National Library of Energy BETA

Sample records for technology validation manufacturing

  1. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  2. Technology Validation

    Broader source: Energy.gov [DOE]

    To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...

  3. Advanced Technology Vehicles Manufacturing (ATVM) Loan Program...

    Office of Environmental Management (EM)

    Advanced Technology Vehicles Manufacturing (ATVM) Loan Program Advanced Technology Vehicles Manufacturing (ATVM) Loan Program Advanced Technology Vehicles Manufacturing (ATVM) Loan...

  4. Photovoltaic manufacturing technology

    SciTech Connect (OSTI)

    Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. (Solarex Corp., Frederick, MD (United States))

    1991-12-01

    This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

  5. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel...

  6. Manufacturing Demonstration Facility Technology Collaborations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration Facility (MDF) to assess applicability and of new energy efficient manufacturing technologies. This opportunity will provide selected participants access to ORNL's...

  7. Manufacturing Demonstration Facility Technology Collaborations for US Manufacturers in Advanced

    E-Print Network [OSTI]

    applications related to additive manufacturing or carbon fiber and composites will have the highest likelihood in additive manufacturing or carbon fiber and composites. #12;MDF: Technology Collaborations for USManufacturing Demonstration Facility Technology Collaborations for US Manufacturers in Advanced

  8. 9. Technology Validation Introduction

    E-Print Network [OSTI]

    system solution and that system performance and operation are met under anticipated operating scenarios & Infrastructure Analysis Keith Wipke, National Renewable Energy Laboratory (NREL) 9-6 4.00 3.75 3.75 3.75 3.50 3.60 3.40 3.38 Technology Validation: Fuel Cell Bus Evaluations Leslie Eudy, National Renewable Energy

  9. New Sensor Network Technology Increases Manufacturing Efficiency...

    Office of Environmental Management (EM)

    Sensor Network Technology Increases Manufacturing Efficiency New Sensor Network Technology Increases Manufacturing Efficiency April 11, 2013 - 12:00am Addthis EERE supported Eaton...

  10. Creation and sustainment of manufacturing technology roadmaps

    E-Print Network [OSTI]

    Grillon, Louis S

    2012-01-01

    Manufacturing technology roadmaps align manufacturing capability development to product development and the driving business need. Roadmaps allow an executable business strategy to be communicated to all levels of an ...

  11. Department of Manufacturing & Construction Engineering Technology (MCET)

    E-Print Network [OSTI]

    Hamburger, Peter

    Department of Manufacturing & Construction Engineering Technology (MCET) Position title professional/industrial experience and teaching experience are desired. Additional expectations include, and community is also required. Description of the department: The Department of Manufacturing & Construction

  12. Objective assessment of manufacturing technology investments

    E-Print Network [OSTI]

    Rothman, Craig Jeremy

    2012-01-01

    Amgen is a biotechnology company with manufacturing plants throughout the world. New manufacturing technologies are constantly being developed and implemented in order to address cost, quality, regulation, and competitive ...

  13. Technology Validation Sig Gronich

    E-Print Network [OSTI]

    · Awarded Power Parks Project to Hawaiian Electric Company, Detroit Edison and Arizona Public Services, validate stationary fuel cell and hydrogen ICE systems that co- produce hydrogen and electricity from non-renewable and renewable resources, and demonstrate 30,000 hour durability, greater than 32% efficiency and a price of $1

  14. Manufacturing Ecosystems and Keystone Technologies (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Manufacturing Ecosystems and Keystone Technologies video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  15. Real-World Hydrogen Technology Validation: Preprint

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Wipke, K.; Ramsden, T.; Ainscough, C.; Eudy, L.; Saur, G.

    2012-03-01

    The Department of Energy, the Department of Defense's Defense Logistics Agency, and the Department of Transportation's Federal Transit Administration have funded learning demonstrations and early market deployments to provide insight into applications of hydrogen technologies on the road, in the warehouse, and as stationary power. NREL's analyses validate the technology in real-world applications, reveal the status of the technology, and facilitate the development of hydrogen and fuel cell technologies, manufacturing, and operations. This paper presents the maintenance, safety, and operation data of fuel cells in multiple applications with the reported incidents, near misses, and frequencies. NREL has analyzed records of more than 225,000 kilograms of hydrogen that have been dispensed through more than 108,000 hydrogen fills with an excellent safety record.

  16. Advanced manufacturing: Technology and international competitiveness

    SciTech Connect (OSTI)

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  17. Novel Manufacturing Technologies for High Power Induction and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric...

  18. Petrick Technology Trends Of Manufacturing

    E-Print Network [OSTI]

    production increased productivity during the Industrial Revolution when it replaced workers performing manufacturing will become commercially competitive across a wide range of industries and will support the use been revolutionizing industrial sectors for more than 200 years. We have seen the way mechanized

  19. Adaptive Integrated Manufacturing Enterprises: Information Technology for the Next Decade

    E-Print Network [OSTI]

    Hsu, Cheng

    Adaptive Integrated Manufacturing Enterprises: Information Technology for the Next Decade Cheng Hsu for Manufacturing Productivity and Technology Transfer. #12;Abstract A new vision effecting adaptiveness Manufacturing Enterprises (AIME). It focuses on four major problems: (1) Management of multiple systems

  20. Additive Manufacturing: Technology and Applications

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| DepartmentAL/FAL 99-01 More5,AchievingSeptemberAdditive Manufacturing:

  1. An Overview of Polymer Additive Manufacturing Technologies Peterson...

    Office of Scientific and Technical Information (OSTI)

    of Polymer Additive Manufacturing Technologies Peterson, Dominic S. Los Alamos National Laboratory Los Alamos National Laboratory Materials Science(36) Additive Manufacturing...

  2. Advanced Manufacturing Office (Formerly Industrial Technologies Program)

    E-Print Network [OSTI]

    Advanced Manufacturing Office (Formerly Industrial Technologies Program) Leo Christodoulou Jamie August 11, 2011 #12;Background and Opportunity Background Industry accounts for 30% of energy consumption-value industries such as the renewable energy industry. Example materials include low-cost carbon fiber, low

  3. Fuel Cell Backup Power Technology Validation (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.

    2012-10-01

    Presentation about fuel cell backup power technology validation activities at the U.S. Department of Energy's National Renewable Energy Laboratory.

  4. Faculty Position in Multi-scale Manufacturing Technologies

    E-Print Network [OSTI]

    Psaltis, Demetri

    -precision additive manufacturing technologies; · multi-scale micro-precision manufacturing; · high throughput. Christian Enz Search Committee Chair E-mail: manufacturing-search@epfl.ch For additional information on EPFLFaculty Position in Multi-scale Manufacturing Technologies at the Ecole polytechnique fédérale de

  5. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar...

    Broader source: Energy.gov (indexed) [DOE]

    the presentation slides from the "Joint Fuel Cell Technologies Office and Advanced Manufacturing Office Webinar" held November 20, 2012. Joint Fuel Cell Technologies Office and...

  6. "Technology Wedges" for Implementing Green Manufacturing

    E-Print Network [OSTI]

    Dornfeld, David; Wright, Paul

    2007-01-01

    Environmentally benign manufacturing: Trends in Europe,USA” Trans. ASME, J. Manufacturing Science and Engineering,and Computer Integrated Manufacturing, 15, pp. 257-270.

  7. "Technology Wedges" for Implementing Green Manufacturing

    E-Print Network [OSTI]

    Dornfeld, David; Wright, Paul

    2007-01-01

    Environmentally benign manufacturing: Trends in Europe,USA” Trans. ASME, J. Manufacturing Science and Engineering,Design and Inverse Manufacturing, Tokyo, Japan. Krishnan,

  8. DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of DOE Hydrogen and Fuel Cell Manufacturing R&D activities (N. Garland, DOE) 9:20 DOE's Industrial Technologies Program Manufacturing Activities (L. Christodoulou, DOE) 9:30...

  9. Technology Validation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaics »Tankless WaterEnergyJanuary28-982This form is toValidation

  10. "Technology Wedges" for Implementing Green Manufacturing

    E-Print Network [OSTI]

    Dornfeld, David; Wright, Paul

    2007-01-01

    Integration issues in green design and manufacturing."schematic of the green elements of design and manufacturing1. SCHEMATIC OF “GREEN” ELEMENTS OF DESIGN AND PRODUCTION,

  11. Carbon fiber manufacturing via plasma technology

    DOE Patents [OSTI]

    Paulauskas, Felix L. (Knoxville, TN); Yarborough, Kenneth D. (Oak Ridge, TN); Meek, Thomas T. (Knoxville, TN)

    2002-01-01

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  12. Exploration of disruptive technologies for low cost RFID manufacturing

    E-Print Network [OSTI]

    Kommandur, Badarinath, 1968-

    2004-01-01

    Significant developments have taken place in defining technology standards and identifying avenues for technological innovations to reduce the cost of manufacturing RFID tags below the $0.05 price point. The Auto-ID center ...

  13. Security Technology Demonstration and Validation Sustainability Plan

    SciTech Connect (OSTI)

    2008-08-31

    This report describes the process of creating continuity and sustainability for demonstration and validation (DEMVAL) assets at the National Security Technology Incubator (NSTI). The DEMVAL asset program is being developed as part of the National Security Preparedness Project (NSPP), funded by Department of Energy (DOE)/National Nuclear Security Administration (NNSA). The mission of the NSTI program is to identify, incubate, and accelerate technologies with national security applications at various stages of development by providing hands-on mentoring and business assistance to small businesses and emerging or growing companies. Part of this support is envisioned to be research and development of companies’ technology initiatives, at the same time providing robust test and evaluation of actual development activities. This program assists companies in developing technologies under the NSTI program through demonstration and validation of technologies applicable to national security created by incubators and other sources. The NSPP also will support the creation of an integrated demonstration and validation environment. Development of the commercial potential for national security technologies is a significant NSTI focus. As part of the process of commercialization, a comprehensive DEMVAL program has been recognized as an essential part of the overall incubator mission. A number of resources have been integrated into the NSTI program to support such a DEMVAL program.

  14. Experience Scaling Up Manufacturing of Emerging Photovoltaic Technologies

    SciTech Connect (OSTI)

    Braun, G. W.; Skinner, D. E.

    2007-01-01

    This report examines two important generic photovoltaic technologies at particularly revealing stages of development, i.e., the stages between R&D and stable commercial production and profitable sales. Based on two historical cases, it attempts to shed light on the difference between: (1) costs and schedules validated by actual manufacturing and market experience, and (2) estimated costs and schedules that rely on technology forecasts and engineering estimates. The amorphous Silicon case also identifies some of the costs that are incurred in meeting specific market requirements, while the Cadmium Telluride case identifies many of the operational challenges involved in transferring R&D results to production. The transition between R&D and commercial success takes a great deal of time and money for emerging energy conversion technologies in general. The experience reported here can be instructive to those managing comparable efforts, and to their investors. It can also be instructive to R&D managers responsible for positioning such new technologies for commercial success.

  15. Oak Ridge Centers for Manufacturing Technology - The Manufacturing Skills Campus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access to scienceSpeeding accessScientificandThe Manufacturing Skills

  16. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy intensity and efficiently direct energy to forming the product. Examples include additive manufacturing, selective heating, and out-of-the-autoclave composite...

  17. The Impact Of Trade Liberalization And Information Technology On India's Manufacturing Sector

    E-Print Network [OSTI]

    Sharma, Shruti

    2013-01-01

    Technology and Productivity in Indian Manufacturing 4.14.2.2 Manufacturing and IT inof IT in Indian Manufacturing . . . . . . . . 4.3 Data and

  18. "Technology Wedges" for Implementing Green Manufacturing

    E-Print Network [OSTI]

    Dornfeld, David; Wright, Paul

    2007-01-01

    respect to technology that could solve the climate problem (climate problem for the next 50 years with current technologies. ”

  19. Validation of the strain index in manufacturing facilities 

    E-Print Network [OSTI]

    Rucker, Nathan Paul

    1999-01-01

    factors were not found to be significant and had low measures of predictive validity. The results generated by this study suggest that the predictive validity of the Strain Index is good and the predictive validity of the generic poor. This indicates...

  20. Responses to Questions and Answers Advanced Vehicle Technology Manufacturing Solicitation

    E-Print Network [OSTI]

    1 Responses to Questions and Answers Advanced Vehicle Technology Manufacturing Solicitation PON successful applicants after the Notice of Proposed Awards to confirm this role and obtain any additional definition of "manufacturing equipment?" For example, would purchases of tooling or assembly line equipment

  1. Clean Energy Manufacturing Initiative: Technology Research and...

    Energy Savers [EERE]

    Motors' lightweight composite technology. DOE R&D has reduced the modeled, high-volume cost of advanced battery technology to 289 per kilowatt hour-40 percent lower than what it...

  2. Implementation of a manufacturing technology roadmapping initiative

    E-Print Network [OSTI]

    Johnson, Marcus Cullen

    2012-01-01

    Strategic technology planning is a core competency of companies using technological capabilities for competitive advantage. It is also a competency with which many large companies struggle due to the cross-functional ...

  3. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Validation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 2015 GATEWAY Takes 9. Technology Validation Introduction In

  4. DOE's Hydrogen and Fuel Cells Technologies Manufacturing

    E-Print Network [OSTI]

    enable durable, high-performance MEAs · Modeling of mechanical stress and heat / water management.S Department of Energy NREL H2/FC Manufacturing R&D Workshop Washington, D.C. August 11-12, 2011 #12;· Goal performance by 200 mA/cm2 at 0.4 V by improving the membrane/anode interface through direct coating W. L. Gore

  5. Industrial validation models 1 4/23/03 Experimental validation of new software technology

    E-Print Network [OSTI]

    Zelkowitz, Marvin V.

    Industrial validation models 1 4/23/03 Experimental validation of new software technology Marvin V When to apply a new technology in an organization is a critical decision for every software development organization. Earlier work defines a set of methods that the research community uses when a new technology

  6. Enhancing America's Manufacturing Competitiveness: A Review of the NIST Advanced Technology Program's

    E-Print Network [OSTI]

    #12;#12;Enhancing America's Manufacturing Competitiveness: A Review of the NIST Advanced Technology Program's Investments in Manufacturing Technologies "Manufacturing is an essential part of our economy. Not only are manufactured goods the currency of world trade, but manufacturing is what creates wealth

  7. A feasibility study for a manufacturing technology deployment center

    SciTech Connect (OSTI)

    Not Available

    1994-10-31

    The Automation & Robotics Research Institute (ARRI) and the Texas Engineering Extension Service (TEEX) were funded by the U.S. Department of Energy to determine the feasibility of a regional industrial technology institute to be located at the Superconducting Super Collider (SSC) Central Facility in Waxahachie, Texas. In response to this opportunity, ARRI and TEEX teamed with the DOE Kansas City Plant (managed by Allied Signal, Inc.), Los Alamos National Laboratory (managed by the University of California), Vought Aircraft Company, National Center for Manufacturing Sciences (NCMS), SSC Laboratory, KPMG Peat Marwick, Dallas County Community College, Navarro Community College, Texas Department of Commerce (TDOC), Texas Manufacturing Assistance Center (TMAC), Oklahoma Center for the Advancement of Science and Technology, Arkansas Science and Technology Authority, Louisiana Productivity Center, and the NASA Mid-Continent Technology Transfer Center (MCTTC) to develop a series of options, perform the feasibility analysis and secure industrial reviews of the selected concepts. The final report for this study is presented in three sections: Executive Summary, Business Plan, and Technical Plan. The results from the analysis of the proposed concept support the recommendation of creating a regional technology alliance formed by the states of Texas, New Mexico, Oklahoma, Arkansas and Louisiana through the conversion of the SSC Central facility into a Manufacturing Technology Deployment Center (MTDC).

  8. Upcoming Clean Energy Manufacturing Initiative (CEMI) Southeast...

    Energy Savers [EERE]

    FCTO Home About the Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Safety, Codes & Standards...

  9. Technology Validation Hydrogen and fuel cells are a critical

    E-Print Network [OSTI]

    barriers for future R&D efforts. The data collected also helps to develop statistical confidence. The Fuel Cell Technologies (FCT) Office, through its Technology Validation program, provides a crucial step), and a driving range of more than 250 miles between refueling. The program also validated one vehicle outside

  10. Industrial applications' simulation technologies in virtual environments Part II: Virtual Manufacturing and Virtual Assembly

    E-Print Network [OSTI]

    Aristomenis, Antoniadis

    categories, according to the subject and the technology that is required: · Virtual Manufacturing1 Industrial applications' simulation technologies in virtual environments Part II: Virtual Manufacturing and Virtual Assembly Bilalis Nikolaos Associate Professor Department of Production and Engineering

  11. Building Technologies Program Multi-Year Program Plan Technology Validation and Market Introduction 2008

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for technology validation and market introduction, including ENERGY STAR, building energy codes, technology transfer application centers, commercial lighting initiative, EnergySmart Schools, EnergySmar

  12. Validation of Innovative Exploration Technologies for Newberry Volcano

    Broader source: Energy.gov [DOE]

    DOE Geothermal Technologies Peer Review - 2010. Project summary: To effectively combine numerous exploration technologies to gather important data. Once information is combined into 3-D models, a target drilling location will be determined. Deep well capable of finding commercial quantities of geothermal resource will be drilled to validate methodology.

  13. U.S. Advanced Manufacturing and Clean Energy Technology Challenges

    Broader source: Energy.gov (indexed) [DOE]

    Strategy * Collaborative Ideas Collaboration toward: * Common goal to collectively increase U.S. manufacturing competitiveness 17 Clean Energy Manufacturing Initiative - DOE...

  14. Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    2012-01-01

    Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

  15. Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

  16. Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology (Fact Sheet)

    Broader source: Energy.gov [DOE]

    Fact sheet on Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology activities at NREL.

  17. Information Technology and Management 4, 5567, 2003 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

    E-Print Network [OSTI]

    Qian, Lianfen

    Information Technology and Management 4, 55­67, 2003 2003 Kluwer Academic Publishers. Manufactured for environmental hazards, · disaster avoidance and disaster recovery situations, · utilities management, · troops

  18. Voluntary Protection Program Onsite Review, Honeywell Federal Manufacturing and Technologies- November 2008

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Honeywell Federal Manufacturing and Technologies' Kansas City Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  19. Clean Energy Manufacturing Initiative: Technology Research and Development

    Broader source: Energy.gov [DOE]

    Through the Clean Energy Manufacturing Initiative (CEMI), U.S. Department of Energy (DOE) offices and programs have increased funding for manufacturing research and development (R&D) across the board with the goal of growing the clean energy manufacturing industry in the United States.

  20. SETEC/Semiconductor Manufacturing Technologies Program: 1999 Annual and Final Report

    SciTech Connect (OSTI)

    MCBRAYER,JOHN D.

    2000-12-01

    This report summarizes the results of work conducted by the Semiconductor Manufacturing Technologies Program at Sandia National Laboratories (Sandia) during 1999. This work was performed by one working group: the Semiconductor Equipment Technology Center (SETEC). The group's projects included Numerical/Experimental Characterization of the Growth of Single-Crystal Calcium Fluoride (CaF{sub 2}); The Use of High-Resolution Transmission Electron Microscopy (HRTEM) Imaging for Certifying Critical-Dimension Reference Materials Fabricated with Silicon Micromachining; Assembly Test Chip for Flip Chip on Board; Plasma Mechanism Validation: Modeling and Experimentation; and Model-Based Reduction of Contamination in Gate-Quality Nitride Reactor. During 1999, all projects focused on meeting customer needs in a timely manner and ensuring that projects were aligned with the goals of the National Technology Roadmap for Semiconductors sponsored by the Semiconductor Industry Association and with Sandia's defense mission. This report also provides a short history of the Sandia/SEMATECH relationship and a brief on all projects completed during the seven years of the program.

  1. Technology Validation of Fuel Cell Vehicles and Their Hydrogen Infrastructure (Presentation)

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Wipke, K.; Saur, G.; Ainscough, C.

    2013-10-22

    This presentation summarizes NREL's analysis and validation of fuel cell electric vehicles and hydrogen fueling infrastructure technologies.

  2. MAE SEMINAR Recent advances in Additive Manufacturing/3D Printing Technologies, Material Science and

    E-Print Network [OSTI]

    Mease, Kenneth D.

    MAE SEMINAR Recent advances in Additive Manufacturing/3D Printing Technologies, Material Science Samueli School of Engineering University of California Irvine 3D printing or Additive Manufacturing in different shapes. 3D printing is also considered distinct from traditional machining techniques, which

  3. Technology Solutions for New Manufactured Homes: Idaho, Oregon, and Washington Manufactured Home Builders (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

  4. OLEDWORKS DEVELOPS INNOVATIVE HIGH-PERFORMANCE DEPOSITION TECHNOLOGY TO REDUCE MANUFACTURING COST OF OLED LIGHTING

    Broader source: Energy.gov [DOE]

    The high manufacturing cost of OLED lighting is a major barrier to the growth of the emerging OLED lighting industry. OLEDWorks is developing high-performance deposition technology that addresses...

  5. The impact of manufacturing offshore on technology development paths in the automotive and optoelectronics industries

    E-Print Network [OSTI]

    Fuchs, Erica R. H. (Erica Renee H.), 1977-

    2006-01-01

    This dissertation presents a two-case study of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks in particular at the automotive and optoelectronics industries. The ...

  6. Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications

    SciTech Connect (OSTI)

    Ronnebro, Ewa

    2012-06-16

    PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.

  7. GATE Center of Excellence in Lightweight Materials and Manufacturing Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Anglo American Technological Differences in Small Arms Manufacturing

    E-Print Network [OSTI]

    Rosenbloom, Joshua L.

    1993-01-01

    stock of damaged weapons left unusable during the war. Their repair required the attention of a master gun smith.18 Both private contractors and the federal armories contributed to the development of new production methods after 1812... private producers increasingly reluctant to make the sub stantial investments in new tools and machinery needed to keep up with modifications in the design of military weapons, and many of them eventually abandoned small arms manufacturing altogether...

  9. Joint Fuel Cell Technologies and Advanced Manufacturing Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S. DepartmentJean Seibert StuckySolar IndustryWashington

  10. Oak Ridge Centers for Manufacturing Technology „ The Manufacturing Skills Campus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access to scienceSpeeding accessScientificandThe ManufacturingInsightsThe

  11. Photovoltaic Manufacturing Technology (PVMaT) improvements for ENTECH's concentrator module

    SciTech Connect (OSTI)

    O'Neill, M.J.; McDanal, A.J.; Perry, J.L.; Jackson, M.C.; Walters, R.R. (ENTECH, Inc., Dallas-Fort Worth Airport, TX (United States))

    1991-11-01

    This final technical report documents ENTECH's Phase 1 contract with Photovoltaic Manufacturing Technology (PVMaT) project. Under this project we prepared a detailed description of our current manufacturing process for making our unique linear Fresnel lens photovoltaic concentrator modules. In addition, we prepared a detailed description of an improved manufacturing process, which will simultaneously increase module production rates, enhance module quality, and substantially reduce module costs. We also identified potential problems in implementing the new manufacturing process, and we proposed solutions to these anticipated problems. Before discussing the key results of our program, however, we present a brief description of our unique photovoltaic technology. The key conclusion of our PVMAT Phase 1 study is that our module technology, without further breakthroughs, can realistically meet the near-term DOE goal of 12 cents/kWh levelized electricity cost, provided that we successfully implement the new manufacturing process at a production volume of at least 10 megawatts per year. The key recommendation from our Phase 1 study is to continue our PVMaT project into Phase 2A, which is directed toward the actual manufacturing technology development required for our new module production process. 15 refs.

  12. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann39.1_Acquisition_of_Information_Resources_0.pdfEnablingManufacturing | Department

  13. Technology Roadmap for Energy Reduction in Automotive Manufacturing

    SciTech Connect (OSTI)

    none,

    2008-09-01

    U.S. Department of Energy’s (DOE) Industrial Technologies Program (ITP), in collaboration with the United States Council for Automotive Research LLC (USCAR), hosted a technology roadmap workshop in Troy, Michigan in May 2008. The purpose of the workshop was to explore opportunities for energy reduction, discuss the challenges and barriers that might need to be overcome, and identify priorities for future R&D. The results of the workshop are presented in this report.

  14. Isotope separation and advanced manufacturing technology. Volume 2, No. 2, Semiannual report, April--September 1993

    SciTech Connect (OSTI)

    Kan, Tehmanu; Carpenter, J.

    1993-12-31

    This is the second issue of a semiannual report for the Isotope Separation and Advanced Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives of the ISAM Program include: the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) process, and advanced manufacturing technologies which include industrial laser materials processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. Topics included in this issue are: production plant product system conceptual design, development and operation of a solid-state switch for thyratron replacement, high-performance optical components for high average power laser systems, use of diode laser absorption spectroscopy for control of uranium vaporization rates, a two-dimensional time dependent hydrodynamical ion extraction model, and design of a formaldehyde photodissociation process for carbon and oxygen isotope separation.

  15. DOE's Hydrogen Fuel Cell Activities: Developing Technology and Validating it through Real-World Evaluation (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

    2008-05-12

    Presentation prepared for the May 12, 2008 Alternative Fuels and Vehicles Conference that describes DOE's current hydrogen fuel cell technology validation projects.

  16. Vehicle Technologies Office Merit Review 2015: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Optodot Corporation at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative manufacturing...

  17. Vehicle Technologies Office Merit Review 2014: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Optodot Corporation at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about innovative manufacturing...

  18. Technologies Enabling Agile Manufacturing (TEAM) … an ORCMT success story

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. CoalMexico IndependentMatter and Technologies

  19. Achieving Continuous Manufacturing: Technologies and Approaches for Synthesis, Workup, and Isolation of Drug Substance

    E-Print Network [OSTI]

    the different considerations for developing continuous processes compared with batch. In addition, through scale-up and into full scale production. The impact of continuous manufacture on drug substance analytical technologies (PAT) for real-time dynamic control of continuous processes. Develop modeling

  20. Simulation of Manufacturing and Service Systems (E005740) Valid in the academic year 2014-2015

    E-Print Network [OSTI]

    Fiems, Dieter

    Credits 6.0 Teaching languages Keywords Position of the course (nominal values; actual values may depend Methodology: · Types of simulation · Generating random sequences · Monte Carlo estimation · Discrete event able to capture a realistic manufacturing, production, logistic,services process · or system

  1. Vehicle Technologies Office Merit Review 2015: Giga Life Cycle: Manufacture of Cells from Recycled EV Li-ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by OnTo Technology at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Giga Life Cycle: manufacture...

  2. Emerging Technologies in the Built Environment: Geographic Information Science (GIS), 3D Printing, and Additive Manufacturing

    SciTech Connect (OSTI)

    New, Joshua Ryan

    2014-01-01

    Abstract 1: Geographic information systems emerged as a computer application in the late 1960s, led in part by projects at ORNL. The concept of a GIS has shifted through time in response to new applications and new technologies, and is now part of a much larger world of geospatial technology. This presentation discusses the relationship of GIS and estimating hourly and seasonal energy consumption profiles in the building sector at spatial scales down to the individual parcel. The method combines annual building energy simulations for city-specific prototypical buildings and commonly available geospatial data in a GIS framework. Abstract 2: This presentation focuses on 3D printing technologies and how they have rapidly evolved over the past couple of years. At a basic level, 3D printing produces physical models quickly and easily from 3D CAD, BIM (Building Information Models), and other digital data. Many AEC firms have adopted 3D printing as part of commercial building design development and project delivery. This presentation includes an overview of 3D printing, discusses its current use in building design, and talks about its future in relation to the HVAC industry. Abstract 3: This presentation discusses additive manufacturing and how it is revolutionizing the design of commercial and residential facilities. Additive manufacturing utilizes a broad range of direct manufacturing technologies, including electron beam melting, ultrasonic, extrusion, and laser metal deposition for rapid prototyping. While there is some overlap with the 3D printing talk, this presentation focuses on the materials aspect of additive manufacturing and also some of the more advanced technologies involved with rapid prototyping. These technologies include design of carbon fiber composites, lightweight metals processing, transient field processing, and more.

  3. Vehicle Technologies Office: Integration, Validation and Testing Tools and Procedures

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office supports work to integrate multiple fuel-efficient technologies into a vehicle through hardware-in-the-loop systems. It also supports the development and use of test procedures to measure real-world vehicle performance.

  4. Validating the Benefit of New Software Technology Marvin V. Zelkowitz Dolores Wallace

    E-Print Network [OSTI]

    Zelkowitz, Marvin V.

    1 Validating the Benefit of New Software Technology Marvin V. Zelkowitz Dolores Wallace Information community has developed methods for showing that new development technologies are effective by industry to investigate new technologies are given. Guidelines that allow research papers to address

  5. Metrics for Sustainable Manufacturing

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David A.

    2008-01-01

    S. , 2008. “Carbon emissions and ces(tm) in manufacturing”.CIRP Annals - Manufacturing Technology, 57, pp. 17–20.ventional tool and die manufacturing”. Journal of Cleaner

  6. Validation of Innovative Exploration Technologies for Newberry Volcano: Raw data used to prepare the Gravity Report by Zonge 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    2012-01-01

    Validation of Innovative Exploration Technologies for Newberry Volcano: Raw data used to prepare the Gravity Report by Zonge 2012

  7. Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    2012-01-01

    Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012

  8. Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Validation of Innovative Exploration Technologies for Newberry Volcano: Seismic data - raw taken by Apex Hipoint for 1st test 2012

  9. Validation of Innovative Exploration Technologies for Newberry Volcano: Raw data used to prepare the Gravity Report by Zonge 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Validation of Innovative Exploration Technologies for Newberry Volcano: Raw data used to prepare the Gravity Report by Zonge 2012

  10. Additive Manufacturing: Implications on Research and Manufacturing

    E-Print Network [OSTI]

    Crawford, T. Daniel

    Additive Manufacturing: Implications on Research and Manufacturing With recent developments, etc.), additive manufacturing (AM) has the potential to become a transformative technology in innovation-based manufacturing. Agencies such as the Department of Defense, the National Science Foundation

  11. MaDE students will learn all aspects of product realization from product design to manufacturing technologies and operations. Through hands-on experience, the program will provide students with the ability to integrate various design and manufacturing pro

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    prototyping technology into mainstream manufacturing processes 3. Training a workforce to use lean designMaDE students will learn all aspects of product realization from product design to manufacturing to integrate various design and manufacturing processes into an effective system. Information Technology HOW

  12. Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon Fiber Composite Structures

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material models...

  13. A Novel VLSI Technology to Manufacture High-Density Thermoelectric Cooling Devices

    E-Print Network [OSTI]

    H. Chen; L. Hsu; X. Wei

    2008-01-07

    This paper describes a novel integrated circuit technology to manufacture high-density thermoelectric devices on a semiconductor wafer. With no moving parts, a thermoelectric cooler operates quietly, allows cooling below ambient temperature, and may be used for temperature control or heating if the direction of current flow is reversed. By using a monolithic process to increase the number of thermoelectric couples, the proposed solid-state cooling technology can be combined with traditional air cooling, liquid cooling, and phase-change cooling to yield greater heat flux and provide better cooling capability.

  14. Rapid Deposition Technology Holds the Key for the World's Largest Manufacturer of Thin-Film Solar Modules (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01

    First Solar, Inc. has been collaborating with NREL since 1991, advancing its thin-film cadmium telluride solar technology to grow from a startup company to become one of the world's largest manufacturers of solar modules, and the world's largest manufacturer of thin-film solar modules.

  15. Validation of Innovative Exploration Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobs SearchWater-SavingofCode |Department of18 -Validation of

  16. The critical role of manufacturing-process innovation on product development excellence in high-technology companies

    E-Print Network [OSTI]

    Duarte, Carlos E. A., 1962-

    2004-01-01

    Few managers of high-technology companies view manufacturing-process development as primary source of competitive advantage. For the last two decades trends have shown an increasing number of high-tech industries outsourcing ...

  17. Economic and technological advantages of using high speed sintering as a rapid manufacturing alternative in footwear applications

    E-Print Network [OSTI]

    Vasquez, Mike (George Mike)

    2009-01-01

    Rapid manufacturing is a family of technologies that employ additive layer deposition techniques to construct parts from computer based design models.[2] These parts can then be used as prototypes or finished goods. One ...

  18. Information-Processing Architectures in Multidimensional Classification: A Validation Test of the Systems Factorial Technology

    E-Print Network [OSTI]

    Townsend, James T.

    Information-Processing Architectures in Multidimensional Classification: A Validation Test of the Systems Factorial Technology Mario Fific, Robert M. Nosofsky, and James T. Townsend Indiana University A growing methodology, known as the systems factorial technology (SFT), is being developed to diagnose

  19. Technology Validation: Fuel Cell Bus Evaluations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaics »Tankless WaterEnergyJanuary28-982This form isValidation:

  20. Progress of the Photovoltaic Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base: Preprint

    SciTech Connect (OSTI)

    Ullal, H.; Mitchell, R.; Keyes, B.; VanSant, K.; von Roedern, B.; Symko-Davies, M.; Kane, V.

    2011-07-01

    In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubator Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment totals nearly $ 1.3 billion.

  1. Progress of the PV Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base

    SciTech Connect (OSTI)

    Ullal, H.; Mitchell, R.; Keyes, B.; VanSant, K.; Von Roedern, B.; Symko-Davies, M.; Kane, V.

    2011-01-01

    In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubator Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment total nearly $ 1.3 billion.

  2. Survey of US Department of Defense Manufacturing Technology Program activities applicable to civilian manufacturing industries. Final report

    SciTech Connect (OSTI)

    Azimi, S.A.; Conrad, J.L.; Reed, J.E.

    1985-03-01

    Intent of the survey was to identify and characterize activities potentially applicable to improving energy efficiency and overall productivity in the civilian manufacturing industries. The civilian industries emphasized were the general manufacturing industries (including fabricated metals, glass, machinery, paper, plastic, textile, and transportation equipment manufacturing) and the primary metals industries (including primary aluminum, copper, steel, and zinc production). The principal steps in the survey were to: develop overview taxonomies of the general manufacturing and primary metals industries as well as specific industry taxonomies; identify needs and opportunities for improving process energy efficiency and productivity in the industries included; identify federal programs, capabilities, and special technical expertise that might be relevant to industry's needs and opportunities; contact federal laboratories/facilities, through visits and other forms of inquiry; prepare formatted profiles (descriptions) potentially applicable work efforts; review findings with industry; and compile and evaluate industry responses.

  3. Pollution prevention opportunity assessment for building 878, manufacturing science and technology, organization 14100.

    SciTech Connect (OSTI)

    Klossner, Kristin Ann

    2004-05-01

    This report describes the methodology, analysis and conclusions of a preliminary assessment carried out for activities and operations at Sandia National Laboratories Building 878, Manufacturing Science and Technology, Organization 14100. The goal of this assessment is to evaluate processes being carried out within the building to determine ways to reduce waste generation and resource use. The ultimate purpose of this assessment is to analyze and prioritize processes within Building 878 for more in-depth assessments and to identify projects that can be implemented immediately.

  4. Manufacturing Innovation Institute for Smart Manufacturing: Advanced...

    Energy Savers [EERE]

    SMART technologies can transform American manufacturing, enabling businesses to manufacture more while using less energy and spending less. For more information, see the full...

  5. Validating

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentric viewingValidating extended MHD models for fusion

  6. Validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentric viewingValidating extended MHD

  7. Development of an Improved Process for Installation Projects of High Technology Manufacturing Equipment

    SciTech Connect (OSTI)

    Quintana, Sarah V.

    2014-04-30

    High technology manufacturing equipment is utilized at Los Alamos National Laboratory (LANL) to support nuclear missions. This is undertaken from concept initiation where equipment is designed and then taken through several review phases, working closely with system engineers (SEs) responsible for each of the affected systems or involved disciplines (from gasses to HVAC to structural, etc.). After the design is finalized it moves to procurement and custom fabrication of the equipment and equipment installation, including all of the paperwork involved. Not only are the engineering and manufacturing aspects important, but also the scheduling, financial forecasting, and planning portions that take place initially and are sometimes modified as the project progresses should requirements, changes or additions become necessary. The process required to complete a project of this type, including equipment installation, is unique and involves numerous steps to complete. These processes can be improved and recent work on the Direct Current Arc (DC Arc) Glovebox Design, Fabrication and Installation Project provides an opportunity to identify some important lessons learned (LL) that can be implemented in the future for continued project improvement and success.

  8. Productivity genefits from new energy technology: A case study of a paint manufacturing company

    SciTech Connect (OSTI)

    Raghunathan, P.; Capehart, B.L.

    1997-06-01

    In many cases, implementing new energy efficiency technologies not only helps facilities reduce their energy costs, but it also creates greater profits by increasing productivity. These added benefits from productivity improvements can sometimes be greater than the energy cost savings, and can result in an attractive overall payback period for implementing the new technology. This paper presents a case study of productivity improvement at a paint manufacturing company as a result of implementing new energy efficiency technology. During an industrial energy assessment, it was noted that the company had experienced frequent failures of motor belts and sheaves on five paint mixers resulting in significant replacement costs and labor costs. In addition, a bigger loss was being suffered due to lost potential profit associated with the frequent work stoppages. The IAC recommendation was to install motor soft starters (also known as motor voltage controllers) on the five mixing machines. Installation of soft starters would have the following benefits: lower energy costs, lower replacement costs for transmission components, lower labor costs, and higher production levels and increased profits. The total annual benefits were estimated at $122,659, of which the benefits from increased productivity were nearly $67,000. The overall simple payback period for installing the soft starters was less than 2 months.

  9. Precision and Energy Usage for Additive Manufacturing

    E-Print Network [OSTI]

    Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

    2013-01-01

    Sustainability of additive manufacturing: measuring theCommittee F42 on Additive Manufacturing Technologies," TheASTM Committee F42 on Additive Manufacturing Technologies. -

  10. MANUFACTURING Manufacturing and Biomanufacturing

    E-Print Network [OSTI]

    Magee, Joseph W.

    process improvements to manufacturing. In addition, the critical national need area of Manufacturing hasMANUFACTURING Manufacturing and Biomanufacturing: Materials Advances and Critical Processes NATIONAL NEED The proposed topics within "Manufacturing and Biomanufacturing: Materials Advances

  11. Rapid Deposition Technology Holds the Key for the World's Largest Solar Manufacturer (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    Thanks in part to years of collaboration with the National Renewable Energy Laboratory (NREL), a manufacturer of thin-film solar modules has grown from a small garage-type operation to become the world's largest manufacturer of solar modules. First Solar, Inc. now manufactures cadmium telluride (CdTe) solar modules throughout the world, but it began in Ohio as a small company called Solar Cells, Inc.

  12. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    SciTech Connect (OSTI)

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  13. Electrocoagulation: A Technology for Water Recycle and Wastewater Treatment in Semiconductor Manufacturing

    E-Print Network [OSTI]

    Fay, Noah

    Manufacturing Devin Whipple James C. Baygents & James Farrell, Associate Professors Department of Chemical of treating wastewater streams in the semiconductor manufacturing industry. Electrocoagulation involves in particular has the possibility of immediate application at one of Intel's plants. In addition, these both

  14. Vehicle Technologies Office Merit Review 2015: Validation of Material Models for Crash Simulation of Automotive Carbon Fiber Composite Structures (VMM)

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material...

  15. A Three Dimensional System Approach for Environmentally Sustainable Manufacturing

    E-Print Network [OSTI]

    Yuan, Chris; Zhai, Qiang; Dornfield, David

    2012-01-01

    adapted to various manufacturing systems and technologies. ABusiness Development in Manufacturing SMEs. Proceedings ofand Visions towards Sustainable Manufacturing. CIRP Annals –

  16. Ultra-High Efficiency and Low-Emissions Combustion Technology for Manufacturing Industries

    SciTech Connect (OSTI)

    Atreya, Arvind

    2013-04-15

    The purpose of this research was to develop and test a transformational combustion technology for high temperature furnaces to reduce the energy intensity and carbon footprint of U.S. manufacturing industries such as steel, aluminum, glass, metal casting, and petroleum refining. A new technology based on internal and/or external Flue Gas Recirculation (FGR) along with significant enhancement in flame radiation was developed. It produces "Radiative Flameless Combustion (RFC)" and offers tremendous energy efficiency and pollutant reduction benefits over and above the now popular "flameless combustion." It will reduce the energy intensity (or fuel consumption per unit system output) by more than 50% and double the furnace productivity while significantly reducing pollutants and greenhouse gas emissions (10^3 times reduction in NOx and 10 times reduction in CO & hydrocarbons and 3 times reduction in CO2). Product quality improvements are also expected due to uniform radiation, as well as, reduction in scale/dross formation is expected because of non-oxidative atmosphere. RFC is inexpensive, easy to implement, and it was successfully tested in a laboratory-scale furnace at the University of Michigan during the course of this work. A first-ever theory with gas and particulate radiation was also developed. Numerical programs were also written to design an industrial-scale furnace. Nine papers were published (or are in the process of publication). We believe that this early stage research adequately proves the concept through laboratory experiments, modeling and computational models. All this work is presented in the published papers. Important conclusions of this work are: (1) It was proved through experimental measurements that RFC is not only feasible but a very beneficial technology. (2) Theoretical analysis of RFC was done in (a) spatially uniform strain field and (b) a planar momentum jet where the strain rate is neither prescribed nor uniform. Four important non-dimensional parameters controlling RFC in furnaces were identified. These are: (i) The Boltzmann number; (ii) The Damkohler number, (iii) The dimensionless Arrhenius number, and (iv) The equivalence ratio. Together they define the parameter space where RFC is possible. It was also found that the Damkohler number must be small for RFC to exist and that the Boltzmann number expands the RFC domain. The experimental data obtained during the course of this work agrees well with the predictions made by the theoretical analysis. Interestingly, the equivalence ratio dependence shows that it is easier to establish RFC for rich mixtures than for lean mixtures. This was also experimentally observed. Identifying the parameter space for RFC is necessary for controlling the RFC furnace operation. It is hoped that future work will enable the methodology developed here to be applied to the operation of real furnaces, with consequent improvement in efficiency and pollutant reduction. To reiterate, the new furnace combustion technology developed enables intense radiation from combustion products and has many benefits: (i) Ultra-High Efficiency and Low-Emissions; (ii) Uniform and intense radiation to substantially increase productivity; (iii) Oxygen-free atmosphere to reduce dross/scale formation; (iv) Provides multi-fuel capability; and (v) Enables carbon sequestration if pure oxygen is used for combustion.

  17. Vibration mills in the manufacturing technology of slurry fuel from unbeneficiated coal sludge

    SciTech Connect (OSTI)

    E.G. Gorlov; A.I. Seregin; G.S. Khodakov [Institute for Fossil Fuels, Moscow (Russia)

    2008-08-15

    Coal-water slurry fuel (CWSF) is economically viable provided that its ash content does not exceed 30% and the amount water in the fuel is at most 45%. Two impoundments were revealed that have considerable reserves of waste coal useful for commercial manufacture of CWSF without the beneficiation step. One of the CWSF manufacture steps is the comminution of coal sludge to have a particle size required by the combustion conditions. Vibration mills, which are more compact and energy-intensive that drum mills, can be used in the CWSG manufacture process. The rheological characteristics of CWSF obtained from unbeneficiated waste coal were determined.

  18. MANUFACTURING ENGINEERING Manufacturing engineering

    E-Print Network [OSTI]

    MANUFACTURING ENGINEERING Manufacturing engineering transforms raw materials, parts, and operations, following a well- organized plan for each activity. Manufacturing engineering involves designing assuring a competitive level of productivity. The manufacturing engineering curriculum at WSU focuses

  19. Modeling learning when alternative technologies are learning & resource constrained : cases In semiconductor & advanced automotive manufacturing

    E-Print Network [OSTI]

    Rand-Nash, Thomas

    2012-01-01

    When making technology choice decisions, firms must consider technology costs over time. In many industries, technology costs have been shown to decrease over time due to (a) improvements in production efficiency and the ...

  20. Vehicle Technologies Office Merit Review 2015: Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Lambda Technologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced drying process...

  1. Manufacturing Research and Development | Department of Energy

    Office of Environmental Management (EM)

    Manufacturing Research and Development Manufacturing Research and Development The Fuel Cell Technologies Office's manufacturing research and development (R&D) activity improves...

  2. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

    2011-01-01

    reduction technology in manufacturing – A selective reviewD. , Sustainable Manufacturing – Greening Processes, SystemsStrategies for Green Manufacturing, Proceedings of the 4th

  3. Establishing Greener Products and Manufacturing Processes

    E-Print Network [OSTI]

    Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

    2012-01-01

    reduction technology in manufacturing – A selective reviewContribution of Labor to Manufacturing Energy Use,” Proc. ofResearch in Sustainable Manufacturing,” Proc. of the ASME

  4. Continuous roll-to-roll amorphous silicon photovoltaic manufacturing technology. Semiannual subcontract report, 1 April 1993--30 September 1993

    SciTech Connect (OSTI)

    Izu, M.

    1994-06-01

    This report describes work for this reporting period under a 3-year program to advance Energy Conversion Device`s (ECD) roll-to-roll, triple-junction photovoltaic (PV) manufacturing technologies, to reduce the module production costs, to increase the stabilized module performance, and to expand commercial production capacity utilizing ECD technology. The specific 3-year goal is to develop advanced large-scale manufacturing technology incorporating ECD`s earlier research advances with the capability of producing modules with stable 11% efficiency at a cost of approximately $1.00 per peak watt. Major accomplishments during this reporting period include (1) the design, construction. amd testomg of a continuous roll-to-roll multipurpose amorphous silicon alloy solar cell deposition machine that incorporates improvements necessary to obtain higher efficiency solar cells; (2) development of a photothermal deflection spectroscopy (PDS) technique for evaluating back-reflector systems; (3) the development of an improved textured Ag/ZnO back-reflector system demonstrating 25% gain in J{sub sc} over previous textured Al back-reflector systems; and (4) the design of a serpentine web continuous roll-to-roll deposition chamber.

  5. Vehicle Technologies Office Merit Review 2015: Low Cost, Structurally Advanced Novel Electrode and Cell Manufacturing

    Broader source: Energy.gov [DOE]

    Presentation given by 24M Technologies at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low cost, structurally...

  6. Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors (Agreement ID:23726)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Future CIS Manufacturing Technology Development: Final Report, 8 July 1998--17 October 2001

    SciTech Connect (OSTI)

    Anderson, T. J.; Crisalle, O. D.; Li, S. S.; Holloway, P. H.

    2003-06-01

    The University of Florida served as the basis for educating 12 graduate students in the area of photovoltaics engineering and research with a focus on thin-film CIS manufacturing technologies. A critical assessment of the thermodynamic data and of the phase diagrams for the Cu-Se and In-Se binary systems were carried out. We investigated the use of two novel precursor structures that used stacked In-Se and Cu-Se binary layers instead of conventional elemental layers, followed by rapid thermal processing (RTP) to produce CIS films. We investigated the evolution of electrical and microstructural properties of sputter-deposited ZnO:Al thin films. An assessment of the thermodynamics of the pseudobinary Cu2Se-Ga2Se3 system was done by using available experimental data, as well as an empirical method for estimating interactions in semiconductor solid solutions. Optimization studies were conducted to characterize the RTP of binary bilayer precursors for CIS synthesis using a newly acquired AG Associates Heatpulse furnace. Progress was made on the calculation of the 500C isothermal section of the phase diagram of the ternary Cu-In-Se system. Pursuit of developing alternative buffer layers for Cd-free CIS-based solar cells using a chemical-bath deposition (CBD) process has resulted in specific recipes for deposition. A rigorous model has been derived to predict the metal mass fluxes produced by conical thermal effusion sources. A two-dimensional model of the heat transfer was developed to model the substrate temperature distribution in the UF PMEE Reactor that features a rotating platen/substrates and effusion sources. We have grown and characterized polycrystalline CIS epitaxial films on single-crystal GaAs substrates under conditions that enhance the influence of surface effects on the resulting films and their properties. Progress was made on the study of CIS and CGS single-crystal growth, along with accompanying morphological and compositional characterizations. We have developed physical models and performed numerical simulations using AMP-1D program to predict the performance of the CIS-based solar cells constructed with different buffer layers (such as CdS and Cd-free materials) and to compare the results with experimental data. A new computer-controlled automated measurement system for the characterization of the solar cell performance parameters has been developed. The plasma-enhanced migration-enhanced epitaxial reactor (PMEE) is used for the deposition of a wide variety of thin CIS films. A new instrumentation and control interface for the plasma-enhanced migration-enhanced reactor has been designed and deployed to enable the implementation of advanced control strategies envisioned for the local sources, as well as the supervisory control structure.

  8. Technology demonstration of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles at Ft. Bliss, Texas. Interim report

    SciTech Connect (OSTI)

    Alvarez, R.A.; Yost, D.M.

    1995-11-01

    A technology demonstration program of dedicated compressed natural gas (CNG) original equipment manufacturer (OEM) vehicles was conducted at FL Bliss, Texas to demonstrate the use of CNG as an alternative fuel. The demonstration program at FL Bliss was the first Army initiative with CNG-fueled vehicles under the legislated Alternative Motor Fuels Act. This Department of Energy (DOE)-supported fleet demonstration consisted of 48 General Services Administration (GSA)-owned, Army-leased 1992 dedicated CNG General Motors (GM) 3/4-ton pickup trucks and four 1993 gasoline-powered Chevrolet 3/4-ton pickup trucks.

  9. Vehicle Technologies Office Merit Review 2014: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel...

  10. Vehicle Technologies Office Merit Review 2015: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel...

  11. Machine Tool Design and Operation Strategies for Green Manufacturing

    E-Print Network [OSTI]

    2010-01-01

    E. , 2007, Precision Manufacturing, Springer, New York, pp.Environment, CIRP Annals - Manufacturing Technology, Vol.Environment, CIRP Annals - Manufacturing Technology, Vol.

  12. Seminar Title: Additive Manufacturing Advanced Manufacturing of Polymer and Composite Components

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Seminar Title: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Additive manufacturing technologies Functionally Integrated Composite Structures, Augsburg, Germany ME Faculty Candidate Abstract: Additive

  13. Photovoltaic Manufacturing Technology (PVMaT) improvements for ENTECH`s concentrator module. Final technical report, 9 January 1991--14 April 1991

    SciTech Connect (OSTI)

    O`Neill, M.J.; McDanal, A.J.; Perry, J.L.; Jackson, M.C.; Walters, R.R. [ENTECH, Inc., Dallas-Fort Worth Airport, TX (United States)

    1991-11-01

    This final technical report documents ENTECH`s Phase 1 contract with Photovoltaic Manufacturing Technology (PVMaT) project. Under this project we prepared a detailed description of our current manufacturing process for making our unique linear Fresnel lens photovoltaic concentrator modules. In addition, we prepared a detailed description of an improved manufacturing process, which will simultaneously increase module production rates, enhance module quality, and substantially reduce module costs. We also identified potential problems in implementing the new manufacturing process, and we proposed solutions to these anticipated problems. Before discussing the key results of our program, however, we present a brief description of our unique photovoltaic technology. The key conclusion of our PVMAT Phase 1 study is that our module technology, without further breakthroughs, can realistically meet the near-term DOE goal of 12 cents/kWh levelized electricity cost, provided that we successfully implement the new manufacturing process at a production volume of at least 10 megawatts per year. The key recommendation from our Phase 1 study is to continue our PVMaT project into Phase 2A, which is directed toward the actual manufacturing technology development required for our new module production process. 15 refs.

  14. Validation of Innovative Exploration Technologies for Newberry Volcano: Geochemistry data from 55-29 and 46-16 wells at Newberry 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    2012-01-01

    Validation of Innovative Exploration Technologies for Newberry Volcano: Geochemistry data from 55-29 and 46-16 wells at Newberry 2012

  15. Validation of Innovative Exploration Technologies for Newberry Volcano: Geochemistry data from 55-29 and 46-16 wells at Newberry 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Validation of Innovative Exploration Technologies for Newberry Volcano: Geochemistry data from 55-29 and 46-16 wells at Newberry 2012

  16. Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash

    SciTech Connect (OSTI)

    Milton Wu; Paul Yuran

    2006-12-31

    Universal Aggregates LLC (UA) was awarded a cost sharing Co-operative Agreement from the Department of Energy (DOE) through the Power Plant Improvement Initiative Program (PPII) to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia in October 2001. The Agreement was signed in November 2002. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the UA share is $12.3 million (63%). The original project team consists of UA, SynAggs, LLC, CONSOL Energy Inc. and P. J. Dick, Inc. Using 115,000 ton per year of spray dryer ash (SDA), a dry FGD by-product from the power station, UA will produce 167,000 tons of manufactured lightweight aggregate for use in production of concrete masonry units (CMU). Manufacturing aggregate from FGD by-products can provide an economical high-volume use and substantially expand market for FGD by-products. Most of the FGD by-products are currently disposed of in landfills. Construction of the Birchwood Aggregate Facility was completed in March 2004. Operation startup was begun in April 2004. Plant Integration was initiated in December 2004. Integration includes mixing, extrusion, curing, crushing and screening. Lightweight aggregates with proper size gradation and bulk density were produced from the manufacturing aggregate plant and loaded on a stockpile for shipment. The shipped aggregates were used in a commercial block plant for CMU production. However, most of the production was made at low capacity factors and for a relatively short time in 2005. Several areas were identified as important factors to improve plant capacity and availability. Equipment and process control modifications and curing vessel clean up were made to improve plant operation in the first half of 2006. About 3,000 tons of crushed aggregate was produced in August 2006. UA is continuing to work to improve plant availability and throughput capacity and to produce quality lightweight aggregate for use in commercial applications.

  17. Oak Ridge Centers for Manufacturing Technology - Partnership and Impact on the Semiconductor Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access to scienceSpeeding accessScientificandThe Manufacturing

  18. Oak Ridge Centers for Manufacturing Technology „ Insights from Jack Cook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access to scienceSpeeding accessScientificandThe ManufacturingInsights

  19. General Purpose Technologies and Economic Growth: Electricity Diffusion in the Manufacturing Sector Before WWII

    E-Print Network [OSTI]

    Ristuccia, Cristiano Andrea; Solomou, Solomos

    of spillovers, etc.); magnitude of its economic benefits (the size of social savings, and efficiency gains it affords, and the extent of each individual spillover); and speed of the diffusion process as, however pervasive and large the technological changes...

  20. Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology

    SciTech Connect (OSTI)

    Harry Littleton; John Griffin

    2011-07-31

    This project was a subtask of Energy Saving Melting and Revert Reduction Technology (Ă?ÂąĂ?Â?Ă?Â?Energy SMARRTĂ?ÂąĂ?Â?Ă?) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy saving estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTUĂ?ÂąĂ?Â?Ă?Â?s/year and 6.46 trillion BTUĂ?ÂąĂ?Â?Ă?Â?s/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).

  1. Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

  2. Roll to Roll Manufacturing

    SciTech Connect (OSTI)

    Daniel, Claus

    2015-06-09

    ORNL researchers are developing roll to roll technologies for manufacturing, automotive, and clean energy applications in collaboration with industry partners such as Eastman Kodak.

  3. Designation Order No. 00-12.00 to the Executive Director of Loan Programs and Director of the Advanced Technology Vehicles Manufacturing Incentive Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-30

    Secretary or Energy designates each of the Executive Director of Loan Programs and the Director of the Advanced Technology Vehicles Manufacturing Incentive Program, as their designee, as the term is used in the Internal Revenue Manual, Part 11, Chapter 3, Section 29.6, acting separately to request tax delinquency account status and other tax related information from the Internal Revenue Service, pursuant to 26 U .S.C. 6103(1)(3), for applicants to the Department's Advanced Technology Vehicles Manufacturing Incentive Program under Section 136 of the Energy Independence and Security Act of2007 (P. L. 110-140), as amended.

  4. DESIGN AND FABRICATION OF A ROLLER IMPRINTING DEVICE FOR MICROFLUIDIC DEVICE MANUFACTURING

    E-Print Network [OSTI]

    Vijayaraghavan, Athulan; Jayanathan, Stephen; Helu, Moneer; Dornfeld, David

    2008-01-01

    micromachining”. CIRP Annals - Manufacturing Technology, 55(of the Laboratory for Manufacturing and Sustainability (the 2008 International Manufacturing Science And Engineering

  5. 2 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY--PART B, VOL. 20, NO. 1, FEBRUARY 1997 A Novel Test Technique for MCM Substrates

    E-Print Network [OSTI]

    Swaminathan, Madhavan

    2 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY--PART B, VOL. 20, NO. 1 packages provide a means for interconnect- ing, powering, cooling, and protecting integrated circuit (IC chips or between other discrete components, mounted on the package. Since semiconductor chips

  6. 86 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 3, NO. 1, JANUARY 2013 Performance of Online and Offset Micro Pin-Fin

    E-Print Network [OSTI]

    Kandlikar, Satish

    design temperature (thermal energy generated by them should be up to 288 W. This implies86 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 3, NO. 1, JANUARY in these configurations. The bottom wall temperature profile along the flow length, overall thermal resistances, pressure

  7. Validation of Innovative Exploration Technologies for Newberry Volcano: Drill Site Location Map 2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    2012-01-01

    Newberry project drill site location map 2010. Once the exploration mythology is validated, it can be applied throughout the Cascade Range and elsewhere to locate and develop “blind” geothermal resources.

  8. Validation of Innovative Exploration Technologies for Newberry Volcano: Drill Site Location Map 2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Newberry project drill site location map 2010. Once the exploration mythology is validated, it can be applied throughout the Cascade Range and elsewhere to locate and develop “blind” geothermal resources.

  9. The Development of a Valid and Reliable Measure of Technological Literacy for Adults

    E-Print Network [OSTI]

    Bastion, Susan

    2014-12-31

    responded to the items and also took two existing measures which assess similar constructs (the Survey of Technological Literacy and the Technology Inventory Profile). Analysis of their data guided final item selection and suggests that the new measure...

  10. Advanced Manufacturing Office, U.S. Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    materials Advanced Manufacturing Office Advanced Manufacturing Office Battery and Supercapacitors: A technology capable of transforming many industries including vehicles systems...

  11. Papyrus Manufacture

    E-Print Network [OSTI]

    Leach, Bridget

    2009-01-01

    British Museum, London. Papyrus Manufacture, Leach, UEE 2009AINES Short Citation: Leach 2009, Papyrus Manufacture. UEE.Bridget, 2009, Papyrus Manufacture. In Willeke Wendrich (

  12. Essays on the Performance of Manufacturing Firms in Developing Countries

    E-Print Network [OSTI]

    Eifert, Benjamin Patrick

    2010-01-01

    highly-successful lean manufacturing system of production (adopted the Japanese lean manufacturing technology beginningthe experience f rom Lean manufacturing i s t he col lective

  13. Wind Manufacturing and Supply Chain | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing and Supply Chain Wind Manufacturing and Supply Chain The U.S. Department of Energy (DOE) works with wind technology suppliers to promote advanced manufacturing...

  14. Precision Manufacturing of Imprint Rolls for the Roller Imprinting Process

    E-Print Network [OSTI]

    Vijayaraghavan, Athulan; Dornfeld, David A; Kim, Chang-Ju

    2008-01-01

    Fugl, J. ; “ ;Precision Manufacturing Methods of Inserts forD. E. ; Precision Manufacturing, 1 st Edition; Springer. [In: CIRP Annals – Manufacturing Technology; pp. 73-76. [

  15. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect (OSTI)

    Ludtka, Gail Mackiewicz-; Chourey, Aashish

    2010-08-01

    As the original magnet designer and manufacturer of ORNL s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL s Materials Processing Group s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  16. Vehicle Technologies Office Merit Review 2015: Crash Propagation in Automotive Batteries: Simulations and Validation

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about crash...

  17. Force Modulation System for Vehicle Manufacturing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System for Vehicle Manufacturing Force Modulation System for Vehicle Manufacturing Novel Technology Enables Energy-Efficient Production of High-Strength Steel Automotive Parts...

  18. Natural Fiber Composites: Retting, Preform Manufacture & Molding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Fiber Composites: Retting, Preform Manufacture & Molding Natural Fiber Composites: Retting, Preform Manufacture & Molding 2009 DOE Hydrogen Program and Vehicle Technologies...

  19. Low Temperature PEM Fuel Cell Manufacturing Needs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    methods. Identify gaps in MEA manufacturing technology: How much better can we do? Note: Cost reductions realized from both material price reduction and manufacturing yield...

  20. Additive Manufacturing Technology Assessment

    Office of Environmental Management (EM)

    efficiency of aircraft (this includes lightweighting of aircrafts) and reducing 162 the air and noise pollution 11. These objectives require parts that are lightweight, strong...

  1. Additive Manufacturing Technology Assessment

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s sconveyance(EPACT)SpringDOE during

  2. Additive Manufacturing for Fuel Cells

    Broader source: Energy.gov [DOE]

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

  3. Green Manufacturing

    SciTech Connect (OSTI)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  4. Vehicle Technologies Office: 2010 Lightweight Materials R&D Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Lightweight Materials activity (LM) focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance,recyclability, and cost.

  5. MANUFACTURING Manufacturing and Biomanufacturing

    E-Print Network [OSTI]

    Magee, Joseph W.

    Technology Innovation Program National Institute of Standards and Technology Gaithersburg, MD April 2010 The Technology Innovation Program (TIP) at the National Institute of Standards and Technology (NIST is cost-shared cooperative agreements awarded on the basis of merit competitions. AN AREA OF CRITICAL

  6. Material Design, Selection, and Manufacturing Methods for System Sustainment

    SciTech Connect (OSTI)

    David Sowder, Jim Lula, Curtis Marshall

    2010-02-18

    This paper describes a material selection and validation process proven to be successful for manufacturing high-reliability long-life product. The National Secure Manufacturing Center business unit of the Kansas City Plant (herein called KCP) designs and manufactures complex electrical and mechanical components used in extreme environments. The material manufacturing heritage is founded in the systems design to manufacturing practices that support the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA). Material Engineers at KCP work with the systems designers to recommend materials, develop test methods, perform analytical analysis of test data, define cradle to grave needs, present final selection and fielding. The KCP material engineers typically will maintain cost control by utilizing commercial products when possible, but have the resources and to develop and produce unique formulations as necessary. This approach is currently being used to mature technologies to manufacture materials with improved characteristics using nano-composite filler materials that will enhance system design and production. For some products the engineers plan and carry out science-based life-cycle material surveillance processes. Recent examples of the approach include refurbished manufacturing of the high voltage power supplies for cockpit displays in operational aircraft; dry film lubricant application to improve bearing life for guided munitions gyroscope gimbals, ceramic substrate design for electrical circuit manufacturing, and tailored polymeric materials for various systems. The following examples show evidence of KCP concurrent design-to-manufacturing techniques used to achieve system solutions that satisfy or exceed demanding requirements.

  7. Hydrogen Technology Validation: DOE Hydrogen Program 2011 Annual Merit Review and Peer Evaluation Report

    Broader source: Energy.gov [DOE]

    This document summarizes the comments provided by peer reviewers on hydrogen and fuel cell projects presented at the FY 2011 U.S. Department of Energy (DOE) Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting (AMR), held May 9–13, 2011 in Arlington, VA.

  8. Clean Energy Manufacturing Initiative

    SciTech Connect (OSTI)

    2013-04-01

    The initiative will strategically focus and rally EERE’s clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  9. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect (OSTI)

    Lutdka, G. M.; Chourey, A.

    2010-05-12

    As the original magnet designer and manufacturer of ORNL’s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL’s Materials Processing Group’s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  10. Manufacturing Spotlight: Boosting American Competitiveness

    Office of Energy Efficiency and Renewable Energy (EERE)

    Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient.

  11. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by ensuring critical feedback from the production phase to invention and discovery. Additive manufacturing is just one of several technologies advanced by the Energy...

  12. New Whole-House Solutions Case Study: Technology Solutions for New Manufactured Homes, Idaho, Oregon, and Washington

    SciTech Connect (OSTI)

    BA-PIRC

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

  13. Technology for Treatment of Liquid Radioactive Waste Generated during Uranium and Plutonium Chemical and Metallurgical Manufacturing in FSUE PO Mayak - 13616

    SciTech Connect (OSTI)

    Adamovich, D. [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation)] [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation); Batorshin, G.; Logunov, M.; Musalnikov, A. [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)] [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)

    2013-07-01

    Created technological scheme for treatment of liquid radioactive waste generated while uranium and plutonium chemical and metallurgical manufacturing consists of: - Liquid radioactive waste (LRW) purification from radionuclides and its transfer into category of manufacturing waste; - Concentration of suspensions containing alpha-nuclides and their further conversion to safe dry state (calcinate) and moving to long controlled storage. The following technologies are implemented in LRW treatment complex: - Settling and filtering technology for treatment of liquid intermediate-level waste (ILW) with volume about 1500m{sup 3}/year and alpha-activity from 10{sup 6} to 10{sup 8} Bq/dm{sup 3} - Membrane and sorption technology for processing of low-level waste (LLW) of radioactive drain waters with volume about 150 000 m{sup 3}/year and alpha-activity from 10{sup 3} to 10{sup 4} Bq/dm{sup 3}. Settling and filtering technology includes two stages of ILW immobilization accompanied with primary settling of radionuclides on transition metal hydroxides with the following flushing and drying of the pulp generated; secondary deep after settling of radionuclides on transition metal hydroxides with the following solid phase concentration by the method of tangential flow ultrafiltration. Besides, the installation capacity on permeate is not less than 3 m{sup 3}/h. Concentrates generated are sent to calcination on microwave drying (MW drying) unit. Membrane and sorption technology includes processing of averaged sewage flux by the method of tangential flow ultrafiltration with total capacity of installations on permeate not less than 18 m{sup 3}/h and sorption extraction of uranium from permeate on anionite. According to radionuclide contamination level purified solution refers to general industrial waste. Concentrates generated during suspension filtering are evaporated in rotary film evaporator (RFE) in order to remove excess water, thereafter they are dried on infrared heating facility. Solid concentrate produced is sent for long controlled storage. Complex of the procedures carried out makes it possible to solve problems on treatment of LRW generated while uranium and plutonium chemical and metallurgical manufacturing in Federal State Unitary Enterprise (FSUE) Mayak and cease its discharge into open water reservoirs. (authors)

  14. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    SciTech Connect (OSTI)

    Yakovleva, Marina

    2012-12-31

    FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  15. Low Cost PM Technology for Particle Reinforced Titanium Automotive Components: Manufacturing Process Feasibility Study?AMD 310

    Broader source: Energy.gov [DOE]

    Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

  16. Vehicle Technologies Office Merit Review 2014: Manufacturability Study and Scale-Up for Large Format Lithium Ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  17. More Than 410,000 Hours of Real-World Fuel Cell System Operation Have Been Analyzed by NREL's Technology Validation Team (Fact Sheet)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.

    2011-02-01

    This fact sheet discusses how researchers at the National Renewable Energy Laboratory (NREL) are working to validate hydrogen and fuel cell systems in real-world settings. NREL strives to provide an independent third-party technology assessment that focuses on fuel cell system and hydrogen infrastructure performance, operation, maintenance, and safety.

  18. A Unified Approach for Integrated Computer-Aided Design and Manufacturing

    E-Print Network [OSTI]

    Huang, Bin

    2013-01-01

    different types of additive manufacturing technologies, suchbe used to model the additive manufacturing process as well.composite manufacturing and 3D printing, are additive. They

  19. Vehicle Technologies Office Merit Review 2014: Real-time Metrology for Li-ion Battery R&D and Manufacturing

    Broader source: Energy.gov [DOE]

    Presentation given by Applied Spectra, Inc at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about real-time metrology for...

  20. Vehicle Technologies Office Merit Review 2015: Real-time Metrology for Li-ion Battery R&D and Manufacturing

    Broader source: Energy.gov [DOE]

    Presentation given by Applied Spectra at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about real-time metrology for Li...

  1. Hydrogen Technology Validation

    Fuel Cell Technologies Publication and Product Library (EERE)

    This fact sheet provides a basic introduction to the DOE Hydrogen National Hydrogen Learning Demonstration for non-technical audiences.

  2. AMO Industry Day Workshop on Upcoming Smart Manufacturing FOA

    Broader source: Energy.gov [DOE]

    AMO will host an Industry Day workshop to explain the concept, vision, and technology needs associated with support for a Clean Energy Manufacturing Innovation Institute on Smart Manufacturing.

  3. Join Us for the Clean Energy Manufacturing Initiative's Western...

    Office of Environmental Management (EM)

    Energy Manufacturing Initiative's Western Regional Summit March 25, 2014 - 1:45pm Addthis Additive manufacturing is just one of several technologies that are being advanced by the...

  4. Energy Department Launches New Clean Energy Manufacturing Initiative...

    Broader source: Energy.gov (indexed) [DOE]

    manufacturers." The announcement was made at the ribbon cutting of the Department's Carbon Fiber Technology Facility in Oak Ridge, Tennessee, a new advanced manufacturing...

  5. Microsoft Word - Honda_north amercian manufacturing facilities...

    Office of Environmental Management (EM)

    HONDA Submitted by: Ed Cohen Date: October 22, 2008 HONDA NORTH AMERICAN MANUFACTURING FACILITIES U.S. Department of Energy Advanced Technology Vehicle Manufacturing Loan Program 1...

  6. Walk-through survey report: Control technology for metal reclamation industries at East Penn Manufacturing Company Inc. , Lyon Station, Pennsylvania

    SciTech Connect (OSTI)

    Hall, R.M.

    1994-08-12

    A walk through survey was conducted at the East Penn Manufacturing Company (SIC-3341), Lyon Station, Pennsylvania to identify and evaluate potentially effective controls and work practices in the lead (7439921) reclamation industry. The facility was a secondary lead smelter which operated 7 days a week, and recycled about 20,000 batteries a day, primarily automobile batteries. The company employed automation, local exhaust ventilation, partial enclosures, and enclosed ventilation systems in the reverberatory furnace operations, blast furnace operations, and casting and refinery area to reduce employee exposure to lead. The arsenic (7440382) personal exposure time weighted averages ranged from 0.10 to 1.14 microg/cubic m in the industrial battery breaking area and ranged from nondetected to 6.16 microg/cubic m in the alloying/pots area.

  7. Vehicle Technologies Office Merit Review 2015: Utilization of UV or EB Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Miltec UV International at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about utilization of UV or...

  8. Vehicle Technologies Office Merit Review 2014: Utilization of UV or EB Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by Miltec UV International at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the utilization of UV...

  9. Technology Solutions for New Manufactured Homes, Idaho, Oregon, and Washington Manufactured Home Builders (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaics »Tankless WaterEnergyJanuary28-982 DOEReadinessTechnology

  10. Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    2012-01-01

    Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

  11. Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

  12. Manufacturing Planning and Control Stephen C. Graves

    E-Print Network [OSTI]

    Graves, Stephen C.

    1 Manufacturing Planning and Control Stephen C. Graves Massachusetts Institute of Technology November 1999 Manufacturing planning and control entails the acquisition and allocation of limited, planning and control problems are inherently optimization problems, where the objective is to develop

  13. Solid Oxide Fuel Cell Manufacturing Overview

    E-Print Network [OSTI]

    Solid Oxide Fuel Cell Manufacturing Overview Hydrogen and Fuel Cell Technologies Manufacturing R Reserved. 3 The Solid Oxide Fuel Cell Electrochemistry #12;Copyright © 2011 Versa Power Systems. All Rights

  14. Realizing the PRomise of Innovative Materials and Manufacturing

    E-Print Network [OSTI]

    Post, Wilfred M.

    performance, multifunctionality, and lower overall manufacturing costs. Not only does additive manufacturingRealizing the PRomise of Innovative Materials and Manufacturing Technologies to Make Next · Investigating alternate low-cost feedstock materials · Increasing performance enhancements for materials

  15. Bioscience Technology Bioscience Technology

    E-Print Network [OSTI]

    Vertes, Akos

    Bioscience Technology Bioscience Technology Advantage Business Media 100 Enterprise Drive Rockaway, co-director of George Washington University's Institute for Proteomics Technology and Applications-by-point. Manufacturers have stampeded to offer the new technology. Applied Biosystems got out in front in 2004 when

  16. IEM5303/4323-Manufacturing Systems Design: High Volume Manufacturing Systems

    E-Print Network [OSTI]

    Bukkapatnam, Satish T.S.

    -time quality and asset management in high-volume manufacturing operations elicit student interests to pursue/CAM Technology for High-Volume Manufacturing: Control Hierarchy and Elements Process Planning and NumericalIEM5303/4323-Manufacturing Systems Design: High Volume Manufacturing Systems Schedule: 2-3:30 TR

  17. Battery Manufacturing Processes Improved by Johnson Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office. The project focused on three major aspects of the lithium ion (Li-ion) battery manufacturing process: reducing process time for battery formation and...

  18. advanced manufacturing office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will create collaborative communities to target a unique technology in advanced manufacturing. DOE's industrial technical assistance efforts are critical to the deployment of...

  19. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Legacy Manufacturing Technologies: e.g. melding, joining, welding Virtual, model- driven library: e.g. foundries, chemicals Process control metrology Two pathways through the...

  20. Microstructural Properties of Gamma Titanium Aluminide Manufactured...

    Office of Scientific and Technical Information (OSTI)

    COMPOUNDS In recent years, Electron Beam Melting (EBM) has matured as a technology for additive manufacturing of dense metal parts. The parts are built by additive consolidation...

  1. Microstructural Properties of Gamma Titanium Aluminide Manufactured...

    Office of Scientific and Technical Information (OSTI)

    Beam Melting In recent years, Electron Beam Melting (EBM) has matured as a technology for additive manufacturing of dense metal parts. The parts are built by additive consolidation...

  2. Vehicle Technologies Office Merit Review 2014: Vehicle Level Model and Control Development and Validation Under Various Thermal Conditions

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle level...

  3. RESEARCH RESEARCH VALIDATION COMMERCIAL MATERIALS AND MANUFACTURING

    E-Print Network [OSTI]

    Multifunctional Nanocomposites Florescent Imaging of Graphene Based Materials Sealants for Fetal Membrane Repair Gas Phase Deposition in Metal Organic Frameworks Nanocomposites for Energy Storage Adhesive Hydrogels-SurfaceTexturing System Separation of Olefin/Paraffin Metal Organic Frameworks Silole-Containing Polymers Conductive

  4. RESEARCH RESEARCH VALIDATION COMMERCIAL MATERIALS AND MANUFACTURING

    E-Print Network [OSTI]

    for Fetal Membrane Repair GateTunable Carbon Nanotube Diode High Conductivity Graphene Inks Route to Diazeperopyrenium Dication Gas Phase Deposition in Metal Organic Frameworks Nanocomposites for Energy Storage Micro-SurfaceTexturing System Separation of Olefin/Paraffin Metal Organic Frameworks Silole

  5. Automation Direct Technology Scholarship Fund

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    in Manufacturing Engineering Technology or Industrial Management & Technology (CAD or Manufacturing area of study or Industrial Management & Technology (CAD or Manufacturing area of study). Candidates must have a minimum NIU's university account. Eligibility: Candidates must be a declared major in Manufacturing Engineering Technology

  6. A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company

  7. Vehicle Technologies Office: 2012 Lightweight Materials R&D Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE)

    As part of the U.S. Department of Energys (DOEs) Vehicle Technologies Office (VTO), the Lightweight Materials activity (LM) focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.

  8. Technology Assessment

    Office of Environmental Management (EM)

    capabilities that are energy efficient, low environmental impact 72 and lower cost and that are employed to manufacture technologies and products for clean energy 73...

  9. Center for Sustainable Industry and Manufacturing | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    integration with core research focused on advanced materials, battery manufacturing, robotics and automation, nanomanufacturing, separations technologies, and combined heat and...

  10. Energy Manufacturing Matthew Realff and Steven Danyluk

    E-Print Network [OSTI]

    Das, Suman

    Energy Manufacturing Matthew Realff and Steven Danyluk Georgia Institute of Technology This white Foundation and held in Arlington VA, on March 24-25, 2009 on Energy Manufacturing. The workshop attendees participated in discussions and presented their views on energy manufacturing and the presentations

  11. Additive manufacturing of metallic tracks on

    E-Print Network [OSTI]

    Painter, Kevin

    Additive manufacturing of metallic tracks on green ceramic/dielectrics Problem this technology (note: may require additional tooling/ set up time) · Rapid Prototyping & small scale manufacture microelectronics such as manufacture of LTCC ceramic/ Dielectric antenna and rapid PCB prototyping or repair

  12. Energy Department Supports Manufacturing Day | Department of...

    Energy Savers [EERE]

    he is discussing technologies such as additive manufacturing, better known as 3D-printing, an energy-efficient technology with potential to change the way we think about...

  13. 21st Century Locomotive Technology: Quarterly Technical Status Report 28

    SciTech Connect (OSTI)

    Lembit Salasoo; Ramu Chandra

    2010-02-19

    Thermal testing of a subscale locomotive sodium battery module was initiated.to validate thermal models. The hybrid trip optimizer problem was formulated. As outcomes of this project, GE has proceeded to commercialize trip optimizer technology, and has initiated work on a state-of-the-art battery manufacturing plant for high energy density, sodium-based batteries.

  14. Advanced Material and Manufacturing Technology

    E-Print Network [OSTI]

    Wolberg, George

    Process s/w Design & Analysis Tools ­ CATIA, Pro-E & Nastran, Fibersim, etc power: 2,500 amps /480 volts & 1,200 amps /208 volts · Other u6li6es,000) Single Ply CuOng System with nes5ng s/w Test and inspec5on ­ NDT and CMM

  15. Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

  16. Catalina Island Soapstone Manufacture

    E-Print Network [OSTI]

    Wlodarski, Robert J

    1979-01-01

    Catalina Island Soapstone Manufacture ROBERT J. WLODARSKIsome artifact of native manufacture. That stone is a "hard"Peabody Museum. Method and Manufacture of Several Articles

  17. Metrics for Sustainable Manufacturing

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

    2008-01-01

    for implementing green manufacturing”. Trans. of NAMRI/SME,on: Environmentally Benign Manufacturing (EBM). Tech. rep. ,towards sustainable manufacturing”. Proceedings of the In-

  18. Magnet Cable Manufacturing

    E-Print Network [OSTI]

    Royet, J.M.

    2011-01-01

    J. Royet, "Magnet Cable Manufacturing", oral presentation atDivision Magnet Cable Manufacturing J. Royet October 1990J I Magnet Cable Manufacturing* John Royet Accelerator &

  19. MAGNET CABLE MANUFACTURING

    E-Print Network [OSTI]

    Royet, J.

    2010-01-01

    76SFOOO98. MAGNET CABLE MANUFACTURING John Royet Lawrenceused in this cable manufacturing are made of superconductingapplied during manufacturing. 2.2 Twist The composite

  20. Manufacturing Industrial Development for the Alternative Energy Systems-Final Report

    SciTech Connect (OSTI)

    Dr. Chuck Ryan, National Center for Manufacturing Sciences; Dr. Dawn White, Accio Energy; Mr. Duncan Pratt, General Electric Global Research

    2013-01-30

    NCMS identified and developed critical manufacturing technology assessments vital to the affordable manufacturing of alternative-energy systems. NCMS leveraged technologies from other industrial sectors and worked with our extensive member organizations to provide DOE with two projects with far-reaching impact on the generation of wind energy. In the response for a call for project ideas, 26 project teams submitted ideas. Following a detailed selection criteria, two projects were chosen for development: Advanced Manufacturing for Modular Electro-kinetic (E-K) Wind Energy Conversion Technology - The goal of this project was to demonstrate that a modular wind energy technology based on electrohydrodynamic wind energy principles and employing automotive heritage high volume manufacturing techniques and modular platform design concepts can result in significant cost reductions for wind energy systems at a range of sizes from 100KW to multi-MW. During this program, the Accio/Boeing team made major progress on validating the EHD wind energy technology as commercially viable in the wind energy sector, and moved along the manufacturing readiness axis with a series of design changes that increased net system output. Hybrid Laser Arc Welding for Manufacture of Wind Towers - The goal of this research program was to reduce the cost of manufacturing wind towers through the introduction of hybrid laser arc welding (HLAW) into the supply chain for manufacturing wind towers. HLAW has the potential to enhance productivity while reducing energy consumption to offset the foreign low-cost labor advantage and thereby enhance U.S. competitiveness. HLAW technology combines laser welding and arc welding to produce an energy efficient, high productivity, welding process for heavy manufacturing. This process leverages the ability of a laser to produce deep weld penetration and the ability of gas metal arc welding (GMAW) to deposit filler material, thereby producing stable, high quality, welds on joints with gaps and mismatches typical of those seen in heavy manufacturing. Wind towers utilize varying thicknesses of steel throughout their structures to meet the mechanical load requirements while keeping material costs low. A typical tower might have as many as twelve different material thicknesses. Joining each thickness requires a unique joint design and welding approach to enable the management of quality, productivity, and mechanical properties. In this program, laser joining of materials with thicknesses ranging from 12mm to 35mm were evaluated against the standard quality and mechanical requirements for General Electric wind tower components. The joining processes demonstrated showed the ability to meet key requirements with the appropriate process controls in place.

  1. Introduction! Low Cost, High Volume, Scale-up Photovoltaic Manufacturing!

    E-Print Network [OSTI]

    Das, Suman

    volume PV manufacturing, therefore to reduce manufacturing cost and accelerate PV use. ! q Silicon waferIntroduction! Low Cost, High Volume, Scale-up Photovoltaic Manufacturing! Prof. Shreyes Melkote, Manufacturing Research Center, Georgia Institute of Technology Photovoltaics (PV) will be part of the energy mix

  2. Accepted Manuscript Sustainable manufacturing: Evaluation and Modeling of

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in additive manufacturing Florent Le Bourhisa · Olivier Kerbrata Jean-Yves Hascoeta · Pascal Mognola Accepted of manufacturing processes where great amounts of energy and materials are being consumed. Nowadays, additive manufacturing technologies such as Direct Additive Laser Manufac- turing allow us to manufacture functional

  3. New Pilot Aims to Boost U.S. Clean Energy Manufacturing Competitivenes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    advanced controls in smart manufacturing, increasing the efficiency of next-generation electric machines, and other R&D to enhance manufacturing of clean energy technologies or...

  4. COMPOSITES AND MANUFACTURED PRODUCTS MANUFACTURING PARTICLEBOARD

    E-Print Network [OSTI]

    COMPOSITES AND MANUFACTURED PRODUCTS MANUFACTURING PARTICLEBOARD FROM EASTERN REDCEDAR SALl redcedar (Juniperus i~ir#jnirmrrL.) in a whole-tree chipping process to manufacture a commercial sin- gle foundtobecomparableto those of commercial particleboards manufactured from different species. Panel properties

  5. Model Based Test Generation for Microprocessor Architecture Validation

    E-Print Network [OSTI]

    Minnesota, University of

    , Minneapolis, MN 55455 CESCA, Virginia Tech, Blacksburg, VA 24061 Validation Technology, Intel Corporation

  6. IEEE TRANSACTIONS ON COMPONENTS, PACKAGING, AND MANUFACTURING TECHNOLOGY--PART C, VOL. 21, NO. 2, APRIL 1998 97 Material-Centric Modeling of PWB Fabrication

    E-Print Network [OSTI]

    Sandborn, Peter

    processes. Index Terms-- Cost modeling, design-for-environment (DFE), design-to-cost, material, Associate Member, IEEE Abstract--This paper presents an activity-based cost model for printed wiring board-based manufacturing cost models, activities are based on equipment and facilities ("equipment

  7. Utilization of UV or EB Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Productization and Manufacturing Scaling of High-Efficiency Solar Cell and Module Products Based on a Disruptive Low-Cost, Mono-Crystalline Technology: Final Technical Progress Report, April 1, 2009 - December 30, 2010

    SciTech Connect (OSTI)

    Fatemi, H.

    2012-07-01

    Final report for PV incubator subcontract with Solexel, Inc. The purpose of this project was to develop Solexel's Unique IP, productize it, and transfer it to manufacturing. Silicon constitutes a significant fraction of the total solar cell cost, resulting in an industry-wide drive to lower silicon usage. Solexel's disruptive Solar cell structure got around these challenges and promised superior light trapping, efficiency and mechanical strength, despite being significantly thinner than commercially available cells. Solexel's successful participation in this incubator project became evident as the company is now moving into commercial production and position itself to be competitive for the next Technology Pathway Partnerships (TPP) funding opportunity.

  9. Innovative High-Performance Deposition Technology for Low-Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED...

  10. Additive manufacturing method of producing

    E-Print Network [OSTI]

    Painter, Kevin

    Additive manufacturing method of producing silver or copper tracks on polyimide film Problem/stripping) using an additive process support by a novel bio- degradable photo-initiator package. technology. Building on previous work by Hoyd- Gigg Ng et al. [1,2], Heriot-Watt has developed an additive film

  11. Bolt Manufacture: Process Selection

    E-Print Network [OSTI]

    Colton, Jonathan S.

    Bolt Manufacture: Process Selection ver. 1 ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 1 #12;How would you make a bolt? ME 6222: Manufacturing Processes and Systems Prof. J: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 3 #12;Possible Manufacturing Methodsg for Metal

  12. Clean Energy Manufacturing Analysis Center (CEMAC)

    SciTech Connect (OSTI)

    2015-12-01

    The U.S. Department of Energy's Clean Energy Manufacturing Analysis Center (CEMAC) provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Policymakers and industry leaders seek CEMAC insights to inform choices to promote economic growth and the transition to a clean energy economy.

  13. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program...

  14. Advanced Manufacturing Office: Smart Manufacturing Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    14 The U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) held a Smart Manufacturing Industry Day on February 25, 2015, at the Georgia Tech Hotel and...

  15. IT/Automation Cost Reduction in Intel's Manufacturing Environment

    E-Print Network [OSTI]

    Subirana for an MIT Leaders For Manufacturing class on Information Technology as an Integrating force with Information Technology management challenges. In particular all headcount and cost numbers referred areas quickly. Then use this as a role model for other groups within Technology and Manufacturing. Look

  16. Vehicle Technologies Office Merit Review 2014: Modular Process Equipment for Low Cost Manufacturing of High Capacity Prismatic Li-Ion Cell Alloy Anodes

    Broader source: Energy.gov [DOE]

    Presentation given by Applied Materials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about modular process equipment...

  17. MIT SEMINAR SERIES IN MANUFACTURING AND PRODUCTIVITY

    E-Print Network [OSTI]

    Brock, David

    .M. Tuesday, November 15 _______________________________ Mechatronics in Samsung Electronics Today and Tomorrow Dr. Ji Oh Song Executive Vice President & General Manager Mechatronics & Manufacturing Technology Center Samsung Electronics Co., Ltd. Mechatronics refers to a multi-disciplinary engineering field

  18. Electrolyzer Manufacturing Progress and Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    John Torrance, Director of Manufacturing DOE Manufacturing Workshop 81211 Outline * Proton Commercialization Status: PEM Electrolysis * Current Manufacturing Limitations: Stack...

  19. Sandia Energy - Manufacturing Supply Chain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Supply Chain Home Stationary Power Energy Conversion Efficiency Wind Energy Materials, Reliability, & Standards Manufacturing Supply Chain Manufacturing Supply...

  20. Verification and validation benchmarks.

    SciTech Connect (OSTI)

    Oberkampf, William Louis; Trucano, Timothy Guy

    2007-02-01

    Verification and validation (V&V) are the primary means to assess the accuracy and reliability of computational simulations. V&V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V&V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the level of achievement in V&V activities, how closely related the V&V benchmarks are to the actual application of interest, and the quantification of uncertainties related to the application of interest.

  1. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focuses on multi-scale, multiphysics approaches to understanding natural systems, "engineering the earth" with sensing and drilling technologies and characterizing geomaterials...

  2. Technology Validation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewableTeach and Learn Teach and

  3. Manufacturing laser glass by continuous melting

    SciTech Connect (OSTI)

    Campbell, J H; Suratwala, T; krenitsky, S; Takeuchi, K

    2000-07-01

    A novel, continuous melting process is being used to manufacture meter-sized plates of laser glass at a rate 20-times faster, 5-times cheaper, and with 2-3 times better optical quality than with previous one-at-a-time, ''discontinuous'' technology processes. This new technology for manufacturing laser glass, which is arguably the most difficult continuously-melted optical material ever produced, comes as a result of a $60 million, six-year joint R&D program between government and industry. The glasses manufactured by the new continuous melting process are Nd-doped phosphate-based glasses and are marketed under the product names LG-770 (Schott Glass Technologies) and LHG-8 (Hoya Corporation USA). With this advance in glass manufacturing technology, it is now possible to construct high-energy, high-peak-power lasers for use in fusion energy development, national defense, and basic physics research that would have been impractical to build using the old melting technology. The development of continuously melted laser glass required technological advances that have lead to improvements in the manufacture of other optical glass products as well. For example, advances in forming, annealing, and conditioning steps of the laser glass continuous melting process are now being used in manufacture of other large-size optical glasses.

  4. Fiber Reinforced Polymer Composite Manufacturing RFI, DE-FOA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technology is the next wave of productivity...The acceleration of this trend in carbon fiber manufacturing will impact three workforce development trends. First is the need for...

  5. Novel Platinum/Chromium Alloy for the Manufacture of Improved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Advanced Materials Return to Search Novel PlatinumChromium Alloy for the Manufacture of Improved Coronary Stents National Energy Technology Laboratory Success Story...

  6. Comparison and validation of HEU and LEU modeling results to HEU experimental benchmark data for the Massachusetts Institute of Technology MITR reactor.

    SciTech Connect (OSTI)

    Newton, T. H.; Wilson, E. H; Bergeron, A.; Horelik, N.; Stevens, J. (Nuclear Engineering Division); (MIT Nuclear Reactor Lab.)

    2011-03-02

    The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. It delivers a neutron flux comparable to current LWR power reactors in a compact 6 MW core using Highly Enriched Uranium (HEU) fuel. In the framework of its non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context, most research and test reactors both domestic and international have started a program of conversion to the use of Low Enriched Uranium (LEU) fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (UMo) is expected to allow the conversion of U.S. domestic high performance reactors like the MITR-II reactor. Towards this goal, comparisons of MCNP5 Monte Carlo neutronic modeling results for HEU and LEU cores have been performed. Validation of the model has been based upon comparison to HEU experimental benchmark data for the MITR-II. The objective of this work was to demonstrate a model which could represent the experimental HEU data, and therefore could provide a basis to demonstrate LEU core performance. This report presents an overview of MITR-II model geometry and material definitions which have been verified, and updated as required during the course of validation to represent the specifications of the MITR-II reactor. Results of calculations are presented for comparisons to historical HEU start-up data from 1975-1976, and to other experimental benchmark data available for the MITR-II Reactor through 2009. This report also presents results of steady state neutronic analysis of an all-fresh LEU fueled core. Where possible, HEU and LEU calculations were performed for conditions equivalent to HEU experiments, which serves as a starting point for safety analyses for conversion of MITR-II from the use of HEU fuel to the use of UMo LEU fuel.

  7. Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit

    Broader source: Energy.gov [DOE]

    Presentation given by University of Alabama at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center of...

  8. Vehicle Technologies Office Merit Review 2014: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by University of Alabama at Birmingham at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE...

  9. Vehicle Technologies Office Merit Review 2015: GATE Center of Excellence at UAB for Lightweight Materials and Manufacturing for Automotive, Truck and Mass Transit

    Broader source: Energy.gov [DOE]

    Presentation given by University of Alabama Birmingham at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about GATE Center...

  10. Vehicle Technologies Office Merit Review 2015: IR Thermography as a Non-Destructive Evaluation (NDE) Tool for Lithium-Ion Battery Manufacturing

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about IR thermography...

  11. Advanced Manufacturing Office News

    SciTech Connect (OSTI)

    2013-08-08

    News stories about advanced manufacturing, events, and office accomplishments. Subscribe to receive updates.

  12. RESEARCH GROUP MANUFACTURING

    E-Print Network [OSTI]

    Psarrakos, Panayiotis

    RESEARCH GROUP MANUFACTURING ADDITIVE www.lboro.ac.uk/amrg PhD Studentships in Additive by the Additive Manufacturing Research Group is based around a family of processes comprising of adding layers Additive Manufacturing Research Group in the Wolfson School of Mechanical & Manufacturing Engineering

  13. Advanced Manufacturing Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Manufacturing Production Technician; Electro-Mechanical Technician; Electronics Maintenance Technician  

  14. Department of Mechanical Engineering MASTER OF SCIENCE IN MANUFACTURING ENGINEERING

    E-Print Network [OSTI]

    Lin, Xi

    _____________________________ C. Manufacturing Management D. Engineered Materials ENG ME 502/MN 505 Intellectual Assets ENG ME for Microelectronics (T) ENG ME 525 Technology Ventures ENG ME/MS/MN 535 Green Manufacturing (T) ENG ME/MN 583 Product ______________________________ B. Manufacturing Operations Management GSM AC 710 Financial and Managerial Accounting

  15. Manufacturing Feature Instances: Which Ones to Recognize? Satyandra K. Gupta

    E-Print Network [OSTI]

    Nau, Dana S.

    Manufacturing Feature Instances: Which Ones to Recognize? Satyandra K. Gupta Mechanical Engineering@src.umd.edu William C. Regliy National Institute of Standards and Technology Manufacturing Systems Integration-81. Abstract Manufacturing features and feature-based representations have become an integral part of research

  16. Using Transportation Technology to Increase Efficiencies in Shipping...

    Office of Environmental Management (EM)

    Off the shelf hardware (Alien Technology and Motorola) Pharmaceutical, Defense, Logistics, Manufacturing Passive RFID Technologies Off the shelf software Government...

  17. Advanced Supply System Validation Workshop

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office (BETO) is hosting the Advanced Supply System Validation Workshop on February 3-4, 2015, in Golden, Colorado. The purpose of the workshop is to bring together a...

  18. Establishing a virtual manufacturing environment for military robots

    E-Print Network [OSTI]

    Andersen, Ryan J. (Ryan John)

    2007-01-01

    Recent advances in the robotics industry have given the military an opportunity to capitalize on industry's innovation. Not only has core robotics technology improved but robotics manufacturing technology has also made ...

  19. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel ProductionRecoverable15/2008Technologies Technologies

  20. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnology /newsroom/_assets/images/s-icon.png Technology

  1. Vehicle Technologies Office Merit Review 2015: Dramatically Improve the Safety Performance of Li Ion Battery Separators and Reduce the Manufacturing Cost using Ultraviolet Curing and High Precision Coating Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Miltec UV International at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about dramatically improve...

  2. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

  3. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect (OSTI)

    Selldorff, John; Atwell, Monte

    2014-09-23

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  4. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema (OSTI)

    Selldorff, John; Atwell, Monte

    2014-12-03

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  5. sustainable technologies

    E-Print Network [OSTI]

    Zhang, Junshan

    : · realize continuous improvements in performance (efficiency), cost and manufacturability of PV technologies, transformative PV technologies that circumvent cost/performance trade-offs and maintain compatibility with P the growing demand for energy. Photovoltaics (PV) leverages one of the 20th century's greatest scientific

  6. Mechanical, Industrial & Manufacturing

    E-Print Network [OSTI]

    Balasubramanian, Ravi

    Mechanical, Industrial & Manufacturing Engineering (MIME) COLLEGE OF ENGINEERING FY2013 Oregon graduate degrees (MS, MEng, PhD) in mechanical engineering, industrial engineering, and materials science. We offer bachelor's degrees in mechanical, industrial, manufacturing, and energy systems engineering

  7. Manufacturing Day 2015

    Broader source: Energy.gov [DOE]

    All over the country, manufacturing companies and other organizations are preparing to host an anticipated 400,000 people who want to experience U.S. manufacturing up close and in person. On...

  8. Energy Use in Manufacturing

    Reports and Publications (EIA)

    2006-01-01

    This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

  9. Promoting Advanced Manufacturing Clusters in

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    Promoting Advanced Manufacturing Clusters in Tennessee1 1 This report is supported, Economic Development Administration; and the Manufacturing Extension Partnership Program, National.........................................................................................................................1 Context: Trends in Tennessee Manufacturing

  10. Enabling Manufacturing Research through Interoperability

    E-Print Network [OSTI]

    Dornfeld, David; Wright, Paul; Helu, Moneer; Vijayaraghavan, Athulan

    2009-01-01

    IMECE2004. Dornfeld, D. , Lee, D, Manufacturing, Springer.Precision future manufacturing," J. Int. Manuf, 11, pp.Merchant, M. E. , 1961, "The manufacturing system concept in

  11. Energy Use in Nanoscale Manufacturing

    E-Print Network [OSTI]

    Zhang, Teresa; Boyd, Sarah; Vijayaraghavan, Athulan; Dornfeld, David

    2006-01-01

    on Semiconductor Manufacturing, vol. 17, pp. 554–561, 2004.intensity of computer manufacturing: Hybrid assessmentand Integrated NAno-Manufacturing ( SINAM ). Any opinions, ?

  12. Review: Manufacturing National Park Nature

    E-Print Network [OSTI]

    Mason, Fred

    2012-01-01

    Review: Manufacturing National Park Nature: Photography,Canada Cronin, J. Keri. Manufacturing National Park Nature:J. Keri Cronin’s book Manufacturing National Park Nature

  13. Manufacturing Battle Creek

    E-Print Network [OSTI]

    de Doncker, Elise

    to the manufacturing sector in Western Michigan. In addition to serving as director of the MRC, Dr. Patten is alsoManufacturing Research Center Kalamazoo Battle Creek The College of Engineering and Applied Sciences The Supporting manufacturing industries by providing opportunities for collaboration with faculty

  14. International Crystal Manufacturing

    E-Print Network [OSTI]

    Berns, Hans-Gerd

    International Crystal Manufacturing CRYSTAL OSCILLATOR AND FILTER PRODUCTS International Crystal Manufacturing, Inc. P.O. Box 26330 · Oklahoma City, OK 73126-0330 · Phone (405) 236-3741 Fax (405) 235@icmfg.com #12;2 International Crystal Manufacturing, Inc. P.O. Box 26330 · Oklahoma City, OK 73126-0330 · Phone

  15. Security Science & Technology | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Treaty Verification Nuclear Systems Modeling, Simulation & Validation Nuclear Systems Technology Reactor Technology Nuclear Science Home | Science & Discovery |...

  16. Manufacturing of Profiles for Lightweight Structures

    SciTech Connect (OSTI)

    Chatti, Sami; Kleiner, Matthias

    2007-04-07

    The paper shows some investigation results about the production of straight and curved lightweight profiles for lightweight structures and presents their benefits as well as their manufacturing potential for present and future lightweight construction. A strong emphasis is placed on the manufacturing of straight and bent profiles by means of sheet metal bending of innovative products, such as tailor rolled blanks and tailored tubes, and the manufacturing of straight and curved profiles by the innovative procedures curved profile extrusion and composite extrusion, developed at the Institute of Forming Technology and Lightweight Construction (IUL) of the University of Dortmund.

  17. Breaking Barriers in Polymer Additive Manufacturing

    SciTech Connect (OSTI)

    Love, Lonnie J; Duty, Chad E; Post, Brian K; Lind, Randall F; Lloyd, Peter D; Kunc, Vlastimil; Peter, William H; Blue, Craig A

    2015-01-01

    Additive Manufacturing (AM) enables the creation of complex structures directly from a computer-aided design (CAD). There are limitations that prevent the technology from realizing its full potential. AM has been criticized for being slow and expensive with limited build size. Oak Ridge National Laboratory (ORNL) has developed a large scale AM system that improves upon each of these areas by more than an order of magnitude. The Big Area Additive Manufacturing (BAAM) system directly converts low cost pellets into a large, three-dimensional part at a rate exceeding 25 kg/h. By breaking these traditional barriers, it is possible for polymer AM to penetrate new manufacturing markets.

  18. Sensor Data Management, Validation, Correction,

    E-Print Network [OSTI]

    Wang, Xiaorui "Ray"

    in three areas Envelope Equipment System/building integration Develop component technologies that are more in real buildings #12;6 Envelope research lab facilities Heat Flow Through Roof/Attic Assemblies Heat FlowSensor Data Management, Validation, Correction, and Provenance for Building Technologies Charles

  19. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. CoalMexico IndependentMatter and Technologies R&D

  20. Working with U.S. Manufacturers to Succeed in Global Markets (Poster)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    Poster created for the Advanced Manufacturing Office to be used at meetings, presentations, and exhibits. The Advanced Manufacturing Office (AMO) fosters advanced manufacturing innovation, facilitates public and private partnerships, and drives rapid deployment of technologies to help manufacturers: Save energy and money, Reduce environmental impacts, Enhance workforce development, and Improve national energy security and competitiveness throughout the supply chain.

  1. NEW COURSE NUMBER: ENG ME 579 Extra information on MN/SC579: Microelectronic Device Manufacturing

    E-Print Network [OSTI]

    Lin, Xi

    NEW COURSE NUMBER: ENG ME 579 Extra information on MN/SC579: Microelectronic Device Manufacturing for manufacturing engineering students to take for the following reason. Your future careers in manufacturing are undoubtedly most promising for the manufacturing of what is often referred to as "high technology" areas

  2. UNIVERSITY of STRATHCLYDE TECHNOLOGY &

    E-Print Network [OSTI]

    Mottram, Nigel

    electricity networks and distribution systems, through to using smart grid technologies for more effective of dynamic collaborations delivering productive outcomes. #12;#12;LOW CARBON POWER AND ENERGY FUTURE CITIES Advanced Manufacturing Future Cities Health Technologies Working collaboratively, programmes within

  3. Clean Energy Manufacturing Initiative Solid-State Lighting

    SciTech Connect (OSTI)

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-09-23

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  4. Clean Energy Manufacturing Initiative Solid-State Lighting

    ScienceCinema (OSTI)

    Thomas, Sunil; Edmond, John; Krames, Michael; Raman, Sudhakar

    2014-12-03

    The importance of U.S. manufacturing for clean energy technologies, such as solid-state lighting (SSL), is paramount to increasing competitiveness in a global marketplace. SSLs are poised to drive the lighting market, worldwide. In order to continue that competitiveness and support further innovation, the time to invest in U.S. manufacturing of clean energy technologies is now. Across the country, companies developing innovative clean energy technologies find competitive advantages to manufacturing in the U.S. The Department of Energy's Building Technology Office SSL Manufacturing Roadmap is just one example of how we support manufacturing through convening industry perspectives on opportunities to significantly reduce risk, improve quality, increase yields, and lower costs.

  5. DOE Announces Selections for SSL Core Technology Research (Round...

    Broader source: Energy.gov (indexed) [DOE]

    develop or improve commercially viable SSL materials, devices, or systems; and U.S. Manufacturing, which involves accelerating SSL technology adoption through manufacturing...

  6. Building America Technology Solutions for New and Existing Homes...

    Broader source: Energy.gov (indexed) [DOE]

    conditioning, water heating and lighting by 50% percent over typical manufactured homes. Technology Solutions for New Manufactured Homes More Documents & Publications Building...

  7. Low Cost PM Technology for Particle Reinforced Titanium Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Titanium Automotive Components: Manufacturing Process Feasibility StudyAMD 310 Low Cost PM Technology for Particle Reinforced Titanium Automotive Components: Manufacturing...

  8. SANSMIC Validation.

    SciTech Connect (OSTI)

    Weber, Paula D.; Rudeen, David Keith; Lord, David

    2014-08-01

    SANSMIC is solution mining software that was developed and utilized by SNL in its role as geotechnical advisor to the US DOE SPR for planning purposes. Three SANSMIC leach modes - withdrawal, direct, and reverse leach - have been revalidated with multiple test cases for each mode. The withdrawal mode was validated using high quality data from recent leach activity while the direct and reverse modes utilized data from historical cavern completion reports. Withdrawal results compared very well with observed data, including the location and size of shelves due to string breaks with relative leached volume differences ranging from 6 - 10% and relative radius differences from 1.5 - 3%. Profile comparisons for the direct mode were very good with relative leached volume differences ranging from 6 - 12% and relative radius differences from 5 - 7%. First, second, and third reverse configurations were simulated in order to validate SANSMIC over a range of relative hanging string and OBI locations. The first-reverse was simulated reasonably well with relative leached volume differences ranging from 1 - 9% and relative radius differences from 5 - 12%. The second-reverse mode showed the largest discrepancies in leach profile. Leached volume differences ranged from 8 - 12% and relative radius differences from 1 - 10%. In the third-reverse, relative leached volume differences ranged from 10 - 13% and relative radius differences were ~4 %. Comparisons to historical reports were quite good, indicating that SANSMIC is essentially the same as documented and validated in the early 1980's.

  9. Introduction - AMO Strategic and Technology Analysis

    Broader source: Energy.gov (indexed) [DOE]

    and tooling in automotive applications; fuel cells Ch. 8 - Additive Manufacturing Technology Assessment Scope * Additive technologies including powder bed fusion, directed...

  10. Vehicle Technologies Office Merit Review 2014: Development of Cell/Pack Level Models for Automotive Li-Ion Batteries with Experimental Validation

    Broader source: Energy.gov [DOE]

    Presentation given by EC Power at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about evelopment of cell/pack level models...

  11. Vehicle Technologies Office Merit Review 2015: Fuel Economy Information Project- Research, Data Validation, and Technical Assistance Related to Collecting, Analyzing, and Disseminating Accurate Fuel Economy Information

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel economy...

  12. Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

  13. technology offer Vienna University of Technology/ Research and Transfer Support | Hildegard Sieberth

    E-Print Network [OSTI]

    Arnold, Anton

    developed. The liquid precursors can be either cured in vivo or printed by additive manufacturing technology be tuned, in-vivo curing or high resolution additive manufacturing is not possible Technology A new

  14. Additive Manufacturing: Going Mainstream

    Broader source: Energy.gov [DOE]

    Additive manufacturing, or 3D printing, is receiving attention from media, investment communities and governments around the world transforming it from obscurity to something to be talked about.

  15. Advanced Materials Manufacturing | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Manufacturing New materials drive the development of innovative products. Building upon a rich history in materials science, ORNL is discovering and developing...

  16. DOE Request for Information (RFI) DE-FOA-0000153 PV Manufacturing Initiative: Summary Report, February 2010

    SciTech Connect (OSTI)

    Not Available

    2010-02-01

    This document sums up results of the PV Manufacturing Request for Information (RFI), DE-FOA-0000153, which supports the PV Manufacturing Initiative, launched by DOE Solar Energy Technologies Program.

  17. The design and manufacture of a novel thin-film microelectronic vacuum diode structure 

    E-Print Network [OSTI]

    Mason, Mark E.

    1993-01-01

    be easily expanded to multi-electrode structures, and has application in flat-panel display technology. A process for the manufacture of such a diode is developed herein. Diodes of various sizes are subsequently manufactured and tested. Test results...

  18. Productivity and system improvements in an organic photovoltaic panel manufacturing facility

    E-Print Network [OSTI]

    Chow, Jason (Jason Tsz Lok)

    2011-01-01

    The MIT Master of Engineering in Manufacturing team worked on productivity and operational improvement projects with Konarka Technologies, Inc., a world-leading organic photovoltaic panel manufacturing facility that is in ...

  19. NREL SBV Pilot Bioenergy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conversion technologies, biomass process and sustainability analysis, and feedstock logistics. Capabilities The NREL National Bioenergy Center develops, refines, and validates...

  20. Manufacturing Demonstration Facility

    E-Print Network [OSTI]

    life-cycle energy and greenhouse gas emissions, lower production cost, and create new products Demonstration Facility (865) 574-4351 blueca@ornl.gov INNOVATIONS IN MANUFACTURING www to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing

  1. Manufacturing Demonstration Facility Oak Ridge National

    E-Print Network [OSTI]

    Post, Wilfred M.

    processes. These technologies can reduce energy intensity, lower carbon emissions, create lower-cost and stress relief · Low-TemperatureMaterialsSynthesis:lower energy and processing costs through biosynthe customization, improved performance, multifunc- tionality, and lower overall manufacturing costs. logo font

  2. A Global Assessment of Manufacturing: Economic

    E-Print Network [OSTI]

    Gutowski, Timothy

    Tools and Production Technology, Technische Universitšat, Braunschweig D-38106, Germany Annu. RevA Global Assessment of Manufacturing: Economic Development, Energy Use, Carbon Emissions, and the Potential for Energy Efficiency and Materials Recycling Timothy G. Gutowski,1 Julian M. Allwood,3 Christoph

  3. Blades of Glory: Wind Technology Bringing Us Closer To a Clean Energy Future

    Broader source: Energy.gov [DOE]

    Making sure the best, most efficient wind energy technologies are developed and manufactured here in America.

  4. Investigation and Analytical Description of Acoustic Production by Magneto-Acoustic Mixing Technology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Henderson, Hunter Bryant; Rios, Orlando; Ludtka, Gerard Michael; Manuel, Michele V.

    2015-05-07

    Magneto-Acoustic Mixing Technology (MAMT) is a novel manufacturing method that combines two magnetic fields to produce high-intensity sonication for liquid-state materials processing. This method may be adapted to the manufacture of various materials that benefit from a combination of high temperature, magnetic fields, and acoustic energy. In this work, the acoustic generation mechanism is described in detail and found to be dependent on the skin depth of the induction currents. Analytical models of acoustic pressure are derived, based on two mutually exclusive vibration modes, crucible vibration and melt vibration. Additionally, grain size evidence of acoustic pressure distribution is presented asmore »model validation.« less

  5. 55 MANUFACTURING PROCESSES Ravi Janardan and Tony C. Woo

    E-Print Network [OSTI]

    Janardan, Ravi

    models to be built directly from their digital representations, using a "3D printer" attached MANUFACTURING Layered Manufacturing (LM) is a relatively new technology which allows physi- cal prototypes of 3D industry standard for LM; the name is derived from STereoLithography, one of the first #12;2 R. Janardan

  6. Key Directions and a Roadmap for Electrical Design for Manufacturability

    E-Print Network [OSTI]

    Kahng, Andrew B.

    Key Directions and a Roadmap for Electrical Design for Manufacturability (Invited Talk) Andrew B by design and design-for- manufacturability (DFM) techniques. This talk addresses trends and a roadmap assumptions come true? The second part will give a roadmap for electrical DFM technologies, motivated

  7. High Impact Technology (HIT) Catalyst

    Energy Savers [EERE]

    Impact Technology (HIT) Catalyst Images courtesy CREE, True Manufacturing, A.O. Smith, Bernstein Associates, Cambridge Engineering, Alliance Laundry Systems, NREL Commercial...

  8. Agile Manufacturing Group Case Western Reserve University 10/4/95 Published in the IIE Transactions on Design and Manufacturing, Special Focused Issue

    E-Print Network [OSTI]

    Causey, Gregory C.

    technologies, along with the lessons learned from total quality management, `just-in-time' production and `leanAgile Manufacturing Group Case Western Reserve University 10/4/95 Published in the IIE Transactions on Design and Manufacturing, Special Focused Issue 06/11/96 Page 1 An Agile Manufacturing Workcell Design

  9. Agile Manufacturing Group Case Western Reserve University 10/4/95 Submitted to the IIE Transactions on Design and Manufacturing, Special Focused Issue

    E-Print Network [OSTI]

    Causey, Gregory C.

    production technologies, along with the lessons learned from total quality management, `justAgile Manufacturing Group Case Western Reserve University 10/4/95 Submitted to the IIE Transactions on Design and Manufacturing, Special Focused Issue 06/11/96 Page 1 An Agile Manufacturing Workcell Design

  10. Advanced Manufacturing Office and Potential Technologies for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Raydiance. Protective coating materials for high- performance membranes, for pulp and paper industry. Image courtesy of Teledyne A water-stable protected lithium electrode....

  11. The International Journal of Advanced Manufacturing Technology

    E-Print Network [OSTI]

    Dixon, Warren

    - ing. Experimental results of the proposed controller on the x­y-axes of the high speed milling machine

  12. "Technology Wedges" for Implementing Green Manufacturing

    E-Print Network [OSTI]

    Dornfeld, David; Wright, Paul

    2007-01-01

    gas emissions. The second WSN example (for box #2 in Figurewhere the application of a WSN enabled increased frequency

  13. "Technology Wedges" for Implementing Green Manufacturing

    E-Print Network [OSTI]

    Dornfeld, David; Wright, Paul

    2007-01-01

    greenhouse gas. The second WSN example (for box #2 in Figurewhere the application of a WSN enabled increased frequency

  14. CVD-Enabled Graphene Manufacture and Technology

    E-Print Network [OSTI]

    Hofmann, Stephan; Braeuninger-Weimer, Philipp; Weatherup, Robert S.

    2015-06-26

    deposition (CVD) has emerged as the most versatile and promising technique to develop graphene and 2D material films into industrial device materials and this Perspective outlines recent progress, trends, and emerging CVD processing pathways. A key focus...

  15. Advanced Manufacturing Office (Formerly Industrial Technologies Program) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOfficeAcqguide18pt0DepartmentDepartment ofEnergyDepartment of

  16. Advanced Technology Vehicles Manufacturing Incentive Program | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A sCOLONY PROJECTRecord4 AdvanceEnergy ASCEMof

  17. Energy Department Invests in Innovative Manufacturing Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 Infographic courtesy ofDepartment of Energy

  18. Solar Manufacturing Technology 2 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES PursuantEnergySolar Flare Activity CloselyofSolar

  19. Solar Manufacturing Technology | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES PursuantEnergySolar Flare Activity

  20. New Sensor Network Technology Increases Manufacturing Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department of EnergyDepartmentPlanned in

  1. Clean Energy Manufacturing Resources - Technology Feasibility | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle ReplacementStatesAInitiative Events CleanCleanof

  2. Clean Energy Manufacturing Resources - Technology Maturation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle ReplacementStatesAInitiative Eventsof Energy

  3. Clean Energy Manufacturing Resources - Technology Prototyping | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle ReplacementStatesAInitiative Eventsof Energyof

  4. Solar Manufacturing Technology 2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvestingRenewable Energy (EERE)

  5. Engineering &Technology

    E-Print Network [OSTI]

    Southampton, University of

    Software Technologies Deloitte Dialog Semiconductor ECM Selection EDT-Year in Industry EMC Corporation to join our organisation and be based in our Ferndown, Dorset, location within our product electronics have application, design and manufacturing facilities in Canada, America, Europe and China. We

  6. Number of Large Energy User Manufacturing Facilities by Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Petroleum and Coal Products Manufacturing Chemical Manufacturing & Plastics and Rubber Products Manufacturing Nonmetallic Mineral Product Manufacturing Primary...

  7. Marketing Plan for Demonstration and Validation Assets

    SciTech Connect (OSTI)

    2008-05-30

    The National Security Preparedness Project (NSPP), is to be sustained by various programs, including technology demonstration and evaluation (DEMVAL). This project assists companies in developing technologies under the National Security Technology Incubator program (NSTI) through demonstration and validation of technologies applicable to national security created by incubators and other sources. The NSPP also will support the creation of an integrated demonstration and validation environment. This report documents the DEMVAL marketing and visibility plan, which will focus on collecting information about, and expanding the visibility of, DEMVAL assets serving businesses with national security technology applications in southern New Mexico.

  8. From "Smart Manufacturing" to "Manufacturing Smart" Manufacturing as a core enabler of the Internet of Things

    E-Print Network [OSTI]

    Das, Suman

    Page | 1 From "Smart Manufacturing" to "Manufacturing Smart" Manufacturing as a core enabler in the United States (see the announcement of the Advanced Manufacturing Partnership Steering Committee "2 manufacturing on economic growth and competitiveness. It has been recently suggested that "a network of sensors

  9. INNOVATIVE CAPABILITIES, OPERATIONS PRIORITIES AND CORPORATE PERFORMANCE IN MANUFACTURING FIRMS

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    , Turkey 3 Faculty of Management, Gebze Institute of Technology, Kocaeli, Turkey ABSTRACT The purposeINNOVATIVE CAPABILITIES, OPERATIONS PRIORITIES AND CORPORATE PERFORMANCE IN MANUFACTURING FIRMS Management, Kocaeli, Turkey 2 Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul

  10. Streamlining data management in drug product commercialization and manufacturing

    E-Print Network [OSTI]

    Anderson, Spencer C. (Spencer Clark)

    2014-01-01

    Effective execution and alignment of data management across development and manufacturing teams is essential for Amgen's Drug Product Technology group to realize its main goals of shortening the development timeline and ...

  11. Design for manufacturing (DFM) in submicron VLSI design 

    E-Print Network [OSTI]

    Cao, Ke

    2009-05-15

    As VLSI technology scales to 65nm and below, traditional communication between design and manufacturing becomes more and more inadequate. Gone are the days when designers simply pass the design GDSII ?le to the foundry and ...

  12. The efficiency and eco-efficiency of manufacturing

    E-Print Network [OSTI]

    Gutowski, Timothy G.

    2010-01-01

    In this paper, we review the efficiency of both manufacturing processes and systems over recent decades and compare nano-materials technologies in this context. To a first approximation, nano-materials processes appear to ...

  13. AMO Requests Technical Topics Suitable for a Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Institute April 17, 2014 - 12:23pm Addthis The Advanced Manufacturing Office (AMO) seeks information on mid-Technology Readiness Level (TRL) research and development (R&D) needs,...

  14. Information tracking and sharing in organic photovoltaic panel manufacturing

    E-Print Network [OSTI]

    Gong, Ming, M. Eng. Massachusetts Institute of Technology

    2011-01-01

    The MIT MEng team of four worked with Konarka Technologies, a world leading organic solar panel manufacturer, on production tracking and analysis as well as various operational improvement projects. MIT's collaborative ...

  15. Manufacturers Saving with Lost Foam Metal Casting | Department...

    Energy Savers [EERE]

    Metal casting was identified as one of the top 10 energy users in manufacturing. The technology represents a 20- to 25-percent reduction in production costs and uses 7 percent...

  16. Manufacturing-aware physical design techniques

    E-Print Network [OSTI]

    Sharma, Puneet

    2007-01-01

    C. Design for Manufacturing . . . . . . . . . . .for Microelectronic Manufacturing, 2006, pp. 61560T-1 –for Microelectronic Manufacturing, vol. 5042, 2003, pp. 99–

  17. Honda: North American Manufacturing Facilities | Department of...

    Office of Environmental Management (EM)

    Honda: North American Manufacturing Facilities Honda: North American Manufacturing Facilities From October, 2008 Honda: North American Manufacturing Facilities More Documents &...

  18. All Manufacturing Footprint, October 2012 (MECS 2006)

    SciTech Connect (OSTI)

    2012-10-17

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.

  19. Innovative Manufacturing Initiative Recognition Day

    Broader source: Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers...

  20. Arnold Schwarzenegger RESEARCH ON MANUFACTURING

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor RESEARCH ON MANUFACTURING QUADRUPLE-JUNCTION SOLAR CELLS Prepared ON MANUFACTURING QUADRUPLE-JUNCTION SOLAR CELLS EISG AWARDEE Chemical Engineering Department University Efficiency · Renewable Energ

  1. HPC4Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Deborah May, Lawrence Livermore National Laboratory U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. May 28-29, 2015 LLNL-PRES-792637 This work was...

  2. Congrs Franais de Mcanique Bordeaux, 26 au 30 aot 2013 Characterization of an optimized model manufactured by

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    technologies emerged. The manufacturing by layers keeps a common characteristic and the additive manufacturing approach applied to additive manufacturing and a specific machine. We suggest to use the numerical model manufactured by rapid prototyping A. SCHNEIDER a , J. GARDAN b , N. GARDAN c a. URCA/IFTS ­ NUM3D

  3. Manufacturing High Temperature Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report Management Challenges atEnergy ManufacturingThe Office

  4. Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium-Ion Batteries Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual...

  5. Electric Vehicle Manufacturing Taking Off in the U.S. | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to see advanced technology vehicle manufacturing taking off, which is creating more demand along the supply chain. That is why Secretary Moniz announced a series of improvements...

  6. Field Testing: Independent, Accredited Testing and Validation for the Wind Industry (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    This fact sheet describes the field testing capabilities at the National Wind Technology Center (NWTC). NREL's specialized facilities and personnel at the NWTC provide the U.S. wind industry with scientific and engineering support that has proven critical to the development of wind energy for U.S. energy needs. The NWTC's specialized field-testing capabilities have evolved over 30 years of continuous support by the U.S. Department of Energy Wind and Hydropower Technologies Program and long standing industry partnerships. The NWTC provides wind industry manufacturers, developers, and operators with turbine and component testing all in one convenient location. Although industry utilizes sophisticated modeling tools to design and optimize turbine configurations, there are always limitations in modeling capabilities, and testing is a necessity to ensure performance and reliability. Designs require validation and testing is the only way to determine if there are flaws. Prototype testing is especially important in capturing manufacturing flaws that might require fleet-wide retrofits. The NWTC works with its industry partners to verify the performance and reliability of wind turbines that range in size from 400 Watts to 3 megawatts. Engineers conduct tests on components and full-scale turbines in laboratory environments and in the field. Test data produced from these tests can be used to validate turbine design codes and simulations that further advance turbine designs.

  7. Department of Commerce National Institute of Standards and Technology

    E-Print Network [OSTI]

    manufacturers; and promotion of quality management methods in key sectors, including manufacturing, educationDepartment of Commerce National Institute of Standards and Technology Three Year Programmatic's National Institute of Standards and Technology (NIST) in promoting national competitiveness and innovation

  8. Advanced Manufacture of Reflectors

    SciTech Connect (OSTI)

    Angel, Roger

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings • A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. • Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square – a unique capability. • The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. • A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test

  9. Advanced Supply System Validation Workshop Agenda

    Broader source: Energy.gov [DOE]

    List of Assumptions and Draft Workshop Agenda for the Advanced Supply System Validation Workshop, February 3-4, 2014, Golden, Colorado, from the U.S. Department of Energy's Bioenergy Technologies Office.

  10. 4. Manufacturing Isovolumes Michael Bailey

    E-Print Network [OSTI]

    Bailey, Mike

    4. Manufacturing Isovolumes Michael Bailey 4.1 Introduction Displaying a single isosurface provides and then manufactures them, providing a non-volatile display of several isosurfaces. The inspiration for this idea, tetrahedralization produces more information than is necessary for prototype manufacturing. Prototype manufacturing

  11. ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton GIT 2011

    E-Print Network [OSTI]

    Colton, Jonathan S.

    ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton © GIT 2011 1 ME 4210: Manufacturing Processes and Engineering Prof. Jonathan Colton School of Mechanical Engineering Georgia Institute of Technology ver.2 #12;ME 4210: Manufacturing Processes and Engineering Prof. J.S. Colton © GIT 2011 2 My Goal

  12. A Critical Analysis of Technological Innovation and Economic Development in Southern California's Urban Water Reuse And Recycling Industry

    E-Print Network [OSTI]

    Pilip-Florea, Shadrach Jay

    2012-01-01

    technologies/pump-supplier/grundfos Grossman, Barry, 2009.largest pump manufacturer Grundfos (GWI Desalination, 2012),

  13. Vehicle Technologies Office: Long-Term Lightweight Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    maximizing polyacrylonitrile's positive mechanical properties. Similarly, Materials Innovation Technology, LLC is developing low cost carbon fiber composites manufacturing using...

  14. Methodology to manage process technology innovation

    E-Print Network [OSTI]

    Schweizer, Daniel

    2010-01-01

    The research conducted for this thesis was performed at "Company X", a U.S.-based engineered goods manufacturer. This project focused on the company's Advanced Manufacturing group and its process technology development ...

  15. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  16. All Manufacturing Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  17. Advanced Manufacture of Reflectors

    Broader source: Energy.gov [DOE]

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  18. Compressed Air System Optimization Saves Energy and Improves Production at a Textile Manufacturing Mill (Peerless Division, Thomastown Mills, Inc.)

    SciTech Connect (OSTI)

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the textile manufacturing mill project.

  19. Sandia Energy - Tidal & Current Modeling Development and Validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tidal & Current Modeling Development and Validation Home Stationary Power Energy Conversion Efficiency Water Power Technology Development Tidal & Current Modeling Development and...

  20. Innovative High-Performance Deposition Technology for Low-Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hamer, Tim Spencer OLEDWorks LLC Innovative High-Performance Deposition Technology for Low-Cost Manufacturing of OLED Lighting 2015 Building Technologies Office Peer Review DOE...

  1. Utilization of UV or EB Curing Technology to Significantly Reduce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Curing Technology to Significantly Reduce Costs and VOCs in the Manufacture of Lithium-Ion Battery Electrodes Utilization of UV or EB Curing Technology to Significantly Reduce...

  2. EA-1678: Nissan North America, Inc., Advanced Technology Electric...

    Office of Environmental Management (EM)

    8: Nissan North America, Inc., Advanced Technology Electric Vehicle Manufacturing Plant in Smyrna, TN EA-1678: Nissan North America, Inc., Advanced Technology Electric Vehicle...

  3. Microwave (MW) and Radio Frequency (RF) as Enabling Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced...

  4. Hydrogen Storage Technologies: Long-Term Commercialization Approach...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Long-term commercialization approach with first products first Hydrogen and Fuel Cell Technologies Manufacturing R&D Workshop Washington, DC Glenn Rambach August 11,...

  5. ITP Petroleum Refining: Petroleum Technology Vision 2020 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Petroleum Technology Vision 2020 ITP Petroleum Refining: Petroleum Technology Vision 2020 techvision.pdf More Documents & Publications Manufacturing Energy and Carbon Footprint...

  6. SUNSHOT INITIATIVE Solar Energy Technologies Office U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronics 66 Communications 69 Plant Performance and Reliability 70 Technology to Market 74 Technology Commercialization and Business Innovation 76 Manufacturing: Innovation...

  7. U.S. Department of Energy's Advanced Manufacturing Office and Its Impacts 

    E-Print Network [OSTI]

    Weakley, S. A.; Steel, L. M.

    2012-01-01

    The U.S. Department of Energy's Advanced Manufacturing Office (AMO), formerly the Industrial Technologies Program, has been working with industry since 1976 to encourage the development and adoption of new, energy-efficient technologies. AMO has...

  8. Design and Manufacture of Energy Absorbing Materials

    ScienceCinema (OSTI)

    Duoss, Eric

    2014-05-30

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  9. Design and Manufacture of Energy Absorbing Materials

    SciTech Connect (OSTI)

    Duoss, Eric

    2014-05-28

    Learn about an ordered cellular material that has been designed and manufactured using direct ink writing (DIW), a 3-D printing technology being developed at LLNL. The new material is a patterned cellular material that can absorb mechanical energy-a cushion-while also providing protection against sheering. This material is expected to find utility in application spaces that currently use unordered foams, such as sporting and consumer goods as well as defense and aerospace.

  10. for Industry Manufacturing

    E-Print Network [OSTI]

    helps to reduce risk and accelerate the development and deployment of innovative energy-efficient Energy Research Nation's broadest portfolio of energy generation and efficiency programs ScienceA National Resource for Industry Manufacturing Demonstration Facility #12;As the nation's premier

  11. MANUFACTURING & SERVICE OPERATIONS MANAGEMENT

    E-Print Network [OSTI]

    Chiang, Wei-yu Kevin

    an upstream firm, as a result of charging a wholesale price above the marginal cost, induces its intermediary Dynamics and Channel Efficiency in Durable Product Pricing and Distribution Wei-yu Kevin Chiang College the single-period vertical price interaction in a manufacturer­retailer dyad to a multi- period setting

  12. Safety Stocks in Manufacturing Systems Stephen C. Graves*

    E-Print Network [OSTI]

    Graves, Stephen C.

    1987 A.P. Sloan School of Management Massachusetts Institute of Technology Room E53-390 Cambridge, MA Stephen C.Graves A.P.Sloan School of Management Massachusetts Institute of Technology Cambridge, MA 02139Safety Stocks in Manufacturing Systems by Stephen C. Graves* WP 1894-87 January 1987 revised June

  13. The Future of the Hollings Manufacturing Extension Partnership

    E-Print Network [OSTI]

    Magee, Joseph W.

    of Standards and Technology, U.S. Department of Commerce #12;The Future of the Hollings Manufacturing Extension Partnership A Program of the National Institute of Standards and Technology U.S. Department of Commerce 2 pressure to cut costs, improve quality, meet environmental and international standards, and get to market

  14. u.s. department of commerce national institute of standards and technology manufacturing extension partnership W W W . n i s t . g o v / m e p 1 -8 0 0 -m e p -4 m F g

    E-Print Network [OSTI]

    Perkins, Richard A.

    & Product Development, Leadership Development, Lean Manufacturing, Quality Improvement, Six Sigma Electric, Eaton and Landis & Gyr, while 45 percent is tied to the automotive industry, with top customers Selling principles, Small Parts has built on its traditional market dominance with just one automotive

  15. u.s. department of commerce national institute of standards and technology manufacturing extension partnership W W W . n i s t . g o v / m e p 1 -8 0 0 -m e p -4 m F g

    E-Print Network [OSTI]

    Perkins, Richard A.

    on clients receiving service in FY2012 Kim Rachiele, Acting Director 400 Stanton Christiana Road #A-158, formerly a division of Eastern Industrial Services (EIS), specializes in custom-engineered, LEED efficient HVAC systems. Situation: In a competitive manufacturing market, EIS has carved out a niche

  16. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity

    Broader source: Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Libby Wayman, Director, EERE Clean Energy Manufacturing Initiative

  17. Development of Technology for Effective Removal of Arsenic and Cyanides from Drinking Water and Wastewater

    SciTech Connect (OSTI)

    Jo, Jae

    2008-02-09

    The purpose of the project was to perform a joint research and development effort focused upon the development of methods and the prototype facility for effective removal of arsenic and cyanides from drinking water and wastewater, based on the UPEC patented technology. The goals of this project were to validate UPEC technology, to manufacture a prototype facility meeting the market requirements, and to introduce it to both industry and municipalities which deal with the water quality. The project involved design and fabrication of one experimental unit and one prototypical industrial unit, and tests at industrial and mining sites. The project used sodium ferrate (Na2FeO4) as the media to remove arsenic in drinking water and convert arsenic into non-hazardous form. The work consisted of distinct phases ending with specific deliverables in development, design, fabrication and testing of prototype systems and eventually producing validation data to support commercial introduction of technology and its successful implementation.

  18. Design for manufacturability Design verification

    E-Print Network [OSTI]

    Patel, Chintan

    ITRS Design #12;Design · Design for manufacturability · Design verification #12;Design for Manufacturability · Architecture challenges · Logic and circuit challenges · Layout and physical design challenges · Expected to be the source of multiple DFM challenges · Invest in variability reduction or design

  19. Embedding Sustainability into Manufacturing Organizations 

    E-Print Network [OSTI]

    Tutterow, V.

    2014-01-01

    will be reviewed, also. This paper has an emphasis on smaller manufacturers, and will discuss how large manufacturers can engage the smaller companies within their global supply chains in both energy management and sustainability....

  20. Axiomatic Deisgn of Manufacturing Systems

    E-Print Network [OSTI]

    Cochran, David

    This paper introduces the use of axiomatic design in the design of manufacturing systems. The two primary functional requirements of any manufacturing system are developed. These functional requirements are then used to ...

  1. Design and Manufacture of a Laparoscopic Telesurgical and Telementoring Robot Manipulator

    E-Print Network [OSTI]

    Prince, Stephen William

    2012-01-01

    Manufacture Case Studies . . . . . . .Engineering & Manufacture Design . . . . . . . . . . .6 Manufacture of the

  2. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 ITP Nanomanufacturing:...

  3. Smart Manufacturing Innovation Institute: Overview, Goals and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Manufacturing Innovation Institute: Overview, Goals and Activities AMO Industry Day February 25, 2015 Isaac Chan Advanced Manufacturing Office www.manufacturing.energy.gov 2...

  4. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry...

  5. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy...

  6. Additive manufacturing capabilities expanding | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive manufacturing capabilities expanding January 01, 2013 Large-scale polymer additive manufacturing equipment located at the Manufacturing Demonstration Facility. Additive...

  7. Tennessee's Manufacturing Sector Before and After the

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    Tennessee's Manufacturing Sector Before and After the Great Recession Prepared by Matthew N. Murray....................................................................................................................................... 1 Manufacturing in the Post Great Recession Era............................................................................... 2 Manufacturing Employment Trends

  8. Precision and Energy Usage for Additive Manufacturing

    E-Print Network [OSTI]

    Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

    2013-01-01

    optimisation in manufacturing," International Journal ofEnergy Requirements for Manufacturing Processes," in 13thenergy consumption of manufacturing processes: a case of

  9. Sustainable Manufacturing – Greening Processes, Systems and Products

    E-Print Network [OSTI]

    Dornfeld, David

    2010-01-01

    International Chemnitz Manufacturing Colloquium Prof. R.mittels Sustainable Manufacturing - Greening Processes,Annals - Dornfeld, D. A and its Manufacturing University of

  10. Precision Manufacturing Process Monitoring with Acoustic Emission

    E-Print Network [OSTI]

    Lee, D. E.; Hwang, I.; Valente, C. M. O.; Oliviera, J. F.G.; Dornfeld, D. A.

    2006-01-01

    feedback in a fully automated manufacturing environment. 8.Conclusions As current manufacturing trends aim for smallerfor open architecture manufacturing of precision machining

  11. Appropriate use of Green Manufacturing Frameworks

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

    2010-01-01

    Wedges for Implementing Green Manufacturing,” Trans.North American Manufacturing Research Institute, vol. 35,A. (2008), “Metrics for Manufacturing Sustainability,” Proc.

  12. Precision Manufacturing Process Monitoring With Acoustic Emission

    E-Print Network [OSTI]

    Lee, D.E.; Huang, Inkil; Valente, Carlos M. O.; Oliveira, J. F.; Dornfeld, David

    2006-01-01

    feedback in a fully automated manufacturing environment. 8.Conclusions As current manufacturing trends aim for smallerfor open architecture manufacturing of precision machining

  13. Leveraging Manufacturing for a Sustainable Future

    E-Print Network [OSTI]

    Dornfeld, David

    2011-01-01

    for Implementing Green Manufacturing”, NAMRI Trans. , 35,issue is whether or not manufacturing can rightfully claimreal products through manufacturing. So, for sure, the role

  14. Out of Bounds Additive Manufacturing

    SciTech Connect (OSTI)

    Holshouser, Chris [Lockheed Martin Corporation; Newell, Clint [Lockheed Martin Corporation; Palas, Sid [Lockheed Martin Corporation; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Lind, Randall F [ORNL; Lloyd, Peter D [ORNL; Rowe, John C [ORNL; Blue, Craig A [ORNL; Duty, Chad E [ORNL; Peter, William H [ORNL; Dehoff, Ryan R [ORNL

    2013-01-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing (AM) system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  15. Out of bounds additive manufacturing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Holshouser, Chris; Newell, Clint; Palas, Sid; Love, Lonnie J.; Kunc, Vlastimil; Lind, Randall F.; Lloyd, Peter D.; Rowe, John C.; Blue, Craig A.; Duty, Chad E.; et al

    2013-03-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  16. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Additive Manufacturing Technology Assessment

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulk toRoadmaps BuildingChapter

  17. Pennsylvania Company Develops Solar Cell Printing Technology

    Broader source: Energy.gov [DOE]

    The technology uses Plextronics’ conductive inks that can be printed by manufacturers worldwide to make solar cells, potentially as easily as they might print a newspaper.

  18. Vehicle Technologies Office: Electrical Machines | Department...

    Broader source: Energy.gov (indexed) [DOE]

    in efficiency, cost, weight, and volume for competitive future electric vehicles. Tesla Motors, a U.S. electric vehicle manufacturer, uses induction motor technology....

  19. National Electrical Manufacturers Association

    Broader source: Energy.gov (indexed) [DOE]

    for incandescent reflector lamps do not need to be amended and let the marketplace transition to more energy efficient lighting technologies combined with other regulatory...

  20. Steam Champions in Manufacturing 

    E-Print Network [OSTI]

    Russell, C.

    2001-01-01

    Traditionally, industrial steam system management has focused on operations and maintenance. Competitive pressures, technology evolution, and increasingly complex regulations provide additional management challenges. The practice of operating a...

  1. Technology Validation: Fuel Cell Bus Evaluations

    SciTech Connect (OSTI)

    Eudy, L.

    2005-05-01

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review showing status of U.S. and international fuel cell transit bus evaluations.

  2. Validating Transcripts with Probes and Imaging Technology

    E-Print Network [OSTI]

    Itzkovitz, Shaul Shalev

    High-throughput gene expression screens provide a quantitative picture of the average expression signature of biological samples. However, the analysis of spatial gene expression patterns with single-cell resolution requires ...

  3. Validation of Innovative Exploration Technologies for Newberry...

    Open Energy Info (EERE)

    F. Waibel, Project Manager, Newberry Geothermal Holdings, LLC Targets Milestones -Lower the cost and risk of resource exploration -Open up new regions for commercial...

  4. Validation of Innovation Exploration Technologies for Newberry...

    Broader source: Energy.gov (indexed) [DOE]

    Newberry EGS Demonstration Newberry Volcano EGS Demonstration Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity and Productivity in Enhanced Geothermal Systems...

  5. DOE Technology Validation Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeCommunication & Engagement »LawrenceStationary/Distributed Generation Projects »

  6. Recycling Technology Validation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI |Service of ColoradoHybrid and

  7. Technology Validation Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternational Affairs, BeforeActivities TechnicalOfficeDepartment of

  8. Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy, Fiscal Years 2006–2014

    SciTech Connect (OSTI)

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy from 2006 to 2014.

  9. This Material Copyrighted By Its Respective Manufacturer This Material Copyrighted By Its Respective Manufacturer

    E-Print Network [OSTI]

    Lanterman, Aaron

    This Material Copyrighted By Its Respective Manufacturer #12;This Material Copyrighted By Its Respective Manufacturer #12;This Material Copyrighted By Its Respective Manufacturer #12;This Material Copyrighted By Its Respective Manufacturer #12;This Material Copyrighted By Its Respective Manufacturer #12

  10. Faculty Position in Mechanical Engineering Additive Manufacturing

    E-Print Network [OSTI]

    Faculty Position in Mechanical Engineering Additive Manufacturing University of Kansas of additive manufacturing. Exceptional candidates with outstanding qualifications could be considered using additive manufacturing in applications such as, but not limited to the net shape manufacture of

  11. Posted 10/18/11 MANUFACTURING ENGINEER

    E-Print Network [OSTI]

    Heller, Barbara

    manufacturing processes in our Metal Fabrication and Assembly departments. Additional responsibilities includePosted 10/18/11 MANUFACTURING ENGINEER Kenall Manufacturing Gurnee, IL Kenall, a leading manufacturer of advanced lighting solutions for specialized environments, has exceptional opportunities

  12. 20-20 Technologies NEWS & EVENTS

    E-Print Network [OSTI]

    focus on the Kitchen manufacturing industry. "Additionally, with 20-20's electronic data integration-20 Technologies Inc. (TSX: TWT), the world leader in 3D interior design and furniture manufacturing software, announced today that Wellborn Forest Products, a manufacturer of custom and semi- custom frameless

  13. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Smart Manufacturing Achieving Transformational Energy Productivity Gains Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy...

  14. Clean Energy Manufacturing Innovation Institute for Composites...

    Office of Environmental Management (EM)

    Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures Clean Energy Manufacturing Innovation Institute for Composites Materials and Structures...

  15. Clean Energy Manufacturing Innovation Institute for Composite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Innovation Institute for Composite Materials And Structures Webinar Clean Energy Manufacturing Innovation Institute for Composite Materials And...

  16. Manufacturing Energy and Carbon Footprint References | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    References Manufacturing Energy and Carbon Footprint References footprintreferences.pdf More Documents & Publications 2010 Manufacturing Energy and Carbon Footprints: References...

  17. Performance, Market and Manufacturing Constraints relevant to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market and Manufacturing Constraints relevant to the Industrialization of Thermoelectric Devices Performance, Market and Manufacturing Constraints relevant to the...

  18. Clean Energy Manufacturing Initiative Midwest Regional Summit...

    Broader source: Energy.gov (indexed) [DOE]

    Lightweighting Breakout Session Summary More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Multimaterial Joining Workshop Manufacturing...

  19. CIMplementation™: Evaluating Manufacturing Automation 

    E-Print Network [OSTI]

    Krakauer, J.

    1985-01-01

    into two parts. CAM hardware inciudes machine tools with programmable controllers and on -board feedback devi ces for qua 1ity con~ ro 1 of cutting tools and workpieces. Automatrd assembly machines, despite their high degree of speci ali zed app 1i... the machines running. Manufacturing managers should examine their operation and their specific competences before apP 3 0aching CIM CIM is not for every one. (Gold and Gerwin a recommend guidelines for determining the degree of fit between CIM ;", and a...

  20. An analysis of buildings-related energy use in manufacturing

    SciTech Connect (OSTI)

    Niefer, M.J.; Ashton, W.B.

    1997-04-01

    This report presents research by the Pacific Northwest National Laboratory (PNNL) to develop improved estimates of buildings-related energy use in US manufacturing facilities. The research was supported by the Office of Building Technology, State and Community Programs (BTS), Office of Energy Efficiency and Renewable Energy (EERE), US Department of Energy (DOE). The research scope includes only space conditioning and lighting end uses. In addition, this study also estimates the energy savings potential for application of selected commercial buildings technologies being developed by the BTS office to manufacturing and other industrial process facilities. 17 refs., 2 figs., 19 tabs.

  1. 304 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 4, NO. 4, NOVEMBER 1991 A Process Control Methodology Applied to

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    by the Leaders for Manufacturing Program at the Mas- sachusetts Institute of Technology (MIT). Leaders for Manufacturing is a partnership between the MIT School of Engineering. the MIT Sloan School of Management304 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 4, NO. 4, NOVEMBER 1991 A Process

  2. MANUFACTURING FEARFUL MEMORIES

    E-Print Network [OSTI]

    Fukai, Tomoki

    in a wide range of science and technology fields including physics, chemistry, medical science, biology and neuron­progenitor communication influence cerebral cortex development 11 Proteins feel the pinch

  3. Manufacturing consumption of energy 1994

    SciTech Connect (OSTI)

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  4. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  5. Manufacturing R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report Management ChallengesManufacturing R&D The Manufacturing

  6. Consumer Views on Transportation and Advanced Vehicle Technologies

    SciTech Connect (OSTI)

    Singer, Mark

    2015-09-01

    Vehicle manufacturers, U.S. Department of Energy laboratories, universities, private researchers, and organizations from countries around the globe are pursuing advanced vehicle technologies that aim to reduce gasoline and diesel consumption. This report details study findings of broad American public sentiments toward issues surrounding advanced vehicle technologies and is supported by the U.S. Department of Energy Vehicle Technology Office (VTO) in alignment with its mission to develop and deploy these technologies to improve energy security, increase mobility flexibility, reduce transportation costs, and increase environmental sustainability. Understanding and tracking consumer sentiments can influence the prioritization of development efforts by identifying barriers to and opportunities for broad acceptance of new technologies. Predicting consumer behavior toward developing technologies and products is inherently inexact. A person's stated preference given in an interview about a hypothetical setting may not match the preference that is demonstrated in an actual situation. This difference makes tracking actual consumer actions ultimately more valuable in understanding potential behavior. However, when developing technologies are not yet available and actual behaviors cannot be tracked, stated preferences provide some insight into how consumers may react in new circumstances. In this context this report provides an additional source to validate data and a new resource when no data are available. This report covers study data captured from December 2005 through June 2015 relevant to VTO research efforts at the time of the studies. Broadly the report covers respondent sentiments about vehicle fuel economy, future vehicle technology alternatives, ethanol as a vehicle fuel, plug-in electric vehicles, and willingness to pay for vehicle efficiency. This report represents a renewed effort to publicize study findings and make consumer sentiment data available to researchers, policy makers, and the public. Planned reports will follow detailing data from new studies targeting the primary challenges to and opportunities for advanced vehicle technology deployment. The effort continually refines study content to maintain and improve the relevance and validity of results.

  7. Optimizations of manufacturability and manufacturing in nanometer-era VLSI

    E-Print Network [OSTI]

    Xu, Xu

    2006-01-01

    on Pho- tomask Technology and Management, September 2004,on Photomask Technology and Management, October 2005, SPIE (on Photomask Technology and Management, September 2006,

  8. Manufacturing Demonstration Facility Workshop Videos

    Broader source: Energy.gov [DOE]

    Session recordings from the Manufacturing Demonstration Facility Workshop held in Chicago, Illinois, on March 12, 2012, and simultaneously broadcast as a webinar.

  9. Manufactured Home Testing in Simulated and Naturally Occurring High Winds

    SciTech Connect (OSTI)

    W. D. Richins; T. K. Larson

    2006-08-01

    A typical double-wide manufactured home was tested in simulated and naturally occurring high winds to understand structural behavior and improve performance during severe windstorms. Seven (7) lateral load tests were conducted on a double-wide manufactured home at a remote field test site in Wyoming. An extensive instrumentation package monitored the overall behavior of the home and collected data vital to validating computational software for the manufactured housing industry. The tests were designed to approach the design load of the home without causing structural damage, thus allowing the behavior of the home to be accessed when the home was later exposed to high winds (to 80-mph). The data generally show near-linear initial system response with significant non-linear behavior as the applied loads increase. Load transfer across the marriage line is primarily compression. Racking, while present, is very small. Interface slip and shear displacement along the marriage line are nearly insignificant. Horizontal global displacements reached 0.6 inch. These tests were designed primarily to collect data necessary to calibrate a desktop analysis and design software tool, MHTool, under development at the Idaho National Laboratory specifically for manufactured housing. Currently available analysis tools are, for the most part, based on methods developed for “stick built” structures and are inappropriate for manufactured homes. The special materials utilized in manufactured homes, such as rigid adhesives used in the connection of the sheathing materials to the studs, significantly alter the behavior of manufactured homes under lateral loads. Previous full scale tests of laterally loaded manufactured homes confirm the contention that conventional analysis methods are not applicable. System behavior dominates the structural action of manufactured homes and its prediction requires a three dimensional analysis of the complete unit, including tiedowns. This project was sponsored by the US Department of Energy, US Department of Housing and Urban Development, and the Manufactured Housing Institute. The results of this research can lead to savings in annual losses of life and property by providing validated information to enable the advancement of code requirements and by developing engineering software that can predict and optimize wind resistance.

  10. A Testing Platform for Validation of Overhead Conductor Aging Models and Understanding Thermal Limits

    SciTech Connect (OSTI)

    Irminger, Philip; Starke, Michael R; Dimitrovski, Aleksandar D; Young II, Marcus Aaron; Rizy, D Tom; Stovall, John P; Overholt, Philip N

    2014-01-01

    Power system equipment manufacturers and researchers continue to experiment with novel overhead electric conductor designs that support better conductor performance and address congestion issues. To address the technology gap in testing these novel designs, Oak Ridge National Laboratory constructed the Powerline Conductor Accelerated Testing (PCAT) facility to evaluate the performance of novel overhead conductors in an accelerated fashion in a field environment. Additionally, PCAT has the capability to test advanced sensors and measurement methods for accessing overhead conductor performance and condition. Equipped with extensive measurement and monitoring devices, PCAT provides a platform to improve/validate conductor computer models and assess the performance of novel conductors. The PCAT facility and its testing capabilities are described in this paper.

  11. An Environmental and Economic Trade-off Analysis of Manufacturing Process Chains to Inform Decision Making for Sustainability

    E-Print Network [OSTI]

    Robinson, Stefanie L.

    2013-01-01

    and Additive Calculation and Cost .. 169 6.8.16 Solid Waste 169 6.9 Validation of Welding Building Block .. 170 6.9.1 Comparison to Manufacturing

  12. Utilizing Daylighting Controls in a Manufacturing Facility 

    E-Print Network [OSTI]

    Shrestha, S. S.; Maxwell, G. M.

    2009-01-01

    to various stages of lighting reduction. This paper examines these lighting control strategies for a 90,000 square foot manufacturing facility in Iowa. Using the EnergyPlus building energy simulation code, annual lighting energy savings associated...) Energy Cost Savings ($/yr) Six-Lamp Fixture With 32 Watt 4 Foot Super T8 Lamps 222 43.512 191,191 46.6 204,971 2,295 9,757 * Per fixture including ballast power ESL-IE-09-05-29 Proceedings of the Thirty-First Industrial Energy Technology...

  13. Optical manufacturing requirements for an AVLIS plant

    SciTech Connect (OSTI)

    Primdahl, K.; Chow, R.; Taylor, J.R.

    1997-07-14

    A uranium enrichment plant utilizing Atomic Vapor Laser Isotope Separation (AVLIS) technology is currently being planned. Deployment of the Plant will require tens of thousands of commercial and custom optical components and subsystems. The Plant optical system will be expected to perform at a high level of optical efficiency and reliability in a high-average-power-laser production environment. During construction, demand for this large number of optics must be coordinated with the manufacturing capacity of the optical industry. The general requirements and approach to ensure supply of optical components is described. Dynamic planning and a closely coupled relationship with the optics industry will be required to control cost, schedule, and quality.

  14. Manufacturing Environment in the Year 2000 

    E-Print Network [OSTI]

    Slautterback, W. H.

    1985-01-01

    the data physicallY, resides. The data will be controlled by th~ Data Base Manager and everyone will have ac~ess to the information they need. The informat~on will come from many sources including workstation data, local data, company data, national... ENVIRONMENT IN THE YEAR 2000 William H. Slautterback Koppers Company, Inc. Baltimore, Maryland ABSTRACT Manufacturing will change more in the next 15 years than it has in the last 75 years. The rea sons are clear ...survival and technology. Unless...

  15. Fuel Cell Technologies Office: Technology Validation Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel Cell Seminar2015of

  16. Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat PumpsTechnologiesTechnologiesScience & Innovation »

  17. Cost and Energy Consumption Optimization of Product Manufacture in a Flexible Manufacturing System

    E-Print Network [OSTI]

    Diaz, Nancy; Dornfeld, David

    2012-01-01

    Planning: The Design/Manufacture Interface, Butterworth-Optimization of Product Manufacture in a Flexibleplanning stage for product manufacture, i.e. machine tool

  18. Variability assessment and mitigation in advanced VLSI manufacturing through design-manufacturing co-optimization

    E-Print Network [OSTI]

    Jeong, Kwangok

    2011-01-01

    Design-Manufacturing Co-Optimization . . . . . . .Design-Aware Manufacturing Process Optimization . . 5.15.1.4 Overall Manufacturing Cost Comparison Chapter 5 vi

  19. IEM 4010/5990: Automation and RFID Applications in Manufacturing Systems: (Towards Improving Quality and Integrity Assurance)

    E-Print Network [OSTI]

    Bukkapatnam, Satish T.S.

    of manufacturing systems. RFID is emerging as a viable technology for automating the identification of monitoringIEM 4010/5990: Automation and RFID Applications in Manufacturing Systems: (Towards Improving industrial automation technologies with focus on the emerging disciplines of Radio Frequency Identification

  20. THE STRUCTURE OF PATENT AUTHORSHIP NETWORKS IN JAPANESE MANUFACTURING COMPANIES

    E-Print Network [OSTI]

    Thawonmas, Ruck

    THE STRUCTURE OF PATENT AUTHORSHIP NETWORKS IN JAPANESE MANUFACTURING COMPANIES Kohei Tsuda, Frank@is.ritsumei.ac.jp, ruck@ci.ritsumei.ac.jp Keywords: Patent, Inventorship networks, Power law. Abstract: Technological of these strategies is the creation of patents, which help eliminate or contain competition. Companies seek to learn

  1. NICE3 SO3 Cleaning Process in Semiconductor Manufacturing

    SciTech Connect (OSTI)

    Blazek, S.

    1999-01-29

    This fact sheet explains how Anon, Inc., has developed a novel method of removing photoresist--a light-sensitive material used to produce semiconductor wafers for computers--from the computer manufacturing process at reduced cost and greater efficiency. The new technology is technically superior to existing semiconductor cleaning methods and results in reduced use of hazardous chemicals.

  2. Managing Energy Efficiency in Manufacturing Processes Implementing Energy Performance in

    E-Print Network [OSTI]

    Boyer, Edmond

    Managing Energy Efficiency in Manufacturing Processes ­ Implementing Energy Performance and unsecured energy supply are topics that become increasingly important in today's society. Although renewable energy technologies may be a long-term solution, more efficient energy use potentially makes a high

  3. Hollings Manufacturing Extension Partnership: A Commercialization Collaborator

    E-Print Network [OSTI]

    bottom-line efficiencies through the employment of lean manufacturing techniques and other productivityHollings Manufacturing Extension Partnership: A Commercialization Collaborator MEP · MANUFACTURING Manufacturing Extension Partnership (MEP) works with small and mid-sized U.S. manufacturers to help them create

  4. Out of Bounds Additive Manufacturing Christopher

    E-Print Network [OSTI]

    Pennycook, Steve

    #12;Out of Bounds Additive Manufacturing Christopher Holshouser, Clint Newell, and Sid Palas, Tenn. The Big Area Additive Manufacturing system has the potential to manufacture parts completely) are working on an additive manufacturing (AM) system (Big Area Additive Manufacturing, or BAAM) capable

  5. CIRP International Conference on Life Cycle Engineering, Leuven, May 31 Electrical Energy Requirements for Manufacturing Processes

    E-Print Network [OSTI]

    Gutowski, Timothy

    Department of Mechanical Engineering Massachusetts Institute of Technology, Cambridge, MA 02139 Abstract into a single plot. The analysis is cast in an exergy framework. The results show: 1) the specific energy. Keywords Energy, Exergy, Manufacturing Processes 1 INTRODUCTION Manufacturing processes include a wide

  6. Compressed Air System Enhancement Increase Efficiency and Provides Energy Savings at a Circuit Board Manufacturer

    SciTech Connect (OSTI)

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the circuit board manufacturer (Sanmina Plant) project.

  7. 1 Introduction There has been a large shift in the paradigm of automated manufacturing in the

    E-Print Network [OSTI]

    Causey, Gregory C.

    successful and technologically advanced system is Motorola's automated pager line for a new product, code is a rapidly reconfigurable automation system that is capable of manufacturing a wide variety of products1 1 Introduction There has been a large shift in the paradigm of automated manufacturing

  8. Master of Science in Engineering and Technology Management Engineering Management Concentration Management of Technology Concentration

    E-Print Network [OSTI]

    Selmic, Sandra

    Master of Science in Engineering and Technology Management Engineering Management Concentration Management of Technology Concentration Core Courses 21 Core Courses 6 FINC 577 Finance and Accounting for Non Management INEN 505 Manufacturing and Operations Analysis INEN 507 Engineering Administration Quantitative

  9. Sequence Assembly Validation by Restriction Digest Fingerprint

    E-Print Network [OSTI]

    Rouchka, Eric

    Sequence Assembly Validation by Restriction Digest Fingerprint Comparison Eric C. Rouchka and David examines the use of restriction digest analysis as a method for testing the fidelity of sequence assembly. Restriction digest fingerprint matching is an established technology for high resolution physical map

  10. Distributed Energy System Validation, Commissioning and

    E-Print Network [OSTI]

    Distributed Energy System Validation, Commissioning and Qualification Test Report Prepared Agreement No. DE-FC26-06NT42847 Hawai`i Distributed Energy Resource Technologies for Energy Security Subtask for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative

  11. Master Thesis Validation of Interpersonal Stances

    E-Print Network [OSTI]

    Vellekoop, Michel

    , people recognized the stances expressed by the virtual humans when they show the behaviors technology, such as 3D animation, programming in 3D game engine and virtual reality head-mounted displayMaster Thesis Validation of Interpersonal Stances Expressed by Virtual Suspect Characters

  12. Optimal Life Cycle Cost Design for an Energy Efficient Manufacturing Facility 

    E-Print Network [OSTI]

    Thompson, C. T.; Beach, W. P.

    1985-01-01

    management systems in existing facilities. Because of the nature of the electronics industry, i .e., light manufacturing and the continued use of more energy intensive technologies, it has become economically advantageous to take a more active role...

  13. Energy-Saving Opportunities for Manufacturing Companies, International Fact Sheet (Spanish)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    This English/Spanish fact sheet describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

  14. The infusion of intelligence that transforms the way industries conceptualize, design and operate the manufacturing enterprise

    E-Print Network [OSTI]

    Chen, Wei

    Materials & Energy Mgmt. Meta 1 Integrated Workforce, Cyber, Physical System Performance Variability/Center for Advanced Technology Systems Design/manufacturing Platform Providers ­ JPL/NASA, UCLA, Rockwell, Honeywell of infrastructure Critical collaboration based elements · Reference architecture and interoperability approaches

  15. AMO Issues Request for Information on Clean Energy Manufacturing Topics, Including Fuel Cell and Hydrogen Applications

    Broader source: Energy.gov [DOE]

    The AMO seeks information on mid-Technology Readiness Level R&D needs, market challenges, supply chain challenges, and shared facility needs addressing clean energy manufacturing topics, including the fuel cell and hydrogen sectors.

  16. Design and implementation of a continuous improvement framework for an organic photovoltaic panels manufacturer

    E-Print Network [OSTI]

    Colaci, Gregorio

    2011-01-01

    The MIT MEng Team worked at Konarka Technologies, the world leader organic photovoltaic panels (OPV) manufacturer, on several improvement projects. The concentration was on operations improvement as well as production ...

  17. Energy-Saving Opportunities for Manufacturing Companies, (English/Russian Fact Sheet) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This English/Russian brochure describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

  18. Energy-Saving Opportunities for Manufacturing Companies (English/Portuguese Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This English/Portuguese brochure describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help manufacturing facilities reduce industrial energy intensity.

  19. Energy-Saving Opportunities for Manufacturing Enterprises in China (International Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    This English/Chinese brochure describes the Industrial Technologies Program Save Energy Now model and provides information on tools and resources to help Chinese manufacturing facilities reduce industrial energy intensity.

  20. Encoding, application and association of radio frequency identification tags on high speed manufacturing lines

    E-Print Network [OSTI]

    Fonseca, Herbert Moreti, 1973-

    2004-01-01

    One of the entry points of radio frequency identification technology in supply chain applications is at the manufacturing line, after production, as packaged goods leave for the next link of the network of suppliers, ...

  1. DOE Hydrogen Program Manufacturing R&D Pre-Solicitation Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preliminary Fuel Cell Manufacturing R&D Topics PEM Fuel Cell Pre-Solicitation Workshop Questions & Answers Solid Oxide Fuel Cell System (SOFC) Technology R&D Needs (Presentation)...

  2. A Review of Engineering Research in Sustainable Manufacturing

    E-Print Network [OSTI]

    2013-01-01

    ability Principles into Manufacturing/Mechanical Engineeringdefine Sustainable Manufacturing? ,” International Trade7: Air Quality in Manufacturing,” Environmentally Conscious

  3. Risk management practices in global manufacturing investment

    E-Print Network [OSTI]

    Kumar, Mukesh

    2010-07-06

    This thesis explores risk management practices in global manufacturing investment. It reflects the growing internationalisation of manufacturing and the increasing complexity and fragmentation of manufacturing systems. Issues of risk management have...

  4. Precision Manufacturing Process Monitoring With Acoustic Emission

    E-Print Network [OSTI]

    Lee, D.E.; Huang, Inkil; Valente, Carlos M. O.; Oliveira, J. F.; Dornfeld, David

    2006-01-01

    of Machine Tools & Manufacture 46 (2006) 176–188 Fig. 9.of Machine Tools & Manufacture 46 (2006) 176–188 Fig. 15. (of Machine Tools & Manufacture 46 (2006) 176–188 Fig. 17. (

  5. Precision Manufacturing Process Monitoring with Acoustic Emission

    E-Print Network [OSTI]

    Lee, D. E.; Hwang, I.; Valente, C. M. O.; Oliviera, J. F.G.; Dornfeld, D. A.

    2006-01-01

    of Machine Tools & Manufacture 46 (2006) 176–188 Fig. 9.of Machine Tools & Manufacture 46 (2006) 176–188 Fig. 15. (of Machine Tools & Manufacture 46 (2006) 176–188 Fig. 17. (

  6. Agenda: Fiber Reinforced Polymer Composite Manufacturing Workshop

    Broader source: Energy.gov (indexed) [DOE]

    manufacturing.energy.gov 3 Morning Agenda 9:00am - 9:05am Welcome Mark Johnson Director, Advanced Manufacturing Office 9:05am - 9:20am Clean Energy Manufacturing Initiative David...

  7. Optimization of the BEOL Interconnect Stack for Advanced Semiconductor Technology Nodes

    E-Print Network [OSTI]

    Shah, Pooja Pradeep

    2015-01-01

    Stage Validation: Predictive Technology Models . . 3.4.12.6 Predictive Technology Models . . . . . . . . . . . 2.7Library in 15nm FreePDK Technology”, Proc. ISPD, 2015, pp.

  8. Combining Representations from Manufacturing, Machine Planning, and Manufacturing Resource Planning (MRP)

    E-Print Network [OSTI]

    Cook, Diane J.

    Combining Representations from Manufacturing, Machine Planning, and Manufacturing Resource Planning an ordinary planner into a manufacturing system by showing that the assembly trees used by manufacturers can into a set of matrices used by the manufacturing system. This allows manufacturers to continue to use

  9. Building Technologies Program: Planned Program Activities for 2008-2012

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    Building Technologies Program Complete Multi-Year Program Plan 2008 includes all sections - overview, research and development, standards, technology validation, portfolio management, appendices.

  10. CMP Modeling as a part of Design for Manufacturing

    E-Print Network [OSTI]

    Tripathi, Shantanu; Monvoisin, Adrien; Dornfeld, David; Doyle, F M

    2007-01-01

    IEEE Trans. Semiconductor Manufacturing, 232 (2002) [4] J.J.a part of Design for Manufacturing Shantanu Tripathi, Adrienenabling Design for Manufacturing (DfM) and Manufacturing

  11. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Use of Laser Engineered Net Shaping for Rapid Manufacturing of Dies with Protective Coatings and Improved Thermal Management

    SciTech Connect (OSTI)

    Brevick, Jerald R.

    2014-06-13

    In the high pressure die casting process, molten metal is introduced into a die cavity at high pressure and velocity, enabling castings of thin wall section and complex geometry to be obtained. Traditional die materials have been hot work die steels, commonly H13. Manufacture of the dies involves machining the desired geometry from monolithic blocks of annealed tool steel, heat treating to desired hardness and toughness, and final machining, grinding and polishing. The die is fabricated with internal water cooling passages created by drilling. These materials and fabrication methods have been used for many years, however, there are limitations. Tool steels have relatively low thermal conductivity, and as a result, it takes time to remove the heat from the tool steel via the drilled internal water cooling passages. Furthermore, the low thermal conductivity generates large thermal gradients at the die cavity surfaces, which ultimately leads to thermal fatigue cracking on the surfaces of the die steel. The high die surface temperatures also promote the metallurgical bonding of the aluminum casting alloy to the surface of the die steel (soldering). In terms of process efficiency, these tooling limitations reduce the number of die castings that can be made per unit time by increasing cycle time required for cooling, and increasing downtime and cost to replace tooling which has failed either by soldering or by thermal fatigue cracking (heat checking). The objective of this research was to evaluate the feasibility of designing, fabricating, and testing high pressure die casting tooling having properties equivalent to H13 on the surface in contact with molten casting alloy - for high temperature and high velocity molten metal erosion resistance – but with the ability to conduct heat rapidly to interior water cooling passages. A layered bimetallic tool design was selected, and the design evaluated for thermal and mechanical performance via finite element analysis. H13 was retained as the exterior layer of the tooling, while commercially pure copper was chosen for the interior structure of the tooling. The tooling was fabricated by traditional machining of the copper substrate, and H13 powder was deposited on the copper via the Laser Engineered Net Shape (LENSTM) process. The H13 deposition layer was then final machined by traditional methods. Two tooling components were designed and fabricated; a thermal fatigue test specimen, and a core for a commercial aluminum high pressure die casting tool. The bimetallic thermal fatigue specimen demonstrated promising performance during testing, and the test results were used to improve the design and LENS TM deposition methods for subsequent manufacture of the commercial core. Results of the thermal finite element analysis for the thermal fatigue test specimen indicate that it has the ability to lose heat to the internal water cooling passages, and to external spray cooling, significantly faster than a monolithic H13 thermal fatigue sample. The commercial core is currently in the final stages of fabrication, and will be evaluated in an actual production environment at Shiloh Die casting. In this research, the feasibility of designing and fabricating copper/H13 bimetallic die casting tooling via LENS TM processing, for the purpose of improving die casting process efficiency, is demonstrated.

  12. Mechanical and Manufacturing Engineering Mechatronics Engineering Minor

    E-Print Network [OSTI]

    Mechanical and Manufacturing Engineering Mechatronics Engineering Minor Students pursuing a BSc in mechanical or manufacturing engineering have experience and entrepreneurship. Mechatronics is the synergistic combination of mechanical

  13. Energy Intensity Indicators: Manufacturing Energy Intensity

    Broader source: Energy.gov [DOE]

    The manufacturing sector comprises 18 industry sectors, generally defined at the 3-digit level of the North American Industrial Classification System (NAICS). The manufacturing energy data include...

  14. Understanding Manufacturing Energy and Carbon Footprints, October...

    Broader source: Energy.gov (indexed) [DOE]

    Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis Cement (2010 MECS)...

  15. MECS 2006 - All Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Footprint All Manufacturing (NAICS 31-33) More Documents & Publications All Manufacturing (2010 MECS) Plastics and Rubber Products (2010 MECS) MECS 2006 - Alumina and Aluminum...

  16. 2014 Manufacturing Energy and Carbon Footprints: Scope

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industries in the Paper Manufacturing subsector make pulp, paper, or converted paper products. The manufacturing of these products is grouped together because they...

  17. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Workshop Poster Abstract Submission - deadline July 10, 2015 Advanced Qualification of Additive Manufacturing Materials using in situ sensors, diagnostics...

  18. Clean Energy Manufacturing Initiative: Increasing American Competitive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partnered with other agencies to launch a pilot Manufacturing Innovation Institute on additive manufacturing in Youngstown, Ohio. Following this pilot, the Energy Department...

  19. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshops Additive Manufacturing Workshop Advanced Qualification of Additive Manufacturing Materials Workshop Our goal is to define opportunities and research gaps within...

  20. Clean Energy Manufacturing Initiative Southeast Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative Southeast Regional Summit Clean Energy Manufacturing Initiative Southeast Regional Summit July 9, 2015 8:30AM to 6:00PM EDT Renaissance...

  1. Process systems engineering of continuous pharmaceutical manufacturing

    E-Print Network [OSTI]

    Abel, Matthew J

    2010-01-01

    Continuous manufacturing offers a number of operational and financial benefits to pharmaceutical companies. This research examines the critical blending step for continuous pharmaceutical manufacturing and the characteristics ...

  2. National Electrical Manufacturers Association (NEMA) Response...

    Office of Environmental Management (EM)

    Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI National Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI The National Electrical...

  3. Additive Manufacturing Cluster Strategy | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Cluster Strategy SHARE Additive Manufacturing Cluster Strategy As the nation's premier research laboratory, ORNL is one of the world's most capable resources...

  4. Manufacturing Barriers to High Temperature PEM Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D...

  5. Solid electrolyte material manufacturable by polymer processing...

    Office of Scientific and Technical Information (OSTI)

    Patent: Solid electrolyte material manufacturable by polymer processing methods Citation Details In-Document Search Title: Solid electrolyte material manufacturable by polymer...

  6. Chemical-mechanical polishing: Enhancing the manufacturability of MEMS

    SciTech Connect (OSTI)

    Sniegowski, J.J.

    1996-10-01

    The planarization technology of Chemical-Mechanical-Polishing (CMP), used for the manufacturing of multi-level metal interconnects for high-density Integrated Circuits (IC), is also readily adaptable as an enabling technology in Micro Electro Mechanical Systems (MEMS) fabrication, particularly polysilicon surface micromachining. CMP not only eases the design and manufacturability of MEMS devices by eliminating several photolithographic and film issues generated by severe topography, but also enables far greater flexibility with process complexity and associated designs. Thus, the CMP planarization technique alleviates processing problems associated with fabrication of multi-level polysilicon structures, eliminates design constraints linked with non-planar topography, and provides an avenue for integrating different process technologies. Examples of these enhancements include: an simpler extension of surface micromachining fabrication to multiple mechanical layers, a novel method of monolithic integration of electronics and MEMS, and a novel combination of bulk and surface micromachining.

  7. Deputy Director, Advanced Manufacturing Office

    Broader source: Energy.gov [DOE]

    This position is located in the Advanced Manufacturing Office (AMO), within the Office of Energy Efficiency and Renewable Energy (EERE). EERE leads the U.S. Department of Energy's efforts to...

  8. Process development status report for advanced manufacturing projects

    SciTech Connect (OSTI)

    Brinkman, J.R.; Homan, D.A.

    1990-03-30

    This is the final status report for the approved Advanced Manufacturing Projects for FY 1989. Five of the projects were begun in FY 1987, one in FY 1988, and one in FY 1989. The approved projects cover technology areas in welding, explosive material processing and evaluation, ion implantation, and automated manufacturing. It is expected that the successful completion of these projects well result in improved quality and/or reduced cost for components produced by Mound. Those projects not brought to completion will be continued under Process development in FY 1990.

  9. Manufacturing Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report Management Challenges atEnergyPerspective Manufacturing

  10. O`ahu Grid Study: Validation of Grid Models

    E-Print Network [OSTI]

    O`ahu Grid Study: Validation of Grid Models Prepared for the U.S. Department of Energy Office Resource Technologies for Energy Security Subtask 7.2 Deliverable By GE Global Research Niskayuna, New York

  11. Vehicle Technologies Office: 2010 Lightweight Materials R&D Annual...

    Broader source: Energy.gov (indexed) [DOE]

    materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance,recyclabilit...

  12. High Impact Commercial Technology RFI Review | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and market factors including: Market demand Existing resources related to the specific technology Regulatory environment Manufacturing capacity Cost-effectiveness including...

  13. NREL: Technology Transfer - NREL to Play Pivotal Role in White...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    White House Initiative to Bolster America's Manufacturing Future A photo of a large scale wind turbine with foothills in the background. Experts at the National Wind Technology...

  14. Vehicle Technologies Office: AVTA - Medium and Heavy Duty Vehicle...

    Energy Savers [EERE]

    Application Technology Manufacturer Fleet Years Collected Delivery Trucks All Electric Smith Newton Various 2012-2014 Class 8 Diesel Tractors Hybrid Electric Kenworth and...

  15. Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicles decreases with time. * Manufacturing costs associated with batteries and electric machines fall faster than those of conventional technologies (i.e., engine,...

  16. Clean Energy Manufacturing: U.S. Competitiveness and State Policy Strategies (Presentation)

    SciTech Connect (OSTI)

    Lantz, E.

    2014-02-01

    The capital intensive nature of clean energy technologies suggests that manufacturing clean energy equipment has the potential to support state and local economic development efforts. However, manufacturing siting decisions tend to be complex and multi-variable decision processes that require in-depth knowledge of specific markets, the logistical requirements of a given technology, and insight into global clean tech trends. This presentation highlights the potential of manufacturing in supporting economic development opportunities while also providing examples of the financial considerations affecting manufacturing facility siting decisions for wind turbine blades and solar PV. The presentation also includes discussion of other more qualitative drivers of facility siting decisions as gleaned from NREL industry interviews and discusses strategies state and local policymakers may employee to bolster their chances of successfully attracting clean energy manufacturers to their localities.

  17. Reflector Technology Development and System Design for Concentrating Solar Power Technologies

    SciTech Connect (OSTI)

    Adam Schaut Philip Smith

    2011-12-30

    Alcoa began this program in March of 2008 with the goal of developing and validating an advanced CSP trough design to lower the levelized cost of energy (LCOE) as compared to existing glass based, space-frame trough technology. In addition to showing a pathway to a significant LCOE reduction, Alcoa also desired to create US jobs to support the emerging CSP industry. Alcoa's objective during Phase I: Concept Feasibility was to provide the DOE with a design approach that demonstrates significant overall system cost savings without sacrificing performance. Phase I consisted of two major tasks; reflector surface development and system concept development. Two specific reflective surface technologies were investigated, silver metallized lamination, and thin film deposition both applied on an aluminum substrate. Alcoa prepared samples; performed test validation internally; and provided samples to the NREL for full-spectrum reflectivity measurements. The final objective was to report reflectivity at t = 0 and the latest durability results as of the completion of Phase 1. The target criteria for reflectance and durability were as follows: (1) initial (t = 0), hemispherical reflectance >93%, (2) initial spectral reflectance >90% for 25-mrad reading and >87% for 7-mrad reading, and (3) predicted 20 year durability of less than 5% optical performance drop. While the results of the reflective development activities were promising, Alcoa was unable to down-select on a reflective technology that met the target criteria. Given the progress and potential of both silver film and thin film technologies, Alcoa continued reflector surface development activities in Phase II. The Phase I concept development activities began with acquiring baseline CSP system information from both CSP Services and the DOE. This information was used as the basis to develop conceptual designs through ideation sessions. The concepts were evaluated based on estimated cost and high-level structural performance. The target criteria for the concept development was to achieve a solar field cost savings of 25%-50% thereby meeting or exceeding the DOE solar field cost savings target of $350/m2. After evaluating various structural design approaches, Alcoa down-selected to a monocoque, dubbed Wing Box, design that utilizes the reflective surface as a structural, load carrying member. The cost and performance potential of the Wing Box concept was developed via initial finite element analysis (FEA) and cost modeling. The structural members were sized through material utilization modeling when subjected to representative loading conditions including wind loading. Cost modeling was utilized to refine potential manufacturing techniques that could be employed to manufacture the structural members. Alcoa concluded that an aluminum intensive collector design can achieve significant cost savings without sacrificing performance. Based on the cost saving potential of this Concept Feasibility study, Alcoa recommended further validation of this CSP approach through the execution of Phase II: Design and Prototype Development. Alcoa Phase II objective was to provide the DOE with a validated CSP trough design that demonstrates significant overall system cost savings without sacrificing performance. Phase II consisted of three major tasks; Detail System Design, Prototype Build, and System Validation. Additionally, the reflector surface development that began in Phase I was continued in Phase II. After further development work, Alcoa was unable to develop a reflective technology that demonstrated significant performance or cost benefits compared to commercially available CSP reflective products. After considering other commercially available reflective surfaces, Alcoa selected Alano's MIRO-SUN product for use on the full scale prototype. Although MIRO-SUN has a lower specular reflectivity compared to other options, its durability in terms of handling, cleaning, and long-term reflectivity was deemed the most important attribute to successfully validate Alcoa's advanced trough archi

  18. Coated Conductor Technology Development

    E-Print Network [OSTI]

    Coated Conductor Technology Development Roadmap Priority Research & Development Activities Leading for Electric Systems Program Prepared by: Energetics, Incorporated #12;Coated Conductor Development Roadmap of high-quality, low-cost coated conductors that will lead to industrial-scale commercial manufacturing

  19. Validating Energy Measures 

    E-Print Network [OSTI]

    Chari, S.; Thomas, D.

    1994-01-01

    Energy measurements play a very important role in a detailed energy analysis. The role is more important in industrial processes where wide variations of process conditions exist. Valid energy measurements make the decision making process easier...

  20. System Integration and Validation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting