National Library of Energy BETA

Sample records for technology type year

  1. The Geothermal Technologies Office Congratulates this Year's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Geothermal Technologies Office Congratulates this Year's GEA Honors Awardees The Geothermal Technologies Office Congratulates this Year's GEA Honors Awardees December 11, 2013...

  2. Profiling 1366 Technologies: One Year Later

    Broader source: Energy.gov [DOE]

    Last January, we took a look at how ARPA-E performer, 1366 Technologies is working to dramatically reduce the cost of solar energy. A year later, we revisited their headquarters in Lexington, MA to...

  3. Bioenergy Technologies Office Fiscal Year 2014 Annual Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fiscal Year 2014 Annual Report Bioenergy Technologies Office Fiscal Year 2014 Annual Report Bioenergy Technologies Office Fiscal Year 2014 Annual Report PDF icon...

  4. Profiling 1366 Technologies: One Year Later

    ScienceCinema (OSTI)

    Van Mierlo, Frank; Sachs, Ely;

    2013-05-29

    Last January, we took a look at how ARPA-E performer, 1366 Technologies is working to dramatically reduce the cost of solar energy. A year later, we revisited their headquarters in Lexington, MA to see the progress they've made.

  5. Technology Transfer Annual Report Fiscal Year 2015

    SciTech Connect (OSTI)

    Skinner, Wendy Lee

    2015-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to federal agencies, state and local governments, universities, and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, job creation, and delivering the benefits of federally funded technology to consumers. In some cases, unique capabilities are made available to other federal agencies, international organizations, domestic and foreign commercial entities, or small businesses to solve specific technical challenges. INL employees work cooperatively with researchers and technical staff from the university and industrial sectors to further development of emerging technologies. In this multinational global economy, INL is contributing to the development of the next generation of engineers and scientists by licensing software to educational institutions throughout the world. This report is a catalog of select INL technology transfer and commercialization transactions and research agreements that were executed during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INL’s Technology Deployment and Contracts Management Offices. Accomplishments cataloged in the report reflect the achievements and creativity of the researchers, technicians, support staff, and operators of the INL workforce.

  6. Applied Science and Technology Task Order Fiscal Year 2008 Year-End Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 8 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2008 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2008 Year-End Summary Report PDF icon Applied Science and Technology Task Order Fiscal Year 2008 Year-End Summary Report More Documents & Publications Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2011

  7. Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 9 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary Report PDF icon Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary Report More Documents & Publications Applied Science and Technology Task Order Fiscal Year 2011 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2008

  8. Applied Science and Technology Task Order Fiscal Year 2010 Year-End Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 0 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2010 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2010 Year-End Summary Report PDF icon Applied Science and Technology Task Order Fiscal Year 2010 Year-End Summary Report More Documents & Publications Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2011

  9. Applied Science and Technology Task Order Fiscal Year 2011 Year-End Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy 1 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2011 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2011 Year-End Summary Report PDF icon Applied Science and Technology Task Order Fiscal Year 2011 Year-End Summary Report More Documents & Publications Applied Science and Technology Task Order Fiscal Year 2009 Year-End Summary Report Applied Science and Technology Task Order Fiscal Year 2008

  10. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coordination Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Coordination The Geothermal Technologies Program Multi-Year Research,...

  11. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cover Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Cover The Geothermal Technologies Program Multi-Year Research, Development and...

  12. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Challenges The Geothermal Technologies Program Multi-Year Research,...

  13. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Systems Integration The Geothermal Technologies Program Multi-Year...

  14. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summary Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Executive Summary The Geothermal Technologies Program Multi-Year...

  15. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi-Year Research, Development and Demonstration Plan Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan The Geothermal Technologies Program...

  16. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Table of Contents Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Table of Contents The Geothermal Technologies Program Multi-Year...

  17. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appendices Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Appendices The Geothermal Technologies Program Multi-Year Research, Development...

  18. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Management The Geothermal Technologies Program Multi-Year Research,...

  19. Bioenergy Technologies Office Multi-Year Program Plan: November...

    Broader source: Energy.gov (indexed) [DOE]

    november2014.pdf More Documents & Publications Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update Bioenergy Technologies Office Multi-Year Program Plan:...

  20. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Introduction The Geothermal Technologies Program Multi-Year Research,...

  1. Geothermal Technologies Program Fiscal Year 2013 Budget Request Presentation

    SciTech Connect (OSTI)

    DOE

    2012-03-13

    Geothermal Technologies Program fiscal year 2103 budget request presentation by Doug Hollett, Program Manager.

  2. Model Year 2006: Alternative Fuel and Advanced Technology Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Model Year 2006: Alternative Fuel and Advanced Technology Vehicles Fuel Type EPAct Compliant? Model Vehicle Type Emission Class Powertrain Fuel Capacity Range American Honda Motor Corporation 888-CCHONDA www.honda.com CNG Dedicated EPAct Yes Civic GX Compact Sedan SULEV Tier 2 Bin II 1.7L, 4-cylinder 8 GGE 200 mi HEV (NiMH) EPAct No Accord Hybrid Sedan ULEV 3.0L V6 144 volt NiMH + 17.1 Gal Gasoline TBD HEV (NiMH) EPAct No Civic Hybrid Sedan CA ULEV 1.3L, 4-cylinder 144 volt NiMH + 13.2 Gal

  3. Environmental technologies program, Fiscal year 1994

    SciTech Connect (OSTI)

    1994-12-31

    This document presents details of the technology that is currently being demonstrated at the Hanford Site. The program is testing technology for cost and time savings in the following clean-up areas: detection and characterization; soil and ground water remediation; remote handling; waste minimization; and high-level, low-level, and mixed waste treatment. This document also contains a technology integration section.

  4. Bioenergy Technologies Office Multi-Year Program Plan: November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 2014 Update -- Sections Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update -- Sections This Multi-Year Program Plan (MYPP) sets forth the goals...

  5. Bioenergy Technologies Office Multi-Year Program Plan: July 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 2014 Update -- Sections Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update -- Sections This Multi-Year Program Plan (MYPP) sets forth the goals and...

  6. Bioenergy Technologies Office Fiscal Year 2014 Annual Report | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Fiscal Year 2014 Annual Report Bioenergy Technologies Office Fiscal Year 2014 Annual Report Bioenergy Technologies Office Fiscal Year 2014 Annual Report PDF icon beto_2014_annual_report.pdf More Documents & Publications November 2013 News Blast August 2014 Monthly News Blast Growing America's Energy Future: Bioenergy Technologies Office Successes of 2014

  7. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Cover | Department of Energy Cover Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Cover The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. PDF icon gtp_myrdd_2009-cover.pdf More Documents & Publications Geothermal Technologies Program Multi-Year

  8. Seven Years Since SERP: Successes and Setbacks in Technology Procurement

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Seven Years Since SERP: Successes and Setbacks in Technology Procurement Citation Details In-Document Search Title: Seven Years Since SERP: Successes and Setbacks in Technology Procurement This paper describes lessons learned from 4 completed and 2 ongoing technology procurement projects PNNL has conducted for DOE's Emerging Technology program. The past seven years have seen a variety of projects designed to aggregate markets for highly efficient

  9. Fuel Cell Technologies Office Multi-Year Research, Development, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan | Department of Energy Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration (MYRD&D) Plan describes the goals, objectives, technical targets, tasks, and schedules for all activities within the Fuel Cell Technologies (FCT) Office, which is part of the U.S. Department of

  10. DOE Fuel Cell Technologies Office Record 13010: Onboard Type...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Onboard Type IV Compressed Hydrogen Storage Systems-Current Performance and Cost DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed Hydrogen Storage...

  11. Property:Technology Type | Open Energy Information

    Open Energy Info (EERE)

    pages using this property. (previous 25) (next 25) M MHK Technologies14 MW OTECPOWER + OTEC - Closed Cycle MHK TechnologiesAnaconda bulge tube drives turbine + Oscillating Wave...

  12. Fiscal Year 2015 Vehicle Technologies Program Wide Funding Opportunity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announcement Selections | Department of Energy Fiscal Year 2015 Vehicle Technologies Program Wide Funding Opportunity Announcement Selections Fiscal Year 2015 Vehicle Technologies Program Wide Funding Opportunity Announcement Selections The list of 24 awardees given funds to develop and deploy cutting-edge vehicle technologies that will strengthen the U.S. clean energy economy. These technologies will play a key role in increasing fuel efficiency and reducing petroleum consumption, while

  13. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Foreword | Department of Energy Foreword Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Foreword The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. PDF icon gtp_myrdd_2009-forward.pdf More Documents & Publications Geothermal Technologies Program

  14. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan | Department of Energy Multi-Year Research, Development and Demonstration Plan Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. PDF icon gtp_myrdd_2009-complete.pdf More Documents & Publications

  15. NREL Technology Partnerships: Fiscal Year 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 New Partnership Agreements 696 Active Partnership Agreements 136 Unique New Partners 480 Unique Active Partners $33M in New Partnership Agreements Value WORKING WITH US NREL accelerates the commercialization of energy efficiency and renewable energy technologies by facilitating partnerships and licensing opportunities. We invite organizations, researchers, and professionals from around the world to partner with us on research, development, and deployment projects and to use our research

  16. Bioenergy Technologies Office Multi-Year Program Plan: July 2014...

    Broader source: Energy.gov (indexed) [DOE]

    below or by individual sections. myppjuly2014.pdf More Documents & Publications Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update Bioenergy...

  17. Bioenergy Technologies Office Multi-Year Program Plan: March...

    Broader source: Energy.gov (indexed) [DOE]

    aphymyppmarch2015.pdf appendixa-dmyppmarch2015.pdf More Documents & Publications Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update Bioenergy...

  18. Fiscal Year 2015 Vehicle Technologies Program Wide Funding Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fiscal Year 2015 Vehicle Technologies Program Wide Funding Opportunity Announcement Selections The list of 24 awardees given funds to develop and deploy cutting-edge vehicle ...

  19. Fiscal Year 2015 Vehicle Technologies Office Incubator Funding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office Incubator Funding Opportunity Announcement Fiscal Year 2015 Vehicle Technologies Office Incubator Funding Opportunity Announcement The list of eight awardees given funds to...

  20. Building Technologies Program Multi-Year Program Plan Technology Validation and Market Introduction 2008

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for technology validation and market introduction, including ENERGY STAR, building energy codes, technology transfer application centers, commercial lighting initiative, EnergySmart Schools, EnergySmar

  1. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Technical Plan | Department of Energy Technical Plan Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. PDF icon gtp_myrdd_2009-technical_plan.pdf More Documents & Publications

  2. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Executive Summary | Department of Energy Executive Summary Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Executive Summary The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. PDF icon gtp_myrdd_2009-exec_summary.pdf More Documents & Publications

  3. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Program Analysis | Department of Energy Program Analysis Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Analysis The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. PDF icon gtp_myrdd_2009-program_analysis.pdf More Documents & Publications

  4. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Program Benefits | Department of Energy Benefits Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Benefits The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. PDF icon gtp_myrdd_2009-program_benefits.pdf More Documents & Publications

  5. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Program Coordination | Department of Energy Coordination Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Coordination The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. PDF icon gtp_myrdd_2009-program_coordination.pdf More Documents &

  6. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Program Management | Department of Energy Management Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Management The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. PDF icon gtp_myrdd_2009-program_management.pdf More Documents & Publications

  7. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Systems Integration | Department of Energy Systems Integration Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Systems Integration The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. PDF icon gtp_myrdd_2009-systems_integration.pdf More Documents &

  8. Fiscal Year 2006 Washington Closure Hanford Science & Technology Plan

    SciTech Connect (OSTI)

    K.J. Kroegler, M. Truex, D.J. McBride

    2006-01-19

    This Washington Closure Hanford science and technology (S&T) plan documents the activities associated with providing S&T support to the River Corridor Closure Project for fiscal year 2006.

  9. Bioenergy Technologies Office Multi-Year Program Plan: May 2013...

    Broader source: Energy.gov (indexed) [DOE]

    to the Multi-Year Program Plan, which sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the RDD&D activities the Office will focus on...

  10. China Technology Center Celebrates 15 Years | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China Technology Center Celebrates 15 Years of Innovation "In China for China" Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE's China Technology Center Celebrates 15 Years of Innovation "In China for China" Unveils Visionary Technology Blueprint called "The Next List" Shanghai, China, 5

  11. Bioenergy Technologies Office Multi-Year Program Plan: July 2014

    SciTech Connect (OSTI)

    none,

    2014-07-09

    This is the May 2014 Update to the Bioenergy Technologies Office Multi-Year Program Plan, which sets forth the goals and structure of the Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation.

  12. Bioenergy Technologies Office Multi-Year Program Plan: March 2016

    Broader source: Energy.gov [DOE]

    This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

  13. Geothermal Injection Technology Program: Annual progress report, Fiscal Year 1986

    SciTech Connect (OSTI)

    Not Available

    1987-07-01

    This report summarizes the Geothermal Injection Technology Program major activities in fiscal year 1986. The Idaho Engineering Laboratory (INEL) and the University of Utah Research Institute (UURI) have been conducting injection research and testing for this program, which was initiated in 1983. Activities at the INEL, representative element nodeling of fracture systems based on stochastic analysis, dual permeability modeling of flow in a fractured geothermal reservoir, and dual permeability model - laboratory and FRACSL-validation studies, are presented first, followed by the University of Utah Research Institute tracer development - experimental studies, which includes a brief description of activities planned for FY-1987.

  14. Hanford Tanks Initiative fiscal year 1997 retrieval technology demonstrations

    SciTech Connect (OSTI)

    Berglin, E.J.

    1998-02-05

    The Hanford Tanks Initiative was established in 1996 to address a range of retrieval and closure issues associated with radioactive and hazardous waste stored in Hanford`s single shell tanks (SSTs). One of HTI`s retrieval goals is to ``Successfully demonstrate technology(s) that provide expanded capabilities beyond past practice sluicing and are extensible to retrieve waste from other SSTS.`` Specifically, HTI is to address ``Alternative technologies to past practice sluicing`` ... that can ... ``successfully remove the hard heel from a sluiced tank or to remove waste from a leaking SST`` (HTI Mission Analysis). During fiscal year 1997, the project contracted with seven commercial vendor teams to demonstrate retrieval technologies using waste simulants. These tests were conducted in two series: three integrated tests (IT) were completed in January 1997, and four more comprehensive Alternative Technology Retrieval Demonstrations (ARTD) were completed in July 1997. The goal of this testing was to address issues to minimize the risk, uncertainties, and ultimately the overall cost of removing waste from the SSTS. Retrieval technologies can be separated into three tracks based on how the tools would be deployed in the tank: globally (e.g., sluicing) or using vehicles or robotic manipulators. Accordingly, the HTI tests included an advanced sluicer (Track 1: global systems), two different vehicles (Track 2: vehicle based systems), and three unique manipulators (Track 3: arm-based systems), each deploying a wide range of dislodging tools and conveyance systems. Each industry team produced a system description as envisioned for actual retrieval and a list of issues that could prevent using the described system; defined the tests to resolve the issues; performed the test; and reported the results, lessons learned, and state of issue resolution. These test reports are cited in this document, listed in the reference section, and summarized in the appendices. This report analyzes the retrieval testing issues and describes what has been learned and issues that need further resolution. As such, it can serve as a guide to additional testing that must be performed before the systems are used in-tank. The major issues discussed are tank access, deployment, mining strategy, waste retrieval, liquid scavenging (liquid usage), maneuverability, positioning, static and dynamic performance, remote operations, reliability, availability, maintenance, tank safety, and cost.

  15. Advanced Automotive Technologies annual report to Congress, fiscal year 1996

    SciTech Connect (OSTI)

    1998-03-01

    This annual report serves to inform the United States Congress on the progress for fiscal year 1996 of programs under the Department of Energy`s Office of Advanced Automotive Technologies (OAAT). This document complies with the legislative requirement to report on the implementation of Title III of the Automotive Propulsion Research and Development Act of 1978. Also reported are related activities performed under subsequent relevant legislation without specific reporting requirements. Furthermore, this report serves as a vital means of communication from the Department to all public and private sector participants. Specific requirements that are addressed in this report are: Discussion of how each research and development contract, grant, or project funded under the authority of this Act satisfies the requirements of each subsection; Current comprehensive program definition for implementing Title III; Evaluation of the state of automotive propulsion system research and development in the United States; Number and amount of contracts and grants awarded under Title III; Analysis of the progress made in developing advanced automotive propulsion system technology; and Suggestions for improvements in automotive propulsion system research and development, including recommendations for legislation.

  16. Fuel Cell Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi-Year Research, Development and Demonstration Plan Page B - 1 Multi-Year Research, Development and Demonstration Plan Page B - 2 Multi-Year Research, Development and...

  17. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Development, and Demonstration Plan Planned program activities for 2011-2020 Fuel Cell Technologies Office NOTICE This report was prepared as an account of work sponsored...

  18. Analysis of the Climate Change Technology Initiative: Fiscal Year 2001

    Reports and Publications (EIA)

    2000-01-01

    Analysis of the potential impacts of Climate Change Technology Initiative, relative to the baseline energy projections in the Annual Energy Outlook 2000 (AEO2000).

  19. Bioenergy Technologies Office Multi-Year Program Plan: November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... chain is the key to informing technology portfolio ... developed the Bioenergy Knowledge Discovery Framework ... Earnings of Production Workers Current indices from ...

  20. Bioenergy Technologies Office Multi-Year Program Plan: July 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... chain is the key to informing technology portfolio ... developed the Bioenergy Knowledge Discovery Framework ... Earnings of Production Workers Current indices from ...

  1. China Technology Center Celebrates 15 Years | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy-efficient to reduce the depletion of natural resources and lower environmental pollution. New forms of reliable and efficient energy sources and technologies will be made...

  2. Fiscal Year 2015 Vehicle Technologies Office Incubator Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    The list of eight awardees given funds to develop innovative solutions for efficient and environmentally-friendly vehicle technologies that will help reduce petroleum use in the United States. The...

  3. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to use pressure swing adsorption to remove impurities from gaseous hydrogen for use in fuel cells. This is done at the point of production. Other technologies include membrane and...

  4. NREL: Technology Transfer - ESIF 2015 Mid-Year Report Highlights...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESIF 2015 Mid-Year Report Highlights Facility's Latest Successes August 13, 2015 The Energy Systems Integration Facility (ESIF) 2015 Mid-Year Report is now available for download....

  5. Seven Years Since SERP: Successes and Setbacks in Technology...

    Office of Scientific and Technical Information (OSTI)

    The past seven years have seen a variety of projects designed to aggregate markets for ... Research Org: Pacific Northwest National Lab., Richland, WA (US) Sponsoring Org: US ...

  6. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Table of Contents

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  7. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Introduction

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  8. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Appendices

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  9. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Challenges

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  10. Building America List of FY14 by Technology Type | Department of Energy

    Energy Savers [EERE]

    List of FY14 by Technology Type Building America List of FY14 by Technology Type This table lists U.S. Department of Energy Building America projects for FY14 by technology type. PDF icon building_america_fy14projects_technology.pdf More Documents & Publications Building America FY14 Research Projects by Research Team Building America FY14 Projects by Building

  11. Wakonda Technologies is the Clean Energy Entrepreneur of the Year - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Wakonda Technologies is the Clean Energy Entrepreneur of the Year Prize to boost solar technology handed out at Industry Growth Forum November 8, 2007 A small company commercializing a novel solar energy technology has been named the Clean Energy Entrepreneur of the Year at the 20th Industry Growth Forum sponsored by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). Wakonda Technologies Inc., a New York based company, beat out 31 competitors to be

  12. The Geothermal Technologies Office Congratulates this Year's GEA Honors Awardees

    Broader source: Energy.gov [DOE]

    On December 10, the Geothermal Energy Association announced its 2013 GEA Honors awards for advances and achievements in geothermal energy. Among this year's eleven winners and honorable mentions are five projects that the Energy Department investe

  13. Bioenergy Technologies Office Multi-Year Program Plan: March...

    Office of Environmental Management (EM)

    over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as...

  14. Building Technologies Program Multi-Year Program Plan Research and Development 2008

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for research and development, including residential and commercial integration, lighting, HVAC and water heating, envelope, windows, and analysis tools.

  15. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.6 Technology Validation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TECHNOLOGY VALIDATION SECTION Multi-Year Research, Development, and Demonstration Plan Page 3.6 - 1 3.6 Technology Validation The Technology Validation sub-program tests, demonstrates, and validates hydrogen (production, delivery, storage) and fuel cell systems and their integrated components in real- world environments. Feedback provided to the DOE hydrogen and fuel cell research and development (RD&D) projects, industry partners, and end users helps determine the additional RD&D

  16. Federal Ocean Energy Technology: Program summary for fiscal year 1986

    SciTech Connect (OSTI)

    Not Available

    1987-10-01

    The Department of Energy's (DOE) Ocean Energy Technology (OET) Program is looking for cost-effective ways to harness ocean energy to help power tomorrow's world. Federally sponsored researchers are studying methods to transform the solar heat stored in the ocean's surface waters into electricity as well as new ways to convert wave energy into mechanical energy or electricity. This report provides a summary of research completed during FY 1986. Four major research areas are addressed in the work covered by this report: Thermodynamic Research and Analysis addresses the process and system analyses which provide the underlying understanding of physical effects which constitute the energy conversion processes, Experimental Verification and Testing provides confirmation of the analytical projections and empirical relationships, Materials and Structural Research addresses special materials compatibility issues related to operation in the sea. Much of its focus is on concepts for the system CWP which is a major technology cost driver, and Oceanographic, Environmental, and Geotechnical Research addresss those unique design requirements imposed by construction in steep slope coastal areas.

  17. Building Technologies Program Multi-Year Program Plan Program Overview 2008

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan Program Overview 2008, including market overview and federal role, program vision, mission, design and structure, and goals and multi-year targets.

  18. Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Multi-Year Program Plan: March 2015 Update Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation.

  19. NREL: Technology Deployment - Greensburg, Kansas, Five Years Later-An

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Inspiration for Green Disaster Recovery Greensburg, Kansas, Five Years Later-An International Inspiration for Green Disaster Recovery Photo of a building. The LEED-Platinum designed Kiowa County Commons building in Greensburg features 33 solar panels that generate 4.6 kilowatts of power. May 2, 2012 May 4, 2012, marks the fifth anniversary of the day Greensburg, Kansas, was forever changed. On that day, an EF-5 tornado demolished the town, an agricultural community of about

  20. Fuel Cell Technologies Office: 2015 Recap and the Year Ahead | Department

    Energy Savers [EERE]

    of Energy Office: 2015 Recap and the Year Ahead Fuel Cell Technologies Office: 2015 Recap and the Year Ahead January 13, 2016 - 3:22pm Addthis Dear friends and supporters of the Energy Department's Fuel Cell Technologies Office, As 2016 begins, I'd like to thank all of you for your dedication and efforts in advancing hydrogen and fuel cell technologies during the past year. Let's take a minute to reflect on our 2015 accomplishments and highlight some of our plans for 2016. 2015 has been a

  1. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summary Multi-Year Research, Development and Demonstration Plan Page ES - 1 Executive Summary The United States pioneered the development of hydrogen and fuel cell technologies, and we continue to lead the way as these technologies emerge from the laboratory and into commercial markets. A tremendous opportunity exists for the United States to capitalize on this leadership role and apply these technologies to reducing greenhouse gas emissions, reducing our dependence on oil, and

  2. Building Technologies Program Multi-Year Program Plan Program Portfolio Management 2008

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for program portfolio management, including the program portfolio management process, program analysis, performance assessment, stakeholder interactions, and cross-cutting issues.

  3. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix materials

    SciTech Connect (OSTI)

    Not Available

    1993-09-30

    The pages that follow contain summaries of the nine R&TD Program Element Plans for Fiscal Year 1993 that were completed in the Spring of 1993. The nine program elements are aggregated into three program clusters as follows: Design Sciences and Advanced Computation; Advanced Manufacturing Technologies and Capabilities; and Advanced Materials Sciences and Technology.

  4. Vehicle Technologies Office: Multi-Year Program Plan 2011-2015 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Office: Multi-Year Program Plan 2011-2015 Vehicle Technologies Office: Multi-Year Program Plan 2011-2015 The VT MYPP, FY 2011 … 2015, outlines the scientific research and technologies developments for the five-year timeframe (beyond the FY 2010 base year) that need to be undertaken to help meet the Administrations goals for reductions in oil consumption and carbon emissions from the ground transport vehicle sector of the economy. PDF icon vt_mypp_2011-2015.pdf More Documents

  5. Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update

    SciTech Connect (OSTI)

    2014-11-01

    This is the November 2014 Update to the Multi-Year Program Plan, which sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the RDD&D activities the Office will focus on over the next four years.

  6. Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update

    Broader source: Energy.gov [DOE]

    This is the May 2013 Update to the Multi-Year Program Plan, which sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the RDD&D activities the Office will focus on over the next four years.

  7. Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update

    SciTech Connect (OSTI)

    none,

    2015-03-01

    This is the March 2015 Update to the Multi-Year Program Plan, which sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the RDD&D activities the Office will focus on over the next four years.

  8. Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update

    Energy Savers [EERE]

    Ma r c h 2 0 1 5 B I OE N E R G Y T E C H N OL OG I E S OF F I C E M u l t i - Y e a r P r o g r a m P l a n EXECUTIVE SUMMARY The Bioenergy Technologies Office is one of the 10 technology development offices within the Office of Energy Efficiency and Renewable Energy at the U.S. Department of Energy. This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office (the Office). It identifies the research, development, and demonstration (RD&D), and

  9. Bioenergy Technologies Office Multi-Year Program Plan: March 2016—Sections

    Broader source: Energy.gov [DOE]

    This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

  10. Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update

    Broader source: Energy.gov [DOE]

    This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

  11. Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update

    Broader source: Energy.gov [DOE]

    This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

  12. Bioenergy Technologies Office Multi-Year Program Plan: July 2014 Update-- Sections

    Broader source: Energy.gov [DOE]

    This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

  13. Bioenergy Technologies Office Multi-Year Program Plan: November 2014 Update-- Sections

    Broader source: Energy.gov [DOE]

    This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

  14. Bioenergy Technologies Office Multi-Year Program Plan: March 2015 Update-- Sections

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office. It identifies the research, development, demonstration, and deployment activities the Office will focus on over the next five years and outlines why these activities are important to meeting the energy and sustainability challenges facing the nation. This MYPP is intended for use as an operational guide to help the Office manage and coordinate its activities, as well as a resource to help communicate its mission and goals to stakeholders and the public.

  15. RESTORING A DAMAGED 16-YEAR -OLD INSULATING POLYMER CONCRETE DIKE OVERLAY: REPAIR MATERIALS AND TECHNOLOGIES.

    SciTech Connect (OSTI)

    SUGAMA,T.

    2007-01-01

    The objective of this program was to design and formulate organic polymer-based material systems suitable for repairing and restoring the overlay panels of insulating lightweight polymer concrete (ILPC) from the concrete floor and slope wall of a dike at KeySpan liquefied natural gas (LNG) facility in Greenpoint, Brooklyn, NY, just over sixteen years ago. It also included undertaking a small-scale field demonstration to ensure that the commercial repairing technologies were applicable to the designed and formulated materials.

  16. Vehicle Technologies Program - Multi-Year Program Plan 2011-2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi-Year Program Plan 2011 - 2015 December 2010 Vehicle Technologies Program This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would

  17. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT TECHNOLOGY DEVELOPMENT REPORT FISCAL YEAR 2010

    SciTech Connect (OSTI)

    Bush, S.

    2010-10-22

    The mission of the Department of Energy's (DOE's) Office of Environmental Management (EM) is to clean up the environmental legacy of nuclear weapons research and production during the Cold War. That mission includes cleaning up nuclear waste, contaminated groundwater and soil, nuclear materials, and contaminated facilities covering two million acres of land in thirty-five states. EM's principal program goals include timely completion of tank waste treatment facilities, reduction of the life-cycle costs and acceleration of the cleanup of the Cold War legacy, and reduction of the EM footprint. The mission of the EM Technology Innovation and Development program is to transform science and innovation into practical solutions to achieve the EM mission. During fiscal year 2010 (October 2009-September 2010), EM focused upon accelerating environmental cleanup by expeditiously filling identified gaps in available knowledge and technology in the EM program areas. This report describes some of the approaches and transformational technologies in tank waste processing, groundwater and soil remediation, nuclear materials disposition, and facility deactivation and decommissioning developed during fiscal year 2010 that will enable EM to meet its most pressing program goals.

  18. YEAR

    National Nuclear Security Administration (NNSA)

    69 YEAR 2014 Males 34 Females 35 YEAR 2014 SES 5 EJEK 1 EN 05 8 EN 04 5 NN (Engineering) 27 NQ (ProfTechAdmin) 22 NU (TechAdmin Support) 1 YEAR 2014 American Indian Alaska...

  19. YEAR

    National Nuclear Security Administration (NNSA)

    42 YEAR 2014 Males 36 Females 6 PAY PLAN YEAR 2014 SES 2 EJEK 5 EN 05 7 EN 04 6 EN 03 1 NN (Engineering) 15 NQ (ProfTechAdmin) 6 YEAR 2014 American Indian Alaska Native Male...

  20. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2012 Males 65 Females 29 YEAR 2012 SES 3 EJEK 5 EN 04 3 NN (Engineering) 21 NQ (ProfTechAdmin) 61 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American...

  1. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2011 Males 21 Females 23 YEAR 2011 SES 3 EJEK 1 EN 03 1 NN (Engineering) 3 NQ (ProfTechAdmin) 31 NU (TechAdmin Support) 5 YEAR 2011 American Indian Male 0 American...

  2. YEAR

    National Nuclear Security Administration (NNSA)

    92 YEAR 2012 Males 52 Females 40 YEAR 2012 SES 1 EJEK 7 EN 04 13 EN 03 1 NN (Engineering) 27 NQ (ProfTechAdmin) 38 NU (TechAdmin Support) 5 YEAR 2012 American Indian Male 0...

  3. YEAR

    National Nuclear Security Administration (NNSA)

    558 YEAR 2013 Males 512 Females 46 YEAR 2013 SES 2 EJEK 2 EN 04 1 NN (Engineering) 11 NQ (ProfTechAdmin) 220 NU (TechAdmin Support) 1 NV (Nuc Mat Courier) 321 YEAR 2013...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    11 YEAR 2012 Males 78 Females 33 YEAR 2012 SES 2 EJEK 9 EN 05 1 EN 04 33 NN (Engineering) 32 NQ (ProfTechAdmin) 31 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 2...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    300 YEAR 2011 Males 109 Females 191 YEAR 2011 SES 9 EJEK 1 NN (Engineering) 2 NQ (ProfTechAdmin) 203 NU (TechAdmin Support) 38 NF (Future Ldrs) 47 YEAR 2011 American Indian...

  6. YEAR

    National Nuclear Security Administration (NNSA)

    02 YEAR 2011 Males 48 Females 54 YEAR 2011 SES 5 EJEK 1 NN (Engineering) 13 NQ (ProfTechAdmin) 80 NU (TechAdmin Support) 3 YEAR 2011 American Indian Male 0 American Indian...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 27 Females 11 YEAR 2013 SES 1 EN 05 1 EN 04 11 NN (Engineering) 8 NQ (ProfTechAdmin) 15 NU (TechAdmin Support) 2 YEAR 2013 American Indian Alaska Native Male...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2013 Males 20 Females 11 YEAR 2013 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2013 American Indian Alaska Native Male (AIAN,...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    16 YEAR 2012 Males 84 Females 32 YEAR 2012 SES 26 EJEK 2 EN 05 9 NN (Engineering) 39 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 10 YEAR 2012 American Indian Male 0 American...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    34 YEAR 2012 Males 66 Females 68 YEAR 2012 SES 6 NN (Engineering) 15 NQ (ProfTechAdmin) 110 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 1 American Indian Female 2...

  11. YEAR

    National Nuclear Security Administration (NNSA)

    86 YEAR 2012 Males 103 Females 183 YEAR 2012 SES 7 EJEK 1 NN (Engineering) 1 NQ (ProfTechAdmin) 202 NU (TechAdmin Support) 30 NF (Future Ldrs) 45 YEAR 2012 American Indian Male...

  12. YEAR

    National Nuclear Security Administration (NNSA)

    80 YEAR 2012 Males 51 Females 29 YEAR 2012 SES 1 EJEK 22 EN 04 21 NN (Engineering) 14 NQ (ProfTechAdmin) 21 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American...

  13. YEAR

    National Nuclear Security Administration (NNSA)

    1 YEAR 2012 Males 30 Females 11 YEAR 2012 SES 1 EN 05 1 EN 04 11 NN (Engineering) 9 NQ (ProfTechAdmin) 17 NU (TechAdmin Support) 2 YEAR 2012 American Indian Male 0 American...

  14. YEAR

    National Nuclear Security Administration (NNSA)

    96 YEAR 2013 Males 69 Females 27 YEAR 2013 SES 1 EJEK 9 EN 04 27 NN (Engineering) 26 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska Native Male...

  15. YEAR

    National Nuclear Security Administration (NNSA)

    31 YEAR 2012 Males 19 Females 12 YEAR 2012 SES 2 EN 04 4 NN (Engineering) 12 NQ (ProfTechAdmin) 12 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 0 American Indian...

  16. YEAR

    National Nuclear Security Administration (NNSA)

    0 YEAR 2013 Males 48 Females 32 YEAR 2013 SES 2 EJEK 7 EN 04 11 EN 03 1 NN (Engineering) 23 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 3 YEAR 2013 American Indian Alaska...

  17. YEAR

    National Nuclear Security Administration (NNSA)

    40 YEAR 2011 Males 68 Females 72 YEAR 2011 SES 5 EJEK 1 NN (Engineering) 16 NQ (ProfTechAdmin) 115 NU (TechAdmin Support) 3 YEAR 2011 American Indian Male 1 American Indian...

  18. YEAR

    National Nuclear Security Administration (NNSA)

    00 YEAR 2012 Males 48 Females 52 YEAR 2012 SES 5 EJEK 1 NN (Engineering) 11 NQ (ProfTechAdmin) 80 NU (TechAdmin Support) 3 YEAR 2012 American Indian Male 0 American Indian...

  19. YEAR

    National Nuclear Security Administration (NNSA)

    137 YEAR 2013 Males 90 Females 47 YEAR 2013 SES 2 SL 1 EJEK 30 EN 04 30 EN 03 2 NN (Engineering) 23 NQ (ProfTechAdmin) 45 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  20. YEAR

    National Nuclear Security Administration (NNSA)

    of Employees 14 GENDER YEAR 2012 Males 9 Females 5 YEAR 2012 SES 2 EJEK 2 NN (Engineering) 4 NQ (ProfTechAdmin) 6 YEAR 2012 American Indian Male 0 American Indian Female 0...

  1. YEAR

    National Nuclear Security Administration (NNSA)

    3 YEAR 2012 Males 21 Females 22 YEAR 2012 SES 3 EJEK 1 EN 03 1 NN (Engineering) 3 NQ (ProfTechAdmin) 30 NU (TechAdmin Support) 5 YEAR 2012 American Indian Male 0 American...

  2. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration (MYRDD) Plan - Preface and Document Revision History

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preface Multi-Year Research, Development, and Demonstration Plan Page i Preface The Fuel Cell Technologies Program Multi-Year Research, Development, and Demonstration Plan (MYRD&D Plan) describes the goals, objectives, technical targets, tasks, and schedules for all activities within the Fuel Cell Technologies Program (FCT Program), which is part of U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE). The Fuel Cell Technologies Program (FCT Program) is

  3. YEAR

    National Nuclear Security Administration (NNSA)

    Males 139 Females 88 YEAR 2012 SES 13 EX 1 EJEK 8 EN 05 23 EN 04 20 EN 03 2 NN (Engineering) 91 NQ (ProfTechAdmin) 62 NU (TechAdmin Support) 7 YEAR 2012 American Indian...

  4. YEAR

    National Nuclear Security Administration (NNSA)

    563 YEAR 2012 Males 518 Females 45 YEAR 2012 SES 1 EJEK 2 EN 04 1 EN 03 1 NN (Engineering) 12 NQ (ProfTechAdmin) 209 NU (TechAdmin Support) 2 NV (Nuc Mat Courier) 335 YEAR 2012...

  5. YEAR

    National Nuclear Security Administration (NNSA)

    7 YEAR 2012 Males 64 Females 33 YEAR 2012 SES 2 EJEK 3 EN 05 1 EN 04 30 EN 03 1 NN (Engineering) 26 NQ (ProfTechAdmin) 32 NU (TechAdmin Support) 2 YEAR 2012 American Indian...

  6. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2012 Males 37 Females 7 YEAR 2012 SES 1 EJEK 6 EN 05 5 EN 04 7 EN 03 1 NN (Engineering) 17 NQ (ProfTechAdmin) 6 NU (TechAdmin Support) 1 YEAR 2012 American Indian Male 2...

  7. YEAR

    National Nuclear Security Administration (NNSA)

    7 YEAR 2011 Males 38 Females 9 YEAR 2011 SES 1 EJEK 6 EN 05 5 EN 04 7 EN 03 1 NN (Engineering) 19 NQ (ProfTechAdmin) 7 NU (TechAdmin Support) 1 YEAR 2011 American Indian Male 2...

  8. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2013 Males 62 Females 26 YEAR 2013 SES 1 EJEK 3 EN 05 1 EN 04 28 EN 03 1 NN (Engineering) 25 NQ (ProfTechAdmin) 27 NU (TechAdmin Support) 2 YEAR 2013 American Indian...

  9. YEAR

    National Nuclear Security Administration (NNSA)

    6 YEAR 2012 Males 64 Females 32 YEAR 2012 SES 1 EJEK 5 EN 05 3 EN 04 23 EN 03 9 NN (Engineering) 18 NQ (ProfTechAdmin) 33 NU (TechAdmin Support) 4 YEAR 2012 American Indian...

  10. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2013 Males 58 Females 27 YEAR 2013 SES 1 EJEK 4 EN 05 3 EN 04 21 EN 03 8 NN (Engineering) 16 NQ (ProfTechAdmin) 28 NU (TechAdmin Support) 4 YEAR 2013 American Indian...

  11. YEAR

    National Nuclear Security Administration (NNSA)

    78 YEAR 2012 Males 57 Females 21 YEAR 2012 SES 2 SL 1 EJEK 12 EN 04 21 EN 03 2 NN (Engineering) 12 NQ (ProfTechAdmin) 24 NU (TechAdmin Support) 4 YEAR 2012 American Indian Male...

  12. Vehicle technologies program Government Performance and Results Act (GPA) report for fiscal year 2012

    SciTech Connect (OSTI)

    Ward, J.; Stephens, T. S.; Birky, A. K.

    2012-08-10

    The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy has defined milestones for its Vehicle Technologies Program (VTP). This report provides estimates of the benefits that would accrue from achieving these milestones relative to a base case that represents a future in which there is no VTP-supported vehicle technology development. Improvements in the fuel economy and reductions in the cost of light- and heavy-duty vehicles were estimated by using Argonne National Laboratory's Autonomie powertrain simulation software and doing some additional analysis. Argonne also estimated the fraction of the fuel economy improvements that were attributable to VTP-supported development in four 'subsystem' technology areas: batteries and electric drives, advanced combustion engines, fuels and lubricants, and materials (i.e., reducing vehicle mass, called 'lightweighting'). Oak Ridge National Laboratory's MA{sup 3}T (Market Acceptance of Advanced Automotive Technologies) tool was used to project the market penetration of light-duty vehicles, and TA Engineering's TRUCK tool was used to project the penetrations of medium- and heavy-duty trucks. Argonne's VISION transportation energy accounting model was used to estimate total fuel savings, reductions in primary energy consumption, and reductions in greenhouse gas emissions that would result from achieving VTP milestones. These projections indicate that by 2030, the on-road fuel economy of both light- and heavy-duty vehicles would improve by more than 20%, and that this positive impact would be accompanied by a reduction in oil consumption of nearly 2 million barrels per day and a reduction in greenhouse gas emissions of more than 300 million metric tons of CO{sub 2} equivalent per year. These benefits would have a significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.

  13. Office of Science and Technology&International Year EndReport - 2005

    SciTech Connect (OSTI)

    Bodvarsson, G.S.

    2005-10-27

    Source Term, Materials Performance, Radionuclide Getters, Natural Barriers, and Advanced Technologies, a brief introduction in each section describes the overall organization and goals of each program area. All of these areas have great potential for improving our understanding of the safety performance of the proposed Yucca Mountain repository, as processes within these areas are generally very conservatively represented in the Total System Performance Assessment. In addition, some of the technology thrust areas in particular may enhance system efficiency and reduce risk to workers. Thus, rather modest effort in the S&T Program could lead to large savings in the lifetime repository total cost and significantly enhanced understanding of the behavior of the proposed Yucca Mountain repository, without safety being compromised, and in some instances being enhanced. An overall strength of the S&T Program is the significant amount of integration that has already been achieved after two years of research. As an example (illustrated in Figure 1), our understanding of the behavior of the total waste isolation system has been enhanced through integration of the Source Term, Materials Performance, and Natural Barriers Thrust areas. All three thrust areas contribute to the integration of different processes in the in-drift environment. These processes include seepage into the drift, dust accumulation on the waste package, brine formation and precipitation on the waste package, mass transfer through the fuel cladding, changes in the seepage-water chemical composition, and transport of released radionuclides through the invert and natural barriers. During FY2005, each of our program areas assembled a team of external experts to conduct an independent review of their respective projects, research directions, and emphasis. In addition, the S&T Program as a whole was independently reviewed by the S&T Programmatic Evaluation Panel. As a result of these reviews, adjustments to the S&T Program will be implemented in FY2006 to ensure that the Program is properly aligned with OCRWM's priorities. Also during FY2005, several programmatic documents were published, including the Science and Technology Program Strategic Plan, the Science and Technology Program Management Plan, and the Science and Technology Program Plan. These and other communication products are available on the OCRWM web site under the Science and Technology section (http://www.ocrwm.doe.gov/osti/index.shtml).

  14. YEAR

    National Nuclear Security Administration (NNSA)

    2012 Males 149 Females 115 YEAR 2012 SES 17 EX 1 EJEK 7 EN 05 2 EN 04 9 EN 03 2 NN (Engineering) 56 NQ (ProfTechAdmin) 165 NU (TechAdmin Support) 4 GS 13 1 YEAR 2012 American...

  15. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2014 Males 61 Females 24 PAY PLAN YEAR 2014 SES 1 EJ/EK 8 EN 04 22 NN (Engineering) 23 NQ (Prof/Tech/Admin) 28 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 3 African American Male (AA M) 0 African American Female (AA F) 0 Asian American Pacific Islander Male (AAPI M) 3 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 13 Hispanic Female (H F) 10 White Male (W M) 43 White Female (W F) 11

  16. YEAR

    National Nuclear Security Administration (NNSA)

    2 YEAR 2014 Males 57 Females 25 PAY PLAN YEAR 2014 SES 3 EJ/EK 4 EN 04 2 NN (Engineering) 20 NQ (Prof/Tech/Admin) 53 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 9 African American Female (AA F) 9 Asian American Pacific Islander Male (AAPI M) 2 Asian American Pacific Islander Female (AAPI F) 1 Hispanic Male (H M) 3 Hispanic Female (H F) 5 White Male (W M) 43 White Female (W F) 10 DIVERSITY TOTAL WORKFORCE

  17. YEAR

    National Nuclear Security Administration (NNSA)

    93 YEAR 2014 Males 50 Females 43 PAY PLAN YEAR 2014 EJ/EK 3 NN (Engineering) 13 NQ (Prof/Tech/Admin) 74 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 5 African American Female (AA F) 6 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 6 Hispanic Female (H F) 14 White Male (W M) 39 White Female (W F) 21 DIVERSITY

  18. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2014 Males 11 Females 2 PAY PLAN YEAR 2014 SES 2 EJ/EK 1 EN 04 1 NN (Engineering) 5 NQ (Prof/Tech/Admin) 4 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 0 African American Female (AA F) 0 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 10 White Female (W F) 2 DIVERSITY TOTAL WORKFORCE GENDER

  19. YEAR

    National Nuclear Security Administration (NNSA)

    9 YEAR 2014 Males 9 Females 10 YEAR 2014 SES 7 ED 1 EJ/EK 1 EN 05 1 NQ (Prof/Tech/Admin) 8 NU (Tech/Admin Support) 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 1 African American Female (AA F) 5 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 3 White Male (W M) 7 White Female (W F) 1 PAY PLAN DIVERSITY TOTAL

  20. YEAR

    National Nuclear Security Administration (NNSA)

    5 YEAR 2014 Males 92 Females 43 YEAR 2014 SES 8 EX 1 EJ/EK 4 EN 05 9 EN 04 12 EN 03 2 NN (Engineering) 57 NQ (Prof/Tech/Admin) 42 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 9 African American Female (AA F) 11 Asian American Pacific Islander Male (AAPI M) 4 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 12 Hispanic Female (H F) 7 White Male (W M) 66 White Female (W F) 22 PAY PLAN

  1. YEAR

    National Nuclear Security Administration (NNSA)

    563 YEAR 2014 Males 517 Females 46 PAY PLAN YEAR 2014 SES 2 EJ/EK 2 EN 04 1 NN (Engineering) 11 NQ (Prof/Tech/Admin) 218 NU (Tech/Admin Support) 2 NV (Nuc Mat Courier) 327 YEAR 2014 American Indian Alaska Native Male (AIAN M) 14 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 18 African American Female (AA F) 1 Asian American Pacific Islander Male (AAPI M) 8 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 76 Hispanic Female (H F) 21 White Male

  2. YEAR

    National Nuclear Security Administration (NNSA)

    89 YEAR 2014 Males 98 Females 91 PAY PLAN YEAR 2014 SES 14 EX 1 EJ/EK 3 EN 05 1 EN 04 4 EN 03 1 NN (Engineering) 32 NQ (Prof/Tech/Admin) 130 NU (Tech/Admin Support) 2 GS 15 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 5 African American Female (AA F) 14 Asian American Pacific Islander Male (AAPI M) 3 Asian American Pacific Islander Female (AAPI F) 7 Hispanic Male (H M) 7 Hispanic Female (H F) 10 White Male

  3. YEAR

    National Nuclear Security Administration (NNSA)

    43 YEAR 2014 Males 162 Females 81 PAY PLAN YEAR 2014 SES 26 EJ/EK 3 EN 05 7 NN (Engineering) 77 NQ (Prof/Tech/Admin) 108 NU (Tech/Admin Support) 22 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 5 African American Female (AA F) 9 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 2 Hispanic Female (H F) 0 White Male (W M) 154 White Female (W F)

  4. YEAR

    National Nuclear Security Administration (NNSA)

    74 YEAR 2014 Males 96 Females 78 PAY PLAN YEAR 2014 SES 8 EJ/EK 4 EN 04 11 EN 03 1 NN (Engineering) 34 NQ (Prof/Tech/Admin) 113 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 3 African American Female (AA F) 11 Asian American Pacific Islander Male (AAPI M) 5 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 25 Hispanic Female (H F) 25 White Male (W M) 61 White

  5. YEAR

    National Nuclear Security Administration (NNSA)

    4 YEAR 2014 Males 7 Females 7 PAY PLAN YEAR 2014 SES 1 NQ (Prof/Tech/Admin) 7 GS 15 1 GS 14 2 GS 13 2 GS 10 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 3 African American Female (AA F) 2 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 4 White Female (W F) 5 DIVERSITY TOTAL WORKFORCE GENDER

  6. YEAR

    National Nuclear Security Administration (NNSA)

    16 YEAR 2014 Males 72 Females 144 PAY PLAN YEAR 2014 SES 8 EJ/EK 1 NQ (Prof/Tech/Admin) 198 NU (Tech/Admin Support) 9 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 10 African American Female (AA F) 38 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 3 Hispanic Male (H M) 15 Hispanic Female (H F) 33 White Male (W M) 44 White Female (W F) 68 DIVERSITY TOTAL

  7. YEAR

    National Nuclear Security Administration (NNSA)

    26 YEAR 2014 Males 81 Females 45 PAY PLAN YEAR 2014 SES 1 SL 1 EJ/EK 25 EN 04 26 EN 03 2 NN (Engineering) 23 NQ (Prof/Tech/Admin) 44 NU (Tech/Admin Support) 4 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 3 African American Female (AA F) 7 Asian American Pacific Islander Male (AAPI M) 4 Asian American Pacific Islander Female (AAPI F) 1 Hispanic Male (H M) 6 Hispanic Female (H F) 6 White Male (W M) 68 White

  8. YEAR

    National Nuclear Security Administration (NNSA)

    1 YEAR 2014 Males 48 Females 33 PAY PLAN YEAR 2014 SES 1 EJ/EK 8 EN 04 10 EN 03 1 NN (Engineering) 27 NQ (Prof/Tech/Admin) 29 NU (Tech/Admin Support) 5 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 3 African American Male (AA M) 0 African American Female (AA F) 2 Asian American Pacific Islander Male (AAPI M) 2 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 12 Hispanic Female (H F) 12 White Male (W M) 34 White Female

  9. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2014 Males 18 Females 10 PAY PLAN YEAR 2014 SES 1 EN 05 1 EN 04 4 NN (Engineering) 12 NQ (Prof/Tech/Admin) 9 NU (Tech/Admin Support) 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 4 African American Female (AA F) 4 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 13 White Female (W F) 5

  10. YEAR

    National Nuclear Security Administration (NNSA)

    8 YEAR 2014 Males 18 Females 20 PAY PLAN YEAR 2014 SES 3 EJ/EK 1 EN 03 1 NN (Engineering) 3 NQ (Prof/Tech/Admin) 28 NU (Tech/Admin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 0 African American Male (AA M) 1 African American Female (AA F) 1 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 1 Hispanic Male (H M) 4 Hispanic Female (H F) 7 White Male (W M) 13 White Female (W F) 11

  11. The Underground Corrosion of Selected Type 300 Stainless Steels After 34 Years

    SciTech Connect (OSTI)

    T. S. Yoder; M. K. Adler Flitton

    2009-03-01

    Recently, interest in long-term underground corrosion has greatly increased because of the ongoing need to dispose of nuclear waste. Additionally, the Nuclear Waste Policy Act of 1982 requires disposal of high-level nuclear waste in an underground repository. Current contaminant release and transport models use limited available short-term underground corrosion rates when considering container and waste form degradation. Consequently, the resulting models oversimplify the complex mechanisms of underground metal corrosion. The complexity of stainless steel corrosion mechanisms and the processes by which corrosion products migrate from their source are not well depicted by a corrosion rate based on general attack. The research presented here is the analysis of austenitic stainless steels after 33 years of burial. In this research, the corrosion specimens were analyzed using applicable ASTM standards as well as microscopic and X-ray examination to determine the mechanisms of underground stainless steel corrosion. As presented, the differences in the corrosion mechanisms vary with the type of stainless steel and the treatment of the samples. The uniqueness of the long sampling time allows for further understanding of the actual stainless steel corrosion mechanisms, and when applied back into predictive models, will assist in reduction of the uncertainty in parameters for predicting long-term fate and transport.

  12. Sub-One Technology | Open Energy Information

    Open Energy Info (EERE)

    with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Science & Technology Partnership Year 2008 Sub-One Technology is a company located in...

  13. YEAR

    National Nuclear Security Administration (NNSA)

    25 Females 10 YEAR 2014 SES 1 EN 04 11 NN (Engineering) 8 NQ (Prof/Tech/Admin) 13 NU (Tech/Admin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 0 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 1 African American Female (AA F) 3 Asian American Pacific Islander Male (AAPI M) 0 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 0 Hispanic Female (H F) 0 White Male (W M) 24 White Female (W F) 6 TOTAL WORKFORCE GENDER Kansas City

  14. YEAR

    National Nuclear Security Administration (NNSA)

    9 Females 24 PAY PLAN YEAR 2014 SES 1 EJ/EK 4 EN 05 3 EN 04 22 EN 03 8 NN (Engineering) 15 NQ (Prof/Tech/Admin) 27 NU (Tech/Admin Support) 3 YEAR 2014 American Indian Alaska Native Male (AIAN M) 2 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 5 African American Female (AA F) 2 Asian American Pacific Islander Male (AAPI M) 21 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 5 Hispanic Female (H F) 3 White Male (W M) 26 White Female (W F) 16

  15. YEAR

    National Nuclear Security Administration (NNSA)

    17 Females 18 PAY PLAN YEAR 2014 SES 1 EJ/EK 3 NQ (Prof/Tech/Admin) 30 NU (Tech/Admin Support) 1 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 2 African American Male (AA M) 3 African American Female (AA F) 7 Asian American Pacific Islander Male (AAPI M) 1 Asian American Pacific Islander Female (AAPI F) 0 Hispanic Male (H M) 2 Hispanic Female (H F) 6 White Male (W M) 10 White Female (W F) 3 DIVERSITY TOTAL WORKFORCE GENDER Associate

  16. YEAR

    National Nuclear Security Administration (NNSA)

    8 Females 25 PAY PLAN YEAR 2014 SES 1 EJ/EK 3 EN 05 1 EN 04 25 EN 03 1 NN (Engineering) 25 NQ (Prof/Tech/Admin) 25 NU (Tech/Admin Support) 2 YEAR 2014 American Indian Alaska Native Male (AIAN M) 1 American Indian Alaskan Native Female (AIAN F) 1 African American Male (AA M) 3 African American Female (AA F) 3 Asian American Pacific Islander Male (AAPI M) 2 Asian American Pacific Islander Female (AAPI F) 2 Hispanic Male (H M) 6 Hispanic Female (H F) 6 White Male (W M) 46 White Female (W F) 13

  17. Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988. Fiscal year 1993 annual report

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988 (Act), commonly referred to as the Metals Initiative, was signed into law on November 17, 1988 (Public Law 100-680). The Act, 15 U.S.C. 5101 et seq., has tile following purposes: (1) to {open_quotes}increase the energy efficiency and enhance the competitiveness of American steel, aluminum, and copper industries{close_quotes}; and (2) to continue the research and development efforts begun under the Department of Energy (DOE) program known as the Steel Initiative. Section 8 of tile Act requires the Secretary of Energy to prepare an annual report to Congress describing the activities carried out under the Act during each fiscal year. 15 U.S.C. 5107 In addition, with respect to reports on fiscal years 1993, 1995, and 1997, Section 8 requires a complete summary of activities under the management plan and research plan from inception with an analysis of extent of their success in accomplishing the purposes of the Act. Id. The Metals Initiative is currently supporting six steel industry research and development projects: (1) Superplastic Steel Processing with Lawrence Livermore National Laboratory; (2) Direct Steelmaking with the American Iron and Steel Institute; (3) Electrochemical Dezincing of Steel Scrap with Argonne National Laboratory and Metal Recovery Industries (U.S.), Inc.; (4) Rapid Analysis of Molten Metals Using Laser Produced Plasmas with Lehigh University; (5) Direct Strip Casting using a single wheel caster with Armco, Inc.; and (6) Advanced Process Control, also with the American Iron and Steel Institute. At the close of the fiscal year, a seventh project, Waste Oxide Recycling with the American Iron and Steel Institute, was selected for inclusion in the Direct Steelmaking project. There are three projects with the aluminum industry. The first, Wettable Cathodes for Alumina Reduction Cells with the Reynolds Metals Company, continues from the prior periods.

  18. YEAR

    National Nuclear Security Administration (NNSA)

    -9.09% YEAR 2012 2013 SES 1 1 0.00% EN 05 1 1 0.00% EN 04 11 11 0.00% NN (Engineering) 8 8 0.00% NQ (ProfTechAdmin) 17 14 -17.65% NU (TechAdmin Support) 2 2...

  19. YEAR

    National Nuclear Security Administration (NNSA)

    Females 863 YEAR 2013 SES 102 EX 3 SL 1 EJEK 89 EN 05 41 EN 04 170 EN 03 18 NN (Engineering) 448 NQ (ProfTechAdmin) 1249 NU (TechAdmin Support) 76 NV (Nuc Mat Courier) 321...

  20. YEAR

    National Nuclear Security Administration (NNSA)

    Females 942 YEAR 2012 SES 108 EX 4 SL 1 EJEK 96 EN 05 45 EN 04 196 EN 03 20 NN (Engineering) 452 NQ (ProfTechAdmin) 1291 NU (TechAdmin Support) 106 NV (Nuc Mat Courier) 335...

  1. YEAR

    National Nuclear Security Administration (NNSA)

    YEAR 2012 2013 SES 2 1 -50.00% EN 05 0 1 100.00% EN 04 4 4 0.00% NN (Engineering) 13 12 -7.69% NQ (ProfTechAdmin) 13 9 -30.77% NU (TechAdmin Support) 1 1...

  2. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.3 Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STORAGE SECTION Multi-Year Research, Development, and Demonstration Plan Page 3.3 - 1 3.3 Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies that can provide energy for an array of applications, including stationary power, portable power, and transportation. Also, hydrogen can be used as a medium to store energy created by intermittent renewable power sources (e.g., wind and solar) during periods of high availability and low

  3. Overview of the Defense Programs Research and Technology Development Program for Fiscal Year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-30

    This documents presents a programmatic overview and program element plan summaries for conceptual design and assessment; physics; computation and modeling; system engineering science and technology; electronics, photonics, sensors, and mechanical components; chemistry and materials; special nuclear materials, tritium, and explosives.

  4. Five-Year Technology Development Strategic Plan Targets EM’s Decommissioning Challenges

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Leaders from EM headquarters and field offices and the UK’s Sellafield nuclear site gathered recently to discuss developing technologies needed to address decommissioning challenges across the Cold War cleanup program.

  5. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Appendices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Appendices 9.0 Appendices 9.1 Fiscal Year 2009 Budget 9.2 Risk Analysis 9.3 Funding Opportunity Announcements 9.4 Barriers, Goals, Objectives, and Tasks Multi-Year Research, Development and Demonstration Plan Page 137 2008 Appendices This page was intentionally left blank. Page 138 Multi-Year Research, Development and Demonstration Plan

  6. Ocean Energy Program Overview, Fiscal years 1990--1991. Programs in utility technologies

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The oceans are the world`s largest solar energy collector and storage system. Covering 71% of the earth`s surface, the oceans collect and store this energy as waves, currents, and thermal and salinity gradients. The purpose of the US Department of Energy`s (DOE) Ocean Energy Program is to develop techniques that harness ocean energy cost effectively and in ways that do not harm the environment. The program seeks to develop ocean energy technology to a point at which industry can accurately assess whether the applications of the technology are viable energy conversion alternatives, or supplements to current power-generating systems. In past studies, DOE identified ocean thermal energy conversion (OTEC), which uses the temperature difference between warm surface water and cold deep water, as the most promising of the ocean energy technologies. As a result, the Ocean Energy Program has concentrated research that advances OTEC technology. The program also monitored developments in wave energy, ocean current, and salinity gradient concepts. It is not actively developing these technologies now. The mission of the Ocean Energy Program is to develop techniques to harness the vast solar energy stored in the oceans` waves, currents, and thermal and salinity gradients.

  7. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2001

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-10-01

    No significant environmental problems were identified at the National Energy Technology Laboratory (NETL) sites in Morgantown (MGN), Pittsburgh (PGH), Tulsa (NPTO) and Fairbanks (AEO) during 2001. No radionuclides were released from the sites during 2001. The sites maintain two major environmental programs: waste management, and environmental media and release management. These two programs encompass waste handling, storage, and disposal, waste minimization and pollution prevention, air quality emissions, surface-water discharges, groundwater impacts, industrial wastewater discharges, and spill control procedures. The Morgantown and Pittsburgh sites currently maintain complete monitoring programs for groundwater, stormwater discharge, laboratory wastewater discharge, and meteorological data. In addition, an annual air emissions inventory is prepared. A comprehensive Directives Program aimed at managing environmental, safety, health requirements, and risks was initiated in 1997, continued through subsequent years, and will be completed in 2003. The primary objective of the program is to identify and implement standards that will protect the health and safety of workers, public, and the environment. This program started with a careful and thorough analysis of risks confronting workers and the communities surrounding NETL sites. Following this analysis, requirements and best management practices were evaluated to determine how requirements could best be used to advance the mission of NETL. Teams of subject-matter experts analyzed the work assigned to determine potential hazards and identify ways to remove or control those hazards. In 2001, NETL developed or revised a series of directives in two major areas: safety analysis and review (SAR) processes, and integrated safety management (ISM) directives. SAR directives were issued for research and development (R&D) operations, support operations, and facilities. ISM directives were released on management processes, such as standards maintenance, performance measures, assessments, corrective actions, lessons-learned, and training. In conjunction with the Directives Program, the use of the voluntary environmental management system, ISO 14001, was evaluated. This includes the only international environmental management standard to which an entity can be certified. NETL is using the specifications and guidance from this standard to identify an effective environmental management system for the NETL sites. An outside consultant performed an environmental management system assessment (also referred to as an initial environmental review), as referenced in ISO 14004. The objective of the assessment was to determine the degree to which NETL's existing integrated safety management system (ISMS), safety analysis review system (SARS), and environmental management programs conformed with the ISO14001 Environmental Management System (EMS) standard and the United States Environmental Protection Agency's (EPA) Code of Environmental Management Principles. A performance measurement system continued to be maintained during 2001 to assist in evaluating how effectively activities at NETL meet mission-critical goals and how well missions and strategies are connected in the DOE strategic plan. This system also provides data to assist in gauging performance against the DOE critical success factors, that is, performance against technical objectives. Various environmental milestones can be tracked to completion, thus giving NETL measures by which to gauge the sites' goals of remaining in regulatory compliance and achieving best-in-class environmental performance.

  8. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan

    SciTech Connect (OSTI)

    none,

    2009-02-01

    This 2008 Multi-Year Research, Development, and Demonstration Program Plan covers the 2009-2015 period with program activities to 2025.

  9. Table 2.6 Household End Uses: Fuel Types, Appliances, and Electronics, Selected Years, 1978-2009

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Household End Uses: Fuel Types, Appliances, and Electronics, Selected Years, 1978-2009 Appliance Year Change 1978 1979 1980 1981 1982 1984 1987 1990 1993 1997 2001 2005 2009 1980 to 2009 Total Households (millions) 77 78 82 83 84 86 91 94 97 101 107 111 114 32 Percent of Households<//td> Space Heating - Main Fuel 1 Natural Gas 55 55 55 56 57 55 55 55 53 52 55 52 50 -5 Electricity 2 16 17 18 17 16 17 20 23 26 29 29 30 35 17 Liquefied Petroleum Gases 4 5 5 4 5 5 5 5 5 5 5 5 5 0 Distillate

  10. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Technical Plan 4.0 Technical Plan The technical approach addresses the barriers to deployment of Enhanced Geothermal Systems. The technical plan describes two strategic areas of focus which will be implemented concurrently improve geothermal technology and accelerate EGS commercialization: 1. Research and Development; and 2. Enhanced Geothermal Systems Validation. Section 4.0 Table of Contents 4.0 Technical Plan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  11. Breakthrough Berkeley Mist Sealant Technology: Potential to Save Americans $5B Per Year

    Broader source: Energy.gov [DOE]

    Air duct system leaks cost Americans $5 billion every year. A simple mist now on the market -- developed by Berkeley Lab -- can seal thousands of leaks in 4 to 8 hours, saving a home owner on average $600 to $850 a year.

  12. DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Fuel Cell Technologies Office Record Record #: 13010 Date: June 11, 2013 Title: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost Originators: Scott McWhorter and Grace Ordaz Approved by: Sunita Satyapal Date: July 17, 2013 Item: This record summarizes the current status of the projected capacities and manufacturing costs of Type IV, 350- and 700-bar compressed hydrogen storage systems, storing 5.6 kg of usable hydrogen, for onboard light-duty automotive

  13. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Introduction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2008 Introduction 1.0 Introduction Prior to the research efforts of the U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP), no commercial geothermal power from the predominant liquid-dominated hydrothermal resources was generated in the United States. Today, the United States is the world leader in online capacity of geothermal energy and electric power generation. According to 2005 state energy data, geothermal energy provided 16,010 GWh of electricity, with a total installed

  14. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.9 Market Transformation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MARKET TRANSFORMATION SECTION Multi-Year Research, Development, and Demonstration Plan Page 3.9 - 1 3.9 Market Transformation The Market Transformation sub-program is conducting activities to help implement and promote commercial and pre-commercial hydrogen and fuel cell systems in real world operating environments. These activities also provide feedback to research programs, U.S. industry manufacturers, and potential technology users. Currently, the capital and installation costs of early

  15. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 4.0 Systems Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ANALYSIS SECTION Multi-Year Research, Development, and Demonstration Plan Page 4.0 - 1 4.0 Systems Analysis The Fuel Cell Technologies Office (The Office) conducts a coordinated, comprehensive effort in modeling and analysis to clarify where hydrogen and fuel cells can be most effective from an economic, environmental, and energy security standpoint, as well as to guide RD&D priorities and set program goals. These activities support the Office's decision-making process by evaluating

  16. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration (MYRDD) Plan - Appendix A: Budgetary Information

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A - Budgetary Information Multi-Year Research, Development and Demonstration Plan Page A - 1 Appendix A -Budgetary Information The schedule for completing the milestones and achieving the targets and RD&D priorities outlined in this plan is based on expected funding levels, the current stage of development of different technologies, and the perceived difficulty in attaining the targets. Deviation from the expected funding levels may alter the schedule for completion of the tasks and

  17. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.8 Education and Outreach

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education and Outreach Multi-Year Research, Development and Demonstration Plan Page 3.8 - 1 3.8 Education and Outreach Expanding the role of hydrogen and fuel cell technologies as an integral part of the Nation's energy portfolio requires sustained education and outreach efforts. Increased efforts are required to facilitate near-term demonstration projects and early market fuel cell and hydrogen infrastructure installations, to increase public awareness and understanding, and to lower barriers

  18. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 6.0 Program Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Management Multi-Year Research, Development and Demonstration Plan Page 6 - 1 6.0 Program Management and Operations The U.S. Department of Energy's (DOE's) Hydrogen and Fuel Cells Program (the Program) is composed of activities within the Offices of Energy Efficiency and Renewable Energy (EERE); Fossil Energy (FE); Nuclear Energy (NE); and Science (SC). EERE's Fuel Cell Technologies Program (FCT Program) represents the major component of this effort. The FCT Program Manager manages the

  19. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - 3.4 Fuel Cells

    Energy Savers [EERE]

    2 Technical Plan - Fuel Cells Multi-Year Research, Development and Demonstration Plan Page 3.4 - 1 3.4 Fuel Cells Fuel cells offer a highly efficient way to use diverse energy sources and, as a result, have demonstrated lower energy use and emissions when compared with conventional technologies. They also can be powered by emissions-free fuels that are produced from clean, domestic resources, helping to reduce the nation's dependence on imported petroleum. The largest markets for fuel cells

  20. Development of a National Center for Hydrogen Technology. A Summary Report of Activities Completed at the National Center for Hydrogen Technology - Year 6

    SciTech Connect (OSTI)

    Holmes, Michael

    2012-08-01

    The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology (NCHT) since 2005 under a Cooperative Agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research on hydrogen generation and utilization topics. Since the NCHT's inception, the EERC has received more than $65 million in funding for hydrogen-related projects ($24 million for projects in the NCHT, which includes federal and corporate partner development funds) involving more than 85 partners (27 with the NCHT). The NCHT Program's nine activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan that refers to realistic testing of technologies at adequate scale, process intensification, and contaminant control. A number of projects have been completed that range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in Year 6 of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

  1. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2002

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2003-10-30

    This Site Environmental Report was prepared by the Environmental, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at NETL sites in Morgantown (MGN), West Virginia, Pittsburgh (PGH), Pennsylvania, Tulsa, Oklahoma, and Fairbanks, Alaska. This report contains the most accurate information that could be collected during the period between January 1, 2002, and December 31, 2002. As stated in DOE Orders 450.1 and 231.1, the purpose of the report is to: (1) Characterize site environmental management performance. (2) Confirm compliance with environmental standards and requirements. (3) Highlight significant facility programs and efforts.

  2. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2000

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-11-27

    This Site Environmental Report was prepared by the Environment, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at the NETL sites in Morgantown, West Virginia, and Pittsburgh, Pennsylvania. This report contains the most accurate information that could be collected during the period between January 1, 2000, through December 31, 2000. As stated in DOE Orders 5400.1 and 231.1, the purpose of the report is to: Characterize site environmental management performance; Confirm compliance with environmental standards and requirements and Highlight significant facility programs and efforts.

  3. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Appendix E: Acronyms

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    E - Acronyms Multi-Year Research, Development and Demonstration Plan Page E - 1 Appendix E - Acronyms AEI Advanced Energy Initiative AEO Annual Energy Outlook AFC Alkaline Fuel Cell AHJ Authorities Having Jurisdiction AMFC Alkaline Membrane Fuel Cells AMR Annual Merit Review ANL (DOE) Argonne National Laboratory APU Auxiliary Power Unit ARRA American Recovery and Reinvestment Act of 2009 ASES American Solar Energy Society ASME American Society of Mechanical Engineers AST Accelerated Stress Test

  4. Appendices A-D, Bioenergy Technologies Office Multi-Year Program Plan, March 2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A: Technical Projection Tables A-1 Last revised: March 2015 Appendix A: Technical Projection Tables Table A-1: Biomass Volume and Price Projections through 2030 (Minus Allocations for Losses, Chemicals, and Pellets) at an Estimated $80/Dry Ton Delivered Feedstock Cost** Feedstock Category Feedstock Resource Feedstock Available for Cellulosic Fuel Production (MM Dry Tons/Year) SOT Projection 2013 2014 2015 2016 2017 2018 2022 2030 Agricultural Residues Corn Stover 70.7 83.2 106.7 131.8 138.1

  5. Current status and perspective of advanced loop type fast reactor in fast reactor cycle technology development project

    SciTech Connect (OSTI)

    Niwa, Hajime; Aoto, Kazumi; Morishita, Masaki

    2007-07-01

    After selecting the combination of the sodium-cooled fast reactor (SFR) with oxide fuel, the advanced aqueous reprocessing and the simplified pelletizing fuel fabrication as the most promising concept of FR cycle system, 'Feasibility Study on Commercialized Fast Reactor Cycle Systems' was finalized in 2006. Instead, a new project, Fast Reactor Cycle Technology Development Project (FaCT Project) was launched in Japan focusing on development of the selected concepts. This paper describes the current status and perspective of the advanced loop type SFR system in the FaCT Project, especially on the design requirements, current design as well as the related innovative technologies together with the development road-map. Some considerations on advantages of the advanced loop type design are also described. (authors)

  6. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  7. technology

    National Nuclear Security Administration (NNSA)

    1%2A en ICF Reports http:nnsa.energy.govaboutusourprogramsdefenseprogramsstockpilestewardshipinertialconfinementfusionicfreports

    type-text...

  8. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.2 Hydrogen Delivery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brayton cycle, and a Joule-Thompson cycle) and are energy intensive, consuming energy in amounts corresponding to ~⅓ of the energy in the hydrogen. 2015 DELIVERY SECTION Multi-Year Research, Development, and Demonstration Plan Page 3.2 - 7 Table 3.2.1 Hydrogen Delivery Infrastructure Components Delivery Component Current Status Gas cooling systems 70-MPa (700-bar) dispensing of gaseous H 2 into Type IV tanks at a fill rate of 1.6 kg/min currently requires pre-cooling of the gas to overcome

  9. Award Types

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards Team (505) 667-7824 Email Types of Awards The Awards Office, sponsored by the Technology Transfer Division and the Science and Technology Base Program Office, coordinates...

  10. technology

    National Nuclear Security Administration (NNSA)

    1%2A en ICF Reports http:www.nnsa.energy.govaboutusourprogramsdefenseprogramsstockpilestewardshipinertialconfinementfusionicfreports

    type-text...

  11. DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed Hydrogen Storage Systems—Current Performance and Cost

    Broader source: Energy.gov [DOE]

    This record summarizes the current status of the projected capacities and manufacturing costs of Type IV, 350- and 700-bar compressed hydrogen storage systems, storing 5.6 kg of usable hydrogen, for onboard light-duty automotive applications when manufactured at a volume of 500,000 units per year, and presents the current projected performance and cost of these systems against the DOE hydrogen storage system targets.

  12. Test Plan for Lockheed Idaho Technologies Company (LITCO), ARROW-PAK Packaging, Docket 95-40-7A, Type A Container

    SciTech Connect (OSTI)

    Kelly, D.L.

    1995-10-23

    This report documents the U.S. Department of Transportation Specification 7A Type A (DOT-7A) compliance testing to be followed for qualification of the Lockheed Idaho Technologies Company, ARROW-PAK, for use as a Type A Packaging. The packaging configuration being tested is intended for transportation of radioactive solids, Form No. 1, Form No. 2, and Form No. 3.

  13. Development of a Kelp-type Structure Module in a Coastal Ocean Model to Assess the Hydrodynamic Impact of Seawater Uranium Extraction Technology

    SciTech Connect (OSTI)

    Wang, Taiping; Khangaonkar, Tarang; Long, Wen; Gill, Gary A.

    2014-02-07

    In recent years, with the rapid growth of global energy demand, the interest in extracting uranium from seawater for nuclear energy has been renewed. While extracting seawater uranium is not yet commercially viable, it serves as a backstop to the conventional uranium resources and provides an essentially unlimited supply of uranium resource. With recent advances in seawater uranium extraction technology, extracting uranium from seawater could be economically feasible when the extraction devices are deployed at a large scale (e.g., several hundred km2). There is concern however that the large scale deployment of adsorbent farms could result in potential impacts to the hydrodynamic flow field in an oceanic setting. In this study, a kelp-type structure module was incorporated into a coastal ocean model to simulate the blockage effect of uranium extraction devices on the flow field. The module was quantitatively validated against laboratory flume experiments for both velocity and turbulence profiles. The model-data comparison showed an overall good agreement and validated the approach of applying the model to assess the potential hydrodynamic impact of uranium extraction devices or other underwater structures in coastal oceans.

  14. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration (MYRDD) Plan - Section 3.0: Technical Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Page 3 - 1 2012 Technical Plan 3.0 Technical Plan This section of the Plan provides a detailed outline of the various activities occurring within the technical sub-programs of the Fuel Cells Technologies Program (FCT Program). The technical sub- programs of the FCT Program are as follows: 3.1 Hydrogen Production 3.2 Hydrogen Delivery 3.3 Hydrogen Storage 3.4 Fuel Cells 3.5 Manufacturing R&D 3.6 Technology Validation 3.7 Hydrogen Safety, Codes and Standards 3.8 Education and Outreach 3.9

  15. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration (MYRDD) Plan - Section 1.0: Introduction

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction Multi-Year Research, Development and Demonstration Plan Page 1 - 1 Multi-Year Research, Development and Demonstration Plan Page 1 - 1 1.0 Introduction The U. S. Department of Energy's (DOE's or the Department's) hydrogen and fuel cell efforts are part of a broad portfolio of activities to build a competitive and sustainable clean energy economy to secure the nation's energy future. Reducing greenhouse gas emissions 80 percent by 2050 1 and eliminating dependence on imported fuel

  16. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SAFETY, CODES AND STANDARDS SECTION Multi-Year Research, Development, and Demonstration Plan Page 3.7 - 1 3.7 Hydrogen Safety, Codes and Standards The United States and many other countries have established laws and regulations that require commercial products and infrastructure to meet all applicable codes and standards to demonstrate that they are safe, perform as designed and are compatible with the systems in which they are used. Hydrogen and fuel cell technologies have a history of safe use

  17. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.2 Hydrogen Delivery

    Energy Savers [EERE]

    DELIVERY SECTION Multi-Year Research, Development, and Demonstration Plan Page 3.2 - 1 3.2 Hydrogen Delivery Delivery is an essential component of any future hydrogen infrastructure. It encompasses those processes needed to transport hydrogen from a central or semi-central production facility to the final point of use and those required to load the energy carrier directly onto a given fuel cell system. Successful commercialization of hydrogen- fueled fuel cell systems, including those used in

  18. Geothermal innovative technologies catalog

    SciTech Connect (OSTI)

    Kenkeremath, D.

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  19. Technology Partnering

    Energy Savers [EERE]

    on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2009-2013 Report to Congress May 2015 United States Department of Energy Washington, DC 20585 Message from the Secretary The Report on Technology Transfer and Related Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2009-2013 is prepared in accordance with the requirements of the Technology Transfer and Commercialization Act of

  20. Fiscal Year 2008 Phased Construction Completion Report for EU Z2-33 in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Bechtel Jacobs

    2008-09-11

    The Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2161&D2) (Zone 2 ROD) acknowledged that most of the 800 acres in Zone 2 were contaminated, but that sufficient data to confirm the levels of contamination were lacking. The Zone 2 ROD further specified that a sampling strategy for filling the data gaps would be developed. The Remedial Design Report/Remedial Action Work Plan for Zone 2 Soils, Slabs, and Subsurface Structures, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2224&D3) (Zone 2 RDR/RAWP) defined the sampling strategy as the Dynamic Verification Strategy (DVS), generally following the approach used for characterization of the Zone 1 exposure units (EUs). The Zone 2 ROD divided the Zone 2 area into seven geographic areas and 44 EUs. To facilitate the data quality objectives (DQOs) of the DVS process, the Zone 2 RDR/RAWP regrouped the 44 EUs into 12 DQO scoping EU groups. These groups facilitated the DQO process by placing similar facilities and their support facilities together and allowing identification of data gaps. The EU groups were no longer pertinent after DQO planning was completed and characterization was conducted as areas became accessible. As the opportunity to complete characterization became available, the planned DVS program and remedial actions (RAs) were completed for EU Z2-33. Remedial action was also performed at two additional areas in adjacent EU Z2-42 because of their close proximity and similar nature to a small surface soil RA in EU Z2-33. Remedial actions for building slabs performed in EU Z2-33 during fiscal year (FY) 2007 were reported in the Fiscal Year 2007 Phased Construction Completion Report for the Zone 2 Soils, Slabs, and Subsurface Structures at East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2723&D1). Recommended RAs for EU Z2-42 were described in the Fiscal Year 2006 Phased Construction Completion Report for the Zone 2 Soils, Slabs, and Subsurface Structures at East Tennessee Technology Park, Oak Ridge, Tennessee (DOE/OR/01-2317&D2). Remedial actions performed in the Balance of Site (BOS) Laboratory Area of EU Z2-33 and two small areas in EU Z2-42 are described in Sects. 5 through 10 of this Phased Construction Completion Report (PCCR). The purpose of this PCCR is to address the following: (1) Document DVS characterization results for EU Z2-33; (2) Describe and document the risk evaluation and determine if the EU meets the Zone 2 ROD requirements for unrestricted industrial use to 10 ft bgs; (3) Identify additional areas not defined in the Zone 2 ROD that require remediation based on the DVS evaluation results; and (4) Describe RAs performed in the EU Z2-33 BOS Laboratory Area and two small areas in EU Z2-42. Approximately 18 acres in EU Z2-33 are addressed in this PCCR. Based on the results of the DVS evaluation and RAs performed, all 18 acres are recommended for unrestricted industrial use to 10 ft bgs. Three Federal Facility Agreement sites are addressed and recommended for no further action within this acreage, including: (1) K-1004-L Recirculating Cooling Water Lines Leak Sites; (2) K-1044 Heavy Equipment Repair Shop; and (3) K-1015-A Laundry Pit. Remedial actions for EU Z2-33 were developed in response to DVS characterization results described in the EU Z2-33 Technical Memorandum (Appendix A) and to support reindustrialization of the East Tennessee Technology Park as a commercial industrial park. Remediation criteria were designed for the protection of a future industrial worker who normally would not have the potential for exposure to soil below 10ft bgs. Accordingly, the Zone 2 ROD required land use controls to prevent disturbance of soils below 10 ft deep and to restrict future land use to industrial/commercial activities. In response to stakeholder comments, the U.S. Department of Energy agreed to re-evaluate the need for such land use restrictions. This document includes a screening evaluation to determine the likelihood of land use controls in EU Z2-33 being modified to: (1) eliminate the restriction on disturbance of soils below 10 ft bgs where data indicate the absence of residual contamination at any depth that would result in an unacceptable risk to the future industrial worker, and (2) permit alternative land uses that would be protective of future site occupants. Results of this screening evaluation indicate a low probability that restrictions on disturbing soil below 10 ft bgs could be safely eliminated for EU Z2-33. A qualitative screening evaluation considered the likelihood of unrestricted land use being protective of future site occupants. Based on this qualitative assessment, all 18 acres addressed in this PCCR were assigned a low probability for consideration of release for unrestricted land use.

  1. Fiscal Year 2007 Phased Construction Completion Report for the Zone 2 Soils, Slabs, and Subsurface Structures at East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    RSI

    2008-03-01

    The purpose of this Phased Construction Completion Report (PCCR) is to present the fiscal year (FY) 2007 results of characterization activities and recommended remedial actions (RAs) for 11 exposure units (EUs) in Zone 2 (Z2-01, Z2-03, Z2-08, Z2-23, Z2-24, Z2-28, Z2-34, Z2-37, Z2-41, Z2-43, and Z2-44) at the East Tennessee Technology Park (ETTP), which is located in the northwest corner of the U.S. Department of Energy (DOE) Oak Ridge Reservation in Oak Ridge, Tennessee (Fig. 1). ETTP encompasses a total land area of approximately 5000 acres that has been subdivided into three zones--Zone 1 ({approx}1400 acres), Zone 2 ({approx}800 acres), and the Boundary Area ({approx}2800 acres). Zone 2, which encompasses the highly industrialized portion of ETTP shown in Fig. 1, consists of all formerly secured areas of the facility, including the large processing buildings and direct support facilities; experimental laboratories and chemical and materials handling facilities; materials storage and waste disposal facilities; secure document records libraries; and shipping and receiving warehouses. The Zone 2 Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2005) (Zone 2 ROD) specifies the future end use for Zone 2 acreage as uncontrolled industrial for the upper 10 ft of soils. Characterization activities in these areas were conducted in compliance with the Zone 2 ROD and the Dynamic Verification Strategy (DVS) and data quality objectives (DQOs) presented in the Remedial Design Report/Remedial Action Work Plan for Zone 2 Soils, Slabs, and Subsurface Structures, East Tennessee Technology Park, Oak Ridge, Tennessee (DOE 2007) (Zone 2 RDR/RAWP). The purpose of this PCCR is to address the following: (1) Document DVS characterization results for the accessible EUs in FY 2007; (2) Describe and document the risk evaluation for each EU, and determine if the EU met the Zone 2 ROD requirements for unrestricted industrial use to 10 ft bgs; (3) Identify additional areas not defined in the Zone 2 ROD that require remediation based on the DVS evaluation results; and (4) Describe the RAs performed in Zone 2. The Zone 2 ROD divided the Zone 2 area into 7 geographic areas and 44 EUs. To facilitate the DQOs of the DVS process, the Zone 2 RDR/RAWP regrouped the 44 EUs into 12 DQO scoping EU groups. These groups facilitated the DQO process by placing similar facilities and their support facilities together and allowed identification of data gaps. The EU groups were no longer pertinent after DQO planning was completed, and characterization was conducted as areas became accessible. As the opportunity to complete characterization became available, the planned DVS program was executed and completed in FY 2007 for the 11 EUs addressed in this document. The main body of this report describes both the DVS process and scope of work performed and the RAs completed. The scope and approach for performing DVS activities performed in FY 2007 that lead to action/no further action decisions are presented in Sects. 2 through 4. RAs performed in FY 2007 are presented in Sects. 5 through 10. Future land use is described in Sect. 11, and the status of all Zone 2 EUs as of this PCCR is presented in Sect. 12.

  2. Extended Operations of the Pratt & Whitney Rocketdyne Pilot-Scale Compact Reformer Year 6 - Activity 3.2 - Development of a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Almlie, Jay

    2011-10-01

    U.S. and global demand for hydrogen is large and growing for use in the production of chemicals, materials, foods, pharmaceuticals, and fuels (including some low-carbon biofuels). Conventional hydrogen production technologies are expensive, have sizeable space requirements, and are large carbon dioxide emitters. A novel sorbent-based hydrogen production technology is being developed and advanced toward field demonstration that promises smaller size, greater efficiency, lower costs, and reduced to no net carbon dioxide emissions compared to conventional hydrogen production technology. Development efforts at the pilot scale have addressed materials compatibility, hot-gas filtration, and high-temperature solids transport and metering, among other issues, and have provided the basis for a preliminary process design with associated economics. The process was able to achieve a 93% hydrogen purity on a purge gasfree basis directly out of the pilot unit prior to downstream purification.

  3. Year","Quarter","Destination State","Origin State","Consumer Type","Transportati

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State","Origin State","Consumer Type","Transportation Mode","Coal Volume (short tons)" 2012,3,"Alabama","Alabama","Coke Plant","Railroad",25445 2012,3,"Alabama","Alabama","Coke Plant","Truck",141202 2012,3,"Alabama","Alabama","Electric Power Sector","Railroad",1051202

  4. Year","Quarter","Origin State","Destination State","Consumer Type","Transportati

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State","Destination State","Consumer Type","Transportation Mode","Coal Volume (short tons)" 2012,3,"Alabama","Alabama","Electric Power Sector","Railroad",1051202 2012,3,"Alabama","Alabama","Coke Plant","Railroad",25445 2012,3,"Alabama","Alabama","Industrial Plants Excluding Coke","Railroad",10029

  5. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  6. MHK Technologies/CETO Wave Energy Technology | Open Energy Information

    Open Energy Info (EERE)

    Type Click here Point Absorber Technology Readiness Level Click here TRL 78: Open Water System Testing & Demonstration & Operation Technology Description The CETO system...

  7. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Past year's reports are listed on the Annual Progress Reports page. PDF icon FY14EDTAnnualReport.pdf More Documents & Publications Vehicle Technologies Office: 2013 Advanced ...

  8. Midwest Underground Technology | Open Energy Information

    Open Energy Info (EERE)

    Underground Technology Jump to: navigation, search Name Midwest Underground Technology Facility Midwest Underground Technology Sector Wind energy Facility Type Small Scale Wind...

  9. MHK Technologies/Enermar | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Cross Flow Turbine Technology Description The Enermar Kobold turbine is a unidirectional vertical axis...

  10. MHK Technologies/Hydroair | Open Energy Information

    Open Energy Info (EERE)

    to the MHK database homepage Hydroair.jpg Technology Profile Primary Organization Dresser Rand Technology Resource Click here Wave Technology Type Click here Oscillating Water...

  11. MHK Technologies/TREK | Open Energy Information

    Open Energy Info (EERE)

    the MHK database homepage TREK.jpg Technology Profile Primary Organization Renewable Energy Research Technology Type Click here Axial Flow Turbine Technology Description Each...

  12. MHK Technologies/OTEC | Open Energy Information

    Open Energy Info (EERE)

    Center Technology Resource Click here Ocean Thermal Energy Conversion (OTEC) Technology Type Click here Closed-cycle Technology Readiness Level Click here TRL 56: System...

  13. MHK Technologies/Hydroomel | Open Energy Information

    Open Energy Info (EERE)

    search << Return to the MHK database homepage Technology Profile Primary Organization Eco cinetic Technology Type Click here Axial Flow Turbine Technology Readiness Level Click...

  14. MHK Technologies/Atlantisstrom | Open Energy Information

    Open Energy Info (EERE)

    Profile Primary Organization Atlantisstrom Technology Resource Click here CurrentTidal Technology Type Click here Cross Flow Turbine Technology Description Five drop shaped...

  15. MHK Technologies/Tocardo | Open Energy Information

    Open Energy Info (EERE)

    Primary Organization Teamwork Technology See Tocardo Technology Type Click here Axial Flow Turbine Technology Description Turbine is placed in river or inshore locations and...

  16. MHK Technologies/Grampus | Open Energy Information

    Open Energy Info (EERE)

    MHK database homepage Grampus.jpg Technology Profile Primary Organization Offshore Wave Energy Ltd Technology Resource Click here Wave Technology Type Click here Oscillating Wave...

  17. MHK Technologies/Osprey | Open Energy Information

    Open Energy Info (EERE)

    Return to the MHK database homepage Osprey.jpg Technology Profile Primary Organization Free Flow 69 Technology Type Click here Axial Flow Turbine Technology Description The Osprey...

  18. NETL: The First 100 Years

    SciTech Connect (OSTI)

    2015-07-21

    The National Energy Technology Laboratory celebrates 100 years of innovative energy technology development. NETL has been a leader in energy technology development. This video takes a look back at the many accomplishments over the past 100 years. These advances benefit the American people, enhance our nation's energy security and protect our natural resources.

  19. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.5 Manufacturing R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MANUFACTURING SECTION Multi-Year Research, Development, and Demonstration Plan Page 3.5 - 1 3.5 Manufacturing R&D More than 35,000 fuel cell systems were shipped in 2013 worldwide, 1 representing more than 170 MW of power. As the market for hydrogen and fuel cells grows, the need for the development of automation and manufacturing processes for mass production of these systems grows as well. To meet the needs of increasing production volumes in the growing hydrogen and fuel cells industries,

  20. MHK Technologies/C Wave | Open Energy Information

    Open Energy Info (EERE)

    homepage C Wave.jpg Technology Profile Primary Organization C Wave Technology Resource Click here Wave Technology Type Click here Attenuator Technology Description The C Wave...

  1. MHK Technologies/Wave Rotor | Open Energy Information

    Open Energy Info (EERE)

    Project(s) where this technology is utilized *MHK ProjectsC Energy Technology Resource Click here Wave Technology Type Click here Axial Flow Turbine Technology Readiness Level...

  2. MHK Technologies/Sea Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Technology Profile Technology Resource Click here Ocean Thermal Energy Conversion (OTEC) Technology Type Click here Closed-cycle Technology Description A stationary floating...

  3. MHK Technologies/OCEANTEC Wave Energy Converter | Open Energy...

    Open Energy Info (EERE)

    Energy Converter.jpg Technology Profile Primary Organization OCEANTEC Energias Marinas S L Technology Resource Click here Wave Technology Type Click here Attenuator Technology...

  4. MHK Technologies/Canal Power | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 4: Proof of Concept Technology Description...

  5. MHK Technologies/MRL Turbine | Open Energy Information

    Open Energy Info (EERE)

    Turbine < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Type Click here Axial Flow Turbine Technology...

  6. MHK Technologies/WAVE ENERGY CONVERTER | Open Energy Information

    Open Energy Info (EERE)

    WAVE ENERGY CONVERTER < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Resource Click here Wave Technology Type...

  7. Type B Accident Investigation, Subcontractor Employee Personal Protective Equipment Ignition Incident on February 18, 2003, at the East Tennessee Technology Park, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    On February 18, 2003, a general laborer employed at the East Tennessee Technology Park (ETTP) by MACTEC Constructors, Inc. (MACTEC) was performing rebar removal with a gas-powered cut-off machine. MACTEC is a subcontractor to Bechtel Jacobs Company LL (BJC). The sparks from the cut-off machine ignited the right leg of his 100% cotton anticontamination (anti-c) coveralls and the plastic bootie.

  8. Fiscal Year 2010 Phased Construction Completion Report for EU Z2-32 in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Bechtel Jacobs

    2010-02-01

    The Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (DOEIORJO 1-2161 &D2) (Zone 2 ROD) acknowledged that most of the 800 acres in Zone 2 were contaminated, but that sufficient data to confirm the levels of contamination were lacking. The Zone 2 ROD further specified that a sampling strategy for filling the data gaps would be developed. The Remedial Design Report/Remedial Action Work Plan for Zone 2 Soils, Slabs, and Subsurface Structures, East Tennessee Technology Park, Oak Ridge, Tennessee (DOEIORIO 1 -2224&D3) (RDRJRAWP) defined the sampling strategy as the Dynamic Verification Strategy (DVS), generally following the approach used for characterization of the Zone I exposure units (EUs). The Zone 2 ROD divided the Zone 2 area into seven geographic areas and 44 EUs. To facilitate the data quality objectives (DQOs) of the DVS process, the RDR/RAWP regrouped the 44 EUs into 12 DQO scoping EU groups. These groups facilitated the DQO process by placing similar facilities and their support facilities together, which allowed identification of data gaps. The EU groups were no longer pertinent after DQO planning was completed and characterization was conducted as areas became accessible. As the opportunity to complete characterization became available, the planned DVS program was completed for the EU addressed in this document (EU Z2-32). The purpose of this Phased Construction Completion Report (PCCR) is to address the following: (1) Document DVS characterization results for EU Z2-32. (2) Describe and document the risk evaluation and determine if the EU meets the Zone 2 ROD requirements for unrestricted industrial use to 10 ft bgs. (3) Identify additional areas not defined in the Zone 2 ROD that require remediation based on the DVS evaluation results. (4) Describe the remedial action performed in the K-1066-G Yard in EU Z2-32. Approximately 18.4 acres are included in the EU addressed in this PCCR. Based on results of the DVS evaluation, all 18.4 acres are recommended for unrestricted industrial use to 10 ft bgs. There are no Federal Facility Agreement Sites included in Appendix A of the Zone 2 ROD in EU Z2-32. The Zone 2 ROD requires land use controls to prevent disturbance of soils below 10 ft deep and to restrict future land use to industrial/commercial activities. In response to stakeholder comments, the U.S. Department of Energy agreed to re-evaluate the need for such land use restrictions. This document includes a screening evaluation to determine the likelihood of land use controls in EU Z2-32 being modified to: (1) eliminate the restriction on disturbance of soils below 10 ft bgs where data indicate the absence of residual contamination at any depth that would result in an unacceptable risk to the future industrial worker, and (2) permit alternative land uses that would be protective of future site occupants. Results of this screening evaluation indicate a high probability that restrictions on disturbing soil below 10 ft bgs could be safely eliminated for EU Z2-32. A qualitative screening evaluation considered the likelihood of unrestricted land use being protective of future site occupants. Based on this qualitative assessment, all 18.4 acres addressed in this PCCR were assigned a high probability for consideration of release for unrestricted land use. This document contains the main text (Sects. 1 through 13) and one appendix. The main text addresses the purpose for this PCCR as described above. Additional supporting detail (e.g., field work and data summaries, graphics) is provided in the EU Z2-32 technical memorandum (Appendix A). Historical and DVS analytical data used in this PCCR are provided on a compact disc accompanying this document and can be accessed through the Oak Ridge Environmental Information System.

  9. BPA Energy Efficiency Emerging Technologies Program Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    million a year over the next several years. The National Energy Efficiency Technology Roadmap Portfolio BPA's technology innovation agenda is guided by a strict logic and...

  10. Final evaluation report for Lockheed Idaho Technologies Company, ARROW-PAK packaging, Docket 95-40-7A, Type A container

    SciTech Connect (OSTI)

    Kelly, D.L.

    1995-11-01

    The report documents the U.S. Department of Transportation Specification 7A Type A (DOT-7A) compliance test results of the ARROW-PAK packaging. The ARROW-PAK packaging system consists of Marlex M-8000 Driscopipe (Series 8000 [gas] or Series 8600 [industrial]) resin pipe, manufactured by Phillips-Driscopipe, Inc., and is sealed with two dome-shaped end caps manufactured from the same materials. The patented sealing process involves the use of electrical energy to heat opposing faces of the pipe and end caps, and hydraulic rams to press the heated surfaces together. This fusion process produces a homogeneous bonding of the end cap to the pipe. The packaging may be used with or without the two internal plywood spacers. This packaging was evaluated and tested in October 1995. The packaging configuration described in this report is designed to ship Type A quantities of solid radioactive materials, Form No. 1, Form No. 2, and Form No. 3.

  11. Test and evaluation report for Lockheed Idaho Technologies Company, arrow-pak packaging, docket 95-40-7A, type A container

    SciTech Connect (OSTI)

    Kelly, D.L.

    1996-03-14

    This report incorporates the U.S. Department of Energy, Office of Facility Safety Analysis (DOE/EH-32) approval letter for packaging use. This report documents the U.S. Department of Transportation Specification 7A Type A (DOT-7A) compliance test results of the Arrow-Pak packaging. The Arrow-Pak packaging system consists of Marlex M-8000 Driscopipe, manufactured by Phillips-Driscopipe, Inc., and is sealed with two dome-shaped end caps manufactured from the same materials. The patented sealing process involves the use of electrical energy to heat opposing faces of the pipe and end caps, and hydraulic rams to press the heated surfaces together. This fusion process produces a homogeneous bonding of the end cap to the pipe. The packaging may be used with or without the two internal plywood spacers. This packaging configuration described in this report is designed to ship Type A quantities of solid radioactive materials.

  12. NREL Technology Partnerships: Fiscal Year 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NREL) works with hundreds of partners within industry, government, academia, small business, international organizations, and nonprofits to advance the use of clean energy...

  13. NREL Technology Partnerships: Fiscal Year 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    businesses, foreign entities, educational institutes, and non-profits. WORKING WITH US NREL accelerates the commercialization of energy efficiency and renewable energy...

  14. Webtrends Archives by Fiscal Year — Solar

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Solar Energy Technologies Office / Sunshot sites, Webtrends archives by fiscal year.

  15. Google Archives by Fiscal Year — Buildings

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Building Technologies Office, retired Google Analytics profiles for the sites by fiscal year.

  16. OUT Success Stories: Twenty Years of Success

    DOE R&D Accomplishments [OSTI]

    2000-08-01

    DOE's Office of Utility Technologies celebrates 20 years of success in renewable energy research, development, and deployment.

  17. Google Archives by Fiscal Year — Solar

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Solar Energy Technologies Office, retired Google Analytics profiles for the sites by fiscal year.

  18. Vehicle Technologies Office: Technologies

    Broader source: Energy.gov [DOE]

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  19. Federal Geothermal Research Program Update Fiscal Year 1998

    SciTech Connect (OSTI)

    Keller, J.G.

    1999-05-01

    This report reviews the specific objectives, status, and accomplishments of DOE's Geothermal Research Program for Fiscal Year 1998. The Exploration Technology research area focuses on developing instruments and techniques to discover hidden hydrothermal systems and to expose the deep portions of known systems. The Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal and hot dry rock reservoirs. The Drilling Technology projects focus on developing improved, economic drilling and completion technology for geothermal wells. The Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Direct use research covers the direct use of geothermal energy sources for applications in other than electrical production.

  20. MHK Technologies/HyPEG | Open Energy Information

    Open Energy Info (EERE)

    Profile Primary Organization Hydrokinetic Laboratory Technology Type Click here Axial Flow Turbine Technology Description Their Hydro kinetically Powered Electrical Generators...

  1. Technology Partnership Agreements | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Partnership Agreements Looking for Funding? We do not fund any projects under a technology partnership agreement. The partner provides the necessary resources and, in most cases, covers our costs of providing technical services. NREL does provide funding opportunities through competitively placed contracts. See procurement. There are a variety of ways to partner with NREL using technology partnership agreements. See a summary of our Fiscal Year 2015 technology partnership agreements.

  2. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roland Risser Director, Building Technologies Office Building Technologies Office Overview Our Homes and Buildings Use 40% of Our Nation's Energy and 75% of Electricity Energy Use Electricity Use Residential Transportation 21 quads 27 quads Commercial 18 quads Industrial 31 quads U.S. Energy Bill for Buildings: $410 billion per year 2 Building Technologies Office (BTO) Ecosystem Emerging Technologies Building Codes Appliance Standards Residential Buildings Integration Commercial Buildings

  3. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  4. Postdoc Appointment Types

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appointment Types Postdoc Appointment Types Most postdocs will be offered a postdoctoral research associate appointment. Each year, approximately 30 Postdoctoral Fellow appointments, including the Distinguished Fellows, are awarded. Contact Postdoc Program Office Email Postdoc appointment types offer world of possibilities Meet the current LANL Distinguished Postdocs Research Associates Research Associates pursue research as part of ongoing LANL science and engineering programs. Sponsored

  5. Nuclear Filter Technology | Open Energy Information

    Open Energy Info (EERE)

    Filter Technology Jump to: navigation, search Name: Nuclear Filter Technology Place: Golden, CO Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

  6. Common Industrial Lighting Upgrade Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Industrial Lighting Upgrade Technologies Common Industrial Lighting Upgrade Technologies This tip sheet provides information on two lighting types and upgrade options, ...

  7. MagStar Technologies | Open Energy Information

    Open Energy Info (EERE)

    MagStar Technologies Jump to: navigation, search Name: MagStar Technologies Place: Hopkins, MN Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

  8. Illinois Sustainable Technologies Center | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Illinois Sustainable Technologies Center Facility Illinois Sustainable Technologies Center Sector Wind energy Facility Type Commercial Scale Wind...

  9. World Power Technologies | Open Energy Information

    Open Energy Info (EERE)

    Power Technologies Jump to: navigation, search Name: World Power Technologies Place: Edison, NJ Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

  10. Oregon Institute of Technology Geothermal Facility | Open Energy...

    Open Energy Info (EERE)

    Type Binary Owner Oregon Institute of Technology Developer Oregon Institute of Technology Energy Purchaser Pratt & Whitney Commercial Online Date 2009 Power Plant Data Type of...

  11. MHK Technologies/Deep Water Pipelines | Open Energy Information

    Open Energy Info (EERE)

    Makai Ocean Engineering Inc Project(s) where this technology is utilized *MHK ProjectsOTEC Technology Resource Click here Ocean Thermal Energy Conversion (OTEC) Technology Type...

  12. MHK Technologies/14 MW OTECPOWER | Open Energy Information

    Open Energy Info (EERE)

    << Return to the MHK database homepage Technology Profile Technology Type Click here OTEC - Closed Cycle Technology Readiness Level Click here TRL 5 6 System Integration and...

  13. MHK Technologies/Turbines OWC | Open Energy Information

    Open Energy Info (EERE)

    Aerodynamic Technology Resource Click here Wave Technology Type Click here Cross Flow Turbine Technology Description The patent pending Neo Aerodynamic turbine invented by Phi...

  14. MHK Technologies/KESC Tidal Generator | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition Early...

  15. MHK Technologies/Evopod E35 | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 78: Open Water System Testing &...

  16. MHK Technologies/Yongsoo Wave Power Plant | Open Energy Information

    Open Energy Info (EERE)

    here Axial Flow Turbine Technology Description Oscillating water column type with turbines and generators Technology Dimensions Technology Nameplate Capacity (MW) 5 Device...

  17. MHK Technologies/Platform generators | Open Energy Information

    Open Energy Info (EERE)

    homepage Platform generators.jpg Technology Profile Primary Organization Aqua Magnetics Inc Technology Resource Click here Wave Technology Type Click here Reciprocating...

  18. MHK Technologies/Pulse Stream 1200 | Open Energy Information

    Open Energy Info (EERE)

    database homepage Pulse Stream 1200.jpg Technology Profile Primary Organization Pulse Tidal Ltd Technology Type Click here Oscillating Wave Surge Converter Technology Description...

  19. MHK Technologies/Pulse-Stream 120 | Open Energy Information

    Open Energy Info (EERE)

    << Return to the MHK database homepage Technology Profile Primary Organization Pulse Tidal Ltd Technology Resource Click here Wave Technology Type Click here Oscillating Wave...

  20. MHK Technologies/Current Catcher | Open Energy Information

    Open Energy Info (EERE)

    Primary Organization Offshore Islands Ltd Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Description The Current...

  1. MHK Technologies/Tidal Barrage | Open Energy Information

    Open Energy Info (EERE)

    < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Barrage.jpg Technology Profile Technology Type Click here Cross Flow Turbine...

  2. MHK Technologies/DeltaStream | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition ...

  3. MHK Technologies/CurrentStar | Open Energy Information

    Open Energy Info (EERE)

    Technology Profile Primary Organization Bourne Energy Technology Type Click here Axial Flow Turbine Technology Description The CurrentStar series is designed to harness the...

  4. MHK Technologies/GreenFlow Turbines | Open Energy Information

    Open Energy Info (EERE)

    Profile Primary Organization Gulfstream Technologies Technology Type Click here Cross Flow Turbine Technology Description Targeted at commercial sites with large water flow...

  5. MHK Technologies/Ocean Wave Air Piston | Open Energy Information

    Open Energy Info (EERE)

    Ocean Wave Air Piston.jpg Technology Profile Primary Organization Green Ocean Wave Energy Technology Resource Click here Wave Technology Type Click here Attenuator...

  6. MHK Technologies/Floating wave Generator | Open Energy Information

    Open Energy Info (EERE)

    homepage Floating wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Attenuator...

  7. MHK Technologies/WaveSurfer | Open Energy Information

    Open Energy Info (EERE)

    to the MHK database homepage WaveSurfer.jpg Technology Profile Primary Organization Green Energy Industries Inc Technology Resource Click here Wave Technology Type Click here...

  8. MHK Technologies/The Ocean Hydro Electricity Generator Plant...

    Open Energy Info (EERE)

    The Ocean Hydro Electricity Generator Plant.jpg Technology Profile Primary Organization Free Flow 69 Technology Type Click here Axial Flow Turbine Technology Description The O H E...

  9. MHK Technologies/Ocean Energy Rig | Open Energy Information

    Open Energy Info (EERE)

    the MHK database homepage Ocean Energy Rig.jpg Technology Profile Primary Organization Free Flow 69 Technology Type Click here Axial Flow Turbine Technology Description The Ocean...

  10. Biomass Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Technology Basics Biomass Technology Basics August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes-that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of

  11. Technology Name

    Energy Savers [EERE]

    Tech Fact Sheet Site Project & Identifier Tech Stage: Development DE-EM0000598 D&D KM-IT For the deployment of Information Technology for D&D knowledge management Page 1 of 2 Florida International University Florida D&D Knowledge Management Information Tool Challenge Deactivation and decommissioning (D&D) work is a high priority across the DOE Complex. The D&D community associated with the various DOE sites has gained extensive knowledge and experience over the years. To

  12. Technology Name

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tech Fact Sheet Site Project & Identifier Tech Stage: Development DE-EM0000598 D&D KM-IT For the deployment of Information Technology for D&D knowledge management Page 1 of 2 Florida International University Florida D&D Knowledge Management Information Tool Challenge Deactivation and decommissioning (D&D) work is a high priority across the DOE Complex. The D&D community associated with the various DOE sites has gained extensive knowledge and experience over the years. To

  13. Innovative Microwave Technology - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Return to Search Innovative Microwave Technology Hybrid microwave technology capable of performing functions that traditional microwave systems could not achieve. Savannah River National Laboratory New Hybrid Microwave Technology New Hybrid Microwave Technology Success Story Details Partner Location Agreement Type Publication Date Hadron Technologies, Inc. Offices in Tennessee and Colorado License October 22, 2013 Summary Hadron Technologies, Inc. has signed

  14. Y YEAR

    National Nuclear Security Administration (NNSA)

    2 40 -4.76% YEAR 2013 2014 Males 37 35 -5.41% Females 5 5 0% YEAR 2013 2014 SES 2 2 0% EJEK 5 4 -20.00% EN 05 5 7 40.00% EN 04 6 6 0% EN 03 1 1 0% NN...

  15. Y YEAR

    National Nuclear Security Administration (NNSA)

    79 67 -15.19% YEAR 2013 2014 Males 44 34 -22.73% Females 35 33 -5.71% YEAR 2013 2014 SES 6 4 -33.33% EJEK 1 1 0% EN 05 9 8 -11.11% EN 04 6 5 -16.67% NN...

  16. Y YEAR

    National Nuclear Security Administration (NNSA)

    5 79 -7.06% YEAR 2013 2014 Males 59 57 -3.39% Females 26 22 -15.38% YEAR 2013 2014 SES 1 0 -100% EJEK 4 3 -25.00% EN 05 3 2 -33.33% EN 04 22 22 0% EN 03...

  17. Fact #802: November 4, 2013 Market Share by Transmission Type | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2: November 4, 2013 Market Share by Transmission Type Fact #802: November 4, 2013 Market Share by Transmission Type The variety of transmission technologies has increased as manufacturers seek more efficient ways of transferring power from the engine to the wheels of the vehicles. Automatic transmissions with lockup remain the dominant transmission type but Continuously Variable Transmissions (CVT) have seen greater use in recent years, accounting for about 10 percent of all

  18. Geothermal Technologies Program Overview Presentation at Stanford...

    Office of Environmental Management (EM)

    Fiscal Year 2013 Budget Request Briefing Geothermal Technologies Program GRC Presentation, 1012012 Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett...

  19. Triton Sea Wave Technologies | Open Energy Information

    Open Energy Info (EERE)

    Triton Sea Wave Technologies Jump to: navigation, search Name: Triton Sea Wave Technologies Address: 22 A Thrakis Zip: 15669 Region: Greece Sector: Marine and Hydrokinetic Year...

  20. Climate Technology Initiative (CTI) | Open Energy Information

    Open Energy Info (EERE)

    search Logo: Climate Technology Initiative Name: Climate Technology Initiative Place: Japan Year Founded: 1995 Website: www.climatetech.net Coordinates: 36.204824,...

  1. NREL: Technology Transfer - Agreements for Commercializing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agreements for Commercializing Technology NREL uses Agreements for Commercializing Technology (ACT) when a partner seeks highly specialized or technical services to complete a project. An ACT agreement also authorizes participating contractor-operated DOE laboratories, such as NREL, to partner with businesses using more flexible terms that are aligned with industry practice. Read more about how this partnership tool increases flexibility. The agreement type used depends on the business, and the

  2. High Performance Commercial Buildings Technology Roadmap | Open...

    Open Energy Info (EERE)

    Company Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Technology characterizations Resource Type: Dataset...

  3. Y YEAR

    National Nuclear Security Administration (NNSA)

    7 35 -5.41% ↓ YEAR 2013 2014 Males 27 25 -7.41% ↓ Females 10 10 0% / YEAR 2013 2014 SES 1 1 0% / EN 05 1 1 0% / EN 04 11 10 -9.09% ↓ NN (Engineering) 8 8 0% / NQ (Prof/Tech/Admin) 14 15 7.14% ↑ NU (Tech/Admin Support) 2 0 -100% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 1 1 0% / African American Female (AA,F) 3 3 0% / Asian American Pacific Islander Male (AAPI,M) 0 0 0% /

  4. Y YEAR

    National Nuclear Security Administration (NNSA)

    4 79 -5.95% ↓ YEAR 2013 2014 Males 59 55 -6.78% ↓ Females 25 24 -4.00% ↓ YEAR 2013 2014 SES 3 3 0% / EJ/EK 4 4 0% / EN 04 2 1 -50.00% ↓ NN (Engineering) 20 20 0% / NQ (Prof/Tech/Admin) 55 51 -7.27% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 0 0 0% / African American Male (AA,M) 10 10 0% / African American Female (AA,F) 9 8 -11.11% ↓ Asian American Pacific Islander Male (AAPI,M) 2 2 0% / Asian American Pacific

  5. Y YEAR

    National Nuclear Security Administration (NNSA)

    8 87 -1.14% ↓ YEAR 2013 2014 Males 46 46 0% / Females 42 41 -2.38% ↓ YEAR 2013 2014 SES 1 0 -100% ↓ EJ/EK 4 2 -50.00% ↓ NN (Engineering) 12 12 0% / NQ (Prof/Tech/Admin) 68 70 2.94% ↑ NU (Tech/Admin Support) 3 3 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 2 2 0% / African American Male (AA,M) 5 5 0% / African American Female (AA,F) 5 6 20.00% ↑ Asian American Pacific Islander Male (AAPI,M) 0 0 0% / Asian

  6. Y YEAR

    National Nuclear Security Administration (NNSA)

    1 14 27.27% ↑ YEAR 2013 2014 Males 9 12 33.33% ↑ Females 2 2 0% / YEAR 2013 2014 SES 2 2 0% / EJ/EK 1 1 0% / EN 04 0 1 100% ↑ EN 00 0 1 100% ↑ NN (Engineering) 5 5 0% / NQ (Prof/Tech/Admin) 3 4 33.33% ↑ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 0 0 0% / African American Male (AA,M) 0 0 0% / African American Female (AA,F) 0 0 0% / Asian American Pacific Islander Male (AAPI,M) 1 1 0% / Asian American Pacific

  7. Y YEAR

    National Nuclear Security Administration (NNSA)

    40 36 -10.00% ↓ YEAR 2013 2014 Males 18 18 0% / Females 22 18 -18.18% ↓ YEAR 2013 2014 SES 3 2 -33.33% ↓ EJ/EK 1 1 0% / EN 03 1 1 0% / NN (Engineering) 3 3 0% / NQ (Prof/Tech/Admin) 30 27 -10.00% ↓ NU (Tech/Admin Support) 2 2 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 0 0 0% / African American Male (AA,M) 1 1 0% / African American Female (AA,F) 1 1 0% / Asian American Pacific Islander Male (AAPI,M) 0 0 0% /

  8. Y YEAR

    National Nuclear Security Administration (NNSA)

    4 30 -11.76% ↓ YEAR 2013 2014 Males 16 14 -12.50% ↓ Females 18 16 -11.11% ↓ YEAR 2013 2014 SES 1 1 0% / EJ/EK 3 1 -66.67% ↓ NQ (Prof/Tech/Admin) 29 27 -6.90% ↓ NU (Tech/Admin Support) 1 1 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 1 1 0% / American Indian Alaskan Native Female (AIAN,F) 2 2 0% / African American Male (AA,M) 3 3 0% / African American Female (AA,F) 7 6 -14.29% ↓ Asian American Pacific Islander Male (AAPI,M) 1 1 0% / Asian American Pacific Islander

  9. Y YEAR

    National Nuclear Security Administration (NNSA)

    9 209 -8.73% ↓ YEAR 2013 2014 Males 76 76 0% / Females 153 133 -13.07% ↓ YEAR 2013 2014 SES 9 6 -33.33% ↓ EJ/EK 1 1 0% / NQ (Prof/Tech/Admin) 208 194 -6.73% ↓ NU (Tech/Admin Support) 11 8 -27.27% ↓ YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 2 2 0% / American Indian Alaskan Native Female (AIAN,F) 3 2 -33.33% ↓ African American Male (AA,M) 10 10 0% / African American Female (AA,F) 39 36 -7.69% ↓ Asian American Pacific Islander Male (AAPI,M) 1 1 0% / Asian American

  10. Y YEAR

    National Nuclear Security Administration (NNSA)

    8 27 -3.57% ↓ YEAR 2013 2014 Males 18 17 -5.56% ↓ Females 10 10 0% / YEAR 2013 2014 SES 1 1 0% / EN 05 1 1 0% / EN 04 4 3 -25.00% ↓ NN (Engineering) 12 12 0% / NQ (Prof/Tech/Admin) 9 9 0% / NU (Tech/Admin Support) 1 1 0% / YEAR 2013 2014 American Indian Alaska Native Male (AIAN,M) 0 0 0% / American Indian Alaskan Native Female (AIAN,F) 1 1 0% / African American Male (AA,M) 4 4 0% / African American Female (AA,F) 3 4 33.33% ↑ Asian American Pacific Islander Male (AAPI,M) 1 1 0% / Asian

  11. Bearing steels 20/20 -- A steelmaker`s view point -- A look back 20 years and a look forward 20 years

    SciTech Connect (OSTI)

    Glasgal, B.M.

    1998-12-31

    Historically, bearing steels have been manufactured using clean steel technology to produce a product that has reduced levels of non-metallic inclusions. Included in this review are the key steel production practices that have evolved over time to make steels with superior cleanliness. The evolution of steelmaking practices over the past twenty years has also given rise to more discriminating test and evaluation methods. The types of testing reviewed here include microscopic examination, oxygen analysis, and various types of fatigue testing. Further improvements in steelmaking technology in the future, such as the increased usage of continuous casting, are expected to result in further quality improvements.

  12. Vehicle Technologies Office: 2013 Fuel and Lubricant Technologies...

    Office of Environmental Management (EM)

    subprogram in the Vehicle Technologies Office, as described on the Lubricants and Alternative Fuels pages. Past year's reports are listed on the Annual Progress Reports...

  13. Vehicle Technologies Office: 2014 Fuel and Lubricant Technologies...

    Office of Environmental Management (EM)

    in the Vehicle Technologies Office in 2014, as described on the Lubricants and Alternative Fuels pages. Past year's reports are listed on the Annual Progress Reports page. ...

  14. Ormat Technologies Inc. Ormat Technologies Reports 2012 Fourth...

    Open Energy Info (EERE)

    Internet. updated 2013;cited 2013. Available from: http:www.ormat.comnewslatest-itemsormat-technologies-reports-2012-fourth-quarter-and-year-end-results Retrieved from...

  15. Fuels Technologies

    Office of Environmental Management (EM)

    Fuels Technologies Program Mission To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002-- Kevin Stork, Team Leader Fuel Technologies & Technology Deployment Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy DEER 2008 August 6, 2008 Presentation Outline n Fuel Technologies Research Goals Fuels as enablers for advanced engine

  16. Evident Technologies | Open Energy Information

    Open Energy Info (EERE)

    for Others) for this property. Partnering Center within NREL National Center for Photovoltaics Partnership Year 2008 Evident Technologies is a company located in Troy, NY....

  17. Turbine imaging technology assessment

    SciTech Connect (OSTI)

    Moursund, R. A.; Carlson, T. J.

    2004-12-01

    The goal of this project was to identify and evaluate imaging technologies for observing juvenile fish within a Kaplan turbine, and specifically that would enable scientists to determine mechanisms of fish injury within an operating turbine unit. This report documents the opportunities and constraints for observing juvenile fish at specific locations during turbine passage. These observations were used to make modifications to dam structures and operations to improve conditions for fish passage while maintaining or improving hydropower production. The physical and hydraulic environment that fish experience as they pass through the hydroelectric plants were studied and the regions with the greatest potential for injury were defined. Biological response data were also studied to determine the probable types of injuries sustained in the turbine intake and what types of injuries are detectable with imaging technologies. The study grouped injury-causing mechanisms into two categories: fluid (pressure/cavitation, shear, turbulence) and mechanical (strike/collision, grinding/pinching, scraping). The physical constraints of the environment, together with the likely types of injuries to fish, provided the parameters needed for a rigorous imaging technology evaluation. Types of technology evaluated included both tracking and imaging systems using acoustic technologies (such as sonar and acoustic tags) and optic technologies (such as pulsed-laser videography, which is high-speed videography using a laser as the flash). Criteria for determining image data quality such as frame rate, target detectability, and resolution were used to quantify the minimum requirements of an imaging sensor.

  18. Webtrends Archives by Fiscal Year - Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Webtrends Archives by Fiscal Year - Buildings From the EERE Web Statistics Archive: Building Technologies Office, Webtrends archives by fiscal year. Microsoft Office document icon Building Technologies FY09 Microsoft Office document icon Building Technologies FY10 Microsoft Office document icon Building Technologies FY11 More Documents & Publications Webtrends Archives by Fiscal Year - News Webtrends Archives by Fiscal Year - Education Webtrends Archives by Fiscal Year - S

  19. Exploration Technologies - Technology Needs Assessment

    SciTech Connect (OSTI)

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  20. Building Technologies Program: Planned Activities for 2007-2012

    SciTech Connect (OSTI)

    None, None

    2007-01-01

    The multi-year program plan for the Building Technologies Program, for the years between 2007 and 2012.

  1. Types of Homes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design » Types of Homes Types of Homes Manufactured homes are one type of home that may require special considerations for energy efficiency and renewable energy technologies. | Photo courtesy of Florida Solar Energy Center. Manufactured homes are one type of home that may require special considerations for energy efficiency and renewable energy technologies. | Photo courtesy of Florida Solar Energy Center. Some types of homes may require different considerations when it comes to energy

  2. NREL: Technology Transfer - Technology Partnership Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  3. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  4. Geothermal Today: 2005 Geothermal Technologies Program Highlights

    SciTech Connect (OSTI)

    Not Available

    2005-09-01

    This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

  5. Vehicle Technologies Office - Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Materials Technologies Ed Owens Jerry Gibbs Will Joost eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $36.9 M Lightweight Materials $28.0 M Values are FY14 enacted Propulsion Materials $8.9 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M

  6. Geothermal Technologies Program FY 2012 Budget Request Briefing

    SciTech Connect (OSTI)

    JoAnn Milliken, GTP

    2011-03-08

    Geothermal Technologies Program fiscal year 2012 budget request PowerPoint presentation, March 8, 2011.

  7. The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System

    SciTech Connect (OSTI)

    Hughes, K.R.; Moore, N.L.

    1994-09-01

    The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

  8. Celebrating Two Years of Building America's Clean Energy Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Two Years of Building America's Clean Energy Manufacturing Future Celebrating Two Years of ... work together to boost and improve production of clean energy technologies; Provides ...

  9. Digital Actuator Technology

    SciTech Connect (OSTI)

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator technology over legacy analog sensor technology in both quantitative and qualitative ways. 2. To recognize and address the added difficulty of digital technology qualification, especially in regard to software common cause failure (SCCF), that is introduced by the use of digital actuator technology.

  10. Available Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    application. Search Our Technologies submit Advanced Materials Advanced Materials Biotechnology Biotechnology Chemistry Chemistry Energy Energy High Performance Computing:...

  11. Licensing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing Technology Licensing Technology The primary function of Los Alamos Licensing Program is to move Los Alamos technology to the marketplace for the benefit of the U.S. economy. Our intellectual property may be licensed for commercial use, research applications, and U.S. government use. Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Although Los Alamos's primary mission is national security, our technologies

  12. Technology Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intellectual Property » Technology Opportunities Technology Opportunities We deliver innovation through an integrated portfolio of R&D work across our key national security sponsoring agencies, enhanced by the ideas developed through our strategic internal investments. Contact Business Development Team Richard P. Feynman Center for Innovation (505) 665-9090 Email Periodically, the Laboratory notifies the public of technologies and capabilities that may be of interest. These technologies may

  13. Technology Roadmaps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Publications » Technology Roadmaps Technology Roadmaps This page contains links to DOE's Technology Roadmaps, multi-year plans outlining solid-state lighting goals, research and development initiatives aimed at accelerating technology advances and market penetration of solid-state lighting, and recent achievements. The following documents are available as Adobe Acrobat PDFs. OLED Stakeholder Meeting Report Summary of a September meeting open to members of the U.S. OLED

  14. Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Energy Technologies Area (ETA) Building Technology & Urban Systems Energy Analysis & Environmental Impacts Energy Storage & Distributed Resources

  15. Technology Assessment

    Energy Savers [EERE]

    - FOR OFFICIAL USE ONLY - DRAFT 1 Advanced Composites Materials and their Manufacture 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ................................................................................................ 2 4 2. Technology Potential and Assessment .................................................................................................. 4 5 2.1 The Potential for Advanced Composites for Clean Energy Application Areas

  16. BETO Announces Updated Multi-Year Program Plan

    Broader source: Energy.gov [DOE]

    The Bioenergy Technologies Office is pleased to announce the release of its newly updated Multi-Year Program Plan (MYPP).

  17. Webtrends Archives by Fiscal Year - Geothermal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Webtrends Archives by Fiscal Year - Geothermal From the EERE Web Statistics Archive: Geothermal Technologies Office, Webtrends archives by fiscal year. Microsoft Office document icon Geothermal Technologies FY09 Microsoft Office document icon Geothermal Technologies FY10 Microsoft Office document icon Geothermal Technologies FY11 More Documents & Publications Webtrends Archives by Fiscal Year - Bioenergy Webtrends Archives by Fiscal Year - Office of EERE Webtrends Archives by

  18. Marine and Hydrokinetic Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOEs Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

  19. Marine and Hydrokinetic Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE’s Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

  20. Geothermal Technologies Office March

    Office of Environmental Management (EM)

    Annual Report Geothermal Technologies Office March 2015 The 2014 Annual Report of the Geothermal Technologies Office is a product of the United States Department of Energy, Office of Energy Efficiency and Renewable Energy. DOE/EERE-1160 * March 2015 This report spans calendar year 2014 achievements. Photographs are accredited herein. back cover photo: Geothermal heat at Pilgrim Hot Springs, Alaska. Source: C. Pike at the Alaska Center for Energy and Power 2014 Annual Report Geothermal

  1. Vehicle Technologies Office: Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office: Events Vehicle Technologies Office: Events The Vehicle Technologies Office holds a number of events to advance research, development and deployment of vehicles that can reduce the use of petroleum in transportation. The Vehicle Technologies Office holds an Annual Merit Review and Peer Evaluation each year, where advanced vehicle technologies projects funded by VTO are presented and reviewed for their merit. The Merit Review presentations and reports from past years

  2. TEAM Technologies, Inc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies, Inc. A New Mexico owned, SBA certified 8(a)/SDB Small Business Pulsed Power Support TEAM Technologies Inc. opened its doors in 1985 as a one-man operation in support of Sandia's Z Machine, a mainstay of the Lab's Pulsed Power program. No longer a one-man shop, TEAM employs more than 70 people and operates over 36,000 square feet of work space in Sandia's Science & Technology Park. According to TEAM's owner and CEO Bob Sachs, much of TEAM's growth over the years has been as a

  3. MHK Technologies/TidalStar | Open Energy Information

    Open Energy Info (EERE)

    search << Return to the MHK database homepage TidalStar.jpg Technology Profile Primary Organization Bourne Energy Technology Type Click here Axial Flow Turbine...

  4. MHK Technologies/Water Wall Turbine | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search << Return to the MHK database homepage Water Wall Turbine.png Technology Profile Primary Organization Water Wall Turbine Technology Type Click...

  5. MHK Technologies/Vertical Axis Venturi System | Open Energy Informatio...

    Open Energy Info (EERE)

    Primary Organization Warrior Girl Corporation Technology Type Click here Axial Flow Turbine Technology Description The proprietary venturi system uses two venturies one on the...

  6. Sustainable Technologies Museum Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Farm Jump to: navigation, search Name Sustainable Technologies Museum Wind Farm Facility Sustainable Technologies Museum Sector Wind energy Facility Type Commercial Scale Wind...

  7. MHK Technologies/WEPTOS WEC | Open Energy Information

    Open Energy Info (EERE)

    Technology Type Click here Attenuator Technology Description Through its floating angular construction the wave energy converter is able to regulate the wave energy input and...

  8. MHK Technologies/SMART Hybrid System | Open Energy Information

    Open Energy Info (EERE)

    Type Click here Hybrid Technology Readiness Level Click here TRL 9: Commercial-Scale Production Application Technology Description Smart Hydro Power's hybrid system combines a...

  9. MHK Technologies/DEXA Wave Converter | Open Energy Information

    Open Energy Info (EERE)

    Click here Wave Technology Type Click here Attenuator Technology Description The wave energy conversion is similar to other devices There is no data publicly available...

  10. Technology Overview: Concentrator PV 2010 Boot Camp (CPV) (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Bett, A.; Hartsoch, N.

    2010-10-11

    The presentation introduces the various types of CPV technologies and provides a status report of today's CPV companies. Six different architectures of multijunction cells are shown to near or surpass 40% in efficiency. The design space for CPV is quite complex, which is a curse for those trying to narrow it down for the first prototype, but a blessing for those who want multiple pathways for product improvement in coming years.

  11. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or other industries are interested in lignin as a potential fuel or feedstock but need more information on properties.

  12. About Emerging Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies » About Emerging Technologies About Emerging Technologies The Emerging Technologies (ET) Program of the Building Technologies Office (BTO) supports applied research and development (R&D) for technologies, systems, and models that contribute to building energy consumption. BTO's goal is to deliver ~50% primary energy savings in the year 2030, relative to the baseline energy consumption predicted by the 2010 Annual Energy Outlook. The ET Program is helping to meet this

  13. Development of a Novel Gas Pressurized Process-Based Technology for CO2 Capture from Post-Combustion Flue Gases Preliminary Year 1 Techno-Economic Study Results and Methodology for Gas Pressurized Stripping Process

    SciTech Connect (OSTI)

    Chen, Shiaoguo

    2013-03-01

    Under the DOE’s Innovations for Existing Plants (IEP) Program, Carbon Capture Scientific, LLC (CCS) is developing a novel gas pressurized stripping (GPS) process to enable efficient post-combustion carbon capture (PCC) from coal-fired power plants. A technology and economic feasibility study is required as a deliverable in the project Statement of Project Objectives. This study analyzes a fully integrated pulverized coal power plant equipped with GPS technology for PCC, and is carried out, to the maximum extent possible, in accordance to the methodology and data provided in ATTACHMENT 3 – Basis for Technology Feasibility Study of DOE Funding Opportunity Number: DE-FOA-0000403. The DOE/NETL report on “Cost and Performance Baseline for Fossil Energy Plants, Volume 1: Bituminous Coal and Natural Gas to Electricity (Original Issue Date, May 2007), NETL Report No. DOE/NETL-2007/1281, Revision 1, August 2007” was used as the main source of reference to be followed, as per the guidelines of ATTACHMENT 3 of DE-FOA-0000403. The DOE/NETL-2007/1281 study compared the feasibility of various combinations of power plant/CO2 capture process arrangements. The report contained a comprehensive set of design basis and economic evaluation assumptions and criteria, which are used as the main reference points for the purpose of this study. Specifically, Nexant adopted the design and economic evaluation basis from Case 12 of the above-mentioned DOE/NETL report. This case corresponds to a nominal 550 MWe (net), supercritical greenfield PC plant that utilizes an advanced MEAbased absorption system for CO2 capture and compression. For this techno-economic study, CCS’ GPS process replaces the MEA-based CO2 absorption system used in the original case. The objective of this study is to assess the performance of a full-scale GPS-based PCC design that is integrated with a supercritical PC plant similar to Case 12 of the DOE/NETL report, such that it corresponds to a nominal 550 MWe supercritical PC plant with 90% CO2 capture. This plant has the same boiler firing rate and superheated high pressure steam generation as the DOE/NETL report’s Case 12 PC plant. However, due to the difference in performance between the GPS-based PCC and the MEA-based CO2 absorption technology, the net power output of this plant may not be exactly at 550 MWe.

  14. Huazhong Science Technology University Yongtai Science Technology...

    Open Energy Info (EERE)

    Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name: Huazhong Science & Technology University Yongtai Science & Technology Co...

  15. Type B Accident Investigation Board Report on the March 26, 1999, Worker Injury at the East Tennessee Technology Park Three-Building Decontamination and Decommissioning and Recycle Project Site

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Investigation Board appointed by Steven D. Richardson, Acting Manager, Oak Ridge Operations Office, U.S. Department of Energy (DOE). The Board was appointed to perform a Type B investigation of these incidents and to prepare an investigation report in accordance with DOE Order 225.1A, Accident Investigations.

  16. Technology Transitions Facilities Database | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transitions Facilities Database Technology Transitions Facilities Database Type* Laboratory Name Facilities DataBase The DOE National Laboratories maintain cutting-edge experimental and computational capabilities that can provide unique opportunities for partners from the commercial sector to develop and test new technologies. The data base below lists DOE facilities and can be searched by the Laboratory at which the facility is located and by the type of R&D facility (TYPE) it

  17. Information technology resources assessment

    SciTech Connect (OSTI)

    Stevens, D.F.

    1992-01-01

    This year`s Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  18. Robotics Technology Development Program. Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Robotics Technology Development Program (RTDP) is a ``needs-driven`` effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination & Dismantlement (D&D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D&D and CC&AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

  19. Innovative Exploration Technologies Subprogram Overview | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Subprogram Overview Innovative Exploration Technologies Subprogram Overview This overview of GTP's Innovative Exploration Technologies subprogram was given at the GTP Program Peer Review on May 18, 2010. PDF icon overview_iet.pdf More Documents & Publications Innovative Exploration Technologies Subprogram Overview Geothermal Technologies Program Peer Review Program June 6 - 10, 2011 Fiscal Year 2013 Budget Request Briefing

  20. NREL: Technology Deployment - Technology Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Acceleration NREL offers technology-specific assistance to federal and private industry to help address market barriers to sustainable energy technologies. Learn more about NREL's work in the following areas: Biopower and Waste-to-Energy Biopower and Waste-to-Energy Buildings Buildings Fuels, Vehicles, & Transportation Fuels, Vehicles, and Transportation Microgrid Design Microgrid Design Solar Solar Wind Wind Contact Us For more information on NREL's market transformation work,

  1. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting Americas wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  2. Technology Assessment

    Energy Savers [EERE]

    Roll to Roll (R2R) Processing 1 Technology Assessment 2 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Introduction to R2R Processing..................................................................................................... 2 6 1.2. R2R Processing Mechanisms ......................................................................................................... 3 7 2.

  3. Window Industry Technology Roadmap | Open Energy Information

    Open Energy Info (EERE)

    AgencyCompany Organization United States Department of Energy Sector Energy Focus Area Energy Efficiency, Buildings Topics Technology characterizations Resource Type Guide...

  4. Technologies for Evaluating Fish Passage Through Turbines

    Broader source: Energy.gov [DOE]

    This report evaluated the feasibility of two types of technologies to observe fish and near neutrally buoyant drogues as they move through hydropower turbines.

  5. The Southern California Conversion Technology Demonstration Project...

    Open Energy Info (EERE)

    Conversion Technology Demonstration Project Sector: Energy, Land Focus Area: - Waste to Energy Phase: Create a Vision Resource Type: Publications User Interface: Website...

  6. Drilling technology/GDO

    SciTech Connect (OSTI)

    Kelsey, J.R.

    1985-01-01

    The Geothermal Technology Division of the US Department of Energy is sponsoring two programs related to drilling technology. The first is aimed at development of technology that will lead to reduced costs of drilling, completion, and logging of geothermal wells. This program has the official title ''Hard Rock Penetration Mechanics.'' The second program is intended to share with private industry the cost of development of technology that will result in solutions to the near term geothermal well problems. This program is referred to as the ''Geothermal Drilling Organization''. The Hard Rock Penetration Mechanics Program was funded at $2.65M in FY85 and the GDO was funded at $1.0M in FY85. This paper details the past year's activities and accomplishments and projects the plans for FY86 for these two programs.

  7. Building Technologies Program: Planned Program Activities for 2008-2012

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    Building Technologies Program Complete Multi-Year Program Plan 2008 includes all sections - overview, research and development, standards, technology validation, portfolio management, appendices.

  8. Revolution Now: The Future Arrives for Four Clean Energy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    technologies. This report provides an update and finds that cost reductions and deployment have continued to advance in the past year. These technologies are changing the...

  9. Roadmapping Engine Technology for Post-2020 Heavy Duty Vehicles

    Broader source: Energy.gov [DOE]

    Discusses Detroit Diesel collaborative multi-year technology program which includes systematic experimental and analytical assessment of enabling technologies for post-2020 NAFTA line haul trucks

  10. Type: Renewal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 INCITE Awards Type: Renewal Title: -Ab Initio Dynamical Simulations for the Prediction of Bulk Properties‖ Principal Investigator: Theresa Windus, Iowa State University Co-Investigators: Brett Bode, Iowa State University Graham Fletcher, Argonne National Laboratory Mark Gordon, Iowa State University Monica Lamm, Iowa State University Michael Schmidt, Iowa State University Scientific Discipline: Chemistry: Physical INCITE Allocation: 10,000,000 processor hours Site: Argonne National

  11. Facility Type!

    Office of Legacy Management (LM)

    ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR

  12. Taking technology to market

    SciTech Connect (OSTI)

    Ford, D.; Ryan, C.

    1981-03-01

    For many years, the concept of the product life cycle has helped managers maximize their return on product sales. But according to the authors of this article, using a technology solely in product sales is no longer enough. Today, companies face high R and D costs, competitive pressures from low-cost producers, capacity limitations, antitrust laws, financial difficulties, and foreign trade barriers. This means that they must improve the rate of return on their technology investments by marketing their technology as completely as possible during all phases of its life cycle. The technology life cycle - derived from the product life cycle - pinpoints the changing decisions companies face in selling their know-how. The authors also discuss both the competitive dangers of transferring technology to low-cost foreign producers and the growing role of intermediaries in technology sales. They stress the importance of having a highly specialized staff to plan a company's technology marketing, a responsibility that should be assigned neither to the part-time attention of top management nor simply to marketers or strategic planners.

  13. Technology certification and technology acceptance: Promoting interstate cooperation and market development for innovative technologies

    SciTech Connect (OSTI)

    Brockbank, B.R.

    1995-03-01

    In the past two years, public and private efforts to promote development and deployment of innovative environmental technologies have shifted from the analysis of barriers to the implementation of a variety of initiatives aimed at surmounting those barriers. Particular attention has been directed at (1) streamlining fragmented technology acceptance processes within and among the states, and (2) alleviating disincentives, created by inadequate or unverified technology cost and performance data, for users and regulators to choose innovative technologies. Market fragmentation currently imposes significant cost burdens on technology developers and inhibits the investment of private capital in environmental technology companies. Among the responses to these problems are state and federal technology certification/validation programs, efforts to standardize cost/performance data reporting, and initiatives aimed at promoting interstate cooperation in technology testing and evaluation. This paper reviews the current status of these initiatives, identifies critical challenges to their success, and recommends strategies for addressing those challenges.

  14. MHK Technologies/Sabella River Generator | Open Energy Information

    Open Energy Info (EERE)

    Organization Sabella Energy Project(s) where this technology is utilized *MHK ProjectsSR 01 Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow...

  15. MHK Technologies/CoRMaT | Open Energy Information

    Open Energy Info (EERE)

    MHK database homepage CoRMaT.jpg Technology Profile Technology Type Click here Axial Flow Turbine Technology Description The CoRMat employs two closely spaced contra rotating...

  16. Geothermal Technologies Program Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Program Fact Sheet Geothermal Technologies Program Fact Sheet Overview of DOE Geothermal Technologies Program. PDF icon geothermal_fs.pdf More Documents & Publications Geothermal Technologies Program Peer Review Program June 6 - 10, 2011 Geothermal Technologies Program Overview Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Executive Summary

  17. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  18. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect (OSTI)

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  19. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect (OSTI)

    Christopher E. Hull

    2005-11-04

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  20. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect (OSTI)

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  1. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2007-06-30

    Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

  2. NREL Technologies Win National Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 10, 1998 — Technologies developed in cooperation with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) have been selected to receive two 1998 R&D 100 awards by R&D Magazine. The annual awards recognize the year's 100 most significant technological innovations. "Cutting-edge research by NREL and its industry partners is helping innovative renewable energy technologies move into the future - and into American households," said NREL

  3. Nuclear Proliferation Technology Trends Analysis

    SciTech Connect (OSTI)

    Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

    2005-10-04

    A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

  4. The Quadrennial Technology Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Quadrennial Technology Review The Quadrennial Technology Review The Quadrennial Technology Review ACCESS ALL OF THE QUADRENNIAL TECHNOLOGY REVIEW 2015 CONTENT The last four years have been defined by dramatic change in the nation's energy landscape. Domestic production of oil and natural gas has boomed, causing the United States to become the world leader in combined oil and natural gas production for the last three consecutive years. Electricity generation from solar photovoltaic cells has

  5. Tag: technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tags

    technology<...

  6. Technology Validation

    Broader source: Energy.gov [DOE]

    To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...

  7. Long-term proliferation and safeguards issues in future technologies

    SciTech Connect (OSTI)

    Keisch, B.; Auerbach, C.; Fainberg, A.; Fiarman, S.; Fishbone, L.G.; Higinbotham, W.A.; Lemley, J.R.; O'Brien, J.

    1986-02-01

    The purpose of the task was to assess the effect of potential new technologies, nuclear and non-nuclear, on safeguards needs and non-proliferation policies, and to explore possible solutions to some of the problems envisaged. Eight subdivisions were considered: New Enrichment Technologies; Non-Aqueous Reprocessing Technologies; Fusion; Accelerator-Driven Reactor Systems; New Reactor Types; Heavy Water and Deuterium; Long-Term Storage of Spent Fuel; and Other Future Technologies (Non-Nuclear). For each of these subdivisions, a careful review of the current world-wide effort in the field provided a means of subjectively estimating the viability and qualitative probability of fruition of promising technologies. Technologies for which safeguards and non-proliferation requirements have been thoroughly considered by others were not restudied here (e.g., the Fast Breeder Reactor). The time scale considered was 5 to 40 years for possible initial demonstration although, in some cases, a somewhat optimistic viewpoint was embraced. Conventional nuclear-material safeguards are only part of the overall non-proliferation regime. Other aspects are international agreements, export controls on sensitive technologies, classification of information, intelligence gathering, and diplomatic initiatives. The focus here is on safeguards, export controls, and classification.

  8. Vehicle Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Howell Acting Director, Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting VEHICLE TECHNOLOGIES OFFICE June 8, 2015 2  Transportation is responsible for 69% of U.S. petroleum usage  28% of GHG emissions  On-Road vehicles responsible for 85% of transportation petroleum usage Oil Dependency is Dominated by Vehicles  16.4M LDVs sold in 2014  240 million light-duty vehicles on the road in the U.S.  10-15 years for annual sales penetration  10-15

  9. Webtrends Archives by Fiscal Year — Vehicles

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Vehicle Technologies Office, Webtrends archives for the site, including the Alternative Fuels Data Center, EPAct Transportation Regulatory Activities, and Clean Cities by fiscal year.

  10. Fiscal Year 2008 Budget-in-Brief

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency and Renewable Energy Fiscal Year 2008 Budget-in-Brief www.eere.energy.gov TABLE OF CONTENTS Page Preface...................................................................................................................................................... 3 Biomass and Biorefinery Systems R&D Program.................................................................................. 6 Building Technologies Program

  11. Information technology resources assessment

    SciTech Connect (OSTI)

    Stevens, D.F.

    1992-01-01

    This year's Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  12. East Tennessee Technology Park | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    East Tennessee Technology Park East Tennessee Technology Park An aerial view of East Tennessee Technology Park prior to demolition. An aerial view of East Tennessee Technology Park prior to demolition. For 40 years, the 2,200-acre East Tennessee Technology Park was home to a complex of facilities that enriched uranium. The site dates back to the World War II Manhattan Project. In addition to defense missions, the plant produced enriched uranium for the commercial nuclear power industry from 1945

  13. Solar Manufacturing Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Market » Solar Manufacturing Technology Solar Manufacturing Technology The SunShot Solar Manufacturing Technology (SolarMat) program funds the development of innovative manufacturing technologies that can achieve a significant market impact in one to four years. Launched in September 2013, the SolarMat program is supporting five projects working in two topic areas: photovoltaics (PV) and concentrating solar power (CSP). Both topics focus on driving down the cost of manufacturing

  14. Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review

    SciTech Connect (OSTI)

    Thiel, Elizabeth Chilcote

    2002-05-01

    The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas and nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).

  15. Nuclear Materials Focus Area Fiscal Year 2002 Mid Year Review

    SciTech Connect (OSTI)

    Thiel, E.C.; Fuhrman, P.W.

    2002-05-30

    The Nuclear Materials Focus Area (NMFA) held its annual mid-year review on February 12 and 14, 2002, in Santa Fe, New Mexico. The purpose of this review was to examine both the technical aspects and the programmatic aspects of its technology development program. The focus area activities were reviewed by a panel consisting of personnel representing the end users of the technologies, and technical experts in nuclear materials. This year's review was somewhat different than in the past, as the stress was on how well the various projects being managed through the NMFA aligned with the two thrust areas and nine key goals and priorities recently issued by the Deputy Assistant Secretary for DOE's Office of Environmental Management (EM).

  16. NREL: Technology Deployment - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Technology Deployment Home Project Development Project Technical Assistance Market Acceleration Success Stories Staff Models & Tools News Did you find what you needed? Yes 1 No 0

  17. Austin Technology Incubator | Open Energy Information

    Open Energy Info (EERE)

    Austin Technology Incubator Address: 3925 West Braker Lane Place: Austin, Texas Zip: 78759 Region: Texas Area Number of Employees: 11-50 Year Founded: 1989 Phone Number:...

  18. International Center for Environmental Technology Transfer |...

    Open Energy Info (EERE)

    Name: International Center for Environmental Technology Transfer Place: Yokkaichi, Japan Year Founded: 1990 Website: www.icett.or.jp Coordinates: 34.9651567, 136.6244847...

  19. Technology Roadmaps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmaps Technology Roadmaps May 15, 2015 Solid-State Lighting R&D Plan The Solid-State Lighting (SSL) R&D Plan is a consolidation of the Department of Energy (DOE) SSL Multi-Year Program Plan (MYPP) and the DOE SSL Manufacturing R&D Roadmap that DOE has published and updated in previous years. The SSL R&D Plan provides analysis and direction for ongoing R&D activities to advance SSL technology and increase energy savings. The Roadmap also reviews SSL technology status and

  20. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D ...

  1. National Energy Technology Laboratory Technology Marketing Summaries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Energy Technology Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the National Energy...

  2. HPSS Yearly Network Traffic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPSS Yearly Network Traffic HPSS Yearly Network Traffic Yearly Summary of IO Traffic Between Storage and Network Destinations These bar charts show the total transfer traffic for...

  3. Multi-Year Program Plan 2011-2015

    SciTech Connect (OSTI)

    none,

    2010-12-01

    The Vehicle Technologies Multi-Year Program Plan, FY 2011 2015, outlines the scientific research and technologies developments for the five-year timeframe (beyond the FY 2010 base year) that need to be undertaken to help meet the Administration's goals for reductions in oil consumption and carbon emissions from the ground transport vehicle sector of the economy.

  4. Chlorofluorocarbon leak detection technology

    SciTech Connect (OSTI)

    Munday, E.B.

    1990-12-01

    There are about 590 large coolant systems located at the Portsmouth Gaseous Diffusion Plant (PORTS) and the Paducah Gaseous Diffusion Plant (PGDP) leaking nearly 800,000 lb of R-114 refrigerant annually (1989 estimate). A program is now under way to reduce the leakage to 325,000 lb/year -- an average loss of 551 lb/year (0.063 lb/h) per coolant system, some of which are as large as 800 ft. This report investigates leak detection technologies that can be used to locate leaks in the coolant systems. Included are descriptions, minimum leak detection rate levels, advantages, disadvantages, and vendor information on the following technologies: bubbling solutions; colorimetric leak testing; dyes; halogen leak detectors (coronea discharge detectors; halide torch detectors, and heated anode detectors); laser imaging; mass spectroscopy; organic vapor analyzers; odorants; pressure decay methods; solid-state electrolytic-cell gas sensors; thermal conductivity leak detectors; and ultrasonic leak detectors.

  5. Technology Transitions Facilities Database | Department of Energy

    Energy Savers [EERE]

    Resources » Technology Transitions Facilities Database Technology Transitions Facilities Database Type* Laboratory Name Facilities DataBase The DOE National Laboratories maintain cutting-edge experimental and computational capabilities that can provide unique opportunities for partners from the commercial sector to develop and test new technologies. The data base below lists DOE facilities and can be searched by the Laboratory at which the facility is located and by the type of R&D facility

  6. 2013 Geothermal Technologies Office Annual Report

    SciTech Connect (OSTI)

    none,

    2014-02-01

    For the Geothermal Technologies Office (GTO), 2013 was a year of major achievements and repositioning to introduce major initiatives. Read all about our progress and successes this year, and as we look ahead, our new opportunities and initiatives.

  7. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  8. Plasma technology

    SciTech Connect (OSTI)

    Herlitz, H.G.

    1986-11-01

    This paper describes the uses of plasma technology for the thermal destruction of hazardous wastes such as PCBs, dioxins, hydrocarbons, military chemicals and biological materials; for metals recovery from steel making dusts. One advantage of the process is that destruction of wastes can be carried out on site. Systems in several countries use the excess thermal energy for district heating.

  9. (Environmental technology)

    SciTech Connect (OSTI)

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  10. Tag: technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    newspress-releasescns-research-teams-named-2015-rd-100-award-finalists

    type-text-with-summary field-label-hidden prose">
  11. HPSS Yearly Network Traffic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPSS Yearly Network Traffic HPSS Yearly Network Traffic Yearly Summary of I/O Traffic Between Storage and Network Destinations These bar charts show the total transfer traffic for each year between storage and network destinations (systems within and outside of NERSC). Traffic for the current year is an estimate derived by scaling the known months traffic up to 12 months. The years shown are calendar years. The first graph shows the overall growth in network traffic to storage over the years.

  12. Vehicle Technologies Office: Graduate Automotive Technology Education

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (GATE) | Department of Energy Education & Workforce Development » Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) DOE established the Graduate Automotive Technology Education (GATE) Centers of Excellence to provide future generations of engineers and scientists with knowledge and skills in advanced automotive technologies. By funding curriculum development and expansion as well as

  13. Ceramic Technology Project

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  14. Portfolio Projects by Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects by Technology Portfolio Projects by Technology For printable PDF files of LPO's portfolio projects and LPO's illustrated poster series highlighting clean energy and advanced vehicles manufacturing technologies from its portfolio, please see the LPO Publications page. ADVANCED VEHICLES MANUFACTURING PROJECT LOAN PROGRAM TECHNOLOGY OWNER(S) LOCATION(S) LOAN TYPE LOAN AMOUNT 1 ISSUANCE DATE FORD ATVM Advanced Vehicles Manufacturing Ford Motor Company Illinois (Chicago), Kentucky

  15. Geothermal Technologies Program Fact Sheet | Department of Energy

    Office of Environmental Management (EM)

    Fact Sheet Geothermal Technologies Program Fact Sheet Overview of DOE Geothermal Technologies Program. PDF icon geothermal_fs.pdf More Documents & Publications Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Executive Summary Geothermal Technologies Program Peer Review Program June 6 - 10, 2011 Geothermal Technologies Program Overview

  16. 2012 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Fuel Cell Technologies Market Report 2012 Fuel Cell Technologies Market Report This report describes data compiled in 2013 on trends in the fuel cell industry for 2012 with some comparison to previous years. PDF icon 2012 Fuel Cell Technologies Market Report More Documents & Publications 2008 Fuel Cell Technologies Market Report 2008 Fuel Cell Technologies Market Report 2011

  17. Webtrends Archives by Fiscal Year — Fuel Cells

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Fuel Cell Technologies Office, Webtrends archives for the site, including the Annual Merit Review and DOE Hydrogen Program, by fiscal year.

  18. Webtrends Archives by Fiscal Year — Wind and Water

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Wind and Water Power Technologies Office, Webtrends archives for the sites, including Wind Powering America, by fiscal year.

  19. Google Archives by Fiscal Year — Wind and Water

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Wind and Water Power Technologies Office, retired Google Analytics profiles for the sites by fiscal year.

  20. NREL Technology Partnership Agreement Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Technology Partnership Agreement Process NREL/Partner Discuss Project Proposal DOE Reviews and Approves Partner Sends Funds to NREL NREL/Partner Start Work NREL/Partner Manage Commitment NREL Determines if Project Meets Qualifications Parties Sign Agreement NREL/DOE Review. Negotiate as Needed. NREL/Partner Determine Agreement Type NREL/Partner Develop Statement of Work NREL Provides Draft Agreement For more information about the technology partnership agreement process, see the NREL

  1. 2014 Vehicle Technologies Market Report Released

    Broader source: Energy.gov [DOE]

    Oak Ridge National Laboratory recently released the Vehicle Technologies Market Report, which details the past years major trends in light-, medium-, and heavy-duty car and truck markets as well as patterns in the underlying economic and transportation systems. The report specifically focuses on developments in high-efficiency and alternative-fuel vehicle technologies over the course of 2014.

  2. Building Technologies Office Overview

    SciTech Connect (OSTI)

    2013-04-01

    Building Technologies Office Overview Presentation for the 2013 Building Technologies Office's Program Peer Review

  3. Property:Building/YearConstruction2 | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search This is a property of type Date. Year of construction 2 (Year of construction) Pages using the property "BuildingYearConstruction2" Showing 25 pages using...

  4. Building Technologies Office Multi-Year Program Plan

    Energy Savers [EERE]

    ... energy loads, and improving the linkages to the national goals of reducing greenhouse gas emissions and electricity grid ... EPCA - Energy Policy Conservation Act of 1975 EPRI - ...

  5. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Finally, the high purity of hydrogen required for fuel cells ... efficiently utilize the solar spectrum but are often less ... dark and light-induced degradation due to corrosion ...

  6. Section 3, Bioenergy Technologies Office Multi-Year Program Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... volumes aligned, and achievable path to market penetration defined Marketing plan including fuel testing and approval coordinated with long-term project plans ...

  7. Section Two, Bioenergy Technologies Office Multi-Year Program...

    Broader source: Energy.gov (indexed) [DOE]

    with the plant cell walls, vascular ash in the plant, and introduced ash resulting from soil contamination. Ash cannot be converted to a biofuel product and causes operational...

  8. Section 2, Bioenergy Technologies Office Multi-Year Program Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Route Feedstock Abengoa 25 Cellulosic Ethanol Biochemical Agricultural Residue POET-DSM 25 Cellulosic Ethanol Biochemical Agricultural Residue INEOS New Planet Bioenergy 8 ...

  9. Bioenergy Technologies Office Fiscal Year 2014 Annual Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... * POET-DSM: Grand Opening of Second U.S.Commercial-Scale Cellulosic Ethanol Biorefinery * Defense Production Act Biorefineries Advance to Construction Stage 2013 2014 5 ...

  10. Bioenergy Technologies Office Multi-Year Program Plan, March...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Route Feedstock Abengoa 25 Cellulosic Ethanol Biochemical Agricultural Residue POET-DSM 25 Cellulosic Ethanol Biochemical Agricultural Residue INEOS New Planet Bioenergy 8 ...

  11. Fuel Cell Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...aer). 47 Black & Veatch, 2007, 20% Wind Energy Penetration in the ... in sales, despite the global financial crisis that began in 2008. The number of fuel ...

  12. Bibliography, Bioenergy Technologies Office Multi-Year Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... European Commission: Energy (2015). "Renewable Energy." https:ec.europa.euenergyentopicsrenewable-energy. European Commission (2015). "The EU Emissions Trading System (EU ...

  13. Fuel Cell Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and Demonstration Plan Page D- 1 DOE Hydrogen Program 2011 Annual Merit Review Project Evaluation Form Project Number: Reviewer: Title of Project:...

  14. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Quality, 2012 (Updated February 2012) PDF icon Appendix D: 2011 Annual Program Review Project Evaluation Form (Updated February 2012) PDF icon Appendix E: Acronyms, 2012...

  15. Building Technologies Program Budget Request: Fiscal Year 2012

    SciTech Connect (OSTI)

    none,

    2011-02-01

    Details about BTP's budget request for FY2012. BTPs FY 2012 activities reflect a significant shift by EERE in budget development of incorporating analytically based integrated planning, review, and performance assessment of its programs. BTPs FY 2012 portfolio will achieve rapid gains in the efficient use of buildings energy through a balanced set of strategies.

  16. Section One, Bioenergy Technologies Office Multi-Year Program...

    Broader source: Energy.gov (indexed) [DOE]

    characterization; regulation of underground storage tanks; emergency management and remediation of biofuel spills Engine optimizationcertification; characterization of vehicle...

  17. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    constitute or imply its endorsement, recommendation, or favoring by the United States ... . . . . . . . . . . . . . . . . 28 2 .3 .1 Job Creation . . . . . . . . . . . . . . . . . ...

  18. Section 1, Bioenergy Technologies Office Multi-Year Program Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The national RFS legislated by EISA was designed to provide a reliable market for biofuels of 21 billion gallons of advanced biofuels by 2022. Blender tax credits for ethanol and ...

  19. Section One, Bioenergy Technologies Office Multi-Year Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The national RFS legislated by EISA provides a reliable market for biofuels of 21 billion gallons of advanced biofuels by 2022. Blender tax credits for ethanol and biodiesel have ...

  20. Bibliography, Bioenergy Technologies Office Multi-Year Program...

    Broader source: Energy.gov (indexed) [DOE]

    M. (2013). "Status of Advanced Biofuels Demonstration Facilities in 2012: A Report to IEA Bioenergy Task 39," http:demoplants.bioenergy2020.eufilesDemoplantsReportFinal.pd...

  1. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... to attain the DOE Hydrogen and Fuel Cells Program Systems Integration goal and objectives. ... integrated management and optimization of work flow across organizational boundaries. ...

  2. Bioenergy Technologies Office Multi-Year Program Plan: May 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... February 2009 American Recovery and Reinvestment Act of ... environmental, and public health impacts; regulation of ... for Fuel Ethanol," Journal of Industrial Ecology ...

  3. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2 .1 .1 Offset of Coal and Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

  4. Fuel Cell Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Specification - Part 2: Proton exchange membrane (PEM) fuel cell applications for road vehicles, recently approved by the International Organization for Standardization (ISO). ...

  5. TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT

  6. Graduate Automotive Technology Education (GATE) Initiative Awards |

    Office of Environmental Management (EM)

    Department of Energy Graduate Automotive Technology Education (GATE) Initiative Awards Graduate Automotive Technology Education (GATE) Initiative Awards September 8, 2011 - 11:46am Addthis Graduate Automotive Technology Education (GATE) Initiative Awards DOE's Graduate Automotive Technology Education (GATE) initiative will award $6.4 million over the course of five years to support seven Centers of Excellence at American colleges, universities, and university-affiliated research

  7. Five-Year Program Plan for Fiscal Years 2008 to 2012 for Electric

    Energy Savers [EERE]

    Transmission and Distribution Programs. | Department of Energy Five-Year Program Plan for Fiscal Years 2008 to 2012 for Electric Transmission and Distribution Programs. Five-Year Program Plan for Fiscal Years 2008 to 2012 for Electric Transmission and Distribution Programs. The Office of Electricity Delivery and Energy Reliability (OE) is the primary organization within the U.S. Department of Energy (DOE) for research, development, demonstration, technology transfer, and policy development

  8. Types of Lighting in Commercial Buildings - Full Report

    U.S. Energy Information Administration (EIA) Indexed Site

    light sources along with other advanced lighting technologies. The Commercial Buildings Energy Consumption Survey (CBECS) collects information on types of lighting equipment, the...

  9. NREL Technologies Win National Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 17, 1997—Technologies developed at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) have been selected to receive two 1997 R&D 100 Awards by Research and Development Magazine. The annual awards recognize the years 100 most important, unique and useful innovations. The magazine recognized PV Optics as one of the most important technological advances of 1997. PV Optics is the first computer program capable of accurately analyzing light trapping

  10. Science & Technology Review Articles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NIF & Photon Science News Press Releases Experimental Highlights Efficiency Improvements Science & Technology Meetings and Workshops Papers and Presentations NIF&PS People In the News Press Kit S&TR Articles home / news Science & Technology Review Articles Title Year Month Author Description Downoad Developing Lightweight Optics for Space 2013 January Jerry Britten Fabricating a large-aperture transmissive diffractive optic for DARPA's Membrane Optic Imager Real-Time

  11. Vehicle Technologies Office: Annual Merit Review Presentations | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Merit Review Presentations Vehicle Technologies Office: Annual Merit Review Presentations At the Vehicle Technologies Office Annual Merit Review and Peer Evaluation, advanced vehicle technologies projects funded by VTO are presented and reviewed for their merit. The Merit Review presentations from past years are in the below database. Learn more about the Vehicle Technologies Office's work. Presentation Year Technology Area Merit Review Presentations Table

  12. Yearly Energy Costs for Buildings

    Energy Science and Technology Software Center (OSTI)

    1991-03-20

    COSTSAFR3.0 generates a set of compliance forms which will be attached to housing Requests for Proposals (RFPs) issued by Departments or Agencies of the Federal Government. The compliance forms provide a uniform method for estimating the total yearly energy cost for each proposal. COSTSAFR3.0 analyzes specific housing projects at a given site, using alternative fuel types, and considering alternative housing types. The program is designed around the concept of minimizing overall costs through energy conservationmore » design, including first cost and future utility costs, and estabilishes a standard design to which proposed housing designs are compared. It provides a point table for each housing type that can be used to determine whether a proposed design meets the standard and how a design can be modified to meet the standard.« less

  13. Emerging Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies Emerging Technologies Last January, we took a look at how ARPA-E performer, 1366 Technologies is working to dramatically reduce the cost of solar energy. A year later, we revisited their headquarters in Lexington, MA to see the progress they've made. Featured Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power

  14. MHK Technologies/The WaveCatcher System | Open Energy Information

    Open Energy Info (EERE)

    Profile Technology Type Click here Attenuator Technology Description System captures a wave stores the energy in a large holder containment device resulting in a large potential...

  15. 50 Years After the MoonShot Speech, Critical Advancements in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    50 Years After the MoonShot Speech, Critical Advancements in Clean Energy Technology 50 Years After the MoonShot Speech, Critical Advancements in Clean Energy Technology May 25, ...

  16. EERE Fiscal Year 2017 Budget Webinar- Renewable Power

    Broader source: Energy.gov [DOE]

    Join the Office of Energy Efficiency and Renewable Energy (EERE) for a webinar hosted by Deputy Assistant Secretary for Renewable Power Doug Hollett to learn about EERE's fiscal year 2017 budget request. Deputy Assistant Secretary Hollett will be joined by José Zayas, Wind & Water Technologies Office Director; Lidija Sekaric, Solar Technologies Office Acting Director; and Sue Hamm, Geothermal Technologies Office Acting Director.

  17. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL Issues Licenses for its Arc Position Sensing Technology Success Story The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has issued two licenses involving its Arc Position Sensing (APS) technology to KW Associates LLC , an Oregon-based company founded by the technology's inventors. APS technology is a patented, award- winning measurement technology developed for the specialty metals industry to identify arc distribution conditions during arc melting. The unique

  18. NREL: Technology Transfer - Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Available for Licensing Photo of NREL scientist in the NREL Hydrogen Lab. NREL's scientists and engineers develop award-winning technologies available for licensing. NREL scientists and engineers produce breakthrough and award-winning renewable energy and energy efficiency technologies that are available for licensing. We have many licensing opportunities for NREL-developed technologies, including our featured LED technologies. To see all our technologies available for licensing,

  19. Distributed Energy Technology Characterization (Desiccant Technologies),

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2004 | Department of Energy Characterization (Desiccant Technologies), January 2004 Distributed Energy Technology Characterization (Desiccant Technologies), January 2004 The purpose of this report is to characterize desiccant technology and applications, and to show how these technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. This technology characterization is intended to provide decision-makers and system developers

  20. High Impact Technology Catalyst: Technology Deployment Strategies |

    Energy Savers [EERE]

    Department of Energy Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: Technology Deployment Strategies to serve as an overview of the HIT Catalyst program activities, including a summary of the selection process undertaken to identify, evaluate and prioritize the current HITs, descriptions of the technologies and markets for each HIT, and plans for deployment. PDF

  1. NETL Technologies Recognized for Technology Development, Transfer |

    Office of Environmental Management (EM)

    Department of Energy Recognized for Technology Development, Transfer NETL Technologies Recognized for Technology Development, Transfer October 25, 2013 - 1:31pm Addthis Did you know? The Federal Laboratory Consortium for Technology Transfer is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. In consonance with the Federal Technology Transfer Act of

  2. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle ...

  3. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle ...

  4. Distributed Energy Technology Characterization (Desiccant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    applications, and to show how these technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. This technology...

  5. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  6. 50 Years of Space

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50 Years of Space /science-innovation/_assets/images/icon-science.jpg 50 Years of Space Since 1943, some of the world's smartest and most dedicated technical people have accomplished the difficult, the unexpected, and what sometimes seems impossible at Los Alamos. LANL Top Science 2014 Faces of Science Radical Supercomputing Science Digests 70 Years of Innovations Top Ten Innovations of 2013 Energy Sustainability 50 Years of Space 50 YEARS OF SPACE Creating a safer, more secure tomorrow x x 1955

  7. 70 Years of Innovations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70 Years of Innovations /about/_assets/images/icon-70th2.jpg Innovations: Celebrating 70 Years Since 1943, some of the world's smartest and most dedicated technical people have accomplished the difficult, the unexpected, and what sometimes seems impossible at Los Alamos. LANL Top Science 2014 Faces of Science Radical Supercomputing Science Digests 70 Years of Innovations Top Ten Innovations of 2013 Energy Sustainability 50 Years of Space 70 YEARS OF INNOVATIONS Addressing the nation's most

  8. Fiscal Year 2013 Budget Request Briefing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fiscal Year 2013 Budget Request Briefing Fiscal Year 2013 Budget Request Briefing Program budget overview PDF icon gtp_fy13_budget_request_overview.pdf More Documents & Publications Geothermal Technologies Program GRC Presentation, 10/1/2012 Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett Stanford Geothermal Workshop 2012 Annual Meeting

  9. Webtrends Archives by Fiscal Year - Bioenergy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    From the EERE Web Statistics Archive: Bioenergy Technologies Office, Webtrends archives by fiscal year. Microsoft Office document icon Bioenergy FY09 Microsoft Office document icon Bioenergy FY10 Microsoft Office document icon Bioenergy FY11 More Documents & Publications Webtrends Archives by Fiscal Year - Geothermal Webtrends Archives by Fiscal Year - Advanced Manufacturing Office Webtrends Archives by Fiscal Year - Solar

  10. MHK Technologies/Oceanlinx Mark 3 Wave Energy Converter | Open...

    Open Energy Info (EERE)

    Wave Energy Project *MHK ProjectsHawaii *MHK ProjectsOceanlinx Maui *MHK ProjectsPort Kembla *MHK ProjectsPortland Technology Resource Click here Wave Technology Type Click...

  11. 2015 Pathways to Commercial Success: Technologies and Products Supported by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Fuel Cell Technologies Office | Department of Energy 5 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office 2015 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office This 2015 report updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that

  12. 2014 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Fuel Cell Technologies Market Report 2014 Fuel Cell Technologies Market Report This report describes data compiled in 2015 on trends in the fuel cell industry for 2014 with some comparison to previous years. PDF icon 2014 Fuel Cell Technologies Market Report More Documents & Publications 2013 Fuel Cell Technologies Market Report 2012 Fuel Cell Technologies Market Report Fuel Cell Technologies Program Overview: 2012 DOE Polymer and Composite Materials Meetings

  13. Water Power Program: Marine and Hydrokinetic Technologies

    Broader source: Energy.gov [DOE]

    Pamphlet that describes the Office of EERE's Water Power Program in fiscal year 2009, including the fiscal year 2009 funding opportunities, the Small Business Innovation Research and Small Business Technology Transfer Programs, the U.S. hydrodynamic testing facilities, and the fiscal year 2008 Advanced Water Projects awards.

  14. Through the years

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We invented technology that led to compact discs . . . helped protect our U.S. ports of ... ceremony on the Richland campus. 1995 PNNL led DOE's International Nuclear Safety Program. ...

  15. Innovation investment area: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The mission of Environmental Management`s (EM) Office of Technology Development (OTD) Innovation Investment Area is to identify and provide development support for two types of technologies that are developed to characterize, treat and dispose of DOE waste, and to remediate contaminated sites. They are: technologies that show promise to address specific EM needs, but require proof-of-principle experimentation; and (2) already proven technologies in other fields that require critical path experimentation to demonstrate feasibility for adaptation to specific EM needs. The underlying strategy is to ensure that private industry, other Federal Agencies, universities, and DOE National Laboratories are major participants in developing and deploying new and emerging technologies. To this end, about 125 different new and emerging technologies are being developed through Innovation Investment Area`s (IIA) two program elements: RDDT&E New Initiatives (RD01) and Interagency Agreements (RD02). Both of these activities are intended to foster research and development partnerships so as to introduce innovative technologies into other OTD program elements for expedited evaluation.

  16. Clean coal technologies market potential

    SciTech Connect (OSTI)

    Drazga, B.

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  17. Vehicle Technologies Office Propulsion Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Propulsion Materials Technologies Jerry Gibbs eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $35.6 M Lightweight Materials $28.5 M Values are FY15 enacted Propulsion Materials $7.1 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M $11.9 M FY14

  18. Secretary Moniz's First Year

    Broader source: Energy.gov [DOE]

    We're looking back at some of the biggest moments from Energy Secretary Ernest Moniz's first year in office.

  19. Hydrogen Fueling Infrastructure Research and Station Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Research and Station Technology Erika Sutherland U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov Hydrogen Fueling Infrastructure Research and Station Technology Chris Ainscough, Joe Pratt, Jennifer Kurtz, Brian Somerday, Danny Terlip, Terry Johnson November 18, 2014 Objective: Ensure that FCEV customers have a positive fueling experience relative to conventional

  20. Today`s steel technology

    SciTech Connect (OSTI)

    1996-01-01

    AISI members have made significant advances in steelmaking technology over the past several years. This report details the alloy developments and processes that have made steel an engineered material suitable for an expanding range of applications. Improved processes involve casting, rolling, welding, forging, chemical composition and computerized control. Applications cover a broad range including automobile, buildings and bridges.

  1. Calendar Year 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Calendar Year 2012 December 21, 2012 Audit Report: OAS-L-13-03 The Management of the Plateau Remediation Contract December 21, 2012 Audit Report: IG-0879 Naval Reactors Information Technology System Development Efforts December 17, 2012 Audit Report: OAS-FS-13-08 Management Letter on the Audit of the Department of Energy's Consolidated Financial Statements for Fiscal Year 2012 December 11, 2012 Audit Report: IG-0878 Follow-up Audit of the Department's Cyber Security Incident Management Program

  2. Hydrogen Fuel Cell Engines and Related Technologies Course Manual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    It also presents the different types of fuel cells and hybrid electric vehicles. PDF icon Introduction: Hydrogen Fuel Cell Engines and Related Technologies PDF icon Module 1: ...

  3. MHK Technologies/C Plane | Open Energy Information

    Open Energy Info (EERE)

    Type Click here Cross Flow Turbine Technology Description The Aquantis C Plane is a dual horizontal axis rotor device with two nacelles housing power generation systems Mooring...

  4. Vehicle Technologies Office: 2013 Fuel and Lubricant Technologies R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Progress Report | Department of Energy Fuel and Lubricant Technologies R&D Annual Progress Report Vehicle Technologies Office: 2013 Fuel and Lubricant Technologies R&D Annual Progress Report This report describes the progress made on the research and development projects funded by the Fuel and Lubricants subprogram in the Vehicle Technologies Office, as described on the Lubricants and Alternative Fuels pages. Past year's reports are listed on the Annual Progress Reports page.

  5. 2008 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, J.; Davis, S.

    2009-07-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the Department of Energy's (DOE's) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly highway transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop 'leap frog' technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  6. 2010 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, Jacob; Davis, Stacy Cagle; Diegel, Susan W

    2011-06-01

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  7. Presentation: JCESR: One Year Later | Department of Energy

    Energy Savers [EERE]

    JCESR: One Year Later Presentation: JCESR: One Year Later A briefing to the Secretary's Energy Advisory Board on the Joint Center for Energy Storage Research delivered by George Crabtree, JCESR PDF icon JCESR-One Year Later More Documents & Publications Vehicle Technologies Office Merit Review 2014: Overview of the DOE Advanced Battery R&D Program Vehicle Technologies Office Merit Review 2015: Development of Novel Electrolytes and Catalysts for Li-Air Batteries Linking Ion Solvation and

  8. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  9. Technology Deployment Annual Report 2009

    SciTech Connect (OSTI)

    Keith Arterburn

    2009-12-01

    Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties.

  10. MHK Technologies/FRI El Sea Power System | Open Energy Information

    Open Energy Info (EERE)

    FRI El Sea Power System.jpg Technology Profile Primary Organization FRI EL Sea Power S r l Technology Type Click here Axial Flow Turbine Technology Description The device is...

  11. MHK Technologies/Floating Duck Type Device | Open Energy Information

    Open Energy Info (EERE)

    Description Guangzhou Institute of Energy Conversion GIEC of Chinese Academy of Sciences CAS plans to build an isolated power system with renewable energy on Dawanshan Island...

  12. Kerosene space heaters--combustion technology and kerosene characteristics

    SciTech Connect (OSTI)

    Kubayashi, k.; I Wasaki, N.

    1984-07-01

    This paper describes kerosene combustion technology. Unvented wick-type kerosene space heaters are very popular in Japan because of their economy and convenience. In recent years new vaporized kerosene burners having premixed combustion systems have been developed to solve some of the problems encountered in the older portable type. Some of the features of the new burners are instantaneous ignition, no vaporizing deposit on the burner and a wide range heating capacity. These new kerosene heaters have four major components: an air supply fan, a fuel supply assembly, a burner assembly and a control assembly. These heaters are designed to be highly reliable, have stable combustion characteristics, yield minimum carbon deposit. Finally, they are simple and inexpensive to operate.

  13. Gaseous-fuel engine technology

    SciTech Connect (OSTI)

    1995-12-31

    This publication contains three distinct groups of papers covering gaseous-fuel injection and control, gaseous-fuel engine projects, and gaseous-fuel engine/vehicle applications. Contents include: ultra rapid natural gas port injection; a CNG specific fuel injector using latching solenoid technology; development of an electronically-controlled natural gas-fueled John Deere PowerTech 8.1L engine; adapting a Geo Metro to run on natural gas using fuel-injection technology; behavior of a closed loop controlled air valve type mixer on a natural gas fueled engine under transient operation; and a turbocharged lean-burn 4.3 liter natural gas engine.

  14. Natural Gas Multi-Year Program Plan

    SciTech Connect (OSTI)

    1997-12-01

    This document comprises the Department of Energy (DOE) Natural Gas Multi-Year Program Plan, and is a follow-up to the `Natural Gas Strategic Plan and Program Crosscut Plans,` dated July 1995. DOE`s natural gas programs are aimed at simultaneously meeting our national energy needs, reducing oil imports, protecting our environment, and improving our economy. The Natural Gas Multi-Year Program Plan represents a Department-wide effort on expanded development and use of natural gas and defines Federal government and US industry roles in partnering to accomplish defined strategic goals. The four overarching goals of the Natural Gas Program are to: (1) foster development of advanced natural gas technologies, (2) encourage adoption of advanced natural gas technologies in new and existing markets, (3) support removal of policy impediments to natural gas use in new and existing markets, and (4) foster technologies and policies to maximize environmental benefits of natural gas use.

  15. Producing a High Impact Technology | Department of Energy

    Energy Savers [EERE]

    Producing a High Impact Technology Producing a High Impact Technology November 3, 2015 - 2:43pm Addthis Amy Jiron Amy Jiron Technology Manager, Building Technologies Office The spectrum of commercial building efficiency technologies is large. Opportunities to save cost and energy diverge across market sectors, types, by systems and application, based on programming and occupant behavior and organizational mission. Fortunately, the Commercial Buildings Energy Consumption Survey (CBECS) provides a

  16. Data Sources For Emerging Technologies Program MYPP Target Graphs

    Broader source: Energy.gov [DOE]

    The BTO Emerging Technologies Accomplishments and Outcomes – 2015 page contains graphs on Multi-Year Program Plan R&D targets for certain technologies. This page contains information on data...

  17. 2013 Year in Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Year in Review i 2013 YIR May 2014 Year-in-Review: 2013 Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S. Department of Energy DOE / 2013 Year in Review ii 2013 YIR For Further Information This report was prepared by the Office of Electricity Delivery and Energy Reliability under the direction of Patricia Hoffman, Assistant Secretary, and William Bryan, Deputy Assistant Secretary. Specific

  18. Supplemental Information for Fiscal Year 2017 Project Prioritization...

    Broader source: Energy.gov (indexed) [DOE]

    David Rhodes DOE, Provided Additional Information on the Types of Clean-up Projects at LANL. FY'17 Prioritization - April 8, 2015 More Documents & Publications Fiscal Year 2017...

  19. As summer turns to fall, a new school year begins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    year. Providing these types of hands-on learning opportunities develops critical thinking skills, fosters creativity and encourages students to succeed in school. To learn more,...

  20. Popular Science Recognizes Innovative Solar Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Popular Science Recognizes Innovative Solar Technologies For more information contact: e:mail: Public Affairs Golden, Colo., Dec. 16, 1998 -- Popular Science magazine selected cutting-edge solar technologies developed with support from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) as two of the year's most important technological advances. Innovative microinverters that enable photovoltaic (solar electric) modules to produce standard household current are listed

  1. Geothermal Technologies Program Overview Presentation at Stanford

    Office of Environmental Management (EM)

    Geothermal Workshop | Department of Energy Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal Technologies Program that includes information about subprograms and where each focuses. PDF icon gtp_overview_stanford_final.pdf More Documents & Publications Fiscal Year 2013 Budget Request Briefing Geothermal Technologies Program GRC Presentation, 10/1/2012 Geothermal

  2. Vehicle Technologies Office: Lubricants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Efficiency & Emissions » Vehicle Technologies Office: Lubricants Vehicle Technologies Office: Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is essential. Because 11.5 percent of fuel energy is consumed by engine friction, decreasing this friction through lubricants can lead to substantial improvements in the fuel economy of current vehicles, without needing to wait for the fleet

  3. Reliability Technology earns prestigious Los Alamos award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    known as Reliability Technology-a statistical method that P&G has used to streamline its manufacturing processes and save more than a billion dollars a year in costs by increasing...

  4. Understanding Contamination; Twenty Years of Simulating Radiological Contamination

    SciTech Connect (OSTI)

    Emily Snyder; John Drake; Ryan James

    2012-02-01

    A wide variety of simulated contamination methods have been developed by researchers to reproducibly test radiological decontamination methods. Some twenty years ago a method of non-radioactive contamination simulation was proposed at the Idaho National Laboratory (INL) that mimicked the character of radioactive cesium and zirconium contamination on stainless steel. It involved baking the contamination into the surface of the stainless steel in order to 'fix' it into a tenacious, tightly bound oxide layer. This type of contamination was particularly applicable to nuclear processing facilities (and nuclear reactors) where oxide growth and exchange of radioactive materials within the oxide layer became the predominant model for material/contaminant interaction. Additional simulation methods and their empirically derived basis (from a nuclear fuel reprocessing facility) are discussed. In the last ten years the INL, working with the Defense Advanced Research Projects Agency (DARPA) and the National Homeland Security Research Center (NHSRC), has continued to develop contamination simulation methodologies. The most notable of these newer methodologies was developed to compare the efficacy of different decontamination technologies against radiological dispersal device (RDD, 'dirty bomb') type of contamination. There are many different scenarios for how RDD contamination may be spread, but the most commonly used one at the INL involves the dispersal of an aqueous solution containing radioactive Cs-137. This method was chosen during the DARPA projects and has continued through the NHSRC series of decontamination trials and also gives a tenacious 'fixed' contamination. Much has been learned about the interaction of cesium contamination with building materials, particularly concrete, throughout these tests. The effects of porosity, cation-exchange capacity of the material and the amount of dirt and debris on the surface are very important factors. The interaction of the contaminant/substrate with the particular decontamination technology is also very important. Results of decontamination testing from hundreds of contaminated coupons have lead to certain conclusions about the contamination and the type of decontamination methods being deployed. A recent addition to the DARPA initiated methodology simulates the deposition of nuclear fallout. This contamination differs from previous tests in that it has been developed and validated purely to simulate a 'loose' type of contamination. This may represent the first time that a radiologically contaminated 'fallout' stimulant has been developed to reproducibly test decontamination methods. While no contaminant/methodology may serve as a complete example of all aspects that could be seen in the field, the study of this family of simulation methods provides insight into the nature of radiological contamination.

  5. 70 years after Trinity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70 years after Trinity 70 years after Trinity Though the world has seen many changes since Trinity, one thing has remained constant: Los Alamos remains essential to our nation's security. banner 70 years after Trinity An Opinion Piece by Laboratory Director Charles McMillan Charles McMillan, Director Seventy years ago on July 16, scientists with the Manhattan Project tested the Trinity gadget-the first atomic bomb-in the desert outside of Alamogordo, NM. The pre-dawn flash of light that mimicked

  6. Emerging Technologies Applicable to the Safe and Secure Transportation of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hazardous Materials | Department of Energy Emerging Technologies Applicable to the Safe and Secure Transportation of Hazardous Materials Emerging Technologies Applicable to the Safe and Secure Transportation of Hazardous Materials Project Objectives Develop a list of near-term (less than 5 years) and longer-term (5-15 years) technologies that are candidates for enhancing safety and security of Hazmat transportation; Identify emerging technologies that hold the greatest promise (in terms of

  7. Innovative Technologies for Bioenergy Technologies Incubator...

    Broader source: Energy.gov (indexed) [DOE]

    00PM EDT Online The Innovative Technologies for Bioenergy Technologies Incubator 2 FOA Informational Webinar will be held Wednesday, September 2, 1:00 p.m.-2:00 p.m. ET. Standard...

  8. Geothermal Technologies Office - Webmaster | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office - Webmaster Geothermal Technologies Office - Webmaster

  9. Plasma technology directory

    SciTech Connect (OSTI)

    Ward, P.P.; Dybwad, G.L.

    1995-03-01

    The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

  10. NREL: Technology Transfer - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 November 8, 2007 Wakonda Technologies is the Clean Energy Entrepreneur of the Year A small company commercializing a novel solar energy technology has been named the Clean Energy Entrepreneur of the Year at the 20th Industry Growth Forum sponsored by NREL. October 31, 2007 Chevron and NREL to Collaborate on Research to Produce Transportation Fuels using Algae Chevron Corporation (NYSE: CVX) and NREL announced today that they have entered into a collaborative research and development agreement

  11. ARM - Measurement - Cloud type

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Cloud type Cloud type such as cirrus, stratus, cumulus etc Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  12. Handbook of synfuels technology

    SciTech Connect (OSTI)

    Meyers, R.A.

    1984-01-01

    This book explores various methods of producing synthetic fuels. Topics considered include coal liquefaction, Exxon Donor Solvent Coal Liquefaction Process, the H-Coal Process, the SRC-I Coal Liquefaction Process, the coal hydrogenation plant at Bottrop, production of liquid fuels from coal-derived synthesis gas, the Sasol plant, the ICI low pressure methanol process, Mobil Methanol-to-Gasoline (MTG) Process, the Lurgi low pressure methanol process, coal gasification the Texaco Coal Gasification Process, the Shell Coal Gasification Process, the Combustion Engineering Coal Gasification Process, British Gas/Lurgi Slagging Gasifier, KBW Coal Gasification, fluidized-bed coal gasification process (type Winkler), Lurgi coal gasification (dry bottom gasifier), Foster Wheeler Stoic Process, the WD-GI two stage coal gasifier, the Saarberg/Otto Coal Gasification Process, Allis-Chalmers KILnGAS Process, the purification of gases derived from coal, shale oil, Lurgi-Ruhrgas Process, the Tosco II Process, Paraho oil shale retorting processes, Occidental Modified In-Situ (MIS) Process, the geokinetics in-situ retorting process, oil shale pre-beneficiation, additional oil shale technologies, oil from oil sand, Suncor Hot Water Process, emerging technologies for oil from oil sands, synfuels upgrading and refining, Exxon fluid coking/flexicoking processes for synfuels upgrading applications, H-Oil processes, LC-Fining Process, and The Modified Litol Process for benzene production.

  13. Buildings Emerging Technologies 2015 Plenary presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies (ET) Pat Phelan (patrick.phelan@ee.doe.gov) April 14, 2015 Why Support Buildings Energy Efficiency R&D? U.S. Revenue by Advanced Building Technology Type 36% 74% 25% 4% 31% 141% 343% 48% Source: Advanced Energy Now 2015 Market Report 2 Emerging Technologies R&D Goals As a result of ET sponsored research, cost effective technologies will be introduced into the marketplace by 2020 that will be capable of reducing a building's energy use by 25% relative to 2010 cost

  14. Final Year Project Report

    SciTech Connect (OSTI)

    Hubsch, Tristan

    2013-06-20

    In the last years of this eighteen-year grant project, the research efforts have focused mostly on the study of off-shell representations of supersymmetry, both on the worldline and on the world- sheet, i.e., both in supersymmetric quantum mechanics and in supersymmetric field theory in 1+1-dimensional spacetime.

  15. four-year goal

    National Nuclear Security Administration (NNSA)

    %2A en Material Disposition http:nnsa.energy.govaboutusourprogramsdnnm3dispose

    type-text field-field-page-name">
    Page...

  16. Surface coatings. Science and technology

    SciTech Connect (OSTI)

    Paul, S.

    1985-01-01

    This book covers the coating field from the latest industry developments to current energy and pollution regulations. It explains the composition of coatings, how they are prepared and applied and the factors that control their ultimate performance. The author discusses the synthesis of polymeric binders, industrial resins, pigments, paints and paint properties, types of coatings, and new technologies. CONTENTS: Binders: Synthesis of Polymeric Binders; Industrial Resins; Pigments; Paints and Paint Properties: Pigment Dispersion; Surface Preparation and Paint Application; Paint Properties and Their Evaluation; Types of Coatings; New Technolgies.

  17. Introduction to Renewable Energy Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Renewable Energy Technology A YEAR-LONG SCIENCE & TECHNOLOGY COURSE by Matthew A. Brown Lakewood High School Lakewood, CO Lakewood High School Red Rocks Community College Smart Energy Living Alliance Metro Denver WIRED Initiative Introduction Page i-i Revision date: 6/1/08 This curriculum is a partnership between: Lakewood High School Matthew Brown, maabrown@jeffco.k12.co.us Suzanne McClung, smcclung@jeffco.k12.co.us 9700 W. 8th Ave., Lakewood, CO 80215 303.982.7096

  18. Forest products technologies

    SciTech Connect (OSTI)

    None, None

    2006-07-18

    Report highlights DOE Industrial Technology Program co-funded R&D resulting in commercial energy-efficient technologies and emerging technologies helping the forest products industry save energy.

  19. Advanced Reactor Technology -- Regulatory Technology Development Plan (RTDP)

    SciTech Connect (OSTI)

    Moe, Wayne Leland

    2015-05-01

    This DOE-NE Advanced Small Modular Reactor (AdvSMR) regulatory technology development plan (RTDP) will link critical DOE nuclear reactor technology development programs to important regulatory and policy-related issues likely to impact a “critical path” for establishing a viable commercial AdvSMR presence in the domestic energy market. Accordingly, the regulatory considerations that are set forth in the AdvSMR RTDP will not be limited to any one particular type or subset of advanced reactor technology(s) but rather broadly consider potential regulatory approaches and the licensing implications that accompany all DOE-sponsored research and technology development activity that deal with commercial non-light water reactors. However, it is also important to remember that certain “minimum” levels of design and safety approach knowledge concerning these technology(s) must be defined and available to an extent that supports appropriate pre-licensing regulatory analysis within the RTDP. Final resolution to advanced reactor licensing issues is most often predicated on the detailed design information and specific safety approach as documented in a facility license application and submitted for licensing review. Because the AdvSMR RTDP is focused on identifying and assessing the potential regulatory implications of DOE-sponsored reactor technology research very early in the pre-license application development phase, the information necessary to support a comprehensive regulatory analysis of a new reactor technology, and the resolution of resulting issues, will generally not be available. As such, the regulatory considerations documented in the RTDP should be considered an initial “first step” in the licensing process which will continue until a license is issued to build and operate the said nuclear facility. Because a facility license application relies heavily on the data and information generated by technology development studies, the anticipated regulatory importance of key DOE reactor research initiatives should be assessed early in the technology development process. Quality assurance requirements supportive of later licensing activities must also be attached to important research activities to ensure resulting data is usable in that context. Early regulatory analysis and licensing approach planning thus provides a significant benefit to the formulation of research plans and also enables the planning and development of a compatible AdvSMR licensing framework, should significant modification be required.

  20. Cutting-Edge Building Technologies Offer Big Energy Savings Potential |

    Office of Environmental Management (EM)

    Department of Energy Cutting-Edge Building Technologies Offer Big Energy Savings Potential Cutting-Edge Building Technologies Offer Big Energy Savings Potential November 5, 2013 - 3:36pm Addthis The Building Technologies Office’s Emerging Technologies Program works to advance new commerical building technologies that are expected to reach the marketplace in five years or less. | Photo of National Renewable Energy Laboratory's Research Support Facility by Dennis Schroeder, National