National Library of Energy BETA

Sample records for teksun pv manufacturing

  1. Teksun PV Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    Teksun PV Manufacturing Inc Jump to: navigation, search Logo: Teksun PV Manufacturing Inc Name: Teksun PV Manufacturing Inc Address: 401 Congress Ave Place: Austin, Texas Zip:...

  2. TekSun PV Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    TekSun PV Manufacturing Inc Jump to: navigation, search Name: TekSun PV Manufacturing Inc Place: Austin, Texas Zip: 78701 Product: US-based installer of PV systems; rportedly...

  3. Ningxia Yinxing Energy PV Power Equipment Manufacturing Co Ltd...

    Open Energy Info (EERE)

    Yinxing Energy PV Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Ningxia Yinxing Energy PV Power Equipment Manufacturing Co Ltd Place: Yinchuan, Ningxia...

  4. Real time PV manufacturing diagnostic system

    SciTech Connect (OSTI)

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  5. NREL Releases Report Describing Guidelines for PV Manufacturer Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assurance - News Releases | NREL Releases Report Describing Guidelines for PV Manufacturer Quality Assurance International task force aims to toughen standards, ensure reliability of PV technologies April 14, 2015 The Energy Department's National Renewable Energy Laboratory (NREL) has released an updated proposal that will establish an international quality standard for photovoltaic (PV) module manufacturing. The document is intended for immediate use by PV manufacturers when producing

  6. Breakout Session: A Look Ahead: PV Manufacturing in 10 Years

    Broader source: Energy.gov [DOE]

    The global PV manufacturing landscape has undergone significant changes in the past decade, from geographic and economic changes in the supply chain to a significant increase in PV module...

  7. NREL Helps Establish New PV Quality Standards for Manufacturers - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Helps Establish New PV Quality Standards for Manufacturers February 8, 2016 Working with partners around the world, researchers at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have completed five years of work toward helping establish an international quality standard for manufacturing photovoltaic (PV) modules. PV manufacturers will use the new standard to increase the level of confidence investors, utilities, and consumers have in solar panel

  8. DOE Request for Information (RFI) DE-FOA-0000153 PV Manufacturing Initiative: Summary Report, February 2010

    SciTech Connect (OSTI)

    Not Available

    2010-02-01

    This document sums up results of the PV Manufacturing Request for Information (RFI), DE-FOA-0000153, which supports the PV Manufacturing Initiative, launched by DOE Solar Energy Technologies Program.

  9. DOE Request for Information (RFI) DE-FOA-0000153 PV Manufacturing Initiative

    SciTech Connect (OSTI)

    none,

    2010-02-01

    This draft report summarizes the results of the U.S. Department of Energy PV Manufacturing Request for Information (RFI), DE-FOA-0000153, that was released in September 2009. The PV Manufacturing Initiative is intended to help facilitate the development of a strong PV manufacturing industry in the United States.

  10. Lessons Learned from the Photovoltaic Manufacturing Technology/PV Manufacturing R&D and Thin-Film PV Partnership Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Manufacturing Technology/PV Manufacturing R&D and Thin-Film PV Partnership Projects R. Margolis, R. Mitchell, and K. Zweibel Technical Report NREL/TP-520-39780 September 2006 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Lessons Learned from the Photovoltaic Manufacturing Technology/PV Manufacturing R&D and Thin-Film PV Partnership Projects R. Margolis, R. Mitchell, and K. Zweibel Prepared under Task No. PVC6.1301 Technical

  11. Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)

    SciTech Connect (OSTI)

    Goodrich, A. C.; Woodhouse, M.; James, T.

    2011-02-01

    EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

  12. Progress of the PV Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base

    SciTech Connect (OSTI)

    Ullal, H.; Mitchell, R.; Keyes, B.; VanSant, K.; Von Roedern, B.; Symko-Davies, M.; Kane, V.

    2011-01-01

    In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubator Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment total nearly $ 1.3 billion.

  13. Updated Proposal for a Guide for Quality Management Systems for PV Manufacturing. Supplemental Requirements to ISO 9001-2008

    SciTech Connect (OSTI)

    Ramu, Govind; Yamamichi, Masaaki; Zhou, Wei; Mikonowicz, Alex; Lokanath, Sumanth; Eguchi, Yoshihito; Norum, Paul; Kurtz, Sarah

    2015-03-01

    The goal of this Technical Specification is to provide a guideline for manufacturers of photovoltaic (PV) modules to produce modules that, once the design is proven to meet the quality and reliability requirements, replicate the design on an industrial scale without compromising its consistency with the requirements.

  14. Jinzhou Boyang PV Technology | Open Energy Information

    Open Energy Info (EERE)

    Boyang PV Technology Place: Jinzhou, Liaoning Province, China Product: China-based PV product manufacturer. It is also engaged in the design and installation of PV power...

  15. Updated Proposal for a Guide for Quality Management Systems for PV Manufacturing: Supplemental Requirements to ISO 9001-2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated Proposal for a Guide for Quality Management Systems for PV Manufacturing: Supplemental Requirements to ISO 9001-2008 Govind Ramu, 1 Masaaki Yamamichi, 2 Wei Zhou, 3 Alex Mikonowicz, 4 Sumanth Lokanath, 5 Yoshihito Eguchi, 6 Paul Norum, 7 and Sarah Kurtz 8 1 SunPower 2 National Institute of Advanced Industrial Science and Technology (AIST) 3 Trina Solar 4 Powermark 5 First Solar 6 Mitsui Chemical 7 Amonix 8 National Renewable Energy Laboratory Technical Report NREL/TP-5J00-63742 March

  16. Habdank PV Montagesysteme GmbH Co KG Habdank PV Mounting Systems...

    Open Energy Info (EERE)

    Germany Zip: 73037 Product: Germany-based manufacturer of mounting systems for PV installations. References: Habdank PV-Montagesysteme GmbH & Co KG Habdank PV Mounting...

  17. PV Cz silicon manufacturing technology improvements. Semiannual subcontract report, 1 April 1993--30 September 1993

    SciTech Connect (OSTI)

    Jester, T.

    1994-06-01

    This report describes work performed under a 3-year contract to demonstrate signfficant cost reductions and improvements in manufacturing technology. The work focused an near-term projects for implementation in the Siemens Solar Industries (SSI) Czochralski (CZ) manufacturing facility in Camarillo, California, and was undertaken to increase the commercial viability and volume of photovoltaic manufacturing by evaluating the most significant cost categories and then lowering the cost of each Rem through experimentation, materials refinement, and better industrial engineering. During this reporting period, several significant improvements were achieved. (1) The crystal-growing operation improved with an increase in growth capacity. Higher growing throughput was demonstrated with larger crucibles, higher polysilicon packing density, and higher pull speeds. (2) The operation was completely converted to wire-saw wafer processing. The wire saws yield over 40% more wafers per inch in production. The capacity improvement generated by wire saws increased overall manufacturing volume by more than 40% without additional expenses in cyrstal growth. (3) Cell processing improvements focused on better understanding of the contact paste and firing processes. (4) Module designs for lower material and labor costs began with the focus on a new junction box, larger modules with larger cells, and less costly framing technique. CFC usage was completely eliminated in the SSI manufacturing facility during this phase of the contract.

  18. Beijing Sunpu Solar PV Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 100083 Sector: Solar Product: Manufacturers of PV-powered street lights, inverters and other solar PV systems. References: Beijing Sunpu Solar PV Technology Co Ltd1...

  19. PV Cz silicon manufacturing technology improvements. Semiannual subcontract report, 1 April 1994--30 September 1994

    SciTech Connect (OSTI)

    Jester, T.

    1995-09-01

    This describes work done in the final phase of a 3-y, 3-phase contract to demonstrate cost reductions and improvements in manufacturing technology. The work focused on near-term projects in the SSI (Siemens Solar Industries) Czochralski (Cz) manufacturing facility in Camarillo, CA; the final phase was concentrated in areas of crystal growth, wafer technology, and environmental, safety, and health issues. During this period: (1) The crystal-growing operation improved with increased growth capacity. (2) Wafer processing with wire saws continued to progress; the wire saws yielded almost 50% more wafers per inch in production. The wire saws needs less etching, too. (3) Cell processing improvements focused on better handling and higher mechanical yield. The cell electrical distribution improved with a smaller standard deviation in the distribution. (4) Module designs for lower material and labor costs continued, with focus on a new junction box, larger modules with larger cells, and less costly framing techniques. Two modules demonstrating these cost reductions were delivered during this phase.

  20. PV World Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    World Co Ltd Jump to: navigation, search Name: PV World Co Ltd Place: Singapore Product: Singapore-based PV module manufacturer. References: PV World Co Ltd1 This article is a...

  1. Proposal for a Guide for Quality Management Systems for PV Manufacturing: Supplemental Requirements to ISO 9001-2008 (Revised)

    SciTech Connect (OSTI)

    Norum, P.; Sinicco, I.; Eguchi, Y.; Lokanath, S.; Zhou, W.; Brueggemann, G.; Mikonowicz, A.; Yamamichi, M.; Kurtz, S.

    2013-09-01

    This technical specification provides a guideline for photovoltaic module manufacturers to produce modules that, once the design has proven to meet the quality and reliability requirements, replicate such design in an industrial scale without compromising its consistency with the requirements.

  2. The Present, Mid-Term, and Long-Term Supply Curves for Tellurium; and Updates in the Results from NREL's CdTe PV Module Manufacturing Cost Model (Presentation)

    SciTech Connect (OSTI)

    Woodhouse, M.; Goodrich, A.; Redlinger, M.; Lokanc, M.; Eggert, R.

    2013-09-01

    For those PV technologies that rely upon Te, In, and Ga, first-order observations and calculations hint that there may be resource constraints that could inhibit their successful deployment at a SunShot level. These are only first-order approximations, however, and the possibility for an expansion in global Te, In, and Ga supplies needs to be considered in the event that there are upward revisions in their demand and prices.In this study, we examine the current, mid-term, and long-term prospects of Tellurium (Te) for use in PV. We find that the current global supply base of Te would support <10 GW of annual traditional CdTe PV manufacturing production. But as for the possibility that the supply base for Te might be expanded, after compiling several preliminary cumulative availability curves we find that there may be significant upside potential in the supply base for this element - principally vis a vis increasing demand and higher prices. Primarily by reducing the Tellurium intensity in manufacturing and by increasing the recovery efficiency of Te in Cu refining processes, we calculate that it may prove affordable to PV manufacturers to expand the supply base for Te such that 100 GW, or greater, of annual CdTe PV production is possible in the 2030 - 2050 timeframe.

  3. PV Powered Inc | Open Energy Information

    Open Energy Info (EERE)

    PV Powered Inc Place: Bend, Oregon Zip: 97702 Product: Oregon-based manufacturer of inverters for PV systems. Coordinates: 44.05766, -121.315549 Show Map Loading map......

  4. PV Performance and Reliability Validation Capabilities at Sandia National Laboratories

    Broader source: Energy.gov [DOE]

    This presenation summarizes the information discussed by Sandia National Laboratories at the PV Manufacturing Workshop, March 25, 2011.

  5. Manufacturing Process Optimization to Improve Stability, Yield and Efficiency of CdS/CdTe PV Devices: Final Report, December 2004 - January 2009

    SciTech Connect (OSTI)

    Sampath, W. S.; Enzenroth, A.; Barth, K.

    2009-03-01

    The research by Colorado State University advances the understanding of device stability, efficiency, and process yield for CdTe PV devices.

  6. Manufacturing

    Office of Environmental Management (EM)

    Flow of Materials through Industry / Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 1 5 1.1 Supply chain and material flow analysis ....................................................................................... 1 6 2. Technology Assessment and Potential

  7. Masdar PV GmbH | Open Energy Information

    Open Energy Info (EERE)

    Masdar PV GmbH Place: Germany Product: Germany-based manufacturer of thin film photovoltaic products and solutions References: Masdar PV GmbH1 This article is a stub. You...

  8. Raising the Bar for Quality PV Modules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Raising the Bar for Quality PV Modules Raising the Bar for Quality PV Modules October 30, 2014 - 4:58pm Addthis As photovoltaics (PV) markets expand across the United States the manufacture of safe, reliable, and high-quality PV modules is critical to achieve cost competitive solar energy. Since the development and codification of testing standards for PV modules requires a lengthy multiyear process, Department of Energy's SunShot Initiative and National Renewable Energy Laboratory worked

  9. Low-Cost Manufacturing of High-Efficiency, High-Reliability String Ribbon Si PV Modules: Final Subcontract Report, 24 June 2005 - 31 October 2008

    SciTech Connect (OSTI)

    Felton, L.

    2009-05-01

    Presents 2008 overall process improvements in adaptive thermal process, cut-on-the-fly manufacturing, and lamination.

  10. Materials from 2014 SunShot Summit Breakout Session: Looking Ahead: PV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing in 10 Years | Department of Energy Breakout Session: Looking Ahead: PV Manufacturing in 10 Years Materials from 2014 SunShot Summit Breakout Session: Looking Ahead: PV Manufacturing in 10 Years This was a breakout session at the 2014 SunShot Grand Challenge Summit and Peer Review. The global PV manufacturing landscape has undergone significant changes in the past decade, from geographic and economic changes in the supply chain to a significant increase in PV module production

  11. Zhangjiagang Sunlink PV Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Province, China Zip: 215600 Product: Specialises in developing, manufacturing and marketing of crystalline silicon PV products. Coordinates: 31.950001, 120.449997 Show Map...

  12. Austin Energy- Commercial Solar PV Incentive Program

    Broader source: Energy.gov [DOE]

    In order to qualify for this program, PV modules must be new and be listed on the California Energy Commission's Go Solar web site. In addition, all solar panels must have a 20-year manufacturer ...

  13. Ensuring Quality of PV Modules: Preprint

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Hacke, P.; Kempe, M.; Sample, T.; Yamamichi, M.; Kondo, M.; Doi, T.; Otani, K.; Amano, J.

    2011-07-01

    Photovoltaic (PV) customers need to have confidence in the PV modules they purchase. Currently, no test can quantify a module's lifetime with confidence, but stress tests are routinely used to differentiate PV product designs. We suggest that the industry would be strengthened by using the wisdom of the community to develop a single set of tests that will help customers quantify confidence in PV products. This paper evaluates the need for quality assurance (QA) standards and suggests a path for creating these. Two types of standards are needed: 1) QA of the module design and 2) QA of the manufacturing process.

  14. Sandia Energy - PV Value

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Value Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation PV Value PV ValueTara Camacho-Lopez2015-06-12T20:36:38+00:0...

  15. PV Value®

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... For appraisers, the inputs specific to PV in the Residential Green and Energy Efficient Addendum can be used as inputs to PV Value. Valuing a PV system is done using an income ...

  16. Development of Large High-Voltage PV Modules with Improved Reliability and Lower Cost: Final Subcontract Report, 1 April 2006--31 August 2007

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2009-05-01

    The overall objective was to provide NREL with technical results that enhance its capability to improve PV manufacturing technology by developing a PV module with specified characteristics.

  17. Supported PV module assembly

    DOE Patents [OSTI]

    Mascolo, Gianluigi; Taggart, David F.; Botkin, Jonathan D.; Edgett, Christopher S.

    2013-10-15

    A supported PV assembly may include a PV module comprising a PV panel and PV module supports including module supports having a support surface supporting the module, a module registration member engaging the PV module to properly position the PV module on the module support, and a mounting element. In some embodiments the PV module registration members engage only the external surfaces of the PV modules at the corners. In some embodiments the assembly includes a wind deflector with ballast secured to a least one of the PV module supports and the wind deflector. An array of the assemblies can be secured to one another at their corners to prevent horizontal separation of the adjacent corners while permitting the PV modules to flex relative to one another so to permit the array of PV modules to follow a contour of the support surface.

  18. Efficiency and throughput advances in continuous roll-to-roll a-Si alloy PV manufacturing technology: Annual technical progress report: 22 June 1998--21 June 1999

    SciTech Connect (OSTI)

    Izu, M.

    1999-11-09

    This document reports on work performed by Energy Conversion Devices, Inc. (ECD) during Phase 1 of this subcontract. During this period, ECD researchers: (1) Completed design and construction of new, improved substrate heater; (2) Tested and verified improved performance of the new substrate heater in the pilot machine; (3) Verified improved performance of the new substrate heater in the production machine; (4) Designed and bench-tested a new infrared temperature sensor; (5) Installed a prototype new infrared temperature sensor in the production machine for evaluation; (6) Designed a new rolling thermocouple temperature sensor; (7) Designed and bench-tested a reflectometer for the backreflector deposition machine; (8) Designed and bench-tested in-line non-contacting cell diagnostic sensor and PV capacitive diagnostic system; (9) Installed the in-line cell diagnostic sensor in the 5-MW a-Si deposition machine for evaluation; (10) Demonstrated a new low-cost zinc metal process in the pilot back reflector machine; and (11) Fully tested a new cathode design for improved uniformity.

  19. SunShot Solar PV | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar PV SunShot Solar PV

  20. Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Final Subcontract Report, 1 April 2002--28 February 2006

    SciTech Connect (OSTI)

    Wohlgemuth, J.; Narayanan, M.

    2006-07-01

    The major objectives of this program were to continue advances of BP Solar polycrystalline silicon manufacturing technology. The Program included work in the following areas. (1) Efforts in the casting area to increase ingot size, improve ingot material quality, and improve handling of silicon feedstock as it is loaded into the casting stations. (2) Developing wire saws to slice 100-..mu..m-thick silicon wafers on 290-..mu..m-centers. (3) Developing equipment for demounting and subsequent handling of very thin silicon wafers. (4) Developing cell processes using 100-..mu..m-thick silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%. (5) Expanding existing in-line manufacturing data reporting systems to provide active process control. (6) Establishing a 50-MW (annual nominal capacity) green-field Mega-plant factory model template based on this new thin polycrystalline silicon technology. (7) Facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock..

  1. EERE Success Story-Raising the Bar for Quality PV Modules | Department of

    Office of Environmental Management (EM)

    Energy Raising the Bar for Quality PV Modules EERE Success Story-Raising the Bar for Quality PV Modules October 30, 2014 - 4:58pm Addthis As photovoltaics (PV) markets expand across the United States the manufacture of safe, reliable, and high-quality PV modules is critical to achieve cost competitive solar energy. Since the development and codification of testing standards for PV modules requires a lengthy multiyear process, Department of Energy's SunShot Initiative and National Renewable

  2. Sunergie PV | Open Energy Information

    Open Energy Info (EERE)

    Sunergie PV Jump to: navigation, search Name: Sunergie PV Place: Perpignan, France Zip: 66000 Product: Perpignan-based project developer. References: Sunergie PV1 This article is...

  3. Microsoft Word - Manufacturing Solicitation_2010 08 10_final...

    Broader source: Energy.gov (indexed) [DOE]

    solar photovoltaic (PV) component or system manufacturing facilities; c) concentrated solar power component or system manufacturing facilities; d) hydropower component or system...

  4. Innovative Approaches to Low-Cost Module Manufacturing of String Ribbon Si PV Modules; Final Subcontract Report, March 2002 - January 2005

    SciTech Connect (OSTI)

    Hanoka, J. I.

    2005-10-01

    As a result of this work, Evergreen Solar, Inc., is now poised to take String Ribbon technology to new heights. In the ribbon growth area, Project Gemini-the growth of dual ribbons from a single crucible-has reached or exceeded all the manufacturing goals set for it. This project grew from an R&D concept to a production pilot phase and finally to a full production phase, all within the span of this subcontract. A major aspect of the overall effort was the introduction of controls and instrumentation as in-line diagnostic tools. In the ribbon production area, the result has been a 12% increase in yields, a 10% increase in machine uptime, and the flattest ribbon ever grown at Evergreen. In the cell area, advances in process development and robotic handling of Gemini wafers have contributed, along with the advances in crystal growth, to a yield improvement of 6%. Particularly noteworthy in the cell area was the refinement of the no-etch process whereby the as-grown ribbon surface could be controlled sufficiently to allow this process to succeed as well as it has. This process obviates any need for wet chemistry or etching between ribbon growth and diffusion.

  5. Sandia Energy - PV Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Publications PV PublicationsTara Camacho-Lopez2016-01-05T23:50:37+00:00 Recent...

  6. Energy 101: Solar PV

    ScienceCinema (OSTI)

    None

    2013-05-29

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  7. Energy 101: Solar PV

    SciTech Connect (OSTI)

    2011-01-01

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  8. Energy 101: Solar PV

    Broader source: Energy.gov [DOE]

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power...

  9. PV Performance and Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Photovoltaic Systems Evaluation Laboratory PV Regional ... Facility Geomechanics and Drilling Labs National ... Health Monitoring Offshore Wind High-Resolution ...

  10. Conergy PV | Open Energy Information

    Open Energy Info (EERE)

    Conergy PV Jump to: navigation, search Name: Conergy PV Place: Germany Product: A holding company that was formed to group all Conergy AG's PV activities. References: Conergy PV1...

  11. Stabilized PV system

    DOE Patents [OSTI]

    Dinwoodie, Thomas L. (Piedmont, CA)

    2002-12-17

    A stabilized PV system comprises an array of photovoltaic (PV) assemblies mounted to a support surface. Each PV assembly comprises a PV module and a support assembly securing the PV module to a position overlying the support surface. The array of modules is circumscribed by a continuous, belt-like perimeter assembly. Cross strapping, extending above, below or through the array, or some combination of above, below and through the array, secures a first position along the perimeter assembly to at least a second position along the perimeter assembly thereby stabilizing the array against wind uplift forces. The first and second positions may be on opposite sides on the array.

  12. Sandia Energy - Stion Commissions PV System at Sandia Regional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the Sandia RTC site. Stion PV system installed and the Sandia RTC site. Thin-film solar module manufacturer Stion has commissioned a 12 kW fixed latitude ground-mounted...

  13. Fire resistant PV shingle assembly

    DOE Patents [OSTI]

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  14. PV Value®

    Broader source: Energy.gov [DOE]

    PV Value® is a free solar PV Valuation tool that answers the question of "How much is solar PV worth" and is compliant with the Uniform Standards of Professional Appraisal Practice. It is available for and being used by real estate appraisers, realtors, homeowners, commercial building owners, home builders, solar installers, green raters, insurance companies, and mortgage lenders in all 50 states along with D.C. and Puerto Rico. PV Value® allows for the calculation of both the cost and income approach to value and was endorsed by the largest appraiser trade organization, the "Appraisal Institute," as an innovative approach to valuing solar assets.

  15. GridPV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Point of Common Coupling pu per unit PV Photovoltaic UTM Universal Transverse Mercator VBA Visual Basic for Applications WVM Wavelet Variability Model 9 1. INTRODUCTION The power...

  16. PV Reliability & Performance Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... PV Reliability & Performance Model HomeStationary PowerEnergy Conversion ... such as module output degradation over time or disruptions such as electrical grid outages. ...

  17. Sandia Energy - Tutorial on PV System Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tutorial on PV System Modeling Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Modeling & Analysis Tutorial on PV System Modeling Tutorial on PV...

  18. Sandian Presents on PV Failure Analysis at European PV Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU ... Hydrogen Infrastructure Hydrogen Production Market Transformation Fuel Cells ...

  19. Sandia Energy - PV Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Modeling & Analysis Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Modeling & Analysis PV Modeling & AnalysisTara Camacho-Lopez2015-05-11T20:03...

  20. PV Systems | Open Energy Information

    Open Energy Info (EERE)

    PV Systems Place: Wales, United Kingdom Zip: CF15 7JD Product: Welsh building integrated PV (BIPV) company References: PV Systems1 This article is a stub. You can help OpenEI by...

  1. Sunshine PV | Open Energy Information

    Open Energy Info (EERE)

    PV Place: Taiwan Sector: Solar Product: Taiwan-based subsidiary of Solartech Energy and thin-film PV module supplier. References: Sunshine PV1 This article is a stub. You can...

  2. PV_LIB Toolbox

    Energy Science and Technology Software Center (OSTI)

    2012-09-11

    While an organized source of reference information on PV performance modeling is certainly valuable, there is nothing to match the availability of actual examples of modeling algorithms being used in practice. To meet this need, Sandia has developed a PV performance modeling toolbox (PV_LIB) for Matlab. It contains a set of well-documented, open source functions and example scripts showing the functions being used in practical examples. This toolbox is meant to help make the multi-stepmore » process of modeling a PV system more transparent and provide the means for model users to validate and understand the models they use and or develop. It is fully integrated into Matlab’s help and documentation utilities. The PV_LIB Toolbox provides more than 30 functions that are sorted into four categories« less

  3. Ambiental PV | Open Energy Information

    Open Energy Info (EERE)

    Ambiental PV Jump to: navigation, search Name: Ambiental PV Place: Bahia, Brazil Zip: 40140-380 Sector: Carbon Product: Bahia-based carbon consultancy firm. References: Ambiental...

  4. GridPV Toolbox

    Energy Science and Technology Software Center (OSTI)

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feedermore » on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.« less

  5. Grid integrated distributed PV (GridPV).

    SciTech Connect (OSTI)

    Reno, Matthew J.; Coogan, Kyle

    2013-08-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  6. PV modules modelling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Environmental Sciences / Group of Energy / PVsyst Modeling Systems Losses in PVsyst André Mermoud Institute of the Environmental Sciences Group of energy - PVsyst andre.mermoud@unige.ch Institute of the Environmental Sciences / Group of Energy / PVsyst Summary Losses in a PV system simulation may be: - Determined by specific models (shadings) - Interpretations of models (PV module behaviour) - User's parameter specifications (soiling, wiring, etc). PVsyst provides a detailed analysis of

  7. Jiangxi Solar PV Corp JSPV aka Solar PV Corporation | Open Energy...

    Open Energy Info (EERE)

    Solar PV Corp JSPV aka Solar PV Corporation Jump to: navigation, search Name: Jiangxi Solar PV Corp (JSPV, aka Solar PV Corporation ) Place: Xinyu, Jiangxi Province, China Zip:...

  8. PV Value | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Value PV Value PV Value® is a web-based tool that calculates the energy production value for a residential or commercial photovoltaic (PV) system. The tool is Uniform Standards of Progressional Appraisal Practice compliant and has been endorsed by the Appraisal Institute for the income approach method. Valuing a PV system is done using an income capitalization approach, which considers the present value of projected future energy production along with estimated operating and maintenance

  9. PV Performance and Reliability Validation Capabilities at Sandia National Laboratories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance and Reliability Validation PV Performance and Reliability Validation Capabilities at Sandia National Laboratories and The National Renewable Energy Laboratory PV MANUFACTURING WORKSHOP - MARCH 25, 2011 Presented by: Jennifer E Granata Sandia National Laboratories With Contributions from: Keith Emery, Sarah Kurtz, and Bill Marion at NREL Michael Quintana and Chris Cameron at Sandia Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the

  10. Lightweight PV Inverters: Dual Bi-Directional IGBTs Modules Enables Breakthrough PV Inverter Using Current Modulation Topology

    SciTech Connect (OSTI)

    2012-01-30

    Solar ADEPT Project: PV inverters convert DC power generated by modules into usable AC power. IPCs initial 30kW 94lb. PV inverter reduces the weight of comparable 30kW PV inverters by 90%reducing the cost of materials, manufacturing, shipping, and installation. With ARPA-E support, new bi-directional silicon power switches will be developed, commercialized, and utilized in IPCs next-generation PV inverter. With these components, IPC will produce 100kW inverters that weight less than 100lb., reducing the weight of conventional 3,000lb. 100kW inverters by more than 95%. The new power switches will cut IPCs $/W manufacturing cost in half, as well as further reduce indirect shipping and installation costs.

  11. The Open PV Project | Open Energy Information

    Open Energy Info (EERE)

    The Open PV Project (Redirected from Open PV) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Open PV Project AgencyCompany Organization: National Renewable Energy...

  12. Hunan Huayuan PV | Open Energy Information

    Open Energy Info (EERE)

    Huayuan PV Jump to: navigation, search Name: Hunan Huayuan PV Place: Hunan Province, China Product: State-owned PV wafer maker based in China's Hunan Province. References: Hunan...

  13. Open PV Project: Unlocking PV Installation Data (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This brochure summarizes the Open PV Project, a collaborative effort of government, industry, and the public to compile a comprehensive database of PV installations in the United States. The brochure outlines the purpose and history of the project as well as the main capabilities and benefits of the online Open PV tool. The brochure also introduces how features of the tool are used, and it describes the sources and characteristics of Open PV's data and data collection processes.

  14. Sandia Energy - PV Systems Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Reliability Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Systems Reliability PV Systems ReliabilityCoryne Tasca2015-05-08T03:40:54+00:00...

  15. Sandia Energy - PV Program Disclaimer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Program Disclaimersspope2015-03-23T21:15:29+00:00 PV Program Disclaimer The Photovoltaic Projects at Sandia National Laboratories support the development and deployment of...

  16. Ukiah Utilities- PV Buydown Program

    Broader source: Energy.gov [DOE]

    Through Ukiah Utilities’ PV Buydown Program, residential and commercial customers are eligible for a $1.40-per-watt AC rebate on qualifying grid-connected PV systems up to a maximum system size of...

  17. Kenmos PV | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Kenmos PV Place: Tainan, Taiwan Sector: Solar Product: Solar business unit of Kenmos Technology which was set up in Sep 2007, to produce thin film PV...

  18. PV Trackers | Open Energy Information

    Open Energy Info (EERE)

    Trackers Jump to: navigation, search Name: PV Trackers Product: Designer of dual axis trackers References: PV Trackers1 This article is a stub. You can help OpenEI by expanding...

  19. NREL: Photovoltaics Research - PV News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV News The National Renewable Energy Laboratory Photovoltaic (PV) Research Program highlights latest research and news accomplishments from the laboratory on this page. Subscribe to the RSS feed RSS . Learn about RSS. March 1, 2016 NREL Hosts PV Module Reliability Workshop for Industry Nearly 200 researchers from more than 100 companies and representing 16 countries attended the 7th annual PV Module Reliability Workshop, Feb. 23-25, 2016, in Golden, Colo. February 11, 2016 Potential of

  20. Solar PV and Glare Factsheet

    Broader source: Energy.gov [DOE]

    A common misconception about solar photovoltaic (PV) panels is that they inherently cause or create "too much" glare, posing a nuisance to neighbors and a safety risk for pilots. While solar PV systems can produce glare, light absorption - rather than reflection - is central to the function of solar PV panels. This fact sheet describes the basic issues surrounding glare from solar PV panels, the new Federal Aviation Administration guidance, and the implications for local governments.

  1. Delta PV Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    PV Pvt Ltd Jump to: navigation, search Name: Delta PV Pvt Ltd Place: India Product: Focused on PV cells and modules. References: Delta PV Pvt Ltd1 This article is a stub. You can...

  2. Testing for PV Reliability (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Bansal, S.

    2014-09-01

    The DOE SUNSHOT workshop is seeking input from the community about PV reliability and how the DOE might address gaps in understanding. This presentation describes the types of testing that are needed for PV reliability and introduces a discussion to identify gaps in our understanding of PV reliability testing.

  3. Solar Manufacturing Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Market » Solar Manufacturing Technology Solar Manufacturing Technology The SunShot Solar Manufacturing Technology (SolarMat) program funds the development of innovative manufacturing technologies that can achieve a significant market impact in one to four years. Launched in September 2013, the SolarMat program is supporting five projects working in two topic areas: photovoltaics (PV) and concentrating solar power (CSP). Both topics focus on driving down the cost of manufacturing

  4. Solar PV Incentive Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development Authority Solar PV Incentive Programs Presentation at NREL Webinar on September 27, 2012 Frank Mace, Dana Levy "Advancing innovative energy solutions in ways that improve New York's economy and environment" A public benefit corporation established in 1975 to help New York State meet its energy goals: - Reducing energy consumption - Promoting the use of renewable energy sources - Protecting the environment What is NYSERDA? 2 of 14 Research & Development: - New &

  5. PV Cell and Module Calibration Activities at NREL

    SciTech Connect (OSTI)

    Emery, K.; Anderberg, A.; Kiehl, J.; Mack, C.; Moriarty, T.; Ottoson, L.; Rummel, S.

    2005-11-01

    The performance of PV cells and modules with respect to standard reference conditions is a key indicator of progress of a given technology. This task provides the U.S. terrestrial PV community with the most accurate measurements that are technically possible in a timely fashion. The international module certification and accreditation program PVGap requires certification laboratories to maintain their calibration traceability path to groups like this one. The politics of a "world record" efficiency requires that an independent laboratory perform these measurements for credibility. Most manufacturers base their module peak watt rating upon standards and reference cells calibrated under this task. This task has been involved in reconciling disputes between manufacturers and their cell suppliers in terms of expected versus actual performance. This task has also served as a resource to the PV community for consultation on solar simulation, current versus voltage measurement instrumentation, measurement procedures and measurement artifacts.

  6. PV Eiwa Systemtechnik GmbH Co KG | Open Energy Information

    Open Energy Info (EERE)

    Germany Zip: 94447 Product: Germany-based manufacturer of fixed mounting systems and single-axis tracking for PV modules. Coordinates: 48.778312, 12.871223 Show Map...

  7. The Capital Intensity of Photovoltaics Manufacturing

    SciTech Connect (OSTI)

    Basore, Paul

    2015-10-19

    Factory capital expenditure (capex) for photovoltaic (PV) module manufacturing strongly influences the per-unit cost of a c-Si module. This provides a significant opportunity to address the U.S. DOE SunShot module price target through capex innovation. Innovation options to reduce the capex of PV manufacturing include incremental and disruptive process innovation with c-Si, platform innovations, and financial approaches. and financial approaches.

  8. Jinzhou Prime Solar PV Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    PV Technology Co Ltd Jump to: navigation, search Name: Jinzhou Prime Solar PV Technology Co Ltd Place: China Product: The company produces pv cell and develops pv project....

  9. BeyondPV Co Ltd Bayang Solar PV | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd (Bayang Solar PV) Place: Tainan, Taiwan Zip: 70955 Product: BeyondPV is an a-Si thin-film silicon PV maker based in southern Taiwan. References: BeyondPV Co Ltd (Bayang...

  10. PV Crystalox Solar AG formerly PV Silicon AG | Open Energy Information

    Open Energy Info (EERE)

    PV Crystalox Solar AG formerly PV Silicon AG Jump to: navigation, search Name: PV Crystalox Solar AG (formerly PV Silicon AG) Place: Abingdon, England, United Kingdom Zip: OX14 4SE...

  11. Interband cascade (IC) photovoltaic (PV) architecture for PV devices

    DOE Patents [OSTI]

    Yang, Rui Q.; Tian, Zhaobing; Mishima, Tetsuya D.; Santos, Michael B.; Johnson, Matthew B.; Klem, John F.

    2015-10-20

    A photovoltaic (PV) device, comprising a PV interband cascade (IC) stage, wherein the IC PV stage comprises an absorption region with a band gap, the absorption region configured to absorb photons, an intraband transport region configured to act as a hole barrier, and an interband tunneling region configured to act as an electron barrier. An IC PV architecture for a photovoltaic device, the IC PV architecture comprising an absorption region, an intraband transport region coupled to the absorption region, and an interband tunneling region coupled to the intraband transport region and to the adjacent absorption region, wherein the absorption region, the intraband transport region, and the interband tunneling region are positioned such that electrons will flow from the absorption region to the intraband transport region to the interband tunneling region.

  12. Generation PV Inc | Open Energy Information

    Open Energy Info (EERE)

    PV Inc Jump to: navigation, search Name: Generation PV Inc. Place: Markham, Ontario, Canada Zip: L6E 1A9 Sector: Wind energy Product: Ontario-based Generation PV distributes and...

  13. All Solar PV | Open Energy Information

    Open Energy Info (EERE)

    Solar PV Jump to: navigation, search Logo: All Solar PV Name: All Solar PV Address: 1407-4-105 Century East,Daliushu Road Place: Beijing, China Sector: Solar Product: Solar Energy...

  14. PV Nano Cell | Open Energy Information

    Open Energy Info (EERE)

    Cell Jump to: navigation, search Name: PV Nano Cell Place: Israel Product: Israel-based firm focused on PV nano cell technology. References: PV Nano Cell1 This article is a stub....

  15. Gansu PV Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Gansu PV Co Ltd Jump to: navigation, search Name: Gansu PV Co Ltd Place: Lanzhou, Gansu Province, China Zip: 730000 Sector: Solar Product: Gansu PV Co Ltd is active in...

  16. Method of manufacturing a large-area segmented photovoltaic module

    DOE Patents [OSTI]

    Lenox, Carl

    2013-11-05

    One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

  17. PROJECT PROFILE: Additively Manufactured Photovoltaic Inverter (SuNLaMP)

    Broader source: Energy.gov [DOE]

    Integrating hundreds of gigawatts of photovoltaic (PV) solar power onto our country’s electric grid requires transformative power conversion system designs that find a balance between performance, reliability, functionality and cost. The National Renewable Energy Laboratory (NREL) will lead this project to develop a unique PV inverter design that combines the latest wide bandgap high-voltage Silicon Carbide (SiC) semiconductor devices with new technologies, such as additive manufacturing and multi-objective magnetic design optimization. By developing an additively manufactured PV inverter (AMPVI), NREL researchers aim to significantly reduce the cost of PV power electronics.

  18. New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor

    Broader source: Energy.gov [DOE]

    Production scale, not lower labor costs, drives China's current advantage in manufacturing photovoltaic (PV) solar energy systems, according to a new report released today by the Energy Department...

  19. Zhonghuite PV Technology Co | Open Energy Information

    Open Energy Info (EERE)

    Zhonghuite PV Technology Co Jump to: navigation, search Name: Zhonghuite PV Technology Co Place: Jiangxi Province, China Sector: Solar Product: Jiangxi-based solar project...

  20. Sandia Energy - Evaluating Rooftop Strength for PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluating Rooftop Strength for PV Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Evaluating Rooftop Strength for PV Evaluating Rooftop Strength for...

  1. Tokyo Electron PV | Open Energy Information

    Open Energy Info (EERE)

    PV Jump to: navigation, search Name: Tokyo Electron PV Place: Nirasaki City, Yamanashi, Japan Product: Japanese electronics giants Tokyo Electron and Sharp have announced their...

  2. The Open PV Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Open PV Project is a collaborative effort between government, industry, and the public that is compiling a comprehensive database of photovoltaic (PV) installation data for the ...

  3. PV Solar Planet | Open Energy Information

    Open Energy Info (EERE)

    Solar Planet Jump to: navigation, search Logo: PV Solar Planet Name: PV Solar Planet Address: 5856 S. Garland Way Place: Littleton, Colorado Zip: 80123 Region: Rockies Area Sector:...

  4. SunShot Photovoltaic Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Market » SunShot Photovoltaic Manufacturing Initiative SunShot Photovoltaic Manufacturing Initiative The SunShot Photovoltaic Manufacturing Initiative (PVMI) invests in manufacturing-focused research projects that strengthen the competitiveness of the U.S. PV module industry and supply chain. PVMI funding also establishes manufacturing development facilities that provide infrastructure for demonstrating, testing, optimizing, and manufacturing new technologies with reduced capital

  5. Turlock Irrigation District- PV Rebate

    Broader source: Energy.gov [DOE]

    Turlock Irrigation District (TID) offers an incentive program to their customers who install solar photovoltaic (PV) systems. In keeping with the terms of the California Solar Initiative, the inc...

  6. PV | OpenEI Community

    Open Energy Info (EERE)

    this new 550 MW PV Solar Plant in Southern California is the latest feather in DOE's cap. Read more about it on Breaking Energy or checkout the info page from the California...

  7. Rooftop Solar PV & Firefighter Safety

    Broader source: Energy.gov [DOE]

    Solar photovoltaic (PV) installations have experienced significant growth in recent years. Due to technological innovations and cost reductions, solar energy is a viable option for an increasing number of residences and businesses across the United States. Rooftop solar is considered safe – to date there has been no documented case of death from the electric shock, chemical burn or conventional fire caused by a solar panel; however, as more buildings install rooftop solar systems, the likelihood increases that fires will occur on buildings with solar, making it critical for firefighters to receive comprehensive solar education and training. This SolarOPs fact sheet gives a brief overview of typical solar PV installations, addresses the major hazards and risks to firefighters, discusses fire safety in Germany (the country with the most installed solar PV per capita), and suggests recommendations and resources to ensure that first responders are prepared to fight fires on homes and buildings with rooftop solar PV.

  8. PSCAD Modules Representing PV Generator

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2013-08-01

    Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

  9. PV module mounting method and mounting assembly

    DOE Patents [OSTI]

    Lenox, Carl J.S.; Johnson, Kurt M.

    2013-04-23

    A method for mounting PV modules to a deck includes selecting PV module layout pattern so that adjacent PV module edges are spaced apart. PV mounting and support assemblies are secured to the deck according to the layout pattern using fasteners extending into the deck. The PV modules are placed on the PV mounting and support assemblies. Retaining elements are located over and secured against the upper peripheral edge surfaces of the PV modules so to secure them to the deck with the peripheral edges of the PV modules spaced apart from the deck. In some examples a PV module mounting assembly, for use on a shingled deck, comprises flashing, a base mountable on the flashing, a deck-penetrating fastener engageable with the base and securable to the deck so to secure the flashing and the base to the shingled deck, and PV module mounting hardware securable to the base.

  10. Pressure-equalizing PV assembly and method

    DOE Patents [OSTI]

    Dinwoodie, Thomas L.

    2004-10-26

    Each PV assembly of an array of PV assemblies comprises a base, a PV module and a support assembly securing the PV module to a position overlying the upper surface of the base. Vents are formed through the base. A pressure equalization path extends from the outer surface of the PV module, past the PV module, to and through at least one of the vents, and to the lower surface of the base to help reduce wind uplift forces on the PV assembly. The PV assemblies may be interengaged, such as by interengaging the bases of adjacent PV assemblies. The base may include a main portion and a cover and the bases of adjacent PV assemblies may be interengaged by securing the covers of adjacent bases together.

  11. Quantifying Reliability - The Next Step for a Rapidly Maturing PV Industry and China's Role

    SciTech Connect (OSTI)

    Kurtz, Sarah

    2015-10-14

    PV customers wish to know how long their PV modules will last, but quantitatively predicting service life is difficult because of the large number of ways that a module can fail, the variability of the use environment, the cost of the testing, and the short product development time, especially when compared with the long desired lifetime. China should play a key role in developing international standards because China manufactures most of the world's PV modules. The presentation will describe the steps that need to be taken to create a service life prediction within the context of a defined bill of materials, process window and use environment. Worldwide standards for cost-effective approaches to service-life predictions will be beneficial to both PV customers and manufacturers since the consequences of premature module failure can be disastrous for both.

  12. Connecticut Rooftop Solar PV Permitting Guide

    Broader source: Energy.gov [DOE]

    The Connecticut Rooftop Solar PV Permitting Guide is a compilation of best practices and resources for solar PV permitting. The guide includes a summary of current codes and regulations affecting solar PV, best practices for streamlining the municipal permitting process, and tools to assist municipalities in creating a streamlined permit process for residential solar PV. Resources include a solar PV permit application, a structural review worksheet, an inspection checklist, and a model solar zoning ordinance.

  13. NREL to request proposals for reducing PV costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Request Proposals for Reducing PV Costs For more information contact: George Douglas, (303) 275-4096 Golden, Colo., May 15, 1997 -- The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) invites the photovoltaics and related industries to join its Photovoltaic Manufacturing Technology (PVMaT) program in looking for ways to improve production processes and reduce the cost of photovoltaic products. NREL will issue in the next 90 days an $8 million request for proposals

  14. Efficient Nanostructured Silicon (Black Silicon) PV Devices - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Efficient Nanostructured Silicon (Black Silicon) PV Devices National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Antireflective (AR) coatings on solar cells increase the efficiency of the cells by suppressing reflection, which allows more photons to enter a silicon (Si) wafer and increases the flow of electricity. Traditional AR coatings however, add significant cost to the solar cell manufacturing process. NREL scientists

  15. Solar Manufacturing Technology 2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Technology 2 Solar Manufacturing Technology 2 The PV awards span the supply chain from novel methods to make silicon wafers, to advanced cell and metallization processes, to innovative module packaging and processing. The CSP award demonstrates manufacturability of an innovative CSP reflective-trough receiver. The first round of the SolarMat program was launched in September 2013 supporting five projects. The second round, announced on October 22, 2014, funds nine photovoltaics

  16. Development of a Visual Inspection Checklist for Evaluation of Fielded PV Module Condition (Presentation)

    SciTech Connect (OSTI)

    Packard, C. E; Wohlgemuth, J. H.; Kurtz, S. R.

    2012-03-01

    A visual inspection checklist for the evaluation of fielded photovoltaic (PV) modules has been developed to facilitate collection of data describing the field performance of PV modules. The proposed inspection checklist consists of 14 sections, each documenting the appearance or properties of a part of the module. This tool has been evaluated through the inspection of over 60 PV modules produced by more than 20 manufacturers and fielded at two different sites for varying periods of time. Aggregated data from a single data collection tool such as this checklist has the potential to enable longitudinal studies of module condition over time, technology evolution, and field location for the enhancement of module reliability models.

  17. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST » MST Research Programs » Additive Manufacturing Additive Manufacturing A method allowing unparalleled manufacturing control, data visualization, and high-value parts repair. Through additive manufacturing, Los Alamos is developing materials for the future. Taking complex manufacturing challenges from design to fabrication. A science and engineering approach for additive manufacturing solutions. Get Expertise John Carpenter Technical Staff Member Metallurgy Email Division Leader Materials

  18. Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.

    SciTech Connect (OSTI)

    Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan

    2011-06-01

    Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.

  19. China and India PV Reliability-NREL Cooperation | Open Energy...

    Open Energy Info (EERE)

    PV Reliability-NREL Cooperation Jump to: navigation, search Logo: China and India PV Reliability under the Asia Pacific Partnership Name China and India PV Reliability under the...

  20. Energy 101: Solar PV | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar PV Energy 101: Solar PV Addthis Description Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses. Text Version Below is the text version for the Energy 101: Solar PV video. The video opens with "Energy 101: Solar PV." This is followed by a timelapse shot of a city skyline as day turns to night. All right, we all know

  1. Comparison of Pyranometers vs. PV Reference Cells for Evaluation of PV Array Performance

    SciTech Connect (OSTI)

    Dunn, L.; Gostein, M.; Emery, K.

    2012-09-01

    As the photovoltaics (PV) industry has grown, the need for accurately monitoring the solar resource of PV power plants has increased. Historically, the PV industry has relied on thermopile pyranometers for irradiance measurements, and a large body of historical irradiance data taken with pyranometers exists. However, interest in PV reference devices is increasing. In this paper, we discuss why PV reference devices are better suited for PV applications, and estimate the typical uncertainties in irradiance measurements made with both pyranometers and PV reference devices. We assert that the quantity of interest in monitoring a PV power plant is the equivalent irradiance under the IEC 60904-3 reference solar spectrum that would produce the same electrical response in the PV array as the incident solar radiation. For PV-plant monitoring applications, we find the uncertainties in irradiance measurements of this type to be on the order of +/-5% for thermopile pyranometers and +/-2.4% for PV reference devices.

  2. Americans for Solar Power PV Manufacturers Alliance ASPv PVMA...

    Open Energy Info (EERE)

    Place: Tempe, Arizona Zip: 85282 Sector: Solar Product: A non-profit research and education body aimed at creating the right market structures and programs to enable...

  3. Webinar: Evaluating Roof Structures for Solar PV

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of Connecticut's Structural Review Worksheet for Residential Rooftop Solar PV Systems. The webinar explains how the worksheet should be used and common concerns with wind and dead loads for rooftop solar PV.

  4. City of Healdsburg- PV Incentive Program

    Broader source: Energy.gov [DOE]

    Through the City of Healdsburg's PV Buy-down Program, residential and commercial customers are eligible for rebate on qualifying grid-connected PV systems. In keeping with SB1, (the California...

  5. Modeling Distribution Connected PV and Interconnection Study...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV (GridPV)," Sandia National Labs SAND2013-6733, 2013. 3. R. J. Broderick, J. E. Quiroz, M. J. Reno, A. Ellis, J. Smith, and R. Dugan, "Time Series Power Flow Analysis for...

  6. PV Controls Utility-Scale Demonstration Project

    SciTech Connect (OSTI)

    O'Neill, Barbara; Gevorgian, Vahan

    2015-10-14

    This presentation provides a high-level overview of the utility-scale PV controls demonstration project.

  7. Summary of First PV Performance Modeling Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First PV Performance Modeling Workshop Christopher Cameron Consultant Presented at the 2013 Sandia PV Performance Modeling Workshop Santa Clara, CA. May 1-2, 2013 Published by Sandia National Laboratories with the Permission of the Author ChrisCameronPV@gmail.com 1 1 st PV Performance Modeling Workshop * Organized by Sandia * Held in Albuquerque, September 22-23, 2010 * Plan was for a small invitation-only workshop format * Interest grew quickly * Attendance capped at 50 due to space

  8. Grid Integrated Distributed PV (GridPV) Version 2.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Coogan, Kyle

    2014-12-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functio ns are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in th e OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function i n the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  9. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manufacturing and national security To realize additive manufacturing's potential as a disruptive technology for Los Alamos National Laboratory's national security missions,...

  10. Manufacturing Innovation Institute for Smart Manufacturing: Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing Manufacturing Innovation Institute for Smart...

  11. PV Validation and Bankability Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Validation and Bankability Workshop What if?? * This is a reality: A subsidy-free solar electricity infrastructure with an LCOE of 5-6 c/kWh without subsidies * Jobs and Competitiveness: Innovation that ensures the U.S. leads the way on clean energy, supporting new jobs and opportunities for Americans * National Energy Security: Independence from fossil fuel and increased national security * Healthy Environment: Huge carbon reduction and cleaner air ... Imagine a World... * Introducing

  12. Evaluating Rooftop Strength for PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rooftop Strength for PV - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  13. New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor NREL, MIT take an in-depth look at national competitiveness in PV manufacturing September 5, 2013 Production scale, not lower labor costs, drives China's current advantage in manufacturing photovoltaic (PV) solar energy systems, according to a new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Although

  14. Sustainable Manufacturing

    Energy Savers [EERE]

    Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR DOE Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR Sustainable Manufacturing: Definitions  Numerous definitions and descriptions exist for sustainable manufacturing: * US Department of Commerce, 2009 * NACFAM, 2009 * NIST, 2010 * US-EPA, 2012 * ASME, 2011, 2013 * NSF 2013 * ISM, 2014  Sustainable manufacturing offers a new way of producing functionally superior products using innovative sustainable

  15. PV output smoothing with energy storage.

    SciTech Connect (OSTI)

    Ellis, Abraham; Schoenwald, David Alan

    2012-03-01

    This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

  16. Transforming PV Installations toward Dispatchable, Schedulable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutions | Department of Energy Transforming PV Installations toward Dispatchable, Schedulable Energy Solutions Transforming PV Installations toward Dispatchable, Schedulable Energy Solutions Advanced Energy logo.png Advanced Energy (AE) will address three important needs in the further deployment of photovoltaic (PV) systems: 1) demonstrating and commercializing a new anti-islanding method utilizing Phasor Measurement Units (PMUs), 2) demonstrating a set of advanced grid support

  17. 2014 PV Performance Modeling Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 PV Performance Modeling Workshop Photo courtesy of Sempra Energy 8:00 AM to 9:00 PM Monday, May 5, 2014 At Biltmore Hotel, Santa Clara, California 4/30/2014 Agenda: Start Time Title Presenter 7:00 AM Badging and Registration Opens 8:00 AM Welcome, Purpose, and What to Expect Joshua Stein (SNL) 8:15 AM Solar Resource (Measurements and Datasets) 8:20:AM Ground Irradiance Data Justin Robinson (GroundWork Renewables) 8:40 AM Satellite Irradiance Models and Datasets Adam Kankiewicz (Clean Power

  18. PV Validation and Bankability Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Validation and Bankability Workshop August 31, 2011 Survey Results As of August 29, 2011 List of Questions * What is your market sector? * From product development through product launch, data must be collected at each step. If the Department of Energy can identify funds to provide some type of 3rd party validation/verification effort/study, what would be your priority for that effort? * What scale of module/system data is of interest and of use in making decisions in your market sector? *

  19. Degradation in PV Encapsulation Transmittance: An Interlaboratory...

    Office of Scientific and Technical Information (OSTI)

    PV module performance through the life of installations in the field. The present module safety and qualification standards, however, apply short UV doses only capable of...

  20. National solar technology roadmap: Concentrator PV

    SciTech Connect (OSTI)

    Friedman, Dan

    2007-06-01

    This roadmap addresses high-concentration (>10x) photovoltaic (PV) systems, incorporating high-efficiency III-V or silicon cells, trackers, and reflective or refractive optics.

  1. Selecting Solar: Insights into Residential Photovoltaic (PV)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selecting Solar: Insights into Residential Photovoltaic (PV) Quote Variation Carolyn Davidson and Robert Margolis National Renewable Energy Laboratory Technical Report NREL...

  2. The Open PV Project | Open Energy Information

    Open Energy Info (EERE)

    Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Solar, - Solar PV Topics: Background analysis, Market analysis Resource Type: Dataset, Online...

  3. The Open PV Project | Open Energy Information

    Open Energy Info (EERE)

    National Renewable Energy Laboratory Sector: Energy Focus Area: Solar, - Solar PV Topics: Background analysis, Market analysis Resource Type: Dataset, Online calculator,...

  4. Riverside Public Utilities - Residential PV Incentive Program...

    Broader source: Energy.gov (indexed) [DOE]

    Riverside Public Utilities Website http:www.riversideca.govutilitiesresi-pv-incentive.asp State California Program Type Rebate Program Rebate Amount 0.50 per watt...

  5. CPS Energy- Solar PV Rebate Program

    Broader source: Energy.gov [DOE]

    CPS Energy, San Antonio's municipal utility, offers rebates to customers who install solar photovoltaic (PV) systems on their homes, schools, or businesses. There are four rebate "tiers" available...

  6. EPRI-Sandia PV Systems Symposium - PV Distribution Systems Modeling Workshop Agenda (draft)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EPRI-Sandia PV Systems Symposium - PV Distribution Systems Modeling Workshop Agenda (draft) PV Distribution System Modeling Workshop - Draft Agenda as of May 1 This one-day workshop, hosted by Sandia National Laboratories, the Electric Power Research Institute (EPRI), and the National Renewable Energy Laboratory, will cover best practices to facilitate integration of PV into the power system. Topics will include technical and policy updates for current interconnection and screening practices and

  7. Assessing the Drivers of Regional Trends in Solar Photovoltaic Manufacturing

    Broader source: Energy.gov [DOE]

    Using a bottom-up model for wafer-based silicon PV, we examine both historical and future factory-location decisions from the perspective of a multinational corporation. Our model calculates the cost of PV manufacturing with process step resolution, while considering the impact of corporate financing and operations with a calculation of the minimum selling price that provides an adequate rate of return. We quantify the conditions of China's historical PV price advantage, examine if these conditions can be reproduced elsewhere, and evaluate the role of innovative technology in altering regional competitive advantage.

  8. Solar PV Permitting and Safety Training Webinar

    Broader source: Energy.gov [DOE]

    This webinar provides training on two permitting resources for municipal inspectors; a prescriptive process for building inspectors and a guidance document for permitting for PV for electrical inspectors. The webinar also runs through a number of key code articles in Massachusetts 2014 electrical code and examines a variety of safety hazards commonly found during or after solar PV installations.

  9. Draft Transcript on Municipal PV Systems

    Broader source: Energy.gov [DOE]

    Webinar on navigating the legal, tax, and finance issues associated with the installation of Municipal PV Systems. The following agenda was developed based on Pat Boylston's experience assisting municipalities with their PV projects and the requests for information that the Solar America City technical team leads have received from many of the 25 Solar America Cities since the April 2008 meeting in Tucson.

  10. The Impact of PV Module Reliability on Plant Lifetimes Exceeding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Impact of PV Module Reliability on Plant Lifetimes Exceeding 25 Years The Impact of PV Module Reliability on Plant Lifetimes Exceeding 25 Years Presented at the PV Module...

  11. Jiangsu Zongyi PV Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Name: Jiangsu Zongyi PV Co Ltd Place: Jiangsu Province, China Product: Nantong-based thin-film PV cell producer. References: Jiangsu Zongyi PV Co Ltd1 This article is a...

  12. Inner Mongolia Zhonghuan PV Materials Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    PV Materials Co Ltd Jump to: navigation, search Name: Inner Mongolia Zhonghuan PV Materials Co Ltd Place: Inner Mongolia Autonomous Region, China Product: China-based PV ingot and...

  13. Nvision.Energy - Pernik Solar PV plant | Open Energy Information

    Open Energy Info (EERE)

    Energy - Pernik Solar PV plant Jump to: navigation, search Name Nvision.Energy - Pernik Solar PV plant Facility Nvision.Solar - Pernik Solar PV Plant Sector Solar Facility Type...

  14. Value Proposition for High Lifetime (p-type) and Thin Silicon Materials in Solar PV Applications: Preprint

    SciTech Connect (OSTI)

    Goodrich, A.; Woodhouse, M.; Hacke, P.

    2012-06-01

    Most silicon PV road maps forecast a continued reduction in wafer thickness, despite rapid declines in the primary incentive for doing so -- polysilicon feedstock price. Another common feature of most silicon-technology forecasts is the quest for ever-higher device performance at the lowest possible costs. The authors present data from device-performance and manufacturing- and system-installation cost models to quantitatively establish the incentives for manufacturers to pursue advanced (thin) wafer and (high efficiency) cell technologies, in an age of reduced feedstock prices. This analysis exhaustively considers the value proposition for high lifetime (p-type) silicon materials across the entire c-Si PV supply chain.

  15. Potential Induced Degradation (PID) Tests for Commercially Available PV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modules | Department of Energy Potential Induced Degradation (PID) Tests for Commercially Available PV Modules Potential Induced Degradation (PID) Tests for Commercially Available PV Modules Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps4_aist_doi.pdf More Documents & Publications EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 PID-free C-Si PV Module Using Novel Chemically-Tempered Glass Agenda for the PV Module Reliability

  16. Nvision.Solar - Ravnishte Solar PV Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar - Ravnishte Solar PV Plant Jump to: navigation, search Name Nvision.Solar - Ravnishte Solar PV Plant Facility Ravishte roof and facade mounted solar power plant Sector Solar...

  17. Arima Photovoltaic And Optical Corp Arima PV | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaic And Optical Corp Arima PV Jump to: navigation, search Name: Arima Photovoltaic And Optical Corp (Arima PV) Place: Taipei, Taiwan Product: Once a maker of computers,...

  18. Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential This study looks at the technical ...

  19. Pioneer Valley Photovoltaics Cooperative aka PV Squared | Open...

    Open Energy Info (EERE)

    Photovoltaics Cooperative aka PV Squared Jump to: navigation, search Name: Pioneer Valley Photovoltaics Cooperative (aka PV Squared) Place: New Britain, Connecticut Zip: 6051...

  20. SunShot Presentation PV Module Reliabity Workshop Opening Session...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation PV Module Reliabity Workshop Opening Session SunShot Presentation PV Module Reliabity Workshop Opening Session This PowerPoint slide deck was originally presented at...

  1. Zhejiang Cineng PV Science Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Cineng PV Science Technology Co Ltd Jump to: navigation, search Name: Zhejiang Cineng PV Science & Technology Co Ltd Place: Cixi, Zhejiang Province, China Sector: Solar Product: A...

  2. Training on PV Systems: Design, Construction, Operation and Maintenanc...

    Open Energy Info (EERE)

    on PV Systems: Design, Construction, Operation and Maintenance Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Training on PV Systems: Design, Construction, Operation...

  3. Statistical and Domain Analytics Applied to PV Module Lifetime...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science...

  4. Inner Mongolia Dunan PV power | Open Energy Information

    Open Energy Info (EERE)

    Dunan PV power Jump to: navigation, search Name: Inner Mongolia Dunan PV power Place: Inner Mongolia Autonomous Region, China Sector: Solar Product: Inner Mongolia-based solar...

  5. Comparison of a Recurrent Neural Network PV System Model with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neural Network PV System Model with a Traditional Component-Based PV System Model Daniel Riley, Sandia National Laboratories, Albuquerque, New Mexico, USA | Ganesh K....

  6. Smart-Grid Ready PV Inverters with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INTEGRATION Smart-Grid Ready PV Inverters with Utility Communication Electric Power ... required utility communication links to capture the full value of distributed PV plants. ...

  7. BIOHAUS PV Handels GmbH | Open Energy Information

    Open Energy Info (EERE)

    GmbH Jump to: navigation, search Name: BIOHAUS PV Handels GmbH Place: Paderborn, Germany Zip: 33100 Product: Distributor of Isofoton PV products in Germany. Coordinates:...

  8. PV Validation and Bankability Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Validation and Bankability Workshop PV Validation and Bankability Workshop This presentation summarizes the information given by DOE during the Photovoltaic Validation and...

  9. Suzhou Shenglong PV Tech Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Shenglong PV Tech Co Ltd Jump to: navigation, search Name: Suzhou Shenglong PV-Tech Co Ltd Place: Zhangjiagang City, Jiangsu Province, China Zip: 215612 Product: Chinese ingot,...

  10. Sustainable Manufacturing

    Energy Savers [EERE]

    Principal Investigator (Presenter): Dr. Troy D. Marusich , CTO Washington, D.C. May 6-7, 2014 Third Wave Systems Inc. U.S. DOE Advanced Manufacturing Office Peer Review Meeting This presentation does not contain any proprietary, confidential, or otherwise restricted information. o Project Objective  What are you trying to do?  Develop and demonstrate a new manufacturing-informed design paradigm to dramatically improve manufacturing productivity, quality, and costs of machined components

  11. Manufacturing Glossary

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing...

  12. Development of a Visual Inspection Data Collection Tool for Evaluation of Fielded PV Module Condition

    SciTech Connect (OSTI)

    Packard, C. E.; Wohlgemuth, J. H.; Kurtz, S. R.

    2012-08-01

    A visual inspection data collection tool for the evaluation of fielded photovoltaic (PV) modules has been developed to facilitate describing the condition of PV modules with regard to field performance. The proposed data collection tool consists of 14 sections, each documenting the appearance or properties of a part of the module. This report instructs on how to use the collection tool and defines each attribute to ensure reliable and valid data collection. This tool has been evaluated through the inspection of over 60 PV modules produced by more than 20 manufacturers and fielded at two different sites for varying periods of time. Aggregated data from such a single data collection tool has the potential to enable longitudinal studies of module condition over time, technology evolution, and field location for the enhancement of module reliability models.

  13. Manufacturing Metrology for c-Si Module Reliability/Durabiltiy | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Manufacturing Metrology for c-Si Module Reliability/Durabiltiy Manufacturing Metrology for c-Si Module Reliability/Durabiltiy Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps1_fsec_rogers.pdf More Documents & Publications Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado SunShot Vision Study: February 2012 (Book), SunShot, Energy Efficiency & Renewable Energy (EERE) EXPERIENCES

  14. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  15. Terawatt Challenge for Thin-Film PV

    SciTech Connect (OSTI)

    Zweibel, K.

    2005-08-01

    The evolution of PV into one of the world's largest industries is not going to happen without major unforeseen problems. However, this study attempts to address the obvious ones, so that we can put aside the mythology of PV (for example, that it is only ''boutique power'' or that one must pave the world with it to be useful) and get on with changing the world's energy infrastructure. With the years of rapid market growth now under way in PV, the author is sure this will not be the last effort to understand the real potential and pitfalls of meeting the Challenge.

  16. Manufacturing Supply Chain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Photovoltaic Systems Evaluation Laboratory PV Regional ... Facility Geomechanics and Drilling Labs National ... Health Monitoring Offshore Wind High-Resolution ...

  17. SMUD- PV Residential Retrofit Buy-Down

    Broader source: Energy.gov [DOE]

    The incentive can be paid directly to the customer or the installer. PV equipment listed on the CEC Approved Equipment list is eligible for incentives: http://www.gosolarcalifornia.org/equipment...

  18. pv land use | OpenEI Community

    Open Energy Info (EERE)

    pv land use Home Rosborne318's picture Submitted by Rosborne318(5) Member 2 December, 2013 - 11:06 Request for Information Renewable Energy GenerationProduction Shreveport Airport...

  19. Distributed PV Permitting and Inspection Processes

    SciTech Connect (OSTI)

    Solar Energy Technologies Office

    2010-08-03

    This presentation summarizes case studies of the time and cost involved in the distributed PV permitting and inspection process in three Solar America Cities, Austin, Portland, and Salt Lake City.

  20. Distributed PV Permitting and Inspection Processes

    Broader source: Energy.gov [DOE]

    This presentation summarizes case studies of the time and cost involved in the distributed PV permitting and inspection process in three Solar America Cities, Austin, Portland, and Salt Lake City.

  1. Merced Irrigation District- PV Buydown Program

    Broader source: Energy.gov [DOE]

    Merced Irrigation District (MID) offers its residential, commercial and non-profit customers a rebate for installing solar electric photovoltaic (PV) systems on their homes and offices. For 2015,...

  2. PV Module Reliability Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its PV module reliability research. The scope and core competencies and capabilities are discussed and recent publications are listed.

  3. Sandia Energy - PV Reliability & Performance Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15-06-01T20:13:00+00:00 This Web Demo model is a simplified "player" version of the Photovoltaic Reliability Performance Model (PV-RPM) currently in development at Sandia National...

  4. Solar Energy International Solar PV 101 Training

    Broader source: Energy.gov [DOE]

    Solar Energy International is offering a five-day training that provides an overview of the three basic PV system applications, primarily focusing on grid-direct systems. The goal of the course is...

  5. City of Lompoc Utilities- PV Rebate Program

    Broader source: Energy.gov [DOE]

    City of Lompoc Utilities provides rebates to its electric customers who purchase and install photovoltaic (PV) systems. The rebate is $1.00 per watt-AC. The incentive amount may not exceed 50% the...

  6. NanoPV Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Place: Ewing, New Jersey Zip: 8618 Product: A New Jersey-based thin film PV cell producer and technology provider. Coordinates: 36.638474, -83.428453 Show Map...

  7. Plumas-Sierra REC- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Plumas-Sierra REC offers an incentive for its customers to install photovoltaic (PV) systems on homes and businesses. Rebates are available for qualifying systems between one kilowatt (kW) and 25...

  8. Solar Works! In Seattle: Introduction to Solar Electric (PV)

    Broader source: Energy.gov [DOE]

    Presentation slides from residential PV workshop. Also covers general solar resource assessment, siting and financial incentives.

  9. PV System Energy Evaluation Method (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2014-01-01

    This presentation describes a comparison of the "predicted" energy (based on historical weather data) with the "expected" energy (based on the measured weather data) to determine whether a PV system is performing as modeled in order to verify the accuracy of a model. A key factor in defining this energy test is determining the test boundary so that weather variations are not inadvertently included in what is considered to be PV system performance.

  10. Solar PV Incentive Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Incentive Programs Solar PV Incentive Programs This presentation summarizes the information discussed by NYSERDA during the Best Practices in the Design of Utility Solar Programs Webinar on September 27, 2012. PDF icon utility_design_nyserda_mace.pdf More Documents & Publications Best Practices in the Design of Utility Solar Programs NYSERDA's CHP Program Guide, 2010 NYSERDA's RPS Customer Sited Tier Fuel Cell Program

  11. Updating Interconnection Screens for PV System Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Coddington, Barry Mather, Benjamin Kroposki National Renewable Energy Laboratory Kevin Lynn, Alvin Razon U.S. Department of Energy Abraham Ellis, Roger Hill Sandia National Laboratories Tom Key, Kristen Nicole, Jeff Smith Electric Power Research Institute Updating Interconnection Screens for PV System Integration Updating Interconnection Screens for PV System Integration Michael Coddington, Barry Mather, Benjamin Kroposki National Renewable Energy Laboratory Kevin Lynn, Alvin Razon U.S.

  12. Lessons Learned with Early PV Plant Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lessons Learned with Early PV Plant Integration" Elsa Gonzalez, Rachel Sall, Frankie Greco and David Narang with Arizona Public Service Company June 12, 2014 2 Speakers Frankie Greco Distribution Interconnection Team Arizona Public Service Company Elsa Gonzales Distribution Operations Engineer Arizona Public Service Company David Narang Senior Engineer Arizona Public Service Company Rachel Sall Arizona Public Service Company Lessons Learned with Early PV Plant Integration Elsa Gonzalez

  13. Designing Auction-Based PV Incentives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Helping Utilities Make Smart Solar Decisions Designing Auction-Based PV Incentives September 27, 2012 Eran Mahrer VP Utility Strategy emahrer@solarelectricpower.org Helping Utilities Make Smart Solar Decisions Presentation Agenda 1. Definitions and Program Objectives 2. Implementation 3. Key Considerations 2 Helping Utilities Make Smart Solar Decisions Program Design Objectives * Clear demonstration of support for PV development * Predictability: cost vs. capacity * Drive towards transparency -

  14. Mitigation Measures for Distributed PV Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigation Measures for Distributed PV Interconnection Page 1 of 17 Kristen Ardani, Michael Coddington, Robert Broderick Page 1 of 17 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us today for the DG Interconnection Collaborative (DGIC) informational webinar. We're fortunate today to have speakers Michael Coddington of the National Renewable Energy Laboratory (NREL) and Robert Broderick of Sandia who will present recent research findings related to distributed PV

  15. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS Eureka'' facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the Eureka'' facility to Chronar's batch'' plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

  16. Updating Technical Screens for PV Interconnection: Preprint

    SciTech Connect (OSTI)

    Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

    2012-08-01

    Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

  17. Results of I-V Curves and Visual Inspection of PV Modules Deployed at TEP Solar Test Yard (Poster)

    SciTech Connect (OSTI)

    McNutt, P.; Wohlgemuth, J.; Miller, D.; Stoltenberg, B.

    2014-02-01

    The purpose of the PV Service Life Prediction project is to examine and report on how solar modules are holding up after being in the field for 5 or more years. This poster presents the common problems crystalline-silicon and thin-film modules exhibit, including details of modules from three manufactures that were tested January 13-16, 2014.

  18. Weathering Performance of PV Backsheets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Weathering Performance of PV Backsheets Weathering Performance of PV Backsheets Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps5_arkema_lefebvre.pdf More Documents & Publications Accelerated Laboratory Tests Using Simultaneous UV, Temperature, and Moisture for PV Encapsulants, Frontsheets, and Backsheets Improved Reliability of PV Modules with Lexan PC Sheet-Front Sheet, Noryl PPE Sheet-Back Sheet Test Procedure for UV Weathering

  19. Low Cost High Concentration PV Systems for Utility Power Generation |

    Office of Environmental Management (EM)

    Department of Energy Low Cost High Concentration PV Systems for Utility Power Generation An overview of the Low Cost High Concentration PV Systems for Utility Power Generation project to transition Amonix's concentrating photovoltaic (PV) systems from low-volume to high-volume production. PDF icon Low Cost High Concentration PV Systems for Utility Power Generation More Documents & Publications Solar America Initiative Low Cost High Concentration PV Systems for Utility Power Generation

  20. The reliability and stability of multijunction amorphous silicon PV modules

    SciTech Connect (OSTI)

    Carlson, D.E.

    1995-11-01

    Solarex is developing a manufacturing process for the commercial production of 8 ft{sup 2} multijunction amorphous silicon (a-Si) PV modules starting in 1996. The device structure used in these multijunction modules is: glass/textured tin oxide/p-i-n/p-i-n/ZnO/Al/EVA/Tedlar where the back junction of the tandem structure contains an amorphous silicon germanium alloy. As an interim step, 4 ft{sup 2} multijunction modules have been fabricated in a pilot production mode over the last several months. The distribution of initial conversion efficiencies for an engineering run of 67 modules (4 ft{sup 2}) is shown. Measurements recently performed at NREL indicate that the actual efficiencies are about 5% higher than those shown, and thus exhibit an average initial conversion efficiency of about 9.5%. The data indicates that the process is relatively robust since there were no modules with initial efficiencies less than 7.5%.

  1. NREL: Innovation Impact - Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy...

  2. DOE High Performance Concentrator PV Project

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2005-08-01

    Much in demand are next-generation photovoltaic (PV) technologies that can be used economically to make a large-scale impact on world electricity production. The U.S. Department of Energy (DOE) initiated the High-Performance Photovoltaic (HiPerf PV) Project to substantially increase the viability of PV for cost-competitive applications so that PV can contribute significantly to both our energy supply and environment. To accomplish such results, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices with the goal of enabling progress of high-efficiency technologies toward commercial-prototype products. We will describe the details of the subcontractor and in-house progress in exploring and accelerating pathways of III-V multijunction concentrator solar cells and systems toward their long-term goals. By 2020, we anticipate that this project will have demonstrated 33% system efficiency and a system price of $1.00/Wp for concentrator PV systems using III-V multijunction solar cells with efficiencies over 41%.

  3. PV performance modeling workshop summary report.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Tasca, Coryne Adelle; Cameron, Christopher P.

    2011-05-01

    During the development of a solar photovoltaic (PV) energy project, predicting expected energy production from a system is a key part of understanding system value. System energy production is a function of the system design and location, the mounting configuration, the power conversion system, and the module technology, as well as the solar resource. Even if all other variables are held constant, annual energy yield (kWh/kWp) will vary among module technologies because of differences in response to low-light levels and temperature. A number of PV system performance models have been developed and are in use, but little has been published on validation of these models or the accuracy and uncertainty of their output. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a PV Performance Modeling Workshop in Albuquerque, New Mexico, September 22-23, 2010. The workshop was intended to address the current state of PV system models, develop a path forward for establishing best practices on PV system performance modeling, and set the stage for standardization of testing and validation procedures for models and input parameters. This report summarizes discussions and presentations from the workshop, as well as examines opportunities for collaborative efforts to develop objective comparisons between models and across sites and applications.

  4. Innovative Manufacturing Initiative Recognition Day, Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office (AMO) | Department of Energy Day, Advanced Manufacturing Office (AMO) Innovative Manufacturing Initiative Recognition Day, Advanced Manufacturing Office (AMO) PDF icon imi_recogitionday_leo_june2012.pdf More Documents & Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry

  5. A Multi-Perspective Approach to PV Module Reliability and Degradation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Multi-Perspective Approach to PV Module Reliability and Degradation A Multi-Perspective Approach to PV Module Reliability and Degradation Presented at the PV Module Reliability...

  6. Updating Interconnection Screens for PV System Integration

    SciTech Connect (OSTI)

    Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

    2012-02-01

    This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

  7. Investigating Temperature Effects on PV Arrays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schmidt Unit Title: Circuits and Electricity Subject: Physics Lesson Title: Investigating Temperature Effects on PV Arrays Grade Level(s): 11/12 Date(s): July 18, 2014 Lesson Length: 1 Class Period (65 minutes) * Learning Goal(s) [What should students know, understand, or be able to do as a result of this lab or activity.] Students will be able to measure current and voltage using a Multimeter. Students will be able to calculate the power of a PV array using voltage and current. Students will

  8. Large-Scale PV Integration Study

    SciTech Connect (OSTI)

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  9. International PV QA Task Force's Proposed Comparative Rating System for PV Modules: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J.; Kurtz, S.

    2014-10-01

    The International PV Quality Assurance Task Force is developing a rating system that provides comparative information about the relative durability of PV modules. Development of accelerated stress tests that can provide such comparative information is seen as a major step toward being able to predict PV module service life. This paper will provide details of the ongoing effort to determine the format of such an overall module rating system. The latest proposal is based on using three distinct climate zones as defined in IEC 60721-2-1 for two different mounting systems. Specific stresses beyond those used in the qualification tests are being developed for each of the selected climate zones.

  10. Manufacturing Innovation Institute for Smart Manufacturing: Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensors, Controls, Platforms, and Modeling for Manufacturing | Department of Energy Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing September 23, 2015 - 2:38pm Addthis Posted Date: Sep 15, 2015 Original Closing Date for Applications: Jan 29, 2016 A mandatory Concept Paper is due

  11. Jiangsu Tianbao PV Energy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tianbao PV Energy Co Ltd Jump to: navigation, search Name: Jiangsu Tianbao PV Energy Co Ltd Place: Yizheng, Jiangsu Province, China Product: Reportedly planning to have 25MW of...

  12. Final Technical Report: PV Fault Detection Tool.

    SciTech Connect (OSTI)

    King, Bruce Hardison; Jones, Christian Birk

    2015-12-01

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  13. Microsoft Word - PV Report v20.doc

    Gasoline and Diesel Fuel Update (EIA)

    A EIA Task Order No. DE-DT0000804, Subtask 3 Photovoltaic (PV) Cost and Performance Characteristics for Residential and Commercial Applications Final Report August 2010 Prepared for: Office of Integrated Analysis and Forecasting U.S. Energy Information Administration Prepared by: ICF International Contact: Robert Kwartin T: (703) 934-3586 E: rkwartin@icfi.com ii Table of Contents Executive Summary

  14. Solar Photovoltaic (PV) System Permit Application Checklist

    Broader source: Energy.gov [DOE]

    The Permit Application Checklist is intended to be used as a best management practice when establishing local government requirements for residential and commercial solar photovoltaic (PV) system permits. Local governments may modify this checklist to accommodate their local ordinances, code requirements, and permit procedures.

  15. Green Manufacturing

    SciTech Connect (OSTI)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  16. NREL: Photovoltaics Research - NREL Hosts PV Module Reliability Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Industry NREL Hosts PV Module Reliability Workshop for Industry March 1, 2016 Nearly 200 researchers from more than 100 companies and representing 16 countries attended the 7th annual PV Module Reliability Workshop, held Feb. 23-25, 2016, in Golden, Colo. The program was designed by the National Renewable Energy Laboratory (NREL) in collaboration with Sandia National Laboratories and the photovoltaic (PV) industry. "NREL's PV Module Reliability Workshop is unique in its requirement

  17. NREL: Solar Research - NREL Hosts PV Module Reliability Workshop for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry NREL Hosts PV Module Reliability Workshop for Industry March 1, 2016 Nearly 200 researchers from more than 100 companies and representing 16 countries attended the 7th annual PV Module Reliability Workshop, held Feb. 23-25, 2016, in Golden, Colo. The program was designed by the National Renewable Energy Laboratory (NREL) in collaboration with Sandia National Laboratories and the photovoltaic (PV) industry. "NREL's PV Module Reliability Workshop is unique in its requirement for

  18. NREL: Workforce Development and Education Programs - NREL Hosts PV Module

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability Workshop for Industry NREL Hosts PV Module Reliability Workshop for Industry March 1, 2016 Nearly 200 researchers from more than 100 companies and representing 16 countries attended the 7th annual PV Module Reliability Workshop, held Feb. 23-25, 2016, in Golden, Colo. The program was designed by the National Renewable Energy Laboratory (NREL) in collaboration with Sandia National Laboratories and the photovoltaic (PV) industry. "NREL's PV Module Reliability Workshop is

  19. Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulants Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulants Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps2_epfl_galliano.pdf More Documents & Publications Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Hail Impact Testing on Crystalline Si Modules with Flexible Packaging

  20. Statistical and Domain Analytics Applied to PV Module Lifetime and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Degradation Science | Department of Energy Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps2_casewestern_bruckman.pdf More Documents & Publications Literature Review of the Effects of UV Exposure on PV Modules Failure Rates from Certification Testing to UL

  1. Role of Polycrystalline Thin-Film PV Technologies in Competitive PV Module Markets: Preprint

    SciTech Connect (OSTI)

    von Roedern, B.; Ullal, H. S.

    2008-05-01

    This paper discusses the developments in thin-film PV technologies and provides an outlook on future commercial module efficiencies achievable based on today's knowledge about champion cell performance.

  2. Sandian Presents on PV Failure Analysis at European PV Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference and Exhibition (EU PVSC) Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power

  3. Accuracy of Outdoor PV Module Temperature Monitoring Application |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Accuracy of Outdoor PV Module Temperature Monitoring Application Accuracy of Outdoor PV Module Temperature Monitoring Application Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps1_univljub_janovec.pdf More Documents & Publications QA TG5 UV, temperature and humidity 2015 ANNUAL DOE-NE MATERIALS RESEARCH MEETING

  4. High Resolution PV Power Modeling for Distribution Circuit Analysis

    SciTech Connect (OSTI)

    Norris, B. L.; Dise, J. H.

    2013-09-01

    NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

  5. pv_mapper_091713.mp3 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    pv_mapper_091713.mp3 Audio icon pv_mapper_091713.mp3 More Documents & Publications PVMapper: A Tool for Energy Siting transcript_pv_mapper.doc Application for Presidential permit OE Docket No. PP-371 Northern Pass Transmission: Comments and Requests for Intervention Received on the Amended Application

  6. Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

  7. Bottom-Up Cost Analysis of a High Concentration PV Module; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Horowitz, K.; Woodhouse, M.; Lee, H.; Smestad, G.

    2015-04-13

    We present a bottom-up model of III-V multi-junction cells, as well as a high concentration PV (HCPV) module. We calculate $0.65/Wp(DC) manufacturing costs for our model HCPV module design with today’s capabilities, and find that reducing cell costs and increasing module efficiency offer the promising pathways for future cost reductions. Cell costs could be significantly reduced via an increase in manufacturing scale, substrate reuse, and improved manufacturing yields. We also identify several other significant drivers of HCPV module costs, including the Fresnel lens primary optic, module housing, thermal management, and the receiver board. These costs could potentially be lowered by employing innovative module designs.

  8. PV_LIB Toolbox v. 1.3

    Energy Science and Technology Software Center (OSTI)

    2015-12-09

    PV_LIB comprises a library of Matlab? code for modeling photovoltaic (PV) systems. Included are functions to compute solar position and to estimate irradiance in the PV system’s plane of array, cell temperature, PV module electrical output, and conversion from DC to AC power. Also included are functions that aid in determining parameters for module performance models from module characterization testing. PV_LIB is open source code primarily intended for research and academic purposes. All algorithms aremore » documented in openly available literature with the appropriate references included in comments within the code.« less

  9. Advanced Manufacturing Office: Smart Manufacturing Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Smart Manufacturing is a network data-driven process that combines innovative automation ... Smart Manufacturing is a network data-driven process that combines innovative automation ...

  10. Energy Department Offers $25 Million for U.S. Solar Manufacturing |

    Office of Environmental Management (EM)

    Department of Energy Energy Department Offers $25 Million for U.S. Solar Manufacturing Energy Department Offers $25 Million for U.S. Solar Manufacturing February 19, 2014 - 12:00am Addthis The Energy Department announced on February 12 that it is offering $25 million in new funding to boost domestic solar manufacturing and speed up the commercialization of efficient, affordable photovoltaic (PV) and concentrating solar power technologies. This funding, provided by the Energy Department's

  11. Cascaded Microinverter PV System for Reduced Cost

    SciTech Connect (OSTI)

    Bellus, Daniel R.; Ely, Jeffrey A.

    2013-04-29

    In this project, a team led by Delphi will develop and demonstrate a novel cascaded photovoltaic (PV) inverter architecture using advanced components. This approach will reduce the cost and improve the performance of medium and large-sized PV systems. The overall project objective is to develop, build, and test a modular 11-level cascaded three-phase inverter building block for photovoltaic applications and to develop and analyze the associated commercialization plan. The system will be designed to utilize photovoltaic panels and will supply power to the electric grid at 208 VAC, 60 Hz 3-phase. With the proposed topology, three inverters, each with an embedded controller, will monitor and control each of the cascade sections, reducing costs associated with extra control boards. This report details the final disposition on this project.

  12. Sandia Rooftop PV Structural Report Webinar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rooftop PV Structural Report Webinar - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  13. Photovoltaic Regional Testing Center (PV RTC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Testing Center (PV RTC) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  14. Lessons Learned with Early PV Plant Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lessons Learned with Early PV Plant Integration Page 1 of 23 Kristen Ardani (NREL), Elsa Gonzales (Arizona Public Service Company), Rachel Sall (Arizona Public Service Company), Frankie Greco (Arizona Public Service Company), David Narang (Arizona Public Service Company) Page 1 of 23 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us today for the DG Interconnection Collaborative informational webinar. Today we have speakers from Arizona Public Service Company, who will

  15. Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322

    SciTech Connect (OSTI)

    Geisz, J. F.

    2012-11-01

    The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basic PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.

  16. Integrating Solar PV in Utility System Operations

    SciTech Connect (OSTI)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with realistic PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with well behaved PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved relative to DA forecasts, but still imperfect. Finally, we represent decisions within the operating hour by schedulers and transmission system operators as real-time (RT) balancing. We simulate the DA and HA scheduling processes with a detailed unit-commitment (UC) and economic dispatch (ED) optimization model. This model creates a least-cost dispatch and commitment plan for the conventional generating units using forecasts and reserve requirements as inputs. We consider only the generation units and load of the utility in this analysis; we do not consider opportunities to trade power with neighboring utilities. We also do not consider provision of reserves from renewables or from demand-side options. We estimate dynamic reserve requirements in order to meet reliability requirements in the RT operations, considering the uncertainty and variability in load, solar PV, and wind resources. Balancing reserve requirements are based on the 2.5th and 97.5th percentile of 1-min deviations from the HA schedule in a previous year. We then simulate RT deployment of balancing reserves using a separate minute-by-minute simulation of deviations from the HA schedules in the operating year. In the simulations we assume that balancing reserves can be fully deployed in 10 min. The minute-by-minute deviations account for HA forecasting errors and the actual variability of the load, wind, and solar generation. Using these minute-by-minute deviations and deployment of balancing reserves, we evaluate the impact of PV on system reliability through the calculation of the standard reliability metric called Control Performance Standard 2 (CPS2). Broadly speaking, the CPS2 score measures the percentage of 10-min periods in which a balancing area is able to balance supply and demand within a specific threshold. Compliance with the North American Electric Reliability Corporation (NERC) reliability standards requires that the CPS2 score must exceed 90% (i.e., the balancing area must maintain adequate balance for 90% of the 10-min periods). The combination of representing DA forecast errors in the DA commitments, using 1-min PV data to simulate RT balancing, and estimates of reliability performance through the CPS2 metric, all factors that are important to operating systems with increasing amounts of PV, makes this study unique in its scope.

  17. PV Enterprise Sweden AB | Open Energy Information

    Open Energy Info (EERE)

    Sweden AB Place: Vilshult, Sweden Zip: 290 62 Product: Swedish manufacturer of photovoltaic modules, connection boxes, and installation equipment. Coordinates: 56.355011,...

  18. Real Power and Reactive Power Control of a Three-Phase Single-Stage-PV System and PV voltage Stability

    SciTech Connect (OSTI)

    Li, Huijuan; Xu, Yan; Adhikari, Sarina; Rizy, D Tom; Li, Fangxing; Irminger, Philip

    2012-01-01

    Grid-connected photovoltaic (PV) systems with power electronic interfaces can provide both real and reactive power to meet power system needs with appropriate control algorithms. This paper presents the control algorithm design for a three-phase single-stage grid-connected PV inverter to achieve either maximum power point tracking (MPPT) or a certain amount of real power injection, as well as the voltage/var control. The switching between MPPT control mode and a certain amount of real power control mode is automatic and seamless. Without the DC-to-DC booster stage, PV DC voltage stability is an important issue in the control design especially when the PV inverter is operating at maximum power point (MPP) with voltage/var control. The PV DC voltage collapse phenomenon and its reason are discussed. The method based on dynamic correction of the PV inverter output is proposed to ensure PV DC voltage stability. Simulation results of the single-stage PV system during system disturbances and fast solar irradiation changes confirm that the proposed control algorithm for single-stage PV inverters can provide appropriate real and reactive power services and ensure PV DC voltage stability during dynamic system operation and atmospheric conditions.

  19. Capital intensity of photovoltaics manufacturing: Barrier to scale and opportunity for innovation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Powell, Douglas M.; Fu, Ran; Horowitz, Kelsey; Basore, Paul A.; Woodhouse, Michael; Buonassisi, Tonio

    2015-09-07

    In this study, using a bottom-up cost model, we assess the impact of initial factory capital expenditure (capex) on photovoltaic (PV) module minimum sustainable price (MSP) and industry-wide trends. We find capex to have two important impacts on PV manufacturing. First, capex strongly influences the per-unit MSP of a c-Si module: we calculate that the capex-related elements sum to 22% of MSP for an integrated wafer, cell, and module manufacturer. This fraction provides a significant opportunity to reduce MSP toward the U.S. DOE SunShot module price target through capex innovation.

  20. Challenge to Move from 'One Size Fits All' to PV Modules the Customer Needs: Preprint

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Hacke, P.; Bosco, N.; Kempe, M.; Smith, R.; Packard, C. E.

    2011-09-01

    Historically, PV companies requested a single qualification test for a single product. As the market has grown, there have been increasing opportunities for companies to differentiate their products while still maintaining high manufacturing volumes of each product. At the same time, as PV is deployed in an increasingly broad range of conditions, modules need to be able to withstand a wide range of stresses. In some cases, targeting a specific deployment condition may allow reduction of product cost. Realizing this opportunity will require the ability to confidently predict long-term performance based on accelerated tests and known weather conditions. By working together, the community can most quickly develop tests that identify which products perform well under which conditions. This paper discusses some of the challenges of predicting long-term PV performance, including the wide range of stresses that may be encountered, the variability of the stresses from moment to moment, the complexity of some degradation mechanisms, and the dependence of accelerated testing on module geometry. The paper also describes two international projects that deal with location-specific durability evaluation and long-term module performance.

  1. Präsentation Bernhard Gatzka PV*SOL Expert

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculation in PV*SOL Expert Bernhard Gatzka Valentin Software, Germany Presented at the 2013 Sandia PV Performance Modeling Workshop Santa Clara, CA. May 1-2, 2013 Published by Sandia National Laboratories with the Permission of the Author. * Horizon, Near and Inter Row Shading * Method of Calculation * PV Module Model  Software Development of Design, Simulation and Modeling tools for Photovoltaic and Solar Heating Systems  Established 1988  40 employees (of which over 50% are

  2. PV Solar Site Assessment (Milwaukee High School) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » PV Solar Site Assessment (Milwaukee High School) PV Solar Site Assessment (Milwaukee High School) The purpose of this assessment is to provide site-specific information on how a solar electric (also referred to as a photovoltaic, or PV) system would perform at your location, including information on estimated physical size, rated output, energy production, costs, financial incentives and mounting options. Site assessors are required to present unbiased information and

  3. Linkage to Previous International PV Module QA Task Force Workshops:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proposal for Rating System | Department of Energy Linkage to Previous International PV Module QA Task Force Workshops: Proposal for Rating System Linkage to Previous International PV Module QA Task Force Workshops: Proposal for Rating System This PowerPoint presentation, focused on humidity, temperature and voltage testing, was originally presented at the NREL 2013 PV Module Reliability Workshop on Feb. 26-27, 2013 in Denver, CO. It summarizes the efforts of previous QA task forces and

  4. Accelerated Light Aging of PV Encapsulants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Aging of PV Encapsulants Accelerated Light Aging of PV Encapsulants Correlation of Xenon Arc and Mirror Accelerated Outdoor Aging from 1993-1997 PDF icon pvmrw13_uvth_str_reid.pdf More Documents & Publications Literature Review of the Effects of UV Exposure on PV Modules Retrospective Benefit-Cost Evaluation of DOE Investment in Photovoltaic Energy Systems Retrospective Benefit-Cost Evaluation of DOE Investments in Photovoltaic Energy Systems

  5. Smart Grid Ready PV Inverters with Utility Communication | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Smart Grid Ready PV Inverters with Utility Communication Smart Grid Ready PV Inverters with Utility Communication EPRI logo.jpg Electric Power Research Institute (EPRI) will develop, implement, and demonstrate smart-grid ready inverters with grid support functionality and required communication links to capture the full value of distributed photovoltaic (PV). APPROACH epri segis summary poster.png This project will develop, implement, and demonstrate smart-grid ready inverters with

  6. European American Solar Deployment Conference (PV Rollout), 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rd European American Solar Deployment Conference (PV Rollout), 2013 PV Distribution Interconnection Study Analysis Matthew J. Reno, Robert J. Broderick, Jimmy E. Quiroz, Santiago Grijalva 777 Atlantic Dr. NW, Atlanta, GA 30332, USA Phone: 505-620-6560 E-Mail: matthew.reno@gatech.edu Introduction Deployment of distributed PV systems is increasing rapidly. High penetration scenarios, which are becoming increasingly common, have the potential to affect the distribution feeder equipment [1] and the

  7. Smart-Grid Ready PV Inverter with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancement of PV system capabilities, communication systems and open standards, operations center visibility and management, and optimized coordination of smart PV inverters with existing distribution control devices. Smart-Grid Ready PV Inverter With Utility Communication BRIAN SEAL / ELECTRIC POWER RESEARCH INSTITUTE The proposed project will develop, implement, and demonstrate smart-grid ready inverters with grid support functionality and required utility communication links to capture the

  8. NREL: Energy Systems Integration - NREL Releases High-Penetration PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Handbook for Distribution Engineers Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of

  9. NREL: Photovoltaics Research - NREL Releases High-Penetration PV Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Distribution Engineers Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of variable solar

  10. SunShot Presentation PV Module Reliabity Workshop Opening Session |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Presentation PV Module Reliabity Workshop Opening Session SunShot Presentation PV Module Reliabity Workshop Opening Session This PowerPoint slide deck was originally presented at the opening session of the 2013 NREL PV Module Reliability Workshop on Feb. 26-27, 2013 in Golden, CO. It provides an overview of the DOE SunShot initiative, discusses systems integration and technology validation activities, and highlighted the goals and key agenda items for the workshop. PDF

  11. Solar America Initiative (SAI) PV Technology Incubator Program: Preprint

    SciTech Connect (OSTI)

    Keyes, B.; Symko-Davies, M.; Mitchell, R.; Ullal H.; von Roedern, B.; Greene, L.; Stephens, S.

    2008-05-01

    The SAI PV Technology Incubator Program is designed to accelerate technologies/prodesses that have successfully demonstrated a proof-of-concept/process in a laboratory.

  12. PROJECT PROFILE: Improving PV performance Estimates in the System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Component and System Reliability Metrics PROJECT PROFILE: Improving PV performance ... developed by Sandia into the widely-used Solar Advisor Model (SAM) software platform. ...

  13. Instrumentation for Evaluating PV System Performance Losses from Snow: Preprint

    SciTech Connect (OSTI)

    Marion, B.; Rodriguez, J.; Pruett, J.

    2009-04-01

    Describes the use of a pyranometer with a heater and a digital camera to determine losses related to snow for PV systems located at National Renewable Energy Laboratory.

  14. Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Hail Impact Testing on Crystalline Si Modules with Flexible Packaging Delamination Failures ...

  15. PvXchange GmbH | Open Energy Information

    Open Energy Info (EERE)

    Berlin, Germany Zip: 10963 Sector: Services Product: A German platform for PV module spot trades. Also provides data on spot prices and offers consulting services. Coordinates:...

  16. Low Cost High Concentration PV Systems for Utility Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Solutions for Residential and Commercial Photovoltaic Energy Generation,A Value Chain Partnership to Accelerate U.S. Photovoltaic Industry Growth,AC Module PV ...

  17. Global Solar Photovoltaic (PV) Installation Market to be Propelled...

    Open Energy Info (EERE)

    Global Solar Photovoltaic (PV) Installation Market to be Propelled by Greater Concerns over Carbon Footprint Home > Groups > Renewable Energy RFPs John55364's picture Submitted by...

  18. Sandia Energy - Photovoltaic (PV) Regional Test Center (RTC)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live Home Renewable Energy Energy Partnership News SunShot News & Events Photovoltaic Solar National Solar Thermal Test...

  19. Siemens PV Technology now Konarka | Open Energy Information

    Open Energy Info (EERE)

    Siemens PV Technology (now Konarka) Place: Germany Product: Formerly the organic photovoltaic research operations of Siemens, which became part of Konarka Technologies on...

  20. NREL Mesa Top PV System | Open Energy Information

    Open Energy Info (EERE)

    PV System Facility National Renewable Energy Laboratory Sector Solar Facility Type Photovoltaic Owner SunEdison Solar Developer SunEdison Solar Energy Purchaser National Renewable...

  1. Sandia/EPRI PV Symposium - Save the Date!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Existing and emerging codes, standards, rules, and procedures that affect solar deployment in utility distribution systems. Come learn about: o PV Data and Modeling Needs for...

  2. NY-Sun PV Incentive Program (Residential and Small Business)...

    Broader source: Energy.gov (indexed) [DOE]

    NY-Sun CommercialIndustrial Incentive program that offers incentives for grid connected PV systems larger than 200 KW. The New York State Energy Research and Development...

  3. Partial Shading in Monolithic Thin Film PV Modules: Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Combustion Modeling with STAR-CD using Transient Flemelet Models: TIF and TPV Agenda for the PV Module Reliability ...

  4. Water Impacts of High Solar PV Electricity Penetration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Impacts of High Solar PV Electricity Penetration Jordan Macknick and Stuart Cohen National Renewable Energy Laboratory (NREL) Technical Report NRELTP-6A20-63011 September...

  5. PV QA Task Group #2: Thermal and Mechanical Fatigue Including...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Rating System Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Accelerated Stress Testing, Qualification Testing, HAST, Field Experience...

  6. Sandia Energy - Sandia PV Team Publishes Book Chapter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Book Chapter Previous Next Sandia PV Team Publishes Book Chapter The book, Solar Energy Forecasting and Resource Assessment, provides an authoritative voice on the...

  7. High‐Penetration PV with Advanced Power Conditioning Systems

    Broader source: Energy.gov [DOE]

    Virginia Polytechnic Institute and State University (VT) is evaluating the impacts of high photovoltaic (PV) penetration and methods to manage any impacts with improved power conditioning equipment.

  8. NREL: Performance and Reliability R&D - PV Module Reliability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Reliability R&D Photovoltaics Research Performance Reliability R and D Printable Version PV Module Reliability Workshop NREL hosts an annual Photovoltaic Module...

  9. Stichting Triodos PV Partners defunct | Open Energy Information

    Open Energy Info (EERE)

    22209 Product: Stichting Triodos PV Partners, a JV Triodos Bank Group, Environmental Enterprises Assistance Fund, & Global Transition Consulting, was wound up and the management of...

  10. Linkage to Previous International PV Module QA Task Force Workshops...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Rating System This PowerPoint presentation, focused on humidity, temperature and voltage testing, was originally presented at the NREL 2013 PV Module Reliability Workshop on...

  11. NREL Supports China PV Investment and Financing Alliance to Open...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Finance Alliance (CPVFA) have formed a collaboration with the goal of opening wide-scale and diverse sources of investment for solar photovoltaic (PV) asset development in ...

  12. Development of a Dispatchable PV Peak Shainv System. PV: Bonus Program - Phase 1 Report. Volume 1

    SciTech Connect (OSTI)

    1995-10-01

    This report summarizes the work performed by Delmarva Power and Light and its subcontractors in Phase 1 of the US Department of Energy's PV:BONUS Program. The purpose of the program is to develop products and systems for buildings which utilize photovoltaic (N) technology. Beginning with a cooperative research effort with the University of Delaware's Center for Energy and Environmental Policy Research Delmarva Power developed and demonstrated the concept of Dispatchable PV Peak Shaving. This concept and the system which resulted horn the development work are unique from other grid-connected PV systems because it combines a PV, battery energy storage, power conversion and control technologies into an integrated package. Phase 1 began in July 1993 with the installation of a test and demonstration system at Delmarva's Northern Division General Office building near Newark, Delaware. Following initial testing throughout the summer and fall of 1993, significant modifications were made under an amendment to the DOE contract. Work on Phase 1 concluded in the early spring of 1995. Significant progress towards the goal of commercializing the system was made during Phase 1, and is summarized. Based on progress in Phase 1, a proposal to continue the work in Phase 2 was submitted to the US DOE in May 1995. A contract amendment and providing funds for the Phase 2 work is expected in July 1995.

  13. Manufacturing Demonstration Facility

    Office of Environmental Management (EM)

    ORNL is managed by UT-Battelle for the US Department of Energy Manufacturing Demonstration Facility DOE Advanced Manufacturing Office Merit Review Craig Blue Director, Manufacturing Demonstration Facility Energy and Environmental Sciences Directorate May 6-7, 2014 Washington, DC This presentation does not include proprietary, confidential, or otherwise restricted information. Outline * Manufacturing Demonstration Facility * Impacts with Industry - Metal additive manufacturing - Polymer additive

  14. How Much Do Local Regulations Matter? Exploring the Impact of Permitting and Local Regulatory Processes on PV Prices in the United States

    Broader source: Energy.gov [DOE]

    The costs of PV modules and other hardware have declined rapidly over the last decade, primarily due to technology improvements and manufacturing scale. On the other hand, non-hardware "soft" costs have not dropped as rapidly, and now comprise the majority of total costs for residential PV systems. This paper examines the impacts of city-level permitting and other local regulatory processes in the U.S. by combining data from two local regulatory process efficiency scores with the largest dataset of installed U.S. PV prices. Based on analysis, the findings indicate that variations in local permitting procedures can lead to differences in average residential PV prices of approximately $0.18/W between the jurisdictions with the most-onerous and most-favorable permitting procedures. For a typical 5-kW residential PV installation, this equates to a $700 (2.2%) difference in system costs between jurisdictions with scores in the middle 90 percent of the range. Moreover, when considering variations not only in permitting practices, but also in other local regulatory procedures, price differences grow to $0.64-0.93/W. For a typical 5-kW residential PV installation, these results correspond to a price impact of at least $2500 (8%) between jurisdictions with scores in the middle 90 percent of the range.

  15. Grid-tied PV battery systems.

    SciTech Connect (OSTI)

    Barrett, Keith Phillip; Gonzalez, Sigifredo; Hund, Thomas D.

    2010-09-01

    Grid tied PV energy smoothing was implemented by using a valve regulated lead-acid (VRLA) battery as a temporary energy storage device to both charge and discharge as required to smooth the inverter energy output from the PV array. Inverter output was controlled by the average solar irradiance over the previous 1h time interval. On a clear day the solar irradiance power curve is offset by about 1h, while on a variable cloudy day the inverter output power curve will be smoothed based on the average solar irradiance. Test results demonstrate that this smoothing algorithm works very well. Battery state of charge was more difficult to manage because of the variable system inefficiencies. Testing continued for 30-days and established consistent operational performance for extended periods of time under a wide variety of resource conditions. Both battery technologies from Exide (Absolyte) and East Penn (ALABC Advanced) proved to cycle well at a Partial state of charge over the time interval tested.

  16. Photovoltaic manufacturing: Present status, future prospects, and research needs

    SciTech Connect (OSTI)

    Wolden, C.A.; Fthenakis, V.; Kurtin, J.; Baxter, J.; Repins, I.; Shasheen, S.; Torvik, J.; Rocket, A.; Aydil, E.

    2011-03-29

    In May 2010 the United States National Science Foundation sponsored a two-day workshop to review the state-of-the-art and research challenges in photovoltaic (PV) manufacturing. This article summarizes the major conclusions and outcomes from this workshop, which was focused on identifying the science that needs to be done to help accelerate PV manufacturing. A significant portion of the article focuses on assessing the current status of and future opportunities in the major PV manufacturing technologies. These are solar cells based on crystalline silicon (c-Si), thin films of cadmium telluride (CdTe), thin films of copper indium gallium diselenide, and thin films of hydrogenated amorphous and nanocrystalline silicon. Current trends indicate that the cost per watt of c-Si and CdTe solar cells are being reduced to levels beyond the constraints commonly associated with these technologies. With a focus on TW/yr production capacity, the issue of material availability is discussed along with the emerging technologies of dye-sensitized solar cells and organic photovoltaics that are potentially less constrained by elemental abundance. Lastly, recommendations are made for research investment, with an emphasis on those areas that are expected to have cross-cutting impact.

  17. HPC4Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab capabilities Manufacturing domain expertise National mission and guidance Bringing HPC to U.S. Manufacturers Energy Efficient Processes Energy Efficient Products...

  18. Manufacturing Demonstration Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to develop broad dissemination of additive manufacturing Industry Collaborations * ... 5 DOE-AMO 2015 Peer Review Understanding Additive Manufacturing Mainstream applications ...

  19. Next Generation Manufacturing Processes

    Broader source: Energy.gov [DOE]

    New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high...

  20. Impact of residential PV adoption on Retail Electricity Rates

    SciTech Connect (OSTI)

    Cai, DWH; Adlakha, S; Low, SH; De Martini, P; Chandy, KM

    2013-11-01

    The price of electricity supplied from home rooftop photo voltaic (PV) solar cells has fallen below the retail price of grid electricity in some areas. A number of residential households have an economic incentive to install rooftop PV systems and reduce their purchases of electricity from the grid. A significant portion of the costs incurred by utility companies are fixed costs which must be recovered even as consumption falls. Electricity rates must increase in order for utility companies to recover fixed costs from shrinking sales bases. Increasing rates will, in turn, result in even more economic incentives for customers to adopt rooftop PV. In this paper, we model this feedback between PV adoption and electricity rates and study its impact on future PV penetration and net-metering costs. We find that the most important parameter that determines whether this feedback has an effect is the fraction of customers who adopt PV in any year based solely on the money saved by doing so in that year, independent of the uncertainties of future years. These uncertainties include possible changes in rate structures such as the introduction of connection charges, the possibility of PV prices dropping significantly in the future, possible changes in tax incentives, and confidence in the reliability and maintainability of PV. (C) 2013 Elsevier Ltd. All rights reserved.

  1. PV Validation and Bankability Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    document summarizes the information given on Aug. 29, 2011, on the survey results of the PV Validation and Bankability Workshop on Aug. 31, 2011. PDF icon pv_vb_surveyresults.pdf More Documents & Publications Focus Group Meeting (Activities Status) Federal Energy Management Program Report Template RFI: DOE Materials Strategy

  2. U.S. Department of Energy PV Roadmaps | Open Energy Information

    Open Energy Info (EERE)

    PV Roadmaps Jump to: navigation, search Logo: U.S. Department of Energy PV Roadmaps Name U.S. Department of Energy PV Roadmaps AgencyCompany Organization United States Department...

  3. Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal Stress Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal Stress Presented at the PV Module ...

  4. Cast polycrystalline silicon photovoltaic cell and module manufacturing technology improvements. Annual subcontract report, 1 December 1993--30 November 1994

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    1995-09-01

    This report describes work performed under a 3-y contract to advance Solarex`s cast polycrystalline silicon manufacturing technology, reduce module production cost, increase module performance, and expand Solarex`s commercial production capacities. Specific objectives are to reduce manufacturing cost for polycrstalline silicon PV modules to less than $1.20/W and to increase manufacturing capacity by a factor of 3. Solarex is working on casting, wire saws, cell process, module assembly, frameless module development, and automated cell handling.

  5. Status of High Performance PV: Polycrystalline Thin-Film Tandems

    SciTech Connect (OSTI)

    Symko-Davies, M.

    2005-02-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course. This work includes bringing thin-film cells and modules toward 25% and 20% efficiencies, respectively, and developing multijunction concentrator cells and modules able to convert more than one-third of the sun's energy to electricity (i.e., 33% efficiency). This paper will address recent accomplishments of the NREL in-house research effort involving polycrystalline thin-film tandems, as well as the research efforts under way in the subcontracted area.

  6. Innovations in Wind and Solar PV Financing

    SciTech Connect (OSTI)

    Cory, K.; Coughlin, J.; Jenkin, T.; Pater, J.; Swezey, B.

    2008-02-01

    There is growing national interest in renewable energy development based on the economic, environmental, and security benefits that these resources provide. Historically, greater development of our domestic renewable energy resources has faced a number of hurdles, primarily related to cost, regulation, and financing. With the recent sustained increase in the costs and associated volatility of fossil fuels, the economics of renewable energy technologies have become increasingly attractive to investors, both large and small. As a result, new entrants are investing in renewable energy and new business models are emerging. This study surveys some of the current issues related to wind and solar photovoltaic (PV) energy project financing in the electric power industry, and identifies both barriers to and opportunities for increased investment.

  7. Analytical Improvements in PV Degradation Rate Determination

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-02-01

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

  8. SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES)

    Broader source: Energy.gov [DOE]

    The Sustainable and Holistic Integration of Energy Storage and Solar PV (SHINES) program develops and demonstrates integrated photovoltaic (PV) and energy storage solutions that are scalable,...

  9. Linkage to Previous International PV Module QA Task Force Workshops; Proposal for Rating System (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Sample, T.; Yamamichi, M.; Kondo, M.

    2013-05-01

    This presentation gives the historical background of the creation of the International PV QA Task Force as an introduction to the PV Module Reliability Workshop.

  10. The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects...

    Office of Environmental Management (EM)

    The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects Data courtesy of National Renewable Energy...

  11. The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects Data courtesy of National Renewable Energy ...

  12. Advanced Manufacturing Office News

    SciTech Connect (OSTI)

    2013-08-08

    News stories about advanced manufacturing, events, and office accomplishments. Subscribe to receive updates.

  13. Advanced Manufacturing Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Manufacturing Production Technician; Electro-Mechanical Technician; Electronics Maintenance Technician

  14. NREL: Photovoltaics Research - Awards for Photovoltaic Manufacturing R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards for Photovoltaic Manufacturing R&D The following research efforts within the PV Manufacturing R&D Project were honored with prestigious industry awards. 1995-AstroPower (now GE Energy): Received an R&D 100 Award for its Silicon-Film product, which combined the performance and stability of conventional crystalline-silicon-based solar cells with the low cost of sheet-material production. 1998-Ascension Technology and Advanced Energy Systems: Recipients of Popular Science's

  15. Advanced Manufacturing Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Workshop: Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Venue: The 2nd Global Congress on Microwave Energy Applications (2GCMEA) July 25, 2012 Long Beach Hilton Long Beach, CA Advanced Manufacturing Office U.S. Department of Energy Rob Ivester Acting Deputy Program Manager, Advanced Manufacturing Office Advanced Manufacturing Office Advanced Manufacturing Office Agenda Time Activity 2:00-2:30 PM Opening Session - AMO o Presentation of Industry

  16. Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Additive manufacturing, also know as 3D printing, has helped spark a creative manufacturing renaissance, allowing companies to create products in new ways while also reducing material waste, saving energy and shortening the time needed to bring products to market. Learn more about this game-changing technology. Manufacturing is the lifeblood of the American economy -- providing jobs for hard working American families

  17. Consortia Focused on Photovoltaic R&D, Manufacturing, and Testing: A Review of Existing Models and Structures

    SciTech Connect (OSTI)

    Coggeshall, C.; Margolis, R. M.

    2010-03-01

    As the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program prepares to initiate a new cost-shared research and development (R&D) effort on photovoltaic (PV) manufacturing, it is useful to review the experience to date with consortia focused on PV R&D, manufacturing, and testing. Information was gathered for this report by conducting interviews and accessing Web sites of 14 U.S. consortia and four European consortia, each with either a primary focus on or an emerging interest in PV technology R&D, manufacturing, or testing. Additional input was collected from several workshops held by the DOE and National Academy of Sciences (NAS) in 2009, which examined the practical steps -- including public-private partnerships and policy support -- necessary to enhance the United States' capacity to competitively manufacture photovoltaics. This report categorizes the 18 consortia into three groups: university-led consortia, industry-led consortia, and manufacturing and testing facilities consortia. The first section summarizes the organizations within the different categories, with a particular focus on the key benefits and challenges for each grouping. The second section provides a more detailed overview of each consortium, including the origins, goals, organization, membership, funding sources, and key contacts. This survey is a useful resource for stakeholders interested in PV manufacturing R&D, but should not imply endorsement of any of these groups.

  18. Kauai Island Utility Co-op (KIUC) PV integration study.

    SciTech Connect (OSTI)

    Ellis, Abraham; Mousseau, Tom

    2011-08-01

    This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

  19. Optimal Solar PV Arrays Integration for Distributed Generation

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Li, Xueping

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  20. Additive Manufacturing: Pursuing the Promise

    Broader source: Energy.gov [DOE]

    Fact sheet overviewing additive manufacturing techniques that are projected to exert a profound impact on manufacturing.

  1. ENERGY-10 PV: Photovoltaics, A New Capability (Preprint)

    SciTech Connect (OSTI)

    Balcomb, J.D.; Hayter, S.J.; Weaver, N.L.

    2001-02-16

    This is one of two companion papers that describe the ENERGY-10 PV design-tool computer simulation program. The other paper is titled ''Hourly Simulation of Grid-Connected PV Systems Using Realistic Building Loads.'' While this paper focuses on the implementation method, the companion paper focuses on the PV aspects of the program. The case study in this paper is a residential building application, whereas the case study in the companion paper is a commercial application with an entirely different building load characteristic. Together, they provide a balanced view.

  2. PV Validation and Bankability Workshop: San Jose, California

    SciTech Connect (OSTI)

    Granata, J.; Howard, J.

    2011-12-01

    This report is a collaboration between Sandia National Laboratories, the National Renewable Energy Laboratory, and the Florida Solar Energy Center (FSEC). The report provides feedback from the U.S. Department of Energy's (DOE) Solar Program PV Validation and Bankability Workshop in San Jose, California on August 31, 2011. It focuses on the current state of PV in the United States, private funding to fund U.S. PV industry growth, roles and functions of the regional test center program, and ways to improve the current validation and bankability practices.

  3. Identifying Critical Pathways to High-Performance PV: Preprint

    SciTech Connect (OSTI)

    Symko-Davies, M.; Noufi, R.; Kurtz, S.

    2002-05-01

    This conference paper describes the High-Performance Photovoltaic (HiPerf PV)Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment in the 21st century. To accomplish this, the NCPV directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. Details of the subcontractor and in-house progress will be described toward identifying critical pathways of 25% polycrystalline thin-film tandem cells and developing multijunction concentrator modules to 33%.

  4. 3-Port Single-Stage PV & Battery Converter Improves Efficiency and Cost in Combined PV/Battery Systems

    SciTech Connect (OSTI)

    Bundschuh, Paul

    2013-03-23

    Due to impressive cost reductions in recent years, photovoltaic (PV) generation is now able to produce electricity at highly competitive prices, but PV’s inherent intermittency reduces the potential value of this energy. The integration of battery storage with PV will be transformational by increasing the value of solar. Utility scale systems will benefit by firming intermittency including PV ramp smoothing, grid support and load shifting, allowing PV to compete directly with conventional generation. For distributed grid-tied PV adding storage will reduce peak demand utility charges, as well as providing backup power during power grid failures. The largest long term impact of combined PV and battery systems may be for delivering reliable off-grid power to the billions of individuals globally without access to conventional power grids, or for billions more that suffer from daily power outages. PV module costs no longer dominate installed PV system costs. Balance-of-System (BOS) costs including the PV inverter and installation now contribute the majority of installed system costs. Battery costs are also dropping faster than installation and battery power converter systems. In each of these separate systems power converters have become a bottleneck for efficiency, cost and reliability. These bottlenecks are compounded in hybrid power conversion systems that combine separate PV and battery converters. Hybrid power conversion systems have required multiple power converters hardware units and multiple power conversion steps adding to efficiency losses, product and installation costs, and reliability issues. Ideal Power Converters has developed and patented a completely new theory of operation for electronic power converters using its indirect EnergyPacket Switching™ topology. It has established successful power converter products for both PV and battery systems, and its 3-Port Hybrid Converter is the first product to exploit the topology’s capability for the industry’s first single-stage multi-port hybrid power converter. This unique low cost approach eliminates the hybrid power conversion bottlenecks when integrating batteries into PV systems. As result this product will significantly accelerate market adoption of these systems.

  5. Progress of the Photovoltaic Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base: Preprint

    SciTech Connect (OSTI)

    Ullal, H.; Mitchell, R.; Keyes, B.; VanSant, K.; von Roedern, B.; Symko-Davies, M.; Kane, V.

    2011-07-01

    In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubator Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment totals nearly $ 1.3 billion.

  6. DOE-LPO-MiniReport_PV_v10

    Energy Savers [EERE]

    utility-scale PV solar facilities larger than 100 MW in the United States. These loan guarantees helped transform U.S. energy production and paved the way for the fastest ...

  7. City of Shasta Lake Electric Utility- PV Rebate Program

    Broader source: Energy.gov [DOE]

    City of Shasta Lake Electric Utility is providing rebates to their customers for the purchase of photovoltaic (PV) systems. The rebate levels will decrease annually over the life of the program. ...

  8. Impact of Soiling and Pollution on PV Generation Performance

    Broader source: Energy.gov [DOE]

    This 5-page technical letter addresses air pollution effects on PV performance by quantifying, based on a literature search, the average annual loss due to soiling, the impact of cleaning, and a recommended cleaning schedule.

  9. Instrumentation for Evaluating PV System Performance Losses from Snow

    SciTech Connect (OSTI)

    Marion, B.; Rodriguez, J.; Pruett, J.

    2009-01-01

    When designing a photovoltaic (PV) system for northern climates, the prospective installation should be evaluated with respect to the potentially detrimental effects of snow preventing solar radiation from reaching the PV cells. The extent to which snow impacts performance is difficult to determine because snow events also increase the uncertainty of the solar radiation measurement, and the presence of snow needs to be distinguished from other events that can affect performance. This paper describes two instruments useful for evaluating PV system performance losses from the presence of snow: (1) a pyranometer with a heater to prevent buildup of ice and snow, and (2) a digital camera for remote retrieval of images to determine the presence of snow on the PV array.

  10. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    Anderson, K.; Coddington, M.; Burman, K.; Hayter, S.; Kroposki, B.; Watson, A.

    2009-12-01

    This study describes technical assistance provided by NREL to help New York City and Con Edison improve the interconnection of distributed PV systems on a secondary network distribution system.

  11. Tucson's Solar Experience: Developing PV with RFPs and PPAs

    Broader source: Energy.gov [DOE]

    This presentation was given January 15, 2013, by Bruce Plenk, Solar Coordinator for the City of Tucson, Arizona, as part of the CommRE Developing PV Projects With RFPs and PPAs webinar.

  12. Residential, Commercial, and Utility-Scale Photovoltaic (PV)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Summary The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial ...

  13. Taunton Municipal Lighting Plant- Residential PV Rebate Program

    Broader source: Energy.gov [DOE]

    Customers of Taunton Municipal Lighting Plant (TMLP) may be eligible for a $1.50/watt rebate on solar photovoltaic (PV) installations, up to a maximum rebate of $4,500. The system must be installed...

  14. Giant Leap Forward Toward Quality Assurance of PV Modules (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Sample, T.; Yamamichi, M.

    2012-03-01

    The presentation describes the composition of and motivation for the International PV QA Task Force, then describes the presentations and discussion that occurred at the workshop on Feb. 29th, 2012.

  15. Full Steam Ahead for PV in US Homes?

    SciTech Connect (OSTI)

    Bolinger, Mark A; Barbose, Galen; Wiser, Ryan

    2009-01-15

    In October 2008, the United States Congress extended both the residential and commercial solar investment tax credits (ITCs) for an unprecedented eight years, lifted the $2,000 cap on the residential credit, removed the prohibition on utility use of the commercial credit, and eliminated restrictions on the use of both credits in conjunction with the Alternative Minimum Tax. These significant changes, which apply to systems placed in service on or after January 1, 2009, will increase the value of the solar credits for residential system owners in particular, and are likely--in conjunction with state, local, and utility rebate programs targeting solar--to spur significant growth in residential, commercial, and utility-scale photovoltaic (PV) installations in the years ahead. This article focuses specifically on the residential credit, describing three areas in which removal of the $2,000 cap on the residential ITC will have significant implications for PV rebate program administrators, PV system owners, and the PV industry.

  16. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    K. Anderson; M. Coddington; K. Burman; S. Hayter; B. Kroposki; and A. Watson

    2009-11-30

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to ???¢????????networks???¢??????? in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1???¢????????PV Deployment Analysis for New York City???¢????????we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2???¢????????A Briefing for Policy Makers on Connecting PV to a Network Grid???¢????????presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3???¢????????Technical Review of Concerns and Solutions to PV Interconnection in New Y

  17. AEP Texas Central Company - SMART Source Solar PV Rebate Program...

    Broader source: Energy.gov (indexed) [DOE]

    from the date of installation. PV modules must be new and certified to UL 1703, and inverters must be new and certified to UL 1741. All installations must be performed service...

  18. PV Technologies India Ltd Moser Baer Solar Plc | Open Energy...

    Open Energy Info (EERE)

    India Ltd Moser Baer Solar Plc Jump to: navigation, search Name: PV Technologies India Ltd (Moser Baer Solar Plc) Place: New Delhi, Delhi (NCT), India Zip: 110020 Product: One of...

  19. Modeling and Analysis of High-Penetration PV in California

    Broader source: Energy.gov [DOE]

    The NREL project team will utilize field verification to improve the ability to model and understand the impacts of high-penetration PV on electric utility systems and develop solutions to ease...

  20. Modeling and Analysis of High-Penetration PV in Florida

    Broader source: Energy.gov [DOE]

    This project aims to leverage simulation-assisted research and development based on a wide variety of Florida feeders that already incorporate high levels of PV power. Working with utilities, the...

  1. Yangrui PV Technology Fujian Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    (Fujian) Co Ltd Place: Fujian Province, China Product: Involved in the production of a-Si thin-film cells using a turnkey technology supplier. References: Yangrui PV Technology...

  2. Energy Use in Manufacturing

    Reports and Publications (EIA)

    2006-01-01

    This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

  3. Manufacturing Day 2015

    Broader source: Energy.gov [DOE]

    All over the country, manufacturing companies and other organizations are preparing to host an anticipated 400,000 people who want to experience U.S. manufacturing up close and in person. On...

  4. ASTM PV INSTALLATON COMMISSIONING, OPERATIONS & MAINTENNCE (ICOMP) STANDARD PRACTICE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASTM PV INSTALLATON COMMISSIONING, OPERATIONS & MAINTENNCE (ICOMP) STANDARD PRACTICE MEETING ANNOUNCEMENT ASTM International subcommittee E44.09 Photovoltaic Electric Power Conversion will be holding a meeting for their WK43549 Practice for Installation Commissioning Operation and Maintenance Process task group on Thursday, May 8, 2014 at 8:00am until 1:00pm. This meeting will follow the Sandia/EPRI 2014 PV Systems Symposium. The scope of WK43549 is to work with others around the world to

  5. PROJECT PROFILE: Improving PV performance Estimates in the System Advisor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model with Component and System Reliability Metrics | Department of Energy Improving PV performance Estimates in the System Advisor Model with Component and System Reliability Metrics PROJECT PROFILE: Improving PV performance Estimates in the System Advisor Model with Component and System Reliability Metrics Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: Sandia National Laboratories, Albuquerque, NM Amount Awarded: $600,000 This project will improve the forecasting

  6. PV Module Intraconnect Thermomechanical Durability Damage Prediction Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Module Intraconnect Thermomechanical Durability Damage Prediction Model PV Module Intraconnect Thermomechanical Durability Damage Prediction Model Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps2_dow_gaston.pdf More Documents & Publications 2014 Propulsion Materials R&D Annual Report Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters Center for

  7. Time-dependent first-principles approaches to PV materials

    SciTech Connect (OSTI)

    Miyamoto, Yoshiyuki

    2013-12-10

    Computational scheme for designing photovoltaic (PV) materials is presented. First-principles electron dynamics of photo-excitation and subsequent electron-hole splitting is performed based on the time-dependent density functional theory. Photo-induced enhancement of dipole moment was observed in a polar crystal and a donor-acceptor molecular pair. These experiences will pave a way to design PV material from first-principles simulations.

  8. Device Tosses Out Unusable PV Wafers - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Device Tosses Out Unusable PV Wafers January 11, 2013 Photo of a scientist in safety glasses using tweezers to hold a rectangular gray silicon wafer. He is about to load it into a large silver-metallic instrument. Enlarge image NREL postdoctoral scientist Rene Rivero readies a wafer for the Silicon Photovoltaic Wafer Screening System. Credit: Dennis Schroeder Silicon wafers destined to become photovoltaic (PV) cells can take a bruising through assembly lines, as they are oxidized, annealed,

  9. Distributed PV Interconnection Screening Procedures and Online Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed PV Interconnection Screening Procedures and Online Tools" Joel Dickinson with Salt River Project Solar Initiatives Group August 27, 2014 2 Speakers Joel Dickinson Sr. Engineer Salt River Project Kristen Ardani Solar Analyst National Renewable Energy Laboratory (DGIC moderator) August 27th, 2014 Joel Dickinson, P.E. Sr. Engineer Solar Initiatives Distributed PV Interconnection Screening and Online Tools Salt River Project  Established in 1903 after Theodore Roosevelt signed

  10. Enhanced Modeling and Monitoring Tools for Distributed PV Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Modeling and Monitoring Tools for Distributed PV Interconnection Page 1 of 27 Kristen Ardani, Rick Thompson, Mark Rawson, David Pinney Page 1 of 27 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us today for the DG Interconnection Collaborative's informational webinar. The focus of today's presentation will be on enhanced modeling and monitoring tools for distributed PV interconnection. We have a guest speaker from Green Tech Media (GTM) today, Rick Thompson. So

  11. Microgrid-Ready Solar PV; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-07-01

    Designing new solar projects to be 'microgrid-ready' enables the U.S. DoD, other federal agencies, and the private sector to plan future microgrid initiatives to utilize solar PV as a generating resource. This fact sheet provides background information with suggested language for several up-front considerations that can be added to a solar project procurement or request for proposal (RFP) that will help ensure that PV systems are built for future microgrid connection.

  12. Understanding the Temperature and Humidity Environment Inside a PV Module

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Presentation), NREL (National Renewable Energy Laboratory) | Department of Energy Understanding the Temperature and Humidity Environment Inside a PV Module (Presentation), NREL (National Renewable Energy Laboratory) Understanding the Temperature and Humidity Environment Inside a PV Module (Presentation), NREL (National Renewable Energy Laboratory) This PowerPoint presentation was originally given by Michael Kempe of NREL in February 2013 detailing a project funded by the SunShot Initiative.

  13. DOE-LPO-MiniReport_PV_v10

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy's Loan Programs O ce (LPO) was instrumental in launching the utility-scale photovoltaic (PV) solar industry in the United States. In 2009, there was not a single PV solar facility larger than 100 megawatts (MW) operating in the United States. Despite growing demand for this clean, renewable energy source, developers faced challenges securing the financing necessary to build these large projects. LPO stepped in to address this market barrier by providing more than $4.6

  14. PV Derived Data for Predicting Performance; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Marion, Bill

    2015-09-14

    A method is described for providing solar irradiance data for modeling PV performance by using measured PV performance data and back-solving for the unknown direct normal irradiance (DNI) and diffuse horizontal irradiance (DHI), which can then be used to model the performance of PV systems of any size, PV array tilt, or PV array azimuth orientation. Ideally situated for using the performance data from PV modules with micro-inverters, the PV module operating current is used to determine the global tilted irradiance (GTI), and a separation model is then used to determine the DNI and DHI from the GTI.

  15. Manufacturing Innovation Topics Workshop

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office (AMO) and the Office of the Secretary of Defense Manufacturing Technology Program (OSD ManTech) will host a workshop to discuss AMO's recent Request for Information (RFI) on Clean Energy Manufacturing Topic Areas as well as the recent areas of interest announced by OSD ManTech for a new Manufacturing Innovation Institute on October 8-9, 2014 in Fort Worth, TX.

  16. Advanced Methods for Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scientists Computational Resources and Multi- Physics Modeling & Simulation Knowledge & ... Manufacturing Methods R&D Test Bed ... loops, process development...

  17. Performance evaluation of stand alone hybrid PV-wind generator

    SciTech Connect (OSTI)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-05-15

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  18. How Can We Make PV Modules Safer?: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J. H.; Kurtz, S. R.

    2012-06-01

    Safety is a prime concern for the photovoltaics (PV) industry. As a technology deployed on residential and commercial buildings, it is critical that PV not cause damage to the buildings nor harm the occupants. Many of the PV systems on buildings are of sufficiently high voltage (300 to 600 Volts dc) that they may present potential hazards. These PV systems must be safe in terms of mechanical damage (nothing falls on someone), shock hazard (no risk of electrical shock when touching an exposed circuit element), and fire (the modules neither cause nor promote a fire). The present safety standards (IEC 61730 and UL 1703) do a good job of providing for design rules and test requirements for mechanical, shock, and spread of flame dangers. However, neither standard addresses the issue of electrical arcing within a module that can cause a fire. To make PV modules, they must be designed, built, and installed with an emphasis on minimizing the potential for open circuits and ground faults. This paper provides recommendations on redundant connection designs, robust mounting methods, and changes to the safety standards to yield safer PV modules.

  19. Integrating High Penetrations of PV into Southern California

    SciTech Connect (OSTI)

    Kroposki, B.; Mather, B.; Hasper-Tuttle, J.; Neal, R.; Katiraei, F.; Yazdani, A.; Aguero, J. R.; Hoff, T. E.; Norris, B. L.; Parkins, A.; Seguin, R.; Schauder, C.

    2011-01-01

    California regulators recently approved a plan proposed by Southern California Edison (SCE) to install 500 MW of distributed photovoltaic (PV) energy in its utility service territory over the next 5 years. The installations will include 250 MW of utility-owned solar and 250 MW of independently owned solar. SCE expects that the majority of these systems will be commercial-scale rooftop PV systems connected at various points in the distribution system. Each of the SCE rooftop PV systems will typically have a rating of 1-3 MW. To understand the impact of high-penetration PV on the distribution grid, the National Renewable Energy Laboratory (NREL) and SCE brought together a team of experts in resource assessment, distribution modeling, and planning to help analyze the impacts of adding high penetration of PV into the distribution system. Through modeling and simulation, laboratory testing, and field demonstrations, the team will address the issues identified in the analysis by fully examining the challenges, developing solutions, and transitioning those solutions to the field for large-scale deployment. This paper gives an update on the project and discusses technical results of integrating a large number of distributed PV systems into the grid.

  20. Continuing Developments in PV Risk Management: Strategies, Solutions, and Implications

    SciTech Connect (OSTI)

    Lowder, T.; Mendelsohn, M.; Speer, B.; Hill, R.

    2013-02-01

    As the PV industry matures, successful risk management practices will become more imperative to ensure investor confidence, control costs, and facilitate further growth. This report discusses several key aspects of risk management during the commercial- and utility-scale project life cycle, from identification of risks, to the process of mitigating and allocating those risks among project parties, to transferring those risks through insurance. The report also explores novel techniques in PV risk management, options to offload risks onto the capital markets, and innovative insurance policies (namely warranty policies) that address risks unique to the PV sector. One of the major justifications for robust risk management in the PV industry is the cost-reduction opportunities it affords. If the PV industry can demonstrate the capability to successfully manage its risks, thereby inspiring confidence in financiers, it may be able to obtain a lower cost of capital in future transactions. A lower cost of capital translates to a lower cost of energy, which will in turn enhance PV?s competitiveness at a time when it will have to rely less on subsidies to support its market penetration.

  1. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Manufacturing 1 Technology Assessment 2 1. Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1 Introduction to Additive Manufacturing ....................................................................................... 2 5 1.2 Additive Manufacturing Processes ............................................................................................... 2 6 1.3 Benefits of Additive

  2. All-AC, building integrated PV system for mass deployment of residential PV systems

    SciTech Connect (OSTI)

    Kevin Cammack; Joe Augenbraun; Dan Sun

    2011-05-17

    Project Objective: Solar Red is developing novel PV installation methods and system designs that lower costs dramatically and allow seamless integration into the structure of any sloped roof using existing construction tools and processes. The overall objective of this project is to address the greatest barriers to massive adoption of residential and small commercial rooftop solar scalability of installation and total cost of ownership - by moving Solar Reds snap-in/snap-out PV installation method from the pre-prototype design phase to the development and construction of a deployed prototype system. Financial Summary: ? Funded through ARRA, DOE and Match Funding ? Original Project Budget: $229,310 o DOE/ARRA Funding: $150,000 o Match Funding: $79,310 ? Actual Cost: $216,598 o DOE/ARRA Funding: $150,000 o Match Funding: $120,087 Project Summary: Develop snap-in/snap-out mounting system for low-cost, thin-film solar panels Lower installation cost Lower sales costs Lower training/expertise barriers

  3. EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_htv_fraunhofer_dietrich.pdf More Documents & Publications PID-free C-Si PV Module Using Novel Chemically-Tempered Glass Potential Induced Degradation (PID) Tests for Commercially Available PV Modules Characterization of Dynamic Loads on Solar Modules with Respect to Fracture of So

  4. PV Cell and Module Calibrations at NREL

    SciTech Connect (OSTI)

    Emery, Keith

    2012-10-22

    NREL has equipment to measure any conceivable cell or module technology. The lack of standards for low concentration modules complicates matters. Spectrally adjustable simulators are critical for more than three junctions. NREL's 10-channel fiber optic simulator has shown that the light can be set for each junction within 1% of what it would be under the reference spectrum for up to a five-junction cell. Uncertainty in module simulators dominated by spatial nonuniformity for calibration labs. Manufacturers can mitigate this error by using matched reference modules instead of cells.

  5. Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit

    Broader source: Energy.gov [DOE]

    Presentation on fuel cell manufacturing by Sunita Satyapal at the American Energy and Manufacturing Competitiveness Summit on December 12, 2013.

  6. Geographic smoothing of solar PV: Results from Gujarat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Klima, Kelly; Apt, Jay

    2015-09-24

    We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation using 13 months of observed power production from utility-scale plants in Gujarat, India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV using actual generation data at high time resolution from utility-scale solar PV plants. We use geographic correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the observed variability of operating solar PV plants as a function of time scale. Most plants show a spectrum that is linear in the log–log domain at high frequencies f,more » ranging from f-1.23 to f-1.56 (slopes of -1.23 and -1.56), thus exhibiting more relative variability at high frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat plants yields a f-1.66 spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%, respectively. Half of this smoothing can be obtained through connecting 4-5 plants; reaching marginal improvement of 1% per added plant occurs at 12-14 plants. The largest plant (322 MW) showed an f-1.76 spectrum. Furthermore, this suggests that in Gujarat the potential for smoothing is limited to that obtained by one large plant.« less

  7. SUSTAINABLE MANUFACTURING WORKSHOP

    Broader source: Energy.gov (indexed) [DOE]

    SUSTAINABLE MANUFACTURING WORKSHOP JANUARY 6-7, 2016 University Place Hotel & Conference Center, Portland, OR Overall Workshop Purpose To gather input from stakeholders on future opportunities and technical challenges facing development and scale-up of transformative technologies, processes, and equipment for sustainable manufacturing. The Department of Energy's Advanced Manufacturing Office (AMO) also seeks individual input on performance metrics and identification of key problem sets to be

  8. SUSTAINABLE MANUFACTURING WORKSHOP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SUSTAINABLE MANUFACTURING WORKSHOP JANUARY 6-7, 2016 University Place Hotel & Conference Center, Portland, OR 1 | P a g e Overall Workshop Purpose To gather input from stakeholders on future opportunities and technical challenges facing development and scale-up of transformative technologies, processes, and equipment for sustainable manufacturing. The Department of Energy's Advanced Manufacturing Office (AMO) also seeks individual input on performance metrics and identification of key

  9. Roll to Roll Manufacturing

    SciTech Connect (OSTI)

    Daniel, Claus

    2015-06-09

    ORNL researchers are developing roll to roll technologies for manufacturing, automotive, and clean energy applications in collaboration with industry partners such as Eastman Kodak.

  10. Additive Manufacturing: Going Mainstream

    Broader source: Energy.gov [DOE]

    Additive manufacturing, or 3D printing, is receiving attention from media, investment communities and governments around the world transforming it from obscurity to something to be talked about.

  11. Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

  12. Wind Manufacturing Facilities

    Broader source: Energy.gov [DOE]

    America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state.

  13. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Munich, November 2013. Available at 761 http:www.rolandberger.commediapdfRolandBergerAdditiveManufacturing20131129. 762 pdf. 763 46. Industrial Tools, Dies, and Molds - ...

  14. Recent developments in high-efficiency PV cells

    SciTech Connect (OSTI)

    Deb, S.

    2000-05-22

    Enormous progress has been made in recent years on a number of photovoltaic (PV) materials and devices in terms of conversion efficiencies. Ultrahigh-efficiency (>30{percent}) PV cells have been fabricated from gallium arsenide (GaAs) and its ternary alloys such as gallium indium phosphide (GaInP{sub 2}). The high-efficiency GaAs-based solar cells are being produced on a commercial scale, particularly for space applications. Efficiencies in the range of 18{percent} to 24{percent} have been achieved in traditional silicon-based devices fabricated from both multicrystalline and single-crystal materials. Major advances in efficiency have also been made on various thin-film solar cells based on amorphous silicon (aSi:H), copper gallium indium diselenide (CIGS), and cadmium telluride materials. This paper gives a brief overview of the recent progress in PV cell efficiencies based on these materials and devices.

  15. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    SciTech Connect (OSTI)

    Enbar, Nadav; Weng, Dean; Klise, Geoffrey Taylor

    2016-01-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives on current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefit the industry at-large.

  16. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    SciTech Connect (OSTI)

    Enbar, Nadav; Weng, Dean; Klise, Geoffrey Taylor

    2015-12-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives on current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefi t the industry at-large.

  17. Next Generation Print-based Manufacturing for Photovoltaics and Solid State Lighting

    SciTech Connect (OSTI)

    Sue A. Carter

    2012-09-07

    For the grand challenge of reducing our energy and carbon footprint, the development of renewable energy and energy efficient technologies offer a potential solution. Energy technologies can reduce our dependence on foreign oil as well as the energy consumed by the petroleum industry, the leading consumer of energy by a U.S. industry sector. Nonetheless, the manufacturing processes utilized to manufacture equipment for alternative energy technologies often involve energy-intensive processes. This undermines some of the advantages to moving to 'green' technologies in the first place. Our answer to the Industrial Technology Program's (ITP) Grand Challenge FOA was to develop a transformational low cost manufacturing process for plastic-based photovoltaics that will lower by over 50% both energy consumption and greenhouse emissions and offer a return-of-investment of over 20%. We demonstrated a Luminescent Solar Concentrator fabricated on a plastic acrylic substrate (i.e. no glass) that increases the power output of the PV cell by 2.2x with a 2% power efficiency as well as an LSC with a 7% power efficiency that increased the power output from the PV cells by 35%. S large area 20-inch x 60-inch building-integrated photovoltaic window was fabricated using contract manufacturing with a 4% power efficiency which improved the power output of the PV cell by over 50%. In addition, accelerated lifetimes of the luminescent material demonstrate lifetimes of 20-years.

  18. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect (OSTI)

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

  19. Modular Power Converters for PV Applications

    SciTech Connect (OSTI)

    Ozpineci, Burak; Tolbert, Leon M

    2012-05-01

    This report describes technical opportunities to serve as parts of a technological roadmap for Shoals Technologies Group in power electronics for PV applications. There are many different power converter circuits that can be used for solar inverter applications. The present applications do not take advantage of the potential for using common modules. We envision that the development of a power electronics module could enable higher reliability by being durable and flexible. Modules would have fault current limiting features and detection circuits such that they can limit the current through the module from external faults and can identify and isolate internal faults such that the remaining modules can continue to operate with only minimal disturbance to the utility or customer. Development of a reliable, efficient, low-cost, power electronics module will be a key enabling technology for harnessing more power from solar panels and enable plug and play operation. Power electronics for computer power supplies, communication equipment, and transportation have all targeted reliability and modularity as key requirements and have begun concerted efforts to replace monolithic components with collections of common smart modules. This is happening on several levels including (1) device level with intelligent control, (2) functional module level, and (3) system module. This same effort is needed in power electronics for solar applications. Development of modular units will result in standard power electronic converters that will have a lower installed and operating cost for the overall system. These units will lead to increased adaptability and flexibility of solar inverters. Incorporating autonomous fault current limiting and reconfiguration capabilities into the modules and having redundant modules will lead to a durable converter that can withstand the rigors of solar power generation for more than 30 years. Our vision for the technology roadmap is that there is no need for detailed design of new power converters for each new application or installation. One set of modules and controllers can be pre-developed and the only design question would be how many modules need to be in series or parallel for the specific power requirement. Then, a designer can put the modules together and add the intelligent reconfigurable controller. The controller determines how many modules are connected, but it might also ask for user input for the specific application during setup. The modules include protection against faults and can reset it, if necessary. In case of a power device failure, the controller reconfigures itself to continue limited operation until repair which might be as simple as taking the faulty module out and inserting a new module. The result is cost savings in design, maintenance, repair, and a grid that is more reliable and available. This concept would be a perfect fit for the recently announced funding opportunity announcement (DE-FOA-0000653) on Plug and Play Photovoltaics.

  20. Selecting Solar: Insights into Residential Photovoltaic (PV) Quote Variation

    SciTech Connect (OSTI)

    Davidson, Carolyn; Margolis, Robert

    2015-10-01

    Before investing in a system, a prospective PV customer must not only have initial concept 'buy in,' but also be able to evaluate the tradeoffs associated with different system parameters. Prospective customers might need to evaluate disparate costs for each system attribute by comparing multiple bids. The difficulty of making such an evaluation with limited information can create a cognitive barrier to proceeding with the investment. This analysis leverages recently available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  1. Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Newark, Delaware) - JCAP Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop (Newark, Delaware) Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop (Newark, Delaware) Mon, Mar 7, 2016 11:30am 11:30 Tue, Mar 8, 2016 12:30pm 12:30 University of Delaware Newark, Delaware Frances Houle, "Solar Fuels Systems Research in the Joint Center for Artificial Photosynthesis" March 6 80th Annual Conference of the DPG & DPG Spring Meeting

  2. Outdoor PV Module Degradation of Current-Voltage Parameters: Preprint

    SciTech Connect (OSTI)

    Smith, R. M.; Jordan, D. C.; Kurtz, S. R.

    2012-04-01

    Photovoltaic (PV) module degradation rate analysis quantifies the loss of PV power output over time and is useful for estimating the impact of degradation on the cost of energy. An understanding of the degradation of all current-voltage (I-V) parameters helps to determine the cause of the degradation and also gives useful information for the design of the system. This study reports on data collected from 12 distinct mono- and poly-crystalline modules deployed at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Most modules investigated showed < 0.5%/year decrease in maximum power due to short-circuit current decline.

  3. Toward integrated PV panels and power electronics using printing technologies

    SciTech Connect (OSTI)

    Ababei, Cristinel; Yuvarajan, Subbaraya; Schulz, Douglas L.

    2010-07-15

    In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)

  4. Massachusetts Middle School Goes Local for PV Solar Energy System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Middle School Goes Local for PV Solar Energy System Massachusetts Middle School Goes Local for PV Solar Energy System August 13, 2010 - 11:00am Addthis New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools Lindsay Gsell What are the key facts? Using Recovery Act Funding, Norton Middle

  5. Clean Energy Manufacturing Initiative

    SciTech Connect (OSTI)

    2013-04-01

    The initiative will strategically focus and rally EEREs clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  6. Development of a low-cost integrated 20-kW-AC solar tracking subarray for grid-connected PV power system applications. Final technical report

    SciTech Connect (OSTI)

    Stern, M.; Duran, G.; Fourer, G.; Mackamul, K.; Whalen, W.; Loo, M. van; West, R.

    1998-06-01

    This report chronicles Utility Power Group's (UPG) successful two-year Photovoltaic Manufacturing Technology (PVMaT) Phase 4A1 work effort which began in July, 1995. During this period, UPG completed design, fabrication, testing and demonstration of a modular and fully integrated 15-kW-ac, solar tracking PV power system sub-array. The two key and innovative components which were developed are a Modular Panel which optimizes factory assembly of PV modules into a large area, field-deployable, structurally-integrated PV panel, and an Integrated Power Processing Unit which combines all dc and ac power collection, conversion and control functions within a single, field-deployable structurally-integrated electrical enclosure. These two key sub-array elements, when combined with a number of other electrical, mechanical, and structural components, create a low-cost and high-performance PV power system. This system, or sub-array, can be deployed in individual units, or paralleled with any number of other sub-arrays, to construct multi-megawatt P fields. 21 figs.

  7. Berkeley Program Offers New Option for Financing Residential PV Systems

    SciTech Connect (OSTI)

    Bolinger, Mark A

    2008-07-06

    Readily accessible credit has often been cited as a necessary ingredient to open up the market for residential photovoltaic (PV) systems. Though financing does not reduce the high up-front cost of PV, by spreading that cost over some portion of the system's life, financing can certainly make PV systems more affordable. As a result, a number of states have, in the past, set up special residential loan programs targeting the installation of renewable energy systems and/or energy-efficiency improvements and often featuring low interest rates, longer terms and no-hassle application requirements. Historically, these loan programs have had mixed success (particularly for PV), for a variety of reasons, including a historical lack of homeowner interest in PV, a lack of program awareness, a reduced appeal in a low-interest-rate environment, and a tendency for early PV adopters to be wealthy and not in need of financing. Some of these barriers have begun to fade. Most notably, homeowner interest in PV has grown in some states, particularly those that offer solar rebates. The passage of the Energy Policy Act of 2005 (EPAct 2005), however, introduced one additional roadblock to the success of low-interest PV loan programs: a residential solar investment tax credit (ITC), subject to the Federal government's 'anti-double-dipping' rules. Specifically, the residential solar ITC--equal to 30% of the system's tax basis, capped at $2000--will be reduced or offset if the system also benefits from what is known as 'subsidized energy financing', which is likely to include most government-sponsored low-interest loan programs. Within this context, it has been interesting to note the recent flurry of announcements from a number of U.S cities concerning a new type of PV financing program. Led by the city of Berkeley, Calif., these cities propose to offer their residents the ability to finance the installation of a PV system using increased property tax assessments, rather than a more-traditional credit vehicle, to recover both system and administrative costs. This approach has a number of features that should appeal to PV owners, including long-term, fixed-cost, attractive financing; loans that are tied to the tax capacity of the property rather than to the owner's credit standing; a repayment obligation that transfers along with the sale of the property; and a potential ability to deduct the repayment obligation from federal taxable income as part of the local property tax deduction. For these reasons, Berkeley's program, which was first announced on October 23, 2007, has received considerable nationwide attention in both the trade and general press. Since the announcement, cities from throughout California and the broader U.S. have expressed keen interest in the possibility of replicating this type of program. In California alone, the cities of Santa Cruz, Santa Monica and Palm Desert are all reportedly considering similar programs, while the city of San Francisco has recently announced its own program, portions of which closely parallel Berkeley's approach. In addition, a bill (AB 811) that would authorize all cities in California, not just charter cities like Berkeley, to create this type of program was approved by the California General Assembly on January 29 and is currently under consideration in the State Senate. A similar bill in Colorado (HB 1350) was signed into law on May 28. Elsewhere, the city of Tucson, Arizona has also considered this financing approach.

  8. Manufacturing Innovation in the DOE

    Office of Environmental Management (EM)

    Manufacturing Innovation in the DOE January 13, 2014 Mark Johnson Director Advanced Manufacturing Office manufacturing.energy.gov Advanced Manufacturing Office (AMO) manufacturing.energy.gov 2 What is Advanced Manufacturing? A family of activities that: * Depend on the use and coordination of information, automation, computation, software, sensing, and networking; and/or * Make use of cutting edge materials and emerging capabilities. Advanced Manufacturing involves both: * New ways to

  9. Clean Energy Manufacturing: U.S. Competitiveness and State Policy Strategies (Presentation)

    SciTech Connect (OSTI)

    Lantz, E.

    2014-02-01

    The capital intensive nature of clean energy technologies suggests that manufacturing clean energy equipment has the potential to support state and local economic development efforts. However, manufacturing siting decisions tend to be complex and multi-variable decision processes that require in-depth knowledge of specific markets, the logistical requirements of a given technology, and insight into global clean tech trends. This presentation highlights the potential of manufacturing in supporting economic development opportunities while also providing examples of the financial considerations affecting manufacturing facility siting decisions for wind turbine blades and solar PV. The presentation also includes discussion of other more qualitative drivers of facility siting decisions as gleaned from NREL industry interviews and discusses strategies state and local policymakers may employee to bolster their chances of successfully attracting clean energy manufacturers to their localities.

  10. Why Are Resiential PV Prices in Germany So Much Lower Than in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Why Are Resiential PV Prices in Germany So Much Lower Than in the United States? Why Are Resiential PV Prices in Germany So Much Lower Than in the United States? The U.S....

  11. Breakout Session: Getting in the Loop: PV Hardware Recycling and Sustainability

    Broader source: Energy.gov [DOE]

    As PV system installations continue to ramp up across the United States, the process for handling used and expired PV modules in the next 20-30 years would benefit from serious planning and...

  12. Dynamic Model Validation of PV Inverters Under Short-Circuit Conditions: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Bravo, R.; Gevorgian, V.

    2013-03-01

    Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of photovoltaic deployment. Residential and commercial rooftop installations are connected to the distribution network; large-scale installation PV power plants (PVPs) have benefited from tax incentives and the low cost of PV modules. As the level penetration of PV generation increases, the impact on power system reliability will also be greater. Utility power system planners must consider the role of PV generation in power systems more realistically by representing PV generation in dynamic stability analyses. Dynamic models of PV inverters have been developed in the positive sequence representation. NREL has developed a PV inverter dynamic model in PSCAD/EMTDC. This paper validates the dynamic model with an actual hardware bench test conducted by Southern California Edison's Distributed Energy Resources laboratory. All the fault combinations -- symmetrical and unsymmetrical -- were performed in the laboratory. We compare the simulation results with the bench test results.

  13. Climatically Diverse Data Set for Flat-Plate PV Module Model Validations (Presentation)

    SciTech Connect (OSTI)

    Marion, B.

    2013-05-01

    Photovoltaic (PV) module I-V curves were measured at Florida, Colorado, and Oregon locations to provide data for the validation and development of models used for predicting the performance of PV modules.

  14. Sandia Energy - Sandia Research on PV Arc-Fault Detection Submitted...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for US Patent Different types of parallel arc-faults on the DC side of a PV array. Different types of parallel arc-faults on the DC side of a PV array. Sandia National...

  15. China Sunergy Co Ltd CEEG Nanjing PV Tech Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Sunergy Co Ltd CEEG Nanjing PV Tech Co Ltd Jump to: navigation, search Name: China Sunergy Co Ltd (CEEG Nanjing PV-Tech Co Ltd) Place: Nanjing, Jiangsu Province, China Zip: 211100...

  16. Delamination Failures in Long-Term Field Aged PV Modules from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delamination Failures in Long-Term Field Aged PV Modules from Point of View of Encapsulant Delamination Failures in Long-Term Field Aged PV Modules from Point of View of...

  17. Selecting Solar. Insights into Residential Photovoltaic (PV) Quote Variation

    SciTech Connect (OSTI)

    Davidson, Carolyn; Margolis, Robert

    2015-10-01

    This analysis leverages available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  18. DOE Zero Energy Ready Home PV-Ready Checklist

    Broader source: Energy.gov [DOE]

    All homes certified as DOE Zero Energy Ready Homes must meet the mandatory requirements listed in Exhibit 1 of the National Program Requirements, including Requirement 7 Renewable Ready, which requires that homes meet the requirements listed in the PV-Ready Checklist. See the Checklist document for exceptions

  19. Silicon Oxynitride Thin Film Barriers for PV Packaging (Poster)

    SciTech Connect (OSTI)

    del Cueto, J. A.; Glick, S. H.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2006-10-03

    Dielectric, adhesion-promoting, moisture barriers comprised of silicon oxynitride thin film materials (SiOxNy with various material stoichiometric compositions x,y) were applied to: 1) bare and pre-coated soda-lime silicate glass (coated with transparent conductive oxide SnO2:F and/or aluminum), and polymer substrates (polyethylene terephthalate, PET, or polyethylene napthalate, PEN); plus 2) pre- deposited photovoltaic (PV) cells and mini-modules consisting of amorphous silicon (a-Si) and copper indium gallium diselenide (CIGS) thin-film PV technologies. We used plasma enhanced chemical vapor deposition (PECVD) process with dilute silane, nitrogen, and nitrous oxide/oxygen gas mixtures in a low-power (< or = 10 milliW per cm2) RF discharge at ~ 0.2 Torr pressure, and low substrate temperatures < or = 100(degrees)C, over deposition areas ~ 1000 cm2. Barrier properties of the resulting PV cells and coated-glass packaging structures were studied with subsequent stressing in damp-heat exposure at 85(degrees)C/85% RH. Preliminary results on PV cells and coated glass indicate the palpable benefits of the barriers in mitigating moisture intrusion and degradation of the underlying structures using SiOxNy coatings with thicknesses in the range of 100-200 nm.

  20. Opportunities and Challenges for Power Electronics in PV Modules (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Deline, C.; Wohlgemuth, J.; Marion, B.; Granata, J.

    2011-02-01

    The presentation describes the value of adding DC converters and other power electronics to modules to improve their output even when shading or bad cells would otherwise decrease the module output. The presentation was part of a workshop sponsored by ARPA-E exploring the opportunities for power electronics to support PV applications.

  1. PV Systems Reliability Final Technical Report: Ground Fault Detection

    SciTech Connect (OSTI)

    Lavrova, Olga; Flicker, Jack David; Johnson, Jay

    2016-01-01

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  2. Minnesota Power- Solar-Electric (PV) Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota Power offers a rebate of $1,000 per kilowatt (kW) DC for grid-connected solar-electric (PV) systems, with a maximum award of $20,000 per customer or 60% installed costs per customer. This...

  3. Rethinking Standby & Fixed Cost Charges: Regulatory & Rate Design Pathways to Deeper Solar PV Cost Reductions

    Broader source: Energy.gov [DOE]

    While solar PV's impact on utilities has been frequently discussed the past year, little attention has been paid to the potentially impact posed by solar PV-specific rate designs (often informally referred to as solar "fees" or "taxes") upon non-hardware "soft" cost reductions. In fact, applying some rate designs to solar PV customers could potentially have a large impact on the economics of PV systems.

  4. PV technology differences and discrepancies in modelling between simulation programs and measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sensitivity and limitations of present and alternative PV models The sensitivity and limitations of present and alternative PV models Steve Ransome - Independent PV Consultant, SRCL, UK Juergen Sutterlueti - TEL Solar, Switzerland Sandia PV Modelling Workshop; Santa Clara, USA 1 st May 2013 Published by Sandia National Laboratories with the permission of the author * Many recent independent outdoor studies find <±5% kWh/kWp (with different rankings between technologies) there's less kWh/kWp

  5. A Comparison of Key PV Backsheet and Module Properties from Fielded Module

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exposures and Accelerated Test Conditions | Department of Energy A Comparison of Key PV Backsheet and Module Properties from Fielded Module Exposures and Accelerated Test Conditions A Comparison of Key PV Backsheet and Module Properties from Fielded Module Exposures and Accelerated Test Conditions Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps5_dupont_gambogi.pdf More Documents & Publications Agenda for the PV Module

  6. A Multi-Perspective Approach to PV Module Reliability and Degradation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy A Multi-Perspective Approach to PV Module Reliability and Degradation A Multi-Perspective Approach to PV Module Reliability and Degradation Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps2_bnl_colli.pdf More Documents & Publications Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado DOE-STD-1628-2013 The Long Island Solar Farm

  7. PV QA Task Group #2: Thermal and Mechanical Fatigue Including Vibration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy QA Task Group #2: Thermal and Mechanical Fatigue Including Vibration PV QA Task Group #2: Thermal and Mechanical Fatigue Including Vibration Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_tmf_taskgroup2.pdf More Documents & Publications Linkage to Previous International PV Module QA Task Force Workshops: Proposal for Rating System Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden,

  8. Partial Shading in Monolithic Thin Film PV Modules: Analysis and Design |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Partial Shading in Monolithic Thin Film PV Modules: Analysis and Design Partial Shading in Monolithic Thin Film PV Modules: Analysis and Design Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps1_purdue_dongaonkar.pdf More Documents & Publications Advanced Combustion Modeling with STAR-CD using Transient Flemelet Models: TIF and TPV Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden,

  9. Video: O&M Best Practices for Small-Scale PV Systems Success Story |

    Office of Environmental Management (EM)

    Department of Energy O&M Best Practices for Small-Scale PV Systems Success Story Video: O&M Best Practices for Small-Scale PV Systems Success Story See how the Federal Energy Management Program's eTraining course, O&M Best Practices for Small-Scale PV Systems, helped federal energy and facility management professionals complete successful photovoltaics (PV) projects

  10. Demonstrating Reliability of 3M Ultra-Barrier Film for Flexible PV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Demonstrating Reliability of 3M Ultra-Barrier Film for Flexible PV Applications Demonstrating Reliability of 3M Ultra-Barrier Film for Flexible PV Applications Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps5_3m_nachtigal.pdf More Documents & Publications OLED Stakeholder Report Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Comparing Accelerated

  11. Microsoft Word - 2016 PV Systems Symposium - Save the Date v6.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia/EPRI PV Symposium - Save the Date! Save the Date and Call for Abstracts Sandia-EPRI 2016 PV Systems Symposium May 9-11 th at the Biltmore Hotel in Santa Clara, CA Sandia National Laboratories (SNL) and the Electric Power Research Institute (EPRI) are delighted to host this symposium on the technical challenges and opportunities related to solar photovoltaic (PV) systems and technologies. Core areas of focus will include PV performance modeling, distribution hosting capacity and screening

  12. Summary of the 3rd International PV Module Quality Assurance Forum |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Summary of the 3rd International PV Module Quality Assurance Forum Summary of the 3rd International PV Module Quality Assurance Forum Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps3_pvtec_saito.pdf More Documents & Publications Overview of Progress in Thermoelectric Power Generation Technologies in Japan Potential Induced Degradation (PID) Tests for Commercially Available PV Modules Overview of

  13. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System

    Office of Environmental Management (EM)

    Operations | Department of Energy Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean Power Research logo.jpg This project will address the need for a more accurate approach to forecasting net utility load by taking into consideration the contribution of customer-sited PV energy generation. Tasks within the project are designed to integrate novel PV power

  14. Advanced Vehicles Manufacturing Projects | Department of Energy

    Energy Savers [EERE]

    Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects DOE-LPO_ATVM-Economic-Growth_Thumbnail.png DRIVING ECONOMIC GROWTH: ADVANCED TECHNOLOGY VEHICLES

  15. Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)

    SciTech Connect (OSTI)

    Gessert, T. A.

    2010-09-01

    Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

  16. Geographic smoothing of solar PV: Results from Gujarat

    SciTech Connect (OSTI)

    Klima, Kelly; Apt, Jay

    2015-09-24

    We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation using 13 months of observed power production from utility-scale plants in Gujarat, India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV using actual generation data at high time resolution from utility-scale solar PV plants. We use geographic correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the observed variability of operating solar PV plants as a function of time scale. Most plants show a spectrum that is linear in the log–log domain at high frequencies f, ranging from f-1.23 to f-1.56 (slopes of -1.23 and -1.56), thus exhibiting more relative variability at high frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat plants yields a f-1.66 spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%, respectively. Half of this smoothing can be obtained through connecting 4-5 plants; reaching marginal improvement of 1% per added plant occurs at 12-14 plants. The largest plant (322 MW) showed an f-1.76 spectrum. Furthermore, this suggests that in Gujarat the potential for smoothing is limited to that obtained by one large plant.

  17. Experimental comparison of PV-smoothing controllers using distributed generators

    SciTech Connect (OSTI)

    Johnson, Jay Dean; Ellis, Abraham; Denda, Atsushi; Morino, Kimio; Hawkins, John N.; Arellano, Brian; Shinji, Takao; Ogata, Takao; Tadokoro, Masayuki

    2014-02-01

    The power output variability of photovoltaic systems can affect local electrical grids in locations with high renewable energy penetrations or weak distribution or transmission systems. In those rare cases, quick controllable generators (e.g., energy storage systems) or loads can counteract the destabilizing effects by compensating for the power fluctuations. Previously, control algorithms for coordinated and uncoordinated operation of a small natural gas engine-generator (genset) and a battery for smoothing PV plant output were optimized using MATLAB/Simulink simulations. The simulations demonstrated that a traditional generation resource such as a natural gas genset in combination with a battery would smooth the photovoltaic output while using a smaller battery state of charge (SOC) range and extending the life of the battery. This paper reports on the experimental implementation of the coordinated and uncoordinated controllers to verify the simulations and determine the differences in the controllers. The experiments were performed with the PNM PV and energy storage Prosperity site and a gas engine-generator located at the Aperture Center at Mesa Del Sol in Albuquerque, New Mexico. Two field demonstrations were performed to compare the different PV smoothing control algorithms: (1) implementing the coordinated and uncoordinated controls while switching off a subsection of the PV array at precise times on successive clear days, and (2) comparing the results of the battery and genset outputs for the coordinated control on a high variability day with simulations of the coordinated and uncoordinated controls. It was found that for certain PV power profiles the SOC range of the battery may be larger with the coordinated control, but the total amp-hours through the battery-which approximates battery wear-will always be smaller with the coordinated control.

  18. Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    Distributed Solar PV systems have the potential of increasing the grid's resiliency to unforeseen events, such as extreme weather events and attacks. This paper presents the role that distributed PV can play in electric grid resiliency, introduces basic system design requirements and options, and discusses the regulatory and policy options for supporting the use of distributed PV for the purpose of increased electricity resiliency.

  19. Going Solar in Record Time with Plug-and-Play PV | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Going Solar in Record Time with Plug-and-Play PV Going Solar in Record Time with Plug-and-Play PV April 24, 2012 - 6:10pm Addthis A plug-and-play PV system is envisioned as a...

  20. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Libby Wayman, Director, EERE Clean Energy Manufacturing Initiative PDF icon b13_wayman_1-a.pdf More Documents & Publications Amped Up! Volume 1, No.2 NREL/DOE EERE QC/Metrology

  1. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Workshop Manufacturing Demonstration Facilities Workshop, March 12, 2012 Report to the President on Capturing Domestic Competitive Advantage in Advanced Manufacturing...

  2. Innovative Manufacturing Initiative Project Selections

    Broader source: Energy.gov [DOE]

    The Department announced nearly $23 million for 12 projects across the country to advance technologies aimed at helping American manufacturers dramatically increase the energy efficiency of their manufacturing facilities, lower costs, and develop new manufacturing technologies.

  3. NREL: Innovation Impact - Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buildings Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Buildings Use 40% of U.S. Energy Close Americans spend $400 billion annually to power homes and commercial buildings. An estimated $80 billion could be saved through energy efficiency. Close NREL's net-zero-energy Research Support Facility employs cutting-edge energy efficiency

  4. Integrating High Penetrations of PV into Southern California: Year 2 Project Update; Preprint

    SciTech Connect (OSTI)

    Mather, B.; Neal, R.

    2012-08-01

    Southern California Edison (SCE) is well into a five-year project to install a total of 500 MW of distributed photovoltaic (PV) energy within its utility service territory. Typical installations to date are 1-3 MW peak rooftop PV systems that interconnect to medium-voltage urban distribution circuits or larger (5 MW peak) ground-mounted systems that connect to medium-voltage rural distribution circuits. Some of the PV system interconnections have resulted in distribution circuits that have a significant amount of PV generation compared to customer load, resulting in high-penetration PV integration scenarios. The National Renewable Energy Laboratory (NREL) and SCE have assembled a team of distribution modeling, resource assessment, and PV inverter technology experts in order to investigate a few of the high-penetration PV distribution circuits. Currently, the distribution circuits being studied include an urban circuit with a PV penetration of approximately 46% and a rural circuit with a PV penetration of approximately 60%. In both cases, power flow on the circuit reverses direction, compared to traditional circuit operation, during periods of high PV power production and low circuit loading. Research efforts during year two of the five-year project were focused on modeling the distribution system level impacts of high-penetration PV integrations, the development and installation of distribution circuit data acquisition equipment appropriate for quantifying the impacts of high-penetration PV integrations, and investigating high-penetration PV impact mitigation strategies. This paper outlines these research efforts and discusses the following activities in more detail: the development of a quasi-static time-series test feeder for evaluating high-penetration PV integration modeling tools; the advanced inverter functions being investigated for deployment in the project's field demonstration and a power hardware-in-loop test of a 500-kW PV inverter implementing a limited set of advanced inverter functions.

  5. Transformational Manufacturing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery...

  6. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption...

  7. Innovative Manufacturing Initiative Recognition Day

    Broader source: Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers...

  8. Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

  9. Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions

    SciTech Connect (OSTI)

    Drury, E.; Denholm, P.; Margolis, R.

    2013-01-01

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.

  10. PID-free C-Si PV Module Using Novel Chemically-Tempered Glass | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy PID-free C-Si PV Module Using Novel Chemically-Tempered Glass PID-free C-Si PV Module Using Novel Chemically-Tempered Glass Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps4_aist_kambe.pdf More Documents & Publications EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PID Failure of c-Si and Thin-Film Modules and Possible Correlation

  11. PROJECT PROFILE: PV Risk Reduction through Quantifying In-Field Energy

    Broader source: Energy.gov [DOE]

    Photovoltaic (PV) system degradation rates are not currently assessed in a comprehensive, standardized manner and do not account for climate, mounting configuration, or technology details. This project will develop standardized methods for determining degradation factors, which will reduce the perceived and actual financial risk associated with PV deployment. In addition, partially shaded PV system performance models will be validated and added to PV performance simulation software used by installers, increasing the accuracy of performance prediction. The project will also expand the geographically diverse PV performance database using the microinverter data.

  12. Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal Stress |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal Stress Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal Stress Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps4_espec_suzuki.pdf More Documents & Publications The Acceleration of Degradation by HAST and Air-HAST in c-Si PV Modules Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Thermal

  13. The Acceleration of Degradation by HAST and Air-HAST in c-Si PV Modules |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Acceleration of Degradation by HAST and Air-HAST in c-Si PV Modules The Acceleration of Degradation by HAST and Air-HAST in c-Si PV Modules Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps4_espc_suzuki.pdf More Documents & Publications Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal Stress Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado

  14. Study on PID Resistance of HIT PV Modules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study on PID Resistance of HIT PV Modules Study on PID Resistance of HIT PV Modules Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps4_sanyo_ishiguro.pdf More Documents & Publications PID Failure of c-Si and Thin-Film Modules and Possible Correlation with Leakage Currents Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PID-free C-Si PV Module Using Novel Chemically-Tempered Glass

  15. Going Solar in Record Time with Plug-and-Play PV | Department of Energy

    Office of Environmental Management (EM)

    Going Solar in Record Time with Plug-and-Play PV Going Solar in Record Time with Plug-and-Play PV April 24, 2012 - 6:10pm Addthis A plug-and-play PV system is envisioned as a consumer friendly solar technology that uses an automatic detection system to initiate communication between the solar energy system and the utility when plugged into a PV-ready circuit. | Photo by iStock. A plug-and-play PV system is envisioned as a consumer friendly solar technology that uses an automatic detection system

  16. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the ...

  17. High-Penetration PV Integration Handbook for Distribution Engineers

    SciTech Connect (OSTI)

    Seguin, Rich; Woyak, Jeremy; Costyk, David; Hambrick, Josh; Mather, Barry

    2016-01-01

    This handbook has been developed as part of a five-year research project which began in 2010. The National Renewable Energy Laboratory (NREL), Southern California Edison (SCE), Quanta Technology, Satcon Technology Corporation, Electrical Distribution Design (EDD), and Clean Power Research (CPR) teamed together to analyze the impacts of high-penetration levels of photovoltaic (PV) systems interconnected onto the SCE distribution system. This project was designed specifically to leverage the experience that SCE and the project team would gain during the significant installation of 500 MW of commercial scale PV systems (1-5 MW typically) starting in 2010 and completing in 2015 within SCE’s service territory through a program approved by the California Public Utility Commission (CPUC).

  18. High Penetration PV: How High Can We Go?

    SciTech Connect (OSTI)

    2016-01-01

    Brochure highlighting NREL's partnership with SolarCity and Hawaiian Electric (HECO) to increase the penetration of solar photovoltaics on the electricity grid. To better understand the potential impact of transient overvoltages due to load rejection, NREL collaborated with SolarCity and HECO to run a series of tests measuring the magnitude and duration of load rejection overvoltage events and demonstrating the ability of advanced PV inverters to mitigate their impacts.

  19. Sandia and EPRI to host PV symposium in May 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EPRI to host PV symposium in May 2016 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  20. PG&E Plans for 500 MW of PV

    Broader source: Energy.gov [DOE]

    PG&E has developed a plan to install 500 MW of PV by the year 2015. The plan calls for 250 MW to be acquired through Power Purchase Agreements (PPA) and the other 250 MW to be purchased and owned by the utility. PG&E presented the plan at a public forum on April 27, 2009. A copy of the power point presentation is attached.

  1. Photovoltaic (PV) Module Level Remote Safety Disconnect - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Find More Like This Return to Search Photovoltaic (PV) Module Level Remote Safety Disconnect National Renewable Energy Laboratory Contact NREL About This Technology Figure 1: System configuration of emergency module-level disconnect using module-level &lsquo;Isolation Detection Units&rsquo; (IDU).<br /> Figure 1: System configuration of emergency module-level disconnect using module-level 'Isolation Detection Units' (IDU). Technology Marketing Summary The ability to

  2. GridPV Toolbox Version 2 Now Available

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GridPV Toolbox Version 2 Now Available - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  3. PV Validation and Bankability Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    presentation summarizes the information given by DOE during the Photovoltaic Validation and Bankability Workshop in San Jose, California, on August 31, 2011. PDF icon doe_lynn_pv_validation_2011_aug.pdf More Documents & Publications Overcoming the Barrier to Achieving Large-Scale Production - A Case Study Federal Energy Management Program Report Template Systems Integration (Fact Sheet), SunShot Initiative, U.S. Department of Energy (DOE)

  4. Utility Participation in the Rooftop Solar PV Market Transcript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Participation in the Rooftop Solar PV Market Page 1 of 21 Kristen Ardani, Jurstin Orkney, Marc Romito Page 1 of 21 [Speaker: Kristen Ardani] Slide 1: Good afternoon, everyone. Thank you for joining the Distributed Generation Interconnection Collaborative Monthly Informational Webinar. My name is Kristen Ardani, and I'm an analyst here at NREL and the moderator for the DGIC. So today, we are kicking off 2016 with a joint presentation from two Arizona utilities that have implemented

  5. Distributed PV Interconnection Screening Procedures and Online Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Screening Procedures and Online Tools Page 1 of 9 Kristen Ardani, Joel Dickinson, Max Berger, David Crowell, Jeff Dickinson, Kelly Webster Page 1 of 9 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us today for the DG Interconnection Collaborative. My name is Kristen Ardani,I'm an analyst here at NREL and the lead facilitator of the DGIC. We are fortunate today to have speakers Joel Dickinson of Salt River Project. We are going to discuss distributed PV interconnection

  6. NREL Provides PV Holiday Lights for Christmas Tree

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Provides PV Holiday Lights for Christmas Tree For more information contact: George Douglas (303) 275-4096 Golden, Colo., December 2, 1997 -- National Renewable Energy Laboratory (NREL) engineers are showing off the power of photovoltaics in Washington, D.C. again this holiday season. They have installed an 8-kilowatt solar array on the Ellipse just south of the White House to help power lights on the National Christmas Tree. The tree lighting ceremony on Dec. 4 begins Washington's 1997 Pageant

  7. Enhanced Modeling and Monitoring Tools for Distributed PV Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Modeling and Monitoring Tools for Distributed PV Interconnection" Mark Rawson, Sacramento Municipal Utility District and David Pinney, National Rural Electric Cooperative Association with introductory remarks by Rick Thompson, Greentech Media May 28, 2014 2 Purpose of Today's Meeting * Foster stakeholder collaboration and awareness o Learn about Green Tech Media's (GTM) new Grid Edge Initiative, Rick Thompson, GTM * Hear an example of how a municipal utility is planning for solar

  8. Center for Inverse Design Highlight: Iron Chalcogenide PV Absorbers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iron Chalcogenide Photovoltaic Absorbers The Center for Inverse Design has identified the iron-based ternary chalcogenide materials Fe 2 SiS 4 and Fe 2 GeS 4 as promising new photovoltaic materials, which circumvent the problems historically encountered with iron sulfide FeS 2 (iron pyrite). There is intense interest in earth-abundant materials, including iron-bearing systems, for the widespread development of photovoltaic (PV) technologies to sustainably meet growing energy needs. The inverse

  9. Indium Phosphide Polycrystalline Films on Metal Foil for PV Applications -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Advanced Materials Advanced Materials Find More Like This Return to Search Indium Phosphide Polycrystalline Films on Metal Foil for PV Applications Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Zheng, M., Yu, Z., Seok, T.J., Chen, Y-Z., Kapadia, R., Takei, K., Aloni, S., Ager, J.W., Wu, M., Chueh, Y-L., Javey, A. "High optical quality polycrystalline indium phosphide grown on metal substrates by

  10. Quantify Degradation Rates and Mechanisms of PV Modules and Systems Installed in Florida Through Comprehensive Experimental and Theoretical Analysis (Poster)

    SciTech Connect (OSTI)

    Sorloaica-Hickman, N.; Davis, K.; Kurtz, S.; Jordan, D.

    2011-02-01

    The economic viability of photovoltaic (PV) technologies is inextricably tied to both the electrical performance and degradation rate of the PV systems, which are the generators of electrical power in PV systems. Over the past 15 years, performance data have been collected on numerous PV systems installed throughout the state of Florida and will be presented.

  11. Measurement uncertainty analysis techniques applied to PV performance measurements

    SciTech Connect (OSTI)

    Wells, C.

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment's final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  12. Advanced Manufacture of Reflectors

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  13. Exploring the Economic Value of EPAct 2005's PV Tax Credits

    SciTech Connect (OSTI)

    Bolinger, Mark A; Wiser, Ryan; Ing, Edwin

    2009-08-01

    This CESA - LBNL Case Study examines how much economic value do new and expanded federal tax credits really provide to PV system purchasers, and what implications might they hold for state/utility PV grant programs. The report begins with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. The report concludes with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state/utility PV programs. The market for grid-connected photovoltaics (PV) in the US has grown dramatically in recent years, driven in large part by PV grant or 'buy-down' programs in California, New Jersey, and many other states. The recent announcement of a new 11-year, $3.2 billion PV program in California suggests that state policy will continue to drive even faster growth over the next decade. Federal policy has also played a role, primarily by providing commercial PV systems access to tax benefits, including accelerated depreciation (5-year MACRS schedule) and a business energy investment tax credit (ITC). Since the signing of the Energy Policy Act of 2005 (EPAct) on August 8, the federal government has begun to play a much more significant role in supporting both commercial and residential PV systems. Specifically, EPAct increased the federal ITC for commercial PV systems from 10% to 30% of system costs, and also created a new 30% ITC (capped at $2000) for residential solar systems. Both changes went into effect on January 1, 2006, for an initial period of two years, and in late 2006 were extended for an additional year. Unless extended further, the new residential ITC will expire, and the 30% commercial ITC will revert back to 10%, on January 1, 2009. How much economic value do these new and expanded federal tax credits really provide to PV system purchasers? And what implications might they hold for state/utility PV grant programs? Using a generic (i.e., non-state-specific) cash flow model, this report explores these questions.1 We begin with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. We conclude with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state/utility PV programs.

  14. Cost and Reliability Improvement for CIGS-Based PV on Flexible Substrate: May 24, 2006 -- July 31, 2010

    SciTech Connect (OSTI)

    Wiedeman, S.

    2011-05-01

    Global Solar Energy rapidly advances the cost and performance of commercial thin-film CIGS products using roll-to-roll processing on steel foil substrate in compact, low cost deposition equipment, with in-situ sensors for real-time intelligent process control. Substantial increases in power module efficiency, which now exceed 13%, are evident at GSE factories in two countries with a combined capacity greater than 75 MW. During 2009 the average efficiency of cell strings (3780 cm2) was increased from 7% to over 11%, with champion results exceeding 13% Continued testing of module reliability in rigid product has reaffirmed extended life expectancy for standard glass product, and has qualified additional lower-cost methods and materials. Expected lifetime for PV in flexible packages continues to increase as failure mechanisms are elucidated, and resolved by better methods and materials. Cost reduction has been achieved through better materials utilization, enhanced vendor and material qualification and selection. The largest cost gains have come as a result of higher cell conversion efficiency and yields, higher processing rates, greater automation and improved control in all process steps. These improvements are integral to this thin film PV partnership program, and all realized with the 'Gen2' manufacturing plants, processes and equipment.

  15. Shanghai JTU PV Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Solar Product: Spun off from Shanghai Jiaotong University, the company manufactures control systems and testing equipments for solar water heaters. Coordinates: 31.247709,...

  16. Drug development and manufacturing

    DOE Patents [OSTI]

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  17. Advanced Materials Manufacturing and Innovative Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...) - Challenges: * Manufacturing Methodology MUST be Able to Deliver Required ... Research Opportunities & Challenges Advanced Materials Manufacturing & Innovative ...

  18. Grid-Competitive Residential and Commercial Fully Automated PV Systems Technology: Final technical Report, August 2011

    SciTech Connect (OSTI)

    Brown, Katie E.; Cousins, Peter; Culligan, Matt; Jonathan Botkin; DeGraaff, David; Bunea, Gabriella; Rose, Douglas; Bourne, Ben; Koehler, Oliver

    2011-08-26

    Under DOE's Technology Pathway Partnership program, SunPower Corporation developed turn-key, high-efficiency residential and commercial systems that are cost effective. Key program objectives include a reduction in LCOE values to 9-12 cents/kWh and 13-18 cents/kWh respectively for the commercial and residential markets. Target LCOE values for the commercial ground, commercial roof, and residential markets are 10, 11, and 13 cents/kWh. For this effort, SunPower collaborated with a variety of suppliers and partners to complete the tasks below. Subcontractors included: Solaicx, SiGen, Ribbon Technology, Dow Corning, Xantrex, Tigo Energy, and Solar Bridge. SunPower's TPP addressed nearly the complete PV value chain: from ingot growth through system deployment. Throughout the award period of performance, SunPower has made progress toward achieving these reduced costs through the development of 20%+ efficient modules, increased cell efficiency through the understanding of loss mechanisms and improved manufacturing technologies, novel module development, automated design tools and techniques, and reduced system development and installation time. Based on an LCOE assessment using NREL's Solar Advisor Model, SunPower achieved the 2010 target range, as well as progress toward 2015 targets.

  19. Photovoltaics (PV) as an Eligible Measure in Residential PACE Programs: Benefits and Challenges (Fact Sheet)

    SciTech Connect (OSTI)

    Coughlin, J.

    2010-06-01

    Property Assessed Clean Energy (PACE) financing is one of several new financial models broadening access to clean energy by addressing the barrier of initial capital cost. The majority of the PACE programs in the market today include PV as an eligible measure. PV appeals to homeowners as a way to reduce utility bills, self-generate sustainable power, increase energy independence and demonstrate a commitment to the environment. If substantial state incentives for PV exist, PV projects can be economic under PACE, especially when partnered with good net metering policies. At the same time, PV is expensive relative to other eligible measures with a return on investment horizon that might exceed program targets. This fact sheet reviews the benefits and potential challenges of including PV in PACE programs.

  20. Final Technical Report: Advanced Measurement and Analysis of PV Derate Factors.

    SciTech Connect (OSTI)

    King, Bruce Hardison; Burton, Patrick D.; Hansen, Clifford; Jones, Christian Birk

    2015-12-01

    The Advanced Measurement and Analysis of PV Derate Factors project focuses on improving the accuracy and reducing the uncertainty of PV performance model predictions by addressing a common element of all PV performance models referred to as “derates”. Widespread use of “rules of thumb”, combined with significant uncertainty regarding appropriate values for these factors contribute to uncertainty in projected energy production.

  1. PV Standards: What IEC TC82 is Doing for You | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards: What IEC TC82 is Doing for You PV Standards: What IEC TC82 is Doing for You Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps3_sunset_kelly.pdf More Documents & Publications QA TG5 UV, temperature and humidity Test Procedure for UV Weathering Resistance of Backsheet PV QA Task Group #2: Thermal and Mechanical Fatigue Including Vibration

  2. Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential This study looks at the technical feasibility of generating power with PV arrays. PDF icon 47956.pdf More Documents & Publications Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island

  3. NREL Solar Researcher Honored with World PV Award - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Solar Researcher Honored with World PV Award May 10, 2006 Golden, Colo. - Dr. Lawrence Kazmerski, a leading research director at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), received the World PV Award at the Fourth World Conference on Photovoltaic Energy Conversion on May 9 for his outstanding contributions to the worldwide advancements of photovoltaic (PV) science and technology. The award, sponsored by professional organizations from the European,

  4. NREL: Performance and Reliability R&D - PV Module Reliability Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Module Reliability Workshop NREL hosts an annual Photovoltaic Module Reliability Workshop (PVMRW) so that solar technology experts can share information leading to the improvement of PV module reliability. Such improvement reduces the cost of solar electricity and promotes investor confidence in the technology-both critical goals for moving PV technologies deeper into the electricity marketplace. 2016 Workshop The 2016 PVMRW will be held from Tuesday, February 23, to Thursday, February 25.

  5. NREL: Solar Research - NREL Releases High-Penetration PV Handbook for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Engineers Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of variable solar

  6. NREL: Technology Transfer - NREL Releases High-Penetration PV Handbook for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Engineers Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of variable solar

  7. The Impact of PV Module Reliability on Plant Lifetimes Exceeding 25 Years |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Impact of PV Module Reliability on Plant Lifetimes Exceeding 25 Years The Impact of PV Module Reliability on Plant Lifetimes Exceeding 25 Years Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps1_saic_mcclung.pdf More Documents & Publications Investigation of Direct Injection Vehicle Particulate Matter Emissions Model-Based Transient Calibration Optimization for Next Generation Diesel Engines USABC LEESS

  8. Third-Party Financing and Power Purchase Agreements for Public Sector PV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects | Department of Energy Information Resources » Third-Party Financing and Power Purchase Agreements for Public Sector PV Projects Third-Party Financing and Power Purchase Agreements for Public Sector PV Projects Introductory presentation on the third party PPA model for public sector PV. Date May 2009 Topic Solar Basics & Educating Consumers Financing, Incentives & Market Analysis Subprogram Soft Costs Author National Renewable Energy Laboratory Office presentation icon

  9. Measurement uncertainty analysis techniques applied to PV performance measurements

    SciTech Connect (OSTI)

    Wells, C.

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis? It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment`s final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis? A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  10. Utility Participation in the Rooftop Solar PV Market

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Participation in the Rooftop Solar PV Market DG Interconnection Collaborative (DGIC) January 21, 2016 Justin Orkney Program Manager of Distributed Generation Tucson Electric Power (TEP) Marc Romito Manager Arizona Public Service 2 Logistics * Participants are joined in listen-only mode. * Use the Q&A panel to ask questions during the webinar. We will have a few minutes of Q&A between each presentation and group discussion at the very end.  To ask a question: o Click Q&A

  11. Kauai, Hawaii: Solar Resource Analysis and High Penetration PV Potential

    SciTech Connect (OSTI)

    Helm, C.; Burman, K.

    2010-04-01

    Overview of the solar resource assessment conducted by the National Renewable Energy Laboratory (NREL) in cooperation with Kauai Island Utility Cooperative (KIUC) in Hawaii to determine the technical feasibility of increasing the contribution of solar renewable energy generation on the island of Kauaii through the use of photovoltaic (PV) arrays. The analysis, which was performed using a custom version of NREL's In My Back Yard (IMBY) software tool, showed that there is potential to generate enough energy to cover the peak load as reported for Kauai in 2007.

  12. PV vs. Solar Water Heating- Simple Solar Payback

    Broader source: Energy.gov [DOE]

    Solar energy systems hang their hats on payback. Financial payback is as tangible as money in your bank account, while other types of payback—like environmental externalities—are not usually calculated in dollars. There’s no doubt that photovoltaic (PV) and solar hot water (SHW) systems will pay you back. Maybe not as quickly as you’d like, but all systems will significantly offset their cost over their lifetimes. Here we’ll try to answer: Which system will give the quickest return on investment (ROI)?

  13. New Barrier Coating Materials for PV Module Backsheets: Preprint

    SciTech Connect (OSTI)

    Barber, G. D.; Jorgensen, G. J.; Terwilliger, K.; Glick, S. H.; Pern, J.; McMahon, T. J.

    2002-05-01

    This conference paper describes the high moisture barrier high resistivity coatings on polyethylene terepthalate (PET) have been fabricated and characterized for use in PV module back sheet applications. These thin film barriers exhibit water vapor transmission rates (WVTR) as low as 0.1 g/m2-day at 37.8 C and have shown excellent adhesion (> 10 N/mm) to both ethylene vinyl acetate (EVA) and PET even after filtered xenon arc lamp UV exposure. The WVTR and adhesion values for this construction are compared to and shown to be superior to candidate polymeric backsheet materials.

  14. Revitalize American Manufacturing Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revitalize American Manufacturing Act - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  15. HPC4Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Deborah May, Lawrence Livermore National Laboratory U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. May 28-29, 2015 LLNL-PRES-792637 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC This presentation does not contain any proprietary, confidential, or otherwise restricted information. * Energy intensive processes and

  16. Contribution to Nanotechnology Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shares Nano 50 award for directed assembly September 3, 2008 Contribution to Nanotechnology Manufacturing LOS ALAMOS, New Mexico, September 3, 2008-A team of scientists spanning three institutions, including Los Alamos National Laboratory, has discovered a more efficient way of fusing charge-carrying electrical contacts to tiny "nanowires" of silicon to create the nanotechnology at the heart of potential future advances in modern electronics, sensing, and energy collection. Nanotech

  17. National Electrical Manufacturers Association

    Office of Environmental Management (EM)

    July 24, 2014 VIA EMAIL TO: Regulatory.Review@hq.doe.gov Steven Croley, General Counsel Office of the General Counsel U.S. Department of Energy 1000 Independence Avenue SW., Washington, DC 20585 NEMA Comments on DOE Reducing Regulatory Burden RFI 79 Fed.Reg. 28518 (July 3, 2014) Dear Mr. Croley, The National Electrical Manufacturers Association (NEMA) thanks you for the opportunity to provide comments on the Department of Energy's efforts to make its regulatory program more effective and less

  18. Sustainable and Holistic Integration of Energy Storage and Solar PV (SHINES) Funding Opportunity

    Broader source: Energy.gov [DOE]

    The Sustainable and Holistic Integration of Energy Storage and Solar PV (SHINES) solution as envisioned by SunShot will have the following features:

  19. Concentrating Photovoltaics: Collaborative Opportunities within DOEs CSP and PV Programs; Preprint

    SciTech Connect (OSTI)

    Mehos, M.; Lewandowski, A.; Symko-Davies, M.; Kurtz, S.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: DOEs Concentrating Solar Power program is investigating the viability of concentrating PV converters as an alternative to thermal conversion devices.

  20. Improved Reliability of PV Modules with Lexan PC Sheet-Front...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Weathering Performance of PV Backsheets Hail Impact Testing on Crystalline Si Modules with Flexible Packaging Test Procedure for UV Weathering ...

  1. Defining a Technical Basis for Confidence in PV Investments - A Pathway to Service Life Prediction (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Kempe, M.; Bosco, N.; Hacke, P.; Jordan, D.; Miller, D.

    2013-09-01

    Four levels of accelerated test standards for PV modules are described in the context of how the community can most quickly begin using these.

  2. Community Renewable Energy Success Stories Webinar: Developing PV Projects with RFPs and PPAs (text version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar titled "Developing PV Projects with RFPS and PPAS," originally presented on January 15, 2013.

  3. Pyranometers and Reference Cells: Part 2: What Makes the Most Sense for PV Power Plants?; Preprint

    SciTech Connect (OSTI)

    Meydbray, J.; Riley, E.; Dunn, L.; Emery, K.; Kurtz, S.

    2012-10-01

    As described in Part 1 of this two-part series, thermopile pyranometers and photovoltaic (PV) reference cells can both be used to measure irradiance; however, there are subtle differences between the data that are obtained. This two-part article explores some implications of uncertainty and subtleties of accurately measuring PV efficiency in the field. Part 2 of the series shows how reference cells can be used to more confidently predict PV performance, but how this could best be accomplished if historic irradiance data could be available in PV-technology-specific formats.

  4. Improved Reliability of PV Modules with Lexan PC Sheet-Front Sheet, Noryl

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PPE Sheet-Back Sheet | Department of Energy Improved Reliability of PV Modules with Lexan PC Sheet-Front Sheet, Noryl PPE Sheet-Back Sheet Improved Reliability of PV Modules with Lexan PC Sheet-Front Sheet, Noryl PPE Sheet-Back Sheet Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps5_sabic_zhou.pdf More Documents & Publications Weathering Performance of PV Backsheets Hail Impact Testing on Crystalline Si Modules with Flexible

  5. SolOPT: PV and Solar Hot Water Hourly Simulation Software Tool...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SolOPT: PV and Solar Hot Water Hourly Simulation Software Tool National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication...

  6. Plug and Play Solar PV for American Homes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plug and Play Solar PV for American Homes Plug and Play Solar PV for American Homes logo-fraunhofer.gif The Fraunhofer Center for Sustainable Energy Systems (CSE) will develop a new plug-and-play PV system that self-checks for proper installation and safety and communicates with the local utility and local jurisdiction to request permission to feed power into its smart meter. The utility and locality will remotely grant permission to the system to connect, and the PV system will immediately

  7. Failure and Degradation Modes of PV Modules in a Hot Dry Climate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Delamination Failures in Long-Term Field Aged PV Modules from Point of View of Encapsulant Accelerated Stress Testing, Qualification Testing, HAST, Field Experience...

  8. Partially Shaded Operation of a Grid-Tied PV System: Preprint

    SciTech Connect (OSTI)

    Deline, C.

    2009-06-01

    This paper presents background and experimental results from a single-string grid-tied PV system, operated under a variety of shading conditions.

  9. A Comparison of Key PV Backsheet and Module Properties from Fielded...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13ps5dupontgambogi.pdf More Documents & Publications Agenda for the PV Module Reliability...

  10. Sandia Energy - PV Value Tool Featured at Washington D.C. Roundtable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Federal Housing Administration-Single Family Housing Office of Economic Resilience and the Executive Office of the President on March 11, 2014. The PV Value tool,...

  11. Category:Utility Rate Impacts on PV Economics By Building Type...

    Open Energy Info (EERE)

    navigation, search Impact of Utility Rates on PV Economics Full Service Restaurant Hospital Large Hotel Large Office Medium Office Midrise Apartment Outpatient Primary School...

  12. PROJECT PROFILE: Performance Models and Standards for Bifacial PV Module Technologies

    Broader source: Energy.gov [DOE]

    Bifacial PV modules absorb sunlight and produce electricity from both the front and back sides of the module and can take advantage of light reflected from a surface (albedo). Analysis and field data indicate that this technology has the potential to increase system outputs by 10%-20%. Because current bifacial PV technology has complex light collecting dynamics, its performance advantages have not been fully exploited and no commonly-available tools allow it to be considered for major PV projects beyond current niche applications. The project will provide the data, standard test methods, and validated models to allow developers to fairly evaluate the potential benefits bifacial PV technologies for specific projects.

  13. Update: How DOE Loan Guarantees Helped Launch the Utility-Scale PV Solar

    Energy Savers [EERE]

    Market | Department of Energy Update: How DOE Loan Guarantees Helped Launch the Utility-Scale PV Solar Market Update: How DOE Loan Guarantees Helped Launch the Utility-Scale PV Solar Market February 11, 2016 - 5:20pm Addthis Update: How DOE Loan Guarantees Helped Launch the Utility-Scale PV Solar Market Mark A. McCall Mark A. McCall Executive Director of the Loan Programs Office What are the key facts? In 2011, LPO issued loan guarantees to the first 5 PV projects larger than 100 MW in the

  14. Precursor Report of Data Needs and Recommended Practices for PV Plant Availability Operations and Maintenance Reporting.

    SciTech Connect (OSTI)

    Hill, Roger R.; Klise, Geoffrey Taylor; Balfour, John R.

    2015-01-01

    Characterizing the factors that affect reliability of a photovoltaic (PV) power plant is an important aspect of optimal asset management. This document describes the many factors that affect operation and maintenance (O&M) of a PV plant, identifies the data necessary to quantify those factors, and describes how data might be used by O&M service providers and others in the PV industry. This document lays out data needs from perspectives of reliability, availability, and key performance indicators and is intended to be a precursor for standardizing terminology and data reporting, which will improve data sharing, analysis, and ultimately PV plant performance.

  15. Manufactured Homes Tool

    Energy Science and Technology Software Center (OSTI)

    2005-03-09

    The MH Tool software is designed to evaluate existing and new manufactured homes for structural adequacy in high winds. Users define design elements of a manufactured home and then select the hazard(s) for analysis. MH Tool then calculates and reports structural analysis results for the specified design and hazard Method of Solution: Design engineers input information (geometries, materials, etc.) describing the structure of a manufactured home, from which the software automatically creates a mathematical model.more » Windows, doors, and interior walls can be added to the initial design. HUD Code loads (wind, snow loads, interior live loads, etc.) are automatically applied. A finite element analysis is automatically performed using a third party solver to find forces and stresses throughout the structure. The designer may then employ components of strength (and cost) most appropriate for the loads that must be carried at each location, and then re-run the analysis for verification. If forces and stresses are still within tolerable limits (such as the HUD requirements), construction costs would be reduced without sacrificing quality.« less

  16. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  17. Additive Manufacturing for Fuel Cells

    Broader source: Energy.gov [DOE]

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

  18. Advanced Materials Manufacturing (AMM) Session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eric Miller Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Fuel Cells Technology Office (FTCO) DOE and DoD Multi-topic Workshop Advanced Materials Manufacturing (AMM) Session Fort Worth, TX October 9, 2014 Advanced Materials Manufacturing (AMM) Institute Stakeholders Workshop Advanced Manufacturing Office (AMO) manufacturing.energy.gov 2 WELCOME & THANK YOU! from your friendly support staff: Eric Miller, David Forrest, Fred Crowson, Jessica Savell...

  19. Out of bounds additive manufacturing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Holshouser, Chris; Newell, Clint; Palas, Sid; Love, Lonnie J.; Kunc, Vlastimil; Lind, Randall F.; Lloyd, Peter D.; Rowe, John C.; Blue, Craig A.; Duty, Chad E.; et al

    2013-03-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  20. Out of Bounds Additive Manufacturing

    SciTech Connect (OSTI)

    Holshouser, Chris [Lockheed Martin Corporation; Newell, Clint [Lockheed Martin Corporation; Palas, Sid [Lockheed Martin Corporation; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Lind, Randall F [ORNL; Lloyd, Peter D [ORNL; Rowe, John C [ORNL; Blue, Craig A [ORNL; Duty, Chad E [ORNL; Peter, William H [ORNL; Dehoff, Ryan R [ORNL

    2013-01-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing (AM) system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  1. MECS 2006 - All Manufacturing | Department of Energy

    Office of Environmental Management (EM)

    All Manufacturing MECS 2006 - All Manufacturing Manufacturing Energy and Carbon Footprint - Sector: All Manufacturing (NAICS 31-33) with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint PDF icon All Manufacturing (NAICS 31-33) More Documents & Publications All Manufacturing (2010 MECS) MECS 2006 - Alumina and Aluminum MECS 2006 - Cement

  2. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy...

  3. Additive Manufacturing: Pursuing the Promise | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Fact sheet overviewing additive manufacturing techniques that are projected to exert a profound impact on manufacturing. Additive Manufacturing: Pursuing the Promise More Documents...

  4. FHP Manufacturing Company Geothermal | Open Energy Information

    Open Energy Info (EERE)

    FHP Manufacturing Company Geothermal Jump to: navigation, search Name: FHP Manufacturing Company: Geothermal Place: Florida Sector: Geothermal energy Product: FHP Manufacturing...

  5. Secure Manufacturing | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure Manufacturing Secure Manufacturing The depth and breadth of Y-12's manufacturing capabilities and expertise enable Y-12 to address current and emerging national security...

  6. Manufacturing High Temperature Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing and Scale Up Challenges Joseph Hartvigsen Ceramatec, Inc. National Renewable Energy Laboratory Golden, CO February 28, 2014 Antipode Assertions * Electric power generation is not the limitation - To misquote Jay Leno "Use all you want, we'll make more" - http://atomicinsights.com/2013/02/use-all-the-electricity-you-want-well-make-more.html * High electric costs come from working the demand curve from below rather than above * "Grid Storage" is a misleading

  7. MANUFACTURED TO AIIM STANOAROS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    .,+++_ _+++ +..++,+ + ++++_. _+ ,++p + +% ++ + +_++ +_,/x+'_ MANUFACTURED TO AIIM STANOAROS _ ..+ ++ BY APPLIED IMAGE, INC, _+ + .DK3E/NV/11482..139 DOE/NV/11..4_L2-139 National Emission Standards forHazardousAir Pollutant_ Submittal 993 Stuart B_.Black June 1994 Work Pe_ Under Contract No, DE-AC08-94NV11432 PreparedbY: Reynolds Electrical & EnglneerlngCo., Inc, Post Office Bo_(98521 Los Vegas. Nevada 89193-8521 MA,TER II_OT/lOg DFTItI,_ DOCUMENT f$ UNLIMITED TABLE OF CONTENTS List of

  8. Future of Grid-Tied PV Business Models: What Will Happen When PV Penetration on the Distribution Grid is Significant? Preprint

    SciTech Connect (OSTI)

    Graham, S.; Katofsky, R.; Frantzis, L.; Sawyer, H.; Margolis, R.

    2008-05-01

    Eventually, distributed PV will become a more significant part of the generation mix. When this happens, it is expected that utilities will have to take on a more active role in the placement, operation and control of these systems. There are operational complexities and concerns of revenue erosion that will drive utilities into greater involvement of distributed PV and will create new business models. This report summarizes work done by Navigant Consulting Inc. for the National Renewable Energy Laboratory as part of the Department of Energy's work on Renewable System Integration. The objective of the work was to better understand the structure of these future business models and the research, development and demonstration (RD&D) required to support their deployment. This report describes potential future PV business models in terms of combinations of utility ownership and control of the PV assets, and the various relationships between end-users and third-party owners.

  9. Moving to a Higher Level for PV Reliability through Comprehensive Standards Based on Solid Science (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2014-11-01

    PV reliability is a challenging topic because of the desired long life of PV modules, the diversity of use environments and the pressure on companies to rapidly reduce their costs. This presentation describes the challenges, examples of failure mechanisms that we know or don't know how to test for, and how a scientific approach is being used to establish international standards.

  10. Solar San Diego: The Impact of Binomial Rate Structures on Real PV Systems; Preprint

    SciTech Connect (OSTI)

    VanGeet, O.; Brown, E.; Blair, T.; McAllister, A.

    2008-05-01

    There is confusion in the marketplace regarding the impact of solar photovoltaics (PV) on the user's actual electricity bill under California Net Energy Metering, particularly with binomial tariffs (those that include both demand and energy charges) and time-of-use (TOU) rate structures. The City of San Diego has extensive real-time electrical metering on most of its buildings and PV systems, with interval data for overall consumption and PV electrical production available for multiple years. This paper uses 2007 PV-system data from two city facilities to illustrate the impacts of binomial rate designs. The analysis will determine the energy and demand savings that the PV systems are achieving relative to the absence of systems. A financial analysis of PV-system performance under various rate structures is presented. The data revealed that actual demand and energy use benefits of binomial tariffs increase in summer months, when solar resources allow for maximized electricity production. In a binomial tariff system, varying on- and semi-peak times can result in approximately $1,100 change in demand charges per month over not having a PV system in place, an approximate 30% cost savings. The PV systems are also shown to have a 30%-50% reduction in facility energy charges in 2007.

  11. November 18 PSERC Webinar: Quantifying and Mitigating the Impacts of PV in Distribution Systems

    Broader source: Energy.gov [DOE]

    The DOE-funded Power Systems Engineering Research Center (PSERC) is offering a free public webinar presenting a simulation-based investigation of PV impacts on distribution systems and discussing a new approach for volt-VAR optimization with reactive power capabilities of PV inverters.

  12. Literature Review of the Effects of UV Exposure on PV Modules

    Broader source: Energy.gov [DOE]

    This PowerPoint presentation, originally presented at the NREL 2013 PV Module Reliability Workshop on Feb. 26-27, 2013 in Denver, CO, presents the literature review of the effects of prolonged UV exposure of PV modules, with a particular emphasis on UV exposure testing using artificial light sources, including fluorescent, Xenon, and metal halide lamps.

  13. A Best Practice for Developing Availability Guarantee Language in Photovoltaic (PV) O&M Agreements.

    SciTech Connect (OSTI)

    Klise, Geoffrey Taylor; Balfour, John

    2015-11-01

    This document outlines the foundation for developing language that can be utilized in an Equipment Availability Guarantee, typically included in an O&M services agreement between a PV system or plant owner and an O&M services provider, or operator. Many of the current PV O&M service agreement Availability Guarantees are based on contracts used for traditional power generation, which create challenges for owners and operators due to the variable nature of grid-tied photovoltaic generating technologies. This report documents language used in early PV availability guarantees and presents best practices and equations that can be used to more openly communicate how the reliability of the PV system and plant equipment can be expressed in an availability guarantee. This work will improve the bankability of PV systems by providing greater transparency into the equipment reliability state to all parties involved in an O&M services contract.

  14. Simplified Method for Modeling the Impact of Arbitrary Partial Shading Conditions on PV Array Performance: Preprint

    SciTech Connect (OSTI)

    MacAlpine, Sara; Deline, Chris

    2015-09-15

    It is often difficult to model the effects of partial shading conditions on PV array performance, as shade losses are nonlinear and depend heavily on a system's particular configuration. This work describes and implements a simple method for modeling shade loss: a database of shade impact results (loss percentages), generated using a validated, detailed simulation tool and encompassing a wide variety of shading scenarios. The database is intended to predict shading losses in crystalline silicon PV arrays and is accessed using basic inputs generally available in any PV simulation tool. Performance predictions using the database are within 1-2% of measured data for several partially shaded PV systems, and within 1% of those predicted by the full, detailed simulation tool on an annual basis. The shade loss database shows potential to considerably improve performance prediction for partially shaded PV systems.

  15. U.S. Aims for Zero-Energy: Support for PV on New Homes

    SciTech Connect (OSTI)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-05-11

    As a market segment for solar photovoltaic (PV) adoption, new homes have a number of attractive attributes. Homebuyers can easily roll the cost of the PV system into their mortgage and, with rebates or other financial incentives, potentially realize an immediate net positive cash flow from the investment. PV system performance can be optimized by taking roof orientation, shading, and other structural factors into account in the design of new homes. Building-integrated photovoltaics (BIPV), which are subject to fewer aesthetic concerns than traditional, rack-mounted systems, are well-suited to new construction applications. In large new residential developments, costs can be reduced through bulk purchases and scale economies in system design and installation. Finally, the ability to install PV as a standard feature in new developments - like common household appliances - creates an opportunity to circumvent the high transaction costs and other barriers typically confronted when each individual homeowner must make a distinct PV purchase decision.

  16. Introduction of Break-Out Session 2 of the 2011 International PV Module Quality Assurance Forum(Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.; Kurtz, S.; Sample, T.; Yamamichi, M.

    2011-07-01

    This presentation outlines the goals and specific tasks of break-out session 2 of the 2011 International PV Module Quality Assurance Forum, along with a review of accelerated stress tests used for photovoltaics (PV).

  17. Final Technical Report - Photovoltaics for You (PV4You) Program

    SciTech Connect (OSTI)

    Weissman, J. M.; Sherwood, L.; Pulaski, J.; Cook, C.; Kalland, S.; Haynes, J.

    2005-08-14

    In September 2000, the Interstate Renewable Energy Council (IREC) began its 5-year work on contract # DE-FGO3-00SF22116, the Photovoltaics for You (PV4You) Project. The objective was to develop and distribute information on photovoltaics and to educate key stakeholder groups including state government agencies, local government offices, consumer representative agencies, school officials and students, and Million Solar Roofs Partnerships. In addition, the project was to identify barriers to the deployment of photovoltaics and implement strategies to overcome them. Information dissemination and education was accomplished by publishing newsletters; creating a base of information, guides, and models on the www.irecusa.org and the www.millionsolarroofs.org web sites; convening workshops and seminars; engaging multiple stakeholders; and widening the solar network to include new consumers and decision makers. Two major web sites were maintained throughout the project cycle. The www.irecusa.org web site housed dedicated pages for Connecting to the Grid, Schools Going Solar, Community Outreach, and Certification & Training. The www.millionsolarroofs.org web site was created to serve the MSR Partnerships with news, interviews, key documents, and resource material. Through the course of this grant, the Interstate Renewable Energy Council has been supporting the Department of Energy's solar energy program goals by providing the Department with expertise services for their network of city, state, and community stakeholders. IREC has been the leading force at the state and federal levels regarding net metering and interconnection policy for photovoltaic systems. The principal goal and benefit of the interconnection and net metering work is to lower both barriers and cost for the installation of PV. IREC typically plays a leadership role among small generator stakeholders and has come to be relied upon for its expertise by industry and regulators. IREC also took a leadership position in developing quality and competency standards for solar professionals and for training programs critical components to bring the solar industry into step with other recognized craft labor forces. IREC's objective was to provide consumer assurances and assist the states and the solar industry in building a strong and qualified workforce. IREC's Schools Going Solar Clearinghouse provided channels of information to educate students, teachers, parents and the community at large about the benefits of solar energy. Solar school projects enhance science and math education while creating an initial entry market for domestic PV. And, IREC's community and outreach network got the right information out to capture the interest and met the needs of different audiences and reached groups that weren't traditionally part of the solar community. IREC's PV4You project was effective because it resulted in reduced costs through easier interconnection and better net metering agreements and by raising the competency standards for solar practitioners. The project provided ways to eliminate barriers and constraints by providing technical assistance, offering model agreements based on industry consensus that were used by state and local decision makers. And, the project increased public acceptance by providing information, news and guidelines for different audiences.

  18. Performance of Mismatched PV Systems With Submodule Integrated Converters

    SciTech Connect (OSTI)

    Olalla, C; Deline, C; Maksimovic, D

    2014-01-01

    Mismatch power losses in photovoltaic (PV) systems can be reduced by the use of distributed power electronics at the module or submodule level. This paper presents an experimentally validated numerical model that can be used to predict power production with distributed maximum power point tracking (DMPPT) down to the cell level. The model allows the investigations of different DMPPT architectures, as well as the impact of conversion efficiencies and power constraints. Results are presented for annual simulations of three representative partial shading scenarios and two scenarios where mismatches are due to aging over a period of 25 years. It is shown that DMPPT solutions that are based on submodule integrated converters offer 6.9-11.1% improvements in annual energy yield relative to a baseline centralized MPPT scenario.

  19. Oak Ridge Centers for Manufacturing Technology - The Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Manufacturing Skills Campus Another of the inputs came from Garry Whitley, President of the Atomic Trades and Labor Council, since retired. Garry and I have worked together...

  20. Oak Ridge Centers for Manufacturing Technology ? The Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Manufacturing Skills Campus Another of the inputs came from Garry Whitley, President of the Atomic Trades and Labor Council, since retired. Garry and I have worked together...