code | Department of Energy

    Office of Environmental Management (EM)

    For more information on GENII to: http:radiologicalsciences.pnl.govresourceshardware.asp The GENII code-specific guidance report has been issued identifying applicable...

  11. Clark County- Energy Conservation Code

    Broader source: Energy.gov [DOE]

    In September 2010, Clark County adopted Ordinance 3897, implementing the Southern Nevada version of the 2009 International Energy Conservation Code for both residential and commercial buildings...

  12. Marin County- Solar Access Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    Marin County's Energy Conservation Code is designed to assure new subdivisions provide for future passive or natural heating or cooling opportunities in the subdivision to the extent feasible. ...

  13. What's the code? Automatic Classification of Source Code Archives

    E-Print Network [OSTI]

    Giles, C. Lee

    What's the code? Automatic Classification of Source Code Archives Secil Ugurel 1 , Robert Krovetz 2, zha} @cse.psu.edu 2 NEC Research Institute 4 Independence Way, Princeton, NJ 08540 {krovetz, dpennock, compuman} @research.nj.nec.com 3 School of Information Sciences and Technology The Pennsylvania State

  14. Areas of Weakly Anomalous to Anomalous Surface Temperature in Garfield County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Garfield Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1? and 2? were considered ASTER modeled warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4442180.552290 m Left: 268655.053363 m Right: 359915.053363 m Bottom: 4312490.552290 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  15. Areas of Weakly Anomalous to Anomalous Surface Temperature in Alamosa and Saguache Counties, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Alamosa Saguache Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4217727.601630 m Left: 394390.400264 m Right: 460179.841813 m Bottom: 4156258.036086 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  16. Areas of Weakly Anomalous to Anomalous Surface Temperature in Archuleta County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Archuleta Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the “Anomalous Surface Temperature” dataset. Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1? and 2? were considered ASTER modeled warm surface exposures (thermal anomalies). Spatial Domain: Extent: Top: 4144825.235807 m Left: 285446.256851 m Right: 350577.338852 m Bottom: 4096962.250137 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  17. Areas of Weakly Anomalous to Anomalous Surface Temperature in Dolores County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Dolores Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4186234.213315 m Left: 212558.673056 m Right: 232922.811862 m Bottom: 4176781.467043 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  18. Areas of Weakly Anomalous to Anomalous Surface Temperature in Routt County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Routt Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1? and 2? were considered ASTER modeled warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4501071.574000 m Left: 311351.975000 m Right: 359411.975000 m Bottom: 4447521.574000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  19. Areas of Weakly Anomalous to Anomalous Surface Temperature in Chaffee County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Chaffee Edition: First Note: This “Weakly Anomalous to Anomalous Surface Temperature” dataset differs from the “Anomalous Surface Temperature” dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the “Anomalous Surface Temperature” dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4333432.368072 m Left: 366907.700763 m Right: 452457.816015 m Bottom: 4208271.566715 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  20. MU student numberVISITING STUDENT APPLICATION UNIVERSITY OF MISSOURI

    E-Print Network [OSTI]

    Taylor, Jerry

    (area code) Telephone number (area code) Cellphone number (area code) Fax number (if available) Student officials, and the completed application is to be sent to the Director of Admissions, University of Missouri, 230 Jesse Hall, Columbia, MO 65211-1300. Because this certification is in lieu of an official

  1. Coding Hazardous Tree Failures for a Data Management System

    E-Print Network [OSTI]

    Standiford, Richard B.

    Terms: hazard trees; hazard reduction; recreation areas; urban forestry; safety standards; dataCoding Hazardous Tree Failures for a Data Management System Lee A. Paine PACIFIC SOUTHWEST hazardous tree failures for a data management system. Gen. Tech. Rep. PSW-29, 108 p., illus. Pacific

  2. ACCELERATION PHYSICS CODE WEB REPOSITORY.

    SciTech Connect (OSTI)

    WEI, J.

    2006-06-26

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  3. Accelerator Physics Code Web Repository

    SciTech Connect (OSTI)

    Zimmermann, F.; Basset, R.; Bellodi, G.; Benedetto, E.; Dorda, U.; Giovannozzi, M.; Papaphilippou, Y.; Pieloni, T.; Ruggiero, F.; Rumolo, G.; Schmidt, F.; Todesco, E.; Zotter, B.W.; Payet, J.; Bartolini, R.; Farvacque, L.; Sen, T.; Chin, Y.H.; Ohmi, K.; Oide, K.; Furman, M.; /LBL, Berkeley /Oak Ridge /Pohang Accelerator Lab. /SLAC /TRIUMF /Tech-X, Boulder /UC, San Diego /Darmstadt, GSI /Rutherford /Brookhaven

    2006-10-24

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  4. Secure Symmetrical Multilevel Diversity Coding 

    E-Print Network [OSTI]

    Li, Shuo

    2012-07-16

    Secure symmetrical multilevel diversity coding (S-SMDC) is a source coding problem, where a total of L - N discrete memoryless sources (S1,...,S_L-N) are to be encoded by a total of L encoders. This thesis considers a natural generalization of SMDC...

  5. LFSC - Linac Feedback Simulation Code

    SciTech Connect (OSTI)

    Ivanov, Valentin; /Fermilab

    2008-05-01

    The computer program LFSC (Code>) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output.

  6. Publications NODC Taxonomic Code and

    E-Print Network [OSTI]

    Center (NODC) has announced the availability of the third edition of its Taxonomic Code. This expanded edition has nearly 28,000 entries giving the sci- entific names and corresponding numer- ical codes (MESA) project and the Outer Conti- nental Shelf Environmental Assessment Program (OCSEAP) conducted

  7. Portable code development in C

    SciTech Connect (OSTI)

    Brown, S.A.

    1990-11-06

    With a new generation of high performance computers appearing around us on a time scale of months, a new challenge for developers of simulation codes is to write and maintain production codes that are both highly portable and maximally efficient. My contention is that C is the language that is both best suited to that goal and is widely available today. GLF is a new code written mainly in C which is intended to have all of the XRASER physics and run on any platform of interest. It demonstrates the power of the C paradigm for code developers and flexibility and ease of use for the users. Three fundamental problems are discussed: the C/UNIX development environment; the supporting tools and libraries which handle data and graphics portability issues; and the advantages of C in numerical simulation code development.

  8. San Francisco Building Code Amendments to the

    E-Print Network [OSTI]

    . The California San Francisco Green Building Standards Code is Part 11 of twelve parts Chapter 13C of the official1 2010 San Francisco Building Code Amendments to the 2010 California Green Building Standards Code (Omitting amendments to 2010 California Building Code and 2010 California Residential Code which do

  9. Multiterminal source coding: sum-rate loss, code designs, and applications to video sensor networks 

    E-Print Network [OSTI]

    Yang, Yang

    2009-05-15

    Driven by a host of emerging applications (e.g., sensor networks and wireless video), distributed source coding (i.e., Slepian-Wolf coding, Wyner-Ziv coding and various other forms of multiterminal source coding), has ...

  10. ETR/ITER systems code

    SciTech Connect (OSTI)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  11. Example of Environmental Restoration Code of Accounts

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter describes the fundamental structure of an example remediation cost code system, lists and describes the Level 1 cost codes, and lists the Level 2 and Level 3 cost codes.

  12. Multiterminal Video Coding: From Theory to Application 

    E-Print Network [OSTI]

    Zhang, Yifu

    2012-10-19

    Multiterminal (MT) video coding is a practical application of the MT source coding theory. For MT source coding theory, two problems associated with achievable rate regions are well investigated into in this thesis: a new ...

  13. Final Technical Report: Hydrogen Codes and Standards Outreach

    SciTech Connect (OSTI)

    Hall, Karen I.

    2007-05-12

    This project contributed significantly to the development of new codes and standards, both domestically and internationally. The NHA collaborated with codes and standards development organizations to identify technical areas of expertise that would be required to produce the codes and standards that industry and DOE felt were required to facilitate commercialization of hydrogen and fuel cell technologies and infrastructure. NHA staff participated directly in technical committees and working groups where issues could be discussed with the appropriate industry groups. In other cases, the NHA recommended specific industry experts to serve on technical committees and working groups where the need for this specific industry expertise would be on-going, and where this approach was likely to contribute to timely completion of the effort. The project also facilitated dialog between codes and standards development organizations, hydrogen and fuel cell experts, the government and national labs, researchers, code officials, industry associations, as well as the public regarding the timeframes for needed codes and standards, industry consensus on technical issues, procedures for implementing changes, and general principles of hydrogen safety. The project facilitated hands-on learning, as participants in several NHA workshops and technical meetings were able to experience hydrogen vehicles, witness hydrogen refueling demonstrations, see metal hydride storage cartridges in operation, and view other hydrogen energy products.

  14. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01

    practices among code officials. Stakeholders recommendboth applicants and code officials and help to inform thecomply with the code and code officials to enforce the new

  15. Technical Standards, Safety Analysis Toolbox Codes - November...

    Broader source: Energy.gov (indexed) [DOE]

    report, Selection of Computer Codes for DOE Safety Analysis Applications, (August, 2002). Technical Standards, Safety Analysis Toolbox Codes More Documents & Publications DOE G...

  16. Program School/ Career: Descripton ISIS Program Codes

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Program School/ Career: Descripton ISIS Program Codes Program Career: Descripton College School;Program School/ Career: Descripton ISIS Program Codes Program Career: Descripton College School/ College 1

  17. Towards secure multiresolution network coding

    E-Print Network [OSTI]

    Medard, Muriel

    Emerging practical schemes indicate that algebraic mixing of different packets by means of random linear network coding can increase the throughput and robustness of streaming services over wireless networks. However, ...

  18. Commercial Building Codes and Standards

    Broader source: Energy.gov [DOE]

    Once an energy-efficient technology or practice is widely available in the market, it can become the baseline of performance through building energy codes and equipment standards. The Building...

  19. Gas Code of Conduct (Connecticut)

    Broader source: Energy.gov [DOE]

    The Gas Code of Conduct sets forth the standard of conduct for transactions, direct or indirect, between gas companies and their affiliates. The purpose of these regulations is to promote...

  20. Quantum stabilizer codes and beyond 

    E-Print Network [OSTI]

    Sarvepalli, Pradeep Kiran

    2008-10-10

    Dissertation by PRADEEP KIRAN SARVEPALLI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2008 Major Subject: Computer Science QUANTUM STABILIZER CODES... Committee Members, Donald K. Friesen Jennifer L. Welch Scott L. Miller Head of Department, Valerie E. Taylor August 2008 Major Subject: Computer Science iii ABSTRACT Quantum Stabilizer Codes and Beyond. (August 2008) Pradeep Kiran Sarvepalli, B.Tech., Indian...

  1. Theory and Implementation of Nuclear Safety System Codes - Part II: System Code Closure Relations, Validation, and Limitations

    SciTech Connect (OSTI)

    Glenn A Roth; Fatih Aydogan

    2014-09-01

    This is Part II of two articles describing the details of thermal-hydraulic sys- tem codes. In this second part of the article series, the system code closure relationships (used to model thermal and mechanical non-equilibrium and the coupling of the phases) for the governing equations are discussed and evaluated. These include several thermal and hydraulic models, such as heat transfer coefficients for various flow regimes, two phase pressure correlations, two phase friction correlations, drag coefficients and interfacial models be- tween the fields. These models are often developed from experimental data. The experiment conditions should be understood to evaluate the efficacy of the closure models. Code verification and validation, including Separate Effects Tests (SETs) and Integral effects tests (IETs) is also assessed. It can be shown from the assessments that the test cases cover a significant section of the system code capabilities, but some of the more advanced reactor designs will push the limits of validation for the codes. Lastly, the limitations of the codes are discussed by considering next generation power plants, such as Small Modular Reactors (SMRs), analyz- ing not only existing nuclear power plants, but also next generation nuclear power plants. The nuclear industry is developing new, innovative reactor designs, such as Small Modular Reactors (SMRs), High-Temperature Gas-cooled Reactors (HTGRs) and others. Sub-types of these reactor designs utilize pebbles, prismatic graphite moderators, helical steam generators, in- novative fuel types, and many other design features that may not be fully analyzed by current system codes. This second part completes the series on the comparison and evaluation of the selected reactor system codes by discussing the closure relations, val- idation and limitations. These two articles indicate areas where the models can be improved to adequately address issues with new reactor design and development.

  2. Wildlife Management Areas (Florida)

    Broader source: Energy.gov [DOE]

    Certain sites in Florida are designated as wildlife management areas, and construction and development is heavily restricted in these areas.

  3. Oil and Gas Field Code Master List 1990

    SciTech Connect (OSTI)

    Not Available

    1991-01-04

    This is the ninth annual edition of the Energy Information Administration's (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1990 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. There are 54,963 field records in this year's Oil and Gas Field Code Master List (FCML). This amounts to 467 more than in last year's report. As it is maintained by EIA, the Master List includes: Field records for each state and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides;field records for each alias field name; fields crossing state boundaries that may be assigned different names by the respective state naming authorities.

  4. Renewable Energy Requirements for Future Building Codes: Options for Compliance

    SciTech Connect (OSTI)

    Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.

    2011-09-30

    As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, use of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including envelope, mechanical and lighting, have been pressed to the end of reasonable limits. Research has been conducted to determine the mechanism for implementing this requirement (Kaufman 2011). Kaufmann et al. determined that the most appropriate way to structure an on-site renewable requirement for commercial buildings is to define the requirement in terms of an installed power density per unit of roof area. This provides a mechanism that is suitable for the installation of photovoltaic (PV) systems on future buildings to offset electricity and reduce the total building energy load. Kaufmann et al. suggested that an appropriate maximum for the requirement in the commercial sector would be 4 W/ft{sup 2} of roof area or 0.5 W/ft{sup 2} of conditioned floor area. As with all code requirements, there must be an alternative compliance path for buildings that may not reasonably meet the renewables requirement. This might include conditions like shading (which makes rooftop PV arrays less effective), unusual architecture, undesirable roof pitch, unsuitable building orientation, or other issues. In the short term, alternative compliance paths including high performance mechanical equipment, dramatic envelope changes, or controls changes may be feasible. These options may be less expensive than many renewable systems, which will require careful balance of energy measures when setting the code requirement levels. As the stringency of the code continues to increase however, efficiency trade-offs will be maximized, requiring alternative compliance options to be focused solely on renewable electricity trade-offs or equivalent programs. One alternate compliance path includes purchase of Renewable Energy Credits (RECs). Each REC represents a specified amount of renewable electricity production and provides an offset of environmental externalities associated with non-renewable electricity production. The purpose of this paper is to explore the possible issues with RECs and comparable alternative compliance options. Existing codes have been examined to determine energy equivalence between the energy generation requirement and the RECs alternative over the life of the building. The price equivalence of the requirement and the alternative are determined to consider the economic drivers for a market decision. This research includes case studies that review how the few existing codes have incorporated RECs and some of the issues inherent with REC markets. Section 1 of the report reviews compliance options including RECs, green energy purchase programs, shared solar agreements and leases, and other options. Section 2 provides detailed case studies on codes that include RECs and community based alternative compliance methods. The methods the existing code requirements structure alternative compliance options like RECs are the focus of the case studies. Section 3 explores the possible structure of the renewable energy generation requirement in the context of energy and price equivalence. The price of RECs have shown high variation by market and over time which makes it critical to for code language to be updated frequently for a renewable energy generation requirement or the requirement will not remain price-equivalent over time. Section 4 of the report provides a maximum case estimate for impact to the PV market and the REC market based on the Kaufmann et al. proposed requirement levels. If all new buildings in the commercial sector complied with the requirement to install rooftop PV arrays, nearly 4,700 MW of solar would be installed in 2012, a major increase from EIA estimates of 640 MW of solar generation capacity installed in 2009. The residential sector could contribute roughly an additional 2,300 MW based on the same code requirement levels of 4 W/ft{sup 2} of r

  5. Proceedings of the OECD/CSNI workshop on transient thermal-hydraulic and neutronic codes requirements

    SciTech Connect (OSTI)

    Ebert, D.

    1997-07-01

    This is a report on the CSNI Workshop on Transient Thermal-Hydraulic and Neutronic Codes Requirements held at Annapolis, Maryland, USA November 5-8, 1996. This experts` meeting consisted of 140 participants from 21 countries; 65 invited papers were presented. The meeting was divided into five areas: (1) current and prospective plans of thermal hydraulic codes development; (2) current and anticipated uses of thermal-hydraulic codes; (3) advances in modeling of thermal-hydraulic phenomena and associated additional experimental needs; (4) numerical methods in multi-phase flows; and (5) programming language, code architectures and user interfaces. The workshop consensus identified the following important action items to be addressed by the international community in order to maintain and improve the calculational capability: (a) preserve current code expertise and institutional memory, (b) preserve the ability to use the existing investment in plant transient analysis codes, (c) maintain essential experimental capabilities, (d) develop advanced measurement capabilities to support future code validation work, (e) integrate existing analytical capabilities so as to improve performance and reduce operating costs, (f) exploit the proven advances in code architecture, numerics, graphical user interfaces, and modularization in order to improve code performance and scrutibility, and (g) more effectively utilize user experience in modifying and improving the codes.

  6. SECTION GS1020 CONSTRUCTION CODE REQUIREMENTS

    E-Print Network [OSTI]

    Zhang, Yuanlin

    101, Life Safety Code; 5. National Fire Protection Association Codes and Standards; 6. ANSI/ASME A17SECTION GS1020 Ā­ CONSTRUCTION CODE REQUIREMENTS PART 1 - GENERAL 1.1 RELATED DOCUMENTS A. Drawings includes the following: 1. Construction code requirements for all construction at Texas Tech University. 1

  7. @ Ontario 2006 Building Code Structural Design

    E-Print Network [OSTI]

    Sheikh, Shamim A.

    @ Ontario 2006 Building Code Part 4 Structural Design Structural Losds and P r o ~ d u l r;2006 Building Code @Ontario Division B -Part 4 #12;@Ontario 2006 Building Code Part 4 Structural Design Section #12;2006 Building Code @Ontario 4.q.2. Spsclfled Loads and Effects 4 . . 2 Loads and Effects (See

  8. Arithmetic completely regular codes J. H. Koolen

    E-Print Network [OSTI]

    Martin, Bill

    Arithmetic completely regular codes J. H. Koolen W. S. Lee W. J. Martin December 4, 2013 Abstract In this paper, we explore completely regular codes in the Hamming graphs and related graphs. Experimental evidence suggests that many completely regular codes have the property that the eigenvalues of the code

  9. Energy Consumption of Minimum Energy Coding in

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    Energy Consumption of Minimum Energy Coding in CDMA Wireless Sensor Networks Benigno Zurita Ares://www.ee.kth.se/control Abstract. A theoretical framework is proposed for accurate perfor- mance analysis of minimum energy coding energy consumption is analyzed for two coding schemes proposed in the literature: Minimum Energy coding

  10. Area Activation 1 Running Head: AREA ACTIVATION

    E-Print Network [OSTI]

    Pomplun, Marc

    Area Activation 1 Running Head: AREA ACTIVATION Advancing Area Activation towards a General Model at Boston 100 Morrissey Boulevard Boston, MA 02125-3393 USA Phone: 617-287-6485 Fax: 617-287-6433 e. Without great effort, human observers clearly outperform every current artificial vision system in tasks

  11. Optimal Bacon-Shor codes

    E-Print Network [OSTI]

    John Napp; John Preskill

    2012-09-04

    We study the performance of Bacon-Shor codes, quantum subsystem codes which are well suited for applications to fault-tolerant quantum memory because the error syndrome can be extracted by performing two-qubit measurements. Assuming independent noise, we find the optimal block size in terms of the bit-flip error probability p_X and the phase error probability p_Z, and determine how the probability of a logical error depends on p_X and p_Z. We show that a single Bacon-Shor code block, used by itself without concatenation, can provide very effective protection against logical errors if the noise is highly biased (p_Z / p_X >> 1) and the physical error rate p_Z is a few percent or below. We also derive an upper bound on the logical error rate for the case where the syndrome data is noisy.

  12. ASME Code Efforts Supporting HTGRs

    SciTech Connect (OSTI)

    D.K. Morton

    2011-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  13. ASME Code Efforts Supporting HTGRs

    SciTech Connect (OSTI)

    D.K. Morton

    2010-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  14. ASME Code Efforts Supporting HTGRs

    SciTech Connect (OSTI)

    D.K. Morton

    2012-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  15. SASSYS LMFBR systems analysis code

    SciTech Connect (OSTI)

    Dunn, F.E.; Prohammer, F.G.

    1982-01-01

    The SASSYS code provides detailed steady-state and transient thermal-hydraulic analyses of the reactor core, inlet and outlet coolant plenums, primary and intermediate heat-removal systems, steam generators, and emergency shut-down heat removal systems in liquid-metal-cooled fast-breeder reactors (LMFBRs). The main purpose of the code is to analyze the consequences of failures in the shut-down heat-removal system and to determine whether this system can perform its mission adequately even with some of its components inoperable. The code is not plant-specific. It is intended for use with any LMFBR, using either a loop or a pool design, a once-through steam generator or an evaporator-superheater combination, and either a homogeneous core or a heterogeneous core with internal-blanket assemblies.

  16. A statistical analysis of personnel contaminations in 200 Area facilities

    SciTech Connect (OSTI)

    Wagner, M.A.; Stoddard, D.H.

    1983-05-18

    This study determined the frequency statistics of personnel contaminations in 200 Area facilities. These statistics are utilized in probability calculations for contamination risks, and are part of an effort to provide reliable information for use in safety studies. Data for this analysis were obtained from the 200 Area and the Tritium Area Fault Tree Data Banks and were analyzed with the aid of the STATPAC computer code.

  17. Site Name : Las Cabras permanent stationAuthor : Sylvain, Marianne, Max Site Code :C A B R date : year 2010 month 03 day 11

    E-Print Network [OSTI]

    Vigny, Christophe

    with telephonic antennas. MONUMENTATION Inox 12 cm rod (Delmont type) scealed in bedrock + Inox rotating adaptor

  18. Arithmetic Coding for Data Compression

    E-Print Network [OSTI]

    Howard, Paul G.; Vitter, Jeffrey Scott

    1994-01-01

    of the particular sequence of events in the #0Cle. The #0Cnal step uses at most b,log 2 pc + 2 bits to distinguish the #0Cle fromall other possible #0Cles. We need some mechanism to indicate the end ofthe #0Cle, either a special end- of-#0Cle event coded just once... of the particular sequence of events in the #0Cle. The #0Cnal step uses at most b,log 2 pc + 2 bits to distinguish the #0Cle fromall other possible #0Cles. We need some mechanism to indicate the end ofthe #0Cle, either a special end- of-#0Cle event coded just once...

  19. Understanding Energy Code Acceptance within the Alaska Building Community

    SciTech Connect (OSTI)

    Mapes, Terry S.

    2012-02-14

    This document presents the technical assistance provided to the Alaska Home Financing Corporation on behalf of PNNL regarding the assessment of attitudes toward energy codes within the building community in Alaska. It includes a summary of the existing situation and specific assistance requested by AHFC, the results of a questionnaire designed for builders surveyed in a suburban area of Anchorage, interviews with a lender, a building official, and a research specialist, and recommendations for future action by AHFC.

  20. Sparse Quantum Codes from Quantum Circuits

    E-Print Network [OSTI]

    Dave Bacon; Steven T. Flammia; Aram W. Harrow; Jonathan Shi

    2015-07-10

    We describe a general method for turning quantum circuits into sparse quantum subsystem codes. Using this prescription, we can map an arbitrary stabilizer code into a new subsystem code with the same distance and number of encoded qubits but where all the generators have constant weight, at the cost of adding some ancilla qubits. With an additional overhead of ancilla qubits, the new code can also be made spatially local. Applying our construction to certain concatenated stabilizer codes yields families of subsystem codes with constant-weight generators and with minimum distance $d = n^{1-\\varepsilon}$, where $\\varepsilon = O(1/\\sqrt{\\log n})$. For spatially local codes in $D$ dimensions we nearly saturate a bound due to Bravyi and Terhal and achieve $d = n^{1-\\varepsilon-1/D}$. Previously the best code distance achievable with constant-weight generators in any dimension, due to Freedman, Meyer and Luo, was $O(\\sqrt{n\\log n})$ for a stabilizer code.

  1. Ptolemy Coding Style Christopher Brooks

    E-Print Network [OSTI]

    Ptolemy Coding Style Christopher Brooks Edward A. Lee Electrical Engineering and Computer Sciences was supported in part by the iCyPhy Research Center (Industrial Cyber-Physical Systems, supported by IBM (Industrial Cyber-Physical Systems, supported by IBM and United Technologies), and the Center for Hybrid

  2. Free Energy Code Online Discussion

    E-Print Network [OSTI]

    Free Energy Code Online Discussion for Building Department Personnel Join us for this FREE 90 Bruce Cheney from Anchors Aweigh Energy, LLC want to hear from YOU on residential HVAC changeout issues of the California Energy Commission. Date: 3 dates currently offered, choose the one that works for you

  3. Tandem Mirror Reactor Systems Code (Version I)

    SciTech Connect (OSTI)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  4. Impacts of lateral code changes associated with the 2006 International Building Code and the 2008 California Building Code

    E-Print Network [OSTI]

    Ratley, Desirée Page

    2007-01-01

    The 2008 California Building Code (CBC) will adopt the structural section of the 2006 International Building Code (IBC), which includes alterations to the procedure to determine earthquake design loading, and a drastic ...

  5. LWR codes capability to address SFR BDBA scenarios: Modeling of the ABCOVE tests

    SciTech Connect (OSTI)

    Herranz, L. E.; Garcia, M.; Morandi, S.

    2012-07-01

    The sound background built-up in LWR source term analysis in case of a severe accident, make it worth to check the capability of LWR safety analysis codes to model accident SFR scenarios, at least in some areas. This paper gives a snapshot of such predictability in the area of aerosol behavior in containment. To do so, the AB-5 test of the ABCOVE program has been modeled with 3 LWR codes: ASTEC, ECART and MELCOR. Through the search of a best estimate scenario and its comparison to data, it is concluded that even in the specific case of in-containment aerosol behavior, some enhancements would be needed in the LWR codes and/or their application, particularly with respect to consideration of particle shape. Nonetheless, much of the modeling presently embodied in LWR codes might be applicable to SFR scenarios. These conclusions should be seen as preliminary as long as comparisons are not extended to more experimental scenarios. (authors)

  6. Oil and Gas field code master list 1995

    SciTech Connect (OSTI)

    1995-12-01

    This is the fourteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1995 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the US. The Field Code Index, a listing of all field names and the States in which they occur, ordered by field code, has been removed from this year`s publications to reduce printing and postage costs. Complete copies (including the Field Code Index) will be available on the EIA CD-ROM and the EIA World-Wide Web Site. Future editions of the complete Master List will be available on CD-ROM and other electronic media. There are 57,400 field records in this year`s Oil and Gas Field Code Master List. As it is maintained by EIA, the Master List includes the following: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (see definition of alias below); and fields crossing State boundaries that may be assigned different names by the respective State naming authorities. Taking into consideration the double-counting of fields under such circumstances, EIA identifies 46,312 distinct fields in the US as of October 1995. This count includes fields that no longer produce oil or gas, and 383 fields used in whole or in part for oil or gas Storage. 11 figs., 6 tabs.

  7. Arkansas Air Pollution Control Code (Arkansas)

    Broader source: Energy.gov [DOE]

    The Arkansas Air Pollution Control code is adopted pursuant to Subchapter 2 of the Arkansas Water and Air Pollution Control Act (Arkansas Code Annotated 8-4-101). ) By authority of the same State...

  8. Network coding for speedup in switches

    E-Print Network [OSTI]

    Kim, MinJi, M. Eng. Massachusetts Institute of Technology

    2007-01-01

    Network coding, which allows mixing of data at intermediate network nodes, is known to increase the throughput of networks. In particular, it is known that linear network coding in a crossbar switch can sustain traffic ...

  9. N. Mariana Islands- Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  10. Efficient, transparent, and comprehensive runtime code manipulation

    E-Print Network [OSTI]

    Bruening, Derek L. (Derek Lane), 1976-

    2004-01-01

    This thesis addresses the challenges of building a software system for general-purpose runtime code manipulation. Modern applications, with dynamically-loaded modules and dynamically-generated code, are assembled at runtime. ...

  11. Quantum error-correcting codes and devices

    DOE Patents [OSTI]

    Gottesman, Daniel (Los Alamos, NM)

    2000-10-03

    A method of forming quantum error-correcting codes by first forming a stabilizer for a Hilbert space. A quantum information processing device can be formed to implement such quantum codes.

  12. Transforms for prediction residuals in video coding

    E-Print Network [OSTI]

    Kam??l?, Fatih

    2010-01-01

    Typically the same transform, the 2-D Discrete Cosine Transform (DCT), is used to compress both image intensities in image coding and prediction residuals in video coding. Major prediction residuals include the motion ...

  13. A Better Handoff for Code Officials

    SciTech Connect (OSTI)

    Conover, David R.; Yerkes, Sara

    2010-09-24

    The U.S. Department of Energy's Building Energy Codes Program has partnered with ICC to release the new Building Energy Codes Resource Guide: Code Officials Edition. We created this binder of practical materials for a simple reason: code officials are busy learning and enforcing several codes at once for the diverse buildings across their jurisdictions. This doesn’t leave much time to search www.energycodes.gov, www.iccsafe.org, or the range of other helpful web-based resources for the latest energy codes tools, support, and information. So, we decided to bring the most relevant materials to code officials in a way that works best with their daily routine, and point to where they can find even more. Like a coach’s game plan, the Resource Guide is an "energy playbook" for code officials.

  14. Reusing code by reasoning about its purpose

    E-Print Network [OSTI]

    Arnold, Kenneth Charles

    2010-01-01

    When programmers face unfamiliar or challenging tasks, code written by others could give them inspiration or reusable pieces. But how can they find code appropriate for their goals? This thesis describes a programming ...

  15. Multidimensional Fuel Performance Code: BISON

    SciTech Connect (OSTI)

    2014-09-03

    BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficiently solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phase field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.

  16. CBP PHASE I CODE INTEGRATION

    SciTech Connect (OSTI)

    Smith, F.; Brown, K.; Flach, G.; Sarkar, S.

    2011-09-30

    The goal of the Cementitious Barriers Partnership (CBP) is to develop a reasonable and credible set of software tools to predict the structural, hydraulic, and chemical performance of cement barriers used in nuclear applications over extended time frames (greater than 100 years for operating facilities and greater than 1000 years for waste management). The simulation tools will be used to evaluate and predict the behavior of cementitious barriers used in near surface engineered waste disposal systems including waste forms, containment structures, entombments, and environmental remediation. These cementitious materials are exposed to dynamic environmental conditions that cause changes in material properties via (i) aging, (ii) chloride attack, (iii) sulfate attack, (iv) carbonation, (v) oxidation, and (vi) primary constituent leaching. A set of state-of-the-art software tools has been selected as a starting point to capture these important aging and degradation phenomena. Integration of existing software developed by the CBP partner organizations was determined to be the quickest method of meeting the CBP goal of providing a computational tool that improves the prediction of the long-term behavior of cementitious materials. These partner codes were selected based on their maturity and ability to address the problems outlined above. The GoldSim Monte Carlo simulation program (GTG 2010a, GTG 2010b) was chosen as the code integration platform (Brown & Flach 2009b). GoldSim (current Version 10.5) is a Windows based graphical object-oriented computer program that provides a flexible environment for model development (Brown & Flach 2009b). The linking of GoldSim to external codes has previously been successfully demonstrated (Eary 2007, Mattie et al. 2007). GoldSim is capable of performing deterministic and probabilistic simulations and of modeling radioactive decay and constituent transport. As part of the CBP project, a general Dynamic Link Library (DLL) interface was developed to link GoldSim with external codes (Smith III et al. 2010). The DLL uses a list of code inputs provided by GoldSim to create an input file for the external application, runs the external code, and returns a list of outputs (read from files created by the external application) back to GoldSim. In this way GoldSim provides: (1) a unified user interface to the applications, (2) the capability of coupling selected codes in a synergistic manner, and (3) the capability of performing probabilistic uncertainty analysis with the codes. GoldSim is made available by the GoldSim Technology Group as a free 'Player' version that allows running but not editing GoldSim models. The player version makes the software readily available to a wider community of users that would wish to use the CBP application but do not have a license for GoldSim.

  17. Code input alternatives John C. Wright

    E-Print Network [OSTI]

    Wright, John C.

    ;Summary Use a data-centric model for input creation (code namelists, IPS config file, etc) Database

  18. Bimodal codebooks for CELP speech coding 

    E-Print Network [OSTI]

    Woo, Hong Chae

    1988-01-01

    of Department) December 1988 ABSTRACT Bimodal Codebooks for CELP Speech Coding. (December 1988) Hong Chae Woo, B. S. , Kyungpook National U. , Korea Chair of Advisory Committee: Dr. Jerry D. Gibson With the maximum correlation multi-pulse search method..., near toll quality speech is achieved in multi-pulse excited linear predictive coding (MLPC). Code- excited linear predictive coding (CELP) is then developed for good quality syn- thetic speech using the analysis-by-synthesis method with two...

  19. Energy Code Compliance and Enforcement Best Practices

    Broader source: Energy.gov [DOE]

    This webinar covers how to access current practices, compliance best practices, and enforce best practices with energy code compliances.

  20. Building Energy Codes Program (BECP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department of Energy America:Antonio,Building Energy Codes

  1. Quantum Coding with Finite Resources

    E-Print Network [OSTI]

    Marco Tomamichel; Mario Berta; Joseph M. Renes

    2015-05-28

    The quantum capacity of a memoryless channel is often used as a single figure of merit to characterize its ability to transmit quantum information coherently. The capacity determines the maximal rate at which we can code reliably over asymptotically many uses of the channel. We argue that this asymptotic treatment is insufficient to the point of being irrelevant in the quantum setting where decoherence severely limits our ability to manipulate large quantum systems in the encoder and decoder. For all practical purposes we should instead focus on the trade-off between three parameters: the rate of the code, the number of coherent uses of the channel, and the fidelity of the transmission. The aim is then to specify the region determined by allowed combinations of these parameters. Towards this goal, we find approximate and exact characterizations of the region of allowed triplets for the qubit dephasing channel and for the erasure channel with classical post-processing assistance. In each case the region is parametrized by a second channel parameter, the quantum channel dispersion. In the process we also develop several general inner (achievable) and outer (converse) bounds on the coding region that are valid for all finite-dimensional quantum channels and can be computed efficiently. Applied to the depolarizing channel, this allows us to determine a lower bound on the number of coherent uses of the channel necessary to witness super-additivity of the coherent information.

  2. DEPARTMENT CODE Department of Computer Science

    E-Print Network [OSTI]

    DEPARTMENT CODE Department of Computer Science College of Natural Sciences Colorado State and Amendment of this Code 19 #12;1 MISSION AND OBJECTIVES 3 Preamble This Code of the Department of Computer Science1 is a manual of operation that describes the functioning of the Department by codifying policy

  3. Update and inclusion of resuspension model codes

    SciTech Connect (OSTI)

    Porch, W.M.; Greenly, G.D.; Mitchell, C.S.

    1983-12-01

    Model codes for estimating radiation doses from plutonium particles associated with resuspended dust were improved. Only one new code (RSUS) is required in addition to the MATHEW/ADPIC set of codes. The advantage is that it estimates resuspension based on wind blown dust fluxes derived for different soil types. 2 references. (ACR)

  4. Cost Codes and the Work Breakdown Structure

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    The chapter discusses the purpose of the work breakdown structure (WBS) and code of account (COA) cost code system, shows the purpose and fundamental structure of both the WBS and the cost code system, and explains the interface between the two systems.

  5. ACADEMIC INTEGRITY CODE REPORTING AND INVESTIGATION PROCEDURES

    E-Print Network [OSTI]

    Droegemeier, Kelvin K.

    , or other persons may report suspected violations of the Integrity Code. Reporters are encouraged to providePage 1 ACADEMIC INTEGRITY CODE REPORTING AND INVESTIGATION PROCEDURES 1. DEFINITIONS a. Alleged Violator: a student alleged to have violated the Academic Integrity Code, or one about whom a reasonable

  6. NUMBER: 1530 TITLE: Code of Student Conduct

    E-Print Network [OSTI]

    . For the purposes of this Code, the term "University Official" is inclusive of "Faculty Member" as defined in IV 1530 1 NUMBER: 1530 TITLE: Code of Student Conduct APPROVED: August 27, 1970; Revised June 14, 2012 I. BASIS AND RATIONALE FOR A CODE OF STUDENT CONDUCT Old Dominion University

  7. Ultra-narrow bandwidth voice coding

    DOE Patents [OSTI]

    Holzrichter, John F. (Berkeley, CA); Ng, Lawrence C. (Danville, CA)

    2007-01-09

    A system of removing excess information from a human speech signal and coding the remaining signal information, transmitting the coded signal, and reconstructing the coded signal. The system uses one or more EM wave sensors and one or more acoustic microphones to determine at least one characteristic of the human speech signal.

  8. Undergraduate Academic Standing Processing Academic Standing Codes

    E-Print Network [OSTI]

    Olszewski Jr., Edward A.

    8/16/2012 Undergraduate Academic Standing Processing Academic Standing Codes End-of-Term Codes Code Desc Max Hrs Notes 00 (or blank) Good Standing 18 PR Academic Probation 14 SU Academic Probation to the beginning of the term and allow registration, even if the prior term's academic standing prevents it

  9. Reducing Energy Demand in Buildings Through State Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building...

  10. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01

    State Energy Officials. Energy Code Best Practices: How to2012, April 17). Energy Code Best Practices: How toMeyers, Jim. Energy Code Enforcement: Best Practices from

  11. Technical Standards, Guidance on MELCOR computer code - May 3...

    Office of Environmental Management (EM)

    Standards, Guidance on MELCOR computer code - May 3, 2004 Technical Standards, Guidance on MELCOR computer code - May 3, 2004 May 3, 2004 MELCOR Computer Code Application Guidance...

  12. Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Group Workshop: Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop: Code for Hydrogen Pipelines Code for Hydrogen Piping and Pipelines. B31 Hydrogen...

  13. State and Local Code Implementation: Southwest Region - 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Local Code Implementation: Southeast Region - 2014 BTO Peer Review State and Local Code Implementation: State Energy Officials - 2014 BTO Peer Review Green Codes and...

  14. State and Local Code Implementation: Southwest Region - 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Local Code Implementation: Southeast Region - 2014 BTO Peer Review State and Local Code Implementation: State Energy Officials - 2014 BTO Peer Review State and Local Code...

  15. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01

    S. (2011). Utilities and Building Energy Codes: Air QualityUtility Programs and Building Energy Codes: How utilityUtility Programs and Building Energy Codes: How utility

  16. Streamlining of the RELAP5-3D Code

    SciTech Connect (OSTI)

    Mesina, George L; Hykes, Joshua; Guillen, Donna Post

    2007-11-01

    RELAP5-3D is widely used by the nuclear community to simulate general thermal hydraulic systems and has proven to be so versatile that the spectrum of transient two-phase problems that can be analyzed has increased substantially over time. To accommodate the many new types of problems that are analyzed by RELAP5-3D, both the physics and numerical methods of the code have been continuously improved. In the area of computational methods and mathematical techniques, many upgrades and improvements have been made decrease code run time and increase solution accuracy. These include vectorization, parallelization, use of improved equation solvers for thermal hydraulics and neutron kinetics, and incorporation of improved library utilities. In the area of applied nuclear engineering, expanded capabilities include boron and level tracking models, radiation/conduction enclosure model, feedwater heater and compressor components, fluids and corresponding correlations for modeling Generation IV reactor designs, and coupling to computational fluid dynamics solvers. Ongoing and proposed future developments include improvements to the two-phase pump model, conversion to FORTRAN 90, and coupling to more computer programs. This paper summarizes the general improvements made to RELAP5-3D, with an emphasis on streamlining the code infrastructure for improved maintenance and development. With all these past, present and planned developments, it is necessary to modify the code infrastructure to incorporate modifications in a consistent and maintainable manner. Modifying a complex code such as RELAP5-3D to incorporate new models, upgrade numerics, and optimize existing code becomes more difficult as the code grows larger. The difficulty of this as well as the chance of introducing errors is significantly reduced when the code is structured. To streamline the code into a structured program, a commercial restructuring tool, FOR_STRUCT, was applied to the RELAP5-3D source files. The methodology employed follows Dijkstra's structured programming paradigm, which is based on splitting programs into sub-sections, each with single points of entry and exit and in which control is passed downward through the structure with no unconditional branches to higher levels. GO TO commands are typically avoided, since they alter the flow and control of a program’s execution by allowing a jump from one place in the routine to another. The restructuring of RELAP5-3D subroutines is complicated by several issues. The first is use of code other than standard FORTRAN77. The second is restructuring limitations of FOR_STRUCT. The third is existence of pre-compiler directives and the complication of nested directives. Techniques were developed to overcome all these difficulties and more and these are reported. By implementing these developments, all subroutines of RELAP were restructured. Measures of code improvement relative to maintenance and development are presented.

  17. Oil and gas field code master list 1997

    SciTech Connect (OSTI)

    1998-02-01

    The Oil and Gas Field Code Master List 1997 is the sixteenth annual listing of all identified oil and gas fields in the US. It is updated with field information collected through October 1997. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry. As a result of their widespread adoption they have in effect become a national standard. The use of field names and codes listed in this publication is required on survey forms and other reports regarding field-specific data collected by EIA. There are 58,366 field records in this year`s FCML, 437 more than last year. The FCML includes: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (definition of alias is listed); fields crossing State boundaries that may be assigned different names by the respective State naming authorities. This report also contains an Invalid Field Record List of 4 records that have been removed from the FCML since last year`s report. These records were found to be either technically incorrect or to represent field names which were never recognized by State naming authorities.

  18. Code Generation on Steroids: Enhancing COTS Code Generators via Generative Aspects

    E-Print Network [OSTI]

    Ryder, Barbara G.

    Code Generation on Steroids: Enhancing COTS Code Generators via Generative Aspects Cody Henthorne tilevich@cs.vt.edu Abstract Commercial of-the-shelf (COTS) code generators have become an integral part of modern commercial software development. Programmers use code generators to facilitate many tedious

  19. Code Booster Award-winning research on code optimization explores multicore computing

    E-Print Network [OSTI]

    Knowles, David William

    of physics research, from star formation to magnetic fusion devices. Unfortunately the code, LBMHD (LB

  20. TRAC code development status and plans

    SciTech Connect (OSTI)

    Spore, J.W.; Liles, D.R.; Nelson, R.A.; Dotson, P.J.; Steinke, R.G.; Knight, T.D.; Henninger, R.J.; Martinez, V.; Jenks, R.P.; Cappiello, M.W.

    1986-01-01

    This report summarizes the characteristics and current status of the TRAC-PF1/MOD1 computer code. Recent error corrections and user-convenience features are described, and several user enhancements are identified. Current plans for the release of the TRAC-PF1/MOD2 computer code and some preliminary MOD2 results are presented. This new version of the TRAC code implements stability-enhancing two-step numerics into the 3-D vessel, using partial vectorization to obtain a code that has run 400% faster than the MOD1 code.

  1. National Agenda for Hydrogen Codes and Standards

    SciTech Connect (OSTI)

    Blake, C.

    2010-05-01

    This paper provides an overview of hydrogen codes and standards with an emphasis on the national effort supported and managed by the U.S. Department of Energy (DOE). With the help and cooperation of standards and model code development organizations, industry, and other interested parties, DOE has established a coordinated national agenda for hydrogen and fuel cell codes and standards. With the adoption of the Research, Development, and Demonstration Roadmap and with its implementation through the Codes and Standards Technical Team, DOE helps strengthen the scientific basis for requirements incorporated in codes and standards that, in turn, will facilitate international market receptivity for hydrogen and fuel cell technologies.

  2. Postal address School of Industrial Design, LTH, P.O. Box 118, 221 00 Lund, SWEDEN Telephone +46 46 222 71 88 E-mail Lynn.Lindegren@kansli.lth.se Website www.industrialdesign.lth.se

    E-Print Network [OSTI]

    Postal address School of Industrial Design, LTH, P.O. Box 118, 221 00 Lund, SWEDEN Telephone +46 46 222 71 88 E-mail Lynn.Lindegren@kansli.lth.se Website www.industrialdesign.lth.se School of Industrial of Industrial Design autumn semester 2015. Full-time study is 30 credits. Bachelor´s programme ­ 1st term Course

  3. Unit 51 - GIS Application Areas

    E-Print Network [OSTI]

    Unit 51, CC in GIS; Cowen, David; Ferguson, Warren

    1990-01-01

    51 - GIS APPLICATION AREAS UNIT 51 - GIS APPLICATION AREAS1990 Page 1 Unit 51 - GIS Application Areas Computers inyour students. UNIT 51 - GIS APPLICATION AREAS Compiled with

  4. Segmented Motion Compensation for Complementary Coded Ultrasonic Imaging 

    E-Print Network [OSTI]

    Cannon, Cormac; Hannah, John; McLaughlin, Steve

    Ultrasonic imaging using complementary coded pulses offers the SNR improvements of signal coding without the filter side-lobes introduced by single-transmit codes. Tissue motion between coded pulse emissions, however, can ...

  5. Texas Energy Code Compliance Collaborative 

    E-Print Network [OSTI]

    Herbert, C.

    2013-01-01

    wide cross section of E.E. industries ESL-KT-13-12-29 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 In 2012, Texas reported more new building starts than any other state – the next highest... seat. No enforcement is permitted, but builders report inspections are performed. 11 ESL-KT-13-12-29 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Texas Health and Safety Code, Section 388.003 (c) A...

  6. ASSESSMENT OF LIVESTOCK WINTERING AREAS IN BRIDGE CREEK BASIN, 1996

    E-Print Network [OSTI]

    of Agricultural Practice for Waste Management... 6 3.0 ASSESSMENT RESULTS................................... 7 3 with the environmental guidelines of the Ministry of Agriculture, Fisheries and Food (1992) and the Code of Agricultural Practice for Waste Management (Waste Management Act, Health Act, 1992). Bridge Creek drains a 1,550 km area

  7. Enhanced Verification Test Suite for Physics Simulation Codes

    SciTech Connect (OSTI)

    Kamm, J R; Brock, J S; Brandon, S T; Cotrell, D L; Johnson, B; Knupp, P; Rider, W; Trucano, T; Weirs, V G

    2008-10-10

    This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations. The key points of this document are: (1) Verification deals with mathematical correctness of the numerical algorithms in a code, while validation deals with physical correctness of a simulation in a regime of interest. This document is about verification. (2) The current seven-problem Tri-Laboratory Verification Test Suite, which has been used for approximately five years at the DOE WP laboratories, is limited. (3) Both the methodology for and technology used in verification analysis have evolved and been improved since the original test suite was proposed. (4) The proposed test problems are in three basic areas: (a) Hydrodynamics; (b) Transport processes; and (c) Dynamic strength-of-materials. (5) For several of the proposed problems we provide a 'strong sense verification benchmark', consisting of (i) a clear mathematical statement of the problem with sufficient information to run a computer simulation, (ii) an explanation of how the code result and benchmark solution are to be evaluated, and (iii) a description of the acceptance criterion for simulation code results. (6) It is proposed that the set of verification test problems with which any particular code be evaluated include some of the problems described in this document. Analysis of the proposed verification test problems constitutes part of a necessary--but not sufficient--step that builds confidence in physics and engineering simulation codes. More complicated test cases, including physics models of greater sophistication or other physics regimes (e.g., energetic material response, magneto-hydrodynamics), would represent a scientifically desirable complement to the fundamental test cases discussed in this report. The authors believe that this document can be used to enhance the verification analyses undertaken at the DOE WP Laboratories and, thus, to improve the quality, credibility, and usefulness of the simulation codes that are analyzed with these problems.

  8. Group representations, error bases and quantum codes

    SciTech Connect (OSTI)

    Knill, E

    1996-01-01

    This report continues the discussion of unitary error bases and quantum codes. Nice error bases are characterized in terms of the existence of certain characters in a group. A general construction for error bases which are non-abelian over the center is given. The method for obtaining codes due to Calderbank et al. is generalized and expressed purely in representation theoretic terms. The significance of the inertia subgroup both for constructing codes and obtaining the set of transversally implementable operations is demonstrated.

  9. Codes and Standards Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The Hydrogen Codes and Standards Tech Team (CSTT) mission is to enable and facilitate the appropriate research, development, & demonstration (RD&D) for the development of safe, performance-based defensible technical codes and standards that support the technology readiness and are appropriate for widespread consumer use of fuel cells and hydrogen-based technologies with commercialization by 2020. Therefore, it is important that the necessary codes and standards be in place no later than 2015.

  10. Codes for the fast SSS QR eigens

    E-Print Network [OSTI]

    M. Gu, B. Parlett, D. Ting, J. Xia, J. Comput. Electron. 1(2002), pp. 411-414. Codes for statistical condition estimations of linear systems and eigenproblems.

  11. Example Cost Codes for Construction Projects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter provides an example outline of cost items and their corresponding cost codes that may be used for construction projects.

  12. Energy Citations Database (ECD) - Widget Code

    Office of Scientific and Technical Information (OSTI)

    Widget Inclusion Code