Sample records for technology year founded

  1. SUNY Technology Accelerator Fund PROGRAM: Complete Guidelines can be found at SUNY Technology Accelerator Fund 2014

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    SUNY Technology Accelerator Fund PROGRAM: Complete Guidelines can be found at SUNY Technology Accelerator Fund 2014 OBJECTIVES: The SUNY Technology Accelerator Fund ("TAF") provides funding to support the advancement of SUNY technologies from the lab to the marketplace. In many cases, SUNY technology developed

  2. The Geothermal Technologies Office Congratulates this Year's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Geothermal Technologies Office Congratulates this Year's GEA Honors Awardees The Geothermal Technologies Office Congratulates this Year's GEA Honors Awardees December 11, 2013...

  3. The year 2004 marked the 15th anniversary of the founding of the ecotourism company Rainforest

    E-Print Network [OSTI]

    Edwards, Paul N.

    Expeditions: Planning for the Future Ross School of Business student Kate Elliot and Research AssociateThe year 2004 marked the 15th anniversary of the founding of the ecotourism company Rainforest Expeditions (RFE). A decade and a half of experience led the company's cofounders, Eduardo Nycander and Kurt

  4. Profiling 1366 Technologies: One Year Later

    Broader source: Energy.gov [DOE]

    Last January, we took a look at how ARPA-E performer, 1366 Technologies is working to dramatically reduce the cost of solar energy. A year later, we revisited their headquarters in Lexington, MA to...

  5. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    6 Technology Validation Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.6 Technology Validation Technology Validation technical...

  6. Bioenergy Technologies Office Multi-Year Program Plan: November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update This Multi-Year Program Plan...

  7. Profiling 1366 Technologies: One Year Later

    ScienceCinema (OSTI)

    Van Mierlo, Frank; Sachs, Ely;

    2013-05-29T23:59:59.000Z

    Last January, we took a look at how ARPA-E performer, 1366 Technologies is working to dramatically reduce the cost of solar energy. A year later, we revisited their headquarters in Lexington, MA to see the progress they've made.

  8. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 5.0 Systems Integration Fuel Cell Technologies Office Multi-Year Research, Development,...

  9. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The Fuel...

  10. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Management Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Management The Geothermal Technologies Program Multi-Year...

  11. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Analysis The Geothermal Technologies Program Multi-Year Research,...

  12. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cover Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Cover The Geothermal Technologies Program Multi-Year Research, Development and...

  13. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Challenges The Geothermal Technologies Program Multi-Year Research,...

  14. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foreword Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Foreword The Geothermal Technologies Program Multi-Year Research, Development and...

  15. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appendices Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Appendices The Geothermal Technologies Program Multi-Year Research, Development...

  16. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Systems Integration The Geothermal Technologies Program Multi-Year...

  17. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Table of Contents Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Table of Contents The Geothermal Technologies Program Multi-Year...

  18. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coordination Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Coordination The Geothermal Technologies Program Multi-Year Research,...

  19. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summary Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Executive Summary The Geothermal Technologies Program Multi-Year...

  20. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Plan Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan The Geothermal Technologies Program Multi-Year Research,...

  1. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Introduction The Geothermal Technologies Program Multi-Year Research,...

  2. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The...

  3. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Cover Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Cover Cover of the Fuel Cell Technologies Office Multi-Year Research, Development,...

  4. Bioenergy Technologies Office Multi-Year Program Plan: July 2014...

    Energy Savers [EERE]

    Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update This Multi-Year Program Plan (MYPP)...

  5. Summary of current research interests Over the years we have found many novel genes causing eye disease.

    E-Print Network [OSTI]

    Saunders, Mark

    Summary of current research interests Over the years we have found many novel genes causing eye of autosomal dominant and autosomal recessive loci through pedigree analysis, positional cloning of novel eye pedigrees are essential and Moorfields Eye Hospital along with a number of ophthalmic departments nationally

  6. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from...

  7. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    E: Acronyms Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix E: Acronyms Appendix E: Acronyms section of the Fuel Cell Technologies...

  8. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Executive Summary Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Executive Summary Executive Summary section of the Fuel Cell Technologies...

  9. Bioenergy Technologies Office Multi-Year Program Plan: May 2013...

    Energy Savers [EERE]

    Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update This is the May 2013 Update to the...

  10. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Multi-Year Research, Development, and Demonstration Plan - Appendix C: Hydrogen Quality Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan -...

  11. Bioenergy Technologies Office Multi-Year Program Plan: July 2014...

    Broader source: Energy.gov (indexed) [DOE]

    July 2014 Update -- Sections Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update -- Sections This Multi-Year Program Plan (MYPP) sets forth the goals and...

  12. Environmental technologies program, Fiscal year 1994

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This document presents details of the technology that is currently being demonstrated at the Hanford Site. The program is testing technology for cost and time savings in the following clean-up areas: detection and characterization; soil and ground water remediation; remote handling; waste minimization; and high-level, low-level, and mixed waste treatment. This document also contains a technology integration section.

  13. UCF TECHNOLOGY FEE GUIDELINES Academic Year 2013-2014

    E-Print Network [OSTI]

    Foroosh, Hassan

    UCF TECHNOLOGY FEE GUIDELINES Academic Year 2013-2014 The 2007 Florida Legislature amended Florida Statutes, Section 1009.24, to establish "a technology fee of up to 5 percent of the tuition per credit hour to enhance instructional technology resources for students and faculty." UCF TECHNOLOGY FEE COMMITTEE Revenue

  14. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    1 Hydrogen Production Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.1 Hydrogen Production Hydrogen Production technical plan...

  15. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    2 Hydrogen Delivery Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.2 Hydrogen Delivery Hydrogen Delivery technical plan section...

  16. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    3 Hydrogen Storage Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.3 Hydrogen Storage Hydrogen Storage technical plan section of...

  17. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    A: Budgetary Information Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix A: Budgetary Information Appendix A: Budgetary...

  18. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Appendix D: Project Evaluation Form Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix D: Project Evaluation Form Appendix D: Project...

  19. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    9 Market Transformation Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.9 Market Transformation Market Transformation technical...

  20. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Preface and Document Revision History Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Preface and Document Revision History Preface and...

  1. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    6.0 Program Management Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 6.0 Program Management Program Management section of the...

  2. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    3.8 Education and Outreach Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.8 Education and Outreach Education and Outreach...

  3. Nuclear technology for the year 2000

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    Eighteen papers and abstracts are presented under the following session headings: space nuclear power, health physics and dosimetry, nuclear design and thermal hydraulics, nuclear diagnostics, and fusion technology and plasma physics. The papers were processed separately for the data base. (DLC)

  4. 16 years of successful projects in16 years of successful projects in Nuclear Science & TechnologyNuclear Science & Technology

    E-Print Network [OSTI]

    of operating NPP; · NPP decommissioning and waste treatment; · Novel reactor concepts and Nuclear Fuel CycleISTCISTC 16 years of successful projects in16 years of successful projects in Nuclear Science & TechnologyNuclear Science & Technology 13th CERNISTC SAC Seminar New Perspectives of High Energy Physics 01

  5. Fiscal Year 2006 Washington Closure Hanford Science & Technology Plan

    SciTech Connect (OSTI)

    K.J. Kroegler, M. Truex, D.J. McBride

    2006-01-19T23:59:59.000Z

    This Washington Closure Hanford science and technology (S&T) plan documents the activities associated with providing S&T support to the River Corridor Closure Project for fiscal year 2006.

  6. China Technology Center Celebrates 15 Years | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China Technology Center Celebrates 15 Years of Innovation "In China for China" Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click...

  7. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    3.7 Hydrogen Safety, Codes and Standards Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards...

  8. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    B: InputOutput Matrix Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix B: InputOutput Matrix Appendix B: InputOutput Matrix...

  9. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    4.0 Systems Analysis Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 4.0 Systems Analysis Systems Analysis section of the Fuel Cell...

  10. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    5 Manufacturing R&D Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.5 Manufacturing R&D Manufacturing R&D technical plan section...

  11. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    2.0 Program Benefits Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 2.0 Program Benefits Program Benefits section of the Fuel Cell...

  12. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Section 3.0 Technical Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.0 Technical Plan Technical Plan section of the Fuel...

  13. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    3.4 Fuel Cells Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - 3.4 Fuel Cells Fuel Cells technical plan section of the Fuel Cell...

  14. Hanford Tanks Initiative fiscal year 1997 retrieval technology demonstrations

    SciTech Connect (OSTI)

    Berglin, E.J.

    1998-02-05T23:59:59.000Z

    The Hanford Tanks Initiative was established in 1996 to address a range of retrieval and closure issues associated with radioactive and hazardous waste stored in Hanford`s single shell tanks (SSTs). One of HTI`s retrieval goals is to ``Successfully demonstrate technology(s) that provide expanded capabilities beyond past practice sluicing and are extensible to retrieve waste from other SSTS.`` Specifically, HTI is to address ``Alternative technologies to past practice sluicing`` ... that can ... ``successfully remove the hard heel from a sluiced tank or to remove waste from a leaking SST`` (HTI Mission Analysis). During fiscal year 1997, the project contracted with seven commercial vendor teams to demonstrate retrieval technologies using waste simulants. These tests were conducted in two series: three integrated tests (IT) were completed in January 1997, and four more comprehensive Alternative Technology Retrieval Demonstrations (ARTD) were completed in July 1997. The goal of this testing was to address issues to minimize the risk, uncertainties, and ultimately the overall cost of removing waste from the SSTS. Retrieval technologies can be separated into three tracks based on how the tools would be deployed in the tank: globally (e.g., sluicing) or using vehicles or robotic manipulators. Accordingly, the HTI tests included an advanced sluicer (Track 1: global systems), two different vehicles (Track 2: vehicle based systems), and three unique manipulators (Track 3: arm-based systems), each deploying a wide range of dislodging tools and conveyance systems. Each industry team produced a system description as envisioned for actual retrieval and a list of issues that could prevent using the described system; defined the tests to resolve the issues; performed the test; and reported the results, lessons learned, and state of issue resolution. These test reports are cited in this document, listed in the reference section, and summarized in the appendices. This report analyzes the retrieval testing issues and describes what has been learned and issues that need further resolution. As such, it can serve as a guide to additional testing that must be performed before the systems are used in-tank. The major issues discussed are tank access, deployment, mining strategy, waste retrieval, liquid scavenging (liquid usage), maneuverability, positioning, static and dynamic performance, remote operations, reliability, availability, maintenance, tank safety, and cost.

  15. Advanced Automotive Technologies annual report to Congress, fiscal year 1996

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy`s Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation.

  16. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies that can provide energy for an array of applications, including...

  17. Fuel Cell Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    in the Office of Fuel Cell Technologies, SCS participates in the DOE's Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review (AMR) where all of...

  18. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    and Fuel Cells Program. View other sections of the MYRD&D Plan. MYRD&D Plan Section 5.0 Systems Integration, 2012 More Documents & Publications Fuel Cell Technologies Office...

  19. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    delivery technologies that can serve future markets. Nascent markets, such as the use of fuel cells in backup power sources and MHE, will likely continue to take advantage of the...

  20. First Year Teachers' Technology Use: Perceptions of Factors Affecting Technology Integration

    E-Print Network [OSTI]

    Jones, Elodie

    2013-12-31T23:59:59.000Z

    For decades, technology integration into the classroom and curriculum has been at the forefront of education. Although public perception and technology funding assumes that teachers are integrating technology into the curriculum, research shows...

  1. Bioenergy Technologies Office Multi-Year Program Plan: March...

    Energy Savers [EERE]

    over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as...

  2. Nuclear fuels technologies Fiscal Year 1996 research and development test results

    SciTech Connect (OSTI)

    Beard, C.A.; Blair, H.T.; Buksa, J.J.; Butt, D.P.; Chidester, K.; Eaton, S.L.; Farish, T.J.; Hanrahan, R.J.; Ramsey, K.B.

    1996-11-01T23:59:59.000Z

    During fiscal year 1996, the Department of Energy`s Office of Fissile Materials Disposition (OFMD) funded Los Alamos National Laboratory (LANL) to investigate issues associated with the fabrication of plutonium from dismantled weapons into mixed-oxide (MOX) nuclear fuel for disposition in nuclear power reactors. These issues can be divided into two main categories: issues associated with the fact that the plutonium from dismantled weapons contains gallium, and issues associated with the unique characteristics of the PuO[sub 2] produced by the dry conversion process that OFMD is proposing to convert the weapons material. Initial descriptions of the experimental work performed in fiscal year 1996 to address these issues can be found in Nuclear Fuels Technologies Fiscal Year 1996 Research and Development Test Matrices. However, in some instances the change in programmatic emphasis towards the Parallex program either altered the manner in which some of these experiments were performed (i.e., the work was done as part of the Parallex fabrication development and not as individual separate-effects tests as originally envisioned) or delayed the experiments into Fiscal Year 1997. This report reviews the experiments that were conducted and presents the results.

  3. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies Program (GTP)Demonstration Plan: Cover |

  4. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies Program (GTP)Demonstration Plan: Cover

  5. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies Program (GTP)Demonstration Plan:

  6. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies Program (GTP)Demonstration

  7. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies Program (GTP)DemonstrationDemonstration Plan:

  8. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies Program (GTP)DemonstrationDemonstration

  9. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies Program

  10. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration Plan: Program Management

  11. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration Plan: Program

  12. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies Program (GTP)Demonstration Plan:Demonstration

  13. Property:YearFounded | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This propertyVolume Jump to:s) JumpProperty Edit

  14. The National Institute of Standards & Technology (NIST) is a measurement laboratory within the U.S. Government. Founded in 1901, NIST is a nonregulatory federal agency

    E-Print Network [OSTI]

    the wellknown NIST Cloud Computing and Cyber Security programs. To illustrate my ideas in this talk, I identify, standards, and technology in ways that enhance economic security and improve quality of life. NIST cloudcomputing infrastructures can have widespread effects, when compared with failures distributed across

  15. (BSET) FIRE SAFETY ENGINEERING TECHNOLOGY CURRICULUM FOUR YEAR FIRE SAFETY CONCENTRATION CURRICULUM

    E-Print Network [OSTI]

    Raja, Anita

    (BSET) FIRE SAFETY ENGINEERING TECHNOLOGY CURRICULUM FOUR YEAR FIRE SAFETY CONCENTRATION CURRICULUM System ETFS 2144 3 Engineering Tech Computer Applic. ETGR 1100 3 Arts and Society3 LBST 110X3 3 21266 3 Hazardous Materials ETFS 2230 3 Fire Behavior & Combustion ETFS 2264 3 Building Construction

  16. Faculty Employment Opportunities West Virginia University Institute of Technology (WVU Tech), a regional four-year campus and division

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    Faculty Employment Opportunities West Virginia University Institute of Technology (WVU Tech), a regional four-year campus and division of West Virginia University, located in Montgomery, WV, invites

  17. Fire-Protection Research for Energy-Technology Projects: FY 1981 year-end report

    SciTech Connect (OSTI)

    Hasegawa, H.K.; Alvares, N.J.; Lipska-Quinn, A.E.; Beason, D.G.; Foote, K.L.; Priante, S.J.

    1982-07-20T23:59:59.000Z

    This report summarizes research conducted in fiscal year 1981 for the DOE-supported project, Fire Protection Research for Energy Technology Projects. Initiated in 1977, this ongoing research program was conceived to advance fire protection strategies for Energy Technology Projects to keep abreast of the unique fire problems that are developing with the complexity of energy technology research. We are developing an analytical methodology through detailed study of fusion energy experiments at Lawrence Livermore National Laboratory (LLNL). Employing these facilities as models for methodology development, we are simultaneously advancing three major task areas: (1) determination of unique fire hazards of current fusion energy facilities; (2) evaluation of the ability of accepted fire management measures to meet and negate hazards; and (3) performance of unique research into problem areas we have identified to provide input into analytical fire-growth and damage-assessment models.

  18. RESTORING A DAMAGED 16-YEAR -OLD INSULATING POLYMER CONCRETE DIKE OVERLAY: REPAIR MATERIALS AND TECHNOLOGIES.

    SciTech Connect (OSTI)

    SUGAMA,T.

    2007-01-01T23:59:59.000Z

    The objective of this program was to design and formulate organic polymer-based material systems suitable for repairing and restoring the overlay panels of insulating lightweight polymer concrete (ILPC) from the concrete floor and slope wall of a dike at KeySpan liquefied natural gas (LNG) facility in Greenpoint, Brooklyn, NY, just over sixteen years ago. It also included undertaking a small-scale field demonstration to ensure that the commercial repairing technologies were applicable to the designed and formulated materials.

  19. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 27 Females 11 YEAR 2013 SES 1 EN 05 1 EN 04 11 NN (Engineering) 8 NQ (ProfTechAdmin) 15 NU (TechAdmin Support) 2 YEAR 2013 American Indian Alaska Native Male...

  20. YEAR

    National Nuclear Security Administration (NNSA)

    96 YEAR 2013 Males 69 Females 27 YEAR 2013 SES 1 EJEK 9 EN 04 27 NN (Engineering) 26 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska Native Male...

  1. YEAR

    National Nuclear Security Administration (NNSA)

    1 YEAR 2014 Males 48 Females 33 PAY PLAN YEAR 2014 SES 1 EJEK 8 EN 04 10 EN 03 1 NN (Engineering) 27 NQ (ProfTechAdmin) 29 NU (TechAdmin Support) 5 YEAR 2014 American Indian...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2014 Males 18 Females 10 PAY PLAN YEAR 2014 SES 1 EN 05 1 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 9 NU (TechAdmin Support) 1 YEAR 2014 American Indian Alaska...

  3. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2014 Males 61 Females 24 PAY PLAN YEAR 2014 SES 1 EJEK 8 EN 04 22 NN (Engineering) 23 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 3 YEAR 2014 American Indian Alaska...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    0 YEAR 2013 Males 48 Females 32 YEAR 2013 SES 2 EJEK 7 EN 04 11 EN 03 1 NN (Engineering) 23 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2013 Males 20 Females 11 YEAR 2013 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2013 American Indian Alaska Native Male (AIAN,...

  6. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT TECHNOLOGY DEVELOPMENT REPORT FISCAL YEAR 2010

    SciTech Connect (OSTI)

    Bush, S.

    2010-10-22T23:59:59.000Z

    The mission of the Department of Energy's (DOE's) Office of Environmental Management (EM) is to clean up the environmental legacy of nuclear weapons research and production during the Cold War. That mission includes cleaning up nuclear waste, contaminated groundwater and soil, nuclear materials, and contaminated facilities covering two million acres of land in thirty-five states. EM's principal program goals include timely completion of tank waste treatment facilities, reduction of the life-cycle costs and acceleration of the cleanup of the Cold War legacy, and reduction of the EM footprint. The mission of the EM Technology Innovation and Development program is to transform science and innovation into practical solutions to achieve the EM mission. During fiscal year 2010 (October 2009-September 2010), EM focused upon accelerating environmental cleanup by expeditiously filling identified gaps in available knowledge and technology in the EM program areas. This report describes some of the approaches and transformational technologies in tank waste processing, groundwater and soil remediation, nuclear materials disposition, and facility deactivation and decommissioning developed during fiscal year 2010 that will enable EM to meet its most pressing program goals.

  7. YEAR

    National Nuclear Security Administration (NNSA)

    2014 Males 81 Females 45 PAY PLAN YEAR 2014 SES 1 SL 1 EJEK 25 EN 04 26 EN 03 2 NN (Engineering) 23 NQ (ProfTechAdmin) 44 NU (TechAdmin Support) 4 YEAR 2014 American Indian...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    25 Females 10 YEAR 2014 SES 1 EN 04 11 NN (Engineering) 8 NQ (ProfTechAdmin) 13 NU (TechAdmin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    3 YEAR 2014 Males 59 Females 24 PAY PLAN YEAR 2014 SES 1 EJEK 4 EN 05 3 EN 04 22 EN 03 8 NN (Engineering) 15 NQ (ProfTechAdmin) 27 NU (TechAdmin Support) 3 YEAR 2014 American...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 62 Females 26 YEAR 2013 SES 1 EJEK 3 EN 05 1 EN 04 28 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 27 NU (TechAdmin Support) 2 YEAR 2013 American Indian...

  11. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2013 Males 58 Females 27 YEAR 2013 SES 1 EJEK 4 EN 05 3 EN 04 21 EN 03 8 NN (Engineering) 16 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  12. Emerging photovoltaic module technologies at PVUSA: A five-year assessment

    SciTech Connect (OSTI)

    Townsend, T.

    1995-04-01T23:59:59.000Z

    The Photovoltaics for Utility Scale Applications (PVUSA) project tests two types of photovoltaic systems: new modules fielded as 20-kW Emerging Module Technology (EMT) arrays, and more mature technologies fielded as 20- to 500-kW turnkey Utility Scale (US) systems. This report summarizes experiences of the PVUSA project in operating the first six 20-kW EMT photovoltaic systems. Five systems are installed at Davis, California, and one at Kihei, Hawaii. Products selected for testing and demonstration were judged to have potential for significant technical advancement or reduction in manufacturing cost. Features leading to selection of each system and findings over the average 5 years of operation are compared in the report. Factory product qualification test experiences along with field acceptance test results are documented. Evaluation includes a broad range of performance parameters, including long-term efficiency, seasonal generation patterns, and maintenance. While some of the arrays have operated as well as any commercial system, others have fared poorly. Throughout the procurement and operation of these precommercial PV modules, PVUSA has provided feedback to vendors, critical for product improvement. The data and evaluations in this report will be of further benefit to manufacturers and provide general comparative information on a variety of technologies to researchers in utilities, government, and industry alike.

  13. YEAR

    National Nuclear Security Administration (NNSA)

    8 Females 25 PAY PLAN YEAR 2014 SES 1 EJEK 3 EN 05 1 EN 04 25 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 25 NU (TechAdmin Support) 2 YEAR 2014 American Indian Alaska Native...

  14. Vehicle technologies program Government Performance and Results Act (GPA) report for fiscal year 2012

    SciTech Connect (OSTI)

    Ward, J.; Stephens, T. S.; Birky, A. K. (Energy Systems); (DOE-EERE); (TA Engineering)

    2012-08-10T23:59:59.000Z

    The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy has defined milestones for its Vehicle Technologies Program (VTP). This report provides estimates of the benefits that would accrue from achieving these milestones relative to a base case that represents a future in which there is no VTP-supported vehicle technology development. Improvements in the fuel economy and reductions in the cost of light- and heavy-duty vehicles were estimated by using Argonne National Laboratory's Autonomie powertrain simulation software and doing some additional analysis. Argonne also estimated the fraction of the fuel economy improvements that were attributable to VTP-supported development in four 'subsystem' technology areas: batteries and electric drives, advanced combustion engines, fuels and lubricants, and materials (i.e., reducing vehicle mass, called 'lightweighting'). Oak Ridge National Laboratory's MA{sup 3}T (Market Acceptance of Advanced Automotive Technologies) tool was used to project the market penetration of light-duty vehicles, and TA Engineering's TRUCK tool was used to project the penetrations of medium- and heavy-duty trucks. Argonne's VISION transportation energy accounting model was used to estimate total fuel savings, reductions in primary energy consumption, and reductions in greenhouse gas emissions that would result from achieving VTP milestones. These projections indicate that by 2030, the on-road fuel economy of both light- and heavy-duty vehicles would improve by more than 20%, and that this positive impact would be accompanied by a reduction in oil consumption of nearly 2 million barrels per day and a reduction in greenhouse gas emissions of more than 300 million metric tons of CO{sub 2} equivalent per year. These benefits would have a significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.

  15. Office of Science and Technology&International Year EndReport - 2005

    SciTech Connect (OSTI)

    Bodvarsson, G.S.

    2005-10-27T23:59:59.000Z

    Source Term, Materials Performance, Radionuclide Getters, Natural Barriers, and Advanced Technologies, a brief introduction in each section describes the overall organization and goals of each program area. All of these areas have great potential for improving our understanding of the safety performance of the proposed Yucca Mountain repository, as processes within these areas are generally very conservatively represented in the Total System Performance Assessment. In addition, some of the technology thrust areas in particular may enhance system efficiency and reduce risk to workers. Thus, rather modest effort in the S&T Program could lead to large savings in the lifetime repository total cost and significantly enhanced understanding of the behavior of the proposed Yucca Mountain repository, without safety being compromised, and in some instances being enhanced. An overall strength of the S&T Program is the significant amount of integration that has already been achieved after two years of research. As an example (illustrated in Figure 1), our understanding of the behavior of the total waste isolation system has been enhanced through integration of the Source Term, Materials Performance, and Natural Barriers Thrust areas. All three thrust areas contribute to the integration of different processes in the in-drift environment. These processes include seepage into the drift, dust accumulation on the waste package, brine formation and precipitation on the waste package, mass transfer through the fuel cladding, changes in the seepage-water chemical composition, and transport of released radionuclides through the invert and natural barriers. During FY2005, each of our program areas assembled a team of external experts to conduct an independent review of their respective projects, research directions, and emphasis. In addition, the S&T Program as a whole was independently reviewed by the S&T Programmatic Evaluation Panel. As a result of these reviews, adjustments to the S&T Program will be implemented in FY2006 to ensure that the Program is properly aligned with OCRWM's priorities. Also during FY2005, several programmatic documents were published, including the Science and Technology Program Strategic Plan, the Science and Technology Program Management Plan, and the Science and Technology Program Plan. These and other communication products are available on the OCRWM web site under the Science and Technology section (http://www.ocrwm.doe.gov/osti/index.shtml).

  16. Program mid-year summaries research, development, demonstration, testing and evaluation: Office of Technology Development, FY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This mid-year review provides a summary of activities within the Office of Technology Development with individual presentations being made to DOE HQ and field management staff. The presentations are by EM-541, 542, 551, and 552 organizations.

  17. Preparing prospective teacher education students at two-year post secondary institutions: an assessment of proficiency in technology usage

    E-Print Network [OSTI]

    Cavenall, Pamela Elaine Rogers

    2009-05-15T23:59:59.000Z

    The purpose of this study was to examine the proficiency or lack of proficiency of prospective teacher education students at two-year community colleges to use and integrate instructional technologies. In addition, this study also examined...

  18. Laser Eye Surgery Technology LASIK Over 1 million LASIK procedures a year are performed in America. With a number

    E-Print Network [OSTI]

    La Rosa, Andres H.

    Laser Eye Surgery Technology ­ LASIK Abstract: Over 1 million LASIK procedures a year are performed that the laser eye surgery technology is available and become more popular. We would like to spend some time to research on this topic and learn about it. Maybe someday we may go for the eye surgery to get rid of our

  19. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR4 YEAR

  20. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR4 YEAR7

  1. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR43 YEAR

  2. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 20144 YEAR

  3. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR 2013

  4. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR 20138

  5. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR 201387

  6. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR

  7. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR558

  8. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8 YEAR558563

  9. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR85573380 YEAR

  10. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2012 2013 SES 2 1 -50.00% EN 05 0 1 100.00% EN 04 4 4 0.00% NN (Engineering) 13 12 -7.69% NQ (ProfTechAdmin) 13 9 -30.77% NU (TechAdmin Support) 1 1...

  11. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008 A794826 YEAR

  12. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR 2014

  13. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR 201434

  14. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR

  15. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR4

  16. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR43

  17. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR434

  18. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR43417

  19. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874 YEAR434170

  20. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR 2012

  1. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR

  2. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR42

  3. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR424

  4. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR4247

  5. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486 YEAR42478

  6. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861 YEAR

  7. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861 YEAR40

  8. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 200874861 YEAR4096

  9. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486111 YEAR

  10. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 20087486111 YEAR17

  11. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S. 2008748611196 YEAR

  12. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 2014 Males

  13. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 2014 Males16

  14. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 2014

  15. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 20144

  16. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 20144707

  17. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR 201447072540

  18. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR

  19. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8

  20. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557 563

  1. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557 56378

  2. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557 5637831

  3. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557 56378318

  4. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR8557

  5. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733 28

  6. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733 280

  7. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733 2801

  8. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733 280192

  9. YEAR

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMaythe Interior U.S.3 YEAR855733

  10. Year

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand Motor444 U.S.Working and.

  11. High Technology Engineering Services, Inc. fiscal year 1993 and 1994 research and development report

    SciTech Connect (OSTI)

    NONE

    1994-10-01T23:59:59.000Z

    This document has been prepared by the Professional Staff of High Technology Engineering Services, Inc. (HTES) for fiscal year (FY) 1993. Work was performed for various aspects of mechanical design and analysis, materials development and properties quantification, nuclear environment performance, and engineering program prioritization. The tasks enumerated in the subcontract, attachment B are: 1. Assist in preparation of final R&D report for SDC detector development. 2. Subcontractor shall make contributions to the development of innovative processes for the manufacture of quasi- isotropic, enhanced thermal conductivity compression molded advanced composite materials. 3. Perform finite element analysis as it relates to the Superconducting Super Collider Silicon Tracking System, both mechanical and thermal, of very thin section advanced composite materials. 4. Subcontractor shall perform technical studies, reviews, and assessments of the current program for advanced composites materials processing and testing. 5. Subcontractor shall attend meetings and discussions as directed by MEE-12 technical representative. Unfortunately during the course of FY93, technical and financial challenges prevailed against the aggressive goals set for the program. In point of fact, less than 25% of the contract value was able to be expended due to technical delays and programmatic funding cuts. Also, contracting difficulties with the SSC Lab and financial burdens at Los Alamos totally stopped progress on the subject subcontract during the whole of FY94. This was a great blow to me and the HTES, Inc. technical staff. Despite the negative influences over the years, significant progress was made in materials properties quantification and development of essential research and development documentation. The following brief report and attendant appendices will address these achievements.

  12. Environmental Cleanup of the East Tennessee Technology Park Year One - Execution with Certainty SM - 13120

    SciTech Connect (OSTI)

    Schubert, A.L. [URS - CH2M Oak Ridge LLC, P.O. Box 4699, Oak Ridge, TN 37831-7294 (United States)] [URS - CH2M Oak Ridge LLC, P.O. Box 4699, Oak Ridge, TN 37831-7294 (United States)

    2013-07-01T23:59:59.000Z

    On August 1, 2011, URS - CH2M Oak Ridge LLC (UCOR) began its five-year, $1.4 billion cleanup of the East Tennessee Technology Park (ETTP), located on the U.S. Department of Energy's (DOE) Oak Ridge Reservation in Tennessee. UCOR will close out cleanup operations that began in 1998 under a previous contract. When the Contract Base scope of work [1] is completed in 2016, the K-25 gaseous diffusion building will have been demolished and all waste dispositioned, demolition will have started on the K-27 gaseous diffusion building, all contact-handled and remote-handled transuranic waste in inventory (approximately 500 cubic meters) will have been transferred to the Transuranic Waste Processing Center, previously designated 'No-Path-To-Disposition Waste' will have been dispositioned to the extent possible, and UCOR will have managed DOE Office of Environmental Management (EM)- owned facilities at ETTP, Oak Ridge National Laboratory (ORNL), and the Y-12 National Security Complex in a safe and cost-effective manner. Since assuming its responsibilities as the ETTP cleanup contractor, UCOR has completed its life-cycle Performance Measurement Baseline; received its Earned Value Management System (EVMS) certification; advanced the deactivation and demolition (D and D) of the K-25 gaseous diffusion building; recovered and completed the Tank W-1A and K-1070-B Burial Ground remediation projects; characterized, packaged, and shipped contact-handled transuranic waste to the Transuranic Waste Processing Center; disposed of more than 90,000 cubic yards of cleanup waste while managing the Environmental Management Waste Management Facility (EMWMF); and provided operations, surveillance, and maintenance activities at DOE EM facilities at ETTP, ORNL, and the Y-12 National Security Complex. Project performance as of December 31, 2012 has been excellent: - Cost Performance Index - 1.06; - Schedule Performance Index - 1.02. At the same time, since safety is the foundation of all cleanup work, UCOR's safety record goes hand in hand with its excellent project performance. Through calendar year 2012, UCOR's recordable injury rate was 0.33, and the company has worked close to 4 million hours without a lost work day injury. UCOR's safety record is one of the best in the DOE EM Complex. This performance was due, in large part, to the people and processes URS and CH2M HILL, the parent companies of UCOR, brought to the project. Key approaches included: - Selected and deployed experienced staff in key leadership positions throughout the organization; - Approached 'Transition' as the 'true' beginning of the cleanup project - kicking off a number of project initiatives such as Partnering, PMB development, D and D Plan execution, etc. - Established a project baseline for performance measurement and obtained EVMS certification in record time; - Determined material differences and changed conditions that warranted contract change - then quickly addressed these changes with the DOE client; - Aligned the project and the contract within one year - also done in record time; - Implemented Safety Trained Supervisor and Safety Conscious Work Environment Programs, and kicked off the pursuit of certification under DOE's Voluntary Protection Program. (authors)

  13. Five-Year Technology Development Strategic Plan Targets EMs Decommissioning Challenges

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. Leaders from EM headquarters and field offices and the UKs Sellafield nuclear site gathered recently to discuss developing technologies needed to address decommissioning challenges across the Cold War cleanup program.

  14. Overview of the Defense Programs Research and Technology Development Program for Fiscal Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-30T23:59:59.000Z

    This documents presents a programmatic overview and program element plan summaries for conceptual design and assessment; physics; computation and modeling; system engineering science and technology; electronics, photonics, sensors, and mechanical components; chemistry and materials; special nuclear materials, tritium, and explosives.

  15. Certificate of Specialization in Clean Technology Law Requirements, Effective 20102011 Academic Year

    E-Print Network [OSTI]

    Kammen, Daniel M.

    ) Energy Regulation & the Environment (3 3) operty (4) Environmental Law & Policy ( Introduction): Finance & Energy Business IP, Entrepreneurship & Energy Science / Technology Environmental Law & Energy Policy Energy & Environmental Markets (Haas, 3) Energy & Infrastructure Project Finance (1

  16. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2001

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-10-01T23:59:59.000Z

    No significant environmental problems were identified at the National Energy Technology Laboratory (NETL) sites in Morgantown (MGN), Pittsburgh (PGH), Tulsa (NPTO) and Fairbanks (AEO) during 2001. No radionuclides were released from the sites during 2001. The sites maintain two major environmental programs: waste management, and environmental media and release management. These two programs encompass waste handling, storage, and disposal, waste minimization and pollution prevention, air quality emissions, surface-water discharges, groundwater impacts, industrial wastewater discharges, and spill control procedures. The Morgantown and Pittsburgh sites currently maintain complete monitoring programs for groundwater, stormwater discharge, laboratory wastewater discharge, and meteorological data. In addition, an annual air emissions inventory is prepared. A comprehensive Directives Program aimed at managing environmental, safety, health requirements, and risks was initiated in 1997, continued through subsequent years, and will be completed in 2003. The primary objective of the program is to identify and implement standards that will protect the health and safety of workers, public, and the environment. This program started with a careful and thorough analysis of risks confronting workers and the communities surrounding NETL sites. Following this analysis, requirements and best management practices were evaluated to determine how requirements could best be used to advance the mission of NETL. Teams of subject-matter experts analyzed the work assigned to determine potential hazards and identify ways to remove or control those hazards. In 2001, NETL developed or revised a series of directives in two major areas: safety analysis and review (SAR) processes, and integrated safety management (ISM) directives. SAR directives were issued for research and development (R&D) operations, support operations, and facilities. ISM directives were released on management processes, such as standards maintenance, performance measures, assessments, corrective actions, lessons-learned, and training. In conjunction with the Directives Program, the use of the voluntary environmental management system, ISO 14001, was evaluated. This includes the only international environmental management standard to which an entity can be certified. NETL is using the specifications and guidance from this standard to identify an effective environmental management system for the NETL sites. An outside consultant performed an environmental management system assessment (also referred to as an initial environmental review), as referenced in ISO 14004. The objective of the assessment was to determine the degree to which NETL's existing integrated safety management system (ISMS), safety analysis review system (SARS), and environmental management programs conformed with the ISO14001 Environmental Management System (EMS) standard and the United States Environmental Protection Agency's (EPA) Code of Environmental Management Principles. A performance measurement system continued to be maintained during 2001 to assist in evaluating how effectively activities at NETL meet mission-critical goals and how well missions and strategies are connected in the DOE strategic plan. This system also provides data to assist in gauging performance against the DOE critical success factors, that is, performance against technical objectives. Various environmental milestones can be tracked to completion, thus giving NETL measures by which to gauge the sites' goals of remaining in regulatory compliance and achieving best-in-class environmental performance.

  17. Development of a National Center for Hydrogen Technology: A Summary Report of Activities Completed at the National Center for Hydrogen Technology - Year 6

    SciTech Connect (OSTI)

    Holmes, Michael

    2012-05-31T23:59:59.000Z

    The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology? (NCHT?) since 2005 under a Cooperative Agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research on hydrogen generation and utilization topics. Since the NCHT?s inception, the EERC has received more than $65 million in funding for hydrogen-related projects ($24 million for projects in the NCHT, which includes federal and corporate partner development funds) involving more than 85 partners (27 with the NCHT). The NCHT Program?s nine activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan that refers to realistic testing of technologies at adequate scale, process intensification, and contaminant control. A number of projects have been completed that range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in Year 6 of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

  18. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Appendices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration Plan: Program Appendices

  19. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Introduction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration Plan: Program

  20. Name Address Place Zip Sector Product Stock Symbol Year founded...

    Open Energy Info (EERE)

    Dag Hammarskjlds vg B Uppsala S Marine and Hydrokinetic http http www currentpower se Sweden Current Power AB Dag Hammarskjlds vg B Uppsala S Marine and Hydrokinetic http http www...

  1. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration Plan: Program1-08 2008

  2. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Table of Contents

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration Plan: Program1-08

  3. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal Technologies ProgramDemonstration Plan: Program1-088

  4. Analysis of the need for intermediate and peaking technologies in the year 2000

    SciTech Connect (OSTI)

    Barrager, S.M.; Campbell, G.L.

    1980-04-01T23:59:59.000Z

    This analysis was conducted to assess the impact of load management on the future need for intermediate- and peak-generating technologies (IPTs) such as combustion turbines, pumped storage, and cycling coal plants. There will be a reduced need for IPTs if load-management activities such as time-of-use pricing, together with customer-owned energy-storage devices, hot-water-heater controls, and interruptible service, can economically remove most of the variation from electric-power demands. Therefore, the analysis assesses the need for IPTs in an uncertain future, which will probably include load management and time-differentiated electricity prices. Section 2 provides a condensed description of the models used in the analysis. (Details and data sets are contained in the appendixes.) Results of sensitivities on growth rates, model parameters, and appliance saturations are discussed in Section 3, which also contains the analysis of the potential impacts of customer energy storage, appliance control, and time-of-use pricing. The future need for intermediate and peaking technologies is analyzed in Section 4.

  5. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2002

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2003-10-30T23:59:59.000Z

    This Site Environmental Report was prepared by the Environmental, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at NETL sites in Morgantown (MGN), West Virginia, Pittsburgh (PGH), Pennsylvania, Tulsa, Oklahoma, and Fairbanks, Alaska. This report contains the most accurate information that could be collected during the period between January 1, 2002, and December 31, 2002. As stated in DOE Orders 450.1 and 231.1, the purpose of the report is to: (1) Characterize site environmental management performance. (2) Confirm compliance with environmental standards and requirements. (3) Highlight significant facility programs and efforts.

  6. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2000

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-11-27T23:59:59.000Z

    This Site Environmental Report was prepared by the Environment, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at the NETL sites in Morgantown, West Virginia, and Pittsburgh, Pennsylvania. This report contains the most accurate information that could be collected during the period between January 1, 2000, through December 31, 2000. As stated in DOE Orders 5400.1 and 231.1, the purpose of the report is to: Characterize site environmental management performance; Confirm compliance with environmental standards and requirements and Highlight significant facility programs and efforts.

  7. The East Tennessee Technology Park Progress Report for the Tennessee Hazardous Waste Reduction Act for Calendar Year 1999

    SciTech Connect (OSTI)

    Bechtel Jacobs Company LLC

    2000-03-01T23:59:59.000Z

    This report is prepared for the East Tennessee Technology Park (formerly the Oak Ridge K-25 Site) (ETTP) in compliance with the ''Tennessee Hazardous Waste Reduction Act of 1990'' (THWRA) (TDEC 1990), Tennessee Code Annotated 68-212-306. Annually, THWRA requires a review of the site waste reduction plan, completion of summary waste reduction information as part of the site's annual hazardous waste reporting, and completion of an annual progress report analyzing and quantifying progress toward THWRA-required waste stream-specific reduction goals. This THWRA-required progress report provides information about ETTP's hazardous waste streams regulated under THWRA and waste reduction progress made in calendar year (CY) 1999. This progress report also documents the annual review of the site plan, ''Oak Ridge Operations Environmental Management and Enrichment Facilities (EMEF) Pollution Prevention Program Plan'', BJC/OR-306/R1 (Bechtel Jacobs Company 199a). In 1996, ETTP established new goal year ratios that extended the goal year to CY 1999 and targeted 50 percent waste stream-specific reduction goals. In CY 1999, these CY 1999 goals were extended to CY 2000 for all waste streams that generated waste in 1999. Of the 70 ETTP RCRA waste streams tracked in this report from base years as early as CY 1991, 51 waste streams met or exceeded their reduction goal based on the CY 1999 data.

  8. The East Tennessee Technology Park Progress Report for the Tennessee Hazardous Waste Reduction Act for Calendar Year 2000

    SciTech Connect (OSTI)

    Bechtel Jacobs Company LLC

    2001-03-01T23:59:59.000Z

    This report is prepared for the East Tennessee Technology Park (formerly the Oak Ridge K-25 Site) (ETTP) in compliance with the ''Tennessee Hazardous Waste Reduction Act of 1990'' (THWRA) (TDEC 1990), Tennessee Code Annotated 68-212-306. Annually, THWRA requires a review of the site waste reduction plan, completion of summary waste reduction information as part of the site's annual hazardous waste reporting, and completion of an annual progress report analyzing and quantifying progress toward THWRA-required waste stream-specific reduction goals. This THWRA-required progress report provides information about ETTP's hazardous waste streams regulated under THWRA and waste reduction progress made in calendar year (CY) 2000. This progress report also documents the annual review of the site plan, ''Oak Ridge Operations Environmental Management and Enrichment Facilities (EMEF) Pollution Prevention Program Plan'', BJC/OR-306/R1 (Bechtel Jacobs Company 2000). In 1996, ETTP established new goal year ratios that extended the goal year to CY 1999 and targeted 50 percent waste stream-specific reduction goals. In CY 2000, these goals were extended to CY 2001 for all waste streams that generated waste in 2000. Of the 70 ETTP RCRA waste streams tracked in this report from base years as early as CY 1991, 50 waste streams met or exceeded their reduction goal based on the CY 2000 data.

  9. Technology and Cost of the Model Year (MY) 2007 Toyota Camry HEV Final Report

    SciTech Connect (OSTI)

    None

    2007-09-30T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

  10. Analysis of the need for intermediate and peaking technologies in the year 2000. Final report

    SciTech Connect (OSTI)

    Barrager, S.M.; Campbell, G.L.

    1980-04-01T23:59:59.000Z

    This analysis was conducted to assess the impact of load management on the future need for intermediate- and peak-generating technologies (IPTs) such as combustion turbines, pumped storage, and cycling coal plants. There would be a reduced need for IPTs if load-management activities such as time-of-use pricing, together with customer-owned energy-storage devices, hot-water-heater controls, and interruptible service can economically remove most of the variation from electric power demands. The objective of this analysis is to assess the need for IPTs in an uncertain future, which will probably include load management and time-differentiated electricity prices. The analysis is exploratory in nature and broad in scope. It does not attempt to predict the future or to model precisely the technical characteristics or economic desirability of load management. Rather, its purpose is to provide research and development planners with some basic insights into the order of magnitude of possible hourly demand shifts on a regional basis and to determine the impact of load management on daily and seasonal variations in electricity demand.

  11. Superconductivity program for electric systems, Superconductivity Technology Center, Los Alamos National Laboratory, annual progress report for fiscal year 1997

    SciTech Connect (OSTI)

    Willis, J.O.; Newnam, B.E. [eds.; Peterson, D.E.

    1999-03-01T23:59:59.000Z

    Development of high-temperature superconductors (HTS) has undergone tremendous progress during the past year. Kilometer tape lengths and associated magnets based on BSCCO materials are now commercially available from several industrial partners. Superconducting properties in the exciting YBCO coated conductors continue to be improved over longer lengths. The Superconducting Partnership Initiative (SPI) projects to develop HTS fault current limiters and transmission cables have demonstrated that HTS prototype applications can be produced successfully with properties appropriate for commercial applications. Research and development activities at LANL related to the HTS program for Fiscal Year 1997 are collected in this report. LANL continues to support further development of Bi2223 and Bi2212 tapes in collaboration with American Superconductor Corporation (ASC) and Oxford Superconductivity Technology, Inc. (OSTI), respectively. The tape processing studies involving novel thermal treatments and microstructural characterization have assisted these companies in commercializing these materials. The research on second-generation YBCO-coated conductors produced by pulsed-laser deposition (PLD) over buffer template layers produced by ion beam-assisted deposition (IBAD) continues to lead the world. The applied physics studies of magnetic flux pinning by proton and heavy ion bombardment of BSCCO and YBCO tapes have provided many insights into improving the behavior of these materials in magnetic fields. Sections 4 to 7 of this report contain a list of 29 referred publications and 15 conference abstracts, a list of patent and license activities, and a comprehensive list of collaborative agreements in progress and completed.

  12. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology A

  13. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails NewsTechnologyTechnology

  14. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix II research laboratories and facilities

    SciTech Connect (OSTI)

    Not Available

    1993-09-30T23:59:59.000Z

    This document contains summaries of the research facilities that support the Defense Programs Research and Technology Development Program for FY 1993. The nine program elements are aggregated into three program clusters as follows: (1) Advanced materials sciences and technologies; chemistry and materials, explosives, special nuclear materials (SNM), and tritium. (2) Design sciences and advanced computation; physics, conceptual design and assessment, and computation and modeling. (3) Advanced manufacturing technologies and capabilities; system engineering science and technology, and electronics, photonics, sensors, and mechanical components. Section I gives a brief summary of 23 major defense program (DP) research and technology facilities and shows how these major facilities are organized by program elements. Section II gives a more detailed breakdown of the over 200 research and technology facilities being used at the Laboratories to support the Defense Programs mission.

  15. Magnetic domains were not found in tetrataenite.

    E-Print Network [OSTI]

    Mountziaris, T. J.

    collaboration with electrical engineers to produce the proper magnetic tape to view domains in. Observing and Industrial Engineering, University of Massachusetts, Amherst, MA 01003 Future Work While the magnetism Magnetic domains were not found in tetrataenite. Figure 4 shows magnetic domains found

  16. SciTech Connect: Item Not Found

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item you requested, OSTI ID 1018612, is not available

  17. SciTech Connect: Item Not Found

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item you requested, OSTI ID 1018612, is not

  18. SciTech Connect: Item Not Found

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item you requested, OSTI ID 1018612, is notItem Not

  19. SciTech Connect: Item Not Found

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item you requested, OSTI ID 1018612, is notItem Not

  20. SciTech Connect: Item Not Found

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item you requested, OSTI ID 1018612, is notItem Not

  1. SciTech Connect: Item Not Found

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item you requested, OSTI ID 1018612, is notItem NotItem

  2. SciTech Connect: Item Not Found

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found ItemRomero-Redondo, C"Voth,Jaehoon"Zhu, Jian -longDocumentItem

  3. SciTech Connect: Item Not Found

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found ItemRomero-Redondo, C"Voth,Jaehoon"Zhu, Jian

  4. The roadmap for downscaling and introducing new technologies in the semiconductor industry is well laid out for the next ten years2.

    E-Print Network [OSTI]

    The roadmap for downscaling and introducing new technologies in the semiconductor industry is well in the International Technology Roadmap for Semiconductors, one- dimensional structures, such as carbon nanotubes

  5. Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988: Annual report of the metals initiative for fiscal year 1996

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This annual report has been prepared for the President and Congress describing the activities carried out under the Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988, commonly referred to as the Metals Initiative. The Act has the following purposes: (1) increase energy efficiency and enhance the competitiveness of the American steel, aluminum, and copper industries; and (2) continue research and development efforts begun under the U.S. Department of Energy (DOE) program known as the Steel Initiative. These activities are detailed in a subsequent section. Other sections describe the appropriation history, the distribution of funds through fiscal year 1996, and the estimated funds necessary to continue projects through fiscal year 1997. The Metals Initiative supported four research and development projects with the U.S. Steel industry: (1) steel plant waste oxide recycling and resource recovery by smelting, (2) electrochemical dezincing of steel scrap, (3) rapid analysis of molten metals using laser-produced plasmas, and (4) advanced process control. There are three Metals Initiative projects with the aluminum industry: (1) evaluation of TiB2-G cathode components, (2) energy efficient pressure calciner, and (3) spray forming of aluminum. 1 tab.

  6. Technology Innovation Program | Partnerships | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Program SHARE Technology Innovation Program The Technology Innovation Program (TIP) is a 1-year program designed to accelerate selected technologies to commercial...

  7. N-K Manufacturing Technologies: Industrial Energy Assessment Yields Savings of More than $27,000 Per Year for Molded Plastics Company

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    Industrial Technologies Program's BestPractices case study based on a comprehensive plant assessment conducted at N-K Manufacturing Technologies by ITP's Industrial Assessment Center in conjunction with The Society of the Plastics Industry, Inc.

  8. Fiscal Year 2008 Phased Construction Completion Report for EU Z2-33 in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Bechtel Jacobs

    2008-09-11T23:59:59.000Z

    The Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2161&D2) (Zone 2 ROD) acknowledged that most of the 800 acres in Zone 2 were contaminated, but that sufficient data to confirm the levels of contamination were lacking. The Zone 2 ROD further specified that a sampling strategy for filling the data gaps would be developed. The Remedial Design Report/Remedial Action Work Plan for Zone 2 Soils, Slabs, and Subsurface Structures, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2224&D3) (Zone 2 RDR/RAWP) defined the sampling strategy as the Dynamic Verification Strategy (DVS), generally following the approach used for characterization of the Zone 1 exposure units (EUs). The Zone 2 ROD divided the Zone 2 area into seven geographic areas and 44 EUs. To facilitate the data quality objectives (DQOs) of the DVS process, the Zone 2 RDR/RAWP regrouped the 44 EUs into 12 DQO scoping EU groups. These groups facilitated the DQO process by placing similar facilities and their support facilities together and allowing identification of data gaps. The EU groups were no longer pertinent after DQO planning was completed and characterization was conducted as areas became accessible. As the opportunity to complete characterization became available, the planned DVS program and remedial actions (RAs) were completed for EU Z2-33. Remedial action was also performed at two additional areas in adjacent EU Z2-42 because of their close proximity and similar nature to a small surface soil RA in EU Z2-33. Remedial actions for building slabs performed in EU Z2-33 during fiscal year (FY) 2007 were reported in the Fiscal Year 2007 Phased Construction Completion Report for the Zone 2 Soils, Slabs, and Subsurface Structures at East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2723&D1). Recommended RAs for EU Z2-42 were described in the Fiscal Year 2006 Phased Construction Completion Report for the Zone 2 Soils, Slabs, and Subsurface Structures at East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2317&D2). Remedial actions performed in the Balance of Site (BOS) Laboratory Area of EU Z2-33 and two small areas in EU Z2-42 are described in Sects. 5 through 10 of this Phased Construction Completion Report (PCCR). The purpose of this PCCR is to address the following: (1) Document DVS characterization results for EU Z2-33; (2) Describe and document the risk evaluation and determine if the EU meets the Zone 2 ROD requirements for unrestricted industrial use to 10 ft bgs; (3) Identify additional areas not defined in the Zone 2 ROD that require remediation based on the DVS evaluation results; and (4) Describe RAs performed in the EU Z2-33 BOS Laboratory Area and two small areas in EU Z2-42. Approximately 18 acres in EU Z2-33 are addressed in this PCCR. Based on the results of the DVS evaluation and RAs performed, all 18 acres are recommended for unrestricted industrial use to 10 ft bgs. Three Federal Facility Agreement sites are addressed and recommended for no further action within this acreage, including: (1) K-1004-L Recirculating Cooling Water Lines Leak Sites; (2) K-1044 Heavy Equipment Repair Shop; and (3) K-1015-A Laundry Pit. Remedial actions for EU Z2-33 were developed in response to DVS characterization results described in the EU Z2-33 Technical Memorandum (Appendix A) and to support reindustrialization of the East Tennessee Technology Park as a commercial industrial park. Remediation criteria were designed for the protection of a future industrial worker who normally would not have the potential for exposure to soil below 10ft bgs. Accordingly, the Zone 2 ROD required land use controls to prevent disturbance of soils below 10 ft deep and to restrict future land use to industrial/commercial activities. In response to stakeholder comments, the U.S. Department of Energy agreed to re-evaluate the need for such land use restrictions. This document includes a screening evaluation to determine the likel

  9. Fiscal Year 2007 Phased Construction Completion Report for the Zone 2 Soils, Slabs, and Subsurface Structures at East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    RSI

    2008-03-01T23:59:59.000Z

    The purpose of this Phased Construction Completion Report (PCCR) is to present the fiscal year (FY) 2007 results of characterization activities and recommended remedial actions (RAs) for 11 exposure units (EUs) in Zone 2 (Z2-01, Z2-03, Z2-08, Z2-23, Z2-24, Z2-28, Z2-34, Z2-37, Z2-41, Z2-43, and Z2-44) at the East Tennessee Technology Park (ETTP), which is located in the northwest corner of the U.S. Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, Tennessee (Fig. 1). ETTP encompasses a total land area of approximately 5000 acres that has been subdivided into three zones--Zone 1 ({approx}1400 acres), Zone 2 ({approx}800 acres), and the Boundary Area ({approx}2800 acres). Zone 2, which encompasses the highly industrialized portion of ETTP shown in Fig. 1, consists of all formerly secured areas of the facility, including the large processing buildings and direct support facilities; experimental laboratories and chemical and materials handling facilities; materials storage and waste disposal facilities; secure document records libraries; and shipping and receiving warehouses. The Zone 2 Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2005) (Zone 2 ROD) specifies the future end use for Zone 2 acreage as uncontrolled industrial for the upper 10 ft of soils. Characterization activities in these areas were conducted in compliance with the Zone 2 ROD and the Dynamic Verification Strategy (DVS) and data quality objectives (DQOs) presented in the Remedial Design Report/Remedial Action Work Plan for Zone 2 Soils, Slabs, and Subsurface Structures, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2007) (Zone 2 RDR/RAWP). The purpose of this PCCR is to address the following: (1) Document DVS characterization results for the accessible EUs in FY 2007; (2) Describe and document the risk evaluation for each EU, and determine if the EU met the Zone 2 ROD requirements for unrestricted industrial use to 10 ft bgs; (3) Identify additional areas not defined in the Zone 2 ROD that require remediation based on the DVS evaluation results; and (4) Describe the RAs performed in Zone 2. The Zone 2 ROD divided the Zone 2 area into 7 geographic areas and 44 EUs. To facilitate the DQOs of the DVS process, the Zone 2 RDR/RAWP regrouped the 44 EUs into 12 DQO scoping EU groups. These groups facilitated the DQO process by placing similar facilities and their support facilities together and allowed identification of data gaps. The EU groups were no longer pertinent after DQO planning was completed, and characterization was conducted as areas became accessible. As the opportunity to complete characterization became available, the planned DVS program was executed and completed in FY 2007 for the 11 EUs addressed in this document. The main body of this report describes both the DVS process and scope of work performed and the RAs completed. The scope and approach for performing DVS activities performed in FY 2007 that lead to action/no further action decisions are presented in Sects. 2 through 4. RAs performed in FY 2007 are presented in Sects. 5 through 10. Future land use is described in Sect. 11, and the status of all Zone 2 EUs as of this PCCR is presented in Sect. 12.

  10. Name Address Place Zip Sector Product Stock Symbol Year founded Number

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasoleTremor(Question)8/14/2007 Expire Date310N67Address Place

  11. Extended Operations of the Pratt & Whitney Rocketdyne Pilot-Scale Compact Reformer Year 6 - Activity 3.2 - Development of a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Almlie, Jay

    2011-10-01T23:59:59.000Z

    U.S. and global demand for hydrogen is large and growing for use in the production of chemicals, materials, foods, pharmaceuticals, and fuels (including some low-carbon biofuels). Conventional hydrogen production technologies are expensive, have sizeable space requirements, and are large carbon dioxide emitters. A novel sorbent-based hydrogen production technology is being developed and advanced toward field demonstration that promises smaller size, greater efficiency, lower costs, and reduced to no net carbon dioxide emissions compared to conventional hydrogen production technology. Development efforts at the pilot scale have addressed materials compatibility, hot-gas filtration, and high-temperature solids transport and metering, among other issues, and have provided the basis for a preliminary process design with associated economics. The process was able to achieve a 93% hydrogen purity on a purge gasfree basis directly out of the pilot unit prior to downstream purification.

  12. Project Year Project Title

    E-Print Network [OSTI]

    Gray, Jeffrey J.

    Project Year 2011-2012 Project Title Using M-Health and GIS Technology in the Field to Improve-specialized, but practically useless skill. Solution One goal of this summer's Applied Geographic Information Systems in Public lessons about observational epidemiology. Technologies Used Geographic Info System (GIS), Blackboard

  13. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  14. Science, technology and innovation

    E-Print Network [OSTI]

    Sussex, University of

    Science, technology and innovation Taught degrees MSc in Innovation and Sustainability for International Development 1 year full time/2 years part time Technological innovation lies at the heart in the academic and political circles related to the impact of science, technology and innovation in the context

  15. 168 JOURNAL OF VINYL & ADDITIVE TECHNOLOGY, DECEMBER 2004, Vol. 10, No. 4 Thirty-Year Durability of a 20-Mil PVC Geomembrane

    E-Print Network [OSTI]

    of a 20-Mil PVC Geomembrane E. J. NEWMAN and T. D. STARK* Department of Civil & Environmental Engineering, Michigan. The 30.5-m-diameter re- search ponds were lined using a 0.51-mm-thick fish-grade PVC geomembrane behavior of the nearly 30-year-old PVC geomembrane is within current specifications for new 0.51-mm

  16. UMBC POLICY ON LOST AND FOUND PROPERTY I. POLICY STATEMENT

    E-Print Network [OSTI]

    Adali, Tulay

    UMBC POLICY ON LOST AND FOUND PROPERTY I. POLICY STATEMENT The UMBC community will have access to a University Policy on Lost and Found Property. II. PURPOSE OF THE POLICY The purpose of the Lost and Found Property Policy is to provide procedures for the accountability and safekeeping of currency and tangible

  17. Companies founded by faculty, staff and alumni of The Institute of Optics

    E-Print Network [OSTI]

    Companies founded by faculty, staff and alumni of The Institute of Optics LAST NAME FIRST NAME NAME OF COMPANY Savvy Optics Dema Bekz Corp. Amarel John Amarel Precision Anderson James Optics Technology In., Tropel Atkinson, III Leland G Gradient Lens Corp. Medox electro-optics MXR (Medox Research) Clark

  18. ENGINEERING TECHNOLOGY Engineering Technology

    E-Print Network [OSTI]

    ENGINEERING TECHNOLOGY Engineering Technology Program The Bachelor of Science in Engineering Technology (BSET) is a hands-on program based upon engineering technology fundamentals, engineering for employment or further education. The focus is on current engineering technology issues and applications used

  19. Hydrogen Production and Purification from Coal and Other Heavy Feedstocks Year 6 - Activity 1.4 - Development of a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Dunham, Grant

    2012-03-15T23:59:59.000Z

    Air Products and Chemicals, Inc., is developing the sour pressure swing adsorption (PSA) technology which can be used to reject acid gas components (hydrogen sulfide [H{sub 2}S] and carbon dioxide [CO{sub 2}]) from sour syngas streams such as coal gasification syngas. In the current work, tests were conducted to investigate the impact of continuous exposure of real sour syngas and dilute levels of hydrochloric acid (HCl) and ammonia (NH{sub 3}) on the preferred adsorbent of that process. The results show a modest (~10%15%) decrease in CO{sub 2} adsorption capacity after sour syngas exposure, as well as deposition of metals from carbonyl decomposition. Continuous exposure to HCl and NH{sub 3} yield a higher degree of CO{sub 2} capacity degradation (up to 25%). These tests represent worst-case approaches since the exposure is continuous and the HCl and NH{sub 3} levels are relatively high compare to an industrial sour syngas stream. Long-term PSA tests are needed to unequivocally evaluate the impact of cyclic exposure to these types of streams.

  20. COLLOQUIUM: Spitzer's 100th: Founding PPPL & Pioneering Work...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colloquia MBG Auditorium COLLOQUIUM: Spitzer's 100th: Founding PPPL & Pioneering Work in Fusion Energy Dr. Greg Hammett Princeton University Professor Russell Kulsrud Princeton...

  1. Fiscal years 1993 and 1994 decontamination and decommissioning activities photobriefing book for the Argonne National Laboratory-East Site, Technology Development Division, Decontamination and Decommissioning Projects Department

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    This photobriefing book describes the ongoing decontamination and decommissioning projects at the Argonne National Laboratory (ANL)-East Site near Lemont, Illinois. The book is broken down into three sections: introduction, project descriptions, and summary. The introduction elates the history and mission of the Decontamination and Decommissioning (D and D) Projects Department at ANL-East. The second section describes the active ANL-East D and D projects, giving a project history and detailing fiscal year (FY) 1993 and FY 1994 accomplishments and FY 1995 goals. The final section summarizes the goals of the D and D Projects Department and the current program status. The D/D projects include the Experimental Boiling Water Reactor, Chicago Pile-5 Reactor, that cells, and plutonium gloveboxes. 73 figs.

  2. Dragon Year

    E-Print Network [OSTI]

    Hacker, Randi

    2012-01-11T23:59:59.000Z

    Broadcast Transcript: Can you believe it? It's New Year again. It seems like only yesterday we were celebrating the advent of the year of the Rabbit and now, here it is, the year of the Dragon. January 22nd is New Year's ...

  3. Fiscal Year 2010 Phased Construction Completion Report for EU Z2-32 in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Bechtel Jacobs

    2010-02-01T23:59:59.000Z

    The Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (DOEIORJO 1-2161 &D2) (Zone 2 ROD) acknowledged that most of the 800 acres in Zone 2 were contaminated, but that sufficient data to confirm the levels of contamination were lacking. The Zone 2 ROD further specified that a sampling strategy for filling the data gaps would be developed. The Remedial Design Report/Remedial Action Work Plan for Zone 2 Soils, Slabs, and Subsurface Structures, East Tennessee Technology Park, Oak Ridge, Tennessee (DOEIORIO 1 -2224&D3) (RDRJRAWP) defined the sampling strategy as the Dynamic Verification Strategy (DVS), generally following the approach used for characterization of the Zone I exposure units (EUs). The Zone 2 ROD divided the Zone 2 area into seven geographic areas and 44 EUs. To facilitate the data quality objectives (DQOs) of the DVS process, the RDR/RAWP regrouped the 44 EUs into 12 DQO scoping EU groups. These groups facilitated the DQO process by placing similar facilities and their support facilities together, which allowed identification of data gaps. The EU groups were no longer pertinent after DQO planning was completed and characterization was conducted as areas became accessible. As the opportunity to complete characterization became available, the planned DVS program was completed for the EU addressed in this document (EU Z2-32). The purpose of this Phased Construction Completion Report (PCCR) is to address the following: (1) Document DVS characterization results for EU Z2-32. (2) Describe and document the risk evaluation and determine if the EU meets the Zone 2 ROD requirements for unrestricted industrial use to 10 ft bgs. (3) Identify additional areas not defined in the Zone 2 ROD that require remediation based on the DVS evaluation results. (4) Describe the remedial action performed in the K-1066-G Yard in EU Z2-32. Approximately 18.4 acres are included in the EU addressed in this PCCR. Based on results of the DVS evaluation, all 18.4 acres are recommended for unrestricted industrial use to 10 ft bgs. There are no Federal Facility Agreement Sites included in Appendix A of the Zone 2 ROD in EU Z2-32. The Zone 2 ROD requires land use controls to prevent disturbance of soils below 10 ft deep and to restrict future land use to industrial/commercial activities. In response to stakeholder comments, the U.S. Department of Energy agreed to re-evaluate the need for such land use restrictions. This document includes a screening evaluation to determine the likelihood of land use controls in EU Z2-32 being modified to: (1) eliminate the restriction on disturbance of soils below 10 ft bgs where data indicate the absence of residual contamination at any depth that would result in an unacceptable risk to the future industrial worker, and (2) permit alternative land uses that would be protective of future site occupants. Results of this screening evaluation indicate a high probability that restrictions on disturbing soil below 10 ft bgs could be safely eliminated for EU Z2-32. A qualitative screening evaluation considered the likelihood of unrestricted land use being protective of future site occupants. Based on this qualitative assessment, all 18.4 acres addressed in this PCCR were assigned a high probability for consideration of release for unrestricted land use. This document contains the main text (Sects. 1 through 13) and one appendix. The main text addresses the purpose for this PCCR as described above. Additional supporting detail (e.g., field work and data summaries, graphics) is provided in the EU Z2-32 technical memorandum (Appendix A). Historical and DVS analytical data used in this PCCR are provided on a compact disc accompanying this document and can be accessed through the Oak Ridge Environmental Information System.

  4. The light-emitting diode (LED) is an fairly new kind of light source found currently in

    E-Print Network [OSTI]

    The light-emitting diode (LED) is an fairly new kind of light source found currently in only a few applications, such as traffic lights and exit signs. As a relatively untested technology, luminaire this technology an ideal replacement for less efficient incandescent light sources, particularly in applications

  5. Export of Canadian Meteorites Reporting of a meteorite found in Canada is not mandatory. Meteorites found in Canada can be

    E-Print Network [OSTI]

    Machel, Hans

    Export of Canadian Meteorites Reporting of a meteorite found in Canada is not mandatory. Meteorites found in Canada can be sold in Canada. The export Under the Cultural Property Export and Import Act (S.C. 1985, c.52), which came into force 1977 September 6, a Canadian find cannot be exported without

  6. A Modest, but Semantically Well Founded, Inheritance Reasoner Fahiem Bacchus

    E-Print Network [OSTI]

    Bacchus, Fahiem

    A Modest, but Semantically Well Founded, Inheritance Reasoner Fahiem Bacchus Department of Computer Science University of Waterloo Waterloo, Ontario, Canada N2L{3G1 Abstract A modest exception allowing

  7. aftercastle masted vessel with aftercastle is found on a Spanish

    E-Print Network [OSTI]

    masted vessel with aftercastle is found on a Spanish ations it would have any idea of crusader ships aces for the new tack as large as the crusader vessels (

  8. On the approximation of crack shapes found during inservice inspection

    SciTech Connect (OSTI)

    Bhate, S.R.; Chawla, D.S.; Kushwaha, H.S. [Bhabha Atomic Research Centre, Bombay (India)] [and others

    1997-04-01T23:59:59.000Z

    This paper addresses the characterization of axial internal flaw found during inservice inspection of a pipe. J-integral distribution for various flaw shapes is obtained using line spring finite, element method. The peak J-value and its distribution across the crack is found to be characteristic feature of each shape. The triangular shape yields peak J-value away from the center, the point of depth. The elliptic approximation results in large overestimate of J-value for unsymmetric flaws. Triangular approximation is recommended for such flaws so that further service can be obtained from the component.

  9. Breakthrough Berkeley Mist Sealant Technology: Potential to Save...

    Energy Savers [EERE]

    Breakthrough Berkeley Mist Sealant Technology: Potential to Save Americans 5B Per Year Breakthrough Berkeley Mist Sealant Technology: Potential to Save Americans 5B Per Year...

  10. ESP/rotary gas separator duo found to optimize production

    SciTech Connect (OSTI)

    Jacobs, G.H.

    1986-11-01T23:59:59.000Z

    A field test conducted on a low-volume waterflood well in West Texas equipped with an electric submersible pump (ESP) proved to rotary gas separator (RGS) to be more efficient than conventional reverse flow gas separators, achieving gas separation efficiencies close to 90%. Further, the RGS increased the run time of the ESP, thus lowering the wellbore fluid level and increasing oil production. The one drawback found is that RGSs can be susceptible to fluid erosion.

  11. NREL Technology Partnerships: Fiscal Year 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNREL NREL Refines Method tofor Solar Deployment4

  12. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y. [CH2M Hill (United States)

    2007-02-15T23:59:59.000Z

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  13. PPPL Founded in 1951 | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and4/26/11:Tel.:162 PreparedExpert OrganizationFounded in

  14. Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth...

    Open Energy Info (EERE)

    Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth Quarter and Year End Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Ormat...

  15. Chewy Granola Bars Adapted from one I found on a Quaker Oats box years ago. This is very

    E-Print Network [OSTI]

    Florida, University of

    in a zip loc bag. These freeze well. You can adapt the mix-ins (chips, fruit, nuts) according to what your products like tofu, mock refried beans, bean burger stew (with small amount of meat or preferably

  16. Faience Technology

    E-Print Network [OSTI]

    Nicholson, Paul

    2009-01-01T23:59:59.000Z

    by Joanne Hodges. Faience Technology, Nicholson, UEE 2009Egyptian materials and technology, ed. Paul T. Nicholson,Nicholson, 2009, Faience Technology. UEE. Full Citation:

  17. Geothermal Today: 2005 Geothermal Technologies Program Highlights

    SciTech Connect (OSTI)

    Not Available

    2005-09-01T23:59:59.000Z

    This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

  18. Emerging technologies

    SciTech Connect (OSTI)

    Lu, Shin-yee

    1993-03-01T23:59:59.000Z

    The mission of the Emerging Technologies thrust area at Lawrence Livermore National Laboratory is to help individuals establish technology areas that have national and commercial impact, and are outside the scope of the existing thrust areas. We continue to encourage innovative ideas that bring quality results to existing programs. We also take as our mission the encouragement of investment in new technology areas that are important to the economic competitiveness of this nation. In fiscal year 1992, we have focused on nine projects, summarized in this report: (1) Tire, Accident, Handling, and Roadway Safety; (2) EXTRANSYT: An Expert System for Advanced Traffic Management; (3) Odin: A High-Power, Underwater, Acoustic Transmitter for Surveillance Applications; (4) Passive Seismic Reservoir Monitoring: Signal Processing Innovations; (5) Paste Extrudable Explosive Aft Charge for Multi-Stage Munitions; (6) A Continuum Model for Reinforced Concrete at High Pressures and Strain Rates: Interim Report; (7) Benchmarking of the Criticality Evaluation Code COG; (8) Fast Algorithm for Large-Scale Consensus DNA Sequence Assembly; and (9) Using Electrical Heating to Enhance the Extraction of Volatile Organic Compounds from Soil.

  19. 2009-10 Princeton Global Scholar Ge Zhaoguang. Professor Ge is the founding director of the National Institute for Advanced

    E-Print Network [OSTI]

    2009-10 Princeton Global Scholar Ge Zhaoguang. Professor Ge is the founding director, and emendation of all sorts of newly discovered texts (mostly found at archaeological sites). Professor Ge University, Professor Ge taught at Tsinghua University for a number of years. He is known for many important

  20. February 2014 CELEBRATING 30 YEARS OF COLLABORATION

    E-Print Network [OSTI]

    Fukai, Tomoki

    institutions, today leading the world in science and technology, were born about one hundred years ago and have back its place as the foremost science and technology institution in Japan under the leadership Federal Minister for Research and Technology, in August 1983, and during his visit Japan first expressed

  1. Costs, Culture, and Complexity: An Analysis of Technology Enhancements in a Large Lecture Course at UC Berkeley

    E-Print Network [OSTI]

    2003-01-01T23:59:59.000Z

    Analysis of Technology Enhancements Costs, Culture, andtraditional and technology-enhanced costs only during Year 1An Analysis of Technology Enhancements Cost of technology

  2. Entrepreneurial separation to transfer technology.

    SciTech Connect (OSTI)

    Fairbanks, Richard R.

    2010-09-01T23:59:59.000Z

    Entrepreneurial separation to transfer technology (ESTT) program is that entrepreneurs terminate their employment with Sandia. The term of the separation is two years with the option to request a third year. Entrepreneurs are guaranteed reinstatement by Sandia if they return before ESTT expiration. Participants may start up or helpe expand technology businesses.

  3. Geothermal innovative technologies catalog

    SciTech Connect (OSTI)

    Kenkeremath, D. (ed.)

    1988-09-01T23:59:59.000Z

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  4. Dezincing Technology

    SciTech Connect (OSTI)

    Dudek, F.J.; Daniels, E.J. [Argonne National Lab., IL (United States). Energy Service Div.; Morgan, W.A. [Metal Recovery Technologies, Inc., East Chicago, IN (United States)

    1997-08-01T23:59:59.000Z

    Half of the steel produced in the US is derived from scrap. With zinc-coated prompt scrap increasing fivefold since 1980, steel-makers are feeling the effect of increased contaminant loads on their operations. The greatest concern is the cost of treatment before disposal of waste dusts and water that arise from remelting zinc-coated scrap. An economic process is needed to strip and recover the zinc from scrap to provide a low residual scrap for steel- and iron-making. Metal Recovery Technologies, Inc., with the assistance of Argonne National Laboratory, have been developing a caustic leach dezincing process for upgrading galvanized stamping plant scrap into clean scrap with recovery of the zinc. With further development the technology could also process galvanized scrap from obsolete automobiles. This paper will review: (1) the status of recent pilot plant operations and plans for a commercial demonstration facility with a dezincing capacity of up to 250,000 tons/year, (2) the economics of caustic dezincing, and (3) benefits of decreased cost of environmental compliance, raw material savings, and improved operations with use of dezinced scrap.

  5. PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program

    E-Print Network [OSTI]

    California at Berkeley, University of

    the road." In recent years, increasing amounts of crumb rubber from recycled tires have been added solve the very serious problem of waste tire disposal. TECHNOLOGY TRANSFER PROGRAM SEPTEMBER 2009, VOL. 1, NO. 2 Rubber Roads: Waste Tires Find a Home By Larry Santucci, PE Pavement Specialist

  6. Insider protection technology developments

    SciTech Connect (OSTI)

    Foesch, J.; Bortniak, P.; Waddoups, I.

    1994-08-01T23:59:59.000Z

    Sandia National Laboratories evaluates and develops new techniques and technologies to ensure the integrity of special nuclear material (SNM) against potential insider threats. We have evaluated several types of sensor technologies and subsystems to monitor and/or track materials and personnel. This past year`s effort has been directed at characterizing commercial developments that meet the Department of Energy`s (DOE) needs in some of these areas. Some of these evaluations are complete and some are still in progress. This paper discusses our work with infrared light (IR), radio frequency (RF), and RF proximity technologies. After these technologies are judged to be applicable to DOE`s needs, we incorporate them into the generic, real time, personnel tracking and material monitoring system.

  7. Essays on institutions and pre-founding experience : effects for technology-based entrepreneurs in the US and China

    E-Print Network [OSTI]

    Eesley, Charles D. (Charles Eric)

    2009-01-01T23:59:59.000Z

    This dissertation is composed of three essays. I look at the role of two different but critical factors in shaping entrepreneurial outcomes: individual level career history and the institutional context. My work spans two ...

  8. EERE Science and Technology Policy (STP) Fellowships Application...

    Energy Savers [EERE]

    EERE Science and Technology Policy (STP) Fellowships Application Form EERE Science and Technology Policy (STP) Fellowships Application Form Applications are accepted year-round. In...

  9. PRESSURE ACTIVATED SEALANT TECHNOLOGY

    SciTech Connect (OSTI)

    Michael A. Romano

    2004-04-01T23:59:59.000Z

    The objective of this project is to develop new, efficient, cost effective methods of internally sealing natural gas pipeline leaks through the application of differential pressure activated sealants. In researching the current state of the art for gas pipeline sealing technologies we concluded that if the project was successful, it appeared that pressure activated sealant technology would provide a cost effective alternative to existing pipeline repair technology. From our analysis of current field data for a 13 year period from 1985 to 1997 we were able to identify 205 leaks that were candidates for pressure activated sealant technology, affirming that pressure activated sealant technology is a viable option to traditional external leak repairs. The data collected included types of defects, areas of defects, pipe sizes and materials, incident and operating pressures, ability of pipeline to be pigged and corrosion states. This data, and subsequent analysis, was utilized as a basis for constructing applicable sealant test modeling.

  10. Calendar Year 2009 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    on the Audit of National Security Technologies, LLC Costs Claimed under Department of Energy Contract No. DE-AC52-06NA25946 for Fiscal Year 2007 May 6, 2009 Audit Report: IG-0815...

  11. 500 Year Documentation Francis T. Marchese

    E-Print Network [OSTI]

    Marchese, Francis

    Documentation, Design, Management. Keywords Digital art, conservation, requirements engineering. 1. THE PROBLEM500 Year Documentation Francis T. Marchese Pace University Computer Science Department New York, NY the requirements for creating documentation that will support an artwork's adaptation to future technology

  12. College of Agriculture & Life Sciences Agricultural Technology

    E-Print Network [OSTI]

    Virginia Tech

    College of Agriculture & Life Sciences Agricultural Technology Applied Agricultural Management Option Checksheet for Students Graduating in Calendar Year 2013 Associate of Agriculture Degree Required Agricultural Technology Core Courses (31 credits) 3 AT 0104 Computer Applications 3 AT 0114 Applied

  13. Photovoltaic Energy Program overview, fiscal year 1997

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    The US Department of Energy (DOE) Photovoltaic Energy Program fosters the widespread acceptance of photovoltaic (PV) technology and accelerates commercial use of US PV products. The Program is founded on a collaborative strategy involving industry, the research and development community, potential users, utilities, and state and federal agencies. There are three main Program elements: Systems Engineering and Applications, Technology Development, and Research and Development.

  14. Projects by Year | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Year Bioimaging Technology Bioimaging Technology Home About Research Small Worlds New Mesoscale Multimodal Imaging Adaptive Biosystems Imaging Systems Biology SLAC Mesoscale...

  15. Department of Engineering Technology Technology Education

    E-Print Network [OSTI]

    Bieber, Michael

    Department of Engineering Technology Technology Education A Teacher Education Program New Jersey Institute of Technology #12;WHAT WILL YOU LEARN? Technology teachers teach problem-based learning utilizing math, science and technology principles. Technological studies involve students: Designing

  16. Technology certification and technology acceptance: Promoting interstate cooperation and market development for innovative technologies

    SciTech Connect (OSTI)

    Brockbank, B.R.

    1995-03-01T23:59:59.000Z

    In the past two years, public and private efforts to promote development and deployment of innovative environmental technologies have shifted from the analysis of barriers to the implementation of a variety of initiatives aimed at surmounting those barriers. Particular attention has been directed at (1) streamlining fragmented technology acceptance processes within and among the states, and (2) alleviating disincentives, created by inadequate or unverified technology cost and performance data, for users and regulators to choose innovative technologies. Market fragmentation currently imposes significant cost burdens on technology developers and inhibits the investment of private capital in environmental technology companies. Among the responses to these problems are state and federal technology certification/validation programs, efforts to standardize cost/performance data reporting, and initiatives aimed at promoting interstate cooperation in technology testing and evaluation. This paper reviews the current status of these initiatives, identifies critical challenges to their success, and recommends strategies for addressing those challenges.

  17. Applying reservoir characterization technology

    SciTech Connect (OSTI)

    Lake, L.W.

    1994-12-31T23:59:59.000Z

    While reservoir characterization is an old discipline, only within the last 10 years have engineers and scientists been able to make quantitative descriptions, due mostly to improvements in high-resolution computational power, sophisticated graphics, and geostatistics. This paper summarizes what has been learned during the past decade by using these technologies.

  18. Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review

    SciTech Connect (OSTI)

    Thiel, Elizabeth Chilcote

    2002-05-01T23:59:59.000Z

    The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas and nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).

  19. Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review

    SciTech Connect (OSTI)

    Thiel, E.C.; Fuhrman, P.W.

    2002-05-30T23:59:59.000Z

    The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas and nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).

  20. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2005-11-04T23:59:59.000Z

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  1. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-05-15T23:59:59.000Z

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  2. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-09-30T23:59:59.000Z

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  3. Laser Programs, the first 25 years, 1972-1997

    SciTech Connect (OSTI)

    Campbell, E.M.

    1998-03-04T23:59:59.000Z

    Welcome to Laser Programs. I am pleased that you can share in the excitement of 25 years of history since we began as a small program of 125 people to our current status as a world premier laser and applied science research team of over 1700 members. It is fitting that this program, which was founded on the dream of developing inertial confinement fusion technology, should celebrate this anniversary the same year that the ground is broken for the National Ignition Facility (NIF). Also at the same time, we are feeling the excitement of moving forward the Atomic Vapor Laser Isotope Separation (AVLIS) technology toward private sector use and developing many alternate scientific applications and technologies derived from our core programs. It is through the hard work of many dedicated scientists, engineers, technicians, and administrative team members that we have been able to accomplish the remarkable internationally recognized achievements highlighted here. I hope this brochure will help you enjoy the opportunity to share in the celebration and pride of our scientific accomplishments; state-of-the-art facilities; and diligent, dedicated people that together make our Laser Programs and Lawrence Livermore National Laboratory the best in the world.

  4. Distributed Energy Technology Characterization (Desiccant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization (Desiccant Technologies), January 2004 Distributed Energy Technology Characterization (Desiccant Technologies), January 2004 The purpose of this report is to...

  5. Robotics Technology Development Program. Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The Robotics Technology Development Program (RTDP) is a ``needs-driven`` effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination & Dismantlement (D&D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D&D and CC&AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

  6. The Effect of Government Actions on Environmental Technology Innovation: Applications to the Integrated Assessment of Carbon Sequestration Technologies

    SciTech Connect (OSTI)

    Rubin, E. S.; Hounshell, D. A.; Yeh, S.; Taylor, M.; Schrattenholzer, L.; Riahi, K.; Barreto, L.; Rao, S.

    2004-01-15T23:59:59.000Z

    This project seeks to improve the ability of integrated assessment models (IA) to incorporate changes in technology, especially environmental technologies, cost and performance over time. In this report, we present results of research that examines past experience in controlling other major power plant emissions that might serve as a reasonable guide to future rates of technological progress in carbon capture and sequestration (CCS) systems. In particular, we focus on U.S. and worldwide experience with sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) control technologies over the past 30 years, and derive empirical learning rates for these technologies. The patterns of technology innovation are captured by our analysis of patent activities and trends of cost reduction over time. Overall, we found learning rates of 11% for the capital costs of flue gas desulfurization (FGD) system for SO{sub 2} control, and 13% for selective catalytic reduction (SCR) systems for NO{sub x} control. We explore the key factors responsible for the observed trends, especially the development of regulatory policies for SO{sub 2} and NO{sub x} control, and their implications for environmental control technology innovation.

  7. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Technologies Annual Progress Report Vehicle Technologies Office: 2014 Electric Drive Technologies Annual Progress Report The Electric Drive Technologies research and...

  8. SIMON FRASER FISCAL YEAR

    E-Print Network [OSTI]

    ......................................................................... 4 Media Services ......................................................................................... 5 TECHNOLOGICAL AND DIGITAL SERVICES ............................................................................... 5 Digital Services

  9. After 5 Years of Service, NERSC's Franklin Retires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are some science highlights from five years in production: Refining and Designing Clean Coal Technology This is an image of predicted coal particle concentration in a coal...

  10. Manufacturing Environment in the Year 2000

    E-Print Network [OSTI]

    Slautterback, W. H.

    1985-01-01T23:59:59.000Z

    Manufacturing will change more in the next 15 years than it has in the last 75 years. The reasons are clear ... survival and technology. Unless U.S. companies can compete in a world economy on price, quality, design and delivery, our companies...

  11. Short-Term and Long-Term Technology Needs/Matching Status at Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    S. L. Claggett

    1999-12-01T23:59:59.000Z

    This report identifies potential technology deployment opportunities for the Environmental Management (EM) programs at the Idaho National Engineering and Environmental Laboratory (INEEL). The focus is on identifying candidates for Accelerated Site Technology Deployment (ASTD) proposals within the Environmental Restoration and Waste Management areas. The 86 technology needs on the Site Technology Coordination Group list were verified in the field. Six additional needs were found, and one listed need was no longer required. Potential technology matches were identified and then investigated for applicability, maturity, cost, and performance. Where promising, information on the technologies was provided to INEEL managers for evaluation. Eleven potential ASTD projected were identified, seven for near-term application and four for application within the next five years.

  12. Technology and international climate policy

    SciTech Connect (OSTI)

    Clarke, Leon; Calvin, Kate; Edmonds, James A.; Kyle, Page; Wise, Marshall

    2009-05-01T23:59:59.000Z

    Both the nature of international climate policy architectures and the development and diffusion of new energy technologies could dramatically influence future costs of reducing global emissions of greenhouse gases. This paper explores the implications of interactions between technology availability and performance and international policy architectures for technology choice and the social cost of limiting atmospheric CO2 concentrations to 500 ppm by the year 2095. Key issues explored in the paper include the role of bioenergy production with CO2 capture and storage (CCS), overshoot concentration pathways, and the sensitivity of mitigation costs to policy and technology.

  13. Active, Non-Intrusive Inspection Technologies for Homeland Defense

    SciTech Connect (OSTI)

    James L. Jones

    2003-06-01T23:59:59.000Z

    Active, non-intrusive inspection or interrogation technologies have been used for 100 years - with the primary focus being radiographic imaging. During the last 50 years, various active interrogation systems have been investigated and most have revealed many unique and interesting capabilities and advantages that have already benefited the general public. Unfortunately, except for medical and specific industrial applications, these unique capabilities have not been widely adopted, largely due to the complexity of the technology, the overconfident reliance on passive detection systems to handle most challenges, and the unrealistic public concerns regarding radiation safety issues for a given active inspection deployment. The unique homeland security challenges facing the United States today are inviting more "out-of-the-box" solutions and are demanding the effective technological solutions that only active interrogation systems can provide. While revolutionary new solutions are always desired, these technology advancements are rare, and when found, usually take a long time to fully understand and implement for a given application. What's becoming more evident is that focusing on under-developed, but well-understood, active inspection technologies can provide many of the needed "out-of-the-box" solutions. This paper presents a brief historical overview of active interrogation. It identifies some of the major homeland defense challenges being confronted and the commercial and research technologies presently available and being pursued. Finally, the paper addresses the role of the Idaho National Engineering and Environmental Laboratory and its partner, the Idaho Accelerator Center at Idaho State University, in promoting and developing active inspection technologies for homeland defense.

  14. FUEL CELL TECHNOLOGIES PROGRAM Technologies

    E-Print Network [OSTI]

    and fuel cells offer great promise for our energy future. Fuel cell vehicles are not yet commercially, such as a hydrogen fueling station or hydrogen fuel cell vehicle. Technology validation does not certify, and the Federal Government to evaluate hydrogen fuel cell vehicle and infrastructure technologies together in real

  15. RSIC after 20 years: a look back and a look ahead

    SciTech Connect (OSTI)

    Maskewitz, B.F.; Roussin, R.W.; Trubev, D.K.

    1983-01-01T23:59:59.000Z

    On the occasion of RSIC's 20th anniversary year, this review includes highlights and lessons learned. In June 1963, the first RSIC Newsletter was published, and information analyses procedures and practices were initiated. Evidence indicates that RSIC served for 20 years as the focal point for the exchange and transfer of radiation transport technology and contributed to the advancement of the state of the art. The original concept is found to be sound: operate an information analysis center by collecting, organizing, evaluating, and analyzing all relevant information and making the information available in a form readily useful to scientists and engineers. Computing technology, a computer-based literature information system, and an advisory service remain important elements of the center. Continuing interaction between the center, developers, and users of information products and services has been a key to RSIC success. A look to the future reflects optimism.

  16. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Swanson, Michael; Henderson, Ann

    2012-04-01T23:59:59.000Z

    The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPEs technology refines coal by employing a novel catalyst to crack the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild catalytic gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPEs catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to fluidize the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in near-zero hazardous air or water pollution. This technology would also be conducive to the efficient coproduction of methane and hydrogen while also generating a relatively pure CO{sub 2} stream suitable for enhanced oil recovery (EOR) or sequestration. Specific results of bench-scale testing in the 4- to 38-lb/hr range in the EERC pilot system demonstrated high methane yields approaching 15 mol%, with high hydrogen yields approaching 50%. This was compared to an existing catalytic gasification model developed by GPE for its process. Long-term operation was demonstrated on both Powder River Basin subbituminous coal and on petcoke feedstocks utilizing oxygen injection without creating significant bed agglomeration. Carbon conversion was greater than 80% while operating at temperatures less than 1400F, even with the shorter-than-desired reactor height. Initial designs for the GPE gasification concept called for a height that could not be accommodated by the EERC pilot facility. More gas-phase residence time should allow the syngas to be converted even more to methane. Another goal of producing significant quantities of highly concentrated catalyzed char for catalyst recovery and material handling studies was also successful. A PdCu membrane was also successfully tested and demonstrated to produce 2.54 lb/day of hydrogen permeate, exceeding the desired hydrogen permeate production rate of 2.0 lb/day while being tested on actual coal-derived syngas that had been cleaned with advanced warm-gas cleanup systems. The membranes did not appear to suffer any performance degradation after exposure to the cleaned, warm syngas over a nominal 100-hour test.

  17. Einstein's Miraculous Year

    E-Print Network [OSTI]

    Vasant Natarajan; V Balakrishnan; N Mukunda

    2013-07-12T23:59:59.000Z

    With each passing year, the young Albert Einstein's achievements in physics in the year 1905 seem to be ever more miraculous. We describe why the centenary of this remarkable year is worthy of celebration.

  18. The Institute for Integrated Cell-Material Sciences (iCeMS) was founded in 2007 as part of a government program called the World Premier International

    E-Print Network [OSTI]

    Takada, Shoji

    , Sports, Science and Technology (MEXT) of Japan. The fund provides a total of 6 million dollars per year science. iCeMS is one of nine WPI centers throughout Japan and boasts eighteen world-renowned principal investigators, who are leading experts in cell biology, chemistry, and physics. Notably, Kyoto University Center

  19. Year of last Year of last

    E-Print Network [OSTI]

    Herring 2003 2002 Transboundary Resource Assessment Committee Monkfish Northern Monkfish 2003 2003FMP Stock Year of last assessment Year of last data used in last stock assessment Source document for stock assessment Atlantic Sea Scallop Atlantic Sea Scallop 2000 2000 Stock Assessment Workshop (SAW

  20. Ceramic Technology Project

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  1. Technology Application Centers: Facilitating Technology Transfer

    E-Print Network [OSTI]

    Kuhel, G. J.

    's approach to technology deployment seeks to blend an industrial customer's priorities with the utility's marketing and customer service objectives. A&C Enercom sees technology deployment as the sum of an equation: technology deployment equals technology...

  2. ONGOING INVESTIGATION OF THE EFFECT THAT DRUGSTORE BEETLES HAVE ON CELOTEX ASSEMBLIES FOUND WITHIN RADIOACTIVE MATERIAL PACKAGINGS

    SciTech Connect (OSTI)

    Loftin, B.

    2009-06-08T23:59:59.000Z

    During normal operations at the Department of Energy's Hanford Site in Hanford, WA, drugstore beetles were found within the fiberboard subassemblies of two 9975 Shipping Packages. The Department of Energy's Packaging Certification Program (EM-60) directed a thorough investigation to determine if the drugstore beetles were causing damage that would be detrimental to the safety performance of the Celotex. The Savannah River National Laboratory is continuing to conduct the investigation with entomological expertise being provided by Clemson University. The outcome from the investigation conducted over the previous year was that no discernible damage had been caused by the drugstore beetles. One of the two packages has been essentially untouched over the past year and has only been opened to visually inspect for additional damage. This paper will provide details and results of the ongoing investigation of that package.

  3. Calendar Year 2009

    Broader source: Energy.gov (indexed) [DOE]

    Department has taken a lead role in the implementation and execution of the energy technology initiatives related to the American Recovery and Reinvestment Act of 2009 (Recovery...

  4. Technology and Climate Trends in PV Module Degradation (Presentation)

    SciTech Connect (OSTI)

    Jordan, D.; Wohlgemuth, J.; Kurtz, S.

    2012-10-01T23:59:59.000Z

    To sustain the commercial success of photovoltaic (PV) technology it is vital to know how power output decreases with time. Unfortunately, it can take years to accurately measure the long-term degradation of new products, but past experience on older products can provide a basis for prediction of degradation rates of new products. An extensive search resulted in more than 2000 reported degradation rates with more than 1100 reported rates that include some or all IV parameters. In this presentation we discuss how the details of the degradation data give clues about the degradation mechanisms and how they depend on technology and climate zones as well as how they affect current and voltage differently. The largest contributor to maximum power decline for crystalline Si technologies is short circuit current (or maximum current) degradation and to a lesser degree loss in fill factor. Thin-film technologies are characterized by a much higher contribution from fill factor particularly for humid climates. Crystalline Si technologies in hot & humid climates also display a higher probability to show a mixture of losses (not just short circuit current losses) compared to other climates. The distribution for the module I-V parameters (electrical mismatch) was found to change with field exposure. The distributions not only widened but also developed a tail at the lower end, skewing the distribution.

  5. Technology and Climate Trends in PV Module Degradation: Preprint

    SciTech Connect (OSTI)

    Jordan, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.

    2012-10-01T23:59:59.000Z

    To sustain the commercial success of photovoltaic (PV) technology it is vital to know how power output decreases with time. Unfortunately, it can take years to accurately measure the long-term degradation of new products, but past experience on older products can provide a basis for prediction of degradation rates of new products. An extensive search resulted in more than 2000 reported degradation rates with more than 1100 reported rates that include some or all IV parameters. In this paper we discuss how the details of the degradation data give clues about the degradation mechanisms and how they depend on technology and climate zones as well as how they affect current and voltage differently. The largest contributor to maximum power decline for crystalline Si technologies is short circuit current (or maximum current) degradation and to a lesser degree loss in fill factor. Thin-film technologies are characterized by a much higher contribution from fill factor particularly for humid climates. Crystalline Si technologies in hot & humid climates also display a higher probability to show a mixture of losses (not just short circuit current losses) compared to other climates. The distribution for the module I-V parameters (electrical mismatch) was found to change with field exposure. The distributions not only widened but also developed a tail at the lower end, skewing the distribution.

  6. FEMP/NTDP Technology Focus New Technology

    E-Print Network [OSTI]

    FEMP/NTDP Technology Focus New Technology Demonstration Program Technology Focus FEMPFederal Energy Management Program Trends in Energy Management Technology: BCS Integration Technologies Open Communications into a complete EMCIS. The first article [1] covered enabling technologies for emerging energy management systems

  7. Melyrid beetles (Choresine): A putative source for the batrachotoxin alkaloids found in poison-dart frogs

    E-Print Network [OSTI]

    Melyrid beetles (Choresine): A putative source for the batrachotoxin alkaloids found in poison a Colombian poison-dart frog and later found in certain passerine birds of New Guinea. Neither vertebrate in the mid-1960s in skin extracts from a Colombian poison-dart frog (family Dendrobatidae) (1, 2). The name

  8. Green treefrogs are most commonly found in bushes and grasses near water (for instance the

    E-Print Network [OSTI]

    Slatton, Clint

    Green treefrogs are most commonly found in bushes and grasses near water (for instance the NATL and are a common feature of any humid or rainy evening. Green treefrogs are most commonly found in bushes.5 inches Identification: Coloration may vary greatly, from dark brown to bright, vibrant green, with a long

  9. York University was founded in March 1959, and is now Canada's 3rd

    E-Print Network [OSTI]

    FOUNDED York University was founded in March 1959, and is now Canada's 3rd largest university campuses located in the heart of the Greater Toronto Area (GTA), Canada's largest metropolis. STUDENTS · 55 and social life at York is one of the richest in Canada. In 2010, the York University Lions men's soccer team

  10. (Environmental technology)

    SciTech Connect (OSTI)

    Boston, H.L.

    1990-10-12T23:59:59.000Z

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  11. SELECTING INFORMATION TECHNOLOGY SECURITY

    E-Print Network [OSTI]

    April 2004 SELECTING INFORMATION TECHNOLOGY SECURITY PRODUCTS Shirley Radack, Editor Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Information technology security prod ucts are essential to better secure infor mation technology (IT) systems

  12. Water Power Program: Marine and Hydrokinetic Technologies

    Broader source: Energy.gov [DOE]

    Pamphlet that describes the Office of EERE's Water Power Program in fiscal year 2009, including the fiscal year 2009 funding opportunities, the Small Business Innovation Research and Small Business Technology Transfer Programs, the U.S. hydrodynamic testing facilities, and the fiscal year 2008 Advanced Water Projects awards.

  13. INDIUM--2003 36.1 References that include a section mark () are found in the Internet

    E-Print Network [OSTI]

    . Crews, statistical assistant, and the world production table was prepared by Glenn J. Wallace energy savings, various national governments have targeted solid-state technologies, which include light-emitting diodes (LEDs), for increased research funding and development. A proposal for a program to fund solid

  14. Final Year Projects Class of 2012

    E-Print Network [OSTI]

    Humphrys, Mark

    Engineering Page 10 Message from our Sponsor SAP Page 13 Project Areas/Technology Categories Page 15 Operating Systems/Programmes Page 16 Project Index Page 17-18 Projects 1-82 Page 20-101 Companies Sponsoring PrizesFinal Year Projects Class of 2012 schools of computing, electronic engineering and mechanical

  15. Academic year 2014-2015 Study Programme

    E-Print Network [OSTI]

    90 3 Radiation Protection Hubert Thierens GE05 3 1 1 1 30 90 4 Nuclear Reactor Theory Peter Baeten MT2CRDT RefNo. Contact StudyLecturer (dept.) 1 Advanced Nuclear Reactor Physics and Technology Hamid Valid as from the academic year 2014-2015 Master of Science in Nuclear Engineering (v2) Language

  16. Natural Gas Multi-Year Program Plan

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    This document comprises the Department of Energy (DOE) Natural Gas Multi-Year Program Plan, and is a follow-up to the `Natural Gas Strategic Plan and Program Crosscut Plans,` dated July 1995. DOE`s natural gas programs are aimed at simultaneously meeting our national energy needs, reducing oil imports, protecting our environment, and improving our economy. The Natural Gas Multi-Year Program Plan represents a Department-wide effort on expanded development and use of natural gas and defines Federal government and US industry roles in partnering to accomplish defined strategic goals. The four overarching goals of the Natural Gas Program are to: (1) foster development of advanced natural gas technologies, (2) encourage adoption of advanced natural gas technologies in new and existing markets, (3) support removal of policy impediments to natural gas use in new and existing markets, and (4) foster technologies and policies to maximize environmental benefits of natural gas use.

  17. Roberta Jaffe, Founding Director, Life Lab Science Program, Co-Founder of Community Agroecology Network

    E-Print Network [OSTI]

    Farmer, Ellen

    2010-01-01T23:59:59.000Z

    into the dog food? The rat poison that got into the dog fooda chemical used in rat poison, was found in recalled pethundreds of others. The poison was added to wheat Robbie

  18. A Ship Incised on Slate Found Near Bodega, Sonoma County, California

    E-Print Network [OSTI]

    Werner, Roger H

    1980-01-01T23:59:59.000Z

    locally occurring light black slate, with sharp and crumblyREPORTS A Ship Incised on Slate Found Near Bodega, Sonomaa small, broken piece of slate (Fig. 1), incised with the

  19. KOI 1224: A FOURTH BLOATED HOT WHITE DWARF COMPANION FOUND WITH KEPLER

    E-Print Network [OSTI]

    Breton, R. P.

    We present an analysis and interpretation of the Kepler binary system KOI 1224. This is the fourth binary found with Kepler that consists of a thermally bloated, hot white dwarf in a close orbit with a more or less normal ...

  20. Nanotechnology at Maryland Nanotechnologies technologies using the special

    E-Print Network [OSTI]

    Hill, Wendell T.

    Nanotechnology at Maryland Nanotechnologies technologies using the special properties the possibilities of nanotechnology. The center, led by founding Director Gary Rubloff, is an interdisciplinary-of-the-art facilities, guides nanotechnology ducation initiatives, and promotes technology transfer from the university

  1. Secretary Moniz's First Year

    Broader source: Energy.gov [DOE]

    We're looking back at some of the biggest moments from Energy Secretary Ernest Moniz's first year in office.

  2. f the approximately 500 crayfishes (some times called crawdads or crawfish) found on

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    plants, other inverte- brates, and fish. Crayfish are a primary food for fish (bass), water birds (herons,000 tons of cray- fish, with a value of $50 million, are farmed in ponds or trapped in wetlands each year

  3. Fuel Cell Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    activities to help implement and promote commercial and pre-commercial hydrogen and fuel cell systems in real world operating environments. These activities also provide...

  4. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    final point of use and those required to load the energy carrier directly onto a given fuel cell system. Successful commercialization of hydrogen-fueled fuel cell systems,...

  5. Fuel Cell Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    under investigation by the program. The systems applications include hydrogen fuel cell energy systems for on-road light duty vehicles; material and freight handling...

  6. Five-Year Technology Development Strategic Plan Targets EM's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    their applications to current Office of D&D and Facility Engineering needs, and the EM Robot Challenge, an initiative to give robotic companies an opportunity to demonstrate...

  7. Student Trainee (Information Technology)- Intern NTE 1-year

    Broader source: Energy.gov [DOE]

    Where would I be working? Western Area Power Administration Upper Great Plains Region Power Systems Operations, Operations Computer Support Division (B4300). Duty Station, Watertown , SD The...

  8. Section One, Bioenergy Technologies Office Multi-Year Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    carbon emissions from energy production and consumption Reduce dependence on foreign oil Promote the use of diverse, domestically produced, and sustainable energy...

  9. Section One, Bioenergy Technologies Office Multi-Year Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    transform our renewable biomass resources into commercially viable, high- performance biofuels, bioproducts, and biopower through targeted research, development, and demonstration...

  10. Section Two, Bioenergy Technologies Office Multi-Year Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    solutions, and developing the scientific and engineering underpinnings of emerging biofuels, bioproducts, and biopower industries. Near- to mid-term R&D is focused on moving...

  11. Bibliography, Bioenergy Technologies Office Multi-Year Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U. S. Congress: Senate Energy and Natural Resources Committee, Oversight Hearing on Oil Shale Development Efforts, 109th Congress, 1st session, April 12, 2005. U.S. Department...

  12. Bibliography, Bioenergy Technologies Office Multi-Year Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U. S. Congress: Senate Energy and Natural Resources Committee, Oversight Hearing on Oil Shale Development Efforts, 109th Congress, 1st session, April 12, 2005. Bibliography Last...

  13. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2008 Executive Summary Executive Summary Geothermal resources are available across the United States at varying depths, providing a ubiquitous buried treasure of domestic renewable...

  14. Office of Science and Technology & International Year End Report - 2005

    E-Print Network [OSTI]

    Bodvarsson, G.S.

    2005-01-01T23:59:59.000Z

    Atomic Energy of Canada Limited (AECL). The Director of thesolutions (see Ikeda, AECL) Figure 2. Analytical model forof chlo- ride concentration. AECL-10971, COG-95-279, 1996.

  15. Fuel Cell Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    storage medium for intermittent renewable electricity from wind and solar. Includes optimization of electrical pathway (power electronics) between renewable source and...

  16. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    power. In these scenarios, hydrogen fuel could be produced for use: (1) in stationary fuel cells to produce electricity and heat and (2) as a transportation fuel in fuel cell...

  17. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Currently, hydrogen production is capital-intensive. Widespread adoption of hydrogen fuel cells requires consumers to have access to cost-competitive hydrogen. Steam methane...

  18. China Technology Center Celebrates 15 Years | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization ofChemistry and Figure 1.Chin GuokChina

  19. Fuel Cell Technologies Office Multi-Year Research, Development, and

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FYWednesday,

  20. Geothermal Technologies Program Multi-Year Research, Development and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: Congestion StudyForecasting.EnergyAlthoughYEARHollett

  1. ORNL Transportation Technology Program - Annual Report Fiscal Year 2008

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Order No.of Energy OPCOPSAID|65:document

  2. Model Year 2006: Alternative Fuel and Advanced Technology Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'. William Hirst Hirst Enterprises,MODEL

  3. Fuel Cell Technologies Office Multi-Year Research, Development, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment of Energy's2ofFuel CellEnergy About the2015

  4. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartmentCounsel LawDemonstration Plan: Appendices |

  5. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartmentCounsel LawDemonstration Plan: Appendices

  6. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartmentCounsel LawDemonstration Plan:

  7. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartmentCounsel LawDemonstration Plan:Demonstration Plan:

  8. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartmentCounsel LawDemonstration Plan:Demonstration

  9. The Geothermal Technologies Office Congratulates this Year's GEA Honors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartmentTheEnergy TheClean The Future

  10. Bioenergy Technologies Office Fiscal Year 2014 Annual Report | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplicationCommittee |FY14 Budget At-a-Glanceof Energy Fiscal

  11. Venus Technology Plan Venus Technology Plan

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Venus Technology Plan May 2014 #12; ii Venus Technology Plan At the Venus Exploration Survey priorities, and (3) develop a Technology Plan for future Venus missions (after a Technology Forum at VEXAG Meeting 11 in November 2013). Here, we present the 2014 Venus Technology Plan

  12. Fuel Cell Technologies Office Science and Technology Policy Fellowship...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office Science and Technology Policy Fellowship Opportunities Available Fuel Cell Technologies Office Science and Technology Policy Fellowship Opportunities...

  13. Technology and the Box

    E-Print Network [OSTI]

    Maitland, Padma

    2013-01-01T23:59:59.000Z

    its explorations of technology in partnership with radicalPadma Maitland Technology and the Box The room is thedisciplines. The theme of Technology and the Box emerged

  14. Hydrogen Technologies Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  15. Innovation and Transportation's Technologies

    E-Print Network [OSTI]

    Garrison, William L.

    2001-01-01T23:59:59.000Z

    decision making. Innovation and technology lock-in hasStage 1 imagine the innovation and technology developmentof emphasizing innovation and technology development. Pull

  16. -Injection Technology -Geothermal Reservoir Engineering

    E-Print Network [OSTI]

    Stanford University

    For the Period October 1, 1985 through September 30, 1986 DE-ASO7-84ID12529 Stanford Geothermal Program was initiated in fiscal year 1981. The report covers the period from October 1, 1985 through September 30, 1986SGP-TR-107 - Injection Technology - Geothermal Reservoir Engineering Research at Stanford Principal

  17. The possible symbiotic role of proteolytic and cellulolytic bacteria found in the gut of Limnoria

    E-Print Network [OSTI]

    Traganza, Eugene Dewees

    1959-01-01T23:59:59.000Z

    THE POSSIBLE SYMBIOTIC ROLE OF PROTEOLYTIC AND CELLVLOLYTIC BACTERIA FOUND IN TBE GV1' OF LIINORIA A Thesis By Eugene Dewees Traganza ~ ~ I Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE January 1959 Ma)or Sub5ect: Biological Oceanography THE POSSIBLE SYMBIO1'IC ROLE OF PROTEOLYTIC AND CELLULOLYTIC BACTERIA FOUND IN THE GU1' OF Like(RIA A Thesis By Eugene Dewees...

  18. TECHNOLOGY FORUM

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department of Energy 51:Cross-Site66 -Topic Groups TECHNOLOGY

  19. Annual Report Fiscal Year 2013

    E-Print Network [OSTI]

    Year in Review.............................................................. 8 Academic Accomplishments

  20. Biomass Energy Resources and Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    implementing remote energy technologies. Energy Security: Biomass resources are viable renewable energy resources found in almost every location across the U.S. It is a...

  1. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis...

  2. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

  3. Superconducting Magnet Safety Nuclear Magnetic Resonance (NMR) facilities present unique hazards not found in most

    E-Print Network [OSTI]

    Maroncelli, Mark

    Superconducting Magnet Safety Nuclear Magnetic Resonance (NMR) facilities present unique hazards not found in most laboratory environments. The NMR facilities maintain superconducting magnets which have the units. Facility design and installation: Design and installation of a new NMR facility requires a number

  4. Message found in a gravity wave A blast from the past.

    E-Print Network [OSTI]

    Loss, Daniel

    FUTURES Message found in a gravity wave A blast from the past. 664 nature physics | VOL 4 | AUGUST to smack into us very soon -- which is why I'm out here in Maw's pasture spelling out my message with rocks than ever before. I'm taking apart a whole stone wall to write this message, this very narrative

  5. business.rutgers.edu Rutgers, The State University of New Jersey founded 1766 Rutgers Business School

    E-Print Network [OSTI]

    Lin, Xiaodong

    business.rutgers.edu Rutgers, The State University of New Jersey ­ founded 1766 Rutgers Business Business School Rutgers Business School­Newark and New Brunswick (RBS) is an integral part of one--the Association to Advance Collegiate Schools of Business-- a distinction that represents the hallmark

  6. 45Fuel Level in a Spherical Tank Spherical tanks are found in many

    E-Print Network [OSTI]

    45Fuel Level in a Spherical Tank Spherical tanks are found in many different situations, from the storage of cryogenic liquids, to fuel tanks. Under the influence of gravity, or acceleration, the liquid then be designed to measure where the surface of the liquid is, and from this derive h. Problem 1 - Slice the fluid

  7. CITIZEN SCIENCE AT THE SMITHSONIAN Since its founding, the Smithsonian has

    E-Print Network [OSTI]

    Mathis, Wayne N.

    CITIZEN SCIENCE AT THE SMITHSONIAN Since its founding, the Smithsonian has always been dependent of such efforts is known as "Citizen Science." The Cornell University Lab of Ornithology, for example, established a citizen science bird observation data collection program in 1966, with live data input since 1997

  8. The Founding of ALA's Map and Geography Round Table : Looking Back to See the Future

    E-Print Network [OSTI]

    Weimer, Katherine H.

    2011-01-01T23:59:59.000Z

    In 1979, a group of map librarians founded the American Library Associations Map and Geography Round Table (MAGERT). An examination of the organizations creation and early history offers a glimpse into the state of map librarianship at that time...

  9. INTRODUCTION In France, most digitized books in libraries, cannot be found online, except from the French

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    INTRODUCTION In France, most digitized books in libraries, cannot be found online, except from digital library, does not yet allow, other libraries to upload their electronic documents on this platform. These electronic documents will only appear in Gallica if libraries are able to build their own digital library

  10. TITANIUM--2002 79.1 References that include a section mark () are found in the Internet

    E-Print Network [OSTI]

    TITANIUM--2002 79.1 1 References that include a section mark () are found in the Internet References Cited section. TITANIUM By Joseph Gambogi Domestic survey data and tables were prepared by Robin C, international data coordinator. International Corp., Monico Alloys, Inc., SMP Co., and Wogen Titanium Ltd

  11. TITANIUM--2003 78.1 References that include a section mark () are found in the Internet

    E-Print Network [OSTI]

    TITANIUM--2003 78.1 1 References that include a section mark () are found in the Internet References Cited section. TITANIUM By Joseph Gambogi Domestic survey data and tables were prepared by Robin C status to imports of unwrought titanium from Russia and Kazakhstan. Kazakhstan's Ust-Kamenogorsk Titanium

  12. Complete information below if not found on receipt #2 National Drug Code

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    Complete information below if not found on receipt #2 National Drug Code Drug Name___________________________Drug Supply 5. National Drug Code (NDC) 6. Name of drug and strength 7. DAW code (if applicable) 8. Amount paid Tape Prescription Receipt #1 Here No Staples DRUG CLAIM FORM 1. Please type or print clearly

  13. Response of a Vertical Axis Wind Turbine to Time Varying Wind Conditions found within the Urban

    E-Print Network [OSTI]

    Tullis, Stephen

    Response of a Vertical Axis Wind Turbine to Time Varying Wind Conditions found within the Urban, 2010 PP 389­401 389 ABSTRACT Experimental testing of a vertical axis wind turbine within the urban of the turbine. Temporal variation of the wind with respect to the direction and velocity fluctuations

  14. TUNGSTEN--2003 79.1 References that include a section mark () are found in the Internet

    E-Print Network [OSTI]

    Stockpile (NDS) and increases in stocks held by U.S. industry. No U.S. tungsten mine production was reported reported in 2001. Salient U.S. tungsten statistics and world tungsten concentrate production for 2003TUNGSTEN--2003 79.1 1 References that include a section mark () are found in the Internet

  15. 2008 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, J.; Davis, S.

    2009-07-01T23:59:59.000Z

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the Department of Energy's (DOE's) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly highway transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop 'leap frog' technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  16. 2010 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, Jacob [U.S. Department of Energy; Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

    2011-06-01T23:59:59.000Z

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  17. Texts and Technology DOCTOR OF PHILOSOPHY

    E-Print Network [OSTI]

    Wu, Shin-Tson

    Texts and Technology DOCTOR OF PHILOSOPHY Admission Deadline Each Year: January 15 To be considered)(*International students only) Inadditiontotheaboveitems,applicantsmustalsosubmitto: TEXTS AND TECHNOLOGY UCF COLLEGE I S S I O N R E Q U I R E M E N T S P R O G R A M O F S T U D Y TEXTS AND TECHNOLOGY 57 hrs Core

  18. Annual Waste Minimization Summary Report, Calendar Year 2008

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-02-01T23:59:59.000Z

    This report summarizes the waste minimization efforts undertaken by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), during calendar year 2008.

  19. BETO Announces Updated Multi-Year Program Plan: November 2014...

    Broader source: Energy.gov (indexed) [DOE]

    Bioenergy Technologies Office is pleased to announce the release of a newly updated Multi-Year Program Plan (MYPP). This MYPP sets forth the goals and structure of the Bioenergy...

  20. Calendar Year 1999

    Broader source: Energy.gov (indexed) [DOE]

    > Year1999NEFINA1.pdf" class"">Inspection Report: INS-O-00-02

  1. HPSS Yearly Network Traffic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    growth in network traffic to storage over the years. Network Traffic Growth Network Distribution 2010 Network Distribution 2010 Network Distribution 2009 Network Distribution...

  2. Vehicle Technologies Office: AVTA - Medium and Heavy Duty Vehicle...

    Energy Savers [EERE]

    Application Technology Manufacturer Fleet Years Collected Delivery Trucks All Electric Smith Newton Various 2012-2014 Class 8 Diesel Tractors Hybrid Electric Kenworth and...

  3. FIEA Advancing Wood Technology Forest Industry Engineering Scholarship

    E-Print Network [OSTI]

    Hickman, Mark

    year. Forestry and wood products companies, key product suppliers, researchers and technology qualification. This FIEA Scholarship has also been set up to encourage and support an outstanding student

  4. DIRECTOR'S MESSAGE The Research Laboratory of Electronics (RLE), founded in 1946, is

    E-Print Network [OSTI]

    -2010 academic year witnessed the creation of RLE's seventh research theme: Energy, Power, and Electromagnetics million dollar Energy Frontier Research Center sponsored by the Department of Energy and directed the 2001 Nobel Prize in Physics for his work on Bose-Einstein condensation. Major space renovations have

  5. The Armagh Observatory was founded and endowed by Archbishop Richard Robinson, who wished to establish

    E-Print Network [OSTI]

    , into public walk-ways (now the Mall). In 1789, at more than 80 years of age, he commenced the construction watched Comet Hale-Bopp with it. Calver Telescope The Calver telescope was originally made for an English research interests lie in solar system astronomy and the dynamics of bodies such as comets and asteroids

  6. Found: Life on Earth That Could Exist on Mars January 17, 2002

    E-Print Network [OSTI]

    Lovley, Derek

    . Microbes like these have been the subject of speculation for 30 years. Finding them, however, was another depths of a geothermal hot spring in Idaho have discovered a unique community of microbes that thrive, home to 80 percent of the world's geysers and half of its geothermal features. They were looking

  7. General com Technology community

    E-Print Network [OSTI]

    Ferrara, Katherine W.

    Campus IT General com m unity Technology community ITsystem owners Campus Council for Information Technology (CCFIT) ~30 members Advisory evaluation and review role Input from faculty, staff, students formal representation on steering team and subcommittees Technology Support Program Technology support

  8. CSIR TECHNOLOGY AWARDS -2013

    E-Print Network [OSTI]

    Jayaram, Bhyravabotla

    CSIR TECHNOLOGY AWARDS - 2013 GUIDELINES & PROFORMAE FOR NOMINATIONS Planning and Performance 2013 #12;CSIR TECHNOLOGY AWARDS BRIEF DETAILS ,,CSIR Technology Awards were instituted in 1990 to encourage multi-disciplinary in- house team efforts and external interaction for technology development

  9. Northwest Regional Technology Center

    E-Print Network [OSTI]

    Northwest Regional Technology Center for Homeland Security The Northwest Regional Technology Center and deployment of technologies that are effective homeland security solutions for the region, and accelerate technology transfer to the national user community. Foster a collaborative spirit across agencies

  10. Applied Science and Technology Task Order Fiscal Year 2008 Year-End Summary

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplication of SyntheticPowerManagement Inc.Using LEDs

  11. Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplication of SyntheticPowerManagement Inc.Using LEDsReport |

  12. Applied Science and Technology Task Order Fiscal Year 2010 Year-End Summary

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplication of SyntheticPowerManagement Inc.Using LEDsReport |Report

  13. Applied Science and Technology Task Order Fiscal Year 2011 Year-End Summary

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplication of SyntheticPowerManagement Inc.Using LEDsReport

  14. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01T23:59:59.000Z

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

  15. Technology Deployment Annual Report 2009

    SciTech Connect (OSTI)

    Keith Arterburn

    2009-12-01T23:59:59.000Z

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties.

  16. Solid-State Lighting R&D Multi-Year Program Plan | Department...

    Office of Environmental Management (EM)

    several years, and includes an overview of the status of SSL technology, the current DOE SSL portfolio, and the technology R&D plan. (104 pages, April 2014-Updated May 2014)...

  17. Final Year Project Report

    SciTech Connect (OSTI)

    Hubsch, Tristan [Howard University

    2013-06-20T23:59:59.000Z

    In the last years of this eighteen-year grant project, the research efforts have focused mostly on the study of off-shell representations of supersymmetry, both on the worldline and on the world- sheet, i.e., both in supersymmetric quantum mechanics and in supersymmetric field theory in 1+1-dimensional spacetime.

  18. NIST 3-Year Programmatic Plan

    E-Print Network [OSTI]

    (cybersecurity and cloud computing). As new technologies develop and evolve,NIST's measurement research emerging technology areas through the NIST Center for Neutron Resea

  19. Has a standard model solution to the solar neutrino problem been found?

    E-Print Network [OSTI]

    Bahcall, J N; Christensen-Dalsgaard, J; Clevelend, B T; Degl'Innocenti, S; Filippone, B W; Glasner, A; Kavanagh, R W; Koonin, S E; Lande, K; Kanganke, K; Parker, P D; Pinsonneault, M H; Proffitt, C R; Shoppa, T D; John N Bahcall et al

    1994-01-01T23:59:59.000Z

    The claim by Dar and Shaviv that they have found a standard model solution to the solar neutrino problem is based upon an incorrect assumption made in extrapolating nuclear cross sections and the selective use of a small fraction of the nuclear physics and of the neutrino data. In addition, five different solar model codes show that the rate obtained for the chlorine experiment using the Dar-Shaviv stated parameters differs by at least 14 .sigma. from the observed rate.

  20. Has a standard model solution to the solar neutrino problem been found?

    SciTech Connect (OSTI)

    Bahcall, J.N.; Barnes, C.A.; Christensen-Dalsgaard, J.; Cleveland, B.T.; Degl'Innocenti, S.; Filippone, B.W.; Glasner, A.; Kavanagh, R.W.; Koonin, S.E.; Lande, K.; Langanke, K.; Parker, P.D.; Pinsonneault, M.H.; Proffitt, C.R.; Shoppa, T.

    1994-08-01T23:59:59.000Z

    The claim by Dar and Shaviv that they have found a standard model solution to the solar neutrino problem is base upon an incorrect assumption made in extrapolating nuclear cross sections and the selective use of a small fraction of the nuclear physics and of the neutrino data. In addition, five different solar model codes show that the rate obtained for the chlorine experiment using the Dar- Shaviv stated parameters differs by a least 14{sigma} from the observed rate.

  1. Greenhouse gas emission impacts of alternative-fueled vehicles: Near-term vs. long-term technology options

    SciTech Connect (OSTI)

    Wang, M.Q.

    1997-05-20T23:59:59.000Z

    Alternative-fueled vehicle technologies have been promoted and used for reducing petroleum use, urban air pollution, and greenhouse gas emissions. In this paper, greenhouse gas emission impacts of near-term and long-term light-duty alternative-fueled vehicle technologies are evaluated. Near-term technologies, available now, include vehicles fueled with M85 (85% methanol and 15% gasoline by volume), E85 (85% ethanol that is produced from corn and 15% gasoline by volume), compressed natural gas, and liquefied petroleum gas. Long-term technologies, assumed to be available around the year 2010, include battery-powered electric vehicles, hybrid electric vehicles, vehicles fueled with E85 (ethanol produced from biomass), and fuel-cell vehicles fueled with hydrogen or methanol. The near-term technologies are found to have small to moderate effects on vehicle greenhouse gas emissions. On the other hand, the long-term technologies, especially those using renewable energy (such as biomass and solar energy), have great potential for reducing vehicle greenhouse gas emissions. In order to realize this greenhouse gas emission reduction potential, R and D efforts must continue on the long-term technology options so that they can compete successfully with conventional vehicle technology.

  2. Review of encapsulation technologies

    SciTech Connect (OSTI)

    Shaulis, L.

    1996-09-01T23:59:59.000Z

    The use of encapsulation technology to produce a compliant waste form is an outgrowth from existing polymer industry technology and applications. During the past 12 years, the Department of Energy (DOE) has been researching the use of this technology to treat mixed wastes (i.e., containing hazardous and radioactive wastes). The two primary encapsulation techniques are microencapsulation and macroencapsulation. Microencapsulation is the thorough mixing of a binding agent with a powdered waste, such as incinerator ash. Macroencapsulation coats the surface of bulk wastes, such as lead debris. Cement, modified cement, and polyethylene are the binding agents which have been researched the most. Cement and modified cement have been the most commonly used binding agents to date. However, recent research conducted by DOE laboratories have shown that polyethylene is more durable and cost effective than cements. The compressive strength, leachability, resistance to chemical degradation, etc., of polyethylene is significantly greater than that of cement and modified cement. Because higher waste loads can be used with polyethylene encapsulant, the total cost of polyethylene encapsulation is significantly less costly than cement treatment. The only research lacking in the assessment of polyethylene encapsulation treatment for mixed wastes is pilot and full-scale testing with actual waste materials. To date, only simulated wastes have been tested. The Rocky Flats Environmental Technology Site had planned to conduct pilot studies using actual wastes during 1996. This experiment should provide similar results to the previous tests that used simulated wastes. If this hypothesis is validated as anticipated, it will be clear that polyethylene encapsulation should be pursued by DOE to produce compliant waste forms.

  3. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01T23:59:59.000Z

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  4. CMM Technology

    SciTech Connect (OSTI)

    Ward, Robert C.

    2008-10-20T23:59:59.000Z

    This project addressed coordinate measuring machine (CMM) technology and model-based engineering. CMM data analysis and delivery were enhanced through the addition of several machine types to the inspection summary program. CMM hardware and software improvements were made with the purchases of calibration and setup equipment and new model-based software for the creation of inspection programs. Kansas City Plant (KCP) personnel contributed to and influenced the development of dimensional metrology standards. Model-based engineering capabilities were expanded through the development of software for the tolerance analysis of piece parts and for the creation of model-based CMM inspection programs and inspection plans and through the purchase of off-the-shelf software for the tolerance analysis of mechanical assemblies. An obsolete database application used to track jobs in Precision Measurement was replaced by a web-based application with improved query and reporting capabilities. A potential project to address the transformation of the dimensional metrology enterprise at the Kansas City Plant was identified.

  5. Geo energy research and development: technology transfer

    SciTech Connect (OSTI)

    Traeger, R.K.

    1982-03-01T23:59:59.000Z

    Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

  6. Celebrating 50 Years

    E-Print Network [OSTI]

    Miller, Kari

    2007-01-01T23:59:59.000Z

    . This plan suggests many water management strategies to ensure enough water for Texas during drought, including municipal and agricultural conservation, and building reservoirs, wells, and water reuse and desalination plants. ?As the state continues... Convention Center in San Antonio to coincide with the board?s 50th anniversary. The summit will feature speakers on many water- related topics such as desalination, rainwater har- vesting, innovative technology, landscape irrigation, agricultural...

  7. No corrosion caused by coal chlorine found in AFBC pilot scale tests

    SciTech Connect (OSTI)

    Ho, K.; Pan, W.P.; Riley, J.T.; Liu, K.; Smith, S.

    2000-07-01T23:59:59.000Z

    Measurements of deposition and corrosion were made in the freeboard of a 3 m inner diameter pilot scale atmospheric fluidized-bed combustor (AFBC) during seven 1,000-hours tests using coals with chlorine (Cl) contents ranging from 0.026% up to 0.47% and sulfur contents ranging from 0.897{approximately}4.4%. Uncooled coupons of alloys 304, 309, 347 and a cooled tube of A210C medium carbon steel were exposed to the hot flue gases to investigate the effects of different coal compositions on deposition and corrosion behavior, if any. The uncooled coupons were installed at the tope of the freeboard to simulate the superheater tube conditions (1,020--1,100 F surface temperature), while the temperature of the cooled A210C test tube was controlled to match the conditions of the evaporator tubes. Specimens were removed for examination after 250, 500, 750, 1,000 hours of exposure and analyzed for deposit formation and corrosion. No chlorine was found in the corrosion scale or on the metal surfaces after any of the tests. High sulfur contents were found in the outer parts of the deposits, and appeared to be associated with calcium and magnesium suggesting that the fly ash may react further after being deposited on the surface of the metal. It was concluded that the limestone bed in the AFBC not only can capture the sulfur but also can effectively capture chlorine. This effect helps being the Cl in the AFBC flue gas down to a level of <50 ppm which is significantly lower than the 300{approximately}400 ppm expected from combustion of the coal in the absence of limestone. This reduction in chlorine species in the gas phase has possible implications for decreased corrosion problems not only in the freeboard, but also in the cold end of the boiler. No evidence was found in these tests that metal wastage or corrosion was accelerated, either directly or indirectly, by chlorine in the coal.

  8. Identification And Characterization Of The Solids Found In Extraction Contactor SEP-401 In June 2012

    SciTech Connect (OSTI)

    Fondeur, F. F.; Fink, S. D.

    2012-12-10T23:59:59.000Z

    The Modular Caustic-Side Solvent Extraction Unit (MCU) recently conducted an outage that included maintenance on the centrifugal contactors. Operations personnel observed solids or deposits in two contactors and attempted to collect samples for analyses by Savannah River National Laboratory (SRNL). The residues found in Extraction Contactor SEP-401 are a mixture of amorphous silica, aluminosilicate, titanium, and debris from low alloy steel. The solids contain low concentrations of plutonium and strontium. These isotopes are associated with the titanium that came from the monosodium titanate (MST) added in the Actinide Removal Process (ARP) most likely as leached Ti from the MST that precipitated subsequently in MCU. An attempt was also made to obtain samples from the contents of Wash Contactor SEP-702. However, sampling provide ineffective.

  9. Roadmap: Technology Bachelor of Science [AT-BS-TECH

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Technology Bachelor of Science [AT-BS-TECH] College of Applied Engineering, Sustainability and Technology Catalog Year: 20122013 Page 1 of 2 | Last Updated: 1-June-12/JS This roadmap-division hours #12;Roadmap: Technology Bachelor of Science [AT-BS-TECH] College of Applied Engineering

  10. Ris-R-1405(EN) Energy Technologies for Post Kyoto

    E-Print Network [OSTI]

    Ris-R-1405(EN) Energy Technologies for Post Kyoto Targets in the Medium Term Proceedings Ris and trends in energy technologies which may become main contributors to the energy scene in 15 to 20 years Session 7 Session 1: Global or Regional Scenarios and Technology Prospects 15 Session 2: Energy

  11. Roadmap: Radiologic Imaging Sciences -Nuclear Medicine (with AAS Radiologic Technology) -

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Radiologic Imaging Sciences - Nuclear Medicine (with AAS Radiologic Technology) - Bachelor Safety 3 C #12;Roadmap: Radiologic Imaging Sciences - Nuclear Medicine (with AAS Radiologic Technology of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-NMRT] Regional College Catalog Year: 2013-2014 Page 1

  12. Roadmap: Radiologic Imaging Sciences -Nuclear Medicine (with AAS Radiologic Technology) -

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Radiologic Imaging Sciences - Nuclear Medicine (with AAS Radiologic Technology) - Bachelor Imaging Sciences - Nuclear Medicine (with AAS Radiologic Technology) - Bachelor of Radiologic and Imaging of Radiologic and Imaging Sciences Technology [RE-BRIT-RIS-NMRT] Regional College Catalog Year: 2012-2013 Page 1

  13. Master Sustainable Energy Technology 2013 -2014 Thesis office

    E-Print Network [OSTI]

    Master Sustainable Energy Technology 2013 - 2014 Thesis office Internship office Servicedesk Sustainable Energy Technology. Enrolment and un-enrolment +31(0)15 27 84249, csa@tudelft.nl, www-programme Sustainable Energy Technology. The MSc programme takes two years (120 ECTS). During that time, you will attend

  14. Plasma technology directory

    SciTech Connect (OSTI)

    Ward, P.P.; Dybwad, G.L.

    1995-03-01T23:59:59.000Z

    The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

  15. Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology

    E-Print Network [OSTI]

    Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology Fujita LaboratoryTokyo Institute of Technology Tokyo Institute of Technology 231 #12;Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology 2 IT #12;Fujita LaboratoryTokyo Instituteof

  16. Timelines for mitigating methane emissions from energy technologies

    E-Print Network [OSTI]

    Roy, Mandira; Trancik, Jessika E

    2015-01-01T23:59:59.000Z

    Energy technologies emitting differing proportions of methane and carbon dioxide vary in their relative climate impacts over time, due to the different atmospheric lifetimes of the two gases. Standard technology comparisons using the global warming potential (GWP) emissions equivalency metric do not reveal these dynamic impacts, and may not provide the information needed to assess technologies and emissions mitigation opportunities in the context of broader climate policy goals. Here we formulate a portfolio optimization model that incorporates changes in technology impacts as a radiative forcing (RF) stabilization target is approached. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher methane-emitting technologies prior to an optimal switching year, followed by methane-light technologies as the stabilization year approac...

  17. PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program

    E-Print Network [OSTI]

    California at Berkeley, University of

    PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division by the University of California Pavement Research Center. The University of California Pavement Research Center Using innovative research and sound engineering principles to improve pavement structures, materials

  18. SOURCE AND PATHWAY DETERMINATION FOR BERYLLIUM FOUND IN BECHTEL NEVADA NORTH LAS VEGAS FACILITIES

    SciTech Connect (OSTI)

    BECHTEL NEVADA

    2004-07-01T23:59:59.000Z

    In response to the report ''Investigation of Beryllium Exposure Cases Discovered at the North Las Vegas Facility of the National Nuclear Security Administration'', published by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) in August 2003, Bechtel Nevada (BN) President and General Manager Dr. F. A. Tarantino appointed the Beryllium Investigation & Assessment Team (BIAT) to identify both the source and pathway for the beryllium found in the North Las Vegas (NLV) B-Complex. From September 8 to December 18, 2003, the BIAT investigated the pathway for beryllium and determined that a number of locations existed at the Nevada Test Site (NTS) which could have contained sufficient quantities of beryllium to result in contamination if transported. Operations performed in the B-1 Building as a result of characterization activities at the Engine Maintenance, Assembly, and Disassembly (EMAD); Reactor Maintenance, Assembly, and Disassembly (RMAD); Test Cells A and C; and the Central Support Facility in Area 25 had the greatest opportunity for transport of beryllium. Investigative monitoring and sampling was performed at these sites with subsequent transport of sample materials, equipment, and personnel from the NTS to the B-1 Building. The timeline established by the BIAT for potential transport of the beryllium contamination into the B-1 Building was from September 1997 through November 2002. Based on results of recently completed swipe sampling, no evidence of transport of beryllium from test areas has been confirmed. Results less than the DOE beryllium action level of 0.2 ???g/100 cm2 were noted for work support facilities located in Area 25. All of the identified sites in Area 25 worked within the B-1 tenant's residency timeline have been remediated. Legacy contaminants have either been disposed of or capped with clean borrow material. As such, no current opportunity exists for release or spread of beryllium contamination. Historical records indicate that there are locations at the NTS which contain hazardous quantities of beryllium; however, because beryllium was not always considered a contaminant of concern, complete characterization was not performed prior to remediation efforts. Today, it is not practical to characterize Area 25 for beryllium due to the successful remediation. Analysis of sample data collected in B-1 for the BIAT was performed for the purpose of confirming past results and identifying a source of beryllium through the use of markers. The results confirmed the presence of man-made beryllium contamination in the B-1 High Bay at levels consistent with the NNSA Report. No source markers were found that would be associated with NTS historical nuclear rocket or weapons-related operations. Beryllium contamination was identified in the southwest area of the B-1 High Bay in characteristic association with materials handled during historic metal-working operations. Use of source marker analysis suggests a contributor of beryllium found in carpeted areas of the B-Complex may be naturally occurring. Naturally occurring beryllium is not regulated by Title 10 Code of Federal Regulations Part 850 (10 CFR 850) (see Appendix A). No current uncontrolled beryllium source or transport pathways have been identified as available for spread of contamination to uncontrolled areas from the NTS.

  19. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-07-06T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer Workshop in San Francisco, CA; and (6) Identify projects and prepare draft agenda for the fall GSTC Technology Transfer Workshop in Pittsburgh, PA.

  20. Northwestern University Information Technology

    E-Print Network [OSTI]

    Shull, Kenneth R.

    ... Integrated Technology Classrooms Online Lectures Collaborative Course Management Tools ...in any teaching environment Classroom Laptop Mobile Device www.it.northwestern.edu NUITAcademic&ResearchTechnologiesNorthwestern University Information Technology (NUIT) is committed to supporting faculty research

  1. Pellet injection technology

    SciTech Connect (OSTI)

    Combs, S.K. (Oak Ridge National Laboratory, P.O. Box 2009, Oak Ridge, Tennessee 37831-8071 (United States))

    1993-07-01T23:59:59.000Z

    During the last 10 to 15 years, significant progress has been made worldwide in the area of pellet injection technology. This specialized field of research originated as a possible solution to the problem of depositing atoms of fuel deep within magnetically confined, hot plasmas for refueling of fusion power reactors. Using pellet injection systems, frozen macroscopic (millimeter-size) pellets composed of the isotopes of hydrogen are formed, accelerated, and transported to the plasma for fueling. The process and benefits of plasma fueling by this approach have been demonstrated conclusively on a number of toroidal magnetic confinement configurations; consequently, pellet injection is the leading technology for deep fueling of magnetically confined plasmas for controlled thermonuclear fusion research. Hydrogen pellet injection devices operate at very low temperatures ([congruent]10 K) at which solid hydrogen ice can be formed and sustained. Most injectors use conventional pneumatic (light gas gun) or centrifuge (mechanical) acceleration concepts to inject hydrogen or deuterium pellets at speeds of [congruent]1--2 km/s. Pellet injectors that can operate at quasi-steady state (pellet delivery rates of 1--40 Hz) have been developed for long-pulse fueling. The design and operation of injectors with the heaviest hydrogen isotope, tritium, offer some special problems because of tritium's radioactivity. To address these problems, a proof-of-principle experiment was carried out in which tritium pellets were formed and accelerated to speeds of 1.4 km/s. Tritium pellet injection is scheduled on major fusion research devices within the next few years. Several advanced accelerator concepts are under development to increase the pellet velocity. One of these is the two-stage light gas gun, for which speeds of slightly over 4 km/s have already been reported in laboratory experiments with deuterium ice.

  2. Energy and Technology Review

    SciTech Connect (OSTI)

    Quirk, W.J. [ed.

    1993-08-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory was established in 1952 to do research on nuclear weapons and magnetic fusion energy. Since then, we other major programs have been added including laser fusion, and laser isotope separation, biomedical and environmental science, strategic defense and applied energy technology. These programs, in turn, require research in basic scientific disciplines, including chemistry and materials science, computer science and technology, engineering and physics. In this issue, Herald Brown, the Laboratory`s third director and now counselor at the Center for Strategic and International Studies, reminisces about his years at Livermore and comments about the Laboratory`s role in the future. Also an article on visualizing dynamic systems in three dimensions is presented. Researchers can use our interactive algorithms to translate massive quantities of numerical data into visual form and can assign the visual markers of their choice to represent three- dimensional phenomena in a two-dimensional setting, such as a monitor screen. Major work has been done in the visualization of climate modeling, but the algorithms can be used for visualizing virtually any phenomena.

  3. 2010 DOE EERE Vehicle Technologies Program Merit Review ? Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Integration 2010 DOE EERE Vehicle Technologies Program Merit Review Technology Integration Technology integration merit review results 2010amr08.pdf More...

  4. Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Technologies R&D Annual Progress Report Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual Progress Report The Fuels Technologies subprogram supports fuels and...

  5. Vehicle Technologies Office: News

    Broader source: Energy.gov [DOE]

    EERE intends to issue, on behalf of its Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen...

  6. Storage and IO Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Burst Buffer User Defined Images Archive Home R & D Storage and IO Technologies Storage and IO Technologies Burst Buffer NVRAM and Burst Buffer Use Cases In collaboration...

  7. Technology Integration Overview

    Broader source: Energy.gov (indexed) [DOE]

    Technology Integration Overview Dennis A. Smith - Clean Cities Deployment Connie Bezanson - Vehicle Education June 17, 2014 VEHICLE TECHNOLOGIES OFFICE This presentation does not...

  8. Integrated Technology Deployment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Integrated technology deployment is a comprehensive approach to implementing solutions that increase the use of energy efficiency and renewable energy technologies. Federal, state, and local...

  9. Technology Transfer Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer Initiatives USEFUL LINKS Association of University Technology Managers (AUTM) Federal Laboratory...

  10. Green Purchasing & Green Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchasing & Technology Goals 6 & 7: Green Purchasing & Green Technology Our goal is to purchase and use environmentally sustainable products whenever possible and to implement...

  11. Geothermal Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jay Nathwani Acting Program Manager Geothermal Technologies Program Office of Energy Efficiency and Renewable Energy The Geothermal Technologies Program Overview May 18 2010 Energy...

  12. States & Emerging Energy Technologies

    Broader source: Energy.gov (indexed) [DOE]

    operations and maintenance, and occupant impact, so not only trying to quantify building energy or technology energy performance, but also the impacts of that technology on users....

  13. Carbon Fiber Technology Facility

    Broader source: Energy.gov (indexed) [DOE]

    The Carbon Fiber Technology Facility is relevant in proving the scale- up of low-cost carbon fiber precursor materials and advanced manufacturing technologies * Significant...

  14. Fuel & Lubricant Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 15, 2012 Kevin Stork, Team Lead VTP Annual Merit Review VTP Fuel & Lubricant Technologies eere.energy.gov 2 | Vehicle Technologies Program Mission Enable advanced combustion...

  15. The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry

    E-Print Network [OSTI]

    Lung, R. B.; Masanet, E.; McKane, A.

    2006-01-01T23:59:59.000Z

    generation 0.6 kg CO 2 /kWh 327-436 GWh/year (electricity) Projected annual energy consumption of base technologies in 2020 (delivered) 1.8 TBtu/year (natural gas) Projected annual energy consumption of base technologies in 2020 (primary) 4.2-5.0 TBtu/year... generation 0.57 kg CO 2 /kWh 5 GWh/year (electricity) Projected annual energy consumption of base technologies in 2020 (delivered) 1.2-2.4 TBtu/year (natural gas) Projected annual energy consumption of base technologies in 2020 (primary) 1.2-2.4 TBtu/year...

  16. Photovoltaic energy: Contract list, fiscal year 1990

    SciTech Connect (OSTI)

    Not Available

    1991-07-01T23:59:59.000Z

    The federal government has conducted the National Photovoltaics Program since 1975. Its purpose is to provide focus, direction, and funding for the development of terrestrial photovoltaic technology as an energy option for the United States. In the past, a summary was prepared each year to provide an overview of the government-funded activities within the National Photovoltaics Program. Tasks conducted in-house by participating national laboratories or under contract by industrial, academic, and other research institutes were highlighted. This year's document is more concise than the summaries of previous years. The FY 1990 contract overview comprises a list of all subcontracts begun, ongoing, or completed by Sandia National Laboratory or the Solar Energy Research Institute during FY 1990 (October 1, 1989, through September 30, 1990). Under each managing laboratory, projects are listed alphabetically by project area and then by subcontractor name.

  17. Morgantown Energy Technology Center, technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Morgantown Energy Technology Center (METC). Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. METC`s R&D programs are focused on commercialization of technologies that will be carried out in the private sector. META has solicited two PRDAs for EM. The first, in the area of groundwater and soil technologies, resulted in twenty-one contact awards to private sector and university technology developers. The second PRDA solicited novel decontamination and decommissioning technologies and resulted in eighteen contract awards. In addition to the PRDAs, METC solicited the first EM ROA in 1993. The ROA solicited research in a broad range of EM-related topics including in situ remediation, characterization, sensors, and monitoring technologies, efficient separation technologies, mixed waste treatment technologies, and robotics. This document describes these technology development activities.

  18. Technology Deployment List | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Technology Deployment Technology Deployment List Technology Deployment List The Federal Energy Management Program's (FEMP) Technology Deployment List features...

  19. CRITICALITY SAFETY CONTROL OF LEGACY FUEL FOUND AT 105-K WEST FUEL STORAGE BASIN

    SciTech Connect (OSTI)

    JENSEN, M.A.

    2005-08-19T23:59:59.000Z

    In August 2004, two sealed canisters containing spent nuclear fuel were opened for processing at the Hanford Site's K West fuel storage basin. The fuel was to be processed through cleaning and sorting stations, repackaged into special baskets, placed into a cask, and removed from the basin for further processing and eventual dry storage. The canisters were expected to contain fuel from the old Hanford C Reactor, a graphite-moderated reactor fueled by very low-enriched uranium metal. The expected fuel type was an aluminum-clad slug about eight inches in length and with a weight of about eight pounds. Instead of the expected fuel, the two canisters contained several pieces of thin tubes, some with wire wraps. The material was placed into unsealed canisters for storage and to await further evaluation. Videotapes and still photographs of the items were examined in consultation with available retired Hanford employees. It was determined that the items had a fair probability of being cut-up pieces of fuel rods from the retired Hanford Plutonium Recycle Test Reactor (PRTR). Because the items had been safely handled several times, it was apparent that a criticality safety hazard did not exist when handling the material by itself, but it was necessary to determine if a hazard existed when combining the material with other known types of spent nuclear fuel. Because the PRTR operated more than 40 years ago, investigators had to rely on a combination of researching archived documents, and utilizing common-sense estimates coupled with bounding assumptions, to determine that the fuel items could be handled safely with other spent nuclear fuel in the storage basin. As older DOE facilities across the nation are shut down and cleaned out, the potential for more discoveries of this nature is increasing. As in this case, it is likely that only incomplete records will exist and that it will be increasingly difficult to immediately characterize the nature of the suspect fissionable material and its criticality hazards.

  20. Technology transfer | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology transfer Technology Development and Commercialization at Argonne Read more about Technology Development and Commercialization at Argonne New Director to lead Technology...

  1. The latest dirt on technology: River germs could run computers -The Boston Globe http://www.boston.com/news/globe/health_science/articles/2007/02/12/the_latest_dirt_on_tec... 1 of 4 2/12/2007 1:39 PM

    E-Print Network [OSTI]

    Lovley, Derek

    / SCIENCE The latest dirt on technology: River germs could run computers Geobacter bacteria with the long, hair-like pili that are capable of conducting electricity. (gemma reguera and dale callaham. Lovley found the Geobacter germ 20 years ago at the bottom of the Potomac River, where it had naturally

  2. SMALL TURBOGENERATOR TECHNOLOGY FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Sy Ali; Bob Moritz

    2001-09-01T23:59:59.000Z

    This report is produced in under Contract DE-FC26-00NT40914, awarded in accordance with U.S. Department of Energy solicitation DE-PS26-00FT40759, ''Development of Technologies and Capabilities for Fossil Energy-Wide Coal, Natural Gas and Oil R&D Programs'', area of interest 7, ''Advanced Turbines and Engines.'' As a result of ten years of collaborative fuel cell systems studies with U.S. fuel cell manufacturers, initiated to evaluate the gas turbine opportunities likely to result from this technology, Rolls-Royce in Indianapolis has established a clear need for the creation of a turbogenerator to a specification that cannot be met by available units. Many of the required qualities are approached, but not fully met, by microturbines, which tend to be too small and low in pressure ratio. Market evaluation suggests a 1 MW fuel cell hybrid, incorporating a turbogenerator of about 250 kW, is a good market entry product (large enough to spread the costs of a relatively complex plant, but small enough to be acceptable to early adopters). The fuel cell stack occupies the position of a combustor in the turbogenerator, but delivers relatively low turbine entry temperature (1600 F [870 C]). If fitted with a conventional combustor and run stand-alone at full uncooled turbine temperature (1800 F [980 C]), the turbogenerator will develop more power. The power can be further enhanced if the turbogenerator is designed to have flow margin in its fuel cell role (by running faster). This margin can be realized by running at full speed and it is found that power can be increased to the 0.7 to 1.0 MW range, depending on initial fuel cell stack flow demand. The fuel cell hybrid applications require increased pressure ratio (at least 6 rather than the 3-4 of microturbines) and very long life for a small machine. The outcome is a turbogenerator that is very attractive for stand-alone operation and has been the subject of unsolicited enthusiasm from potential users who see an application in grid support. The machine is consistent with 21st century power generation objectives. It will be more efficient than a microturbine and also more cost effective because it does not require an expensive recuperator. It will produce ultra-low emissions because it has a low combustor delivery temperature. It will also avoid producing hazardous waste because it requires no lube system. These qualities are obtained by combining, and in some instances extending, the best of available technologies rather than breaking wholly new ground. Limited ''barrier technology'' rig tests of bearing systems and alternator configuration are proposed to support the extension of technology. Low combustion temperature also has merit in handling alternative fuels with minimum emissions and minimum materials degradation. Program continuation is proposed that will simultaneously provide technology support to a SECA fuel cell hybrid system and a distributed generation turbogenerator. This technology program will be led by a Rolls-Royce team based in Indianapolis with access to extensive small turbogenerator experience gathered in DOE (and other) programs by Allison Mobile Power Systems. It is intended that subsequent production will be in the U.S., but the products may have substantial export potential.

  3. Integrating Human Performance and Technology

    SciTech Connect (OSTI)

    Ronald K. Farris; Heather Medema

    2012-05-01T23:59:59.000Z

    Human error is a significant factor in the cause and/or complication of events that occur in the commercial nuclear industry. In recent years, great gains have been made using Human Performance (HU) tools focused on targeting individual behaviors. However, the cost of improving HU is growing and resistance to add yet another HU tool certainly exists, particularly for those tools that increase the paperwork for operations. Improvements in HU that are the result of leveraging existing technology, such as hand-held mobile technologies, have the potential to reduce human error in controlling system configurations, safety tag-outs, and other verifications. Operator rounds, valve line-up verifications, containment closure verifications, safety & equipment protection, and system tagging can be supported by field-deployable wireless technologies. These devices can also support the availability of critical component data in the main control room and other locations. This research pilot project reviewing wireless hand-held technology is part of the Light Water Reactor Sustainability Program (LWRSP), a research and development (R&D) program sponsored by the U. S. Department of Energy (DOE). The project is being performed in close collaboration with industry R&D programs to provide the technical foundations for licensing, and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRSP vision is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current nuclear reactor fleet.

  4. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-09-30T23:59:59.000Z

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

  5. 2008 Year in Review 1 2008 Year in Review

    E-Print Network [OSTI]

    Hickman, Mark

    2008 Year in Review 1 2008 Year in Review The Science of Communication Disorders Departmental Research Committee. #12;2 2008 Year in Review Billinghurst, M., Moran, C., Gostomski, P., Basu, A

  6. Department of Information Technology

    E-Print Network [OSTI]

    Flener, Pierre

    Department of Information Technology Human-Computer Interaction http://www.it.uu.se/research/hci #12;InformationTechnology-HCI Department of Information Technology | www.it.uu.se Today's menu Who we and collaboration Teaching KoF 2007, effects? Vision and plans Challenges #12;InformationTechnology

  7. The Technology & Innovation Centre

    E-Print Network [OSTI]

    Mottram, Nigel

    The Technology & Innovation Centre #12;The Technology and Innovation Centre revolutionises the way in Scotland and further afield including power and energy, renewable technologies, photonics and sensors, for industry, the Technology and Innovation Centre has already attracted major partners including Scottish

  8. Predictive Maintenance Technologies

    Broader source: Energy.gov [DOE]

    Several diagnostic technologies and best practices are available to assist Federal agencies with predictive maintenance programs.

  9. Bridging the Technology Innovation

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Bridging the Technology Innovation Gap Dr Ceri Williams Director of Medical Technologies Innovation Technologies #12;Distinctive Approach to Translating ResearchWe support innovation to reach TRL 5 enable real and Knowledge Centre #12;What is the Medical Technologies IKC? All activities centre on research translation

  10. Soil washing technology evaluation

    SciTech Connect (OSTI)

    Suer, A.

    1995-04-01T23:59:59.000Z

    Environmental Restoration Engineering (ERE) continues to review innovative, efficient, and cost effective technologies for SRS soil and/or groundwater remediation. As part of this effort, this technical evaluation provides review and the latest information on the technology for SRS soil remediation. Additional technology evaluation reports will be issued periodically to update these reports. The purpose of this report is to review the soil washing technology and its potential application to SRS soil remediation. To assess whether the Soil Washing technology is a viable option for SRS soil remediation, it is necessary to review the technology/process, technology advantages/limitations, performance, applications, and cost analysis.

  11. Network technology for depot modernization

    SciTech Connect (OSTI)

    Hostick, C.J.

    1990-12-01T23:59:59.000Z

    This report was prepared by the Pacific Northwest Laboratory to summarize existing and emerging information system technology and standards applicable to Depot System Command (DESCOM) modernization efforts. The intent of this summarization is to provide the Revitalization of Army Depots for the Year 2000 (READY 2000) team a clear understanding of the enabling information system technologies required to support effective modernization activities. Much of the information contained in this report was acquired during the last year in support of the US Army Armament, Munitions, and Chemical Command (AMCCOM) Facility Integrated Manufacturing Management System (FIMMS) project at PNL, which is targeting the modernization of plant-wide information systems at Army Ammunition Plants. The objective of information system modernization is to improve the effectiveness of an organization in performing its mission. Information system modernization strives to meet this objective by creating an environment where data is electronically captured near the source and readily available to all areas of the organization. Advanced networks, together with related information system technology, are the enabling mechanisms that make modern information system infrastructures possible. The intent of this paper is to present an overview of advanced information system network technology to support depot modernization planners in making technology management decisions. Existing and emerging Open System Interconnection (OSI) and Government Open System Interconnection Profile (GOSIP) standards are explained, as well as a brief assessment of existing products compliant with these standards. Finally, recommendations for achieving plant-wide integration using existing products are presented, and migration strategies for full OSI compliance are introduced. 5 refs., 16 figs. (JF)

  12. 70 Years of Innovations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are70 Years of Innovations

  13. 50 Years of Space

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugustDecember8th MeetingAllocation50 Years of

  14. Allocation Year Rollover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C. bescii CelA,Portal Allocation Year

  15. HPSS Yearly Network Traffic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonic EngineHIV and evolution studiedHPSSHPSS Yearly

  16. Technology in water conservation

    E-Print Network [OSTI]

    Finch, Dr. Calvin

    2013-01-01T23:59:59.000Z

    2 tx H2O Summer 2013 Column by Dr. Calvin Finch, Water Conservation and Technology Center director WAT E R CONSERVATION & TECHNOLOGY CENTER Securing Our Water Future It is not unusual for individuals to describe water conservation as a... conservation, however, is just as dependent on technological factors. #27;e technology does not have to be complex to be important #20; consider high e#23;ciency toilets and showerheads. #27;ese everyday appliances largely rely on simple technologies...

  17. Technology in water conservation

    E-Print Network [OSTI]

    Finch, Dr. Calvin

    2013-01-01T23:59:59.000Z

    2 tx H2O Summer 2013 Column by Dr. Calvin Finch, Water Conservation and Technology Center director WAT E R CONSERVATION & TECHNOLOGY CENTER Securing Our Water Future It is not unusual for individuals to describe water conservation as a... conservation, however, is just as dependent on technological factors. #27;e technology does not have to be complex to be important #20; consider high e#23;ciency toilets and showerheads. #27;ese everyday appliances largely rely on simple technologies...

  18. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Hugh W. Rimmer

    2004-05-12T23:59:59.000Z

    This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

  19. Technology Overview Using Case Studies of Alternative Landfill Technologies

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    Technology Overview Using Case Studies of Alternative Landfill Technologies and Associated Regulatory Topics Prepared by Interstate Technology & Regulatory Council Alternative Landfill Technologies of Alternative Landfill Technologies and Associated Regulatory Topics March 2003 Prepared by Interstate

  20. Building Technologies Office Window and Envelope Technologies...

    Energy Savers [EERE]

    by 2000 (10.7 billion in current dollars) Source: American Energy Innovation Council Case Studies on the Government's Role in Energy Technology Innovation "Low-Emissivity...

  1. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for "Outstanding Commercialization Success" from the Federal Laboratory Consortium for Technology Transfer. On October 4, 2012, the NETL team who developed this alloy received...

  2. Vehicle Technologies Office: Graduate Automotive Technology Education...

    Broader source: Energy.gov (indexed) [DOE]

    Centers of Excellence to provide future generations of engineers and scientists with knowledge and skills in advanced automotive technologies. By funding curriculum...

  3. Vehicle Technologies Office: Electric Drive Technologies | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Electronics and Electric Motor R&D North American Power Electronics Supply Chain Analysis Benchmarking EV and HEV Technology View all presentations from the 2014 Merit Review....

  4. The National Energy Strategy - The role of geothermal technology development: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. Topics in this year's conference included Hydrothermal Energy Conversion Technology, Hydrothermal Reservoir Technology, Hydrothermal Hard Rock Penetration Technology, Hot Dry Rock Technology, Geopressured-Geothermal Technology and Magma Energy Technology. Each individual paper has been cataloged separately.

  5. The Office of Industrial Technologies technical reports

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

  6. West Virginia University is a land-grant, research institution founded in 1867. WVU is a student-centered learning community meeting the changing needs of West Virginia and

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    1 West Virginia University is a land-grant, research institution founded in 1867. WVU is a student-centered learning community meeting the changing needs of West Virginia and the nation through teaching, research, service, and technology. The West Virginia University Undergraduate Catalog 2010­2011 is a general source

  7. West Virginia University is a land-grant, research institution founded in 1867. WVU is a student-centered learning community meeting the changing needs of West Virginia and

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    1 West Virginia University is a land-grant, research institution founded in 1867. WVU is a student-centered learning community meeting the changing needs of West Virginia and the nation through teaching, research, service, and technology. The West Virginia University Undergraduate Catalog 2009­2010 is a general source

  8. THE IDAHO NATIONAL LABORATORY BERYLLIUM TECHNOLOGY UPDATE

    SciTech Connect (OSTI)

    Glen R. Longhurst

    2007-12-01T23:59:59.000Z

    A Beryllium Technology Update meeting was held at the Idaho National Laboratory on July 18, 2007. Participants came from the U.S., Japan, and Russia. There were two main objectives of this meeting. One was a discussion of current technologies for beryllium in fission reactors, particularly the Advanced Test Reactor and the Japan Materials Test Reactor, and prospects for material availability in the coming years. The second objective of the meeting was a discussion of a project of the International Science and Technology Center regarding treatment of irradiated beryllium for disposal. This paper highlights discussions held during that meeting and major conclusions reached

  9. Publications on maglev technologies

    SciTech Connect (OSTI)

    He, J.L.; Coffey, H.T.; Rote, D.M.; Wang, Z.

    1991-12-01T23:59:59.000Z

    Magnetically levitated passenger-transportation vehicles, using attractive and repulsive magnetic forces, are currently in the development or prototype-revenue stages in Japan and Germany. The basic principles of these technologies have been understood for several decades, but their practical applications awaited advances in high-power electronic devices, modern controls, superconducting magnets, and improvements in our transportation infrastructures. A considerable amount of work was devoted to magnetic-levitation (maglev) transportation system in the late 1960s and the 1970s. Detailed development was sustained primarily in Germany and Japan. This listing of publications was begun as the initial phase of a design study for a maglev development facility sponsored by the State of Illinois. The listing has been continually updated under programs sponsored by the Federal Railroad Administration and the US Army Corps of Engineers. In 1991, the National Maglev Initiative issued 27 contracts for the study of technical issues related to maglev and four contracts for the definition of maglev systems. In December 1991, the Intermodal Surface Transportation Efficiency Act was enacted, mandating the development of a US-designed maglev system in a six-year period. This listing is offered as an aid to those working on these projects, to help them locate technical papers on relevant technologies. The design and installation of a maglev transportation system will require the efforts of workers in many disciplines, from electronics to economics to safety. Accordingly, the references have been grouped in 14 different sections to expedite review of the listing. In many case, the references are annotated to indicate the general content of the papers. Abstracts are not available. A list of information services from which the listed documents might be obtained and an author index are provided.

  10. THE ENVIRONMENTAL TECHNOLOGIES ACCEPTANCE (ETA) PROGRAM

    SciTech Connect (OSTI)

    Christina B. Behr-Andres

    2001-10-01T23:59:59.000Z

    The objective of the Environmental Technologies Acceptance (ETA) Program at the Energy & Environmental Research Center (EERC) is to advance the development, commercial acceptance, and timely deployment of selected private sector technologies for the cleanup of sites in the nuclear defense complex as well as the greater market. As a result of contract changes approved by National Energy Technology Laboratory (NETL) representatives to incorporate activities previously conducted under another NETL agreement, there are now an additional task and an expansion of activities within the stated scope of work of the ETA program. As shown in Table 1, this cooperative agreement, funded by NETL (No. DE-FC26-00NT40840), consists of four tasks: Technology Selection, Technology Development, Technology Verification, and System Engineering. As currently conceived, ETA will address the needs of as many technologies as appropriate under its current 3-year term. There are currently four technical subtasks: Long-Term Stewardship Initiative at the Mound Plant Site; Photocatalysis of Mercury-Contaminated Water; Subcritical Water Treatment of PCB and Metal-Contaminated Paint Waste; and Vegetative Covers for Low-Level Waste Repositories. This report covers activities during the second six months of the three-year ETA program.

  11. Federal Geothermal Research Program Update Fiscal Year 1998

    SciTech Connect (OSTI)

    Keller, J.G.

    1999-05-01T23:59:59.000Z

    This report reviews the specific objectives, status, and accomplishments of DOE's Geothermal Research Program for Fiscal Year 1998. The Exploration Technology research area focuses on developing instruments and techniques to discover hidden hydrothermal systems and to expose the deep portions of known systems. The Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal and hot dry rock reservoirs. The Drilling Technology projects focus on developing improved, economic drilling and completion technology for geothermal wells. The Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Direct use research covers the direct use of geothermal energy sources for applications in other than electrical production.

  12. SHARED TECHNOLOGY TRANSFER PROGRAM

    SciTech Connect (OSTI)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07T23:59:59.000Z

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

  13. Solar thermal energy contract list, fiscal year 1990

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The federal government has conducted the national Solar Thermal Technology Program since 1975. Its purpose is to provide focus, direction, and funding for the development of solar thermal technology as an energy option for the United States. This year's document is more concise than the summaries of previous years. The FY 1990 contract overview comprises a list of all subcontracts begun, ongoing, or completed during FY 1990 (October 1, 1989, through September 30, 1990). Under each managing laboratory projects are listed alphabetically by project area and then by subcontractor name. Amount of funding milestones are listed.

  14. Ten Year Site Plans | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative JC3 RSS SeptemberRenewable Energy, U.S. DepartmentTechnology Ten Year Site Plans Ten

  15. Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions

    E-Print Network [OSTI]

    Johnson Jr.,, Ray

    Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training & Technology Solutions 718-997-4875 ~ training@qc.cuny.edu ~ I-Bldg 214 Advisor Center Navigation: Login #12;Training & Technology Solutions Queens College ~ Office of Converging Technologies ~ Training

  16. NUCLEAR ENGINEERING Four Year Plan

    E-Print Network [OSTI]

    Tullos, Desiree

    ;Nuclear Engineering Four Year Plan Starting Fall 2009 FALL Year 1 Credits WINTER Year 1 Credits SPRINGNUCLEAR ENGINEERING Four Year Plan Fall 2009 Nuclear Engineering (67 hrs) CH Grade Perspectives (15 I NE 452 3 Neutronic Analysis II NE 457 2 Nuclear Reactor Lab Western Culture (3): NE 467 4 Nucl

  17. Hydrogen program summary Fiscal Year 1994

    SciTech Connect (OSTI)

    Not Available

    1995-03-01T23:59:59.000Z

    The annual program summary provides stakeholders within the hydrogen community with a snapshop of important advances that have occurred in the National Hydrogen Program over the fiscal year, including industry interactions and cooperation. The document will also be used to encourage additional potential industrial partners to join the Hydrogen Program Team. Fiscal Year 1994 marked a turning point for the Hydrogen Program, with a budget that grew significantly. The focus of the program was broadened to include development of hydrogen production technologies using municipal solid waste and biomass, in addition to an increased emphasis on industrial involvement and near-term demonstration projects. In order to maintain its near- and long-term balance, the Hydrogen Program will continue with basic, fundamental research that provides the long-term, high-risk, high-payoff investment in hydrogen as an energy carrier.

  18. Hybrid Fuel Cell Technology Overview

    SciTech Connect (OSTI)

    None available

    2001-05-31T23:59:59.000Z

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  19. Fuel Cell Technologies Office Funding by State: FY 2013, FY 2014...

    Broader source: Energy.gov (indexed) [DOE]

    View a list of projects, organized by state, funded by the Fuel Cell Technologies Office for fiscal years 2013 and 2014, and planned for 2015. Fuel Cell Technologies Office Funding...

  20. Projects of the year

    SciTech Connect (OSTI)

    Hansen, T.

    2007-01-15T23:59:59.000Z

    The Peabody Hotel, Orlando, Florida was the site of Power Engineering magazine's 2006 Projects of the Year Awards Banquet, which kicked-off the Power-Gen International conference and exhibition. The Best Coal-fired Project was awarded to Tri-State Generation and Transmission Association Inc., owner of Springenville Unit 3. This is a 400 MW pulverized coal plant in Springeville, AZ, sited with two existing coal-fired units. Designed to fire Powder River Basin coal, it has low NOx burners and selective catalytic reduction for NOx control, dry flue gas desulfurization for SO{sub 2} control and a pulse jet baghouse for particulate control. It has a seven-stage feedwater heater and condensers to ensure maximum performance. Progress Energy-Carolinas' Asheville Power Station FGD and SCR Project was awarded the 2006 coal-fired Project Honorable Mention. This plant in Skyland, NC was required to significantly reduce NOx emissions. When completed, the improvements will reduce NOx by 93% compared to 1996 levels and SO{sub 2} by 93% compared to 2001 levels. Awards for best gas-fired, nuclear, and renewable/sustainable energy projects are recorded. The Sasyadko Coal-Mine Methane Cogeneration Plant near Donezk, Ukraine, was given the 2006 Honorable Mention for Best Renewable/Sustainable Energy Project. In November 2004, Ukraine was among 14 nations to launch the Methane to Markets partnership. The award-winning plant is fuelled by methane released during coal extraction. It generates 42 MW of power. 4 photos.

  1. PCBs found in PILC

    SciTech Connect (OSTI)

    Lauterback, S.

    1996-11-01T23:59:59.000Z

    A number of utilities have discovered polychlorinated biphenyls (PCBs) in paper-insulated, lead-covered cable (PILIC) systems. The extent of this problem is of such concern that it is included in the regulatory revisions currently being proposed by the US Environmental Protection Agency (EPA). The vast number of these systems, together with results form our studies virtually assures the widespread presence of PCBs in underground systems. The dual hazards associated with exposure of lead to humans and acceptance of the presence of PCBs in cable is forcing companies to develop sophisticated testing and new maintenance procedures. Age old disposal practices suspected of contaminating scarp yards and exposing workers to lead poisoning will be phased out in favor of controlled, indoor operations developed specifically for the safe disposal of this material.

  2. WINDExchange: Document Not Found

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,EagaAboutDeploymentAbout Printable VersionEERE

  3. Utilities Inspection Technologies

    E-Print Network [OSTI]

    Messock, R. K.

    Preventive and predictive maintenance programs are enhanced by using various inspection technologies to detect problems and potential failures before catastrophic failure. This paper discusses successful inspection technologies that have been...

  4. Technology Readiness Assessment Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-15T23:59:59.000Z

    The Guide assists individuals and teams involved in conducting Technology Readiness Assessments (TRAs) and developing Technology Maturation Plans (TMPs) for the DOE capital asset projects subject to DOE O 413.3B. Cancels DOE G 413.3-4.

  5. UNIVERSITY of STRATHCLYDE TECHNOLOGY &

    E-Print Network [OSTI]

    Mottram, Nigel

    electricity networks and distribution systems, through to using smart grid technologies for more effective of dynamic collaborations delivering productive outcomes. #12;#12;LOW CARBON POWER AND ENERGY FUTURE CITIES Advanced Manufacturing Future Cities Health Technologies Working collaboratively, programmes within

  6. FY08 Engineering Research and Technology Report

    SciTech Connect (OSTI)

    Minichino, C; McNichols, D

    2009-02-24T23:59:59.000Z

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technology development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

  7. Initial Evaluation of Smart Irrigation Controllers: Year Two (2009) Results

    E-Print Network [OSTI]

    Swanson, Charles; Fipps, Guy

    COLLEGE OF AGRICULTURE AND LIFE SCIENCES TR-364 2010 Initial Evaluation of Smart Irrigation Controllers: Year Two (2009) Results By: Charles Swanson and Guy Fipps, P.E. Department of Biological... OF SMART IRRIGATION CONTROLLERS: YEAR TWO (2009) RESULTS 1 By Charles Swanson and Guy Fipps, P.E 2 April 27, 2010 A Report Prepared for Task 2 of the Rio Grande Basin Initiative Irrigation Technology Center Texas AgriLIFE Extension Service...

  8. 2014 Annual Merit Review, Vehicle Technologies Office - 08 Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -1 8. Technology Integration The Technology Integration subprogram accelerates the adoption and use of alternative fuel and advanced technology vehicles to help meet national...

  9. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration and Education DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education Merit review of DOE Vehicle Technologies Program research...

  10. Vehicle Technologies Office: 2013 Fuel and Lubricant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel and Lubricant Technologies R&D Annual Progress Report Vehicle Technologies Office: 2013 Fuel and Lubricant Technologies R&D Annual Progress Report This report describes the...

  11. Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge Transportation Technology Program Annual Report Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology Program Annual Report ornlttpreportfy08.pdf More...

  12. Does Doctrine Drive Technology or Does Technology Drive Doctrine?

    E-Print Network [OSTI]

    Blasko, Dennis

    2010-01-01T23:59:59.000Z

    Brief No. 4 September 2010 Does Doctrine Drive Technology orDoes Technology Drive Doctrine? Dennis Blasko Summary Wthat emphasizes strategy over technology and may hold some

  13. Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies

    E-Print Network [OSTI]

    Yeh, Sonia; Rubin, Edward S.; Taylor, Margaret R.

    2007-01-01T23:59:59.000Z

    including issues of technology and cost un- certainties, areon NO x Control Technologies and Cost Effectiveness forand other factors on technology cost trends (hence, the

  14. Technology Integration Overview

    Broader source: Energy.gov (indexed) [DOE]

    Identify chronic vehicle or infrastructure field problems * Incident investigations (technology failures) * Capture lessons learned and develop best practices Technical & Problem...

  15. States & Emerging Energy Technologies

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on States & Emerging Energy Technologies.

  16. Deployment of Emerging Technologies

    Broader source: Energy.gov [DOE]

    Presentation covers the FUPWG Deployment of Emerging Technologies. Presented by Brad Gustafson, Department of Energy, held on November 1, 2006.

  17. Photovoltaic Technology Incubator Awards

    SciTech Connect (OSTI)

    Not Available

    2007-06-01T23:59:59.000Z

    This factsheet gives an overview of the Photovoltaic (PV) Technology Incubator Awards and the Solar America Initiative (SAI).

  18. Web Technology (elective package)

    E-Print Network [OSTI]

    Franssen, Michael

    Web Technology (elective package) Offered by: Department of Mathematics and Computer Science? Computer Science-based approaches and enabling technologies for the web. Course descriptions Human and efficient. Web Technology The web has become the major source of information retrieval and is playing

  19. SPACE TECHNOLOGY Actual Estimate

    E-Print Network [OSTI]

    SPACE TECHNOLOGY TECH-1 Actual Estimate Budget Authority (in $ millions) FY 2011 FY 2012 FY 2013 FY.7 247.0 Exploration Technology Development 144.6 189.9 202.0 215.5 215.7 214.5 216.5 Notional SPACE TECHNOLOGY OVERVIEW .............................. TECH- 2 SBIR AND STTR

  20. Department of Science, Technology, &

    E-Print Network [OSTI]

    Acton, Scott

    Developing Leaders of Innovation Department of Science, Technology, & Society #12;Understanding the relationship between technology and society is crucial to becoming a successful leader in any field. #12;Our Students The University of Virginia Department of Science, Technology, and Society offers a comprehensive

  1. Technology Forecasting Scenario Development

    E-Print Network [OSTI]

    Technology Forecasting and Scenario Development Newsletter No. 2 October 1998 Systems Analysis was initiated on the establishment of a new research programme entitled Technology Forecasting and Scenario and commercial applica- tion of new technology. An international Scientific Advisory Panel has been set up

  2. New Technology Demonstration Program

    E-Print Network [OSTI]

    New Technology Demonstration Program Technical Brief FEMPFederal Energy Management Program Tom for saving energy in refrigerated walk-in coolers, and to evaluate the potential for this technology in Federal facilities. The focus of this study was on a single manufacturer of the technology, Nevada Energy

  3. Technology Advertising Contact Information

    E-Print Network [OSTI]

    Peters, Richard

    Overview #12;Technology Advertising Contact Information Alex Sheath 8596 4063 asheath Overview Our online Technology section is geared towards an IT professional environment, reaching a range of technology enthusiasts from every day gadget consumers to business decision makers where enterprise solutions

  4. University Libraries Technology Plan

    E-Print Network [OSTI]

    Moore, Paul A.

    Libraries Bowling Green State University #12;Table of Contents Introduction ..................................................................19 Page 2 of 19 Technology Plan, 2003-2005 University Libraries Bowling Green State University #12University Libraries Technology Plan 2003-2005 Page 1 of 19 Technology Plan, 2003-2005 University

  5. Microsoft Technology Centers Novosibirsk

    E-Print Network [OSTI]

    Narasayya, Vivek

    -depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

  6. Microsoft Technology Centers Philadelphia

    E-Print Network [OSTI]

    Narasayya, Vivek

    -depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

  7. Microsoft Technology Centers Minneapolis

    E-Print Network [OSTI]

    Hunt, Galen

    -depth knowledge of Microsoft products and technologies ensure that you benefit from development best practices discovery, tailored product and technology drill-downs, and expert presentations. It culminates practices, and risk analysis to chief technology officers, architects, and senior members of your

  8. Share this: 5 Facebook StumbleUpon Email Report: Concerning levels of toxins found in sport fish along San Diego

    E-Print Network [OSTI]

    in several local species of sport fish, including various bass, perch, rockfish and shark, the UnionShare this: 5 Facebook StumbleUpon Email Report: Concerning levels of toxins found in sport fish along San Diego coastline By City News Service, on August 15, 2011, at 9:08 am Sport fish found along

  9. Endowment Performance, Fiscal Years 1982-2012 Fiscal Year

    E-Print Network [OSTI]

    Management Company, based on reinvestment of all earnings on a monthly basis. (3) Values have been recastEndowment Performance, Fiscal Years 1982-2012 Fiscal Year Year-end market value (in 000's) Return Market Value of Endowment Funds as of June 30, 2012 Endowment Market Value Market Value % of Total Arts

  10. Endowment Performance, Fiscal Years 1981-2011 Fiscal Year

    E-Print Network [OSTI]

    by the Harvard Management Company, based on reinvestment of all earnings on a monthly basis. (3) Values have beenEndowment Performance, Fiscal Years 1981-2011 Fiscal Year Year-end market value (in 000's) Return REPORTS Market Value of Endowment Funds as of June 30, 2011 Endowment Market Value Market Value % of Total

  11. Nepal Migration Year Book 2011 Migration Year Book

    E-Print Network [OSTI]

    Richner, Heinz

    Nepal Migration Year Book 2011 1 #12;Nepal Migration Year Book 2011 NIDS NCCR North-South #12;Book Nepal Migration Year Book 2011 Publishers Nepal Institute of Development Studies (NIDS) G.P.O. Box: 7647, Kathmandu, Nepal Email: nids@mail.com.np Web: www.nids.org.np National Centre of Competence in Research

  12. Sandia National Laboratories: Vehicle Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EfficiencyVehicle Technologies Vehicle Technologies Combustion Research Facility (CRF) Vehicle Technology programs at Sandia share a common goal: reducing dependence on...

  13. Chevron, GE form Technology Alliance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    form Technology Alliance February 3, 2014 HOUSTON, TX, Feb. 3, 2014-Chevron Energy Technology Company and GE Oil & Gas announced today the creation of the Chevron GE Technology...

  14. Renewable Energy Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Renewable Energy Technologies Renewable Energy Technologies State, local, and tribal governments can harness renewable energy technologies from natural sources-...

  15. Environmental Technology Verification of Mobile Sources Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Technology Verification of Mobile Sources Control Technologies Environmental Technology Verification of Mobile Sources Control Technologies 2005 Diesel Engine...

  16. Campus Computer Store Information Technology Services

    E-Print Network [OSTI]

    Saskatchewan, University of

    Campus Computer Store Information Technology Services 20 Place Riel, 1 Campus Drive 966-8375 ccs Computer Store is administering a license for SAS. It is licensed on a yearly pro-rated basis as outlined: _____________________________________________________ Student Number (if applicable): _______________________________________________ Location of Computer

  17. Director Leaving the National Energy Technology Laboratory

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today announced that Carl O. Bauer is retiring from federal service and leaving the National Energy Technology Laboratory effective February 28, 2010, following a distinguished four-year tenure as the laboratory's director, completing an impressive federal civilian and military career.

  18. Graduate Information Science andTechnology

    E-Print Network [OSTI]

    Jiang, Huiqiang

    Graduate Information Science andTechnology Program #12;Why Information Science? The opportunities for information science graduates are seemingly limitless.The amount of available information Triples each year. information science is an interdisciplinary science that looks at the relationship among people, information

  19. Information Technology for Health Care in Mozambique

    E-Print Network [OSTI]

    Monteiro, Eric

    Information Technology for Health Care in Mozambique Editorial Introduction Eric Monteiro Associate immediately over to the health care sector. Life expectancy is 38.5 years. Endemic malaria accounts for about by Ciborra (2000). The information systems described in this special issue address the health care sector, i

  20. INSTITUTE OF NUCLEAR TECHNOLOGY RADIATION PROTECTION

    E-Print Network [OSTI]

    INSTITUTE OF NUCLEAR TECHNOLOGY RADIATION PROTECTION ANNUAL REPORT 2007 #12;#12;i ANNUAL REPORT has been a pivotal year for the Institute due to the world wide emergence of the "nuclear energy 11 Facts and Figures page 33 4. Personnel page 35 5. Funding page 36 6. Expenditure of the Institute

  1. Clean-up of Contaminated Indoor Air Using Photocatalytic Technology

    E-Print Network [OSTI]

    Hingorani, S.; Greist, H.; Goswami, T.; Goswami, Y.

    2000-01-01T23:59:59.000Z

    destruction using Acetone as a representative VOC. While monitoring the VOC destruction, carbon dioxide (C02) levels were also measured. By performing a mass balance between the VOC destruction and C02 production, the photocatalytic technology was found...

  2. Technology reviews: Glazing systems

    SciTech Connect (OSTI)

    Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

    1992-09-01T23:59:59.000Z

    We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology; determine the performance range of available technologies; identify the most promising technologies and promising trends in technology advances; examine market forces and market trends; and develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fag into that class.

  3. Technology reviews: Shading systems

    SciTech Connect (OSTI)

    Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

    1992-09-01T23:59:59.000Z

    We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends. Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

  4. Data Center Celebrates 20 Years of Delivering Savings

    Broader source: Energy.gov [DOE]

    Many great technology stories have started with just one humble computer and a desk. Twenty years ago this month, the Department of Energys Alternative Fuels and Advanced Vehicles Data Center (AFDC) started just this way at the National Renewable Energy Laboratory (NREL).

  5. Solar Program Overview: Fiscal Years 2002& 2003 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2004-06-01T23:59:59.000Z

    This document describes the research activities and accomplishments of the DOE Solar Energy Technologies Program for fiscal years 2002 and 2003. It includes detailed accounts, charts, and photos of R&D activities in the areas of photovoltaics, concentrating solar power, and solar heating and lighting

  6. Findings from Seven Years of Field Performance Data for Automated

    E-Print Network [OSTI]

    in Commercial Buildings S. Kiliccote, M.A. Piette, J. Mathieu, K. Parrish Environmental Energy Technologies;1 Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings. It provides a summary of participation, DR strategies and incentives. Commercial buildings can reduce peak

  7. Induction Lighting: An Old Lighting Technology Made New Again...

    Broader source: Energy.gov (indexed) [DOE]

    25 years if operated 10 hours a day. The technology, however, is far from new. Nikola Tesla demonstrated induction lighting in the late 1890s around the same time that his rival,...

  8. Gas Turbine Technology, Part A: Overview, Cycles, and Thermodynamic Performance

    E-Print Network [OSTI]

    Meher-Homji, C. B.; Focke, A. B.

    1985-01-01T23:59:59.000Z

    The growth of cogeneration technology has accelerated in recent years, and it is estimated that fifty percent of the cogeneration market will involve gas turbines. To several energy engineers, gas turbine engines present a new and somewhat...

  9. Energy Systems Technology - A Development in Experiential Learning

    E-Print Network [OSTI]

    Tumber, A. J.

    1980-01-01T23:59:59.000Z

    Energy Systems Technology is a three-year diploma program which started in September 1977 and will produce its first graduate technologists in June 1980. The program of studies is multi-disciplinary and includes mechanical and electrical subjects...

  10. Innovation pathways in technology intensive government organizations : insights from NASA

    E-Print Network [OSTI]

    Szajnfarber, Zoe

    2011-01-01T23:59:59.000Z

    Despite a rich legacy of impressive technological accomplishments (e.g., project Apollo, the Hubble Space Telescope) in recent years, the ability of government space agencies to deliver on their promises has increasingly ...

  11. Driving Sensing Technology in Oil & Gas | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a bit more about Bill's work. Bill joined GE Global Research in 2010. For the past four years his emphasis has been on developing advanced photonics technologies for multiple GE...

  12. Gas Turbine Technology, Part A: Overview, Cycles, and Thermodynamic Performance

    E-Print Network [OSTI]

    Meher-Homji, C. B.; Focke, A. B.

    The growth of cogeneration technology has accelerated in recent years, and it is estimated that fifty percent of the cogeneration market will involve gas turbines. To several energy engineers, gas turbine engines present a new and somewhat...

  13. 2008 Solar Technologies Market Report

    SciTech Connect (OSTI)

    Price, S.; Margolis, R.; Barbose, G.; Bartlett, J.; Cory, K.; Couture, T.; DeCesaro, J.; Denholm, P.; Drury, E.; Frickel, M.; Hemmeline, C.; Mendelsohn, T.; Ong, S.; Pak, A.; Poole, L.; Peterman, C.; Schwabe, P.; Soni, A.; Speer, B.; Wiser, R.; Zuboy, J.; James, T.

    2010-01-01T23:59:59.000Z

    The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1 provides an overview of global and U.S. installation trends. Chapter 2 presents production and shipment data, material and supply chain issues, and solar industry employment trends. Chapter 3 presents cost, price, and performance trends. Chapter 4 discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. Chapter 5 provides data on private investment trends and near-term market forecasts. Highlights of this report include: (1) The global PV industry has seen impressive growth rates in cell/module production during the past decade, with a 10-year compound annual growth rate (CAGR) of 46% and a 5-year CAGR of 56% through 2008. (2) Thin-film PV technologies have grown faster than crystalline silicon over the past 5 years, with a 10-year CAGR of 47% and a 5-year CAGR of 87% for thin-film shipments through 2008. (3) Global installed PV capacity increased by 6.0 GW in 2008, a 152% increase over 2.4 GW installed in 2007. (4) The United States installed 0.34 GW of PV capacity in 2008, a 63% increase over 0.21 GW in 2007. (5) Global average PV module prices dropped 23% from $4.75/W in 1998 to $3.65/W in 2008. (6) Federal legislation, including the Emergency Economic Stabilization Act of 2008 (EESA, October 2008) and the American Recovery and Reinvestment Act (ARRA, February 2009), is providing unprecedented levels of support for the U.S. solar industry. (7) In 2008, global private-sector investment in solar energy technology topped $16 billion, including almost $4 billion invested in the United States. (8) Solar PV market forecasts made in early 2009 anticipate global PV production and demand to increase fourfold between 2008 and 2012, reaching roughly 20 GW of production and demand by 2012. (9) Globally, about 13 GW of CSP was announced or proposed through 2015, based on forecasts made in mid-2009. Regional market shares for the 13 GW are about 51% in the United States, 33% in Spain, 8% in the Middle East and North Africa, and 8% in Australasia, Europe, and South Africa. Of the 6.5-GW project pipeline in the United States, 4.3 GW have power purchase agreements (PPAs). The PPAs comprise 41% parabolic trough, 40% power tower, and 19% dish-engine systems.

  14. Year in Review Annual Report

    E-Print Network [OSTI]

    Machery, Edouard

    Year in Review 2005-06 Annual Report Center for Latin American Studies University Center for International Studies University of Pittsburgh #12;2005-06 Year in Review 2 Message from the Acting Director

  15. Year in Review Annual Report

    E-Print Network [OSTI]

    Machery, Edouard

    Year in Review 2004-05 Annual Report Center for Latin American Studies University Center for International Studies University of Pittsburgh #12;2004-05 Year in Review 2 Message from the Director This has

  16. Year in Review Annual Report

    E-Print Network [OSTI]

    Machery, Edouard

    Year in Review 2006-07 Annual Report Center for Latin American Studies University Center for International Studies University of Pittsburgh #12;2006-07 Year in Review 2 Message from the Director Academic

  17. San Diego Area San Diego was founded in 1769 as the first of 21 California missions. It is

    E-Print Network [OSTI]

    Squire, Larry R.

    industries in the county are Defense, Manufacturing (high technology, electronics), and Tourism. San Diego is the site of one of the largest naval fleets in the world. In addition, San Diego's economy focuses, electronics manufacturing, defense-related manufacturing, financial and business services, ship

  18. message from the director A wise man once advised, "Leave this world a little better than you found it."

    E-Print Network [OSTI]

    Northwest National Laboratory (PNNL), we embrace this philosophy by focusing on our organization. By evaluating our sustainability performance, we will be better stewards of the Laboratory. PNNL is the first. In this report, you will find information about how PNNL's science and technology are enabling the development

  19. Ohio State co-founds lightweight materials center. Ohio State is partnering with the University of Michigan and

    E-Print Network [OSTI]

    with the University of Michigan and Columbus-based EWI to launch a $148 million high-tech manufacturing research in the U.S. for campus internationalization. The university is one of four to receive the recognition from. Funds go to help children with cancer. New age of deep ice technology. Engineers and earth scientists

  20. ATNI Mid-year Convention

    Broader source: Energy.gov [DOE]

    The Affiliated Tribes of Northwest Indians Mid-year Convention will be hosted by the Chehalis Tribe.