Powered by Deep Web Technologies
Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Teksun PV Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

Teksun PV Manufacturing Inc Teksun PV Manufacturing Inc Jump to: navigation, search Logo: Teksun PV Manufacturing Inc Name Teksun PV Manufacturing Inc Address 401 Congress Ave Place Austin, Texas Zip 78701 Sector Solar Product Plan to manufacture large scale PV panels for utility scale solar power parks Website http://www.teksunpv.com/ Coordinates 30.266402°, -97.742959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.266402,"lon":-97.742959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

TekSun PV Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

TekSun PV Manufacturing Inc TekSun PV Manufacturing Inc Jump to: navigation, search Name TekSun PV Manufacturing Inc Place Austin, Texas Zip 78701 Product US-based installer of PV systems; rportedly planning to buy a 120MW amorphous silicon PV manufacturing line from Applied Materials. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

3

NREL: Jobs and Economic Competitiveness - Solar PV Manufacturing Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar PV Manufacturing Cost Analysis Solar PV Manufacturing Cost Analysis Between 2000 and 2010 global shipments of PV cells/modules grew 53% (compound annual growth rate [CAGR]). At the same time, the U.S. market share has slipped from 30% to 7% (30% CAGR) while China/Taiwan has grown from <2% to 54% (115% CAGR) to become the leader in global production. NREL's manufacturing cost analysis has focused on understanding the regional competitiveness of solar PV manufacturing specifically: What factors have led to China's dramatic growth in PV? Is it sustainable? Can the US compete? NREL's manufacturing cost analysis studies show that: U.S. incentives to strengthen access to capital for investment in innovative solar technologies could offset China's current advantage U.S. incentives are dwarfed by the scale of Chinese incentives

4

PV Manufacturing R&D Accomplishments and Status  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) PV Manufacturing Research and Development Project has worked for 11 years in partnership with the U.S. photovoltaic industry to reduce manufacturing costs while significantly scaling up production capacity. Over this period, the PV Manufacturing R&D Project has issued seven solicitations for partnerships that have resulted in over 50 cost-shared R&D subcontracts that addressed the cost and capacity goals of the Project, including 10 that are currently active. The previous and current contracts have typically focused on addressing Project goals in one of two areas: module manufacturing and balance-of-systems (BOS)/systems work. The majority of the DOE investment has been targeted toward module manufacturing. The partnerships have resulted in a significant and measurable increase in PV module/systems production capacity, a decrease in PV manufacturing costs, and a subsequent return on the joint public and private investments facilitated by the Project.

Mooney, D.; Mitchell, R.; Witt, E.; King, R.; Ruby, D.

2003-11-01T23:59:59.000Z

5

Lessons Learned from the Photovoltaic Manufacturing Technology/PV Manufacturing R&D and Thin Film PV Partnership Projects  

DOE Green Energy (OSTI)

As the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program initiates new cost-shared solar energy R&D under the Solar America Initiative (SAI), it is useful to analyze the experience gained from cost-shared R&D projects that have been funded through the program to date. This report summarizes lessons learned from two DOE-sponsored photovoltaic (PV) projects: the Photovoltaic Manufacturing Technology/PV Manufacturing R&D (PVMaT/PVMR&D) project and the Thin-Film PV Partnership project. During the past 10-15 years, these two projects have invested roughly $330 million of government resources in cost-shared R&D and leveraged another $190 million in private-sector PV R&D investments. Following a description of key findings and brief descriptions of the PVMaT/PVMR&D and Thin-Film PV Partnership projects, this report presents lessons learned from the projects.

Margolis, R.; Mitchell, R.; Zweibel, K.

2006-09-01T23:59:59.000Z

6

PV Manufacturing R&D Project -- Trends in the U.S. PV Industry  

DOE Green Energy (OSTI)

To foster continued growth in the U.S. photovoltaic (PV) industry, the U.S. Department of Energy initiated the PV Manufacturing R&D (PVMR&D) Project--a partnership with U.S. PV industry participants to perform cost-shared manufacturing research and development. Throughout FY 2004, PVMR&D managed fourteen subcontracts across the industry. The impact of PVMR&D is quantified by reductions in direct module manufacturing costs, scale-up of existing PV production capacity, and accrual of cost savings to the public and industry. An analysis of public and industry investment shows that both recaptured funds by mid-1998 based on estimated manufacturing cost savings from PVMR&D participation. Since project inception, total PV manufacturing capacity has increased from 14 MW to 201 MW at the close of 2003, while direct manufacturing costs declined from $5.55/W to $2.49/W. These results demonstrate continued progress toward the overriding goals of the PVMR&D project.

Brown, K. E.; Mitchell, R. L.; Bower, W. I.; King, R.

2005-01-01T23:59:59.000Z

7

DOE Request for Information (RFI) DE-FOA-0000153 PV Manufacturing Initiative: Summary Report, February 2010  

DOE Green Energy (OSTI)

This document sums up results of the PV Manufacturing Request for Information (RFI), DE-FOA-0000153, which supports the PV Manufacturing Initiative, launched by DOE Solar Energy Technologies Program.

Not Available

2010-02-01T23:59:59.000Z

8

Decade of PV Industry R and D Advances in Silicon Module Manufacturing  

DOE Green Energy (OSTI)

The US Photovoltaic (PV) industry has made significant technical advances in crystalline silicon (Si) module manufacturing through the PV Manufacturing R and D Project during the past decade. Funded Si technologies in this project have been Czochralski, cast polycrystalline, edge-defined film-fed growth (EFG) ribbon, string ribbon, and Si-film. Specific R and D Si module-manufacturing categories that have shown technical growth and will be discussed are in crystal growth and processing, wafering, cell fabrication, and module manufacturing. These R and D advancements since 1992 have contributed to a 30% decrease in PV manufacturing costs and stimulated a sevenfold increase in PV production capacity.

Symko-Davis, M.; Mitchell, R.L.; Witt, C.E.; Thomas, H.P. [National Renewable Energy Laboratory; King, R. [U.S. Department of Energy; Ruby, D.S. [Sandia National Laboratories

2001-01-18T23:59:59.000Z

9

Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)  

SciTech Connect

EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

Goodrich, A. C.; Woodhouse, M.; James, T.

2011-02-01T23:59:59.000Z

10

Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)  

DOE Green Energy (OSTI)

EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

Goodrich, A. C.; Woodhouse, M.; James, T.

2011-02-01T23:59:59.000Z

11

Progress of the PV Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base  

SciTech Connect

In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubator Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment total nearly $ 1.3 billion.

Ullal, H.; Mitchell, R.; Keyes, B.; VanSant, K.; Von Roedern, B.; Symko-Davies, M.; Kane, V.

2011-01-01T23:59:59.000Z

12

Americans for Solar Power PV Manufacturers Alliance ASPv PVMA | Open Energy  

Open Energy Info (EERE)

Manufacturers Alliance ASPv PVMA Manufacturers Alliance ASPv PVMA Jump to: navigation, search Name Americans for Solar Power-PV Manufacturers Alliance ((ASPv-PVMA) Place Tempe, Arizona Zip 85282 Sector Solar Product A non-profit research and education body aimed at creating the right market structures and programs to enable residential, commercial, governmental and industrial electricity consumers to have solar power options. Coordinates 33.42551°, -111.937419° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.42551,"lon":-111.937419,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

13

MANUFACTURER OF THE FIRST 100% ROOM TEMPERATURE nc-Si SOLAR PV ...  

Nanoparticle quantum conf. Monolithic printed layers. Sintering min. ~400 C. PV Effic.: 5 19%. Economic Advantages ...

14

Solar PV Manufacturing Cost Analysis: U.S. Competitiveness in a Global Industry (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar PV Manufacturing Cost Analysis: Solar PV Manufacturing Cost Analysis: U.S. Competitiveness in a Global Industry Stanford University: Precourt Institute for Energy Alan Goodrich † , Ted James † , and Michael Woodhouse October 10, 2011 † Corresponding authors: alan.goodrich@nrel.gov, ted.james@nrel.gov NREL/PR-6A20-53938 2 Analysis Disclaimer DISCLAIMER AGREEMENT These manufacturing cost model results ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy LLC ("Alliance") for the U.S. Department of Energy (the "DOE"). It is recognized that disclosure of these Data is provided under the following conditions and warnings: (1) these Data have been prepared for reference purposes only; (2) these Data consist of forecasts, estimates or assumptions made on a best-

15

Efficiency and Throughput Advances in Continuous Roll-to-Roll a-Si Alloy PV Manufacturing Technology: Final Subcontract Report, 22 June 1998 -- 5 October 2001  

DOE Green Energy (OSTI)

This report describes a roll-to-roll triple-junction amorphous silicon alloy PV manufacturing technology developed and commercialized by Energy Conversion Devices (ECD) and United Solar Systems. This low material cost, roll-to-roll production technology has the economies of scale needed to meet the cost goals necessary for widespread use of PV. ECD has developed and built six generations of a-Si production equipment, including the present 5 MW United Solar manufacturing plant in Troy, Michigan. ECD is now designing and building a new 25-MW facility, also in Michigan. United Solar holds the world's record for amorphous silicon PV conversion efficiency, and manufactures and markets a wide range of PV products, including flexible portable modules, power modules, and innovative building-integrated PV (BIPV) shingle and metal-roofing modules that take advantage of this lightweight, rugged, and flexible PV technology. All of United Solar's power and BIPV products are approved by Underwriters Laboratories and carry a 10-year warranty. In this PVMaT 5A subcontract, ECD and United Solar are addressing issues to reduce the cost and improve the manufacturing technology for the ECD/United Solar PV module manufacturing process. ECD and United Solar identified five technology development areas that would reduce the module manufacturing cost in the present 5-MW production facility, and also be applicable to future larger-scale manufacturing facilities.

Ellison, T.

2002-04-01T23:59:59.000Z

16

PV Inverter Products Manufacturing and Design Improvements for Cost Reduction and Performance Enhancements: Final Subcontract Report, November 2003 (Revised)  

SciTech Connect

The specific objectives of this subcontracted development work by Xantrex Technology Inc. were to: (1) Capture the newest digital signal processor (DSP) technology to create high-impact,''next generation'' power conversion equipment for the PV industry; (2) Create a common resource base for three PV product lines. This standardized approach to both hardware and software control platforms will provide significant market advantage over foreign competition; (3) Achieve cost reductions through increased volume of common components, reduced assembly labor, and the higher efficiency of producing more products with fewer design, manufacturing, and production test variations; (4) Increase PV inverter product reliability. Reduce inverter size, weight and conversion losses. The contract goals were to achieve an overall cost reduction of 10% to 20% for the three inverters and with no compromise in performance. The cost of the 10-kW inverter was reduced by 56%, and the cost of the 25-kW inverter was reduced by 53%. The 2.5-kW inverter has no basis for comparison, but should benefit equally from this design approach. Not only were the contract cost reduction goals exceeded by a wide margin, but the performance and reliability of the products were also enhanced. The conversion efficiency improvement, as reflected in the 50% conversion loss reduction, adds significant value in renewable energy applications. The size and weight reductions also add value by providing less cumbersome product solutions for system designers.

West, R.

2004-04-01T23:59:59.000Z

17

PV Cz silicon manufacturing technology improvements. Annual subcontract report, 1 April 1992--31 March 1993  

DOE Green Energy (OSTI)

This report describes work performed under a 3-year contract to demonstrate significant cost reductions and improvements in manufacturing technology. The work focused on near-term projects for implementation in the Siemens Solar Industries Czochralski (Cz) manufacturing facility in Camarillo, California. The work was undertaken to increase the commercial viability and volume of photovoltaic manufacturing by evaluating the most significant cost categories and then lowering the cost of each item through experimentation, materials refinement, and better industrial engineering. The initial phase of the program concentrated on the areas of crystal growth; wafer technology; and environmental, safety, and health issues.

Jester, T. [Siemens Solar Industries, Camarillo, CA (United States)

1994-01-01T23:59:59.000Z

18

PV Manufacturing R&D Project Status and Accomplishments under 'In-Line Diagnostics and Intelligent Processing' and 'Yield, Durability and Reliability': Preprint  

DOE Green Energy (OSTI)

The PV Manufacturing R&D (PVMR&D) Project conducts cost-shared research and development programs with U.S. PV industry partners. There are currently two active industry partnership activities. ''In-line Diagnostics and Intelligent Processing'', launched in 2002, supports development of new in-line diagnostics and monitoring with real-time feedback for optimal process control and increased yield in the fabrication of PV modules, systems, and other system components. ''Yield, Durability and Reliability'', launched in late 2004, supports enhancement of PV module, system component, and complete system reliability in high-volume manufacturing. A second key undertaking of the PVMR&D Project is the collection and analysis of module production cost-capacity metrics for the U.S. PV industry. In the period from 1992 through 2005, the average module manufacturing cost in 2005 dollars fell 54% (5.7% annualized) to $2.74/Wp, and the capacity increased 18.6-fold (25% annualized) to 253 MW/yr. An experience curve analysis gives progress ratios of 87% and 81%, respectively, for U.S. silicon and thin-film module production.

Friedman, D. J.; Mitchell, R. L.; Keyes, B. M.; Bower, W. I.; King, R.; Mazer, J.

2006-05-01T23:59:59.000Z

19

Continuous, Automated Manufacturing of String Ribbon Si PV Modules: Final Report, 21 May 1998 - 20 May 2001  

DOE Green Energy (OSTI)

This report summarizes the work done under a three-year PVMaT Phase 5A2 program. The overall goal was to attain a continuous, highly automated, fully integrated PV production line. In crystal growth, advances were made that resulted in lower substrate costs, higher yields, and lower capital and labor costs. A new string material was developed and implemented. Following this development, better control of the edge meniscus was achieved. A completely new furnace design was accomplished, and this became the standard platform in our new factory. Automation included ribbon thickness control and laser cutting of String Ribbon strips. Characterization of Evergreen's String Ribbon silicon was done with extensive help from the NREL laboratories, and this work provided a foundation for higher efficiency cells in the future. Advances in cell manufacturing included the development of high-speed printing and drying methods for Evergreen's unique cell making method and the design and building of a completely automated cell line from the beginning of front-contact application to the final tabbing of the cells. A so-called no-etch process whereby substrates from crystal growth go directly into p-n junction formation and emerge from this sequence without needing to go in and out of plastic carriers for any wet-chemical processing was developed. Process development as well as automation were brought to bear on improvements in soldering technology and cell interconnection in general. Using state-of-the-art manufacturing science, the Fraunhofer USA Center for Manufacturing Innovation at Boston University facilitated layout and process flow for the operation of our new factory. Evergreen Solar's new factory began operations in the second quarter of 2001. A good measure of the significant impact of this PVMaT subcontract is that virtually all of the manufacturing developments stemming from this project have been incorporated in this new factory.

Hanoka, J. I.

2001-08-01T23:59:59.000Z

20

EFG Technology and Diagnostic R&D for Large-Scale PV Manufacturing: Annual Subcontract Report, 1 July 2003--30 June 2004  

DOE Green Energy (OSTI)

The objective of this subcontract over its duration was to carry out R&D to advance RWE Schott Solar Inc. (formerly ASE Americas)--''RSSI''--manufacturing technology, processes and capabilities of wafer, cell, and module manufacturing lines, which will help configure them for scaling up of EFG ribbon technology to the 50-100 MW PV factory level. The basic EFG technology principles have already been established and are being demonstrated on the scale of 10-20 MW manufacturing lines. By the successful completion of this effort, RSSI is planning to reduce overhead costs of production and of direct, variable manufacturing costs with the scale up of EFG processes and equipment currently in use. To achieve these objectives, RSSI needs to maintain or enhance yield, quality, process control, and throughput relative to present levels throughout the three areas of wafer, cell, and module manufacture.

Kalejs, J.; Aurora, P.; Bathey, B.; Cao, J.; Gonsiorawski, R; Heath, B.; Kubasti, J.; Mackintosh, B.; Ouellette, M.; Rosenblum. M.; Southimath, S.; Xavier, G.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Innovative Approaches to Low Cost Module Manufacturing of String Ribbon Si PV Modules: First Annual Report, 27 September 2002--31 March 2003  

DOE Green Energy (OSTI)

This report describes Evergreen Solar, Inc., String Ribbon Si PV technology resulting in an advanced generation of crystalline silicon PV module manufacturing technology applied to a virtually continuous, fully integrated manufacturing line. General objectives for this first year (or Phase I) are listed here, followed by the principal accomplishments for each of these objectives: (1) scale-up of a production-worthy method for doping feedstock; (2) development of a multiple-ribbon growth system (Project Gemini); (3) development of wrap-around contacts for making monolithic modules; (4) accelerated testing of small-size (25 W) monolithic modules; (5) development of an in-line production machine to form solar cell contacts using Evergreen's unique contact printing technology.

Hanoka, J. I.

2004-05-01T23:59:59.000Z

22

Research Leading to High Throughput Manufacturing of Thin-Film CdTe PV Modules: Annual Subcontract Report, September 2004--September 2005  

DOE Green Energy (OSTI)

Specific overall objectives of this subcontract are improvement in baseline field performance of manufactured CdTe PV modules while reducing environmental, health and safety risk in the manufacturing environment. Project objectives focus on four broad categories: (1) development of advanced front-contact window layers, (2) improved semiconductor film deposition, (3) development of improved accelerated life test procedures that indicate baseline field performance, and (4) reduction of cadmium-related environmental, health and safety risks. First Solar has significantly increased manufacturing capacity from less than 2 MW/yr to more than 20 MW/yr, while increasing the average module total-area power conversion efficiency from 7% to >9%. First Solar currently manufactures and sells 50-65-W thin-film CdTe PV modules at a rate of about 1.9 MW/month. Sales backlog (booked sales less current inventory divided by production rate) is more than a year. First Solar is currently building new facilities and installing additional equipment to increase production capacity by 50 MW/yr; the additional capacity is expected to come on line in the third quarter of 2006.

Powell, R. C.

2006-04-01T23:59:59.000Z

23

Trajectory-Oriented and Fault-Tolerant-Based Intelligent Process Control for Flexible CIGS PV Module Manufacturing; Final Technical Report, 13 May 2002--30 May 2005  

DOE Green Energy (OSTI)

ITN Energy Systems, Inc., and Global Solar Energy, Inc., assisted by NREL's PV Manufacturing R&D program, have continued to advance CIGS production technology by developing trajectory-oriented predictive/control models, fault-tolerance control, control platform development, in-situ sensors, and process improvements. Modeling activities included developing physics-based and empirical models for CIGS and sputter-deposition processing, implementing model-based control, and applying predictive models to the construction of new evaporation sources and for control. Model-based control is enabled by implementing reduced or empirical models into a control platform. Reliability improvement activities include implementing preventive maintenance schedules; detecting failed sensors/equipment and reconfiguring to tinue processing; and systematic development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which in turn have been enabled by control and reliability improvements due to this PV Manufacturing R&D program.

Simpson, L.; Britt, J.; Birkmire, R.; Vincent, T.

2005-10-01T23:59:59.000Z

24

EFG Technology and Diagnostic R&D for Large-Scale PV Manufacturing; Final Subcontract Report, 1 March 2002 - 31 March 2005  

DOE Green Energy (OSTI)

The objective of this subcontract was to carry out R&D to advance the technology, processes, and performance of RWE Schott-Solar's wafer, cell, and module manufacturing lines, and help configure these lines for scaling up of edge-defined, film-fed growth (EFG) ribbon technology to the 50-100 MW PV factory level. EFG ribbon manufacturing continued to expand during this subcontract period and now has reached a capacity of 40 MW. EFG wafer products were diversified over this time period. In addition to 10 cm x 10 cm and 10 cm x 15 cm wafer areas, which were the standard products at the beginning of this program, R&D has focused on new EFG technology to extend production to 12.5 cm x 12.5 cm EFG wafers. Cell and module production also has continued to expand in Billerica. A new 12-MW cell line was installed and brought on line in 2003. R&D on this subcontract improved cell yield and throughput, and optimized the cell performance, with special emphasis on work to speed up wafer transfer, hence enhancing throughput. Improvements of wafer transfer processes during this program have raised cell line capacity from 12 MW to over 18 MW. Optimization of module manufacturing processes was carried out on new equipment installed during a manufacturing upgrade in Billerica to a 12-MW capacity to improve yield and reliability of products.

Kalejs, J.; Aurora, P.; Bathey, B.; Cao, J.; Doedderlein, J.; Gonsiorawski, R.; Heath, B.; Kubasti, J.; Mackintosh, B.; Ouellette, M.; Rosenblum, M.; Southimath, S.; Xavier, G.

2005-10-01T23:59:59.000Z

25

Proposal for a Guide for Quality Management Systems for PV Manufacturing: Supplemental Requirements to ISO 9001-2008  

SciTech Connect

This technical specification provides a guideline for photovoltaic module manufacturers to produce modules that, once the design has proven to meet the quality and reliability requirements, replicate such design in an industrial scale without compromising its consistency with the requirements.

Norum, P.; Sinicco, I.; Eguchi, Y.; Lokanath, S.; Zhou, W.; Brueggemann, G.; Mikonowicz, A.; Yamamichi, M.; Kurtz, S.

2013-06-01T23:59:59.000Z

26

Research Leading to High Throughput Manufacturing of Thin-Film CdTe PV Modules: Annual Technical Report, September 2003-September 2004  

DOE Green Energy (OSTI)

First Solar is actively commercializing CdTe-based thin-film photovoltaics. During the past year, major additions of production capability have been completed, as well as process improvements to achieve higher throughput and efficiency and greater durability. This report presents the results of Phase II of the subcontract, entitled ''Research Leading to High Throughput Manufacturing of Thin-Film CdTe PV Modules.'' The subcontract supports several important aspects needed for high-volume manufacturing of high-efficiency modules, including exploration of large-area advanced front-contact window layers, improvements of the semiconductor deposition system, advancement in understanding of post-deposition processing steps and accelerated life testing methods, and progress in the environmental, health and safety programs. Work under this subcontract contributes to the overall manufacturing operation. During Phase II, average module efficiency (total area) on the production line was improved from 7.9% to 8.6% due primarily to process optimization. At the same, time production volume for commercial sales increased from 2.5 MW in 2003 to an estimated 6 MW in 2004. Much of the new 25 MW/yr production line has been qualified, and production volume is steadily increasing.

Powell, R. C.

2004-12-01T23:59:59.000Z

27

PVMaT Cost Reductions in the EFG High-Volume PV Manufacturing Line: Annual Report, August 1998-December 2000  

DOE Green Energy (OSTI)

The PVMaT 5A2 program at ASE Americas is a three-year program that addresses topics in the development of manufacturing systems, low-cost processing approaches, and flexible manufacturing methods. The three-year objectives are as follows: (1) implementation of computer-aided manufacturing systems, including Statistical Process Control, to aid in electrical and mechanical yield improvements of 10%, (2) development and implementation of ISO 9000 and ISO 14000, (3) deployment of wafer production from large-diameter (up to 1 m) EFG cylinders and wafer thicknesses down to 95 microns, (4) development of low-damage, high-yield laser-cutting methods for thin wafers, (5) cell designs for >15% cell efficiencies on 100-micron-thick EFG wafers, (6) development of Rapid Thermal Anneal processing for thin high-efficiency EFG cells, and (7) deployment of flexible manufacturing methods for diversification in wafer size and module design. In the second year of this program, the significant accomplishments in each of three tasks that cover these areas are as follows: Task 4-Manufacturing systems, Task 5-Low-cost processes, and Task 6-Flexible manufacturing.

Bathey, B.; Brown, B.; Cao, J.; Ebers, S.; Gonsiorawski, R.; Heath, B.; Kalejs, J., Mackintosh, B.; Ouellette, M.; Piwczyk, B., Rosenblum, M.; Southimath, B. (ASE Americas, Inc.)

2001-02-22T23:59:59.000Z

28

The Present, Mid-Term, and Long-Term Supply Curves for Tellurium; and Updates in the Results from NREL's CdTe PV Module Manufacturing Cost Model (Presentation)  

DOE Green Energy (OSTI)

For those PV technologies that rely upon Te, In, and Ga, first-order observations and calculations hint that there may be resource constraints that could inhibit their successful deployment at a SunShot level. These are only first-order approximations, however, and the possibility for an expansion in global Te, In, and Ga supplies needs to be considered in the event that there are upward revisions in their demand and prices.In this study, we examine the current, mid-term, and long-term prospects of Tellurium (Te) for use in PV. We find that the current global supply base of Te would support <10 GW of annual traditional CdTe PV manufacturing production. But as for the possibility that the supply base for Te might be expanded, after compiling several preliminary cumulative availability curves we find that there may be significant upside potential in the supply base for this element - principally vis a vis increasing demand and higher prices. Primarily by reducing the Tellurium intensity in manufacturing and by increasing the recovery efficiency of Te in Cu refining processes, we calculate that it may prove affordable to PV manufacturers to expand the supply base for Te such that 100 GW, or greater, of annual CdTe PV production is possible in the 2030 - 2050 timeframe.

Woodhouse, M.; Goodrich, A.; Redlinger, M.; Lokanc, M.; Eggert, R.

2013-09-01T23:59:59.000Z

29

Continuous, Automated Manufacturing of String Ribbon Si PV Modules: Second Annual Report, 21 May 1999-20 May 2000  

DOE Green Energy (OSTI)

This report describes the activities in manufacturing technology and in silicon ribbon characterization that were completed in the second year of a three-year PVMaT subcontract. The focus in this second year has been on capital cost reduction and automation in silicon ribbon growth, automation and process simplification in the cell area, and some automation in the module area. Evergreen has used the capabilities of the Fraunhofer USA Center for Manufacturing Innovation at Boston University for help in factory layout, process flow, and efficient materials flow. Evergreen will be utilizing this as it prepares to move to a multi-megawatt factory in the latter part of 2000. Silicon ribbon characterization work has been provided for us by researchers at NREL. A patent has already been filed on this work, and two more are in preparation. Four papers on different aspects of the work have been or will be presented at various conferences here and abroad. In general, as this report shows, the project is on schedule and the overall goals are being met.

Hanoka, J.J.

2000-09-13T23:59:59.000Z

30

MANUFACTURING  

Science Conference Proceedings (OSTI)

... Energy Efficiency in Buildings: Solid State Climate Control ... TE materials is green job creation, as Table ... can provide 21,454 US jobs in manufacturing ...

2011-08-01T23:59:59.000Z

31

Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies. The Energy Department has supported the development...

32

Continuous, automated manufacturing of string ribbon Si PV modules. PVMaT Phase 5A2 Subcontract: First Annual Report, 21 May 1998--20 May 1999  

DOE Green Energy (OSTI)

This report describes the first year of a 3-year PVMaT Phase 5A2 program. Evergreen Solar will soon be expanding into a multi-megawatt facility and the PVMaT work will be used to further the objective of a high-throughput automated production line in every aspect of PV module making from producing silicon ribbon to making a finished module. The project has four task areas for this first year: crystal growth; cell manufacturing; modules; and factory layout and automation. The vast majority of the work this first year has been in the crystal growth and cell manufacturing areas. Evergreen Solar has its own unique technology in each of these areas. In crystal growth, a key goal of this PVMaT project has been developing and deploying an improved string material. The high-temperature string materials are used to stabilize the edges of the growing silicon ribbon in the String Ribbon silicon sheet growth. The result has been one of the major successes of this first year. Significant cost reductions and yield improvements have emerged from this improved string material. In addition, some of the groundwork for automation of the String Ribbon crystal growth process has been laid and shows much promise. A method for controlling the edge meniscus height was developed, and a patent has been filed based on this discovery. In the cell manufacturing area, the focus has been on reducing the number of processing steps and on design and construction of high-speed processing equipment. The possibility of eliminating all pre-diffusion etching and going directly from growth to diffusion has been demonstrated on an R and D scale. Unique designs for high-speed drying equipment and for a high-speed contact and AR-coating application machine have been developed. In the latter case, the basic concepts underlying various aspects of the machine design have been successfully tested for viability. The integration of the different components of this machine into a smoothly working whole is now well under way. In addition, nonvacuum methods of hydrogen passivation have been investigated, but no production-viable process has emerged from this work. In the module area, initial work has shown that the unique properties of the backskin developed under Evergreen's earlier PVMaT Phase 4A1 contract can be expected to make the lay-up process simpler and involve less labor. For factory layout and automation, the authors have enlisted the Fraunhofer Manufacturing Institute at Boston University to aid them with the layout and process flow of their new factory. In general, the project is on schedule, with no significant technical barriers to reach their ultimate objectives.

Hanoka, J.I.

1999-11-03T23:59:59.000Z

33

NREL PV working with industry, 1st Quarter 1999  

SciTech Connect

This issue of PV Working with Industry profiles the participants in the Photovoltaic Manufacturing Technology (PVMaT) project.

Moon, S.

1999-05-20T23:59:59.000Z

34

The Present, Mid-Term, and Long-Term Supply Curves for Tellurium; and Updates in the Results from NREL's CdTe PV Module Manufacturing Cost Model (Presentation)  

Science Conference Proceedings (OSTI)

For those PV technologies that rely upon Te, In, and Ga, first-order observations and calculations hint that there may be resource constraints that could inhibit their successful deployment at a SunShot level. These are only first-order approximations, however, and the possibility for an expansion in global Te, In, and Ga supplies needs to be considered in the event that there are upward revisions in their demand and prices.In this study, we examine the current, mid-term, and long-term prospects of Tellurium (Te) for use in PV. We find that the current global supply base of Te would support supply base for Te might be expanded, after compiling several preliminary cumulative availability curves we find that there may be significant upside potential in the supply base for this element - principally vis a vis increasing demand and higher prices. Primarily by reducing the Tellurium intensity in manufacturing and by increasing the recovery efficiency of Te in Cu refining processes, we calculate that it may prove affordable to PV manufacturers to expand the supply base for Te such that 100 GW, or greater, of annual CdTe PV production is possible in the 2030 - 2050 timeframe.

Woodhouse, M.; Goodrich, A.; Redlinger, M.; Lokanc, M.; Eggert, R.

2013-09-01T23:59:59.000Z

35

PV Manufacturing R&D -- Integrated CIS Thin-Film Manufacturing Infrastructure: Final Technical Report, 2 August 2002--30 April 2004  

DOE Green Energy (OSTI)

The objective of this subcontract was to continue the advancement of CIS production at Shell Solar Industries through the development of high-throughput CIS absorber formation reactors, implementation of associated safety infrastructure, an XRF measurement system, a bar code scribing system, and Intelligent Processing functions for the CIS production line. The intent was to open up production bottlenecks thereby allowing SSI to exercise the overall process at higher production rates and lay the groundwork for evaluation of near-term and long-term manufacturing scale-up. The goal of the absorber formation reactor subcontract work was to investigate conceptual designs for high-throughput, large area (2x5 ft.) CIS reactors and provide design specifications for the first generation of these reactors. The importance of reactor design to the CIS formation process was demonstrated when first scaling from a baseline process in reactors for substrates to a large area reactor. SSI demonstrated that lower performance for large substrates was due to differences in absorber layer properties that were due to differences in the materials of construction and the physical design of the large reactor. As a result of these studies, a new large area reactor was designed and built that demonstrated circuit plate performance comparable to the performance using small area reactors. For this subcontract work, three tasks were identified to accomplish the absorber formation reactor work: Modeling, Mockup and Vendor Search. The goal of the mockup task was to demonstrate that large area substrates, nominally 2 by 5 ft., could be heated without warping and to begin exploring the achievable thermal uniformity for various reactor and substrate configurations and varied ramp rates. The mockup consisted of a metal simulation of the reactor that was placed in a large industrial furnace. Substrate temperature variations ranged from minimal to significant with increasing substrate load. Warping ranged from minimal to significant with increasing substrate load for higher cool down rates. Repeated mockup runs indicated that a slower cool down does not necessarily avoid warping without improvements in thermal uniformity that could not be implemented in the mockup.

Tarrant, D. E.; Gay, R. R.

2004-11-01T23:59:59.000Z

36

Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Manufacturing DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Manufacturing of Products Containing Depleted Uranium Discussion of risks and possible impacts associated with fabrication of representative products containing depleted uranium. Beneficial Uses Risk Evaluation The Department has initiated the Depleted Uranium Uses Research and Development Program to explore the potential beneficial uses of the depleted uranium (DU), fluorine, and empty carbon steel DUF6 storage cylinders for effective use of resources and to achieve cost savings to the government. A number of tasks have been initiated related to uses of DU as a shielding material, catalyst, and as a semi-conductor material in electronic devices. An evaluation of the risks associated with the release

37

Manufacturing Process Optimization to Improve Stability, Yield and Efficiency of CdS/CdTe PV Devices: Final Report, December 2004 - January 2009  

DOE Green Energy (OSTI)

The research by Colorado State University advances the understanding of device stability, efficiency, and process yield for CdTe PV devices.

Sampath, W. S.; Enzenroth, A.; Barth, K.

2009-03-01T23:59:59.000Z

38

Pv =PYv  

Science Conference Proceedings (OSTI)

... Where pv is partial pressure of vapor, yv is mole fraction of vapor, and P ... Therefore, the organic compound should be stored in the liquid form in the ...

2011-10-04T23:59:59.000Z

39

Energy 101: Solar PV | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar PV Solar PV Energy 101: Solar PV Addthis Below is the text version for the Energy 101: Solar PV video. The video opens with "Energy 101: Solar PV." This is followed by a timelapse shot of a city skyline as day turns to night. All right, we all know that the sun's energy creates heat and light, but it can also be converted to make electricity...and lots of it. The video shows images of building roofs, with and without solar photovoltaic panels. The words "Solar Photovoltaics (PV) appear onscreen over an image of a photovoltaic panel. One technology is called solar photovoltaics, or PV for short. Various images of solar panels appear onscreen, followed by images of photovoltaic manufacturing processes. You've probably seen PV panels around for years... but recent advancements

40

Low-Cost Manufacturing of High-Efficiency, High-Reliability String Ribbon Si PV Modules: Final Subcontract Report, 24 June 2005 - 31 October 2008  

DOE Green Energy (OSTI)

Presents 2008 overall process improvements in adaptive thermal process, cut-on-the-fly manufacturing, and lamination.

Felton, L.

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

PVMaT Cost Reductions in the EFG High Volume PV Manufacturing Line: Final Subcontract Report, 5 August 1998 -- 4 February 2001  

DOE Green Energy (OSTI)

This report describes the three major task areas: manufacturing systems development, low-cost processing technology, and flexible manufacturing methods. In Manufacturing Systems, we have worked on implementing and utilizing SPC on a larger scale by developing support systems for computer-aided data bases and equipment and process-tracking methodology; developing and implementing new diagnostic techniques; reducing acid use and waste products by introducing a new dry-etch process; and formalizing documentation and training procedures for manufacturing processes (ISO 9000) and for waste product and safety management (ISO 14000) to assist in handling the larger manufacturing organization. Low-Cost Processes, we report on progress in demonstrating low-damage, high-throughput laser technology; studies on Rapid Thermal Processing approaches to improving cell efficiency; evaluating new thin-wafer technology using EFG cylinders; and developing a large EFG octagon and laser-cutting technology for producing 12.5 cm x 12.5 cm wafers. For Flexible Manufacturing, we completed introduction of manufacturing data bases for wafer and cell manufacturing; process modifications to accommodate manufacture of 10 cm x 15 cm wafers; and module field-performance studies and defect tracking to be used to improve manufacturing processes, new encapsulant qualification and introduction into manufacturing, and progress in developing designs for low-cost modules.

Kalejs, J.; Bathey, B.; Brown, B.; Cao, J.; Doedderlein, J.; Ebers, S.; Gonsiorawski, R.; Heath, B.; Kardauskas, M.; Mackintosh, B.; Ouellette, M.; Piwczyk, B.; Rosenblum, M.; Southimath, B.

2002-03-01T23:59:59.000Z

42

PV FAQs: What's New in Concentrating PV?  

DOE Green Energy (OSTI)

This publication, one in a series of PV FAQs, addresses concentrating PV: what it is, how it works, the challenges it faces, recent breakthroughs, and its future direction.

Not Available

2005-02-01T23:59:59.000Z

43

Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions  

E-Print Network (OSTI)

making for concentrator solar PV We note that these supplyAutomotive and Concentrator Solar PV case studies. In someManufacturing and Concentrator Solar PV case studies we will

Reich-Weiser, Corinne

2010-01-01T23:59:59.000Z

44

High Performance Packaging Solutions for Low Cost, Reliable PV Modules: Final Subcontract Report, 26 May 2005 - 30 November 2008  

DOE Green Energy (OSTI)

During this research effort, Dow Corning Corporation has addressed the PV manufacturing goals of: (i) improving PV manufacturing processes and equipment; (ii) accelerating manufacturing cost reductions of PV modules; (iii) increasing commercial product performance and reliability; and (iv) scaling up U.S. manufacturing capacity.

Keotla, B. M.; Marinik, B. J.

2009-06-01T23:59:59.000Z

45

Outdoor PV Degradation Comparison  

DOE Green Energy (OSTI)

As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output; may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined; accurately. At the Performance and Energy Rating Testbed (PERT) at the Outdoor Test Facility (OTF) at the; National Renewable Energy Laboratory (NREL) more than 40 modules from more than 10 different manufacturers; were compared for their long-term outdoor stability. Because it can accommodate a large variety of modules in a; limited footprint the PERT system is ideally suited to compare modules side-by-side under the same conditions.

Jordan, D. C.; Smith, R. M.; Osterwald, C. R.; Gelak, E.; Kurtz, S. R.

2011-02-01T23:59:59.000Z

46

Ensuring Quality of PV Modules: Preprint  

SciTech Connect

Photovoltaic (PV) customers need to have confidence in the PV modules they purchase. Currently, no test can quantify a module's lifetime with confidence, but stress tests are routinely used to differentiate PV product designs. We suggest that the industry would be strengthened by using the wisdom of the community to develop a single set of tests that will help customers quantify confidence in PV products. This paper evaluates the need for quality assurance (QA) standards and suggests a path for creating these. Two types of standards are needed: 1) QA of the module design and 2) QA of the manufacturing process.

Kurtz, S.; Wohlgemuth, J.; Hacke, P.; Kempe, M.; Sample, T.; Yamamichi, M.; Kondo, M.; Doi, T.; Otani, K.; Amano, J.

2011-07-01T23:59:59.000Z

47

Study of Potential Cost Reductions Resulting from Super-Large-Scale Manufacturing of PV Modules: Final Subcontract Report, 7 August 2003--30 September 2004  

DOE Green Energy (OSTI)

Hewlett Packard has created a design for a ''Solar City'' factory that will process 30 million sq. meters of glass panels per year and produce 2.1-3.6 GW of solar panels per year-100x the volume of a typical, thin-film, solar panel manufacturer in 2004. We have shown that with a reasonable selection of materials, and conservative assumptions, this ''Solar City'' can produce solar panels and hit the price target of $1.00 per peak watt (6.5x-8.5x lower than prices in 2004) as the total price for a complete and installed rooftop (or ground mounted) solar energy system. This breakthrough in the price of solar energy comes without the need for any significant new invention. It comes entirely from the manufacturing scale of a large plant and the cost savings inherent in operating at such a large manufacturing scale. We expect that further optimizations from these simple designs will lead to further improvements in cost. The manufacturing process and cost depend on the choice for the active layer that converts sunlight into electricity. The efficiency by which sunlight is converted into electricity can range from 7% to 15%. This parameter has a large effect on the overall price per watt. There are other impacts, as well, and we have attempted to capture them without creating undue distractions. Our primary purpose is to demonstrate the impact of large-scale manufacturing. This impact is largely independent of the choice of active layer. It is not our purpose to compare the pro's and con's for various types of active layers. Significant improvements in cost per watt can also come from scientific advances in active layers that lead to higher efficiency. But, again, our focus is on manufacturing gains and not on the potential advances in the basic technology.

Keshner, M. S.; Arya, R.

2004-10-01T23:59:59.000Z

48

Development of Large High-Voltage PV Modules with Improved Reliability and Lower Cost: Final Subcontract Report, 1 April 2006--31 August 2007  

DOE Green Energy (OSTI)

The overall objective was to provide NREL with technical results that enhance its capability to improve PV manufacturing technology by developing a PV module with specified characteristics.

Wohlgemuth, J.

2009-05-01T23:59:59.000Z

49

Efficiency and throughput advances in continuous roll-to-roll a-Si alloy PV manufacturing technology: Annual technical progress report: 22 June 1998--21 June 1999  

DOE Green Energy (OSTI)

This document reports on work performed by Energy Conversion Devices, Inc. (ECD) during Phase 1 of this subcontract. During this period, ECD researchers: (1) Completed design and construction of new, improved substrate heater; (2) Tested and verified improved performance of the new substrate heater in the pilot machine; (3) Verified improved performance of the new substrate heater in the production machine; (4) Designed and bench-tested a new infrared temperature sensor; (5) Installed a prototype new infrared temperature sensor in the production machine for evaluation; (6) Designed a new rolling thermocouple temperature sensor; (7) Designed and bench-tested a reflectometer for the backreflector deposition machine; (8) Designed and bench-tested in-line non-contacting cell diagnostic sensor and PV capacitive diagnostic system; (9) Installed the in-line cell diagnostic sensor in the 5-MW a-Si deposition machine for evaluation; (10) Demonstrated a new low-cost zinc metal process in the pilot back reflector machine; and (11) Fully tested a new cathode design for improved uniformity.

Izu, M.

1999-11-09T23:59:59.000Z

50

NREL: News - New Study Shows Solar Manufacturing Costs Not Driven...  

NLE Websites -- All DOE Office Websites (Extended Search)

take an in-depth look at national competitiveness in PV manufacturing September 5, 2013 Production scale, not lower labor costs, drives China's current advantage in manufacturing...

51

NREL: Photovoltaics Research - Photovoltaic Manufacturing R&D...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the background. BP Solar's manufacturing capabilities include automatic sorting of solar cells after final testing. NREL's Photovoltaic (PV) Manufacturing Research and...

52

Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Final Subcontract Report, 1 April 2002--28 February 2006  

DOE Green Energy (OSTI)

The major objectives of this program were to continue advances of BP Solar polycrystalline silicon manufacturing technology. The Program included work in the following areas. (1) Efforts in the casting area to increase ingot size, improve ingot material quality, and improve handling of silicon feedstock as it is loaded into the casting stations. (2) Developing wire saws to slice 100-..mu..m-thick silicon wafers on 290-..mu..m-centers. (3) Developing equipment for demounting and subsequent handling of very thin silicon wafers. (4) Developing cell processes using 100-..mu..m-thick silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%. (5) Expanding existing in-line manufacturing data reporting systems to provide active process control. (6) Establishing a 50-MW (annual nominal capacity) green-field Mega-plant factory model template based on this new thin polycrystalline silicon technology. (7) Facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock..

Wohlgemuth, J.; Narayanan, M.

2006-07-01T23:59:59.000Z

53

PVMaT cost reductions in the EFG high volume PV manufacturing line: Annual report, 5 August 1998--4 August 1999[PhotoVoltaic Manufacturing Technology, Edge-defined Film-fed Growth  

DOE Green Energy (OSTI)

This report describes work performed by ASE Americas researchers during the first year of this Photovoltaic Manufacturing Technology 5A2 program. Significant accomplishments in each of three task are as follows. Task 1--Manufacturing Systems: Researchers completed key node analysis, started statistical process control (SPC) charting, carried out design-of-experiment (DoE) matrices on the cell line to optimize efficiencies, performed a capacity and bottleneck study, prepared a baseline chemical waste analysis report, and completed writing of more than 50% of documentation and statistical sections of ISO 9000 procedures. A highlight of this task is that cell efficiencies in manufacturing were increased by 0.4%--0.5% absolute, to an average in excess of 14.2%, with the help of DoE and SPC methods. Task 2--Low-Cost Processes: Researchers designed, constructed, and tested a 50-cm-diameter, edge-defined, film-fed growth (EFG) cylinder crystal growth system to successfully produce thin cylinders up to 1.2 meters in length; completed a model for heat transfer; successfully deployed new nozzle designs and used them with a laser wafer-cutting system with the potential to decrease cutting labor costs by 75% and capital costs by 2X; achieved laser-cutting speeds of up to 8X and evaluation of this system is proceeding in production; identified laser-cutting conditions that reduce damage for both Q-switched Nd:YAG and copper-vapor lasers with the help of a breakthrough in fundamental understanding of cutting with these short-pulse-length lasers; and found that bulk EFG material lifetimes are optimized when co-firing of silicon nitride and aluminum is carried out with rapid thermal processing (RTP). Task 3--Flexible Manufacturing: Researchers improved large-volume manufacturing of 10-cm {times} 15-cm EFG wafers by developing laser-cutting fixtures, adapting carriers and fabricating adjustable racks for etching and rinsing facilities, and installing a high-speed data collection net work; initiated fracture studies to develop methods to reduce wafer breakage; and started a module field studies program to collect data on field failures to help identify potential manufacturing problems. New encapsulants, which cure at room temperature, are being tested to improve flexibility and provide higher yields for thin wafers in lamination.

Bathey, B.; Brown, B.; Cao, J.; Ebers, S.; Gonsiorawski, R.; Heath, B.; Kalejs, J.; Kardauskas, M.; Mackintosh, B.; Ouellette, M.; Piwczyk, B.; Rosenblum, M.; Southimath, B.

1999-11-16T23:59:59.000Z

54

Innovative Approaches to Low Cost Module Manufacturing of String Ribbon Si PV Modules: Phase II, Annual Technical Progress Report, 1 April 2003--31 May 2004  

DOE Green Energy (OSTI)

This subcontract resulted in a number of important advances for Evergreen Solar Inc. Foremost amongst these is the production implementation of dual ribbon growth from a single crucible (Gemini) using the String Ribbon continuous ribbon technology. This project has resulted in the flattest ribbon and the highest yields and machine uptime ever seen at Evergreen Solar. This then has resulted in significantly lowered consumables costs and lower overall direct manufacturing costs. In addition, methods to control the as-grown surface of Gemini ribbon have permitted the usage of the so-called no-etch process that allows for direct transfer of as-grown ribbon to diffusion without any intermediate etching step. In-line diagnostics for Gemini were further developed--these included more accurate methods for measuring and controlling melt depth and more accurate means to measure and control ribbon thickness. Earlier in the project, the focus was on monolithic module development. With the Gemini advances described above, monolithic module work was brought to a close during this second year of the overall three year project. A significant advance in this technology was the development of a conductive adhesive in combination with Evergreen's proprietary backskin and encapsulant. 25-W size experimental monolithic modules have been tested and found to be able to withstand up to 1400 thermal cycles.

Hanoka, J. I.

2004-10-01T23:59:59.000Z

55

Innovative Approaches to Low-Cost Module Manufacturing of String Ribbon Si PV Modules; Final Subcontract Report, March 2002 - January 2005  

DOE Green Energy (OSTI)

As a result of this work, Evergreen Solar, Inc., is now poised to take String Ribbon technology to new heights. In the ribbon growth area, Project Gemini-the growth of dual ribbons from a single crucible-has reached or exceeded all the manufacturing goals set for it. This project grew from an R&D concept to a production pilot phase and finally to a full production phase, all within the span of this subcontract. A major aspect of the overall effort was the introduction of controls and instrumentation as in-line diagnostic tools. In the ribbon production area, the result has been a 12% increase in yields, a 10% increase in machine uptime, and the flattest ribbon ever grown at Evergreen. In the cell area, advances in process development and robotic handling of Gemini wafers have contributed, along with the advances in crystal growth, to a yield improvement of 6%. Particularly noteworthy in the cell area was the refinement of the no-etch process whereby the as-grown ribbon surface could be controlled sufficiently to allow this process to succeed as well as it has. This process obviates any need for wet chemistry or etching between ribbon growth and diffusion.

Hanoka, J. I.

2005-10-01T23:59:59.000Z

56

Testing to Support Improvements to PV Components and Systems  

DOE Green Energy (OSTI)

The National Photovoltaic (PV) Program is sponsored by the US Department of Energy and includes a PV Manufacturing Research and Development (R and D) project conducted with industry. This project includes advancements in PV components to improve reliability, reduce costs, and develop integrated PV systems. Participants submit prototypes, pre-production hardware products, and examples of the resulting final products for a range of tests conducted at several national laboratories, independent testing laboratories, and recognized listing agencies. The purpose of this testing is to use the results to assist industry in determining a product's performance and reliability, and to identify areas for potential improvement. This paper briefly describes the PV Manufacturing R and D project, participants in the area of PV systems, balance of systems, and components, and several examples of the different types of product and performance testing used to support and confirm product performance.

THOMAS,H.; KROPOSKI,B.; WITT,C.; BOWER,WARD I.; BONN,RUSSELL H.; GINN,JERRY W.; GONZALEZ,SIGIFREDO

2000-07-15T23:59:59.000Z

57

Testing to Support Improvements to PV Components and Systems  

SciTech Connect

The National Photovoltaic (PV) Program is sponsored by the US Department of Energy and includes a PV Manufacturing Research and Development (R and D) project conducted with industry. This project includes advancements in PV components to improve reliability, reduce costs, and develop integrated PV systems. Participants submit prototypes, pre-production hardware products, and examples of the resulting final products for a range of tests conducted at several national laboratories, independent testing laboratories, and recognized listing agencies. The purpose of this testing is to use the results to assist industry in determining a product's performance and reliability, and to identify areas for potential improvement. This paper briefly describes the PV Manufacturing R and D project, participants in the area of PV systems, balance of systems, and components, and several examples of the different types of product and performance testing used to support and confirm product performance.

THOMAS,H.; KROPOSKI,B.; WITT,C.; BOWER,WARD I.; BONN,RUSSELL H.; GINN,JERRY W.; GONZALEZ,SIGIFREDO

2000-07-15T23:59:59.000Z

58

Stabilized PV system  

DOE Patents (OSTI)

A stabilized PV system comprises an array of photovoltaic (PV) assemblies mounted to a support surface. Each PV assembly comprises a PV module and a support assembly securing the PV module to a position overlying the support surface. The array of modules is circumscribed by a continuous, belt-like perimeter assembly. Cross strapping, extending above, below or through the array, or some combination of above, below and through the array, secures a first position along the perimeter assembly to at least a second position along the perimeter assembly thereby stabilizing the array against wind uplift forces. The first and second positions may be on opposite sides on the array.

Dinwoodie, Thomas L. (Piedmont, CA)

2002-12-17T23:59:59.000Z

59

Assessing the drivers of regional trends in solar photovoltaic manufacturing  

E-Print Network (OSTI)

The photovoltaic (PV) industry has grown rapidly as a source of energy and economic activity. Since 2008, the average manufacturer-sale price of PV modules has declined by over a factor of two, coinciding with a significant ...

Goodrich, Alan C.

60

Photovoltaic manufacturing technology  

DOE Green Energy (OSTI)

This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. (Solarex Corp., Frederick, MD (United States))

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Codes, standards, and PV power systems. A 1996 status report  

SciTech Connect

As photovoltaic (PV) electrical power systems gain increasing acceptance for both off-grid and utility-interactive applications, the safety, durability, and performance of these systems gains in importance. Local and state jurisdictions in many areas of the country require that all electrical power systems be installed in compliance with the requirements of the National Electrical Code{reg_sign} (NEC{reg_sign}). Utilities and governmental agencies are now requiring that PV installations and components also meet a number of Institute of Electrical and Electronic Engineers (IEEE) standards. PV installers are working more closely with licensed electricians and electrical contractors who are familiar with existing local codes and installation practices. PV manufacturers, utilities, balance of systems manufacturers, and standards representatives have come together to address safety and code related issues for future PV installations. This paper addresses why compliance with the accepted codes and standards is needed and how it is being achieved.

Wiles, J

1996-06-01T23:59:59.000Z

62

Sunshine PV | Open Energy Information  

Open Energy Info (EERE)

Sunshine PV Jump to: navigation, search Name Sunshine PV Place Taiwan Sector Solar Product Taiwan-based subsidiary of Solartech Energy and thin-film PV module supplier. References...

63

PV Powered Inc | Open Energy Information  

Open Energy Info (EERE)

PV Powered Inc PV Powered Inc Place Bend, Oregon Zip 97702 Product Oregon-based manufacturer of inverters for PV systems. Coordinates 44.05766°, -121.315549° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.05766,"lon":-121.315549,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

64

Gansu PV Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Gansu PV Co Ltd Gansu PV Co Ltd Place Lanzhou, Gansu Province, China Zip 730000 Sector Solar Product Gansu PV Co Ltd is active in manufacturing, installing and servicing SHS and small portable solar lighting systems. Coordinates 36.059299°, 103.756279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.059299,"lon":103.756279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

65

Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing  

E-Print Network (OSTI)

modeling method for photovoltaic cells. in Proc. IEEE 35thlosses in solar photovoltaic cell networks. Energy 32:Cell Variability Photovoltaic (PV) cells manufactured with

Zeng, Dekong

2012-01-01T23:59:59.000Z

66

PV Crystalox Solar AG formerly PV Silicon AG | Open Energy Information  

Open Energy Info (EERE)

PV Crystalox Solar AG formerly PV Silicon AG PV Crystalox Solar AG formerly PV Silicon AG Jump to: navigation, search Name PV Crystalox Solar AG (formerly PV Silicon AG) Place Abingdon, England, United Kingdom Zip OX14 4SE Sector Solar Product UK-based manufacturer of multicrystalline ingots and wafers to the solar industry; as of early 2009, to output solar-grade polysilicon. Coordinates 36.71049°, -81.975194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.71049,"lon":-81.975194,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

67

Grid integrated distributed PV (GridPV).  

SciTech Connect

This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

Reno, Matthew J.; Coogan, Kyle [Georgia Institute of Technology, Atlanta, GA

2013-08-01T23:59:59.000Z

68

Plug and Play Components for Building Integrated PV Systems, Phase II Final Report, 20 February 2003 - 31 May 2007  

SciTech Connect

Progress by Schott Solar, Inc. under NREL's PV Manufacturing R&D Project. Details progress on meter-interconnect device; free-standing mounting system; dark I-V curves to unearth problems with PV module strings; new 34-V version of ASE-300 PV module; and updated source-circuit protectors.

Rowell, D.

2008-04-01T23:59:59.000Z

69

Plug and Play Components for Building Integrated PV Systems, Phase II Final Report, 20 February 2003 - 31 May 2007  

DOE Green Energy (OSTI)

Progress by Schott Solar, Inc. under NREL's PV Manufacturing R&D Project. Details progress on meter-interconnect device; free-standing mounting system; dark I-V curves to unearth problems with PV module strings; new 34-V version of ASE-300 PV module; and updated source-circuit protectors.

Rowell, D.

2008-04-01T23:59:59.000Z

70

Lightweight PV Inverters: Dual Bi-Directional IGBTs Modules Enables Breakthrough PV Inverter Using Current Modulation Topology  

Science Conference Proceedings (OSTI)

Solar ADEPT Project: PV inverters convert DC power generated by modules into usable AC power. IPCs initial 30kW 94lb. PV inverter reduces the weight of comparable 30kW PV inverters by 90%reducing the cost of materials, manufacturing, shipping, and installation. With ARPA-E support, new bi-directional silicon power switches will be developed, commercialized, and utilized in IPCs next-generation PV inverter. With these components, IPC will produce 100kW inverters that weight less than 100lb., reducing the weight of conventional 3,000lb. 100kW inverters by more than 95%. The new power switches will cut IPCs $/W manufacturing cost in half, as well as further reduce indirect shipping and installation costs.

None

2012-01-30T23:59:59.000Z

71

Research on advanced photovoltaic manufacturing technology  

DOE Green Energy (OSTI)

This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

Jester, T.; Eberspacher, C. (Siemens Solar Industries, Camarillo, CA (United States))

1991-11-01T23:59:59.000Z

72

PV | OpenEI  

Open Energy Info (EERE)

PV PV Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 77.7 KiB)

73

Open PV Project: Unlocking PV Installation Data (Brochure)  

SciTech Connect

This brochure summarizes the Open PV Project, a collaborative effort of government, industry, and the public to compile a comprehensive database of PV installations in the United States. The brochure outlines the purpose and history of the project as well as the main capabilities and benefits of the online Open PV tool. The brochure also introduces how features of the tool are used, and it describes the sources and characteristics of Open PV's data and data collection processes.

Not Available

2012-04-01T23:59:59.000Z

74

PV System Performance and Standards  

DOE Green Energy (OSTI)

This paper presents a brief overview of the status and accomplishments during fiscal year (FY) 2005 of the Photovoltaic (PV) System Performance and Standards Subtask, which is part of the PV Systems Engineering Project (a joint NREL-Sandia project).

Osterwald, C. R.

2005-11-01T23:59:59.000Z

75

World Renewable Energy Congress 2011 Sweden Photovoltaic Technology (PV) 8-11 May 2011, Linkping, Sweden  

E-Print Network (OSTI)

. Life cycle inventories are based on manufacturers' data combined with additional calculations, in addition to modules manufacturing process energy inputs. Keywords: Environmental impacts, LCA, PV installations, modules manufacturing electricity use and its corresponding fuel hal-00668178,version1-9Feb2012

Paris-Sud XI, Université de

76

Overview of the Photovoltaic Manufacturing Technology (PVMaT) project  

SciTech Connect

The Photovoltaic Manufacturing Technology (PVMaT) project is a historic government/industry photovoltaic (PV) manufacturing R&D partnership composed of joint efforts between the federal government (through the US Department of Energy) and members of the US PV industry. The project`s ultimate goal is to ensure that the US industry retains and extends its world leadership role in the manufacture and commercial development of PV components and systems. PVMaT is designed to do this by helping the US PV industry improve manufacturing processes, accelerate manufacturing cost reductions for PV modules, improve commercial product performance, and lay the groundwork for a substantial scale-up of US-based PV manufacturing capacities. Phase 1 of the project, the problem identification phase, was completed in early 1991. Phase 2, the problem solution phase, which addresses process-specific problems of specific manufacturers, is now underway with an expected duration of 5 years. Phase 3 addresses R&D problems that are relatively common to a number of PV companies or the PV industry as a whole. These ``generic`` problem areas are being addressed through a teamed research approach.

Witt, C.E.; Mitchell, R.L.; Mooney, G.D.

1993-08-01T23:59:59.000Z

77

Cost analysis methodology: Photovoltaic Manufacturing Technology Project  

DOE Green Energy (OSTI)

This report describes work done under Phase 1 of the Photovoltaic Manufacturing Technology (PVMaT) Project. PVMaT is a five-year project to support the translation of research and development in PV technology into the marketplace. PVMaT, conceived as a DOE/industry partnership, seeks to advanced PV manufacturing technologies, reduce PV module production costs, increase module performance, and expand US commercial production capacities. Under PVMaT, manufacturers will propose specific manufacturing process improvements that may contribute to the goals of the project, which is to lessen the cost, thus hastening entry into the larger scale, grid-connected applications. Phase 1 of the PVMaT project is to identify obstacles and problems associated with manufacturing processes. This report describes the cost analysis methodology required under Phase 1 that will allow subcontractors to be ranked and evaluated during Phase 2.

Whisnant, R.A. (Research Triangle Inst., Research Triangle Park, NC (United States))

1992-09-01T23:59:59.000Z

78

PV Cell and Module Calibration Activities at NREL  

DOE Green Energy (OSTI)

The performance of PV cells and modules with respect to standard reference conditions is a key indicator of progress of a given technology. This task provides the U.S. terrestrial PV community with the most accurate measurements that are technically possible in a timely fashion. The international module certification and accreditation program PVGap requires certification laboratories to maintain their calibration traceability path to groups like this one. The politics of a "world record" efficiency requires that an independent laboratory perform these measurements for credibility. Most manufacturers base their module peak watt rating upon standards and reference cells calibrated under this task. This task has been involved in reconciling disputes between manufacturers and their cell suppliers in terms of expected versus actual performance. This task has also served as a resource to the PV community for consultation on solar simulation, current versus voltage measurement instrumentation, measurement procedures and measurement artifacts.

Emery, K.; Anderberg, A.; Kiehl, J.; Mack, C.; Moriarty, T.; Ottoson, L.; Rummel, S.

2005-11-01T23:59:59.000Z

79

Ambiental PV | Open Energy Information  

Open Energy Info (EERE)

Ambiental PV Ambiental PV Jump to: navigation, search Name Ambiental PV Place Bahia, Brazil Zip 40140-380 Sector Carbon Product Bahia-based carbon consultancy firm. References Ambiental PV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ambiental PV is a company located in Bahia, Brazil . References ↑ "Ambiental PV" Retrieved from "http://en.openei.org/w/index.php?title=Ambiental_PV&oldid=342095" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 186306960

80

Initiative in Photovoltaic Manufacturing: Final Subcontract Report, 2 January 2002 - 15 January 2008  

DOE Green Energy (OSTI)

This paper summarizes the major accomplishments of the Georgia Institute of Technology PV Manufacturing Laboratory in optical inspection, thin wafter handling, and software development.

Danyluk, S.

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

PV and PV/hybrid products for buildings  

DOE Green Energy (OSTI)

Residential, commercial, and industrial buildings combined are the largest consumers of electricity in the United States and represent a significant opportunity for photovoltaic (PV) and PV/hybrid systems. The U.S. Department of Energy (DOE) is conducting a phased research and product development program, Building Opportunities in the United States for Photovoltaics (PV:BONUS), focused on this market sector. The purpose of the program is to develop technologies and foster business arrangements integrating cost-effective PV or hybrid products into buildings. The first phase was completed in 1996 and a second solicitation, PV:BONUS2, was initiated during 1997. These projects are resulting in a variety of building-integrated products. This paper summarizes the recent progress of the seven firms and collaborative teams currently participating in PV:BONUS2 and outlines planned work for the final phase of their work.

Thomas, H. P.; Hayter, S. J.; Martin, R. L., Pierce, L. K.

2000-05-15T23:59:59.000Z

82

Characterizing Shading Losses on Partially Shaded PV Systems (Presentation)  

DOE Green Energy (OSTI)

Presentation on shaded PV power loss, practical issues with modeling shaded PV, and methods of implementing partially shaded PV modeling.

Deline, C.

2010-09-23T23:59:59.000Z

83

Amp-hour counting control for PV hybrid power systems  

SciTech Connect

The performance of an amp-hour (Ah) counting battery charge control algorithm has been defined and tested using the Digital Solar Technologies MPR-9400 microprocessor based PV hybrid charge controller. This work included extensive field testing of the charge algorithm on flooded lead-antimony and valve regulated lead-acid (VRLA) batteries. The test results after one-year have demonstrated that PV charge utilization, battery charge control, and battery state of charge (SOC) has been significantly improved by providing maximum charge to the batteries while limiting battery overcharge to manufacturers specifications during variable solar resource and load periods.

Hund, T.D. [Sandia National Labs., Albuquerque, NM (United States); Thompson, B. [Biri Systems, Ithaca, NY (United States)

1997-06-01T23:59:59.000Z

84

PV FAQs: What Is the Energy Payback for PV?  

DOE Green Energy (OSTI)

How long does a PV system have to operate to recover the energy-and the associated generation of pollution and CO2- that went into making the system? Energy paybacks for rooftop systems range from 1 to 4 years, depending on the system. Based on models and real data, the idea that PV cannot pay back its energy investment is simply a myth.

Not Available

2004-01-01T23:59:59.000Z

85

Shanghai JTU PV Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

JTU PV Technology Co Ltd JTU PV Technology Co Ltd Jump to: navigation, search Name Shanghai JTU PV Technology Co Ltd Place Shanghai, Shanghai Municipality, China Zip 200240 Sector Solar Product Spun off from Shanghai Jiaotong University, the company manufactures control systems and testing equipments for solar water heaters. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

86

Zhejiang Cineng PV Science Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Cineng PV Science Technology Co Ltd Cineng PV Science Technology Co Ltd Jump to: navigation, search Name Zhejiang Cineng PV Science & Technology Co Ltd Place Cixi, Zhejiang Province, China Sector Solar Product A Chinese tandem thin-film solar cell manufacturer Coordinates 30.168501°, 121.235023° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.168501,"lon":121.235023,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

87

Zhonghuite PV Technology Co | Open Energy Information  

Open Energy Info (EERE)

Zhonghuite PV Technology Co Jump to: navigation, search Name Zhonghuite PV Technology Co Place Jiangxi Province, China Sector Solar Product Jiangxi-based solar project developer....

88

PV FAQs: What is the Energy Payback for PV?  

DOE Green Energy (OSTI)

How long does a PV system have to operate to recover the energy--and the associated generation of pollution and CO{sub 2}--that went into making the system? Energy paybacks for rooftop systems range from 1 to 4 years, depending on the system. Based on models and real data, the idea that PV cannot pay back its energy investment is simply a myth.

Not Available

2004-12-01T23:59:59.000Z

89

Kenmos PV | Open Energy Information  

Open Energy Info (EERE)

Kenmos PV Kenmos PV Jump to: navigation, search Name Kenmos PV Place Tainan, Taiwan Sector Solar Product Solar business unit of Kenmos Technology which was set up in Sep 2007, to produce thin film PV cells. Coordinates 22.99721°, 120.180862° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.99721,"lon":120.180862,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

90

Oxynitride Thin Film Barriers for PV Packaging  

DOE Green Energy (OSTI)

Dielectric thin-film barrier and adhesion-promoting layers consisting of silicon oxynitride materials (SiOxNy, with various stoichiometry) were investigated. For process development, films were applied to glass (TCO, conductive SnO2:F; or soda-lime), polymer (PET, polyethylene terephthalate), aluminized soda-lime glass, or PV cell (a-Si, CIGS) substrates. Design strategy employed de-minimus hazard criteria to facilitate industrial adoption and reduce implementation costs for PV manufacturers or suppliers. A restricted process window was explored using dilute compressed gases (3% silane, 14% nitrous oxide, 23% oxygen) in nitrogen (or former mixtures, and 11.45% oxygen mix in helium and/or 99.999% helium dilution) with a worst-case flammable and non-corrosive hazard classification. Method employed low radio frequency (RF) power, less than or equal to 3 milliwatts per cm2, and low substrate temperatures, less than or equal to 100 deg C, over deposition areas less than or equal to 1000 cm2. Select material properties for barrier film thickness (profilometer), composition (XPS/FTIR), optical (refractive index, %T and %R), mechanical peel strength and WVTR barrier performance are presented.

Glick, S. H.; delCueto, J. A.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

2005-11-01T23:59:59.000Z

91

Electrochemical Approaches to PV Busbar Application  

DOE Green Energy (OSTI)

Busbars are an integral component of any thin-film photovoltaic module and must be easy and quick to apply by PV manufacturers, as well as provide long-term reliability in deployed modules. Potential reliability issues include loss of adhesion and delamination, chemical instability under current collection conditions (electromigration or corrosion), compatibility of material and application method with subsequent encapsulation steps. Several new and novel busbar materials and application methods have been explored, including adhering metal busbars with various one- and two-part conductive epoxies or conductive adhesive films, ultrasonic bonding of metal busbar strips, and bonding of busbar strips using low-temperature solders. The most promising approach to date has been the direct application of metal busbars via various electrochemical techniques, which offers a variety of distinct advantages.

Pankow, J. W.

2005-01-01T23:59:59.000Z

92

PSCAD Modules Representing PV Generator  

SciTech Connect

Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

Muljadi, E.; Singh, M.; Gevorgian, V.

2013-08-01T23:59:59.000Z

93

Development of a Visual Inspection Checklist for Evaluation of Fielded PV Module Condition (Presentation)  

SciTech Connect

A visual inspection checklist for the evaluation of fielded photovoltaic (PV) modules has been developed to facilitate collection of data describing the field performance of PV modules. The proposed inspection checklist consists of 14 sections, each documenting the appearance or properties of a part of the module. This tool has been evaluated through the inspection of over 60 PV modules produced by more than 20 manufacturers and fielded at two different sites for varying periods of time. Aggregated data from a single data collection tool such as this checklist has the potential to enable longitudinal studies of module condition over time, technology evolution, and field location for the enhancement of module reliability models.

Packard, C. E; Wohlgemuth, J. H.; Kurtz, S. R.

2012-03-01T23:59:59.000Z

94

PV FAQs: How Much Land Will PV Need to Supply Our Electricity?  

DOE Green Energy (OSTI)

This PV FAQ fact sheet answers the question ''How much land will PV need to supply our electricity?'' The answer is that PV could supply our electricity with little visible impact on our landscape.

Not Available

2004-01-01T23:59:59.000Z

95

Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.  

Science Conference Proceedings (OSTI)

Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.

Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan

2011-06-01T23:59:59.000Z

96

Development of a low-cost integrated 20-kW ac solar tracking sub- array for grid-connected PV power system applications. Phase 1, Annual technical report, 11 July 1995--31 July 1996  

DOE Green Energy (OSTI)

The overall goal of this effort is to reduce the installed cost of utility scale grid connected photovoltaic power systems. The focus of the effort is on ``BOS`` (Balance-Of-System) component manufacturing technology, which essentially involves all PV power system engineering, manufacturing, assembly and construction tasks from the receipt of a PV module to the deliver of grid connected electricity.

Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G. [Utility Power Group, Chatsworth, CA (United States)

1997-06-01T23:59:59.000Z

97

Manufacturing Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

Not Available

2011-10-01T23:59:59.000Z

98

NREL: Photovoltaics Research - PV News  

NLE Websites -- All DOE Office Websites (Extended Search)

PV News PV News The National Renewable Energy Laboratory Photovoltaic (PV) Research Program highlights latest research and news accomplishments from the laboratory on this page. Subscribe to the RSS feed RSS . Learn about RSS. November 8, 2013 New Solar Cell Is More Efficient, Less Costly Innovation by NREL and First Solar acquisition TetraSun wins a 2013 R&D 100 Award. November 6, 2013 NREL's Energy Systems Integration Facility Garners LEED® Platinum The Energy Systems Integration Facility (ESIF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colo., has earned a LEED® Platinum designation for new construction from the U.S. Green Building Council (USGBC), a non-profit organization dedicated to sustainable building design and construction.

99

solar PV | OpenEI  

Open Energy Info (EERE)

PV PV Dataset Summary Description This dataset highlights trends in financing terms for U.S. renewable energy projects that closed financing between Q3 2009 and Q3 2010. Information tracked includes debt interest rates, equity returns, financial structure applied, PPA duration, and other information. NREL's Renewable Energy Finance Tracking Initiative (REFTI) tracks renewable energy project financing terms by technology and project size. The intelligence gathered is intended to reveal industry trends and to inform input assumptions for models. Source NREL Date Released March 27th, 2011 (3 years ago) Date Updated Unknown Keywords biomass financial geothermal project finance solar PV wind onshore Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon RE Project Finance Trends Q3 2009 - Q3 2010 (xlsx, 309.2 KiB)

100

Comparison of Pyranometers vs. PV Reference Cells for Evaluation of PV Array Performance  

DOE Green Energy (OSTI)

As the photovoltaics (PV) industry has grown, the need for accurately monitoring the solar resource of PV power plants has increased. Historically, the PV industry has relied on thermopile pyranometers for irradiance measurements, and a large body of historical irradiance data taken with pyranometers exists. However, interest in PV reference devices is increasing. In this paper, we discuss why PV reference devices are better suited for PV applications, and estimate the typical uncertainties in irradiance measurements made with both pyranometers and PV reference devices. We assert that the quantity of interest in monitoring a PV power plant is the equivalent irradiance under the IEC 60904-3 reference solar spectrum that would produce the same electrical response in the PV array as the incident solar radiation. For PV-plant monitoring applications, we find the uncertainties in irradiance measurements of this type to be on the order of +/-5% for thermopile pyranometers and +/-2.4% for PV reference devices.

Dunn, L.; Gostein, M.; Emery, K.

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The photovoltaic manufacturing technology project: A government/industry partnership  

DOE Green Energy (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

1991-12-01T23:59:59.000Z

102

The photovoltaic manufacturing technology project: A government/industry partnership  

DOE Green Energy (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R&D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R&D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

1991-12-01T23:59:59.000Z

103

Manufacturing Portal  

Science Conference Proceedings (OSTI)

... datasets. Manufacturers of more. In Situ Characterization of Nanoscale Gas-Solid Interactions by TEM Observing and ...

2013-09-09T23:59:59.000Z

104

About Manufacturing  

Science Conference Proceedings (OSTI)

... reflects the changes in prices that manufacturers ... Petroleum Electricity Natural Gas Coal Emissions ... Position Abroad on a Historical Cost Basis ...

2013-07-25T23:59:59.000Z

105

Manufacturing News  

Science Conference Proceedings (OSTI)

... Two New MEP Centers Will Serve Kentucky and South Dakota Manufacturers Release Date: 01/24/2013 Small and mid ...

2010-09-22T23:59:59.000Z

106

City of Sunset Valley- PV Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The City of Sunset Valley offers rebates to local homeowners who install photovoltaic (PV) systems on their properties. The local rebate acts as an add-on to the PV rebates that are offered by...

107

PV Frontogenesis and Upper-Tropospheric Fronts  

Science Conference Proceedings (OSTI)

Upper-tropospheric fronts and frontogenesis are viewed from a potental vorticity (PV) perspective. The rudiments of this approach are to regard such a front as a zone of strong PV gradient on isentropic surfaces, and to treat the accompanying ...

H. C. Davies; A. M. Rossa

1998-06-01T23:59:59.000Z

108

Variability of PV on Distribution Systems  

Science Conference Proceedings (OSTI)

In 2010, the Electric Power Research Institute (EPRI) along with several utilities began collecting high-resolution monitoring data on distributed solar photovoltaic (PV) systems throughout the United States. Included in these monitoring data are single-module PV systems distributed along selected feeders as well as several larger PV systems (up to 1.4 MW). Utilizing data from these sites, this report focuses specifically on examining the measured variability of solar PV distributed throughout a ...

2012-12-13T23:59:59.000Z

109

PV AND GRID RELIABILITY: AVAILABILITY OF PV POWER DURING CAPACITY SHORTFALLS  

E-Print Network (OSTI)

PV AND GRID RELIABILITY: AVAILABILITY OF PV POWER DURING CAPACITY SHORTFALLS Richard Perez reliability benefits, is to look at PV availability during instances of major grid stress and supply shortfall of these events and show that PV+end-use load control could be 100% reliable with only a minimal end-use impact. 2

Perez, Richard R.

110

November 21, 2000 PV Lesson Plan 3 PV Array Generating Electricity  

E-Print Network (OSTI)

November 21, 2000 PV Lesson Plan 3 ­ PV Array Generating Electricity Prepared for the Oregon in Arrays: Solar Cells Generating Electricity Lesson Plan Content: In this lesson, students will learn about electricity. Objectives: Students will learn to use a tool called PV WATTS to calculate the output of PV

Oregon, University of

111

Development of New Low-Cost, High-Performance, PV Module Encapsulant/Packaging Materials: Final Technical Progress Report, 22 October 2002 - 15 November 2007  

DOE Green Energy (OSTI)

Report on objectives to work with U.S.-based PV module manufacturers (c-Si, a-Si, CIS, other thin films) to develop/qualify new low-cost, high-performance PV module encapsulant/packaging materials, and processes using the packaging materials.

Tucker, R.

2008-04-01T23:59:59.000Z

112

Green Manufacturing Portal  

Science Conference Proceedings (OSTI)

NIST Home > Green Manufacturing Portal. Green Manufacturing Portal. ... see all Green Manufacturing programs and projects ... ...

2012-12-27T23:59:59.000Z

113

Green Manufacturing Events  

Science Conference Proceedings (OSTI)

NIST Home > Green Manufacturing Events. Green Manufacturing Events. (showing 1 - 1 of 1). Manufacturing Innovations ...

2011-06-20T23:59:59.000Z

114

Manufacturing Energy Portal  

Science Conference Proceedings (OSTI)

NIST Home > Manufacturing Energy Portal. Manufacturing Energy Portal. ... see all Manufacturing Energy programs and projects ... ...

2013-11-07T23:59:59.000Z

115

PV ENERGY ROI Tracks Efficiency Gains  

E-Print Network (OSTI)

PV ENERGY ROI Tracks Efficiency Gains the state of PV today E nergy payback time (EPBT) is the time it takes for a photovoltaic (PV) system to produce all the energy used through- out its life cycle. A short EPBT corre- sponds to a high energy return on energy invest- ment

116

California Solar Initiative - PV Incentives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Incentives California Solar Initiative - PV Incentives Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Low-Income Residential...

117

China and India PV Reliability-NREL Cooperation | Open Energy Information  

Open Energy Info (EERE)

Reliability-NREL Cooperation Reliability-NREL Cooperation Jump to: navigation, search Logo: China and India PV Reliability under the Asia Pacific Partnership Name China and India PV Reliability under the Asia Pacific Partnership Agency/Company /Organization National Renewable Energy Laboratory Partner Chinese and Indian PV manufacturers and qualification/certification experts Sector Energy Focus Area Solar Topics Background analysis Country India, China Southern Asia, Eastern Asia References NREL International Program Overview Abstract Over a period of two years, U.S. partners will engage with Chinese and Indian manufacturers and qualification/certification experts in a phased project that emphasizes quality control through the value chain, as well as, reliability R&D. The National Renewable Energy Laboratory (NREL) and Sandia National Laboratory (SNL) will take the lead to provide technical assistance and training.

118

Direct Use of Solar Photovoltaic (PV) Energy  

Science Conference Proceedings (OSTI)

PV-DC refers to the direct use of photovoltaic (PV) energy in an appliance or other equipment without a grid connection. Most (over 90) of the new deployments of PV solar panels connect to the ac electric grid and do not use dc energy directly. These grid-connected PV systems use an electronic inverter to convert the dc array output to ac power for interfacing with the grid. However, with double-digit growth in all types of PV applications, the direct use of solar for powering end-use loads needs to be m...

2010-12-31T23:59:59.000Z

119

innovati nEncapsulation Advancements Extend Life of Thin-Film PV  

E-Print Network (OSTI)

. In addition to improved performance and reliability, this PTMO technology could make flexible thin-film technology. In addition to developing the PTMO coating technology, NREL also holds the world record--20%--for science of CIGS technology, NREL helps the PV industry accelerate manufacturing capacity

120

Energy 101: Solar PV | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar PV Solar PV Energy 101: Solar PV Addthis Description Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses. Duration 2:01 Topic Solar Energy Economy Credit Energy Department Video MR. : All right, we all know that the sun's energy creates heat and light. But it can also be converted to make electricity, and lots of it. One technology is called solar photovoltaics or PV for short. You've probably seen PV panels around for years, but recent advancements have greatly improved their efficiency and electrical output. Enough energy from the sun hits the earth every hour to power the planet for an

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Manufacturing News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute http://energy.gov/articles/factsheet-next-generation-power-electronics-manufacturing-innovation-institute manufacturing-innovation-institute" class="title-link">FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute

122

Manufacturing Growth  

Science Conference Proceedings (OSTI)

... report, even the lithium-ion batteries used in Chevy's much anticipated electric car, the Volt, are supplied by South Korean battery manufacturer LG ...

2013-07-31T23:59:59.000Z

123

Advanced Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies. The Energy Department has supported the development...

124

Manufacturing Extension Partnership, Manufacturing Data and ...  

Science Conference Proceedings (OSTI)

... Manufacturing Data & Trends. Manufacturing is a dynamic and changing industry. In this ... Voytek. DATA RESOURCES. Capacity ...

2013-06-17T23:59:59.000Z

125

Manufacturing technologies  

SciTech Connect

The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

NONE

1995-09-01T23:59:59.000Z

126

US manufacturers of commercially available stand-alone photovoltaic lighting systems  

DOE Green Energy (OSTI)

This report introduces photovoltaic (PV) lighting systems, gives some specifications for ordering these systems, and provides a list of some of the manufacturers of these systems in the United States. These PV lighting systems are all commercially available. They are stand-alone systems because they are not tied to the electric utility power grid.

McNutt, P.

1994-05-01T23:59:59.000Z

127

High throughput manufacturing of thin-film CdTe photovoltaic modules. Annual subcontract report, 16 November 1993--15 November 1994  

DOE Green Energy (OSTI)

This report describes work performed by Solar Cells, Inc. (SCI), under a 3-year subcontract to advance SCI`s PV manufacturing technologies, reduce module production costs, increase module performance, and provide the groundwork for SCI to expand its commercial production capacities. SCI will meet these objectives in three phases by designing, debugging, and operating a 20-MW/year, automated, continuous PV manufacturing line that produces 60-cm {times} 120-cm thin-film CdTe PV modules. This report describes tasks completed under Phase 1 of the US Department of Energy`s PV Manufacturing Technology program.

Sandwisch, D.W. [Solar Cells, Inc., Toledo, OH (United States)

1995-11-01T23:59:59.000Z

128

New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Shows Solar Manufacturing Costs Not Driven Primarily by Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor September 5, 2013 - 12:00pm Addthis Production scale, not lower labor costs, drives China's current advantage in manufacturing photovoltaic (PV) solar energy systems, according to a new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Although the prevailing belief is that low labor costs and direct government subsidies for PV manufacturing in China account for that country's dominance in PV manufacturing, the NREL/MIT study shows that a majority of the region's competitive advantage comes from production scale-enabled, in part, through preferred access to capital (indirect

129

New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Study Shows Solar Manufacturing Costs Not Driven Primarily by New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor September 5, 2013 - 12:00pm Addthis Production scale, not lower labor costs, drives China's current advantage in manufacturing photovoltaic (PV) solar energy systems, according to a new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Although the prevailing belief is that low labor costs and direct government subsidies for PV manufacturing in China account for that country's dominance in PV manufacturing, the NREL/MIT study shows that a majority of the region's competitive advantage comes from production scale-enabled, in part, through preferred access to capital (indirect

130

Manufacturing technology  

SciTech Connect

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

131

Definition: PV array | Open Energy Information  

Open Energy Info (EERE)

PV array PV array Jump to: navigation, search Dictionary.png PV array An interconnected system of PV modules that function as a single electricity-producing unit. In smaller systems, an array can consist of a single module.[1][2] View on Wikipedia Wikipedia Definition A Photovoltaic system (informally, PV system) is an arrangement of components designed to supply usable electric power for a variety of purposes, using the Sun (or, less commonly, other light sources) as the power source. PV systems may be built in various configurations: Off-grid without battery (Array-direct) Off-grid with battery storage for DC-only appliances Off-grid with battery storage for AC & DC appliances Grid-tie without battery Grid-tie with battery storage A photovoltaic array (also called a solar array) consists of multiple photovoltaic modules, casually

132

PV output smoothing with energy storage.  

SciTech Connect

This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

Ellis, Abraham; Schoenwald, David Alan

2012-03-01T23:59:59.000Z

133

Potential Health and Environmental Impacts Associated with the Manufacture and Use of Photovoltaic Cells  

Science Conference Proceedings (OSTI)

EPRI and the California Energy Commission (CEC), the principal sponsor of this project, have collected information on potential environmental impacts of chemicals used in California's photovoltaic (PV) industry. This report provides an overview of the photovoltaic industry and includes the types of cells that were manufactured or under development through 2002 and the chemicals used in the manufacturing processes and final modules. The potential for chemicals used in PV cells to be released to air, surfa...

2003-11-12T23:59:59.000Z

134

Solar PV Market Update, October 2013  

Science Conference Proceedings (OSTI)

Volume 7 of EPRIs quarterly Solar PV Market Update provides continued insight into some of the front line trends that are afoot throughout the photovoltaic segment. Like previous Updates, it synthesizes primary and secondary data from multiple sources in an effort to highlight economic, policy, and technology developments that are likely to impact utility solar PV investment and planning efforts.This report investigates some of the recent PV market and policy developments that ...

2013-10-15T23:59:59.000Z

135

Polysilicon in Photovoltaics: Market Conditions & Competing PV ...  

Science Conference Proceedings (OSTI)

That data, along with projections regarding the growth in installed PV capacity, are used to predict demand the solar industry will place on materials used in...

136

Innovations in Wind and Solar PV Financing  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovations in Wind and Solar PV Financing K. Cory, J. Coughlin, and T. Jenkin National Renewable Energy Laboratory J. Pater Summit Blue B. Swezey Applied Materials Technical...

137

Low Cost Nanomaterials for PV Devices  

Impact: Low-cost solution for solar energy (Expand to lighting, batteries, etc) Low-cost Nanomaterials for PV Devices . Title: Slide 1 Author: Donna ...

138

Photovoltaic manufacturing technology, Phase 1  

DOE Green Energy (OSTI)

This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS Eureka'' facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the Eureka'' facility to Chronar's batch'' plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

Not Available

1992-10-01T23:59:59.000Z

139

Environmental issues of material input in CDTE-module manufacturing  

DOE Green Energy (OSTI)

The goal of a low-cost and high-volume photovoltaic (PV) module fabrication demands an optimized process sequence to guarantee product quality and module stability on a long-term basis. Nevertheless, large-scale module manufacturing uses several input and auxiliary materials and generates waste from processing output materials. The mining and refining of the PV manufacturing material consumes input and auxiliary material and also creates waste. Therefore, investigations into these materials were conducted with respect to their risk potential for environment and health.

Steinberger, H.; Hochwimmer, R.; Schmid, H. [Fraunhofer Inst. fuer Festkoerpertechnologie, Muenchen (Germany); Thumm, W.; Kettrup, A. [GSF, Oberschleissheim (Germany). Inst. fuer Oekologische Chemie; Moskowitz, P. [Brookhaven National Lab., Upton, NY (United States). Biomedical and Environmental Assessment Group

1995-12-31T23:59:59.000Z

140

Value Proposition for High Lifetime (p-type) and Thin Silicon Materials in Solar PV Applications: Preprint  

DOE Green Energy (OSTI)

Most silicon PV road maps forecast a continued reduction in wafer thickness, despite rapid declines in the primary incentive for doing so -- polysilicon feedstock price. Another common feature of most silicon-technology forecasts is the quest for ever-higher device performance at the lowest possible costs. The authors present data from device-performance and manufacturing- and system-installation cost models to quantitatively establish the incentives for manufacturers to pursue advanced (thin) wafer and (high efficiency) cell technologies, in an age of reduced feedstock prices. This analysis exhaustively considers the value proposition for high lifetime (p-type) silicon materials across the entire c-Si PV supply chain.

Goodrich, A.; Woodhouse, M.; Hacke, P.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

PV Fact Sheets Argument B1Some people state that "The external costs of PV electricity  

E-Print Network (OSTI)

University: Solar Cells Lecture 9: PV Systems Several types of operating modes · Centralized power plant or wanted Montana State University: Solar Cells Lecture 9: PV Systems 2 Residential Side Mounted Montana State University: Solar Cells Lecture 9: PV Systems 3 Could have future issues when the tree matures

142

Advanced Manufacturing Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Office: News on Twitter Bookmark Advanced Manufacturing Office: News on Google Bookmark Advanced Manufacturing Office: News on Delicious Rank Advanced Manufacturing...

143

Analysis and Design of Smart PV Module  

E-Print Network (OSTI)

This thesis explores the design of a smart photovoltaic (PV) module- a PV module in which PV cells in close proximity are electrically grouped to form a pixel and are connected to dc-dc converter blocks which reside embedded in the back pane of the module. An auto-connected flyback converter topology processing less than full power is used to provide high gain and perform maximum power point tracking (MPPT). These dc-dc converters interface with cascaded H-bridge inverter modules operating on feed forward control for dc-link voltage ripple rejection. By means of feed forward control, a significant reduction in dc link capacitance is achieved by enduring higher dc link ripple voltages. The dc link electrolytic capacitors are replaced with film capacitors thus offering an improvement in the reliability of the smart PV module. The proposed configuration is capable of producing 120V/ 240V AC voltage. The PV module now becomes a smart AC module by virtue of embedded intelligence to selectively actuate the individual dc-dc converters and control the output AC voltages directly, thus becoming a true plug and power energy system. Such a concept is ideal for curved surfaces such as building integrated PV (BIPV) system applications where gradients of insolation and temperature cause not only variations from PV module-to-PV module but from group-to-group of cells within the module itself. A detailed analysis along with simulation and experimental results confirm the feasibility of the proposed system.

Mazumdar, Poornima

2012-12-01T23:59:59.000Z

144

PV Testing Group Photovoltaic Cell Data Compilation  

E-Print Network (OSTI)

PV Testing Group Photovoltaic Cell Data Compilation National Renewable Energy Laboratory 4/2/2010 ______________________________________ Page 1 *NREL Photovoltaic Cell Data Compilation Calibration Conducted For: Kaitlyn VanSant (for Solasta Contact: Paul Ciszek (303) 384-6647 Paul.Ciszek@nrel.gov #12;PV Testing Group Photovoltaic Cell Data

Burns, Michael J.

145

PV based solar insolation measuring device  

Science Conference Proceedings (OSTI)

The aim of the project is to develop mathematical model of the relationship between incoming solar insolation and PV module output current and temperature. Solar insolation need to be measured in order to optimize the design of solar electricity generating system (SEGS). PV module sizing

Balbir Singh Mahinder Singh; Nor Athirah Zainal

2012-01-01T23:59:59.000Z

146

Solar Resource and PV Systems Performance  

E-Print Network (OSTI)

Solar Resource and PV Systems Performance at Selected Test Sites Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative Agreement No. DE-FC26-06NT Subtask 11.1 Deliverables 2 and 4: Report on Solar Resource and PV Systems Performance at Selected Test

147

PV FAQs: Does the world have enough materials for PV to help address climate change?  

DOE Green Energy (OSTI)

In the ongoing discussion of what needs to be done to stabilize atmospheric CO2 by mid-century (Hoffert 1998), one possible option would be to add about 10-20 terawatts (trillion watts, or TW) of photovoltaics (PV) in place of conventional sources. PV would help because, unlike burning fossil fuels, it produces no CO2. However, 10-20 TW is an enormous amount of energy. In peak Watts, the way PV installations are generally rated, it is about 50-100 TWpeak (TWp) of PV. Would we have enough materials to make this much PV? As we explain in this PV FAQ, we think our planet has enough feedstock materials for PV to meet the ''TW challenge.''

Not Available

2005-06-01T23:59:59.000Z

148

Development of a Visual Inspection Data Collection Tool for Evaluation of Fielded PV Module Condition  

DOE Green Energy (OSTI)

A visual inspection data collection tool for the evaluation of fielded photovoltaic (PV) modules has been developed to facilitate describing the condition of PV modules with regard to field performance. The proposed data collection tool consists of 14 sections, each documenting the appearance or properties of a part of the module. This report instructs on how to use the collection tool and defines each attribute to ensure reliable and valid data collection. This tool has been evaluated through the inspection of over 60 PV modules produced by more than 20 manufacturers and fielded at two different sites for varying periods of time. Aggregated data from such a single data collection tool has the potential to enable longitudinal studies of module condition over time, technology evolution, and field location for the enhancement of module reliability models.

Packard, C. E.; Wohlgemuth, J. H.; Kurtz, S. R.

2012-08-01T23:59:59.000Z

149

PV Strom | Open Energy Information  

Open Energy Info (EERE)

Strom Strom Jump to: navigation, search Name PV Strom Place Kirchheim, Germany Zip 74366 Sector Biomass, Hydro, Renewable Energy, Solar, Wind energy Product Germany-based renewable energy project developer, focused mainly on solar, but also active in wind, hydro and biomass generation. Coordinates 50.881988°, 11.019413° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.881988,"lon":11.019413,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

150

Photovoltaic industry manufacturing technology. Final report  

DOE Green Energy (OSTI)

This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

Vanecek, D.; Diver, M.; Fernandez, R. [Automation and Robotics Research Inst., Fort Worth, TX (United States)

1998-08-01T23:59:59.000Z

151

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Low Cost High Concentration PV Systems for Utility Power Generation An...

152

Low Cost High Concentration PV Systems for Utility Power Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power...

153

Arima Photovoltaic And Optical Corp Arima PV | Open Energy Information  

Open Energy Info (EERE)

Photovoltaic And Optical Corp Arima PV Jump to: navigation, search Name Arima Photovoltaic And Optical Corp (Arima PV) Place Taipei, Taiwan Product Once a maker of computers, the...

154

Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near...  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections Title Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-Term Projections Publication...

155

New York City - Property Tax Abatement for Photovoltaic (PV)...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Abatement for Photovoltaic (PV) Equipment Expenditures New York City - Property Tax Abatement for Photovoltaic (PV) Equipment Expenditures Eligibility Commercial...

156

Turlock Irrigation District - PV Rebate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turlock Irrigation District - PV Rebate Turlock Irrigation District - PV Rebate Eligibility Commercial Residential Savings For Solar Buying & Making Electricity Maximum Rebate 50%...

157

Beijing Sunpu Solar PV Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Sunpu Solar PV Technology Co Ltd Jump to: navigation, search Name Beijing Sunpu Solar PV Technology Co Ltd Place Beijing, Beijing Municipality, China Zip 100083 Sector Solar...

158

Department of Veterans Affairs, FONSI - Rooftop solar PV power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rooftop solar PV power at Calverton National Cemetery Department of Veterans Affairs, FONSI - Rooftop solar PV power at Calverton National Cemetery An Environmental Assessment (EA)...

159

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards Eligibility...

160

CPS Energy - Solar PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Savings CPS Energy - Solar PV Rebate Program CPS Energy - Solar PV Rebate Program Eligibility...

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ESS 2012 Peer Review - PV Plus Storage for Simultaneous Voltage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meter *Advancing Automation and Sophistication Firmed PV Production *Automated cloud forecast retrieval A t t d PV Automated Shifting - 612 Summer Schedule (Afternoon Peak)...

162

Aurora Photovoltaics Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Aurora Photovoltaics Manufacturing Aurora Photovoltaics Manufacturing Jump to: navigation, search Name Aurora Photovoltaics Manufacturing Place Lawrenceville, New Jersey Zip 8648 Sector Solar Product A subsidiary of EPV solar, based in New Jersey, focused on manufacturing of PV cells. Coordinates 36.761678°, -77.845048° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.761678,"lon":-77.845048,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

Manufacturing Extension Partnership Homepage  

Science Conference Proceedings (OSTI)

... The Manufacturing Extension Partnership (MEP) is a catalyst for strengthening American manufacturing accelerating its ongoing transformation ...

2013-08-23T23:59:59.000Z

164

Terawatt Challenge for Thin-Film PV  

DOE Green Energy (OSTI)

The evolution of PV into one of the world's largest industries is not going to happen without major unforeseen problems. However, this study attempts to address the obvious ones, so that we can put aside the mythology of PV (for example, that it is only ''boutique power'' or that one must pave the world with it to be useful) and get on with changing the world's energy infrastructure. With the years of rapid market growth now under way in PV, the author is sure this will not be the last effort to understand the real potential and pitfalls of meeting the Challenge.

Zweibel, K.

2005-08-01T23:59:59.000Z

165

Jebel Ali Hotel PV lighting systems  

SciTech Connect

A large stand-alone PV lighting project was installed in June 1983 at the Jebel Ali Hotel in Dubai, United Arab Emirates. A high mast lighting system provides illumination for a 130 meter diameter traffic roundabout. The high mast system is powered by a 15 kilowatt peak array of Mobil Solar ribbon PV modules. Along the 700 meter access road leading to the hotel entrance, twenty-one PV powered streetlights provide low-level lighting. Each streetlight consists of a 20 watt fluorescent tube powered by two 35 Wp modules. Operation of both systems is completely automatic. Design, installation, and operating experience to date are reviewed.

Ellis, M.

1984-05-01T23:59:59.000Z

166

Battery and charge controller evaluations in small stand-alone PV systems  

SciTech Connect

We report the results of to separate long-term tests of batteries and charge controllers in small stand-alone PV systems. In these experiments, seven complete systems were tested for two years at each of two locations: Sandia National Laboratories in Albuquerque and the Florida Solar Energy Center in Cape Canaveral, Florida. Each system contained a PV array, flooded-lead-acid battery, a charge controller and a resistive load. Performance of the systems was strongly influenced by the difference in solar irradiance at the two sites, with some batteries at Sandia exceeding manufacturer`s predictions for cycle life. System performance was strongly correlated with regulation reconnect voltage (R{sup 2} correlation coefficient = 0.95) but only weakly correlated with regulation voltage. We will also discuss details of system performance, battery lifetime and battery water consumption.

Woodworth, J.R.; Thomas, M.G.; Stevens, J.W. [Sandia National Labs., Albuquerque, NM (United States); Dunlop, J.L.; Swamy, M.R.; Demetrius, L. [Florida Solar Energy Center, Cape Canaveral, FL (United States); Harrington, S.R. [K-Tech Corp., Albuquerque, NM (United States)

1994-07-01T23:59:59.000Z

167

Manufacturing Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 BOEING is a trademark of Boeing Management Company. Copyright © 2009 Boeing. All rights reserved. Compressed Hydrogen Storage Workshop Manufacturing Perspective Karl M. Nelson (karl.m.nelson@boeing.com) Boeing Research & Technology Engineering, Operations & Technology | Boeing Research & Technology Materials & Fabrication Technology EOT_RT_Sub_Template.ppt | 1/12/2009 | Structural Tech 2 Copyright © 2009 Boeing. All rights reserved. DOE Hydrogen Program Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels Mark Leavitt, Alex Ly Quantum Fuel Systems Technologies Worldwide Inc. Karl Nelson, Brice Johnson The Boeing Company Ken Johnson, Kyle Alvine, Stan Pitman, Michael Dahl, Daryl Brown

168

Manufacturing technology  

SciTech Connect

This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L. [eds.

1993-08-01T23:59:59.000Z

169

NREL PV AR D 11th review meeting, May 13--15, 1992, Denver Marriott City Center, Denver, Colorado  

DOE Green Energy (OSTI)

This is a collection of abstracts from papers presented at the National Renewable Energy Laboratory (NREL) Photovoltaic (PV) research and development review meeting held May 1992. Subject areas covered include solar cell and solar module manufacturing and development, materials, polycrystalline thin films, applications, amorphous silicon, solar cell performance and testing, crystalline silicon and other photovoltaic and safety perspectives. (GHH)

Not Available

1992-01-01T23:59:59.000Z

170

Designing PV Incentive Programs to Promote System Performance: AReview of Current Practice  

SciTech Connect

Some stakeholders continue to voice concerns about the performance of customer-sited photovoltaic (PV) systems, particularly because these systems typically receive financial support through ratepayer- or publicly-funded programs. Although much remains to be understood about the extent and specific causes of poor PV system performance, several studies of the larger programs and markets have shed some light on the issue. An evaluation of the California Energy Commission (CEC)'s Emerging Renewables Program, for example, found that 7% of systems, in a sample of 95, had lower-than-expected power output due to shading or soiling (KEMA 2005). About 3% of a larger sample of 140 systems were not operating at all or were operating well below expected output, due to failed equipment, faulty installation workmanship, and/or a lack of basic maintenance. In a recent evaluation of the other statewide PV incentive program in California, the Self-Generation Incentive Program, 9 of 52 projects sampled were found to have annual capacity factors less than 14.5%, although reasons for these low capacity factors generally were not identified (Itron 2005). Studies of PV systems in Germany and Japan, the two largest PV markets worldwide, have also revealed some performance problems associated with issues such as shading, equipment and installation defects, inverter failure, and deviations from module manufacturers' specifications (Otani et al. 2004, Jahn & Nasse 2004). Although owners of PV systems have an inherent incentive to ensure that their systems perform well, many homeowners and building operators may lack the necessary information and expertise to carry out this task effectively. Given this barrier, and the responsibility of PV incentive programs to ensure that public funds are prudently spent, these programs should (and often do) play a critical role in promoting PV system performance. Performance-based incentives (PBIs), which are based on actual energy production rather than the rated capacity of the modules or system, are often suggested as one possible strategy. Somewhat less recognized are the many other program design options also available, each with its particular advantages and disadvantages. To provide a point of reference for assessing the current state of the art, and to inform program design efforts going forward, we examine the approaches to encouraging PV system performance - including, but not limited to, PBIs - used by 32 prominent PV incentive programs in the U.S. (see Table 1).1 We focus specifically on programs that offer an explicit subsidy payment for customer-sited PV installations. PV support programs that offer other forms of financial support or that function primarily as a mechanism for purchasing renewable energy credits (RECs) through energy production-based payments are outside the scope of our review.2 The information presented herein is derived primarily from publicly available sources, including program websites and guidebooks, programs evaluations, and conference papers, as well as from a limited number of personal communications with program staff. The remainder of this report is organized as follows. The next section presents a simple conceptual framework for understanding the issues that affect PV system performance and provides an overview of the eight general strategies to encourage performance used among the programs reviewed in this report. The subsequent eight sections discuss in greater detail each of these program design strategies and describe how they have been implemented among the programs surveyed. Based on this review, we then offer a series of recommendations for how PV incentive programs can effectively promote PV system performance.

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-11-12T23:59:59.000Z

171

Jiangxi Solar PV Corp JSPV aka Solar PV Corporation | Open Energy  

Open Energy Info (EERE)

Solar PV Corp JSPV aka Solar PV Corporation Solar PV Corp JSPV aka Solar PV Corporation Jump to: navigation, search Name Jiangxi Solar PV Corp (JSPV, aka Solar PV Corporation ) Place Xinyu, Jiangxi Province, China Zip 338004 Sector Solar Product Xinyu-based producer of solar cells Coordinates 27.804001°, 114.923317° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.804001,"lon":114.923317,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

172

Definition: PV module | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: PV module Jump to: navigation, search Dictionary.png PV module A unit comprised of several PV cells, and the principal unit of a PV array; it is intended to generate direct current power under un-concentrated sunlight.[1][2] View on Wikipedia Wikipedia Definition A solar panel is a set of solar photovoltaic modules electrically connected and mounted on a supporting structure. A photovoltaic module is a packaged, connected assembly of photovoltaic cells. The solar module can be used as a component of a larger photovoltaic system to generate and supply electricity in commercial and residential applications. Each module is rated by its DC output power under standard test conditions (STC), and

173

Generation PV Inc | Open Energy Information  

Open Energy Info (EERE)

Generation PV Inc. Generation PV Inc. Place Markham, Ontario, Canada Zip L6E 1A9 Sector Wind energy Product Ontario-based Generation PV distributes and installs PV modules and wind turbines made by outside equipment makers, for industrial, residental and wholesale customers. Coordinates 38.9028°, -78.001804° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9028,"lon":-78.001804,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

174

PV1 model verification and validation  

E-Print Network (OSTI)

The purpose of this document is 1) to describe, in detail, the theoretic foundation on which PV1 is based, 2) indicate the manner in which its theoretical foundation has been translated into a practical, useful tool for ...

Fuller, Frank H.

1981-01-01T23:59:59.000Z

175

NanoPV Corporation | Open Energy Information  

Open Energy Info (EERE)

NanoPV Corporation NanoPV Corporation Jump to: navigation, search Name NanoPV Corporation Place Ewing, New Jersey Zip 8618 Product A New Jersey-based thin film PV cell producer and technology provider. Coordinates 36.638474°, -83.428453° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.638474,"lon":-83.428453,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

176

PV Power Plants Conference USA 2012  

Energy.gov (U.S. Department of Energy (DOE))

The 4th PV Power Plants conference will cover relevant topics for successful project development and sustainable business. This year's event will have an additional focus on certain distributed...

177

PV Module Reliability Research (Fact Sheet)  

DOE Green Energy (OSTI)

This National Center for Photovoltaics sheet describes the capabilities of its PV module reliability research. The scope and core competencies and capabilities are discussed and recent publications are listed.

Not Available

2013-06-01T23:59:59.000Z

178

Austin Energy- Commercial PV Incentive Program  

Energy.gov (U.S. Department of Energy (DOE))

Austin Energy, a municipal utility, offers a production incentive to its commercial and multi-family residential customers for electricity generated by qualifying photovoltaic (PV) systems of up to...

179

Austin Energy- Residential Solar PV Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Austin Energy's Solar Rebate Program offers a $1.50 per watt incentive to eligible residential who install photovoltaic (PV) systems on their homes. Rebates are limited to $15,000 per home...

180

China PV Business and Applications Evaluation  

DOE Green Energy (OSTI)

This report provides an overview of photovoltaics (PV) business and applications in China. Although more than 70 million people in China are without access to grid electricity, many of the unelectrified regions benefit from considerable renewable resources, including good solar insolation. Current annual PV sales are still modest, however, and are estimated to be between 2.0 and 2.5 megawatts. This and other significant PV data, including information regarding the current status of key aspects of Chinese businesses, markets, and distribution channels, are included in the report. Detailed company profiles of Chinese business organizations and summaries of visits made to these companies (as well as to more remote sites in Inner Mongolia to examine PV usage by the end-use customer) in September-October 1998 are also presented.

Sherring, Chris (Sherring Energy Associates)

1999-08-30T23:59:59.000Z

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

pv land use | OpenEI Community  

Open Energy Info (EERE)

pv land use pv land use Home Rosborne318's picture Submitted by Rosborne318(5) Member 2 December, 2013 - 11:06 Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 pv land use Solar solar land use Solar Power The Shreveport Airport Authority intends to issue a Request for Proposal (RFP) at some future time for renewable energy generation opportunities on Shreveport Airport property. Files: application/pdf icon solar_rfi_complete.pdf Sfomail's picture Submitted by Sfomail(48) Member 25 June, 2013 - 12:10 Solar Land Use Data on OpenEI acres csp land use how much land land requirements pv land use solar land use square miles I'm happy to announce that a new report on Solar+Land+Use was just released by the National+Renewable+Energy+Laboratory. You can find a brief summary

182

PV FAQs: What Is the Energy Payback for PV? Solar Energy Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy is clean, abundant, reliable, and affordable Reaping the environmental benefits of solar energy requires spending energy to make the PV system. But as this graphic shows,...

183

PV array simulator development and validation.  

Science Conference Proceedings (OSTI)

The ability to harvest all available energy from a photovoltaic (PV) array is essential if new system developments are to meet levelized cost of energy targets and achieve grid parity with conventional centralized utility power. Therefore, exercising maximum power point tracking (MPPT) algorithms, dynamic irradiance condition operation and startup and shutdown routines and evaluating inverter performance with various PV module fill-factor characteristics must be performed with a repeatable, reliable PV source. Sandia National Laboratories is collaborating with Ametek Programmable Power to develop and demonstrate a multi-port TerraSAS PV array simulator. The simulator will replicate challenging PV module profiles, enabling the evaluation of inverter performance through analyses of the parameters listed above. Energy harvest algorithms have traditionally implemented methods that successfully utilize available energy. However, the quantification of energy capture has always been difficult to conduct, specifically when characterizing the inverter performance under non-reproducible dynamic irradiance conditions. Theoretical models of the MPPT algorithms can simulate capture effectiveness, but full validation requires a DC source with representative field effects. The DC source being developed by Ametek and validated by Sandia is a fully integrated system that can simulate an IV curve from the Solar Advisor Model (SAM) module data base. The PV simulator allows the user to change the fill factor by programming the maximum power point voltage and current parameters and the open circuit voltage and short circuit current. The integrated PV simulator can incorporate captured irradiance and module temperature data files for playback, and scripted profiles can be generated to validate new emerging hardware embedded with existing and evolving MPPT algorithms. Since the simulator has multiple independent outputs, it also has the flexibility to evaluate an inverter with multiple MPPT DC inputs. The flexibility of the PV simulator enables the validation of the inverter's capability to handle vastly different array configurations.

Kuszmaul, Scott S.; Gonzalez, Sigifredo; Lucca, Roberto (Ametek Programmable Power, San Diego, CA); Deuel, Don (Ametek Programmable Power, San Diego, CA)

2010-06-01T23:59:59.000Z

184

Solar PV Market Update: Volume 1 - Spring  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Solar PV Market Update provides a snapshot of photovoltaic (PV) market information, along with brief EPRI analyses, to inform EPRI members about economic-, policy-, and technology-related developments in the segment. Delivered on a quarterly basis, the document synthesizes data reporting gleaned from a variety of primary and secondary sources, highlighting specific industry issuesincluding market outlooks, equipment cost and pricing trends, system design and e...

2012-05-21T23:59:59.000Z

185

PV batteries and charge controllers: Technical issues, costs, and market trends  

SciTech Connect

A survey of US system integrators, charge controller manufacturers, and battery manufacturers was conducted in 1996 to determine market and application trends. This survey was sponsored by the USDOE. Results from 21 system integrators show a 1995 PV battery sales of $4.76 million. Using the survey results, a top down market analysis was conducted with a total predicted US battery market of $34.7 million and a world wide market of US $302 million. The survey also indicated that 71% (of dollars) were spent on VRLA and 29% on flooded lead-acid batteries. Eighty percent of charge controllers were ON-OFF, vs. PWM or constant voltage.

Hammond, R.L.; Turpin, J.F. [Arizona State Univ. East, Mesa, AZ (United States); Corey, G.P.; Hund, T.D. [Sandia National Labs., Albuquerque, NM (United States); Harrington, S.R. [Harrington (S.R.), Albuquerque, NM (United States)

1997-11-01T23:59:59.000Z

186

Methods to Manufacture Cermets  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacture Cermets Methods to Manufacture Cermets There are many methods to manufacture cermets. One option is shown here. DU dioxide and steel powder are mixed, the mixture is...

187

Updating Technical Screens for PV Interconnection: Preprint  

DOE Green Energy (OSTI)

Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

2012-08-01T23:59:59.000Z

188

The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS Systems  

E-Print Network (OSTI)

The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS WA 6150 Abstract This paper focuses on pv/diesel/battery hybrid RAPS systems meeting loads above 50 kWh per day. The effect of varying the size of the pv array and the battery bank in such systems on both

189

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Advanced Manufacturing Trades Training Program Business Program Lead Yvonne Baros Advanced Manufacturing Trades Training Program Tom Souther Advanced Technology Academy...

190

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Skills Standards The Academic and Employability Skills Standards align Sandia's training efforts in advanced manufacturing with the recommendations of the Manufacturing Skill...

191

Modeling High-Penetration PV for Distribution Analysis  

Science Conference Proceedings (OSTI)

The number of new solar PV interconnections to the distribution system has increased exponentially in recent years. The total installed capacity of PV worldwide increased from 20,000 to 40,000 during 2010. In some areas distribution planners are inundated with interconnection requests for both small-scale residential PV as well as larger, commercial, and centralized PV systems. Many utility companies that have not traditionally experienced a lot of distributed PV requests have within the past few years s...

2011-12-30T23:59:59.000Z

192

Manufacturing Glossary  

Gasoline and Diesel Fuel Update (EIA)

Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing Sector Glossary For the Manufacturing Sector Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to metallic iron. It is commonly used as a fuel within the steel works. Boiler Fuel: An energy source to produce heat that is transferred to the boiler vessel in order to generate steam or hot water. Fossil fuels are the primary energy sources used to produce heat for boilers.

193

2010 Georgia Manufacturing Survey  

Science Conference Proceedings (OSTI)

... Linked to Innovation Manufacturing Wages by Percentages of Respondents ... Manufacturing Strategies by Industry Group (Percentage of firms ...

2013-07-31T23:59:59.000Z

194

Materials Processing & Manufacturing Division  

Science Conference Proceedings (OSTI)

In its broadest scope, the Materials Processing & Manufacturing Division (MPMD) covers manufacturing from product design to production, integrating process...

195

Additive Manufacturing - TMS  

Science Conference Proceedings (OSTI)

WEB RESOURCES: Research Groups for the Additive Manufacturing of Superalloys Compilation of groups involved in additive manufacturing, 0, 1118, Lynette...

196

Advanced Manufacturing Office: Solicitations  

NLE Websites -- All DOE Office Websites (Extended Search)

Solicitations on Twitter Bookmark Advanced Manufacturing Office: Solicitations on Google Bookmark Advanced Manufacturing Office: Solicitations on Delicious Rank Advanced...

197

Advanced Manufacturing Office: Webcasts  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Webcasts on Twitter Bookmark Advanced Manufacturing Office: Webcasts on Google Bookmark Advanced Manufacturing Office: Webcasts on Delicious Rank Advanced...

198

Advanced Manufacturing Office: Subscribe  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Subscribe on Twitter Bookmark Advanced Manufacturing Office: Subscribe on Google Bookmark Advanced Manufacturing Office: Subscribe on Delicious Rank Advanced...

199

Advanced Manufacturing Office: Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Workshops on Twitter Bookmark Advanced Manufacturing Office: Workshops on Google Bookmark Advanced Manufacturing Office: Workshops on Delicious Rank Advanced...

200

Global PV Grid Parity Global PV grid parity and market potential  

Open Energy Info (EERE)

Global PV Grid Parity Global PV grid parity and market potential. Data is courtesy of Sean Ong.
2012-04-13T20:55:49Z 2012-06-06T21:02:36Z I am submitting data from...

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Cost analysis methodology: Photovoltaic Manufacturing Technology Project. Annual subcontract report, 11 March 1991--11 November 1991  

DOE Green Energy (OSTI)

This report describes work done under Phase 1 of the Photovoltaic Manufacturing Technology (PVMaT) Project. PVMaT is a five-year project to support the translation of research and development in PV technology into the marketplace. PVMaT, conceived as a DOE/industry partnership, seeks to advanced PV manufacturing technologies, reduce PV module production costs, increase module performance, and expand US commercial production capacities. Under PVMaT, manufacturers will propose specific manufacturing process improvements that may contribute to the goals of the project, which is to lessen the cost, thus hastening entry into the larger scale, grid-connected applications. Phase 1 of the PVMaT project is to identify obstacles and problems associated with manufacturing processes. This report describes the cost analysis methodology required under Phase 1 that will allow subcontractors to be ranked and evaluated during Phase 2.

Whisnant, R.A. [Research Triangle Inst., Research Triangle Park, NC (United States)

1992-09-01T23:59:59.000Z

202

The Open PV Project | Open Energy Information  

Open Energy Info (EERE)

The Open PV Project The Open PV Project (Redirected from OpenPV) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Open PV Project Agency/Company /Organization: NREL Sector: Energy Focus Area: Solar, - Solar PV Topics: Background analysis, Market analysis Resource Type: Dataset, Online calculator, Software/modeling tools User Interface: Website Website: openpv.nrel.gov/about Country: United States Web Application Link: openpv.nrel.gov/ Cost: Free OpenEI Keyword(s): Featured UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

203

DOE High Performance Concentrator PV Project  

DOE Green Energy (OSTI)

Much in demand are next-generation photovoltaic (PV) technologies that can be used economically to make a large-scale impact on world electricity production. The U.S. Department of Energy (DOE) initiated the High-Performance Photovoltaic (HiPerf PV) Project to substantially increase the viability of PV for cost-competitive applications so that PV can contribute significantly to both our energy supply and environment. To accomplish such results, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices with the goal of enabling progress of high-efficiency technologies toward commercial-prototype products. We will describe the details of the subcontractor and in-house progress in exploring and accelerating pathways of III-V multijunction concentrator solar cells and systems toward their long-term goals. By 2020, we anticipate that this project will have demonstrated 33% system efficiency and a system price of $1.00/Wp for concentrator PV systems using III-V multijunction solar cells with efficiencies over 41%.

McConnell, R.; Symko-Davies, M.

2005-08-01T23:59:59.000Z

204

PV performance modeling workshop summary report.  

DOE Green Energy (OSTI)

During the development of a solar photovoltaic (PV) energy project, predicting expected energy production from a system is a key part of understanding system value. System energy production is a function of the system design and location, the mounting configuration, the power conversion system, and the module technology, as well as the solar resource. Even if all other variables are held constant, annual energy yield (kWh/kWp) will vary among module technologies because of differences in response to low-light levels and temperature. A number of PV system performance models have been developed and are in use, but little has been published on validation of these models or the accuracy and uncertainty of their output. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a PV Performance Modeling Workshop in Albuquerque, New Mexico, September 22-23, 2010. The workshop was intended to address the current state of PV system models, develop a path forward for establishing best practices on PV system performance modeling, and set the stage for standardization of testing and validation procedures for models and input parameters. This report summarizes discussions and presentations from the workshop, as well as examines opportunities for collaborative efforts to develop objective comparisons between models and across sites and applications.

Stein, Joshua S.; Tasca, Coryne Adelle (SRA International, Inc., Fairfax, VA); Cameron, Christopher P.

2011-05-01T23:59:59.000Z

205

The Open PV Project | Open Energy Information  

Open Energy Info (EERE)

The Open PV Project The Open PV Project (Redirected from Open PV) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Open PV Project Agency/Company /Organization: NREL Sector: Energy Focus Area: Solar, - Solar PV Topics: Background analysis, Market analysis Resource Type: Dataset, Online calculator, Software/modeling tools User Interface: Website Website: openpv.nrel.gov/about Country: United States Web Application Link: openpv.nrel.gov/ Cost: Free OpenEI Keyword(s): Featured UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network (OSTI)

2006. Celentano, Ron. 2005. SDF Solar PV Grant Program inSolar Rewards Program Solar PV Rebate Program (Small PVSolar Electric Program Solar PV Grant Program ** Residential

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

207

Analyzing and simulating the variability of solar irradiance and solar PV powerplants  

E-Print Network (OSTI)

WVM) for Solar PV Power Plants .. 73funding from the DOE High Solar PV Penetration grant 10DE-Variability Model (WVM) for Solar PV Power Plants 2012

Lave, Matthew S.

2012-01-01T23:59:59.000Z

208

Do PV Systems Increase Residential Selling Prices If So, How Can Practitioners Estimate This Increase?  

E-Print Network (OSTI)

and federal policymakers. Solar PV investments are sizable,investment in PV and thereby slow solar deployment. Statenew home solar homes, the been sufficient to the PV systems.

Hoen, Ben

2013-01-01T23:59:59.000Z

209

Solar Thermal/PV | OpenEI  

Open Energy Info (EERE)

Thermal/PV Thermal/PV Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

210

Updating Interconnection Screens for PV System Integration  

DOE Green Energy (OSTI)

This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

2012-02-01T23:59:59.000Z

211

Large-Scale PV Integration Study  

DOE Green Energy (OSTI)

This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energys electric grid system in southern Nevada. It analyzes the ability of NV Energys generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

2011-07-29T23:59:59.000Z

212

Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322  

DOE Green Energy (OSTI)

The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basic PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.

Geisz, J. F.

2012-11-01T23:59:59.000Z

213

Federal Tax Incentives for PV: Potential Implications for Program Design  

E-Print Network (OSTI)

on Federal ITC Section 48 Resource: PV, CSP, solar heating/25D Resource: PV and solar water heating used in dwellingcooling, solar lighting (no pool heating, and no passive

Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

214

Pioneer Valley Photovoltaics Cooperative aka PV Squared | Open Energy  

Open Energy Info (EERE)

Photovoltaics Cooperative aka PV Squared Photovoltaics Cooperative aka PV Squared Jump to: navigation, search Name Pioneer Valley Photovoltaics Cooperative (aka PV Squared) Place New Britain, Connecticut Zip 6051 Sector Solar Product Solar PV system installer. References Pioneer Valley Photovoltaics Cooperative (aka PV Squared)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Pioneer Valley Photovoltaics Cooperative (aka PV Squared) is a company located in New Britain, Connecticut . References ↑ "Pioneer Valley Photovoltaics Cooperative (aka PV Squared)" Retrieved from "http://en.openei.org/w/index.php?title=Pioneer_Valley_Photovoltaics_Cooperative_aka_PV_Squared&oldid=349764"

215

Federal Tax Incentives for PV: Potential Implications for Program Design  

E-Print Network (OSTI)

than purchase price In cases where PV programs providethe purchase price in an arms-length transaction Most PVprice, the grant is still considered to be from the PV

Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

216

Loan Guarantees for Three California PV Solar Plants Expected...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Guarantees for Three California PV Solar Plants Expected to Create 1,400 Jobs Loan Guarantees for Three California PV Solar Plants Expected to Create 1,400 Jobs June 30, 2011...

217

Austin Energy - Residential Solar PV Rebate Program (Texas) ...  

Open Energy Info (EERE)

for the fiscal year ending September 30, 2004. For 2005, 2,000,000 was budgeted for solar PV rebates and 500,000 for PV installations on municipal buildings. For 2006, the...

218

NREL PV System Performance and Standards Technical Progress  

DOE Green Energy (OSTI)

This paper presents a brief overview of the status and accomplishments during Fiscal Year (FY)2004 of the Photovoltaic (PV) System Performance & Standards Subtask, which is part of PV Systems Engineering Project (a joint NREL-Sandia project).

Osterwald, C. R.

2005-01-01T23:59:59.000Z

219

The Open PV Project | Open Energy Information  

Open Energy Info (EERE)

The Open PV Project The Open PV Project Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Open PV Project Agency/Company /Organization: NREL Sector: Energy Focus Area: Solar, - Solar PV Topics: Background analysis, Market analysis Resource Type: Dataset, Online calculator, Software/modeling tools User Interface: Website Website: openpv.nrel.gov/about Country: United States Web Application Link: openpv.nrel.gov/ Cost: Free OpenEI Keyword(s): Featured UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

PV Odds & Ends by John Wiles  

E-Print Network (OSTI)

are installed in a manner that meets the re- quirements of the National Electrical Code (NEC­NFPA 70). However the PV installer because NEC Section 110.3(B) requires that the instructions and labels on listed members), users, NFPA Code-Making Panel members, IBEW, laboratories, government agen- cies, universities

Johnson, Eric E.

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

All Solar PV | Open Energy Information  

Open Energy Info (EERE)

All Solar PV All Solar PV Jump to: navigation, search Logo: All Solar PV Name All Solar PV Address 1407-4-105 Century East,Daliushu Road Place Beijing, China Sector Solar Product Solar Energy Products Year founded 2004 Phone number 86-010-52006592 Website http://www.allsolarpv.com/ Coordinates 39.904667°, 116.408198° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.904667,"lon":116.408198,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

222

Rooftop PV Data for Better Energy Prediction Models  

Science Conference Proceedings (OSTI)

... New generations of photovoltaic (PV) roofing products utilize designs that ... Finally, the researchers are taking solar radiation measurements at the ...

2011-04-26T23:59:59.000Z

223

Incentives as a Tool for Stimulating PV Market Growth  

SciTech Connect

This paper summarizes several studies analyzing consumer incentives for the grid-tied domestic photovoltaic (PV) market.

Herig, C.

2000-01-01T23:59:59.000Z

224

Power Systems Engineering Research Center Modeling, Analysis and Deployment of High PV  

E-Print Network (OSTI)

and about 125 rooftop residential PV systems and two large scale PV systems. The total installed PV capacity electronics and grid integration of renew- able resources mainly solar PV and wind. Dr. Ayyanar received

Van Veen, Barry D.

225

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

precision machining technology, automated machining and manufacturing technology, welding, photonics technology, microelectromechanical systems (MEMS), and testing and...

226

Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report  

DOE Green Energy (OSTI)

The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

NONE

1997-03-01T23:59:59.000Z

227

Role of Polycrystalline Thin-Film PV Technologies in Competitive PV Module Markets: Preprint  

DOE Green Energy (OSTI)

This paper discusses the developments in thin-film PV technologies and provides an outlook on future commercial module efficiencies achievable based on today's knowledge about champion cell performance.

von Roedern, B.; Ullal, H. S.

2008-05-01T23:59:59.000Z

228

Recent progress in the photovoltaic manufacturing technology project (PVMaT)  

DOE Green Energy (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) Project was initiated in 1990 to help the US photovoltaic (PV) industry extend its world leadership role in manufacturing and commercially developing PV modules and systems. It is being conducted in several phases, staggered to support industry progress. The four most recently awarded subcontracts (Phase 2B) are now completing their first year of research. They include two subcontracts on CdTe, one on Spheral Solar[trademark] Cells, and one on cast polysilicon. These subcontracts represent new technology additions to the PVMaT Project. Subcontracts initiated in earlier phases are nearing completion, and their progress is summarized. An additional phase of PVMaT, Phase 4A, is being initiated which will emphasize product-driven manufacturing research and development. The intention of Phase 4A is to emphasize improvement and cost reduction in the manufacture of full-system PV products. The work areas may include, but are not limited to, issues such as improvement of module manufacturing processes; system and system component packaging, integration, manufacturing, and assembly; product manufacturing flexibility; and balance-of-system development with the goal of product manufacturing improvements.

Witt, C.E.; Mitchell, R.L.; Thomas, H. (National Renewable Energy Lab., Golden, CO (United States)); Herwig, L.O. (USDOE, Washington, DC (United States)); Ruby, D.S. (Sandia National Labs., Albuquerque, NM (United States)); Sellers, R.

1994-12-09T23:59:59.000Z

229

Interconnecting PV on New York City's Secondary Network  

E-Print Network (OSTI)

66 IAEI NEWS January.February 2007 www.iaei.org inspectors demand more answers Perspectives on PV A series of articles on photovoltaic (PV) power systems and the National Electrical Code Inspectors DemandPVsystemorinspectingsuchasystem, therearemanynewfeaturesthatareworthquestioning.Herearesome of the questions that inspectors have raised via e-mail, telephone calls, andduringmyPV

230

November 21, 2000 PV Lesson Plan 2 Sample Questions & Answers  

E-Print Network (OSTI)

to include the effects of shadowing on solar PV the multilayer perceptrons feed forward network and the back for the neural network is received by In real operating conditions, solar PV arrays are connected measurement to predict the shadow effects on the solar PV arrays for long term assumed linearly proportional to solar

Oregon, University of

231

November 21, 2000 PV Lesson Plan 2 Solar Electric Arrays  

E-Print Network (OSTI)

on innovations in technology that drive PV industry growth. The NCPV is directed to use U.S. national laboratories and universities to accelerate PV as a viable energy option in the United States. #12;Sustainable generations to meet their own needs. ­ UN Bruntland Commission Our Focus: Making PV More Sustainable

Oregon, University of

232

High Resolution PV Power Modeling for Distribution Circuit Analysis  

DOE Green Energy (OSTI)

NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

Norris, B. L.; Dise, J. H.

2013-09-01T23:59:59.000Z

233

Distribution System Analysis Tools for Studying High Penetration of PV  

E-Print Network (OSTI)

Distribution System Analysis Tools for Studying High Penetration of PV with Grid Support Features Electric Energy System #12;#12;Distribution System Analysis Tools for Studying High Penetration of PV project titled "Distribution System Analysis Tools for Studying High Penetration of PV with Grid Support

234

Plug and Play Components for Building-Integrated PV Systems: Phase I--Final Report, 20 February 2002--19 February 2003  

Science Conference Proceedings (OSTI)

This report describes the development by RWE Schott Solar, Inc., of innovative new products to facilitate the broad use of its PV systems in the current markets. RWE manufactures and sells the 300-watt ASE-300 PV module and also provides complete photovoltaic system engineering, design, and turnkey PV system installation services. RWE Schott Solar has many years of experience designing PV arrays and installing them on flat roofs and pitched roofs, and had plans to improve these designs. Specifically, wind-tunnel testing and analyses were needed for the new flat-roof PV array mounting system that avoids roof penetrations. In addition, to simplify large grid-tied PV systems for flat-roof applications, the company's line of wiring junction boxes needed to be updated with new components and higher-power multi-circuit configurations. For pitched-roof residential applications, testing was planned to determine the holding power of three different fasteners in a wide range of wood-sheathing types found in residential construction to help optimize fastening methods. A device for connecting PV to the grid at a meter socket was innovated and is also being developed.

Russell, M. C.

2004-07-01T23:59:59.000Z

235

The President's Manufacturing Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

The President's The President's Manufacturing Initiative Manufacturing Initiative Roadmap Workshop on Roadmap Workshop on Manufacturing R&D for Manufacturing R&D for the Hydrogen Economy the Hydrogen Economy Washington, D.C. Washington, D.C. July 13, 2005 July 13, 2005 Dale Hall Dale Hall Acting Chair, Interagency Working Group on Acting Chair, Interagency Working Group on Manufacturing Research and Development Manufacturing Research and Development National Science and Technology Council National Science and Technology Council and and Director, Manufacturing Engineering Laboratory Director, Manufacturing Engineering Laboratory National Institute of Standards and Technology National Institute of Standards and Technology U.S. Department of Commerce U.S. Department of Commerce

236

Manufacturing Day 2012  

Science Conference Proceedings (OSTI)

... City, I had the opportunity to visit GAL Manufacturing Corp., an elevator parts manufacturer in the Bronx, right down the road from Yankee Stadium. ...

2013-02-28T23:59:59.000Z

237

Microelectronics Manufacturing Infrastructure  

Science Conference Proceedings (OSTI)

... But the manufacturing infrastructure is aging. ... to create an integrated infrastructure for manufacturing ... will enhance the value and utility of portable ...

2011-10-19T23:59:59.000Z

238

Development of A Fully Integrated PV System for Residential Applications: PVMaT5a Final Report, 18 December 2001  

DOE Green Energy (OSTI)

This report describes both the Utility Power Group (UPG), a wholly owned subsidiary of Kyocera Solar, Inc., and Xantrex Technology Inc., have designed, assembled, and tested a new photovoltaic (PV) power system for residential rooftops to meet the goal of a readily manufacturable product that will increase US domestic PV power system production and installed capacity, by reducing the total installed cost and increasing the reliability of residential rooftop mounted PV power systems. A new factory pre-fabricated PV array system was developed, and 80 have been installed on the residential rooftops using standard metal parts. The direct material and labor cost of the array installation has been reduced to $3.79 per square foot for a 2400W installation. A modular, maintenance free, battery-based Power Unit and Energy Storage Unit (power conditioning and control) have also been developed. The design, fabrication, and testing have been completed for two prototypes of this system. These products have been evaluated for their structural integrity, electrical performance, reliability, cost, and manufacturability. The direct material and labor cost of the Power Unit has been reduced to $0.34 per watt. The 13 kW-hr Energy Storage Unit (ESU) has been UL listed.

Oatman, J.; West, R.

2002-10-01T23:59:59.000Z

239

NREL PV AR&D 11th review meeting, May 13--15, 1992, Denver Marriott City Center, Denver, Colorado. Photovoltaic Advanced Research and Development Project  

DOE Green Energy (OSTI)

This is a collection of abstracts from papers presented at the National Renewable Energy Laboratory (NREL) Photovoltaic (PV) research and development review meeting held May 1992. Subject areas covered include solar cell and solar module manufacturing and development, materials, polycrystalline thin films, applications, amorphous silicon, solar cell performance and testing, crystalline silicon and other photovoltaic and safety perspectives. (GHH)

Not Available

1992-06-01T23:59:59.000Z

240

Advanced development of PV encapsulants. Semiannual technical progress report, June 30, 1995--December 31, 1995  

DOE Green Energy (OSTI)

The goals of the NREL PVMaT program are, among others, to reduce module manufacturing costs and improve the quality, and we might add here the reliability, of manufactured PV products. One component critical to the service life of PV modules is the useful life of the EVA resin-based encapsulant which is employed extensively by module manufacturers on a worldwide basis. This pottant has been in commercial use since 1982, and over that time has proven to be a dependable material from the standpoint of production, module fabrication, and end-use. But despite the widespread acceptance of the EVA resin-based A9918 and similar formulations for PV encapsulation, some module producers, end-users, and investigators have reported a yellowing or browning phenomenon with EVA resin-based encapsulants in the field. Wile the incidence of this discoloration/degradation appeared at comparatively few sites at the time that this present program was conceived, it raised serious concern as to the long term reliability of EVA resin-based encapsulation systems. Consequently, under the NREL PVMaT program, Springborn Laboratories proposed a comprehensive study of the EVA aging and discoloration problem and its possible solution(s). During the first year of this program, accelerated U.V. aging methods were surveyed. On careful review of the various types of accelerated U.V. aging equipment available, an Atlas Ci35A Weather-Ometer Xenon Exposure System was selected as appropriate equipment for this work. The following report summarizes how this accelerated aging technique has been used to develop a family of solutions to the discoloration problem, the most significant of which is a series of EVA-based encapsulants which are resistant to discoloration.

Holley, W.A. [Springborn Laboratories, Inc., Enfield, CT (United States)

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

PV Solar Planet | Open Energy Information  

Open Energy Info (EERE)

Planet Planet Jump to: navigation, search Logo: PV Solar Planet Name PV Solar Planet Address 5856 S. Garland Way Place Littleton, Colorado Zip 80123 Sector Solar Product Sales of solar laminate Website http://www.pvsolarplanet.com/ Coordinates 39.610743°, -105.105245° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.610743,"lon":-105.105245,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

242

Materials Testing for PV Module Encapsulation  

DOE Green Energy (OSTI)

Important physical properties of materials used in PV module packaging are presented. High-moisture-barrier, high-resistivity, adhesion-promoting coatings on polyethyl-ene terephthalate (PET) films have been fabricated and characterized for use in PV module application and com-pared to standard polymer backsheet materials. Ethylene vinyl acetate (EVA) and an encapsulant replacement for EVA are studied for their water vapor transmission rate (WVTR) and adhesion properties. WVTR, at test conditions up to 85C/100% relative humidity (RH), and adhesion val-ues are measured before and after filtered xenon arc lamp ultraviolet (UV) exposure and damp heat exposure at 85C/85% RH. Water ingress is quantified by weight gain and embedded humidity sensors.

Jorgensen, G.; Terwilliger, K.; Glick, S.; Pern, J.; McMahon, T.

2003-05-01T23:59:59.000Z

243

Locating Chicago Manufacturing  

E-Print Network (OSTI)

and engineering.3 The Chicago Manufacturing Renaissance Council itself is a unique public-private partnership

Illinois at Chicago, University of

244

Manufacturing Simulation Portal  

Science Conference Proceedings (OSTI)

... in planning by robots in scenarios relevant to more. ... SUSTAINABLE MANUFACTURING PROCESS ANALYSIS APPLICATIONS DEVELOPMENT. ...

2012-12-27T23:59:59.000Z

245

Topic: Sustainable Manufacturing  

Science Conference Proceedings (OSTI)

... Project. Sustainable Manufacturing Program. Sustainability Characterization for Product Assembly Processes Project. Testbed ...

2012-09-19T23:59:59.000Z

246

Microsoft Word - PV Report v20.doc  

Gasoline and Diesel Fuel Update (EIA)

A A EIA Task Order No. DE-DT0000804, Subtask 3 Photovoltaic (PV) Cost and Performance Characteristics for Residential and Commercial Applications Final Report August 2010 Prepared for: Office of Integrated Analysis and Forecasting U.S. Energy Information Administration Prepared by: ICF International Contact: Robert Kwartin T: (703) 934-3586 E: rkwartin@icfi.com ii Table of Contents Executive Summary ...................................................................................................................... v 1. Introduction ...........................................................................................................................1 1.1 Objective ....................................................................................................................1

247

Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Energy Efficiency » Manufacturing Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Manufacturing is the lifeblood of the American economy -- providing jobs for hard working American families and helping increase U.S. competitiveness in the global marketplace. The Energy Department is committed to growing America's manufacturing industry by helping companies become leaders in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The

248

Photovoltaic manufacturing: Present status, future prospects, and research needs  

Science Conference Proceedings (OSTI)

In May 2010 the United States National Science Foundation sponsored a two-day workshop to review the state-of-the-art and research challenges in photovoltaic (PV) manufacturing. This article summarizes the major conclusions and outcomes from this workshop, which was focused on identifying the science that needs to be done to help accelerate PV manufacturing. A significant portion of the article focuses on assessing the current status of and future opportunities in the major PV manufacturing technologies. These are solar cells based on crystalline silicon (c-Si), thin films of cadmium telluride (CdTe), thin films of copper indium gallium diselenide, and thin films of hydrogenated amorphous and nanocrystalline silicon. Current trends indicate that the cost per watt of c-Si and CdTe solar cells are being reduced to levels beyond the constraints commonly associated with these technologies. With a focus on TW/yr production capacity, the issue of material availability is discussed along with the emerging technologies of dye-sensitized solar cells and organic photovoltaics that are potentially less constrained by elemental abundance. Lastly, recommendations are made for research investment, with an emphasis on those areas that are expected to have cross-cutting impact.

Wolden, C.A.; Fthenakis, V.; Kurtin, J.; Baxter, J.; Repins, I.; Shasheen, S.; Torvik, J.; Rocket, A.; Aydil, E.

2011-03-29T23:59:59.000Z

249

Development of a dispatchable PV peak shaving system. Final report on PV:BONUS Phase 2 activities  

DOE Green Energy (OSTI)

In July 1993, the Delmarva Power and Light Company (now Conectiv, Inc.) was awarded a contract for the development of a Dispatchable Photovoltaic Peak Shaving System under the US Department of Energy PV:BONUS Program. The rationale for the dispatchable PV peak shaving system is based on the coincidence between the solar resource and the electrical load in question. Where poor coincidence exists, a PV array by itself does little to offset peak demands. However, with the addition of a relatively small amount of energy storage, the energy from the PV array can be managed and the value of the PV system increases substantially. In Phase 2, Delmarva Power continued the refinement of the system deployed in Phase 1. Four additional dispatchable PV peak shaving systems were installed for extended testing and evaluation at sites in Delaware, Maryland, Wisconsin and North Carolina. A second type of system that can be used to provide back-up power as well as peak shaving was also developed in Phase 2. This PV-UPS system used a packaging approach nearly identical to the PV peak shaving system, although there were significant differences in the design of the power electronics and control systems. Conceptually, the PV-UPS system builds upon the idea of adding value to PV systems by increasing functionality. A prototype of the PV-UPS system was installed in Delaware for evaluation near the end of the contract period.

Ferguson, W.D. [Conectiv, Inc., Wilmington, DE (United States); Nigro, R.M. [Applied Energy Group, Inc., Hauppauge, NY (United States)

1999-01-20T23:59:59.000Z

250

Heliostat manufacturing analysis  

DOE Green Energy (OSTI)

Results of a manufacturing cost analysis of heliostats are presented. The two primary objectives are: (1) providing a base for uniform cost analysis, and (2) providing facility and manufacturing cost estimates for planning purposes in the development of a heliostat industry. The manufacturing analysis provides materials, labor, equipment, and facility costs for each step in the manufacturing process. Detailed procedures are presented for cost estimates. These include estimating worksheets for each component of the manufacturing costs.

Drumheller, K.

1978-10-01T23:59:59.000Z

251

Cast polycrystalline silicon photovoltaic cell and module manufacturing technology improvements. Annual subcontract report, 1 December 1993--30 November 1994  

DOE Green Energy (OSTI)

This report describes work performed under a 3-y contract to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance, and expand Solarex`s commercial production capacities. Specific objectives are to reduce manufacturing cost for polycrstalline silicon PV modules to less than $1.20/W and to increase manufacturing capacity by a factor of 3. Solarex is working on casting, wire saws, cell process, module assembly, frameless module development, and automated cell handling.

Wohlgemuth, J. [Solarex Corp., Frederick, MD (United States)

1995-09-01T23:59:59.000Z

252

Cast polycrystalline silicon photovoltaic module manufacturing technology improvements. Annual subcontract report, January 1, 1995--December 31, 1995  

DOE Green Energy (OSTI)

The objective of this three-year program is to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance and expand Solarex`s commercial production capacities. Two specific objectives of this program are to reduce the manufacturing cost for polycrystalline silicon PV modules to less than $1.20/watt and to increase the manufacturing capacity by a factor of three.

Wohlgemuth, J. [Amoco/Enron Solar, Frederick, MD (United States)

1996-06-01T23:59:59.000Z

253

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Recognition Awards The AMTTP won Sandia's Silver President's Quality Award and the Manufacturing Science and Technology Center's Gold Recognition and Team Award. Letters of...

254

Advanced Manufacturing Office: Advanced Manufacturing Partnership  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

R&D projects, supporting manufacturing infrastructure, and facilitating job creation. These actions save energy and provide benefits to U.S. industry and the national...

255

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

MEST & SIT Skills Standard Technical Institute Partners Training Areas Program Recognition Partners Contacts News Articles Advanced Manufacturing Trades Training Program (AMTTP)...

256

PV Installation Labor Market Analysis and PV JEDI Tool Developments (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

PV Installation Labor Market Analysis PV Installation Labor Market Analysis and PV JEDI Tool Developments Barry Friedman NREL Strategic Energy Analysis Center May 16, 2012 World Renewable Energy Forum Denver, Colorado NREL/PR-6A20-55130 NATIONAL RENEWABLE ENERGY LABORATORY Disclaimer 2 DISCLAIMER AGREEMENT These information ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy LLC ("Alliance") for the U.S. Department of Energy (the "DOE"). It is recognized that disclosure of these Data is provided under the following conditions and warnings: (1) these Data have been prepared for reference purposes only; (2) these Data consist of forecasts, estimates or assumptions made on a best-

257

Challenge to Move from 'One Size Fits All' to PV Modules the Customer Needs: Preprint  

DOE Green Energy (OSTI)

Historically, PV companies requested a single qualification test for a single product. As the market has grown, there have been increasing opportunities for companies to differentiate their products while still maintaining high manufacturing volumes of each product. At the same time, as PV is deployed in an increasingly broad range of conditions, modules need to be able to withstand a wide range of stresses. In some cases, targeting a specific deployment condition may allow reduction of product cost. Realizing this opportunity will require the ability to confidently predict long-term performance based on accelerated tests and known weather conditions. By working together, the community can most quickly develop tests that identify which products perform well under which conditions. This paper discusses some of the challenges of predicting long-term PV performance, including the wide range of stresses that may be encountered, the variability of the stresses from moment to moment, the complexity of some degradation mechanisms, and the dependence of accelerated testing on module geometry. The paper also describes two international projects that deal with location-specific durability evaluation and long-term module performance.

Kurtz, S.; Wohlgemuth, J.; Hacke, P.; Bosco, N.; Kempe, M.; Smith, R.; Packard, C. E.

2011-09-01T23:59:59.000Z

258

Design, fabrication, and certification of advanced modular PV power systems. Final technical progress report  

DOE Green Energy (OSTI)

Solar Electric Specialties Company (SES) has completed a two and a half year effort under the auspices of the US Department of Energy (DOE) PVMaT (Photovoltaic Manufacturing Technology) project. Under Phase 4A1 of the project for Product Driven System and Component Technology, the SES contract ``Design, Fabrication and Certification of Advanced Modular PV Power Systems`` had the goal to reduce installed system life cycle costs through development of certified (Underwriters Laboratories or other listing) and standardized prototype products for two of the product lines, MAPPS{trademark} (Modular Autonomous PV Power Supply) and Photogensets{trademark}. MAPPS are small DC systems consisting of Photovoltaic modules, batteries and a charge controller and producing up to about a thousand watt-hours per day. Photogensets are stand-alone AC systems incorporating a generator as backup for the PV in addition to a DC-AC inverter and battery charger. The program tasks for the two-year contract consisted of designing and fabricating prototypes of both a MAPPS and a Photogenset to meet agency listing requirements using modular concepts that would support development of families of products, submitting the prototypes for listing, and performing functionality testing at Sandia and NREL. Both prototypes were candidates for UL (Underwriters Laboratories) listing. The MAPPS was also a candidate for FM (Factory Mutual) approval for hazardous (incendiary gases) locations.

Lambarski, T.; Minyard, G. [Solar Electric Specialties Co., Willits, CA (United States)

1998-10-01T23:59:59.000Z

259

Design, Fabrication, and Certification of Advanced Modular PV Power Systems Final Technical Progress Report  

DOE Green Energy (OSTI)

This report describes the overall accomplishments and benefits of Solar Electric Specialties Co. (SES) under this Photovoltaic Manufacturing Technology (PVMaT) subcontract. SES addressed design issues related to their modular autonomous PV power supply (MAPPS) and a mobile photogenset. MAPPS investigations included gel-cell batteries mounted horizontally; redesign of the SES power supply; modified battery enclosure for increased safety and reduced cost; programmable, interactive battery charge controllers; and UL and FM listings. The photogenset systems incorporate generators, battery storage, and PV panels for a mobile power supply. The unit includes automatic oil-change systems for the propane generators, collapsible array mounts for the PV enclosure, and internal stowage of the arrays. Standardizing the products resulted in product lines of MAPPS and Photogensets that can be produced more economically and with shorter lead times, while increasing product quality and reliability. Product assembly and quality control have also been improved and streamlined with the development of standardized assembly processes and QC testing procedures. SES offers the UL-listed MAPPS at about the same price as its previous non-standardized, unlisted products.

Lambarski, T.; Minyard, G. (Solar Electric Specialties Co., Willits, California)

1998-10-06T23:59:59.000Z

260

Blade Manufacturing Improvement: Remote Blade Manufacturing Demonstration  

DOE Green Energy (OSTI)

The objective of this program was to investigate manufacturing improvements for wind turbine blades. The program included a series of test activities to evaluate the strength, deflection, performance, and loading characteristics of the prototype blades. The original contract was extended in order to continue development of several key blade technologies identified in the project. The objective of the remote build task was to demonstrate the concept of manufacturing wind turbine blades at a temporary manufacturing facility in a rural environment. TPI Composites successfully completed a remote manufacturing demonstration in which four blades were fabricated. The remote demonstration used a manufacturing approach which relied upon material ''kits'' that were organized in the factory and shipped to the site. Manufacturing blades at the wind plant site presents serious logistics difficulties and does not appear to be the best approach. A better method appears to be regional manufacturing facilities, which will eliminate most of the transportation cost, without incurring the logistical problems associated with fabrication directly onsite. With this approach the remote facilities would use commonly available industrial infrastructure such as enclosed workbays, overhead cranes, and paved staging areas. Additional fatigue testing of the M20 root stud design was completed with good results. This design provides adhesive bond strength under fatigue loading that exceeds that of the fastener. A new thru-stud bonding concept was developed for the M30 stud design. This approach offers several manufacturing advantages; however, the test results were inconclusive.

ASHWILL, THOMAS D.

2003-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Blade Manufacturing Improvement: Remote Blade Manufacturing Demonstration  

SciTech Connect

The objective of this program was to investigate manufacturing improvements for wind turbine blades. The program included a series of test activities to evaluate the strength, deflection, performance, and loading characteristics of the prototype blades. The original contract was extended in order to continue development of several key blade technologies identified in the project. The objective of the remote build task was to demonstrate the concept of manufacturing wind turbine blades at a temporary manufacturing facility in a rural environment. TPI Composites successfully completed a remote manufacturing demonstration in which four blades were fabricated. The remote demonstration used a manufacturing approach which relied upon material ''kits'' that were organized in the factory and shipped to the site. Manufacturing blades at the wind plant site presents serious logistics difficulties and does not appear to be the best approach. A better method appears to be regional manufacturing facilities, which will eliminate most of the transportation cost, without incurring the logistical problems associated with fabrication directly onsite. With this approach the remote facilities would use commonly available industrial infrastructure such as enclosed workbays, overhead cranes, and paved staging areas. Additional fatigue testing of the M20 root stud design was completed with good results. This design provides adhesive bond strength under fatigue loading that exceeds that of the fastener. A new thru-stud bonding concept was developed for the M30 stud design. This approach offers several manufacturing advantages; however, the test results were inconclusive.

ASHWILL, THOMAS D.

2003-05-01T23:59:59.000Z

262

Real Power and Reactive Power Control of a Three-Phase Single-Stage-PV System and PV voltage Stability  

Science Conference Proceedings (OSTI)

Grid-connected photovoltaic (PV) systems with power electronic interfaces can provide both real and reactive power to meet power system needs with appropriate control algorithms. This paper presents the control algorithm design for a three-phase single-stage grid-connected PV inverter to achieve either maximum power point tracking (MPPT) or a certain amount of real power injection, as well as the voltage/var control. The switching between MPPT control mode and a certain amount of real power control mode is automatic and seamless. Without the DC-to-DC booster stage, PV DC voltage stability is an important issue in the control design especially when the PV inverter is operating at maximum power point (MPP) with voltage/var control. The PV DC voltage collapse phenomenon and its reason are discussed. The method based on dynamic correction of the PV inverter output is proposed to ensure PV DC voltage stability. Simulation results of the single-stage PV system during system disturbances and fast solar irradiation changes confirm that the proposed control algorithm for single-stage PV inverters can provide appropriate real and reactive power services and ensure PV DC voltage stability during dynamic system operation and atmospheric conditions.

Li, Huijuan [ORNL; Xu, Yan [ORNL; Adhikari, Sarina [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Irminger, Philip [ORNL

2012-01-01T23:59:59.000Z

263

Gulf Power - Solar PV Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gulf Power - Solar PV Program Gulf Power - Solar PV Program Gulf Power - Solar PV Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $10,000/installation Program Info State Florida Program Type Utility Rebate Program Rebate Amount $2/watt Provider Energy Efficiency '''''All funding has currently been reserved and new applications are no longer being accepted. See Gulf Power's [http://www.gulfpower.com/renewable/solarElectricity.asp Solar PV] web site for more information.''''' Gulf Power offers a Solar PV rebate to residential and commercial customers. Gulf Power will provide a $2/watt rebate with a $10,000 per system maximum. In addition, Gulf Power has a Solar for Schools program, providing capital funding for PV systems. Gulf Power has worked with the Florida Solar Energy

264

Community Renewable Energy Webinar: Developing PV Projects | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Renewable Energy Webinar: Developing PV Projects Community Renewable Energy Webinar: Developing PV Projects Community Renewable Energy Webinar: Developing PV Projects January 15, 2013 1:00PM MST Webinar This webinar will take place from 1-2:15 p.m. Mountain Standard Time. It will provide information on how the cities of Tucson, Arizona, and Minneapolis, Minnesota, utilized requests for proposals (RFPs) and power purchase agreements (PPAs) to develop photovoltaic (PV) projects. The webinar will feature two presentations, highlighted below. RFIs, RFPs, and RFQs for PV: Finding the Right Solar Contractors for Your Community Choosing vendors for solar projects requires a careful look since you may well be dealing with them for 20 years ... or more. The City of Tucson will highlight its experiences with city-owned PV projects as well as a PPA

265

Training on PV Systems: Design, Construction, Operation and Maintenance |  

Open Energy Info (EERE)

Training on PV Systems: Design, Construction, Operation and Maintenance Training on PV Systems: Design, Construction, Operation and Maintenance Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Training on PV Systems: Design, Construction, Operation and Maintenance Agency/Company /Organization: Leonardo Energy Sector: Energy Focus Area: Renewable Energy, Solar Website: www.leonardo-energy.org/node/5948 Training on PV Systems: Design, Construction, Operation and Maintenance Screenshot References: PV Training [1] Overview "A free series of six webinars will be delivered to provide the required knowledge to design a high performance photovoltaic (PV) installation, entering into economic evaluation and project cash-flow. Additionally, very practical aspects such as the construction, start-up, quality management and testing will be reviewed. Plant operation is described in detail, with

266

CdTe PV: Real and Perceived EHS Risks  

DOE Green Energy (OSTI)

As CdTe photovoltaics reached commercialization, questions have been raised about potential cadmium emissions from CdTe PV modules. Some have attacked the CdTe PV technology as unavoidably polluting the environment, and made comparisons of hypothetical emissions from PV modules to cadmium emissions from coal fired power plants. This paper gives an overview of the technical issues pertinent to these questions and further explores the potential of EHS risks during production, use and decommissioning of CdTe PV modules. The following issues are discussed: (a) The physical and toxicological properties of CdTe, (b) comparisons of Cd use in CdTe PV with its use in other technologies and products, and the (c) the possibility of CdTe releases from PV modules.

Fthenakis, V.; Zweibel, K.

2003-05-01T23:59:59.000Z

267

21-kW Thin-Film PV Technology Validation -- An NREL/Solar Energy Centre of India MOU Cooperative Project  

SciTech Connect

This paper summarizes findings during a one-week (27-31 October 2003) site visit to the Thin-Film Technology Test Bed at India's Solar Energy Centre (SEC) near New Delhi. The U.S. and Indian governments signed a Memorandum of Understanding in March 2000 to undertake a 50-50 cost-shared 21-kW thin-film PV technology validation project to evaluate the performance of thin-film photovoltaic (PV) modules under Indian climatic conditions. This project benefits Indian researchers by giving them experience with cost-effective PV materials, and it benefits the United States because data will be sent to the appropriate U.S. thin-film PV manufacturers for evaluation and analysis. During the visit, NREL personnel engaged in technical discussions regarding thin-film PV technologies with Ministry of Non-Conventional Energy Sources engineers and scientists. Issues included inspecting the newly constructed arrays, discussing better methods of electrically loading the PV arrays, taking I-V traces, and gathering baseline I-V data.

McNutt, P. F.; Ullal, H. S.

2005-01-01T23:59:59.000Z

268

21-kW Thin-Film PV Technology Validation -- An NREL/Solar Energy Centre of India MOU Cooperative Project  

DOE Green Energy (OSTI)

This paper summarizes findings during a one-week (27-31 October 2003) site visit to the Thin-Film Technology Test Bed at India's Solar Energy Centre (SEC) near New Delhi. The U.S. and Indian governments signed a Memorandum of Understanding in March 2000 to undertake a 50-50 cost-shared 21-kW thin-film PV technology validation project to evaluate the performance of thin-film photovoltaic (PV) modules under Indian climatic conditions. This project benefits Indian researchers by giving them experience with cost-effective PV materials, and it benefits the United States because data will be sent to the appropriate U.S. thin-film PV manufacturers for evaluation and analysis. During the visit, NREL personnel engaged in technical discussions regarding thin-film PV technologies with Ministry of Non-Conventional Energy Sources engineers and scientists. Issues included inspecting the newly constructed arrays, discussing better methods of electrically loading the PV arrays, taking I-V traces, and gathering baseline I-V data.

McNutt, P. F.; Ullal, H. S.

2005-01-01T23:59:59.000Z

269

Consortia Focused on Photovoltaic R&D, Manufacturing, and Testing: A Review of Existing Models and Structures  

DOE Green Energy (OSTI)

As the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program prepares to initiate a new cost-shared research and development (R&D) effort on photovoltaic (PV) manufacturing, it is useful to review the experience to date with consortia focused on PV R&D, manufacturing, and testing. Information was gathered for this report by conducting interviews and accessing Web sites of 14 U.S. consortia and four European consortia, each with either a primary focus on or an emerging interest in PV technology R&D, manufacturing, or testing. Additional input was collected from several workshops held by the DOE and National Academy of Sciences (NAS) in 2009, which examined the practical steps -- including public-private partnerships and policy support -- necessary to enhance the United States' capacity to competitively manufacture photovoltaics. This report categorizes the 18 consortia into three groups: university-led consortia, industry-led consortia, and manufacturing and testing facilities consortia. The first section summarizes the organizations within the different categories, with a particular focus on the key benefits and challenges for each grouping. The second section provides a more detailed overview of each consortium, including the origins, goals, organization, membership, funding sources, and key contacts. This survey is a useful resource for stakeholders interested in PV manufacturing R&D, but should not imply endorsement of any of these groups.

Coggeshall, C.; Margolis, R. M.

2010-03-01T23:59:59.000Z

270

Ultra Accelerated Testing of PV Module Components  

DOE Green Energy (OSTI)

Using concentrated natural sunlight at the NREL High Flux Solar Furnace, we have exposed several materials to acceleration factors of up to 400 times the normal outdoor UV exposure dose. This accelerated rate allows the exposure of materials such that a year of outdoor exposure can be simulated in about 5 hours. We have studied the solarization of cerium containing glass, the degradation of ethylene vinyl acetate laminated between borosilicate glass, and the yellowing of standard polystyrene test coupons. The first two candidates are of interest to the photovoltaics (PV) program, and the last candidate material is a widely used dosimeter for ultra violet (UV) exposure in accelerated weathering chambers

Pitts, J. R.; King, D. E.; Bingham, C.; Czanderna, A. W.

1998-10-28T23:59:59.000Z

271

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating...  

Open Energy Info (EERE)

is in addition to the existing standards for residential and commercial PV systems. Local solar installers have reported that being able to refer permitting officials to these MAG...

272

Aspen Solar Pioneer Program - PV Production Incentive (Colorado...  

Open Energy Info (EERE)

Page Edit with form History Share this page on Facebook icon Twitter icon Aspen Solar Pioneer Program - PV Production Incentive (Colorado) This is the approved revision...

273

Instrumentation for Evaluating PV System Performance Losses from Snow: Preprint  

DOE Green Energy (OSTI)

Describes the use of a pyranometer with a heater and a digital camera to determine losses related to snow for PV systems located at National Renewable Energy Laboratory.

Marion, B.; Rodriguez, J.; Pruett, J.

2009-04-01T23:59:59.000Z

274

PV integration in the Bonneville Power Administration balancing authority area.  

E-Print Network (OSTI)

??In this study I investigate the accuracy and necessity of the Bonneville Power Administration (BPA) PV integration tariff, which was instituted in 2011. Note that, (more)

Schumaker, Adam

2012-01-01T23:59:59.000Z

275

Solar America Initiative (SAI) PV Technology Incubator Program: Preprint  

DOE Green Energy (OSTI)

The SAI PV Technology Incubator Program is designed to accelerate technologies/prodesses that have successfully demonstrated a proof-of-concept/process in a laboratory.

Keyes, B.; Symko-Davies, M.; Mitchell, R.; Ullal H.; von Roedern, B.; Greene, L.; Stephens, S.

2008-05-01T23:59:59.000Z

276

Novel Control and Harmonics Impact of PV Solar Farms.  

E-Print Network (OSTI)

??This thesis presents a novel application of Photovoltaic (PV) solar system inverter, both during night and day, as a dynamic reactive power compensator STATCOM. This (more)

Das, Byomakesh

2012-01-01T23:59:59.000Z

277

NREL: News - NREL Releases New Roadmap to Reducing Solar PV ...  

NLE Websites -- All DOE Office Websites (Extended Search)

113 NREL Releases New Roadmap to Reducing Solar PV "Soft Costs" by 2020 September 25, 2013 The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) recently issued...

278

PHOTOVOLTAIC POWER SYSTEMS PROGRAMME Pico Solar PV Systems for Remote  

E-Print Network (OSTI)

A new generation of small PV systems for lighting and communication Report IEA-PVPS T9-12:2012INTERNATIONAL ENERGY AGENCY

unknown authors

2013-01-01T23:59:59.000Z

279

Overview of the PV Module Model in PVWatts (Presentation)  

DOE Green Energy (OSTI)

Overview of the PV module model. PVWatts module power estimates were compared with those using the Sandia model for three modules and data sets.

Marion, B.

2010-09-22T23:59:59.000Z

280

Large-scale Solar PV Investment Planning Studies.  

E-Print Network (OSTI)

??In the pursuit of a cleaner and sustainable environment, solar photovoltaic (PV) power has been established as the fastest growing alternative energy source in the (more)

Muneer, Wajid

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

CPS Energy - Solar PV Rebate Program (Texas) | Open Energy Information  

Open Energy Info (EERE)

Energy Commission (CEC) website. Warranties: Installer 1 year, PV Module 20 years, Inverter 5 years Expiration Date STEP extends through 2020, annual program year expiration...

282

Building Energy Software Tools Directory: PV*SOL  

NLE Websites -- All DOE Office Websites (Extended Search)

testing all the relevant physical parameters, the program automatically selects the inverter and PV array configuration. This dynamic simulation program was developed for...

283

CEFIA - Residential Solar PV Rebate Program (Connecticut) | Open...  

Open Energy Info (EERE)

project. Factors considered in calculating the rebate include: PV panel selection, inverter efficiency, system orientation and tilt, and shading on the site. Participation by...

284

CCEF - Affordable Housing Initiative Solar PV Rebate Program...  

Open Energy Info (EERE)

project. Factors considered in calculating the rebate include: PV panel selection, inverter efficiency, system orientation and tilt, and shading on the site. For multi-family...

285

Long-Term Performance of the SERF PV Systems  

SciTech Connect

This paper provides the changes in performance ratings of two photovoltaic (PV) systems located on the roof of the Solar Energy Research Facility (SERF) building at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. For the period of May 1994 to April 2002, the performance rating of the two PV systems decreased at the rate of 1% per year. Most of the changes in performance rating are attributed to changes in the performance of the PV arrays. But about a fifth of the observed changes were from the inverter not tracking the peak-power as effectively as the PV arrays aged.

Marion, B.; Adelstein, J.

2003-05-01T23:59:59.000Z

286

Most new residential solar PV projects in California ...  

U.S. Energy Information Administration (EIA)

weather; gasoline; capacity; exports; ... The solar leasing company will also usually own the renewable energy certificates (RECs) generated by the PV ...

287

Estimating Rooftop Suitability for PV: A Review of Methods, Patents...  

NLE Websites -- All DOE Office Websites (Extended Search)

assumed to be distributed throughout Puerto Rico in proportion to the population. Using solar resource data for Puerto Rico, temperature and weather data for Puerto Rico, and PV...

288

Soap Manufacturing Technology  

Science Conference Proceedings (OSTI)

Soap producers as well as anyone with an interest in soap technology will benefit from the new AOCS Press Soap Manufacturing Technology book. Soap Manufacturing Technology Surfactants and Detergents aocs articles Detergents division divisions fabric

289

Energy Use in Manufacturing  

Reports and Publications (EIA)

This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

William Gifford

2006-08-14T23:59:59.000Z

290

PV-TONS: A photovoltaic technology ontology system for the design of PV-systems  

Science Conference Proceedings (OSTI)

The impacts of climate change, the increasing demand for energy and the diminishing fossil fuel resources have resulted in the development and use of a large number of renewable energy technologies in building development. These technologies are generating ... Keywords: Climate change, Ontology, PV-system, Renewable energy, Semantic Web

F. H. Abanda; J. H. M. Tah; D. Duce

2013-04-01T23:59:59.000Z

291

Production techniques of PV's and polycrystalline PV performance analyses for permanent resistive load  

Science Conference Proceedings (OSTI)

Photovoltaic (PV) panels which are used to convert solar energy to electrical energy one of the fastest growing source on energy sector. Their efficiencies are increasing day by day with new technologies. Photovoltaic's average efficiencies are still ... Keywords: D.C. loads, energy consumption, photovoltaic, production techniques

Safak Sa?lam; Gkhan Koyi?it; Nevzat Onat

2009-07-01T23:59:59.000Z

292

Manufacturing Extension Partnership  

Science Conference Proceedings (OSTI)

... research and development programs with manufacturing and military applications including robotic deburring, automated lay up of thermoplastic ...

2009-08-25T23:59:59.000Z

293

Manufacturing Modeling and Simulation  

Science Conference Proceedings (OSTI)

... An integrated data model for manufacturing activities will be defined ... Measurement science techniques, including classic statistics, will be applied ...

2013-01-04T23:59:59.000Z

294

Technology Development and Manufacturing ...  

Science Conference Proceedings (OSTI)

... Manufacturing Tax Credits; Loan Guarantees Renewable Energy FY 11 Budget- Univ. ... Products China Philippines Czech Republic 25 30 35 ...

2013-06-11T23:59:59.000Z

295

Green Manufacturing News  

Science Conference Proceedings (OSTI)

... New MEP Advisory Board White Paper Assesses the Present and Future of American Manufacturing Release Date: 04/13/2010 ...

2010-10-27T23:59:59.000Z

296

Sustainable Manufacturing Briefing  

Science Conference Proceedings (OSTI)

... enhance their brands. Is sustainability an opportunity or cost? There is no ... demonstrate, deploy, and accredit new sustainable manufacturing ...

2012-08-29T23:59:59.000Z

297

Testimonials from Manufacturing  

Science Conference Proceedings (OSTI)

... The economic environment is difficult for Cargill Corn Milling, as it is difficult for many manufacturing companies today. ...

2013-01-30T23:59:59.000Z

298

Dynamic Model Validation of PV Inverters under Short-Circuit Conditions  

Science Conference Proceedings (OSTI)

Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of PV deployment. Residential and commercial rooftop installations are connected to the distribution network, large-scale installation PV power ... Keywords: photovoltaic, PV, dynamic model, validation, solar PV inverter, renewables

E. Muljadi, M. Singh, R. Bravo, V. Gevorgian

2013-04-01T23:59:59.000Z

299

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

12 Figure 5. Distribution of PV Electricity Generation byFigure 6. Distribution of PV Electricity Generation by MPR-Figure 5. Distribution of PV Electricity Generation by

Darghouth, Naim

2010-01-01T23:59:59.000Z

300

The Photovolatic Manufacturing Technology project (PVMaT) after three years  

SciTech Connect

The Photovoltaic Manufacturing Technology project (PVMaT) is a government/industry research and development (R&D) partnership involving joint efforts between the federal government (through the US Department of Energy [DOE]) and members of the US photovoltaic (PV) industry. The project`s goal is to assist US industry in retaining and extending its world leadership role in the manufacture and commercial development of PV components and systems. PVMaT is being carried out in three separate phases, each designed to address separate R&D requirements for achieving PVMaT goals. Phase 1 was a problem identification phase of about 3 months duration. In Phase 1, the status and needs of the US PV manufacturing industry were identified, and the development of a Phase 2 procurement responsive to the industry`s needs was begun. Phase 1 was completed in 1991. Problem solution began in 1992, under Phase 2A, when DOE awarded multiyear subcontracts. Technical accomplishments for PVMaT 2A are presented in this paper. Subcontracts were recently awarded for a second, overlapping, and similar process-specific solicitation (PVMaT 2B). The activities of these new subcontracts are also described. Two subcontracts presently comprise the Phase 3 effort. Phase 3 addresses R&D problems that are relatively common to a number of PV companies or the PV industry as a whole. A teamed research approach is being used to improve automated module manufacturing lines and encapsulation materials used in module manufacturing. The first year`s work on these subcontracts is also described in this paper.

Witt, C E; Mitchell, R L; Thomas, H [National Renewable Energy Lab., Golden, CO (United States); Herwig, L O [USDOE, Washington, DC (United States)

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Report on PV Test Sites and Test Prepared for the  

E-Print Network (OSTI)

Report on PV Test Sites and Test Protocols Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative Agreement No. DE-FC26-06NT42847 Hawai`i Distributed Energy Resource Technologies for Energy Security Revised Task 8 Deliverable PV Test Sites and Test

302

Progress of the Photovoltaic Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base: Preprint  

DOE Green Energy (OSTI)

In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubator Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment totals nearly $ 1.3 billion.

Ullal, H.; Mitchell, R.; Keyes, B.; VanSant, K.; von Roedern, B.; Symko-Davies, M.; Kane, V.

2011-07-01T23:59:59.000Z

303

Do PV Systems Increase Residential Selling Prices If So, How Can Practitioners Estimate This Increase?  

E-Print Network (OSTI)

3% of the total sales price of non-PV homes. In the absenceModels Fig. 1: CA PV home sale price premiums expressed inthe selling prices of 329 homes with PV installed in the San

Hoen, Ben

2013-01-01T23:59:59.000Z

304

New Berkeley Lab Report Tracks a Decade of PV Installed Cost Trends  

E-Print Network (OSTI)

upward pressure on PV module prices. As discussed below,and utility PV programs. Unlike module prices, which arePV installations may benefit from economies of scale, through price

Barbose, Galen

2009-01-01T23:59:59.000Z

305

The Economic Value of PV and Net Metering to Residential Customers in California  

E-Print Network (OSTI)

for some or all PV production at prices based on the statesnet excess PV generation is compensated at a price equal toexcess PV production would be compensated at a price less

Darghouth, Naim

2010-01-01T23:59:59.000Z

306

Step-Stress Accelerated Degradation Testing (SSADT) for Photovoltaic (PV) Devices and Cells (Presentation)  

DOE Green Energy (OSTI)

Presentation on step-stress accelerated degradation testing (SSADT) for photovoltaics (PV). Developed are a step-stress degradation test (SSADT) for PV reliability tests and a lifetime prediction model for PV products.

Lee, J.; Elmore, R.; Suh, C.; Jones, W.

2010-10-01T23:59:59.000Z

307

U.S. Aims for Zero-Energy: Support for PV on New Homes  

E-Print Network (OSTI)

a market segment for solar photovoltaic (PV) adoption, newProgram +$0.25/W NYSERDA Solar Electric PV Incentive Programprogram for PV in new homes, dubbed the Solar Advantage

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

308

The Economic Value of PV and Net Metering to Residential Customers in California  

E-Print Network (OSTI)

a Substantial Benefit of Solar PV, The Electricity Journal,2008. MRW & Associates. Solar PV and Retail Rate Design,and the Economics of Solar PV: Could Mandatory Time-of- Use

Darghouth, Naim

2010-01-01T23:59:59.000Z

309

AEP SWEPCO - SMART Source Solar PV Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP SWEPCO - SMART Source Solar PV Program AEP SWEPCO - SMART Source Solar PV Program AEP SWEPCO - SMART Source Solar PV Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $15,000 Non-residential: $30,000 Program Info Start Date 08/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $1.50/watt DC Non-residential: $1.20/watt DC Provider Smart Source PV Program Southwestern Electric Power Company (SWEPCO) offers rebates to customers that install photovoltaic (PV) systems on homes. Rebates may be assigned to the customer, a service provider, or a third party. Rebates are offered at a rate of $1.50 per watt (DC) for residential installations and $1.20 per watt (DC) for non-residential installations. The maximum per project and per customer rebate for residential systems is

310

Ukiah Utilities - PV Buydown Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ukiah Utilities - PV Buydown Program Ukiah Utilities - PV Buydown Program Ukiah Utilities - PV Buydown Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: 7,000; Commercial: 20,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Incentive Rate for systems installed between 7/1/12 and 6/30/13: $1.40/watt AC; incentive may be reduced based on expected performance Provider City of Ukiah Through Ukiah Utilities' PV Buydown Program, residential and commercial customers are eligible for a $1.40-per-watt AC rebate on qualifying grid-connected PV systems up to a maximum system size of 1 MW. In keeping with SB1, the incentive level will decrease annually on July 1 over the 10 year life of the program. Rebates are available on a first come, first

311

City of Healdsburg - PV Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Healdsburg - PV Incentive Program Healdsburg - PV Incentive Program City of Healdsburg - PV Incentive Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $3,280 Commercial: $15,600 Program Info State California Program Type Utility Rebate Program Rebate Amount Residential: $0.82/watt AC Commercial: $0.78/watt AC Provider City of Healdsburg Through the City of Healdsburg's PV Buy-down Program, residential and commercial customers are eligible for rebate on qualifying grid-connected PV systems. In keeping with SB1, (the California Solar Initiative mandating that utilities put into place programs to assure that 3000 megawatts (MW) of solar installations on homes is in place within 10 years) the incentive level will decrease annually over the 10 year life of the program. The

312

IID Energy - PV Solutions Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Solutions Rebate Program PV Solutions Rebate Program IID Energy - PV Solutions Rebate Program < Back Eligibility Commercial Industrial Local Government Nonprofit Residential State Government Savings Category Solar Buying & Making Electricity Maximum Rebate PBI Incentive max: 550,000 for the 5-year period (110,000/year) Program Info State California Program Type Utility Rebate Program Rebate Amount 2013 program is closed Provider Imperial Irrigation District '''''IID accepted applications for the 2013 PV Solutions Program from Jan. 2, 2013 - Jan. 31, 2013. Winners were determined via lottery. The program is now closed for the remainder of 2013, but another funding round is expected in 2014. ''''' Through the PV Solutions Rebate Program, Imperial Irrigation District (IID) provides rebates to its residential and commercial customers who install

313

City of Palo Alto Utilities - PV Partners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Partners PV Partners City of Palo Alto Utilities - PV Partners < Back Eligibility Commercial Local Government Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Maximum Rebate Incentives available for first 1 MW Program Info Start Date July 2007 State California Program Type Utility Rebate Program Rebate Amount Systems Systems 30 kW and larger: Performance-based incentive (PBI), based on actual monthly energy produced (kWh) for 60 month term. For current rebate levels, visit the program website below. Provider City of Palo Alto Utilities The City of Palo Alto Utilities (CPAU) PV Partners Program offers incentives to customers that install qualifying PV systems. The program, which has a budget of approximately $13 million over 10 years, is divided

314

AEP Texas Central Company - SMART Source Solar PV Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Company - SMART Source Solar PV Rebate Program Central Company - SMART Source Solar PV Rebate Program AEP Texas Central Company - SMART Source Solar PV Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $15,000 Non-residential: $31,2500 Program Info Start Date 08/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $1.50/W DC Non-residential: $1.25/W DC Provider Smart Source PV Program American Electric Power Texas Central Company (AEP-TCC) offers rebates to customers that install photovoltaic (PV) systems on homes or other buildings. Customers of all rate classes are eligible to participate in the

315

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $5,000 Program Info Start Date 10/1/2010 State Florida Program Type Utility Rebate Program Rebate Amount Solar window of 80% or more: $1.00/watt Provider Gainesville Regional Utilities '''''NOTE: Application targets for fiscal year 2013 have been met for the GRU Solar PV Rebate Program. The next round of applications are scheduled to open on October 1, 2013 pending approval of the GRU budget by the Gainesville City Commission.''''' Gainesville Regional Utilities (GRU) offers its customers a rebate to install photovoltaic (PV) systems. Systems with solar windows of 80% or

316

Status of High Performance PV: Polycrystalline Thin-Film Tandems  

DOE Green Energy (OSTI)

The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course. This work includes bringing thin-film cells and modules toward 25% and 20% efficiencies, respectively, and developing multijunction concentrator cells and modules able to convert more than one-third of the sun's energy to electricity (i.e., 33% efficiency). This paper will address recent accomplishments of the NREL in-house research effort involving polycrystalline thin-film tandems, as well as the research efforts under way in the subcontracted area.

Symko-Davies, M.

2005-02-01T23:59:59.000Z

317

Building Energy Software Tools Directory: PV*SOL  

NLE Websites -- All DOE Office Websites (Extended Search)

PV*SOL PV*SOL PV*SOL logo. PV*SOL Pro is a program for the design and simulation of grid-connected and off-grid photovoltaic systems. You can create your system using a wide range of modules (including thin-film and crystalline) and the program determines the size of the system with the roof layout tool. After testing all the relevant physical parameters, the program automatically selects the inverter and PV array configuration. This dynamic simulation program was developed for engineers, designers, installers, roofing specialists, and electrical contractors or building technicians. Screen Shots Keywords photovoltaic systems simulation, planning and design software, grid-connected systems, stand-alone systems Validation/Testing N/A Expertise Required No special expertise or training needed.

318

Department of Energy Offers Support for an Oregon Solar Manufacturing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

an Oregon Solar an Oregon Solar Manufacturing Project Department of Energy Offers Support for an Oregon Solar Manufacturing Project February 17, 2011 - 12:00am Addthis Washington D.C. --- U.S. Energy Secretary Steven Chu today announced the offer of a conditional commitment to SoloPower, Inc. for a $197 million loan guarantee to support the retrofit of an existing building and installation of additional equipment to operate a thin-film solar panel manufacturing facility in Wilsonville, Oregon. When completed and at full capacity, the facility is expected to produce over 400 megawatts of flexible photovoltaic (PV) panels annually. According to SoloPower estimates, the project will create approximately 500 permanent jobs and 270 construction jobs. "Investments like these are going to help America become a world leader

319

NREL: Photovoltaics Research - Awards for Photovoltaic Manufacturing R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Awards for Photovoltaic Manufacturing R&D Awards for Photovoltaic Manufacturing R&D The following research efforts within the PV Manufacturing R&D Project were honored with prestigious industry awards. 1995-AstroPower (now GE Energy): Received an R&D 100 Award for its Silicon-Film product, which combined the performance and stability of conventional crystalline-silicon-based solar cells with the low cost of sheet-material production. 1998-Ascension Technology and Advanced Energy Systems: Recipients of Popular Science's "100 Best of What's New" in technological advances. Ascension Technology was cited for its SunSine 300 AC PV modules with a built-in microinverter that eliminated the need for DC wiring. Advanced Energy Systems was recognized for its microinverter, which was small, easy

320

Advanced Manufacturing Office: Technical Assistance  

NLE Websites -- All DOE Office Websites (Extended Search)

Assistance on Twitter Bookmark Advanced Manufacturing Office: Technical Assistance on Google Bookmark Advanced Manufacturing Office: Technical Assistance on Delicious Rank...

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Advanced Manufacturing Office: Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Advanced Manufacturing Office: Financial Opportunities on Google Bookmark Advanced Manufacturing Office: Financial Opportunities on Delicious Rank...

322

Analytical Improvements in PV Degradation Rate Determination  

DOE Green Energy (OSTI)

As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

Jordan, D. C.; Kurtz, S. R.

2011-02-01T23:59:59.000Z

323

Innovations in Wind and Solar PV Financing  

DOE Green Energy (OSTI)

There is growing national interest in renewable energy development based on the economic, environmental, and security benefits that these resources provide. Historically, greater development of our domestic renewable energy resources has faced a number of hurdles, primarily related to cost, regulation, and financing. With the recent sustained increase in the costs and associated volatility of fossil fuels, the economics of renewable energy technologies have become increasingly attractive to investors, both large and small. As a result, new entrants are investing in renewable energy and new business models are emerging. This study surveys some of the current issues related to wind and solar photovoltaic (PV) energy project financing in the electric power industry, and identifies both barriers to and opportunities for increased investment.

Cory, K.; Coughlin, J.; Jenkin, T.; Pater, J.; Swezey, B.

2008-02-01T23:59:59.000Z

324

Designing PV Incentive Programs to Promote Performance: A Review of Current Practice in the U.S.  

E-Print Network (OSTI)

20] Celentano R. SDF Solar PV Grant Program in Southeasternin this paper, SDFs Solar PV Grant Program has severalSolar Rewards Program Solar PV Rebate Program (Small PV

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2008-01-01T23:59:59.000Z

325

Do PV Systems Increase Residential Selling Prices If So, How Can Practitioners Estimate This Increase?  

E-Print Network (OSTI)

of the Effects of Photovoltaic Energy Systems on Residentialmarginal impacts of photovoltaic (PV) energy systems on homeThe market for photovoltaic (PV) energy systems is expanding

Hoen, Ben

2013-01-01T23:59:59.000Z

326

Linkage to Previous International PV Module QA Task Force Workshops; Proposal for Rating System (Presentation)  

DOE Green Energy (OSTI)

This presentation gives the historical background of the creation of the International PV QA Task Force as an introduction to the PV Module Reliability Workshop.

Kurtz, S.; Wohlgemuth, J.; Sample, T.; Yamamichi, M.; Kondo, M.

2013-05-01T23:59:59.000Z

327

Black Hills Energy - On-Site Solar PV Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- On-Site Solar PV Rebate Program Black Hills Energy - On-Site Solar PV Rebate Program Eligibility Commercial Fed. Government General PublicConsumer Industrial Local Government...

328

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network (OSTI)

PV system components and installations meet minimum industry standards related to safety, reliability, andPV Systems Rated Output Modules Inverters Systems (grid-connected) Product Reliability

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

329

Manufacturing Skills Certification System  

Science Conference Proceedings (OSTI)

... system to their business so that they utilize the skills certification system ... provide input to The Manufacturing Institute about aggregate skill needs of ...

2012-09-20T23:59:59.000Z

330

Manufacturing Research & Reports  

Science Conference Proceedings (OSTI)

... Regulatory and Policy Recommendations. The impact of regulations and policies on the manufacturing industry in areas such as tax, energy, trade ...

2013-08-27T23:59:59.000Z

331

Locating American Manufacturing:  

Science Conference Proceedings (OSTI)

... future of manufacturing in America but also ... as defined in the North American Industry Classification ... about two thirds of American metropolitan areas ...

2013-07-31T23:59:59.000Z

332

Manufacturing Portal Overview  

Science Conference Proceedings (OSTI)

... The manufacturing sector is an important source of US innovation, accounting for about 70 percent of US industry R&D. ...

2012-05-09T23:59:59.000Z

333

Wind Manufacturing Facilities  

Energy.gov (U.S. Department of Energy (DOE))

America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state.

334

Acoustics by additive manufacturing.  

E-Print Network (OSTI)

??This study focuses on exploring the merging field of additive manufacturing and acoustics and introduces a new type of sound absorber which is regulating performance (more)

Setaki, F.

2012-01-01T23:59:59.000Z

335

US Manufacturing in Context  

Science Conference Proceedings (OSTI)

... manufacturing firms lead the Nation in exports: The $1.3 ... 86% of all US goods exported in 2011 ... growing production of domestic natural gas, and the ...

336

Baldrige by Sector: Manufacturing  

Science Conference Proceedings (OSTI)

Can a manufacturer facing global competition, increased pressure on costs, and the need to show quarterly profits benefit from the Baldrige process ...

2013-08-07T23:59:59.000Z

337

Innovations in Additive Manufacturing  

Science Conference Proceedings (OSTI)

Feb 16, 2010 ... Additive Manufacturing's Role in Fabrication and Repair of Aerospace Components: James Sears1; 1South Dakota School of Mines &...

338

Optimal Solar PV Arrays Integration for Distributed Generation  

SciTech Connect

Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

Omitaomu, Olufemi A [ORNL; Li, Xueping [University of Tennessee, Knoxville (UTK)

2012-01-01T23:59:59.000Z

339

Kauai Island Utility Co-op (KIUC) PV integration study.  

DOE Green Energy (OSTI)

This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

Ellis, Abraham; Mousseau, Tom (Knoxville, TN)

2011-08-01T23:59:59.000Z

340

Identifying Critical Pathways to High-Performance PV: Preprint  

DOE Green Energy (OSTI)

This conference paper describes the High-Performance Photovoltaic (HiPerf PV)Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment in the 21st century. To accomplish this, the NCPV directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. Details of the subcontractor and in-house progress will be described toward identifying critical pathways of 25% polycrystalline thin-film tandem cells and developing multijunction concentrator modules to 33%.

Symko-Davies, M.; Noufi, R.; Kurtz, S.

2002-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

PV Validation and Bankability Workshop: San Jose, California  

Science Conference Proceedings (OSTI)

This report is a collaboration between Sandia National Laboratories, the National Renewable Energy Laboratory, and the Florida Solar Energy Center (FSEC). The report provides feedback from the U.S. Department of Energy's (DOE) Solar Program PV Validation and Bankability Workshop in San Jose, California on August 31, 2011. It focuses on the current state of PV in the United States, private funding to fund U.S. PV industry growth, roles and functions of the regional test center program, and ways to improve the current validation and bankability practices.

Granata, J.; Howard, J.

2011-12-01T23:59:59.000Z

342

Manufacturing research strategic plan  

SciTech Connect

This plan provides an overall strategic roadmap for the DOE-defense programs advanced manufacturing research program which supports the national science based stockpile stewardship program. This plan represents a vision required to develop the knowledge base needed to ensure an enduring national capability to rapidly and effectively manufacture nuclear weapons.

1995-11-01T23:59:59.000Z

343

Accelerating PV Cost Effectiveness Through Systems Design, Engineering, and Quality Assurance: Phase I Annual Technical Report, 4 November 2004 - 3 November 2005  

DOE Green Energy (OSTI)

During Phase I of this PV Manufacturing R&D subcontract, PowerLight Corporation has made significant progress toward the reduction of installed costs for commercial-scale, rooftop PV systems. PowerLight has worked to reduce operating costs by improving long-term reliability and performance through the development of more sophisticated tools used in system design and monitoring. Additionally, PowerLight has implemented design improvements with the goal of reducing cost while maintaining and/or improving product quality. As part of this effort, PowerLight also modified manufacturing and shipping processes to accommodate these design changes, streamline material flow, reduce cost, and decrease waste streams. During Phase II of this project, PowerLight plans to continue this work with the goal of reducing system cost and improving system performance.

Botkin, J.

2006-07-01T23:59:59.000Z

344

Worldwide Energy and Manufacturing USA Inc formerly Worldwide Manufacturing  

Open Energy Info (EERE)

Manufacturing USA Inc formerly Worldwide Manufacturing Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) Place San Bruno, California Zip 94066 Product Worldwide Manufacturing USA is an engineering company based in San Bruno, California. References Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) is a company located in San Bruno, California . References ↑ "Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)"

345

Plant performance for PV1 and PV2: SMUD (Sacramento Municipal Utility District) PV2, Final report 2, April 1986-March 1987  

SciTech Connect

The Sacramento Municipal Utility Distric (SMUD) photovoltaic project is a phased installation of a 100 megawatt central station photovoltaic (PV) power plant that is being constructed adjacent to the Rancho Seco Nuclear Generating Station, 30 miles southeast of Sacramento, California. SMUD, with cofunding from the U.S. Department of Energy (DOE) and the California State Department of Enrgy has designed, procured, installed, and operated two 1,000 kilowatt power generating plants (PV1 and PV2) as the first two phases of the project (Figure No. 1). PV1 deferred for budgetary reasons and to evaluate new PV technologies. Long-range load projections for the SMUD service area indicate theneed for new peaking power generation. Plans prior to the initiation of this project included coal-fired, hydroelectric and geothermal power plants. Environmental and permitting constraints within California introduced considerable uncertainty into the timing and cost of other generation options. This projectwas, therefore, initiated to proide an economic and technical basis for future electrical generation using solar energy. Ther performance data presented herein was measured, stored, and reduced by the onsite plant control and data acquisition computer.

Collier, D.

1988-03-01T23:59:59.000Z

346

Next Generation Print-based Manufacturing for Photovoltaics and Solid State Lighting  

SciTech Connect

For the grand challenge of reducing our energy and carbon footprint, the development of renewable energy and energy efficient technologies offer a potential solution. Energy technologies can reduce our dependence on foreign oil as well as the energy consumed by the petroleum industry, the leading consumer of energy by a U.S. industry sector. Nonetheless, the manufacturing processes utilized to manufacture equipment for alternative energy technologies often involve energy-intensive processes. This undermines some of the advantages to moving to 'green' technologies in the first place. Our answer to the Industrial Technology Program's (ITP) Grand Challenge FOA was to develop a transformational low cost manufacturing process for plastic-based photovoltaics that will lower by over 50% both energy consumption and greenhouse emissions and offer a return-of-investment of over 20%. We demonstrated a Luminescent Solar Concentrator fabricated on a plastic acrylic substrate (i.e. no glass) that increases the power output of the PV cell by 2.2x with a 2% power efficiency as well as an LSC with a 7% power efficiency that increased the power output from the PV cells by 35%. S large area 20-inch x 60-inch building-integrated photovoltaic window was fabricated using contract manufacturing with a 4% power efficiency which improved the power output of the PV cell by over 50%. In addition, accelerated lifetimes of the luminescent material demonstrate lifetimes of 20-years.

Sue A. Carter

2012-09-07T23:59:59.000Z

347

SMUD - Non-Residential PV Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Residential PV Incentive Program Non-Residential PV Incentive Program SMUD - Non-Residential PV Incentive Program < Back Eligibility Commercial Industrial Nonprofit Savings Category Solar Buying & Making Electricity Maximum Rebate $650,000 for up-front incentives at current $0.65/W incentive level. Program Info State California Program Type Utility Rebate Program Rebate Amount Expected Performance Based Incentive (for systems up to 1 MW): 0.65/watt AC; incentive adjusted based on expected performance Performance Based Incentive: 0.10/kWh for 5 years or 0.06/kWh for 10 years Incentives are decreased for systems > 1 MW Provider Sacramento Municipal Utility District SMUD offers cash incentives to commercial, industrial, and non-profit customers who install solar photovoltaic (PV) systems. Customers have the

348

City of Lompoc Utilities - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Rebate Program PV Rebate Program City of Lompoc Utilities - PV Rebate Program < Back Eligibility Commercial Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate 50% the system cost, up to $50,000 Program Info Funding Source utility surcharge State California Program Type Utility Rebate Program Rebate Amount $2.00 per watt Provider Customer Service City of Lompoc Utilities provides rebates to its electric customers who purchase and install photovoltaic (PV) systems. The rebate is $2.00 per watt-AC. The incentive amount may not exceed 50% the cost of the system, up to a maximum of $50,000. To qualify for the rebate the system must meet all the criteria as defined by the Lompoc City Electric interconnection agreement for self-generating electric systems and the requirements set forth by the California Energy

349

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Arizona Program Type Solar/Wind Permitting Standards Provider Maricopa Association of Governments In an effort to promote uniformity, the Maricopa Association of Governments (MAG) approved standard procedures for securing necessary electrical/building permits for residential (single-family) and commercial PV systems. These procedures are a part of the MAG Building Code Standards. The standards address requirements for the solar installation, plans,

350

Austin Energy - Residential Solar PV Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

offers a 1.50 per watt incentive to eligible residential who install photovoltaic (PV) systems on their homes. Rebates are limited to 15,000 per home installation and...

351

Progress Energy Florida - SunSense Commercial PV Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Progress Energy Florida - SunSense Commercial PV Incentive Program Progress Energy Florida - SunSense Commercial PV Incentive Program Progress Energy Florida - SunSense Commercial PV Incentive Program < Back Eligibility Commercial Savings Category Solar Buying & Making Electricity Maximum Rebate 130,000 per participant Program Info Start Date 03/15/2011 State Florida Program Type Utility Rebate Program Rebate Amount First 10 kW: 2/watt 11 kW - 50 kW: 1.50/watt 51 kW - 100 kW: 1/watt Provider Business Customer Service '''''Progress Energy Florida will begin accepting applications at 10:00 a.m. October 1, 2012, for customers to apply for the 2013 rebates.''''' In March 2011, Progress Energy Florida began offering incentives to commercial customers who install photovoltaic (PV) systems. Incentive rates are based on a tiered structure:

352

PvXchange GmbH | Open Energy Information  

Open Energy Info (EERE)

PvXchange GmbH PvXchange GmbH Jump to: navigation, search Name pvXchange GmbH Place Berlin, Germany Zip 10963 Sector Services Product A German platform for PV module spot trades. Also provides data on spot prices and offers consulting services. Coordinates 52.516074°, 13.376987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.516074,"lon":13.376987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

353

Lassen Municipal Utility District - PV Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lassen Municipal Utility District - PV Rebate Program Lassen Municipal Utility District - PV Rebate Program Lassen Municipal Utility District - PV Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $5,000 or 50% of system cost, whichever is less Commercial: $23,000 or 50% of system cost, whichever is less. Program Info State California Program Type Utility Rebate Program Rebate Amount Residential: $3.00/W-AC Commercial: $2.10/W-AC Provider Lassen Municipal Utility District Lassen Municipal Utility District (LMUD) is providing incentives for its customers to purchase solar electric photovoltaic (PV) systems. Rebate levels will decrease annually over the life of the program. Through June 30, 2014, rebates of $3.00 per watt-AC up to $5,000 are available for

354

Pacific Power - PV Rebate Program (California) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Power - PV Rebate Program (California) Pacific Power - PV Rebate Program (California) Pacific Power - PV Rebate Program (California) < Back Eligibility Agricultural Commercial Fed. Government Industrial Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate Commercial: $90,000 Tax-exempt Entities: $277,500 Program Info Start Date 07/01/2011 Expiration Date 07/1/2015 State California Program Type Utility Rebate Program Rebate Amount Incentives may be adjusted based on expected performance. Incentive amounts below are current as of 12/14/12. See program website for current status. Residential: $1.13/W CEC-AC Commercial: $0.36/W CEC-AC Tax-exempt Entities: $1.11/W CEC-AC Pacific Power is providing rebates to their customers who install photovoltaic (PV) systems on their homes and facilities. These rebates step

355

Merced Irrigation District - PV Buydown Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Merced Irrigation District - PV Buydown Program Merced Irrigation District - PV Buydown Program Merced Irrigation District - PV Buydown Program < Back Eligibility Commercial Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: 8,400 Commercial: $70,000 Program Info State California Program Type Utility Rebate Program Rebate Amount 2.80/W AC, adjusted based on expected performance Provider Merced Irrigation District Merced Irrigation District (MID) offers its residential, commercial and non-profit customers a rebate for installing solar electric photovoltaic (PV) systems on their homes and offices. The rebate is $2.80 per watt (adjusted based on the expected performance of the system) with a maximum of $8,400 for residential systems and $70,000 for non-residential systems.

356

Riverside Public Utilities - Non-Residential PV Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Residential PV Incentive Program Non-Residential PV Incentive Program Riverside Public Utilities - Non-Residential PV Incentive Program < Back Eligibility Commercial Savings Category Solar Buying & Making Electricity Maximum Rebate Whichever is less: 50% of project cost or specific dollar limits which vary according to the rate schedule of the applicant Program Info State California Program Type Utility Rebate Program Rebate Amount Program is currently on hold. See below for more information. Provider Riverside Public Utilities '''''Note: Funding for this program has been exhausted for the remainder of the fiscal year. The program is scheduled to reopen on July 1, 2014.''''' The non-residential photovoltaic (PV) rebate program provides financial incentives for Riverside Public Utilities' business customers to install

357

Community Renewable Energy Success Stories Webinar: Developing PV Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Developing PV Developing PV Projects with RFPs and PPAs (text version) Community Renewable Energy Success Stories Webinar: Developing PV Projects with RFPs and PPAs (text version) Below is the text version of the webinar titled "Developing PV Projects with RFPS and PPAS," originally presented on January 15, 2013. Operator: The broadcast is now starting. All attendees are in listen-only mode. Sarah Busche: Good afternoon, everyone, and welcome to today's webinar sponsored by the U.S. Department of Energy (DOE). I'm Sarah Busche and here with me is Devin Egan. We're broadcasting live from the National Renewable Energy Laboratory (NREL) just outside of Denver, Colorado, in Golden, and we're going to give everyone a few more minutes to call in and log on, but during that time

358

Lodi Electric Utility - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lodi Electric Utility - PV Rebate Program Lodi Electric Utility - PV Rebate Program Lodi Electric Utility - PV Rebate Program < Back Eligibility Commercial Industrial Local Government Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $7,000 Non-residential: $40,000 Program Info Expiration Date January 1, 2018 State California Program Type Utility Rebate Program Rebate Amount 2013 Program Year: $1.94/W AC Incentives will be adjusted based on expected performance Provider Customer Programs Lodi Electric Utility offers rebates to its residential, commercial, industrial and municipal customers who install photovoltaic (PV) systems. The rebate program is funded with approximately $6 million to support systems installed between January 1, 2008 and January 1, 2018. The total

359

Hercules Municipal Utility - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hercules Municipal Utility - PV Rebate Program Hercules Municipal Utility - PV Rebate Program Hercules Municipal Utility - PV Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Systems 10 kW or less: 10,000 Program Info State California Program Type Utility Rebate Program Rebate Amount '''2012:''' Systems up to 10 kW: 2.25/watt AC Systems larger than 10 kW: 0.17/kWh for 5 years'''''' Provider Hercules Municipal Utility '''''Note: This program has been temporarily suspended. Contact the utility for more information.''''' Hercules Municipal Utility offers a $2.25-per-watt AC rebate (2012 rebate level) to its residential and commercial customers who purchase and install solar photovoltaic (PV) systems smaller than 10 kilowatts (kW). Systems 10

360

SMUD - PV Residential Retrofit Buy-Down | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Residential Retrofit Buy-Down PV Residential Retrofit Buy-Down SMUD - PV Residential Retrofit Buy-Down < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate No maximum limit Program Info State California Program Type Utility Rebate Program Rebate Amount $0.20/watt AC. Incentive is adjusted based on expected performance. The incentive can be paid directly to the customer or to the installer. Provider Sacramento Municipal Utility District SMUD offers an incentive of $0.20 per watt (W) AC to residential customers who install grid-connected photovoltaic (PV) systems. Customers do not have to contract directly with SMUD-approved contractors for the purchase and installation of the system, however this is recommended. All systems must be permitted and installed by B, C-10, or C-46 contractors. The incentive

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Potential of Securitization in Solar PV Finance  

NLE Websites -- All DOE Office Websites (Extended Search)

The Potential of Securitization in Solar PV Finance Travis Lowder and Michael Mendelsohn Technical Report NRELTP-6A20-60230 December 2013 NREL is a national laboratory of the U.S....

362

Residential, Commercial, and Utility-Scale Photovoltaic (PV)...  

NLE Websites -- All DOE Office Websites (Extended Search)

beginning. Reducing those initial capital costs is crucial to reducing the cost of solar electricity. In addition to module price, many factors contribute to the price of a PV...

363

Interconnecting PV on New York City's Secondary Network Distribution System  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to ???¢????????networks???¢??????? in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1???¢????????PV Deployment Analysis for New York City???¢????????we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2???¢????????A Briefing for Policy Makers on Connecting PV to a Network Grid???¢????????presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3???¢????????Technical Review of Concerns and Solutions to PV Interconnection in New Y

K. Anderson; M. Coddington; K. Burman; S. Hayter; B. Kroposki; and A. Watson

2009-11-30T23:59:59.000Z

364

Perspective on International PV Challenge & Opportunities for Rural Development  

DOE Green Energy (OSTI)

International market opportunities for the sale and deployment of photovoltaic (PV) systems abound and will continue to out-pace domestic, grid-connected opportunities for the foreseeable future.

Taylor, R. W.

2000-01-01T23:59:59.000Z

365

Blocking diodes and fuses in low-voltage PV systems  

DOE Green Energy (OSTI)

Instructions and labels supplied with listed PV modules and the requirements of the National Electrical Code (NEC) dictate that a series fuse shall be used to protect the module against backfeed currents. Few of the hundreds of thousands of low-voltage (12, 24, and 48-volt) stand-alone photovoltaic (PV) power systems use series fuses on each module or string of modules. Tests and simulations at the Southwest Technology Development Institute (TDI) and at Sandia National Laboratories (SNL) have established that the absence of these fuses can pose significant fire and safety hazards even on 12-volt PV systems. If the system has sufficient backfeed voltage and current, it is possible that a ground fault in the wiring or inside a module can result in the destruction of a PV module.

Wiles, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.; King, D.L. [Sandia National Labs., Albuquerque, NM (United States). Photovoltaic Systems R and D

1997-11-01T23:59:59.000Z

366

Pallets of PV: Communities Purchase Solar and Drive Down Costs...  

Open Energy Info (EERE)

Pallets of PV: Communities Purchase Solar and Drive Down Costs Together Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(1982) Super...

367

DOE Solar Decathlon: 2005 Feature Article - Today's PV: Functional...  

NLE Websites -- All DOE Office Websites (Extended Search)

day and a lovely view from the outside by night. (Credit: Chris Gunn, Solar Decathlon) Solar Decathlon 2005 Today's PV: Functional and Beautiful Most of us have updated our...

368

Instrumentation for Evaluating PV System Performance Losses from Snow  

DOE Green Energy (OSTI)

When designing a photovoltaic (PV) system for northern climates, the prospective installation should be evaluated with respect to the potentially detrimental effects of snow preventing solar radiation from reaching the PV cells. The extent to which snow impacts performance is difficult to determine because snow events also increase the uncertainty of the solar radiation measurement, and the presence of snow needs to be distinguished from other events that can affect performance. This paper describes two instruments useful for evaluating PV system performance losses from the presence of snow: (1) a pyranometer with a heater to prevent buildup of ice and snow, and (2) a digital camera for remote retrieval of images to determine the presence of snow on the PV array.

Marion, B.; Rodriguez, J.; Pruett, J.

2009-01-01T23:59:59.000Z

369

City of Sunset Valley - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amount 1.00W up to 3,000 W The City of Sunset Valley offers rebates to local homeowners who install photovoltaic (PV) systems on their properties. The local rebate acts as...

370

Solar PV Jobs and Economic Development Impact Model Webinar  

Energy.gov (U.S. Department of Energy (DOE))

Join the DOE SunShot Initiative, in conjunction with the National Renewable Energy Laboratory, for a webinar on August 21, 2013, at 2-3 p.m. EST highlighting the Scenario Solar PV Jobs and Economic...

371

Optimal Perturbations in the Eady Model: Resonance versus PV Unshielding  

Science Conference Proceedings (OSTI)

Using a nonmodal decomposition technique based on the potential vorticity (PV) perspective, the optimal perturbation or singular vector (SV) of the Eady model without upper rigid lid is studied for a kinetic energy norm. Special emphasis is put ...

H. de Vries; J. D. Opsteegh

2005-02-01T23:59:59.000Z

372

Potential Vorticity (PV) Thinking in Operations: The Utility of Nonconservation  

Science Conference Proceedings (OSTI)

The use of the potential vorticity (PV) framework by operational forecasters is advocated through case examples that demonstrate its utility for interpreting and evaluating numerical weather prediction (NWP) model output for weather systems ...

Michael J. Brennan; Gary M. Lackmann; Kelly M. Mahoney

2008-02-01T23:59:59.000Z

373

Full Steam Ahead for PV in US Homes?  

Science Conference Proceedings (OSTI)

In October 2008, the United States Congress extended both the residential and commercial solar investment tax credits (ITCs) for an unprecedented eight years, lifted the $2,000 cap on the residential credit, removed the prohibition on utility use of the commercial credit, and eliminated restrictions on the use of both credits in conjunction with the Alternative Minimum Tax. These significant changes, which apply to systems placed in service on or after January 1, 2009, will increase the value of the solar credits for residential system owners in particular, and are likely--in conjunction with state, local, and utility rebate programs targeting solar--to spur significant growth in residential, commercial, and utility-scale photovoltaic (PV) installations in the years ahead. This article focuses specifically on the residential credit, describing three areas in which removal of the $2,000 cap on the residential ITC will have significant implications for PV rebate program administrators, PV system owners, and the PV industry.

Bolinger, Mark A; Barbose, Galen; Wiser, Ryan

2009-01-15T23:59:59.000Z

374

Most new residential solar PV projects in California program ...  

U.S. Energy Information Administration (EIA)

In 2012 and 2013, more than two ... leasing company, as the PV system's ... having someone else build and maintain the system by having to share some of the available ...

375

Tucson's Solar Experience: Developing PV with RFPs and PPAs  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was given January 15, 2013, by Bruce Plenk, Solar Coordinator for the City of Tucson, Arizona, as part of the CommRE Developing PV Projects With RFPs and PPAs webinar.

376

Interconnecting PV on New York City's Secondary Network Distribution System  

DOE Green Energy (OSTI)

This study describes technical assistance provided by NREL to help New York City and Con Edison improve the interconnection of distributed PV systems on a secondary network distribution system.

Anderson, K.; Coddington, M.; Burman, K.; Hayter, S.; Kroposki, B.; Watson, A.

2009-12-01T23:59:59.000Z

377

Taunton Municipal Lighting Plant- Residential PV Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Customers of Taunton Municipal Lighting Plant (TMLP) may be eligible for $2.00/watt rebate on solar photovoltaic (PV) installations. The minimum system size eligible for this rebate is 1 kilowatt ...

378

Impact of PV forecasts uncertainty in batteries management in microgrids  

E-Print Network (OSTI)

Impact of PV forecasts uncertainty in batteries management in microgrids Andrea Michiorri Arthur-based battery schedule optimisation in microgrids in presence of network constraints. We examine a specific case

Recanati, Catherine

379

Colton Public Utilities - PV Rebate Program (California) | Open...  

Open Energy Info (EERE)

of more than 10% of the system's rated output. 5 year or better warranty on the inverter. Must comply with California Energy Commission Standards for PV systems and all...

380

Plumas-Sierra REC - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Rebate Program PV Rebate Program Plumas-Sierra REC - PV Rebate Program < Back Eligibility Agricultural Commercial Industrial Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $6,000 for residential; $12,000 for small commercial, agricultural and non-profit applications; $20,000 for large commercial and industrial applications Program Info State California Program Type Utility Rebate Program Rebate Amount 2012 rebate level: $2.09/watt (AC) Incentives will be adjusted based on expected performance. Provider Plumas-Sierra REC Plumas-Sierra REC offers an incentive for its customers to install photovoltaic (PV) systems on homes and businesses. Rebates are available for qualifying systems between one kilowatt (kW) and 25 kW; the rebate amount is based on the installed capacity. The rebate level will decreases

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Riverside Public Utilities - Residential PV Incentive Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Incentive Program PV Incentive Program Riverside Public Utilities - Residential PV Incentive Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate 13,000 or 50% of project cost, whichever is less Program Info State California Program Type Utility Rebate Program Rebate Amount Program is on hold Provider Riverside Public Utilities '''''Note: Funding for this program has been exhausted for the remainder of the fiscal year. The program is scheduled to reopen on July 1, 2014. ''''' The Residential Photovoltaic (PV) System rebate program provides incentives to Riverside Public Utilities customers who purchase and install qualifying photovoltaic systems on their homes. For Fiscal Year 2013, the rebate amount was $2.00 per watt AC and cannot exceed 50% of the total system cost

382

Giant Leap Forward Toward Quality Assurance of PV Modules (Presentation)  

DOE Green Energy (OSTI)

The presentation describes the composition of and motivation for the International PV QA Task Force, then describes the presentations and discussion that occurred at the workshop on Feb. 29th, 2012.

Kurtz, S.; Wohlgemuth, J.; Sample, T.; Yamamichi, M.

2012-03-01T23:59:59.000Z

383

A Monolithic Microconcentrator Receiver For A Hybrid PV?Thermal System: Preliminary Performance  

Science Conference Proceedings (OSTI)

An innovative hybrid PV?thermal microconcentrator (MCT) system is being jointly developed by Chromasun Inc.

D. Walter; V. Everett; M. Vivar; J. Harvey; R. Van Scheppingen; S. Surve; J. Muric?Nesic; A. Blakers

2010-01-01T23:59:59.000Z

384

Keywords: Photovoltaic System, fault-tolerance, recon-figurable PV panel  

E-Print Network (OSTI)

1 Keywords: Photovoltaic System, fault-tolerance, recon- figurable PV panel Photovoltaic (PV plants, and satellites. The output power of a PV cell (also called solar cell) is dependent on the solar irradiance level and temperature. Figure 1 shows PV cell output current-voltage and power

Pedram, Massoud

385

Modeling and Simulation of Solar PV Arrays under Changing Illumination Conditions  

E-Print Network (OSTI)

from the solar cell. PV has widespread use in niche markets such as consumer electronics, remote area onto a small number of highly efficient solar cells. PV systems mounted on house roofs can be used. Hybrid PV/thermal micro concentrator systems on building roofs are being developed to provide solar PV

Lehman, Brad

386

The levelized cost of energy for distributed PV : a parametric study.  

Science Conference Proceedings (OSTI)

The maturation of distributed solar PV as an energy source requires that the technology no longer compete on module efficiency and manufacturing cost ($/Wp) alone. Solar PV must yield sufficient energy (kWh) at a competitive cost (c/kWh) to justify its system investment and ongoing maintenance costs. These metrics vary as a function of system design and interactions between parameters, such as efficiency and area-related installation costs. The calculation of levelized cost of energy includes energy production and costs throughout the life of the system. The life of the system and its components, the rate at which performance degrades, and operation and maintenance requirements all affect the cost of energy. Cost of energy is also affected by project financing and incentives. In this paper, the impact of changes in parameters such as efficiency and in assumptions about operating and maintenance costs, degradation rate and system life, system design, and financing will be examined in the context of levelized cost of energy.

Goodrich, Alan C. (National Renewable Energy Laboratory); Cameron, Christopher P.

2010-06-01T23:59:59.000Z

387

Advanced Manufacturing Office: U.S. Manufacturer Going Above...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Manufacturer Going Above and Beyond with Superior Energy Performance to someone by E-mail Share Advanced Manufacturing Office: U.S. Manufacturer Going Above and Beyond with...

388

Solar PV Market Update, Volume 4: Q4 2012  

Science Conference Proceedings (OSTI)

Volume 4 of EPRIs quarterly Solar PV Market Update provides continued insight into some of the front line trends that are afoot throughout the photovoltaic segment. Like previous Updates, it synthesizes primary as well as secondary data from multiple sources in an effort to highlight both macro and micro industry developments that are likely to impact utility solar PV investment and planning efforts. Specifically, this report discusses the increasing impact of balance-of-system (BOS) ...

2012-12-31T23:59:59.000Z

389

Advanced Metering Infrastructure (AMI) for Distributed Solar (PV) Integration  

Science Conference Proceedings (OSTI)

This report summarizes the findings from a survey on two-way communication with distributed photovoltaic (PV) generation. The survey focused specifically on exploring how advanced metering infrastructure might be used as the communication means for the integration of residential PV systems. This investigation is one of several data-gathering projects in the Electric Power Research Institutes (EPRIs) Renewables Integration program (P174). Together, these projects and the data they provide will lay the ...

2009-09-09T23:59:59.000Z

390

Continuing Developments in PV Risk Management: Strategies, Solutions, and Implications  

Science Conference Proceedings (OSTI)

As the PV industry matures, successful risk management practices will become more imperative to ensure investor confidence, control costs, and facilitate further growth. This report discusses several key aspects of risk management during the commercial- and utility-scale project life cycle, from identification of risks, to the process of mitigating and allocating those risks among project parties, to transferring those risks through insurance. The report also explores novel techniques in PV risk management, options to offload risks onto the capital markets, and innovative insurance policies (namely warranty policies) that address risks unique to the PV sector. One of the major justifications for robust risk management in the PV industry is the cost-reduction opportunities it affords. If the PV industry can demonstrate the capability to successfully manage its risks, thereby inspiring confidence in financiers, it may be able to obtain a lower cost of capital in future transactions. A lower cost of capital translates to a lower cost of energy, which will in turn enhance PV?s competitiveness at a time when it will have to rely less on subsidies to support its market penetration.

Lowder, T.; Mendelsohn, M.; Speer, B.; Hill, R.

2013-02-01T23:59:59.000Z

391

Review of PV Inverter Technology Cost and Performance Projections  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) has a major responsibility in the implementation of the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program. Sandia National Laboratories (SNL) has a major role in supporting inverter development, characterization, standards, certifications, and verifications. The Solar Energy Technologies Program recently published a Multiyear Technical Plan, which establishes a goal of reducing the Levelized Energy Cost (LEC) for photovoltaic (PV) systems to $0.06/kWh by 2020. The Multiyear Technical Plan estimates that, in order to meet the PV system goal, PV inverter prices will need to decline to $0.25-0.30 Wp by 2020. DOE determined the need to conduct a rigorous review of the PV Program's technical and economic targets, including the target set for PV inverters. NREL requested that Navigant Consulting Inc.(NCI) conduct a review of historical and projected cost and performance improvements for PV inverters, including identification of critical barriers identified and the approaches government might use to address them.

Navigant Consulting Inc.

2006-01-01T23:59:59.000Z

392

Integrating High Penetrations of PV into Southern California  

Science Conference Proceedings (OSTI)

California regulators recently approved a plan proposed by Southern California Edison (SCE) to install 500 MW of distributed photovoltaic (PV) energy in its utility service territory over the next 5 years. The installations will include 250 MW of utility-owned solar and 250 MW of independently owned solar. SCE expects that the majority of these systems will be commercial-scale rooftop PV systems connected at various points in the distribution system. Each of the SCE rooftop PV systems will typically have a rating of 1-3 MW. To understand the impact of high-penetration PV on the distribution grid, the National Renewable Energy Laboratory (NREL) and SCE brought together a team of experts in resource assessment, distribution modeling, and planning to help analyze the impacts of adding high penetration of PV into the distribution system. Through modeling and simulation, laboratory testing, and field demonstrations, the team will address the issues identified in the analysis by fully examining the challenges, developing solutions, and transitioning those solutions to the field for large-scale deployment. This paper gives an update on the project and discusses technical results of integrating a large number of distributed PV systems into the grid.

Kroposki, B.; Mather, B.; Hasper-Tuttle, J.; Neal, R.; Katiraei, F.; Yazdani, A.; Aguero, J. R.; Hoff, T. E.; Norris, B. L.; Parkins, A.; Seguin, R.; Schauder, C.

2011-01-01T23:59:59.000Z

393

How Can We Make PV Modules Safer?: Preprint  

SciTech Connect

Safety is a prime concern for the photovoltaics (PV) industry. As a technology deployed on residential and commercial buildings, it is critical that PV not cause damage to the buildings nor harm the occupants. Many of the PV systems on buildings are of sufficiently high voltage (300 to 600 Volts dc) that they may present potential hazards. These PV systems must be safe in terms of mechanical damage (nothing falls on someone), shock hazard (no risk of electrical shock when touching an exposed circuit element), and fire (the modules neither cause nor promote a fire). The present safety standards (IEC 61730 and UL 1703) do a good job of providing for design rules and test requirements for mechanical, shock, and spread of flame dangers. However, neither standard addresses the issue of electrical arcing within a module that can cause a fire. To make PV modules, they must be designed, built, and installed with an emphasis on minimizing the potential for open circuits and ground faults. This paper provides recommendations on redundant connection designs, robust mounting methods, and changes to the safety standards to yield safer PV modules.

Wohlgemuth, J. H.; Kurtz, S. R.

2012-06-01T23:59:59.000Z

394

Review of PV Inverter Technology Cost and Performance Projections  

SciTech Connect

The National Renewable Energy Laboratory (NREL) has a major responsibility in the implementation of the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program. Sandia National Laboratories (SNL) has a major role in supporting inverter development, characterization, standards, certifications, and verifications. The Solar Energy Technologies Program recently published a Multiyear Technical Plan, which establishes a goal of reducing the Levelized Energy Cost (LEC) for photovoltaic (PV) systems to $0.06/kWh by 2020. The Multiyear Technical Plan estimates that, in order to meet the PV system goal, PV inverter prices will need to decline to $0.25-0.30 Wp by 2020. DOE determined the need to conduct a rigorous review of the PV Program's technical and economic targets, including the target set for PV inverters. NREL requested that Navigant Consulting Inc.(NCI) conduct a review of historical and projected cost and performance improvements for PV inverters, including identification of critical barriers identified and the approaches government might use to address them.

Navigant Consulting Inc.

2006-01-01T23:59:59.000Z

395

High Penetration PV Deployment in the Arizona Public Service System  

DOE Green Energy (OSTI)

In an effort to better understand the impacts of high penetrations of photovoltaic (PV) generators on distribution systems, Arizona Public Service (APS) and its partners have begun work on a multi-year project to develop the tools and knowledgebase needed to safely and reliably integrate high penetrations of utility and residential scale PV. Building upon the APS Community Power Project - Flagstaff Pilot, this project will analyze the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.5 MW of PV that will be installed on the feeder (both smaller units at homes as well as large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters are being designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models will be used to analyze the impacts of the PV on distribution circuit protection systems (including anti-islanding), predict voltage regulation and phase balance issues, and develop volt/var control schemes. The goal of this paper is to provide insight and lessons learned on the early stages of high penetration PV deployment. Primarily focusing on modeling and data acquisition, this paper describes the overall project, early results, and plans for future phases of the project.

Narang, D.; Hambrick, J.

2011-01-01T23:59:59.000Z

396

A standardized approach to PV system performance model validation.  

DOE Green Energy (OSTI)

PV performance models are used to predict how much energy a PV system will produce at a given location and subject to prescribed weather conditions. These models are commonly used by project developers to choose between module technologies and array designs (e.g., fixed tilt vs. tracking) for a given site or to choose between different geographic locations, and are used by the financial community to establish project viability. Available models can differ significantly in their underlying mathematical formulations and assumptions and in the options available to the analyst for setting up a simulation. Some models lack complete documentation and transparency, which can result in confusion on how to properly set up, run, and document a simulation. Furthermore, the quality and associated uncertainty of the available data upon which these models rely (e.g., irradiance, module parameters, etc.) is often quite variable and frequently undefined. For these reasons, many project developers and other industry users of these simulation tools have expressed concerns related to the confidence they place in PV performance model results. To address this problem, we propose a standardized method for the validation of PV system-level performance models and a set of guidelines for setting up these models and reporting results. This paper describes the basic elements for a standardized model validation process adapted especially for PV performance models, suggests a framework to implement the process, and presents an example of its application to a number of available PV performance models.

Stein, Joshua S.; Jester, Terry (Hudson Clean Energy Partners); Posbic, Jean (BP Solar); Kimber, Adrianne (First Solar); Cameron, Christopher P.; Bourne, Benjamin (SunPower Corporation)

2010-10-01T23:59:59.000Z

397

Manufacturing Renaissance: Return of manufacturing to western countries.  

E-Print Network (OSTI)

??Manufacturing Renaissance, i.e. return of manufacturing to west, has been recently observed. This paper analyzes the patterns observed within each of the four main drivers (more)

Kianian, Babak; Larsson, Tobias

2013-01-01T23:59:59.000Z

398

Solar Thermal Manufacturing Activities  

Reports and Publications (EIA)

This report, Solar Thermal Collector Manufacturing Activities, providesan overview and tables with historical data spanning 2000-2009. These tables willcorrespond to similar tables to be presented in the Renewable Energy Annual 2009 andare numbered accordingly.

Michele Simmons

2010-12-01T23:59:59.000Z

399

Manufacturer: Panasonic Battery Type: ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Specifi cations Manufacturer: Panasonic Battery Type: Nickel Metal Hydride Rated Capacity: 5.5 Ahr Rated Power: Not Available Nominal Pack Voltage: 158.4 VDC Nominal Cell...

400

Innovations in Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Gov. Haslam Cuts Ribbon at Carbon Fiber Facility Gov. Haslam Cuts Ribbon at Carbon Fiber Facility Governor Bill Haslam along with David Danielson, EERE's Assistant Secretary, celebrate the opening of the Carbon Fiber Technology Facility. The 390-ft. long processing line is capable of custom unit operation configuration and has a capacity of up to 25 tons per year, allowing industry to validate conversion of their carbon fiber precursors at semi-production scale. Manufacturing Demonstration Facility Manufacturing Demonstration Facility Processing Technologies Advanced Materials Automation and Controls Brochure News Manufacturing Engineering Advanced Materials & Processes Materials for Aerospace On the cover, plus, read ORNL's feature articles on additive manufacturing and its momentum for aerospace applications.

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Advanced Manufacturing Partnership  

Energy.gov (U.S. Department of Energy (DOE))

AMO leads DOE's participation in the national interagency Advanced Manufacturing Partnership (AMP). AMO joins with other Federal agencies investing in innovation and cost-shared R&D projects, supporting manufacturing infrastructure, and facilitating job creation. These actions save energy and provide benefits to U.S. industry and the national economy. AMO contributes more broadly to the AMP with activities in Technology Development, Shared Infrastructure and Facilities, Education and Workforce Development.

402

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA)

How Did Manufacturers Use Natural Gas? Manufacturers used natural gas in processes, in boilers, for nonprocess uses, and as feedstock. In 1991 and 1994, ...

403

Additive Manufacturing for Large Products.  

E-Print Network (OSTI)

?? This thesis researches the possibility and feasibility of applying additive manufacturing technology in the manufacturing of propellers. The thesis concerns the production at the (more)

Leirvg, Roar Nelissen

2013-01-01T23:59:59.000Z

404

Manufacturing Demonstration Facility Technology Collaborations...  

NLE Websites -- All DOE Office Websites (Extended Search)

advanced manufacturing and materials technologies for commercial applications related to additive manufacturing or carbon fiber and composites will have the highest likelihood of...

405

EERE: Advanced Manufacturing Office - Webmaster  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

23.5 Million Investment in Innovative Manufacturing Projects Supports the New Clean Energy Manufacturing Initiative March 26, 2013 New Energy Department Funding to Establish...

406

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. Energy Consumption in the Manufacturing Sector, 1991 In 1991, the amount of energy consumed in the manufacturing sector was as follows: * Primary Consumption of Energy for All...

407

Advanced Manufacturing Office: Better Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Plants on Twitter Bookmark Advanced Manufacturing Office: Better Plants on Google Bookmark Advanced Manufacturing Office: Better Plants on Delicious Rank Advanced...

408

Advanced Manufacturing Office: Pump Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Pump Systems on Twitter Bookmark Advanced Manufacturing Office: Pump Systems on Google Bookmark Advanced Manufacturing Office: Pump Systems on Delicious Rank Advanced...

409

PV Module Reliability R&D Project Overview  

DOE Green Energy (OSTI)

The DOE Solar Energy Technologies Program includes a sub-key activity entitled ''Photovoltaic Module Reliability R&D''. This activity has been in existence for several years to help ensure that the PV technologies that advance to the commercial module stage have acceptable service lifetimes and annual performance degradation rates. The long-term (2020) goal, as stated in the Solar Program Multi-Year Technical Plan [1], is to assist industry with the development of PV systems that have 30-year service lifetimes and 1% annual performance degradation rates. The corresponding module service lifetimes and annual performance degradation rate would have to be 30 years lifetime and approximately 0.5% (or less, depending on the type of PV system) annual performance degradation. Reaching this goal is critical to achieving the PV technology Levelized Energy Cost Targets, as listed and described in the Solar Program Multi-Year Technical Plan. This paper is an overview of the Module Reliability R&D sub-key activity. More details and the major results and accomplishments are covered in the papers presented in the PV Module Reliability Session of the DOE Solar Energy Technology Review Meeting, October 25-28, 2004, in Denver, Colorado.

Hulstrom, R. L.

2005-01-01T23:59:59.000Z

410

Economic analysis of PV hybrid power system: Pinnacles National Monument  

DOE Green Energy (OSTI)

PV hybrid electric power systems can offer an economically competitive alternative to engine generator (genset) systems in many off-grid applications. Besides the obvious `green` advantages of producing less noise and emissions, the PV hybrid can, in some cases, offer a lower life-cycle cost (LCC) then the genset. This paper evaluates the LCC of the 9.6 kWp PV hybrid power system installed by the National Park Services (NPS) at Pinnacles National Monument, CA. NPS motivation for installation of this hybrid was not based on economics, but rather the need to replace two aging diesel gensets with an alternative that would be quieter, fuel efficient, and more in keeping with new NPS emphasis on sustainable design and operations. In fact, economic analysis shows a lower 20-year LCC for the installed PV hybrid than for simple replacement of the two gensets. The analysis projects are net savings by the PV hybrid system of $83,561 and over 162,000 gallons of propane when compared with the genset-only system. This net savings is independent of the costs associated with environmental emissions. The effects of including emissions costs, according to NPS guidelines, is also discussed. 5 refs., 2 figs., 3 tabs.

Rosenthal, A.; Durand, S. [Southwest Technology Development Institute, Las Cruces, NM (United States); Thomas, M.; Post, H. [Sandia National Labs., Albuquerque, NM (United States)

1997-11-01T23:59:59.000Z

411

Request for Information Manufacturing Technology ...  

Science Conference Proceedings (OSTI)

... Page 4. Confidential. All Rights Reserved. ... o The energy sector is representing significant opportunities for manufacturers. ...

2013-08-06T23:59:59.000Z

412

Electrolyzer Manufacturing Progress and Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolyzer Manufacturing Electrolyzer Manufacturing Progress and Challenges John Torrance, Director of Manufacturing DOE Manufacturing Workshop 8/12/11 Outline * Proton Commercialization Status: PEM Electrolysis * Current Manufacturing Limitations: Stack - Cost Breakdown - Approaches * Current Manufacturing Limitations: System - Cost Breakdown - Approaches * Potential Impact * Summary and Conclusions 2 3 * World leader in Proton Exchange Membrane (PEM) electrolyzer technology * Founded in 1996 - changed name from Proton Onsite in April 2011 to reflect product expansion. * ISO 9001:2008 registered * Over 1,500 systems operating in 62 different countries. Cell Stacks Complete Systems Turnkey Solutions Military Applications Proton Energy Proton Onsite Headquarters in Wallingford, CT Capabilities * Complete product development, manufacturing & testing

413

Electricity Rate Structures and the Economics of Solar PV: Could Mandatory Time-of-Use Rates Undermine Californias Solar Photovoltaic Subsidies?  

E-Print Network (OSTI)

that the real price of power that solar PV replaces issolar PV power the di?erence between the amortized cost of the PV power and price

Borenstein, Severin

2007-01-01T23:59:59.000Z

414

PowerGuard(R) Advanced Manufacturing: PVMaT Final Report, 1 July 1998 - 30 September 2001  

Science Conference Proceedings (OSTI)

This final report describes the PVMaT results of manufacturing improvements directed toward innovative, low-cost, high-return, high-impact PV products. PowerLight's focus for this subcontract was manufacturing improvements for its patented PowerGuard building-integrated PV roofing tile. These manufacturing improvements were selected to reduce PowerGuard system costs, increase PowerGuard tile fabrication capability to 16 MW/year, and stimulate an increase in manufacturing of PV laminates, within the United States, by 2 MW/year. Production rates rose from 200 tiles per 8-hour shift to more than 500 tiles per 8-hour shift. The overall system cost of PowerGuard was reduced by 38%. The original goal of a 46% reduction was not met, due to unexpectedly high global demand for PV laminates and limitations on supply. PowerLight has successfully reduced balance-of-system costs, including the cost of installation. At the end of this subcontract, BOS costs had been reduced by 68%. Project go also included: Implementation of an automated tile manufacturing facility, in Berkeley, California, exceeding 16-MW/year capacity; improved quality of finished goods due to improved tooling and processes in PowerGuard manufacturing, which also simultaneously improved throughput and lowered costs; completion of wind tunnel testing of all design refinements; testing of PowerGuard installations on mechanically attached roof membranes; creation of an installation manual and training program for installing PowerGuard systems; certification and listing of PowerGuard products with Underwriters Laboratories and international certification organizations, and application for listing with the International Conference of Building Officials (ICBO).

Dinwoodie, T. L.; Botkin, J.

2002-10-01T23:59:59.000Z

415

ATS materials/manufacturing  

SciTech Connect

The Materials/Manufacturing Technology subelement is a part of the base technology portion of the Advanced Turbine Systems (ATS) Program. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. The projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single crystal airfoil manufacturing technologies, materials characterization, and technology information exchange. This paper presents highlights of the activities during the past year. 12 refs., 24 figs., 4 tabs.

Karnitz, M.A.; Wright, I.G.; Ferber, M.K. [and others

1997-11-01T23:59:59.000Z

416

Long Island Power Authority - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Rebate Program PV Rebate Program Long Island Power Authority - PV Rebate Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential (general customer-owned): Lesser of 50% of installed cost or $18,600; Residential (third-party owned): Lesser of 50% of installed cost or $17,200; Residential (non-profit owned): Lesser of 50% of installed costs or $22,500; Commercial: Lesser of 50% of installed cost or $145,000; Gov't, Schools, Nonprofits: Lesser of 65% of installed cost or $225,000 Program Info Funding Source LIPA Efficiency Long Island Program Start Date 2000 State New York Program Type Utility Rebate Program Rebate Amount

417

New York City - Property Tax Abatement for Photovoltaic (PV) Equipment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Abatement for Photovoltaic (PV) Property Tax Abatement for Photovoltaic (PV) Equipment Expenditures New York City - Property Tax Abatement for Photovoltaic (PV) Equipment Expenditures < Back Eligibility Commercial Industrial Institutional Multi-Family Residential Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Maximum Rebate $62,500 annually or the amount of real property taxes owed during a year Program Info Start Date 08/05/2008 State New York Program Type Property Tax Incentive Rebate Amount Installed from August 5, 2008 to December 31, 2010: 8.75% of system expenditures per year for 4 years (total of 35%); Installed from January 1, 2011 to December 31, 2012: 5% of system expenditures per year for 4 years (total of 20%); Installed from January 1, 2013 to December 31, 2014: 2.5% of system

418

Massachusetts Middle School Goes Local for PV Solar Energy System |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Middle School Goes Local for PV Solar Energy System Middle School Goes Local for PV Solar Energy System Massachusetts Middle School Goes Local for PV Solar Energy System August 13, 2010 - 11:00am Addthis New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools Lindsay Gsell What are the key facts? Using Recovery Act Funding, Norton Middle School installed a 126 panel solar system. The school expects to save $6,000 in energy costs each year. Materials for solar system came from local Massachusetts companies. When the school buses pull up to Norton Middle School this year, students will see more than just their friends and teachers, they'll get a view of

419

Anaheim Public Utilities - PV Buydown Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anaheim Public Utilities - PV Buydown Program Anaheim Public Utilities - PV Buydown Program Anaheim Public Utilities - PV Buydown Program < Back Eligibility Commercial Low-Income Residential Residential Savings Category Solar Buying & Making Electricity Maximum Rebate The incentives are based on the customer's most recent 12-month electricity usage. Program Info State California Program Type Utility Rebate Program Rebate Amount Program is currently closed. Rebate reservation period will reopen in January 2014. Provider Anaheim Public Utilities '''''This Program is currently closed. Rebate reservation period will reopen in January 2014. The summary below describes the program as it existed for Fiscal Year 2012 - 2013. See the web site above for more information. ''''' Anaheim Public Utilities offers a rebate to its residential and business

420

Incorporating Aggregated PV Systems into the Power Grid | Open Energy  

Open Energy Info (EERE)

Incorporating Aggregated PV Systems into the Power Grid Incorporating Aggregated PV Systems into the Power Grid Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.net/index.php?id=131 Equivalent URI: cleanenergysolutions.org/content/spain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an overview of total installed wind energy capacity in Spain per year from 2000 to 2010. The page also presents the main market developments from 2010; a policy summary; a discussion of the revision in feed-in tariffs in 2010; and a future market outlook. References Retrieved from "http://en.openei.org/w/index.php?title=Incorporating_Aggregated_PV_Systems_into_the_Power_Grid&oldid=514463

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

City of San Diego RFP for Power Purchase (PV)  

NLE Websites -- All DOE Office Websites (Extended Search)

City of San Diego City of San Diego Environmental Services Department Energy Conservation and Management Division Request for Proposal For Power Purchase of Renewable Energy (Photovoltaics) For City Facilities The City of San Diego is seeking a firm, or a team of firms, to provide cost effective solar photovoltaic electric generating systems at eight City sites. The City intends to enter into power purchase agreement(s) for terms up to twenty years with solar PV developer(s) at these sites. The developers may also be asked to assist the City with identifying implementing solar PV projects at other sites depending upon the success of the initial program. The City evaluated twenty four facilities that appear to have potential of accommodating solar PV systems ranging in size from 30 kilowatts to 1

422

CPS Energy - Solar PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CPS Energy - Solar PV Rebate Program CPS Energy - Solar PV Rebate Program CPS Energy - Solar PV Rebate Program < Back Eligibility Commercial Industrial Institutional Multi-Family Residential Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Maximum Rebate $25,000 for Residential $80,000 for Schools and Commercial using local installer $100,000 for Commercial not using local installer Program Info Expiration Date STEP extends through 2020, annual program year expiration dates may apply State Texas Program Type Utility Rebate Program Rebate Amount Schools (public and private): $2.00/W for first 25 kW; $1.30/W for any additional capacity Residential using local installer: $1.60/W for first 25 kW Residential not using local installer:$1.30/W for first 25 kW Commercial using local installer: $1.60/W for first 25 kW; $1.30/W for any

423

Tucson's Solar Experience: Developing PV with RFPs and PPAs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tucson's Solar Experience: Tucson's Solar Experience: Developing PV with RFPs and PPAs Bruce Plenk Solar Coordinator City of Tucson Office of Conservation and Sustainable Development DOE EERE- January 15, 2013 Developing PV Projects with RFPs and PPAs Tucson's Solar Investment (1999- 2008) * $960,000 cumulative solar investment with City general funds. * Over $200,000 leveraged from solar grants & utility rebates. * Bus shelter solar funded through advertising. * System size range: 3 kW- 64 kW (plus some solar hot water systems). * 220 kW total installed on 8 City sites. DOE EERE- January 15, 2013 Developing PV Projects with RFPs and PPAs Pre-RFP Decisions: site selection Plan A * Property owner selects sites; vendor determines details and

424

Progress Energy Carolinas - SunSense Residential PV Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Progress Energy Carolinas - SunSense Residential PV Incentive Program Progress Energy Carolinas - SunSense Residential PV Incentive Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Program is fully subscribed for 2013 $500 per kilowatt AC, plus a monthly bill credit of $4.50 per kW Provider Progress Energy Carolinas '''''Note: This program is budgeted to support a total of 1 MW of residential systems per year. The program is now fully subscribed for 2013. New applications will be accepted starting January 1, 2014. ''''' Progress Energy is offering incentives for their residential customers to install photovoltaics (PV) systems on their homes through their SunSense

425

Tianfu PV Guangxian Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Tianfu PV Guangxian Co Ltd Tianfu PV Guangxian Co Ltd Jump to: navigation, search Name Tianfu PV Guangxian Co Ltd Place Shihezi, Xinjiang Autonomous Region, China Sector Solar Product Chinese company who planned to produce flexiable a-Si thin-film solar cells but the project finanly abandoned. Coordinates 44.299709°, 86.03791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.299709,"lon":86.03791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Massachusetts Middle School Goes Local for PV Solar Energy System |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Middle School Goes Local for PV Solar Energy System Massachusetts Middle School Goes Local for PV Solar Energy System Massachusetts Middle School Goes Local for PV Solar Energy System August 13, 2010 - 11:00am Addthis New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools Lindsay Gsell What are the key facts? Using Recovery Act Funding, Norton Middle School installed a 126 panel solar system. The school expects to save $6,000 in energy costs each year. Materials for solar system came from local Massachusetts companies. When the school buses pull up to Norton Middle School this year, students will see more than just their friends and teachers, they'll get a view of

427

Development of a low-cost integrated 20-kW-AC solar tracking subarray for grid-connected PV power system applications. Final technical report  

DOE Green Energy (OSTI)

This report chronicles Utility Power Group's (UPG) successful two-year Photovoltaic Manufacturing Technology (PVMaT) Phase 4A1 work effort which began in July, 1995. During this period, UPG completed design, fabrication, testing and demonstration of a modular and fully integrated 15-kW-ac, solar tracking PV power system sub-array. The two key and innovative components which were developed are a Modular Panel which optimizes factory assembly of PV modules into a large area, field-deployable, structurally-integrated PV panel, and an Integrated Power Processing Unit which combines all dc and ac power collection, conversion and control functions within a single, field-deployable structurally-integrated electrical enclosure. These two key sub-array elements, when combined with a number of other electrical, mechanical, and structural components, create a low-cost and high-performance PV power system. This system, or sub-array, can be deployed in individual units, or paralleled with any number of other sub-arrays, to construct multi-megawatt P fields. 21 figs.

Stern, M.; Duran, G.; Fourer, G.; Mackamul, K.; Whalen, W.; Loo, M. van; West, R. [Utility Power Group, Chatsworth, CA (US)

1998-06-01T23:59:59.000Z

428

Optimization of laser scribing for thin-film PV modules. Annual technical progress report, 12 April 1995--11 April 1996  

DOE Green Energy (OSTI)

One of the most important aspects in moving from the cell level to the integrated module level in thin-film photovoltaics is to achieve reliable and reproducible cell interconnects having low series resistance and high shunt resistance, and to do this with a minimum of dead area between cells. It is known that mechanical scribing often produces considerable damage (e.g., film tearing) surrounding the scribe. Laser scribing has shown the potential for superior scribe widths and profiles for many of the materials involved with thin-film PV. However, problems arc also known to occur with a heat-affected zone around the scribe, and for some materials and some focus conditions high positive ridges or collars are left along the scribe line. The commercially-available scribing systems have been optimized typically for other applications and other materials such as scribing of crystalline Si. Optimum operation for thin-film PV materials has been investigated by several PV manufacturers but there has been limited discussion of problems or of optimum parameters in the open literature. Furthermore, to our knowledge, there has been little investigation of the applicability, for thin-film PV, of laser systems other than the traditional cw lamp-pumped, Q-switched Nd:YAG.

Compaan, A.D.; Jayamaha, U.; Matulionis, I.; Miller, M.J. [Univ. of Toledo, OH (United States)

1996-10-01T23:59:59.000Z

429

Time series power flow analysis for distribution connected PV generation.  

SciTech Connect

Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J. [Georgia Institute of Technology, Atlanta, GA; Smith, Jeff [Electric Power Research Institute, Knoxville, TN; Dugan, Roger [Electric Power Research Institute, Knoxville, TN

2013-01-01T23:59:59.000Z

430

Modular Power Converters for PV Applications  

DOE Green Energy (OSTI)

This report describes technical opportunities to serve as parts of a technological roadmap for Shoals Technologies Group in power electronics for PV applications. There are many different power converter circuits that can be used for solar inverter applications. The present applications do not take advantage of the potential for using common modules. We envision that the development of a power electronics module could enable higher reliability by being durable and flexible. Modules would have fault current limiting features and detection circuits such that they can limit the current through the module from external faults and can identify and isolate internal faults such that the remaining modules can continue to operate with only minimal disturbance to the utility or customer. Development of a reliable, efficient, low-cost, power electronics module will be a key enabling technology for harnessing more power from solar panels and enable plug and play operation. Power electronics for computer power supplies, communication equipment, and transportation have all targeted reliability and modularity as key requirements and have begun concerted efforts to replace monolithic components with collections of common smart modules. This is happening on several levels including (1) device level with intelligent control, (2) functional module level, and (3) system module. This same effort is needed in power electronics for solar applications. Development of modular units will result in standard power electronic converters that will have a lower installed and operating cost for the overall system. These units will lead to increased adaptability and flexibility of solar inverters. Incorporating autonomous fault current limiting and reconfiguration capabilities into the modules and having redundant modules will lead to a durable converter that can withstand the rigors of solar power generation for more than 30 years. Our vision for the technology roadmap is that there is no need for detailed design of new power converters for each new application or installation. One set of modules and controllers can be pre-developed and the only design question would be how many modules need to be in series or parallel for the specific power requirement. Then, a designer can put the modules together and add the intelligent reconfigurable controller. The controller determines how many modules are connected, but it might also ask for user input for the specific application during setup. The modules include protection against faults and can reset it, if necessary. In case of a power device failure, the controller reconfigures itself to continue limited operation until repair which might be as simple as taking the faulty module out and inserting a new module. The result is cost savings in design, maintenance, repair, and a grid that is more reliable and available. This concept would be a perfect fit for the recently announced funding opportunity announcement (DE-FOA-0000653) on Plug and Play Photovoltaics.

Ozpineci, Burak [ORNL; Tolbert, Leon M [ORNL

2012-05-01T23:59:59.000Z

431

PV cell and module performance measurement capabilities at NREL  

DOE Green Energy (OSTI)

The Photovoltaic (PV) Cell and Module Performance Characterization team at NREL supports the entire photovoltaic community by providing: secondary calibrations of photovoltaic cells and modules; efficiency measurements with respect to a given set of standard reporting conditions; verification of contract efficiency milestones; and current versus voltage (I-V) measurements under various conditions of temperature, spectral irradiance, and total irradiance. Support is also provided to in-house programs in device fabrication, module stability, module reliability, PV systems evaluations, and alternative rating methods by performing baseline testing, specialized measurements and other assistance when required. The I-V and spectral responsivity equipment used to accomplish these tasks are described in this paper.

Rummel, S.; Emery, K.; Field, H.; Moriarty, T.; Anderberg, A.; Dunlavy, D.; Ottoson, L.

1998-09-01T23:59:59.000Z

432

Outdoor PV Module Degradation of Current-Voltage Parameters: Preprint  

DOE Green Energy (OSTI)

Photovoltaic (PV) module degradation rate analysis quantifies the loss of PV power output over time and is useful for estimating the impact of degradation on the cost of energy. An understanding of the degradation of all current-voltage (I-V) parameters helps to determine the cause of the degradation and also gives useful information for the design of the system. This study reports on data collected from 12 distinct mono- and poly-crystalline modules deployed at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Most modules investigated showed < 0.5%/year decrease in maximum power due to short-circuit current decline.

Smith, R. M.; Jordan, D. C.; Kurtz, S. R.

2012-04-01T23:59:59.000Z

433

Toward integrated PV panels and power electronics using printing technologies  

SciTech Connect

In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)

Ababei, Cristinel; Yuvarajan, Subbaraya [Electrical and Computer Engineering Department, North Dakota State University, Fargo, ND 58108 (United States); Schulz, Douglas L. [Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, ND 58102 (United States)

2010-07-15T23:59:59.000Z

434

Sustainable Manufacturing in the Systems Integration Division  

Science Conference Proceedings (OSTI)

... Sustainability Modeling and Optimization Project. Sustainability of Unit Manufacturing Processes Project. Sustainable Manufacturing Program. ...

2011-12-23T23:59:59.000Z

435

Characteristics of Manufacturing Processes  

Science Conference Proceedings (OSTI)

Table 2   Rating of characteristics for common manufacturing processes...AHB, Vol 4 CVD/PVD All 1 5 5 4 3 AHB, Vol 13, p 456 Rating scheme: 1, poorest; 5, best. Ratings from Ref 5 . AHB, ASM Handbook ; EMH, Engineered

436

Turbine airfoil manufacturing technology  

DOE Green Energy (OSTI)

The specific goal of this program is to define manufacturing methods that will allow single crystal technology to be applied to complex-cored airfoils components for power generation applications. Tasks addressed include: alloy melt practice to reduce the sulfur content; improvement of casting process; core materials design; and grain orientation control.

Kortovich, C. [PCC Airfoils, Inc., Beachwood, OH (United States)

1995-12-31T23:59:59.000Z

437

Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing  

E-Print Network (OSTI)

1.3 Component cost of PV system and Price reduction overComponent cost of PV system and Price reduction over time [based PV cells, leading to a significant price drop per kWh.

Zeng, Dekong

2012-01-01T23:59:59.000Z

438

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

be incorporated into the price paid for PV generation underbe incorporated into the price paid for PV generation under4. MPR-Based Prices for Monthly Excess PV Generation under

Darghouth, Naim

2010-01-01T23:59:59.000Z

439

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

metering, the average price paid for PV generation under thecredits some or all PV production at prices based on thethe average MPR-based price at a 25% PV-to-load ratio and $

Darghouth, Naim R.

2012-01-01T23:59:59.000Z

440

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

Pricing Beneficial to Solar PV in New York City? PreparedSubstantial Benefit of Solar PV. The Electricity Journal,36: MRW & Associates. 2007. Solar PV and Retail Rate Design.

Darghouth, Naim

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Berkeley Program Offers New Option for Financing Residential PV Systems  

Science Conference Proceedings (OSTI)

Readily accessible credit has often been cited as a necessary ingredient to open up the market for residential photovoltaic (PV) systems. Though financing does not reduce the high up-front cost of PV, by spreading that cost over some portion of the system's life, financing can certainly make PV systems more affordable. As a result, a number of states have, in the past, set up special residential loan programs targeting the installation of renewable energy systems and/or energy-efficiency improvements and often featuring low interest rates, longer terms and no-hassle application requirements. Historically, these loan programs have had mixed success (particularly for PV), for a variety of reasons, including a historical lack of homeowner interest in PV, a lack of program awareness, a reduced appeal in a low-interest-rate environment, and a tendency for early PV adopters to be wealthy and not in need of financing. Some of these barriers have begun to fade. Most notably, homeowner interest in PV has grown in some states, particularly those that offer solar rebates. The passage of the Energy Policy Act of 2005 (EPAct 2005), however, introduced one additional roadblock to the success of low-interest PV loan programs: a residential solar investment tax credit (ITC), subject to the Federal government's 'anti-double-dipping' rules. Specifically, the residential solar ITC--equal to 30% of the system's tax basis, capped at $2000--will be reduced or offset if the system also benefits from what is known as 'subsidized energy financing', which is likely to include most government-sponsored low-interest loan programs. Within this context, it has been interesting to note the recent flurry of announcements from a number of U.S cities concerning a new type of PV financing program. Led by the city of Berkeley, Calif., these cities propose to offer their residents the ability to finance the installation of a PV system using increased property tax assessments, rather than a more-traditional credit vehicle, to recover both system and administrative costs. This approach has a number of features that should appeal to PV owners, including long-term, fixed-cost, attractive financing; loans that are tied to the tax capacity of the property rather than to the owner's credit standing; a repayment obligation that transfers along with the sale of the property; and a potential ability to deduct the repayment obligation from federal taxable income as part of the local property tax deduction. For these reasons, Berkeley's program, which was first announced on October 23, 2007, has received considerable nationwide attention in both the trade and general press. Since the announcement, cities from throughout California and the broader U.S. have expressed keen interest in the possibility of replicating this type of program. In California alone, the cities of Santa Cruz, Santa Monica and Palm Desert are all reportedly considering similar programs, while the city of San Francisco has recently announced its own program, portions of which closely parallel Berkeley's approach. In addition, a bill (AB 811) that would authorize all cities in California, not just charter cities like Berkeley, to create this type of program was approved by the California General Assembly on January 29 and is currently under consideration in the State Senate. A similar bill in Colorado (HB 1350) was signed into law on May 28. Elsewhere, the city of Tucson, Arizona has also considered this financing approach.

Bolinger, Mark A

2008-07-06T23:59:59.000Z

442

Dynamic Model Validation of PV Inverters Under Short-Circuit Conditions: Preprint  

SciTech Connect

Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of photovoltaic deployment. Residential and commercial rooftop installations are connected to the distribution network; large-scale installation PV power plants (PVPs) have benefited from tax incentives and the low cost of PV modules. As the level penetration of PV generation increases, the impact on power system reliability will also be greater. Utility power system planners must consider the role of PV generation in power systems more realistically by representing PV generation in dynamic stability analyses. Dynamic models of PV inverters have been developed in the positive sequence representation. NREL has developed a PV inverter dynamic model in PSCAD/EMTDC. This paper validates the dynamic model with an actual hardware bench test conducted by Southern California Edison's Distributed Energy Resources laboratory. All the fault combinations -- symmetrical and unsymmetrical -- were performed in the laboratory. We compare the simulation results with the bench test results.

Muljadi, E.; Singh, M.; Bravo, R.; Gevorgian, V.

2013-03-01T23:59:59.000Z

443

205 kW Photovoltaic (PV) System Installed on the U.S. Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

205 kW Photovoltaic (PV) System Installed on the U.S. Department of Energy's Forrestal Building 205 kW Photovoltaic (PV) System Installed on the U.S. Department of Energy's...

444

Interline photovoltaic (I-PV) power plants for voltage unbalance compensation  

E-Print Network (OSTI)

This paper proposes a stationary-frame control method for voltage unbalance compensation using Interline Photovoltaic (I-PV) power system. I-PV power systems are controlled to compensate voltage unbalance autonomously. The ...

Moawwad, Ahmed

445

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network (OSTI)

Clean Energy Group), Mike Taylor Designing PV IncentiveClean Energy States Alliance C ASE S TUDIES OF S TATE S UPPORT FOR R ENEWABLE E NERGY Designing PV Incentive

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

446

Why Are Residential PV Prices in Germany So Much Lower Than in...  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Are Residential PV Prices in Germany So Much Lower Than in the United States? A Scoping Analysis Title Why Are Residential PV Prices in Germany So Much Lower Than in the United...

447

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network (OSTI)

Utility District (SMUD) Xcel Energy Connecticut Clean EnergyCA LADWP CA SMUD CO Xcel CT CCEF Small PV ProgramCA LADWP CA SMUD CO Xcel CT CCEF Small PV Program

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

448

ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg PV System Components  

E-Print Network (OSTI)

· Batteries required if (1) load profile solar radiation profile and (2) to mitigate effect of variability · PV System components: ­ PV Modules ­ Batteries ­ Power Conditioning ­ Loads ­ Balance of systems #12

Honsberg, Christiana

449

Interline Photovoltaic (I-PV) power system - A novel concept of power flow control and management  

E-Print Network (OSTI)

This paper presents a new system configuration for a large-scale Photovoltaic (PV) power system with multi-line transmission/distribution networks. A PV power plant is reconfigured in a way that two adjacent power system ...

Khadkikar, Vinod

450

BATTERY-POWERED, ELECTRIC-DRIVE VEHICLES PROVIDING BUFFER STORAGE FOR PV CAPACITY VALUE  

E-Print Network (OSTI)

installed over 1.5 MW of rooftop PV [2]. These systems generate value primarily through the energy produced and the intermittent nature of the solar resource create challenges to realizing the capacity value of PV installations

Perez, Richard R.

451

New Berkeley Lab Report Tracks a Decade of PV Installed Cost Trends  

E-Print Network (OSTI)

of PV Installed Cost Trends Galen Barbose, Carla Peterman,fill this need by summarizing trends in the installed cost (the broader geographical trends in the U.S. PV market, the

Barbose, Galen

2009-01-01T23:59:59.000Z

452

A software tool for optimal sizing of PV systems in Malaysia  

Science Conference Proceedings (OSTI)

This paper presents a MATLAB based user friendly software tool called as PV. MY for optimal sizing of photovoltaic (PV) systems. The software has the capabilities of predicting themetrological variables such as solar energy, ambient temperature and wind ...

Tamer Khatib; Azah Mohamed; K. Sopian

2012-01-01T23:59:59.000Z

453

Exploring the Economic Value of EPAct 2005's PV Tax Credits  

NLE Websites -- All DOE Office Websites (Extended Search)

provide to PV system purchasers? And what implications might they hold for stateutility PV grant programs? Using a generic (i.e., non-state-specific) cash flow model, this report...

454

Climatically Diverse Data Set for Flat-Plate PV Module Model Validations (Presentation)  

SciTech Connect

Photovoltaic (PV) module I-V curves were measured at Florida, Colorado, and Oregon locations to provide data for the validation and development of models used for predicting the performance of PV modules.

Marion, B.

2013-05-01T23:59:59.000Z

455

Dynamic Model Validation of PV Inverters Under Short-Circuit Conditions: Preprint  

SciTech Connect

Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of photovoltaic deployment. Residential and commercial rooftop installations are connected to the distribution network; large-scale installation PV power plants (PVPs) have benefited from tax incentives and the low cost of PV modules. As the level penetration of PV generation increases, the impact on power system reliability will also be greater. Utility power system planners must consider the role of PV generation in power systems more realistically by representing PV generation in dynamic stability analyses. Dynamic models of PV inverters have been developed in the positive sequence representation. NREL has developed a PV inverter dynamic model in PSCAD/EMTDC. This paper validates the dynamic model with an actual hardware bench test conducted by Southern California Edison's Distributed Energy Resources laboratory. All the fault combinations -- symmetrical and unsymmetrical -- were performed in the laboratory. We compare the simulation results with the bench test results.

Muljadi, E.; Singh, M.; Bravo, R.; Gevorgian, V.

2013-03-01T23:59:59.000Z

456

Manufacturing News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Manufacturing News Manufacturing News RSS January 15, 2014 FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute The Obama Administration announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. November 22, 2013 In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in Energy Efficiency As Part of Obama Administration's Better Plants Program, U.S. Manufacturers Cut Energy Waste and Save Money October 21, 2013 FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking

457

MDF | Manufacturing Demonstration Facility | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with MDF Working with MDF Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

458

Manufacturing Initiative | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Research Areas Buildings Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Manufacturing SHARE Manufacturing Initiative Titanium robotic hand holding sphere fabricated using additive manufacturing Oak Ridge National Laboratory is supporting the DOE's Office of Energy Efficiency and Renewable Energy (EERE) Clean Energy Manufacturing Initiative focusing on American competitiveness in clean energy manufacturing. The DOE Initiative has two primary objectives-increase US competitiveness in the production of clean energy products (e.g., wind turbines, solar panels, energy efficient appliances, light bulbs, vehicles and automotive

459

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Information Integration & Infrastructure Manufacturing Information Integration & Infrastructure PDF format (47 kb) The Information Infrastructure Team in the Computer Applications for Manufacturing organization can provide programming and analysis support for information applications for manufacturing. The Team works closely with customers to help them define their requirements. The Team's experience and expertise can help your manufacturing information needs. Capabilities Provide computer hardware and software standards that directly support the seamless manufacturing initiative. Develop graphical user interfaces (GUI) for applications using the proprietary Windows environment or an open system design using Web servers and client browsers. Provide computer hardware support, including all personal computer

460

Transformational Manufacturing | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Transformational Manufacturing Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and transformational technology to improve the efficiency and competitiveness of domestic manufacturing while reducing its carbon footprint. The lab's efforts concentrate on sustainable manufacturing, applied nanotechnology and distributed energy, with an emphasis on transitioning science discoveries to the market.

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

MDF | Manufacturing Demonstration Facility | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

BTRIC CNMS CSMB CFTF HFIR MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

462

Manufacturing News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Manufacturing News Manufacturing News RSS August 3, 2011 Department of Energy Announces Philips Lighting North America as Winner of L Prize Competition Philips Product Delivers on Department's Challenge to Replace Common Light Bulb with Energy-Saving Lighting Alternative August 2, 2011 Department of Energy to Invest $50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal SUNPATH Program Will Boost American Competitiveness, Lower Cost of Solar Energy June 29, 2011 Department of Energy Announces New Partnerships to Support Manufacturing Job Training National Training and Education Resource (NTER) Offers Tools to Train Workers June 24, 2011 Department of Energy Announces $120 Million to Support Development of Innovative Manufacturing Processes

463

The Photovoltaic Manufacturing Technology Project: Phase 1 subcontractors  

DOE Green Energy (OSTI)

The Phase I portion of the Photovoltaic Manufacturing Technology (PVMaT) Project, the problem identification phase, was completed in mid-1991. This work involved competitive bidding that was open to any US firm with existing manufacturing capabilities, regardless of material or module design. In early 1991, subcontracts were awarded to 22 of approximately 40 bidders. Each subcontract was funded at a level of up to $50,000 and a duration of three months. The problems identified by the research in this phase of the program represent opportunities for industrial participants to improve their manufacturing processes, reduce manufacturing costs, increase product performance, or develop a foundation for scaling up US-based manufacturing plant capacities. Many of these opportunities have since been detailed in the approaches that these organizations suggested for Phase 2 (the problem solution phase) research and development (R D). It is not. anticipated that any additional Phase I solicitation will be issued because Phase I was intended to help the US Department of Energy (DOE) characterize the status and needs of the US photovoltaic (PV) industry and encourage the industry to examine and prioritize required manufacturing line improvements. Phase I subcontracted research included five subcontractors working on flat-plate crystalline silicon technology, eleven working on flat-plate thin-film modules (one in thin-film crystalline silicon, six in amorphous silicon. and four in polycrystalline thin films), six working on concentrator systems, and two working on general equipment/production options. (Two of the participants each worked in two areas).

Not Available

1992-07-01T23:59:59.000Z

464

The Photovoltaic Manufacturing Technology Project: Phase 1 subcontractors  

DOE Green Energy (OSTI)

The Phase I portion of the Photovoltaic Manufacturing Technology (PVMaT) Project, the problem identification phase, was completed in mid-1991. This work involved competitive bidding that was open to any US firm with existing manufacturing capabilities, regardless of material or module design. In early 1991, subcontracts were awarded to 22 of approximately 40 bidders. Each subcontract was funded at a level of up to $50,000 and a duration of three months. The problems identified by the research in this phase of the program represent opportunities for industrial participants to improve their manufacturing processes, reduce manufacturing costs, increase product performance, or develop a foundation for scaling up US-based manufacturing plant capacities. Many of these opportunities have since been detailed in the approaches that these organizations suggested for Phase 2 (the problem solution phase) research and development (R&D). It is not. anticipated that any additional Phase I solicitation will be issued because Phase I was intended to help the US Department of Energy (DOE) characterize the status and needs of the US photovoltaic (PV) industry and encourage the industry to examine and prioritize required manufacturing line improvements. Phase I subcontracted research included five subcontractors working on flat-plate crystalline silicon technology, eleven working on flat-plate thin-film modules (one in thin-film crystalline silicon, six in amorphous silicon. and four in polycrystalline thin films), six working on concentrator systems, and two working on general equipment/production options. (Two of the participants each worked in two areas).

Not Available

1992-07-01T23:59:59.000Z

465

Low-cost manufacturing of the point focus concentrating module and its key component, the Fresnel lens. Final subcontract report, 31 January 1991--6 May 1991  

DOE Green Energy (OSTI)

Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction. The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals. 15 refs.

Saifee, T.; Konnerth, A. III [Solar Kinetics, Inc., Dallas, TX (United States)

1991-11-01T23:59:59.000Z

466

Stichting Triodos PV Partners defunct | Open Energy Information  

Open Energy Info (EERE)

Stichting Triodos PV Partners defunct Stichting Triodos PV Partners defunct Jump to: navigation, search Name Stichting Triodos PV Partners - defunct Place Arlington, Virginia Zip 22209 Product Stichting Triodos PV Partners, a JV Triodos Bank Group, Environmental Enterprises Assistance Fund, & Global Transition Consulting, was wound up and the management of the SDC fund was transferred back to Triodos. Coordinates 43.337585°, -89.379449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.337585,"lon":-89.379449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

467

Energy Analysis Department Designing PV Incentive Programs to  

E-Print Network (OSTI)

Energy Analysis Department Designing PV Incentive Programs to Promote Performance: A Review to undersized wiring) Maintenance Cleaning, tree-trimming Repair/replacement of failed components #12;Energy of Current Practice Galen Barbose, Ryan Wiser, Mark Bolinger Lawrence Berkeley National Laboratory #12;Energy

468

Rural electrification cooperative model (Solar-PV) in Madhya Pradesh  

Science Conference Proceedings (OSTI)

In order to speed up the development of energy supply, involving the local population can be one of the main drivers for the success story of rural electrification. The local community involvement could be crystallised in the form of a cooperative model, ... Keywords: cooperative, electrification, model, renewable energy sources, rural, solar-PV, town

Najib Altawell; Tariq Muneer

2011-12-01T23:59:59.000Z

469

Opportunities and Challenges for Power Electronics in PV Modules (Presentation)  

DOE Green Energy (OSTI)

The presentation describes the value of adding DC converters and other power electronics to modules to improve their output even when shading or bad cells would otherwise decrease the module output. The presentation was part of a workshop sponsored by ARPA-E exploring the opportunities for power electronics to support PV applications.

Kurtz, S.; Deline, C.; Wohlgemuth, J.; Marion, B.; Granata, J.

2011-02-01T23:59:59.000Z

470

Silicon Oxynitride Thin Film Barriers for PV Packaging (Poster)  

DOE Green Energy (OSTI)

Dielectric, adhesion-promoting, moisture barriers comprised of silicon oxynitride thin film materials (SiOxNy with various material stoichiometric compositions x,y) were applied to: 1) bare and pre-coated soda-lime silicate glass (coated with transparent conductive oxide SnO2:F and/or aluminum), and polymer substrates (polyethylene terephthalate, PET, or polyethylene napthalate, PEN); plus 2) pre- deposited photovoltaic (PV) cells and mini-modules consisting of amorphous silicon (a-Si) and copper indium gallium diselenide (CIGS) thin-film PV technologies. We used plasma enhanced chemical vapor deposition (PECVD) process with dilute silane, nitrogen, and nitrous oxide/oxygen gas mixtures in a low-power (< or = 10 milliW per cm2) RF discharge at ~ 0.2 Torr pressure, and low substrate temperatures < or = 100(degrees)C, over deposition areas ~ 1000 cm2. Barrier properties of the resulting PV cells and coated-glass packaging structures were studied with subsequent stressing in damp-heat exposure at 85(degrees)C/85% RH. Preliminary results on PV cells and coated glass indicate the palpable benefits of the barriers in mitigating moisture intrusion and degradation of the underlying structures using SiOxNy coatings with thicknesses in the range of 100-200 nm.

del Cueto, J. A.; Glick, S. H.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

2006-10-03T23:59:59.000Z

471

Integration of PV modules in existing Romanian buildings  

Science Conference Proceedings (OSTI)

The paper is based on an on-going national research project focused on the promotion of new architectural concepts i.e. BIPV systems, which include active solar systems (PV generators) and solar tunnels. The advantages of using the distributed solar ...

S. Fara; D. Finta; M. Iancu; L. Fara; A. M. Dabija; E. Tulcan-Paulescu

2010-05-01T23:59:59.000Z

472

Ballast-mounted PV arrays: Phase 2 final report  

DOE Green Energy (OSTI)

The expansive flat rooftops of industrial and commercial buildings across America offer the largest, most secure, and potentially least-cost real estate opportunity to install massive amounts of solar photovoltaic generation in the building sector. Unfortunately, mechanical penetration of roofing membranes is very expensive and perceived by building owners and operators to increase the likelihood of leaking. In response Ascension Technology has pioneered the development of low-cost ballasted approaches for mounting PV arrays. Recently, however, we have experienced our first two instances in which strong winds have moved our arrays on rooftops and heightened our interest, and the PV industries' need, to develop zero-penetration mounting techniques that are more secure, yet remain low in cost. In this PV BONUS project, Ascension Technology and its partners addressed wind loading on solar panels and the suitability of using frictional forces between ballast trays and roofing materials to resist PV arrays sliding on rooftops. The primary goal of the project is to capture the potential cost savings made possible by ballast-mounting by showing under what conditions it can satisfy wind loading concerns. A secondary goal is to address a more geographically constrained concern regarding withstanding seismic forces.

Edward C. Kern

2000-03-01T23:59:59.000Z

473

Fault Current Contribution from Single-Phase PV Inverters  

DOE Green Energy (OSTI)

A significant increase in photovoltaic (PV) system installations is expected to come on line in the near future and as the penetration level of PV increases, the effect of PV may no longer be considered minimal. One of the most important attributions of additional PV is what effect this may have on protection systems. Protection engineers design protection systems to safely eliminate faults from the electric power system. One of the new technologies recently introduced into the electric power system are distributed energy resources (DER). Currently, inverter-based DER contributes very little to the power balance on all but a few utility distribution systems. As DER become prevalent in the distribution system, equipment rating capability and coordination of protection systems merit a closer investigation. A collaborative research effort between the National Renewable Energy Laboratory (NREL) and Southern California Edison (SCE) involved laboratory short-circuit testing single-phase (240 VAC) residential type (between 1.5 and 7kW) inverters. This paper will reveal test results obtained from these short-circuit tests.

Keller, J.; Kroposki, B.; Bravo, R.; Robles, S.

2011-01-01T23:59:59.000Z

474

Ballast-mounted PV arrays: Phase 2 final report  

SciTech Connect

The expansive flat rooftops of industrial and commercial buildings across America offer the largest, most secure, and potentially least-cost real estate opportunity to install massive amounts of solar photovoltaic generation in the building sector. Unfortunately, mechanical penetration of roofing membranes is very expensive and perceived by building owners and operators to increase the likelihood of leaking. In response Ascension Technology has pioneered the development of low-cost ballasted approaches for mounting PV arrays. Recently, however, we have experienced our first two instances in which strong winds have moved our arrays on rooftops and heightened our interest, and the PV industries' need, to develop zero-penetration mounting techniques that are more secure, yet remain low in cost. In this PV BONUS project, Ascension Technology and its partners addressed wind loading on solar panels and the suitability of using frictional forces between ballast trays and roofing materials to resist PV arrays sliding on rooftops. The primary goal of the project is to capture the potential cost savings made possible by ballast-mounting by showing under what conditions it can satisfy wind loading concerns. A secondary goal is to address a more geographically constrained concern regarding withstanding seismic forces.

Edward C. Kern

2000-03-01T23:59:59.000Z

475

An overview of NREL's PV solar radiation research task activities and results  

SciTech Connect

This paper presents an overview of the recent activities and results of the Photovoltaics (PV) Solar Radiation Research task of NREL's PV Advanced Research and Development (PVAR D) Project. Topics covered include the Atmospheric Optical Calibration System (AOCS) and instrumentation systems for monitoring and characterizing the solar irradiance available to PV systems. Both types of instrumentation systems and activities are required for a thorough understanding of PV device performance and design.

Hulstrom, R.L.; Cannon, T.W.; Stoffel, T.; Riordan, C.J. (National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, Colorado 80401 (United States))

1992-12-01T23:59:59.000Z

476

Designing PV Incentive Programs to Promote Performance: A Review of Current Practice  

E-Print Network (OSTI)

for interconnection or net metering, or by lawmakers andof PV metering (separate from net metering of the facilitys

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

477

Rooftop PV system. PV:BONUS Phase 3B, final technical report  

SciTech Connect

Under the PV:BONUS Program, ECD and United Solar developed, demonstrated and commercialized two new lightweight, flexible BIPV modules specifically designed as replacements for conventional asphalt shingles and standing seam metal roofing. These modules can be economically and aesthetically integrated into new residential and commercial buildings, and can be used to address the even larger roofing-replacement market. An important design feature of these modules, which minimizes the installation and balance-of-system costs, is their ability to be installed by conventional roofing contractors without special training. The modules are fabricated from high-efficiency, triple-junction spectrum-splitting a-Si alloy solar cells developed by ECD and United Solar. These cells are produced on thin, flexible stainless steel substrates and encapsulated with polymer materials. The Phase 3 program began in August 1995. The principal tasks and goals of this program, which have all been successfully completed by ECD and United Solar, are described in the body and appendices of this report.

1998-11-01T23:59:59.000Z

478

Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)  

DOE Green Energy (OSTI)

Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

Gessert, T. A.

2010-09-01T23:59:59.000Z

479

Designing PV Incentive Programs to Promote Performance: A Review of Current Practice in the U.S.  

E-Print Network (OSTI)

Connected PV Systems Rated Output Product Reliability SafetyPV system components and installations meet minimum industry standards related to safety, reliability, and

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2008-01-01T23:59:59.000Z

480

Design, fabrication, and certification of advanced modular PV power systems. Annual technical progress report, 8 September 1995--7 September 1996  

DOE Green Energy (OSTI)

This report summarizes the activities performed during the first year of a nominal 2-year effort by Solar Electric Specialties Company (SES) under the Photovoltaic Manufacturing Technology (PVMaT) project of the National Photovoltaic Program. The goal of the SES contract is to reduce the installed system life-cycle costs by developing certified and standardized prototype products for two SES product lines--MAPPS{trademark} and Photogenset{trademark}. The MAPPS (modular autonomous PV power supply) systems are used for DC applications up to about a thousand watt-hours. The Photogensets are hybrid PV/generator systems for AC applications. SES expects these products to provide the basis for future commercial product lines of standardized certified, packaged systems.

Lambarski, T.; Minyard, G. [Solar Electric Specialties, Willits, CA (United States)

1997-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "teksun pv manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Gas Turbine Manufacturers Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

482

Common Mode Voltage in case of Transformerless PV Inverters Connected to the Grid  

E-Print Network (OSTI)

through the parasitic capacitance of the PV panels, can reach very high values. A common-mode model based grid connected PV system with the modeled parasitic capacitances, marked with grey lines, presentCommon Mode Voltage in case of Transformerless PV Inverters Connected to the Grid T. KEREKES* R

Kerekes, Tamas

483

PMMA Acrylic in a Stress-Response Framework for PV Materials  

E-Print Network (OSTI)

PMMA Acrylic in a Stress-Response Framework for PV Materials Laura S. Bruckman Materials Science, VuGraph 2 Motivation: Lifetime & Degradation Science for Photovoltaics Need scientific basis for PV, components, systems for PV · System lifetime performance Determine degradation modes, mechanisms and rates

Rollins, Andrew M.

484

Path Forward in PV Research: News from Robert J. Davis, Ph.D.  

E-Print Network (OSTI)

, business, tax issues, nor reliability If PV will hit $1/Wp as it appears it will, how long will thosePath Forward in PV Research: News from BAPVC Robert J. Davis, Ph.D. Co-Director, Wright Center Trends in PV What is affordable solar durability? Right: Picosun SunALE R-150 atomic layer deposition

Rollins, Andrew M.

485

A methodology for optimal sizing of autonomous hybrid PV/wind system  

E-Print Network (OSTI)

system reliability requirements, with the lowest value of levelised cost of energy. Modelling a hybrid PV mathematical models for characterizing PV module, wind generator and battery are proposed. The second step of the hybrid PV/wind system are the reliable power supply of the consumer under varying atmospheric conditions

Paris-Sud XI, Université de

486

THERMOMECHANICS OF PV MODULES INCLUDING THE VISCOELASTICITY OF EVA Ulrich Eitner1,  

E-Print Network (OSTI)

in the cell distance is 170µm. Keywords: PV module, Encapsulation, Simulation, Reliability, Mechanics 1THERMOMECHANICS OF PV MODULES INCLUDING THE VISCOELASTICITY OF EVA Ulrich Eitner1, *, Matthias by a comparison to displacement experiments where the thermomechanical deformation of solar cells in a PV laminate

487

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study  

E-Print Network (OSTI)

Optimal Design of Hybrid Energy System with PV/ Wind Turbine/ Storage: A Case Study Rui Huang development of photovoltaic (PV), wind turbine and battery technologies, hybrid energy system has received of the hybrid energy system that consists of PV arrays, wind turbines and battery storage and use that to define

Low, Steven H.

488

The Impact of Retail Rate Structures on the Economics of Customer-Sited PV: A Study of Commercial Installations in California  

E-Print Network (OSTI)

the PV production profile, increases with the price ratio.off-peak prices. Customers who plan to install PV systems (

Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

2008-01-01T23:59:59.000Z

489

Materials Standards for Additive Manufacturing  

Science Conference Proceedings (OSTI)

... ASTM F2924 Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium with Powder Bed Fusion) except for standards ...

2013-06-04T23:59:59.000Z

490

Integrating Materials and Manufacturing Innovation  

Science Conference Proceedings (OSTI)

Jun 13, 2012 ... 06/13 - TMS Launches New Open Access Journal: Integrating Materials and Manufacturing Innovation. Patti Dobranski Communication...

491

Implementation of Sustainable Manufacturing Standards  

Science Conference Proceedings (OSTI)

... Manufacturing Standards Kathi Futornick, LEED AP Global Sustainability Practice URS Corporation NIST Workshop October 13-15, 2009 ...

2009-10-20T23:59:59.000Z

492

NIST Workshop on Sustainable Manufacturing  

Science Conference Proceedings (OSTI)

... Day1: 15:15 15:30. Kathi Futornick. URS Corporation. Standards Opportunity in Sustainable Product Development and Manufacturing. ...

2009-12-01T23:59:59.000Z

493

NIST Additive Manufacturing Test Artifact  

Science Conference Proceedings (OSTI)

NIST Additive Manufacturing Test Artifact. Summary. ... The test artifact is to be built using the AM system under investigation. ...

2013-04-26T23:59:59.000Z

494

Why Manufacturing Matters to California  

Science Conference Proceedings (OSTI)

... Sources: Bureau of Labor Statistics, IHS Global Insight. Manufacturing employment (left) ... Sources: Bureau of Labor Statistics, IHS Global Insight. ...

2012-10-01T23:59:59.000Z

495

Project: Manufacturing Services Network Models  

Science Conference Proceedings (OSTI)

... expressivity of a pattern library for manufacturing service capability information, by demonstrating the target information retrieval behavi