Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government...

2

Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency & Renewable and Energy - Commercialization Energy Efficiency & Renewable and Energy - Commercialization Deployment SBIR/STTR - Small Business Innovation Research and Small Business Technology Transfer USEFUL LINKS Contract Opportunities: FBO.gov FedConnect.net Grant Opportunities DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Licensing Guide and Sample License The Technology Transfer Working Group (TTWG), made up of representatives from each DOE Laboratory and Facility, recently created a Licensing Guide and Sample License [762-KB PDF]. The Guide will serve to provide a general understanding of typical contract terms and provisions to help reduce both

3

TECHNOLOGY TRANSFER  

Broader source: Energy.gov (indexed) [DOE]

404-NOV. 1, 2000 404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT TITLE. This Act may be cited as the ''Technology Transfer Commer- cialization Act of 2000''. SEC. 2. FINDINGS. The Congress finds that- (1) the importance of linking our unparalleled network of over 700 Federal laboratories and our Nation's universities with United States industry continues to hold great promise

4

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Software and Information Technologies Software and Information Technologies Algorithm for Correcting Detector Nonlinearites Chatelet: More Accurate Modeling for Oil, Gas or Geothermal Well Production Collective Memory Transfers for Multi-Core Processors Energy Efficiency Software EnergyPlus:Energy Simulation Software for Buildings Tools, Guides and Software to Support the Design and Operation of Energy Efficient Buildings Flexible Bandwidth Reservations for Data Transfer Genomic and Proteomic Software LABELIT - Software for Macromolecular Diffraction Data Processing PHENIX - Software for Computational Crystallography Vista/AVID: Visualization and Allignment Software for Comparative Genomics Geophysical Software Accurate Identification, Imaging, and Monitoring of Fluid Saturated Underground Reservoirs

5

INL Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Through collaboration with industry partners, INL's Technology Deployment office makes available to American agencies and international organizations unique...

6

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2008 Prepared by: National Institute to submit this fiscal year 2008 Technology Transfer Summary Report to the President and the Congress transfer authorities established by the Technology Transfer Commercialization Act of 2000 (P.L. 106

Perkins, Richard A.

7

Partnerships and Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnerships and Technology Transfer User Facilities Visiting Us Contact Us Home About Us Success Stories Events News ORNL Inventors (internal only) Find a Technology Search go...

8

Technology Transfer Ombudsman Program  

Broader source: Energy.gov [DOE]

The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000.  Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national...

9

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2007 Prepared by: National Institute to present to the President and the Congress this Federal Laboratory Technology Transfer Report summarizing the achievements of Federal technology transfer and partnering programs of the Federal research and development

Perkins, Richard A.

10

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2009 Prepared by: National Institute to submit this fiscal year 2009 Technology Transfer Summary Report to the President and the Congress in accordance with 15 USC Sec 3710(g)(2) for an annual summary on the implementation of technology transfer

Perkins, Richard A.

11

Technology Transfer: About the Technology Transfer Department  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Technology Transfer and Intellectual Property Management About the Technology Transfer and Intellectual Property Management Department The Technology Transfer Department helps move technologies from the Lab to the marketplace to benefit society and the U. S. economy. We accomplish this through developing and managing an array of partnerships with the private and public sectors. What We Do We license a wide range of cutting-edge technologies to companies that have the financial, R & D, manufacturing, marketing, and managerial capabilities to successfully commercialize Lab inventions. In addition, we manage lab-industry research partnerships, ensure that inventions receive appropriate patent or copyright protection, license technology to start-up companies, distribute royalties to the Lab and to inventors and serve as

12

NREL: Technology Transfer - About Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Technology Transfer About Technology Transfer Through technology partnerships, NREL seeks to reduce private sector risk and enable investment in the adoption of renewable energy and energy efficiency technologies. The transfer of these technologies to the marketplace helps displace oil, reduce carbon emissions, and increase U.S. industry competitiveness. Principles NREL develops and implements technology partnerships based on the standards established by the following principles: Balancing Public and Private Interest Form partnerships that serve the public interest and advance U.S. Department of Energy goals. Demonstrate appropriate stewardship of publicly funded assets, yielding national benefits. Provide value to the commercial partner. Focusing on Outcomes Develop mutually beneficial collaborations through processes, which are

13

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test test Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Energy ENERGY EFFICIENT TECHNOLOGIES Aerosol Sealing Aerosol Remote Sealing System Clog-free Atomizing and Spray Drying Nozzle Air-stable Nanomaterials for Efficient OLEDs Solvent Processed Nanotube Composites OLEDS with Air-stable Structured Electrodes APIs for Online Energy Saving Tools: Home Energy Saver and EnergyIQ Carbon Dioxide Capture at a Reduced Cost Dynamic Solar Glare Blocking System Electrochromic Device Controlled by Sunlight Electrochromic Windows with Multiple-Cavity Optical Bandpass Filter Electrochromic Window Technology Portfolio Universal Electrochromic Smart Window Coating

14

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Please refer to the list of technologies below for licensing and research Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Biotechnology and Medicine DIAGNOSTICS AND THERAPEUTICS CANCER CANCER PROGNOSTICS 14-3-3 Sigma as a Biomarker of Basal Breast Cancer ANXA9: A Therapeutic Target and Predictive Marker for Early Detection of Aggressive Breast Cancer Biomarkers for Predicting Breast Cancer Patient Response to PARP Inhibitors Breast Cancer Recurrence Risk Analysis Using Selected Gene Expression Comprehensive Prognostic Markers and Therapeutic Targets for Drug-Resistant Breast Cancers Diagnostic Test to Personalize Therapy Using Platinum-based Anticancer Drugs Early Detection of Metastatic Cancer Progenitor Cells

15

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Sources and Beam Technologies Ion Sources and Beam Technologies GENERATORS AND DETECTORS Compact, Safe and Energy Efficient Neutron Generator Fast Pulsed Neutron Generator High Energy Gamma Generator Lithium-Drifted Silicon Detector with Segmented Contacts Low Power, High Energy Gamma Ray Detector Calibration Device Nested Type Coaxial Neutron Generator Neutron and Proton Generators: Cylindrical Neutron Generator with Nested Option, IB-1764 Neutron-based System for Nondestructive Imaging, IB-1794 Mini Neutron Tube, IB-1793a Ultra-short Ion and Neutron Pulse Production, IB-1707 Mini Neutron Generator, IB-1793b Compact Spherical Neutron Generator, IB-1675 Plasma-Driven Neutron/Gamma Generators Portable, Low-cost Gamma Source for Active Interrogation ION SOURCES WITH ANTENNAS External Antenna for Ion Sources

16

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division to them in California. TECHNOLOGY TRANSFER PROGRAM MAY 2011, VOL. 3, NO. 1 California's Transition

California at Berkeley, University of

17

Accelerating the transfer in Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerating the transfer in Technology Transfer Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2014 - Jan. 2015...

18

Technology Application Centers: Facilitating Technology Transfer  

E-Print Network [OSTI]

transfer plus technology application. A&C Enercom has learned from experience that technology deployment will not occur unless utilities achieve both technology transfer (e.g, the dissemination of information) and technology application (e.g., the direct...

Kuhel, G. J.

19

Technology Transfer Summit  

Broader source: Energy.gov (indexed) [DOE]

Agenda as of April 9, 2012 Agenda as of April 9, 2012 Technology Transfer Summit April 16, 2012 IMC - Trinity Ballroom 4 8:00 - 8:10 Welcome & Introduction Pete Tseronis, DOE Chief Technology Officer 8:10 - 8:50 Accelerating Transfer Within an Innovation Ecosystem Debra M. Amidon, Founder and Chief Strategist, ENTOVATION International, and Author, The Innovation SuperHighway 8:50 - 9:20 Tech Transfer - Predicaments, Perplexities, and Possible Panaceas Rex Northen, Executive Director, Cleantech Open 9:20 - 9:50 A Systems Approach to Innovation Mike Schwenk, Vice President and Director Technology Deployment and Outreach, Pacific Northwest National Laboratory (PNNL) 9:50 - 10:15 DOE's Online Tech Transfer Ecosystem - aka...Stop Building Moai! Robert Bectel, Senior Policy Advisor / Chief Technology Officer

20

Technology Transfer Reporting Form | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transfer Reporting Form Technology Transfer Reporting Form Technology Transfer Reporting Form More Documents & Publications Technology Partnership Ombudsman - Roles,...

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Technology Transfer Office November 2009  

E-Print Network [OSTI]

Technology Transfer Office November 2009 INVENTION AGREEMENT In consideration of my employment in writing to Dartmouth through the Technology Transfer Office any such discovery or invention and identify

Myers, Lawrence C.

22

Sandia National Laboratories: technology transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technology transfer Federal Laboratory Consortium Regional Technology-Transfer Awards Salute Innovation, Commercialization at Sandia On September 23, 2014, in Capabilities, Carbon...

23

Partnerships and Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cooperative Research and Development Agreement Cooperative Research and Development Agreement visualization scientist A Cooperative Research and Development Agreement (CRADA) is a mechanism whereby non-federal entities (industry, universities, non-profits, etc.) can collaborate with federal laboratories on research and development projects. CRADAs are specifically technology transfer agreements; technologies developed under CRADAs are expected to be transferred to the private sector for commercial exploitation, either by the non-federal partner or another licensee of such technologies. CRADAs were authorized by the Stevenson-Wydler Technology Innovation Act of 1980 (Public Law 96-480); the authority for government-owned, contractor-operated laboratories such as ORNL to enter into CRADAs was granted by the National Competitiveness Technology Transfer Act of 1989

24

Technology Transfer Overview  

Broader source: Energy.gov [DOE]

DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the maturation and deployment of DOE discoveries, providing ongoing economic, security and environmental benefits for all Americans.

25

NREL: Technology Transfer - Webmaster  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Webmaster Webmaster To report any problems on or ask a question about the NREL Technology Transfer Web site, you may contact the Webmaster using the online form below. If you have a question or concern that's not related to this Web site, please see our list of contacts for assistance. To contact the Webmaster, please provide your name, e-mail address, and message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News

26

NREL: Technology Transfer - Ombuds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Ombuds Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership, patent, and licensing activities. As a designated neutral party, our ombuds provides confidential, resolution-focused services. Through the ombuds process, we encourage collaborative techniques such as mediation to facilitate the speedy and low-cost resolution of complaints and disputes, when appropriate. The NREL Ombuds does not: Handle contract negotiation or other legal issues Act as a decision maker or draw conclusions Investigate or make formal recommendations on findings of fact. The ombuds also does not replace, override, or influence formal review or appeal mechanisms, or serve as an intermediary when legal action is

27

TECHNOLOGY LICENSE APPLICATION Office of Technology Transfer  

E-Print Network [OSTI]

Page 1 TECHNOLOGY LICENSE APPLICATION Office of Technology Transfer UT-Battelle, LLC (UT. One of the functions of UT-BATTELLE's Office of Technology Transfer is to negotiate license agreements

Pennycook, Steve

28

Technology Transfer: Site Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Map Site Map About Us About Technology Transfer Contact Us Available Technologies Advanced Materials Biofuels Biotechnology and Medicine Developing World Energy Environmental Technologies Imaging and Lasers Ion Sources and Beam Technologies Nanotechnology and Microtechnology Software and Information Technology For Industry Licensing Overview Frequently Asked Questions Partnering with Berkeley Lab Licensing Interest Form Receive New Tech Alerts For Researchers What You Need to Know and Do The Tech Transfer Process Forms Record of Invention (Word doc -- please do not use earlier PDF version of the form) Software Disclosure and Abstract (PDF, use Adobe Acrobat or Adobe Reader 9 and up ONLY to complete the form) Policies Conflict of Interest Outside Empolyment Export Control FAQs for Researchers

29

SRNL - Technology Transfer - Ombudsman  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ombudsman Ombudsman Ombudsman Program Policy The Department of Energy and its management and operating contractors (M & O Contractors) engaging in technology partnership activities, share a mutual objective to ensure complete fairness in the transfer of federally funded technologies into the marketplace for the benefit of the U.S. economy. This includes an interest in open lines of communication and the early identification of issues, complaints and disputes between contractors and their existing or potential partners. The Technology Transfer Ombudsman Program provides an independent point of contact for concerns about technology transfer i SRS Sign ssues, complaints and disputes. The mission of the Ombudsman Program is to elevate to the appropriate SRNS officials the information needed to identify and resolve problems thereby improving satisfaction with SRNS practices and reducing the occasion for formal disputes and litigation. The Ombudsman will not be involved in the merits of cases that are the subject of ongoing dispute resolution or litigation, or investigation incidents thereto. The Ombudsman is not established to be a super-administrator, re-doing what specialized officials have already done. Rather, the Ombudsman is to ensure that appropriate SRNS officials consider all pertinent information when deciding the company's position on a technology transfer complaint. To request forms or acquire additional information contact: Michael Wamstad, 803-725-3751 or mike.wamstad@srs.gov.

30

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division of asphalt pavements. TECHNOLOGY TRANSFER PROGRAM JULY 2010, VOL. 2, NO. 1 Warm Mix Asphalt Hits the Road, and California LTAP Field Engineer, Technology Transfer Program, Institute of Transportation Studies, UC Berkeley

California at Berkeley, University of

31

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division solve the very serious problem of waste tire disposal. TECHNOLOGY TRANSFER PROGRAM SEPTEMBER 2009, VOL, University of California Pavement Research Center, and California LTAP Field Engineer, Technology Transfer

California at Berkeley, University of

32

Accelerating the transfer in Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerating the transfer in Technology Transfer Accelerating the transfer in Technology Transfer Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Accelerating the transfer in Technology Transfer Express Licensing fast tracks commercialization. May 1, 2013 Division Leader Dave Pesiri Division Leader Dave Pesiri. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Express Licensing program To better serve its partners, one of the first improvements the Lab's Technology Transfer Division (TT) has made is through its new Express Licensing initiative. Standardized license agreements and fee structures will remove long and complicated negotiations and decrease the time required to get patented Lab technology and software into the hands of

33

Technology transfer @ VUB Hugo Loosvelt  

E-Print Network [OSTI]

13/12/2012 Technology transfer @ VUB Hugo Loosvelt #12;VUB in Brussels www.vub.ac.be including or conclude licensing contracts #12;Technology transfer TTI assists academics to realise knowledge transfer by needed for R&D collaboration, licensing and spin-out company formation Technology transfer is the process

Steels, Luc

34

Technology Transfer Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Research Projects Agency-Energy (ARPA-E) Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer Initiatives USEFUL LINKS Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) FLC Technology Locator Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Reports Navigate Home About Us Contact Information Hide Thumbs First Previous Pause Next Last Set Speed Slideshow speed: 5 seconds Move Autoinduction system New Image Set Autoinduction Autoinduction System The award winning Overnight Express(tm) Autoinduction System developed at BNL simplifies protein production in the widely used T7 gene expression system. Decontamination Foam-based decontamination

35

NREL: Technology Transfer - Events  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Events Events February 2014 NASEO Energy Outlook Conference February 4 - 7, 2014 Washington , DC Add to calendar Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News Contacts Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Alliance for Sustainable Energy, LLC

36

Ames Lab 101: Technology Transfer  

SciTech Connect (OSTI)

Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

Covey, Debra

2010-01-01T23:59:59.000Z

37

Ombuds Services for Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tech Transfer Ombuds Ombuds Services for Technology Transfer Committed to the fair and equitable treatment of all employees, contractors, and persons doing business with the...

38

NREL: Technology Transfer - NREL, Collaborators Complete Gearbox...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technical innovation within the global wind energy industry. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing...

39

Working with SRNL - Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SRNL GO Tech Briefs Contacts Ombudsman Tech Home SRNL Home Working with SRNL Technology Transfer 2014 SRNL Research and Technology Recognition Reception Click to view the 2014...

40

NREL: Technology Transfer - Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contacts Contacts Here you'll find contact information and resources to help answer any questions you may have about NREL's technology transfer and commercialization opportunities. Agreement for Commercializing Technology For more information about NREL's agreements for commercializing technology, contact Anne Miller, 303-384-7353. Financial and Funding Assistance NREL does not provide financial or funding assistance for any research projects. If you're a startup company, small business, or an inventor, visit the following Web sites: Grants.gov Small Business Administration. Industry Growth Forum Visit the NREL Industry Growth Forum website or contact Kate Cheesbrough for more information about this event. Investors and Entrepreneurs For more information about NREL's Innovation and Entrepreneurship Center,

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NREL: Technology Transfer Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Technology Transfer Search More Search Options Site Map The National Renewable Energy Laboratory (NREL) works with industry and organizations to transfer renewable energy and energy efficiency technologies into the marketplace. Working with Us We offer many opportunities and ways for you to partner with us. Learn more about our technology partnership agreements and services: Agreements for Commercializing Technology Cooperative Research and Development Agreements Technologies Available for Licensing Technology Partnerships Work for Others Research Facilities NREL follows its principles for establishing mutually beneficial technology partnerships. Through our commercialization programs, we work to stimulate the market for clean energy technologies and foster the growth of clean energy start-ups.

42

NETL Technologies Recognized for Technology Development, Transfer |  

Broader source: Energy.gov (indexed) [DOE]

Recognized for Technology Development, Transfer Recognized for Technology Development, Transfer NETL Technologies Recognized for Technology Development, Transfer October 25, 2013 - 1:31pm Addthis Did you know? The Federal Laboratory Consortium for Technology Transfer is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. In consonance with the Federal Technology Transfer Act of 1986 and related federal policy, the mission of the FLC is to promote and facilitate the rapid movement of federal laboratory research results and technologies into the mainstream of the U.S. economy. Learn more about the FLC. A great invention that sits on a shelf, gathering dust, benefits no one.

43

NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary stent is a small,...

44

NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Basic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basic Immobilized Amine Sorbent (BIAS) Process Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Capturing carbon dioxide (CO 2 ) from the flue or...

45

Technology Transfer Reporting Form  

Broader source: Energy.gov (indexed) [DOE]

form is to be completed by the TTO for individual inquiry/case activity during the quarter as required form is to be completed by the TTO for individual inquiry/case activity during the quarter as required by the Technology Transfer Commercialization Act of 2000. Mouse over definitions and descriptions appear over text/check boxes where appropriate. After completing this form, click on the submit button. *If you have no TTO activity for the quarter, please fill in your name, FY and quarter, lab or facility and check the box "No Quarterly Activity". Initial Ombuds Contact: ____________________ Type: Inquiry Case Ombuds Name: __________________________ Time Spent: (Hours) ______________ Final Ombuds Involvement: _________________ Laboratory or Facility: AMES ANL BNL LBNL INL KCP LANL NREL LLNL NBL NETL PNNL NNSS ORNL PXSO SRNL

47

Summary Report on Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Summary Report on Federal Laboratory Technology Transfer Agency Approaches; FY 2001 Activity Metrics and Outcomes 2002 Report to the President and the Congress under the Technology Transfer: FEDERAL LAB TECHNOLOGY TRANSFER TABLE OF CONTENTS LIST OF FIGURES AND TABLES

Perkins, Richard A.

48

Technology transfer | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology transfer Technology transfer Technology available for licensing: CURLSNovember 21, 2013 Containment Unidirectional Resource Loading System expands flexibility of glove boxes and other containment systems. Read more about Technology available for licensing: CURLS Rhodobacter System for the Expression of Membrane Proteins Using photosynthetic bacteria (Rhodobacter) for the expression of heterologous membrane proteins Read more about Rhodobacter System for the Expression of Membrane Proteins Synthesizing Membrane Proteins Using In Vitro Methodology This in vitro, cell-free expression system caters to the production of protein types that are challenging to study: membrane proteins, membrane-associated proteins, and soluble proteins that require complex redox cofactors.

49

Contact NETL Technology Transfer Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL Technology Transfer Group techtransfer@netl.doe.gov May 2012 Significance * Applicable to subcritical and supercritical air-fired boiler designs * Eliminates the need to mimic air-fired heat transfer characteristics in order to meet existing dry steam load demands * Reduces retrofit complexity, time, and cost Applications * Retrofitting of conventional air-fired boilers Opportunity Research is active on the patent-pending technology, titled "Temperature

50

Sandia National Laboratories: Small Business Technology Transfer...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Business Technology Transfer Research program JBEI Research Receives Strong Industry Interest in DOE Technology Transfer Call On September 18, 2013, in Biofuels, Biomass, Energy,...

51

Secretary Bodman Announces DOE Technology Transfer Coordinator...  

Broader source: Energy.gov (indexed) [DOE]

DOE Technology Transfer Coordinator Secretary Bodman Announces DOE Technology Transfer Coordinator June 29, 2007 - 2:36pm Addthis Establishes Policy Board; Strengthens DOE Efforts...

52

Technology_Transfer_Memo.pdf | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

TechnologyTransferMemo.pdf TechnologyTransferMemo.pdf TechnologyTransferMemo.pdf More Documents & Publications PolicyStatementonTechnologyTransfer.pdf...

53

Partnerships and Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Work for Others Agreement Work for Others Agreement scientists The DOE national laboratories were granted the authority to perform work for others by the Atomic Energy Act of 1954 [Public Law 83-703; 42 USC 2053]. Work For Others programs at the DOE national laboratories are governed by DOE Directive 481.1-1A, "Reimbursable Work for Non-Federal Sponsors: Process Manual." Work For Others agreements provide an excellent way for companies, universities, and other entities to access the unique facilities, technologies, and expertise available at ORNL on a project-specific basis. This gives the sponsor access to research and development expertise and technology unavailable in the private sector, without having to expend the capital cost of developing or re-creating such facilities, expertise, and technology for itself.

54

Technology Transfer Office FY2011 Annual Report  

E-Print Network [OSTI]

Technology Transfer Office FY2011 Annual Report #12;TECHNOLOGY TRANSFER ADVISORY COMMITTEES The UC San Diego Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the universityÃ? s technology transfer program. This standing committee is appointed by the chancellor

Hasty, Jeff

55

Technology Transfer office 2008 Annual Report  

E-Print Network [OSTI]

Technology Transfer office 2008 Annual Report #12;The UC San Diego Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the university's technology transfer program. It meets periodically to assess UC San Diego's technology transfer practices and guides the overall

Fainman, Yeshaiahu

56

Technology Transfer and Intellectual Property Services  

E-Print Network [OSTI]

Technology Transfer and Intellectual Property Services B I E N N I A L R E P O R T 03­04 #12;University of California, San Diego Technology Transfer Advisory Committee The UCSD Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the UCSD Technology Transfer Program

Fainman, Yeshaiahu

57

NREL: Technology Transfer - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News December 13, 2013 NREL Electrode Innovation Poised to Shake Up the Li-ion Battery Industry NREL's groundbreaking manufacturing process uses a special kind of carbon nanotube to increase the volume of active material that can be stored within an electrode. November 12, 2013 Brilliant White Light with Amber LEDs; NREL Licensing Webinar December 10th NREL's Amber LED technology, when combined with red, green and blue LEDs, produces a broad-spectrum white light more efficiently than current LEDs. This new technology, which is available for licensing from NREL, results in a low-cost, easy-to-manufacture white LED, with improved luminosity. October 21, 2013 NREL Forum Attracts Clean Energy Investors and Entrepreneurs Thirty clean energy companies, including seven companies based in Colorado,

58

NREL: Technology Transfer - Research Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Facilities Research Facilities Photo of Solar Energy Research Facility building at NREL. NREL's Solar Energy Research Facility is one of many world-class facilities available to public and private agencies. For developing commercially viable energy products, organizations may partner with NREL to use our state-of-the-art laboratories, and testing and user facilities. Visit NREL's Research Facilities Web site to learn more about them. We typically develop technology partnership agreements for using our facilities and/or working with our researchers. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News Contacts Did you find what you needed?

59

Technology Transfer Ombudsman Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technology Technology Transfer Ombudsman Program Technology Transfer Ombudsman Program The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000. Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national laboratory and research facility has appointed a technology partnership ombudsman (ombuds). The role of the ombuds is prevention and early resolution of disputes between the lab and inventors or private companies over technology transfer issues such as infringement, intellectual property rights, royalties and licensing, etc. The Director, Office of Conflict Prevention and Resolution, coordinates this program and compiles data for quarterly reports. See the Department of Energy Technology Transfer Ombuds (PDF).

60

TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF | Department...  

Broader source: Energy.gov (indexed) [DOE]

TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF TECHNOLOGY...

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Technology Transfer and Intellectual Property Services  

E-Print Network [OSTI]

Technology Transfer and Intellectual Property Services 2005 A n n u a l R e p o r t #12;The UCSD Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the UCSD Technology chancellor of Research. It meets periodically to assess UCSD technology transfer policy and guide

Fainman, Yeshaiahu

62

An Inventor's Guide to Technology Transfer  

E-Print Network [OSTI]

An Inventor's Guide to Technology Transfer at the Massachusetts Institute of Technology on the University of Michigan's "Inventor's Guide to Technology Transfer," with adaptations for MIT and the MIT of Technology Transfer for their kind permission to use their excellent material and to the University

Reuter, Martin

63

Technology Transfer award funding data* Figure 1. Current Technology Transfer awards  

E-Print Network [OSTI]

6 1 4 3 48 23 30 10 Technology Transfer award funding data* Figure 1. Current Technology Transfer awards Numbers represent active grants as at 1 October 2013 Figure 2. Technology Transfer award Transfer funding division. In the 2012/13 financial year Technology Transfer approved awards worth a total

Rambaut, Andrew

64

Technology Transfer Overview | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Services » Technology Transfer and Procurement » Technology Services » Technology Transfer and Procurement » Technology Transfer & Intellectual Property » Technology Transfer Overview Technology Transfer Overview Through strategic investments in science and technology, the U.S. Department of Energy (DOE) helps power and secure America's future. DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the maturation and deployment of DOE discoveries, providing ongoing economic, security and environmental benefits for all Americans. "Technology transfer" refers to the process by which knowledge, intellectual property, or capabilities developed at the Department of Energy's National Laboratories, single-purpose research facilities, plants,

65

NREL: Technology Transfer - Commercialization Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercialization Programs Commercialization Programs Through our commercialization programs, we help accelerate the transfer of renewable energy and energy efficiency technologies into the marketplace. Clean Energy Alliance The Clean Energy Alliance is an alliance of the nation's top business incubators that provide business services to nascent clean energy entrepreneurs. NREL partners with these elite business incubators to help foster the growth of robust clean energy businesses and commercialize their technologies. Colorado Center for Renewable Energy Economic Development Formerly the Colorado Cleantech Initiative program, the Colorado Center for Renewable Energy Economic Development (CREED) is a joint effort between NREL, the State of Colorado, and affiliated stakeholders to provide

66

Awards recognize outstanding innovation in Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

recognize outstanding innovation Awards recognize outstanding innovation in Technology Transfer The award honors inventors whose patented invention exhibits significant...

67

Spin-out Company Portfolio Technology Transfer  

E-Print Network [OSTI]

Spin-out Company Portfolio 2012 Technology Transfer The Sir Colin Campbell Building The University `Entrepreneurial University of the Year' in 2008. The Technology Transfer Office (TTO) has close links detail. Dr Susan Huxtable Director, Technology Transfer Tel: +44 (0)115 84 66388 Email: susan

Aickelin, Uwe

68

Frequently Asked Questions 1. Technology Transfer  

E-Print Network [OSTI]

Frequently Asked Questions 1. Technology Transfer 2. Patent 3. Requirements for obtaining a patent is not addressed, please contact Colleen Michael at 631-344 -4919. #12;What is Technology Transfer? Technology Transfer is the process of developing practical applications for the results of scientific research

69

Bidirectional Technology Transfer: Sabbaticals in Industry  

E-Print Network [OSTI]

Bidirectional Technology Transfer: Sabbaticals in Industry Mark D. Hill University of Wisconsin---not just technology transfer---through a ten­month sabbatical in an industrial product group. I advocate product group. The next sections discuss technology transfer, my recent sabbatical, and conclude

Hill, Mark D.

70

Requirements Engineering Technology Transfer: An Experience Report  

E-Print Network [OSTI]

Requirements Engineering Technology Transfer: An Experience Report Francisco A. C. Pinheiro1 Julio of software engineering technology transfer was identified by Pfleeger (1999). She came to the con- clusion Journal of Technology Transfer, 28, 159­165, 2003 ©2003 Kluwer Academic Publishers. Manufactured

Leite, Julio Cesar Sampaio do Prado

71

Technology Transfer at Penn State University  

E-Print Network [OSTI]

Technology Transfer at Penn State University An Inventor's Guide to #12;Our mission is to protect on the University of Michigan's "Inventor's Guide to Technology Transfer," with adaptation for Penn State, and the staff of the UM Office of Technology Transfer for their kind permission to use their excellent material

Lee, Dongwon

72

Summary Report on Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Summary Report on Federal Laboratory Technology Transfer FY 2003 Activity Metrics and Outcomes 2004 Report to the President and the Congress under the Technology Transfer and Commercialization Act Office Chapter 2. Trends in Federal Lab Technology Transfer 2.1 Cooperative Research and Development

Perkins, Richard A.

73

Technology Transfer from the University of Oxford  

E-Print Network [OSTI]

Technology Transfer from the University of Oxford www.isis-innovation.com #12;Isis Innovation Ltd Oxford Technology Transfer IP, Patents, Licences, Spin-outs, Material Sales, Seed Funds, Isis Angels Network Oxford Expertise Consulting, Services Isis Consulting Business Technology Transfer and Innovation

Paxton, Anthony T.

74

Research and Technology Transfer Faculty Conference  

E-Print Network [OSTI]

Research and Technology Transfer Faculty Conference August 18th 2014 Bruce D. Honeyman Office of the VPRTT #12;Role of the Office of the Vice President for Research and Technology Transfer · `The role Poate. · Support Mines' Strategic Plan Office of the Vice President of Research and Technology Transfer

75

Trinity Technology Transfer News December 2012  

E-Print Network [OSTI]

Trinity Technology Transfer News December 2012 SRS was set up by Dr Paul Sutton and Prof Linda licensing fees. Dr. Margaret Woods | Technology Transfer Manager mjwoods@tcd.ie Ms. Audrey Crosbie;Trinity Technology Transfer News December 2012 Trinity Campus Company Funding Round EmpowerTheUser (www

O'Mahony, Donal E.

76

Policy_Statement_on_Technology_Transfer.pdf | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PolicyStatementonTechnologyTransfer.pdf PolicyStatementonTechnologyTransfer.pdf PolicyStatementonTechnologyTransfer.pdf More Documents & Publications...

77

Climate Change: A Challenge to the Means of Technology Transfer  

E-Print Network [OSTI]

TO THE MEANS OF TECHNOLOGY TRANSFER Gordon J. MacDonaldthe importance of technology transfer in dealing withthe discussion of technology transfer has centered on

MacDonald, Gordon J. F.

1992-01-01T23:59:59.000Z

78

Intellectual Property Protection and Technology Transfer: Evidence From US Multinationals  

E-Print Network [OSTI]

International Technology Transfer? Empirical Evidence FromProtection and Technology Transfer: Evidence from USProperty Protection and Technology Transfer Evidence from US

Kanwar, Sunil

2007-01-01T23:59:59.000Z

79

Guidance for Preparing Annual Agency Technology Transfer Reports Under the Technology Transfer Commercialization Act  

E-Print Network [OSTI]

Guidance for Preparing Annual Agency Technology Transfer Reports Under the Technology Transfer U.S. Department of Commerce in conjunction with The Interagency Working Group on Technology Transfer May 2013 #12;2 Introduction Under the Technology Transfer Commercialization Act of 2000 (P.L. 106

80

P2P grid technology for virtual classrooms and laboratories  

Science Journals Connector (OSTI)

Computing technologies can play important role in Virtual Classrooms and Laboratories (VCL) and e-learning settings. In these systems, the underlying computing platforms enable large number of students across the globe to collaborate and interact with ... Keywords: P2P grid, cloud computing, distributed network computing, grid computing, virtual classrooms

Hassan Rajaei; Nada Hakami

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Impact of Federal Technology Transfer on the Commercialization Process  

Science Journals Connector (OSTI)

Some people find the suggestion that federal technology transfer can impact technology commercialization impossible to accept. Federal technology transfer can, and does, impact the overall technology commercialization

Roger A. Lewis

1994-01-01T23:59:59.000Z

82

Working with SRNL - Technology Transfer - Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SRNL GO Tech Briefs Contacts Ombudsman Tech Home SRNL Home Working with SRNL - Technology Transfer Contacts Dale Haas, Manager (Acting) Strategic Development and Technical...

83

International technology transfer, firm productivity and employment.  

E-Print Network [OSTI]

??This dissertation contributes to the empirical literature on the effects of international technology transfer on firms' productivity and employment in developing and transition countries. It… (more)

Pantea, Smaranda

2012-01-01T23:59:59.000Z

84

SWAMI II technology transfer plan  

SciTech Connect (OSTI)

Thousands of drums of radioactive/hazardous/mixed waste are currently stored at DOE sites throughout US; they are stored in warehouse facilities on an interim basis, pending final disposition. Recent emphasis on anticipated decommissioning of facilities indicates that many more drums of waste will be generated, requiring additional storage. Federal and state regulations dictate that hazardous waste covered by RCRA be inspected periodically for container degradation and to verify inventories. All known DOE waste storage facilities are currently inspected manually. A system to perform robotic inspection of waste drums is under development by the SRTC Robotics Group of WSRC; it is called the Stored Waste Autonomous Mobile Inspector (SWAMI). The first version, SWAMI I, was developed by the Savannah River Technology Center (SRTC) as a proof of principle system for autonomous inspection of drums in a warehouse. SWAMI I was based on the Transitions Research Corporation (TRC) HelpMate mobile robot. TRC modified the Helpmate to navigate in aisles of drums. SRTC added subsystems to SWAMI I to determine its position in open areas, read bar code labels on the drums up to three levels high, capture images of the drums and perform a radiation survey of the floor in the aisles. The radiation survey was based on SRTC patented technology first implemented on the Semi-Intelligent Mobile Observing Navigator (SIMON). The radiation survey is not essential for the inspection of drums, but is an option that can increase the utility and effectiveness of SWAMI in warehouses with radioactive and/or mixed waste. All the sensors on SWAMI I were fixed on the vehicle. From the success of SWAMI I, a second version, SWAMI II, was developed; it will be evaluated at Fernald and tested with two other mobile robots. Intent is to transfer the technology developed for SWAMI I and II to industry so that it can supply additional units for purchase for drum inspection.

Ward, C.R.; Peterson, K.D.; Harpring, L.J.; Immel, D.M.; Jones, J.D.; Mallet, W.R.

1995-12-31T23:59:59.000Z

85

NETL Technology Transfer Case Studies and Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of a 2012 R&D 100 Award and a 2010 Federal Laboratory Consortium Excellence in Technology Transfer Award. This technology is available for licensing PLATINUM-CHROMIUM ALLOY FOR...

86

Virtual reality and hybrid technology for neurorehabilitations  

Science Journals Connector (OSTI)

Disabilities that follow Cerebrovascular accidents (CVA) and spinal cord injuries (SCI) severely impair motor functions and thereby prevent the affected individuals from full and autonomous participation in daily activities. Several studies have shown ... Keywords: brain neuro-machine interface, cerebrovascular accidents, motor-neuroprosthetics, neuro-robotics, spinal cord injury, virtual reality

Alessandro De Mauro; Aitor Ardanza; Chao Chen; Eduardo Carrasco; David Oyarzun; Diego Torricelli; Shabs Rajasekharan; Josè Luis Pons; Ángel Gil-Agudo; Julián Flórez Esnal

2007-06-01T23:59:59.000Z

87

Enhancing Grid Infrastructures with Virtualization and Cloud Technologies  

E-Print Network [OSTI]

Enhancing Grid Infrastructures with Virtualization and Cloud Technologies Final Report on Stratus of the distribution for a turnkey private cloud solution aimed at SMEs and a large public deployment by Atos within and Technology Network S.A., SixSq S`arl, Telef´onica In- vestigaci´on y Desarrollo SA, and The Provost Fellows

Paris-Sud XI, Université de

88

Technology Transfer: Success Stories: Licensed Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Licensed Technologies Licensed Technologies Here are some of our licensees and the technologies they are commercializing; see our Start-Up Company page for more of our technology licenses. Company (Licensee) Technology Life Technologies Corp. Cell lines for breast cancer research Bristol Myers Squibb; Novartis; Plexxikon Inc.; Wyeth Research; GlaxoSmithKline; Johnson & Johnson; Boehringer Ingelheim Pharmaceuticals, Inc.; Genzyme Software for automated macromolecular crystallography Shell International Exploration and Production; ConnocoPhillips Company; StatOil ASA; Schlumburger Technology Corportation; BHP Billiton Ltd.; Chevron Energy Technology Company; EniTecnologie S.p.A. Geo-Hydrophysical modeling software Microsoft Home Energy Saver software distribution Kalinex Colorimetric bioassay

89

Visualization of folding in marble outcrops, Connemara, western Ireland: An application of virtual outcrop technology  

Science Journals Connector (OSTI)

...to have remote access (via intranet or Internet) to course content...Benefits of Virtual Outcrop Technology Virtual outcrops offer students...shows how virtual outcrop technology could provide good structural...possible from virtual outcrop technology. During the project, the...

90

Fermilab | Office of Partnerships and Technology Transfer | Technology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Working Group Fall 2014 Meeting November 5-6, 2014 Register Online DRAFT Agenda (PDF) DRAFT Agenda Agenda 1 Agenda 2 Last modified: 11042014...

91

Contacts for the Assistant General Counsel for Technology Transfer...  

Broader source: Energy.gov (indexed) [DOE]

Technology Transfer and Procurement Contacts for the Assistant General Counsel for Technology Transfer and Procurement Subject MatterFunctional Area Lead Backup Technology...

92

NREL: Technology Transfer - Innovative Way to Test Batteries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

high volumes of tests across a variety of applications. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing...

93

NREL: Technology Transfer - Technology Partnership Agreements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Partnership Agreements Technology Partnership Agreements Through technology partnership agreements, NREL provides partners with technical support to help commercialize and deploy energy technologies and products. We do not fund any projects under a technology partnership agreement. The partner provides the necessary resources and covers our costs of providing technical services. NREL does provide funding opportunities through competitively placed contracts. For more information, see our business opportunities. Process The technology partnership agreement process basically includes 11 steps. See the NREL Technology Partnership Agreement Process flowchart. We are committed to working through these steps in a timely manner. Experience suggests that the fastest means to reach an agreement is through

94

Technology complexity, technology transfer mechanisms and sustainable development  

Science Journals Connector (OSTI)

Abstract Merging climate change mitigation and sustainable development in developing countries is pivotal for the transition towards low carbon growth pathways. This paper combines the field of technology transfer and technology-specific aspects with sustainable development objectives. The general climate change mitigation paradigm has shifted from project oriented mitigation action to more strategic, country-wide, cross-sectoral mitigation plans, in order to explicitly take into account also economic development goals. Local technology needs and socio-technical circumstances are important towards economic development induced by technology transfer. Yet, this approach is not sufficient for the success of technology transfer, which shall also deliver on economic development. A strategy for the adoption of technologies, as well as the broadening of the domestic technology manufacturing base, needs to consider also the technology properties itself in greater detail. The technology transfer process should emphasize the economic developmental purpose as well as the properties of technologies. Thus, I propose a detailed assessment of the technology and its potential of being adopted by suggesting that technology complexity assessments should be integrated into technology transfer mechanisms. By using CSP, PV and wind technology as examples, I describe how the evaluation of technology complexity and of potential economic development, determined by demand for manufactured goods and services within domestic economies, which could lead to job creation and value added, could be used to inform policy makers.

Julian Blohmke

2014-01-01T23:59:59.000Z

95

TECH TRANSFER TECHNOLOGY TRANSFER PROGRAM INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF CALIFORNIA, BERKELEY  

E-Print Network [OSTI]

TECH TRANSFER TECHNOLOGY TRANSFER PROGRAM · INSTITUTE OF TRANSPORTATION STUDIES · UNIVERSITY THURSDAY SATURDAYFRIDAYWEDNESDAYTUESDAY TECHNOLOGY TRANSFER PROGRAM · INSTITUTE OF TRANSPORTATION STUDIES's to another year of working safer and smarter. Laura Melendy Director, Technology Transfer Program #12;AUGUST

California at Berkeley, University of

96

NREL: Technology Transfer - Technologies Available for Licensing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Available for Licensing Technologies Available for Licensing Photo of NREL scientist in the NREL Hydrogen Lab. NREL's scientists and engineers develop award-winning technologies available for licensing. NREL scientists and engineers produce breakthrough and award-winning renewable energy and energy efficiency technologies that are available for licensing. We have many licensing opportunities for NREL-developed technologies, including our featured LED technologies. To see all our technologies available for licensing, visit the EERE Innovation Portal and search for NREL. Learn about our licensing agreement process. Contact For more information about licensing NREL-developed technologies, contact Eric Payne, 303-275-3166. Ombuds NREL strives to quickly resolve any issue or concern you may have regarding

97

NREL: Technology Transfer - Agreements for Commercializing Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Agreements for Commercializing Technology Agreements for Commercializing Technology NREL uses Agreements for Commercializing Technology (ACT) when a partner seeks highly-specialized or technical services to complete a project. An ACT agreement also authorizes participating contractor-operated DOE laboratories, such as NREL, to partner with businesses using more flexible terms that are aligned with industry practice. The agreement type used depends on the business, and the specific partnership selected is determined on a case-by-case basis. Benefits The benefits of Agreements for Commercializing Technology include: Intellectual Property Rights. ACT provides a more flexible framework for negotiation of intellectual property rights to facilitate moving technology from the laboratory to the marketplace as quickly as possible.

98

Requirements Engineering and Technology Transfer: Obstacles, Incentives and Improvement Agenda  

E-Print Network [OSTI]

Requirements Engineering and Technology Transfer: Obstacles, Incentives and Improvement Agenda technology transfer. In addition, major incentives for using RE methods are discussed, along with ideas engineering; Technology transfer 1. Introduction In a 1993 evaluation of requirements engineering (RE

Leite, Julio Cesar Sampaio do Prado

99

Assessing Software Engineering Technology Transfer  

E-Print Network [OSTI]

, and technology infusion, or the adoption of a new technology by an individual organization. 1 #12;Table ¢ ¡ £ ¡ ¢ ¡ ¡ ¢ ¡ ¡ ¡ ¢ ¡ £ ¤ £ ¡ ¡ ¢ ¡ ¡ ¢ ¡ ¡ £ ¤ £ ¡ ¢ ¡ ¡ ¡ ¢ ¡ ¡ ¢ ¡ £ ¡ ¢ 15 3.4 Exporting and Infusing Technology ¡ ¡ ¡ ¢ ¡ £ ¤ £ ¡ ¡ ¢ ¡ ¡ ¢ ¡ ¡ £ ¤ £ ¡ ¢ ¡ ¡ ¡ ¢ ¡ ¡ ¢ ¡ £ ¡ ¢ 16 4 Infusion of Technology 18 4.1 Technologies of Interest

Zelkowitz, Marvin V.

100

Attn Technology Transfer Questions.txt - Notepad  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Attn Technology Transfer Questions.txt Attn Technology Transfer Questions.txt From: eschaput [esandc@prodigy.net] Sent: Monday, January 26, 2009 10:31 PM To: GC-62 Subject: Attn: Technology Transfer Questions We have reviewed the DOE "Questions Concerning Technology Transfer Practices at DOE Laboratories" (Federal Register notice of November 26, 2008), with the following comments and suggestions for your consideration. DOE asked five questions and the following thoughts be provided for your consideration: Question #1 - Are existing arrangements adequate? Answer #1 - The existing types of arrangement are generally adequate, but their application should be broadened and their implementation streamlined. a.. The application of "User Agreements" should be broadened to soften the effect

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Technology Transfer: A Review for Biomedical Researchers  

Science Journals Connector (OSTI)

...shift in research emphasis away from fundamental research, conflict of interest, and...cooperation suggests that one of the fundamental flaws of the Japanese technology transfer...Cancer institute (NCI). Investigators Handbook. A Manual for Participants in Clinical...

Robert Kneller

2001-04-01T23:59:59.000Z

102

TECHNOLOGY TRANSFER QUESTIONS..txt - Notepad  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rfien@campbellap.com Sent: Monday, January 26, 2009 5:34 PM To: GC-62 Subject: TECHNOLOGY TRANSFER QUESTIONS. Sensitivity: Confidential To Whom It May Concern, Campbell Applied...

103

Technology Transfer: A Review for Biomedical Researchers  

Science Journals Connector (OSTI)

...Administration, Army, Navy, and Air Force combined). Fifty-seven % of the NIHs...cooperation suggests that one of the fundamental flaws of the Japanese technology transfer...Cancer institute (NCI). Investigators Handbook. A Manual for Participants in Clinical...

Robert Kneller

2001-04-01T23:59:59.000Z

104

WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY?  

E-Print Network [OSTI]

1 WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY? A Comparison with Biotech.genet@grenoble-em.com Website: www.nanoeconomics.eu Abstract. Nanotechnologies are often presented as breakthrough innovations. This article investigates the model of knowledge transfer in the nanotechnologies in depth, by comparing

Paris-Sud XI, Université de

105

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

106

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

107

ORNL technology transfer continues strong upward trend | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ron Walli Communications 865.576.0226 ORNL technology transfer continues strong upward trend Mike Paulus, director of Technology Transfer, says initiatives like SPARK have been...

108

Service for Research Management & Technology Transfer NEWS & EVENTS  

E-Print Network [OSTI]

Service for Research Management & Technology Transfer NEWS & EVENTS IX Premio de Investigación for Research Management & Technology Transfer #12;

Escolano, Francisco

109

Technology Transfer Webinar on November 12: High-Performance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Transfer Webinar on November 12: High-Performance Hybrid SimulationMeasurement-Based Tools for Proactive Operator Decision-Support Technology Transfer Webinar on...

110

Complementarity Between Virtualization and Single System Image Technologies  

SciTech Connect (OSTI)

Nowadays, the use of clusters in research centers or industries is undeniable. Since few years, the usage of virtual machines (VM) offers more advanced resource management capabilities, using features such as virtual machine live migration. Because of the latest contributions in the domain, some may argue that single system image (SSI) technologies are now deprecated, without considering some complementaries between VMs and SSI technologies are possible. After evaluating different configurations, we show that combining both approaches allows us to better address cluster challenges such as flexibility for the usage of available resources and simplicity of use. In other terms, the study shows that VMs add a level of management flexibility between the hardware and the application, whereas, SSIs give an abstraction of the distributed resources. The simultaneous usage of both technologies, VMs and SSIs, could improve the overall platform resources utilization, the productivity of the cluster and the efficiency of the running applications.

Gallard, Jerome [INRIA/IRISA; Lebre, I Adrien [INRIA/IRISA; Morin, Christine [INRIA/IRISA; Vallee, Geoffroy R [ORNL; Gallard, Pascal [KerLabs; Scott, Stephen L [ORNL

2008-01-01T23:59:59.000Z

111

WICHITA STATE UNIVERSITY RESEARCH AND TECHNOLOGY TRANSFER 1845 Fairmount Street Wichita, Kansas 67260-0007 tele: (316) 978-3285 fax: (316) 978-3750  

E-Print Network [OSTI]

WICHITA STATE UNIVERSITY RESEARCH AND TECHNOLOGY TRANSFER 1845 Fairmount Street Wichita, Kansas for each of its virtual development tools. www.vimo-tech.com ### CONTACT: Becky Hundley Technology Transfer for the commercialization of Olivares' technology is one that John Tomblin, vice president of research and technology

112

Targeted Technology Transfer to US Independents  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

Donald F. Duttlinger; E. Lance Cole

2006-09-29T23:59:59.000Z

113

NREL: Technology Transfer - Success Stories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Success Stories Success Stories We'd like to share our stories about innovation, industry partnerships, and the path towards commercializing renewable energy and energy efficiency technologies developed at NREL. Materials Exposure Testing Market Expands with Ultra-Accelerated Weathering System The Ultra-Accelerated Weathering System will change the weathering industry. A partnership with Atlas, one of the leader's in materials exposure testing, will take NREL's technology to industry. Watch the video. NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy For the next generation of parabolic troughs, NREL Principal Scientist Gary Jorgensen and SkyFuel Chief Technology Officer Randy Gee have developed a lower-cost, more durable solution to glass mirrors. Watch the video.

114

NREL: Technology Transfer - Technologies Available for Licensing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Amber LEDs for High-Efficiency Solid-State Lighting New Amber LEDs for High-Efficiency Solid-State Lighting NREL is closing the LED "green gap" with a patent-pending technology that allows for easy manufacturing of low-cost amber LEDs that-when combined with red, green, and blue LEDs-produce brilliant broad-spectrum white light more efficiently than current LEDs. This color-mixing technique enables low-cost, easy-to-manufacture white LEDs with improved luminosity. This novel device architecture achieves greater efficiencies than current amber LEDs. In addition, the color-mixing approach avoids the energy losses associated with producing white light via conventional (phosphor-converted blue) LEDs. NREL's game-changing innovation could transform the market for solid-state lighting (SSL) for industry, businesses, and consumers. It also will impact

115

Technology Transfer at VTIP VTIP in 20 Minutes  

E-Print Network [OSTI]

Technology Transfer at VTIP VTIP in 20 Minutes What You Need to Know Virginia Tech Intellectual Properties, Inc. #12;Technology Transfer at VTIP VTIP Overview Virginia Tech Intellectual Properties, Inc;Technology Transfer at VTIP Tech Transfer · The tech transfer process typically includes: · Identifying new

Liskiewicz, Maciej

116

Technology Transfer: For Industry:SBIR Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

For Industry Licensing Overview Frequently Asked Questions Partnering with Berkeley Lab Available Technologies See Also Licensed Technologies Start-up Companies Licensing Interest Form Receive New Tech Alerts Partner Smart with Berkeley Lab (Downloadable Copy, 1.4MB, PDF) Berkeley Lab Economic Impact Report Technology Transfer Opportunities (TTOs) for SBIR and STTR Programs FY2014 Phase 1 Release 1 Selected topic and subtopics contained in this page are designated as Technology Transfer Opportunities (TTOs) from Berkeley Lab. 10. BASIC ENERGY SCIENCES (Phase I $225,000 / Phase II: $1,500,000): Contact: Shanshan Li, Shanshanli@lbl.gov, 510-486-5366 For a description of the technology, publications (if available) and latest patent status, click on the TTO tracking number link.

117

Browser-based Software for Technology Transfer Judith Bishop  

E-Print Network [OSTI]

1 Browser-based Software for Technology Transfer Judith Bishop Jonathan de Halleux Nikolai Tillmann Technology transfer is typically viewed as being from academia to industry but it can indeed go in either Keywords Technology transfer, browser-based software, F#, Pex4Fun INTRODUCTION Technology transfer is most

Xie, Tao

118

NREL: Technology Transfer - Licensing Agreements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Licensing Agreements Licensing Agreements Through licensing agreements, NREL provides industry with an opportunity to commercialize NREL-developed energy technologies and products. Our licensing opportunities are available to both small and large businesses-from start-ups to Fortune 500 companies. Process The licensing agreement process basically includes seven steps. See the NREL Licensing Agreement Process flowchart. We are committed to working through these steps in a timely manner. Experience suggests that the fastest means to reach an agreement is through direct communications to create understanding and agree on actions. 1. Identify and Qualify Opportunity To identify an opportunity, a company can browse the technologies available for licensing. When an opportunity has been identified, NREL then asks the company to

119

USDOE Technology Transfer, Working with DOE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Efficiency & Renewable and Energy - Commercialization Energy Efficiency & Renewable and Energy - Commercialization Deployment SBIR/STTR - Small Business Innovation Research and Small Business Technology Transfer Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer Initiatives USEFUL LINKS Contract Opportunities: FBO.gov FedConnect.net Grant Opportunities DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 Working with DOE Navigate Home About Us Contact Information Hide Thumbs First Previous Pause Next Last Set Speed Slideshow speed: 5 seconds Move Decontamination New Image Set Autoinduction Autoinduction System The award winning Overnight Express(tm) Autoinduction System developed at

120

TECHNOLOGY TRANSFER QUESTIONS..txt - Notepad  

Broader source: Energy.gov (indexed) [DOE]

TECHNOLOGY TRANSFER QUESTIONS..txt TECHNOLOGY TRANSFER QUESTIONS..txt From: Bob Fien [rfien@campbellap.com] Sent: Monday, January 26, 2009 5:34 PM To: GC-62 Subject: TECHNOLOGY TRANSFER QUESTIONS. Sensitivity: Confidential To Whom It May Concern, Campbell Applied Physics, Inc has been working with several DOE labs (e.g., Oak Ridge, Pacific Northwest, Laurence Livermore, Sandia) on various commercialization projects and, has been asked to submit answers to the questions presented in 72036 Federal Register / Vol. 73, No. 229 concerning our experiences. Please accept the following as our response to that request. 1. Existing and Other Agreements (4sub questions): The DOE labs currently offer CRADAs, WFO Agreements, and User Agreements, all briefly referenced below. The DOE Orders and model agreements for CRADAs, WFO and

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

SRNL - Technology Transfer - Tech Briefs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tech home Tech home SRNL home SRS home Tech Briefs Examples of SRNL technologies available for collaboration (CRADA) and licensing. Remote Electrical Throw Device Magnetic Release Coupling InviziMark: Concealed Identification System Elemental Mercury Probe Environmental Biocatalyst - BioTiger(tm) Microbial Based Chlorinated Ethene Destruction Boron-Structured Nano-Proportional Counters Acoustic Door Latch Detector (Smart Latch(tm)) SoundAnchor(tm) Nondestructive Testing Method Microwave Off-Gas Treatment System IDEAS Program (Individuals Developing Effective Alternative Solutions) Hybrid Microwave Energy Nanoparticle-Enhanced Ionic Liquids (NEILs) Groundwater and Wastewater Remediation Using Agricultural Oils Aerosol-to-Liquid Particle Extraction System (ALPES) Double Coil Condenser Apparatus

122

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New(19):4355-4364 Nidhi Sabharwal, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal

123

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal@rockefeller.edu #12;

de Lange, Titia

124

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Sabharwal, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal

125

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New,049,814 · US Patent 8,553,143 Nidhi Sabharwal, Ph.D. Technology Manager Technology Transfer (212) 327

126

Effective Transfer of Industrial Energy Conservation Technologies  

E-Print Network [OSTI]

. Various avenues exist for transferring energy conservation technologies to industry. Briefing documents, presentations at trade meetings and con ferences, or simple diffusion by word-of-mouth are a few methods. However, when left to chance, tech... of 444 ESL-IE-83-04-68 Proceedings from the Fifth Industrial Energy Technology Conference Volume II, Houston, TX, April 17-20, 1983 TABLE 1. Current Energy Impacts of Foam Processing of Textiles BROADWOVENS AND KNITS User Site (a) Average Production...

Clement, M.; Vallario, R. W.

1983-01-01T23:59:59.000Z

127

Dartmouth College Technology Transfer Office Annual Report  

E-Print Network [OSTI]

and public service missions of Dartmouth College. 1 #12;Invention Disclosures Research Enterprise Support, such as Small Business Innovation Research (SBIR), Small Business Technology Transfer (STTR), and New Hampshire of the sluggish economy, we were able to secure 6 new licenses, including one to local start-up ImmuNext, Inc

Myers, Lawrence C.

128

CIOSS Five Year Review 5. Technology Transfer  

E-Print Network [OSTI]

SST fields will be documented in a peer-reviewed paper, as will the wind climatologies of CheltonCIOSS Five Year Review 5. Technology Transfer 10-11-06 A. How are research results from and the nature of the collaboration. As an example, the collaboration between Richard Reynolds and Dudley Chelton

Kurapov, Alexander

129

Oregon Health & Science University Technology Transfer and Business Development  

E-Print Network [OSTI]

Oregon Health & Science University Technology Transfer and Business Development Annual Report 2011 Business Development 6 Impacting Global Health - Drs. David and Deborah Lewinsohn Technology Transfer 7 System OHSU is reinventing technology transfer. Over the years the office has evolved from "Tech Transfer

Chapman, Michael S.

130

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New://newswire.rockefeller.edu/?page=engine&id=939 Nidhi Sabharwal, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

131

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Sabharwal, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

132

MHD Technology Transfer, Integration and Review Committee  

SciTech Connect (OSTI)

As part of the MHD Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The Charter of the TTIRC, which was approved by the DOE in June 1988 and distributed to the committee members, is included as part of this Summary. As stated in the Charter, the purpose of this committee is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the US MHD Program. The DOE fiscal year 1989 MHD Program Plan Schedule is included at the end of this Summary. The MHD Technology Transfer, Integration and Review Committee's activities to date have focused primarily on the technology transfer'' aspects of its charter. It has provided a forum for the dissemination of technical and programmatic information among workers in the field of MHD and to the potential end users, the utilities, by holding semi-annual meetings. The committee publishes this semi-annual report, which presents in Sections 2 through 11 capsule summaries of technical progress for all DOE Proof-of-Concept MHD contracts and major test facilities.

Not Available

1989-10-01T23:59:59.000Z

133

DOE Technology Transfer Website Features New Tool to Search Tech Transfer  

Office of Scientific and Technical Information (OSTI)

Technology Transfer Website Features New Tool to Search Tech Transfer Technology Transfer Website Features New Tool to Search Tech Transfer Information from DOE National Laboratories December 3, 2012 DOE Technology Transfer Website Features New Tool to Search Tech Transfer Information from DOE National Laboratories The Department of Energy (DOE) Technology Transfer website has a new search feature that for the first time allows searching of technology transfer information across the DOE national laboratories. The new tool enables users to search all of DOE's technology transfer information, including inventions, patents and other applied research, available from DOE's national laboratories in real time. Using web-crawling technology, the search capability allows users to enter a single query for a technology transfer term; the search feature returns a

134

Technology Transfer for Brownfields Redevelopment Project | Department of  

Broader source: Energy.gov (indexed) [DOE]

Technology Transfer for Brownfields Redevelopment Project Technology Transfer for Brownfields Redevelopment Project Technology Transfer for Brownfields Redevelopment Project The U.S. Department of Energy has provided six computers to Prichard to improve its decision-making process through Geographic Information System (GIS) as a decision-making tool. The agency has provided GIS training and other technical assistance in Prichard's Brownfields redevelopment effort. Other National Conference of Black Mayors' cities that have received computers for technology centers and technology transfer are Hayti Heights, Missouri; East St. Louis, Illinois; and Glenarden, Maryland. Technology Transfer for Brownfields Redevelopment Project (July 1998) More Documents & Publications Environmental Justice and Public Participation Through Technology-

135

MHD Technology Transfer, Integration and Review Committee  

SciTech Connect (OSTI)

This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.

Not Available

1992-01-01T23:59:59.000Z

136

Technology Transfer of Computational Intelligence for Manufacturing Process Control  

E-Print Network [OSTI]

Technology Transfer of Computational Intelligence for Manufacturing Process Control Alice E. Smith applications is a large and uncertain step. This paper focuses on the technology transfer issues and solutions

Smith, Alice E.

137

National Technology Transfer and Advancement Act of 1995 [Public...  

Broader source: Energy.gov (indexed) [DOE]

Technology Transfer and Advancement Act of 1995 Public Law (PL) 104-113 National Technology Transfer and Advancement Act of 1995 Public Law (PL) 104-113 On March 7, 1996,...

138

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New,383,370. Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto

139

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

140

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.1016/j.jmb.2008.01.066 Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Tag: technology transfer | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technology transfer Tag: technology transfer Displaying 1 - 8 of 8... Category: News Fuels for the final frontier Y-12 is taking its uranium expertise to the next level - outer...

142

Fermilab | Office of Partnerships and Technology Transfer | Fermilab...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Invention reporting is the responsibility of the individual inventors. The technology transfer program for the Laboratory is coordinated by the Partnerships and Technology...

143

Research and Technology Transfer Organization www.techtransfer.psu.edu  

E-Print Network [OSTI]

Research and Technology Transfer Organization www.techtransfer.psu.edu from idea to product #12;About us Research and Technology Transfer Organization from idea to product The Penn State Research and Technology Transfer Organization (RTTO) consists of four units working together to connect industry to Penn

Guiltinan, Mark

144

CERNA WORKING PAPER SERIES Innovation and international technology transfer  

E-Print Network [OSTI]

1 CERNA WORKING PAPER SERIES Innovation and international technology transfer: The case technology transfer: The case of the Chinese photovoltaic industry Arnaud de la Tour, Matthieu Glachant, Yann emphasis on the role of technology transfers and innovation. Our analysis combines a review

Paris-Sud XI, Université de

145

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www

146

Chapter 9 Research & Technology Transfer (2 Edition) 118  

E-Print Network [OSTI]

117 #12;Chapter 9 ­ Research & Technology Transfer (2 nd Edition) 118 Chapter 9 Research & Technology Transfer Goals Excellence in research and scholarly activity is a central tenet of the University the Office of Technology Transfer and the Business Engagement Center. Overview Most of this chapter examines

Michigan, University of

147

April 12, 2013 OHSU Office of Technology Transfer & Business Development  

E-Print Network [OSTI]

April 12, 2013 OHSU Office of Technology Transfer & Business Development Brown Bag Series -"TTBD of Technology Transfer & Business Development (TTBD) is the place to start. Join us for a brown bag presentation and Q&A on"TTBD: An Overview"led by Andrew Watson, PhD, CLP, Interim Director, Technology Transfer

Chapman, Michael S.

148

Office of Technology Transfer 1 | P a g e  

E-Print Network [OSTI]

Office of Technology Transfer 1 | P a g e Updated.02.23.12_KT Instructions for submitting; Office of Technology Transfer 2 | P a g e Updated.02.23.12_KT 4 myUM Authentication's window of screen. Invention Disclosure Form #12; Office of Technology Transfer 3 | P a g e

Weber, David J.

149

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.1217207109 Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

150

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New activation. Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

151

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10065 www

152

National Aeronautics and Space Administration NASA Technology Transfer Program  

E-Print Network [OSTI]

National Aeronautics and Space Administration NASA Technology Transfer Program Bringing NASA of technology transfer that NASA maximizes the benefit of the Nation's investment in cutting-edge research technology transfer has made us confident that these solutions, while originally conceived to solve NASA

Waliser, Duane E.

153

Technology Transfer David Basin and Thai Son Hoang  

E-Print Network [OSTI]

Technology Transfer David Basin and Thai Son Hoang Institute of Information Security, ETH Zurich, Switzerland Abstract. This paper presents our experience of knowledge and technology transfer within the lessons learned and what we would do differently in future technology transfer projects. Keywords

Basin, David

154

Federal Technology Transfer Data 1987-2009 Gary Anderson  

E-Print Network [OSTI]

Federal Technology Transfer Data 1987-2009 Gary Anderson Economist National Institute of Standards. Among other things, this Act explicitly incorporated technology transfer into the mission of all federal departments and agencies. More recently, the Technology Transfer Commercialization Act of 2000 revised

Perkins, Richard A.

155

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue NewRNA and antisense therapeutics Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

156

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto

de Lange, Titia

157

AUGUST 7, 2013 OHSU Office of Technology Transfer & Business Development  

E-Print Network [OSTI]

AUGUST 7, 2013 OHSU Office of Technology Transfer & Business Development Brown Bag Series "Software Patent Associate of Technology Transfer & Business Development (TTBD). August 7, 2013 from 12:00 - 1. Technology Transfer & Business Development www.ohsu.edu/techtransfer techmgmt@ohsu.edu 503-494-8200 #12;

Chapman, Michael S.

158

April 3, 2013 OHSU Office of Technology Transfer & Business Development  

E-Print Network [OSTI]

April 3, 2013 OHSU Office of Technology Transfer & Business Development Brown Bag Series -"TTBD of Technology Transfer & Business Development (TTBD) is the place to start. Join us for a brown bag presentation and Q&A on"TTBD: An Overview"led by Andrew Watson, PhD, CLP, Interim Director, Technology Transfer

Chapman, Michael S.

159

Chapter 9 Research & Technology Transfer (3 Edition) 118  

E-Print Network [OSTI]

117 #12;Chapter 9 ­ Research & Technology Transfer (3 rd Edition) 118 Chapter 9 Research & Technology Transfer Goals Excellence in research and scholarly activity is a central tenet of the University the Office of Technology Transfer and the Business Engagement Center. Overview Most of this chapter examines

Eustice, Ryan

160

Chapter 9 Research & Technology Transfer (4 Edition) 117  

E-Print Network [OSTI]

116 #12;Chapter 9 ­ Research & Technology Transfer (4 th Edition) 117 Chapter 9 Research & Technology Transfer Goals Excellence in research and scholarly activity is a central tenet of the University the Office of Technology Transfer and the Business Engagement Center. Overview Most of this chapter examines

Awtar, Shorya

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Technology Transfer Expansion Planned UTCA is conducting a major project  

E-Print Network [OSTI]

Technology Transfer Expansion Planned UTCA is conducting a major project to evaluate and extend its technology transfer activities (UTCA project 03217). Steven Jones and David Eckhoff of UAB are working to expand the current technology transfer program to showcase the successes of the UTCA projects. Samples

Carver, Jeffrey C.

162

Annual Report on DOE Technology Transfer FY 2007 and 2008  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Annual Report Annual Report on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2007 and 2008 Prepared by: Office of Laboratory Policy and Evaluation Office of Science and National Nuclear Security Administration U.S. Department of Energy In Coordination With: Technology Transfer Policy Board Technology Transfer Working Group U.S. Department of Energy December 2009 ii TABLE OF CONTENTS Background .......... .................................................................................................................................................1 Technology Partnering Policy .................................................................................................................................1

163

Analysis of Technology Transfer in CDM Projects | Open Energy Information  

Open Energy Info (EERE)

Analysis of Technology Transfer in CDM Projects Analysis of Technology Transfer in CDM Projects Jump to: navigation, search Tool Summary Name: Analysis of Technology Transfer in CDM Projects Agency/Company /Organization: United Nations Framework Convention on Climate Change Sector: Energy, Land Topics: Finance, Implementation Resource Type: Publications Website: cdm.unfccc.int/Reference/Reports/TTreport/TTrep08.pdf Analysis of Technology Transfer in CDM Projects Screenshot References: Analysis of Technology Transfer in CDM Projects[1] Overview "Although the Clean Development Mechanism (CDM) does not have an explicit technology transfer mandate, it may contribute to technology transfer by financing emission reduction projects using technologies currently not available in the host countries. This report analyzes the claims of

164

INTRODUCTION TO THE TECHNOLOGY TRANSFER OFFICE The Technology Transfer Office directly contributes to the three-pronged mission of Dartmouth  

E-Print Network [OSTI]

contributes to the three-pronged mission of Dartmouth College: teaching, research and public service setting. The Technology Transfer Office provides public service by transferring technologies to industry Business Innovation Research (SBIR), Small Business Technology Transfer program (STTR), and New Hampshire

165

Automating the Transfer of a Generic Set of Behaviors Onto a Virtual Character  

E-Print Network [OSTI]

of specialists, despite the broad availability of the models, assets and simulation environments. To address this problem, we present a system that allows the rapid incorpo- ration of high-fidelity humanoid 3D modelsAutomating the Transfer of a Generic Set of Behaviors Onto a Virtual Character Andrew Feng1

Kallmann, Marcelo

166

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology.S. patent application US 2013-0064762-A1 is pending. Tari Suprapto, Ph.D. Assistant Director Technology

167

TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised of American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during FY04. Activities remained at high levels. Board and staff interaction has defined strategic thrusts to further outreach. Networking, involvement in technical activities and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom line information stimulates cooperative ventures with other organizations. Efforts to build the contact database and a growing E-mail Technology Alert service are expanding PTTC's audience.

Donald F. Duttlinger; E. Lance Cole

2005-01-01T23:59:59.000Z

168

Office of the Assistant General Counsel for Technology Transfer &  

Broader source: Energy.gov (indexed) [DOE]

Technology Transfer & Intellectual Property Technology Transfer & Intellectual Property Office of the Assistant General Counsel for Technology Transfer & Intellectual Property The Office of the Assistant General Counsel for Technology Transfer and Intellectual Property is responsible for providing legal counsel to Departmental elements on all matters relating to intellectual property (including patents, trademarks, copyrights, and technical data) and transfer of those rights from Department laboratories to the private sector in accordance with established legal authorities. The Office is also responsible for investigating and disposing of copyright and patent infringement actions against the Department. Additional information on intellectual property is available here. Among its duties, the Office obtains, administers, and licenses

169

NETL Inventions Earn 2009 Technology Transfer Awards | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Inventions Earn 2009 Technology Transfer Awards Inventions Earn 2009 Technology Transfer Awards NETL Inventions Earn 2009 Technology Transfer Awards February 13, 2009 - 12:00pm Addthis Washington, DC -- Two technologies developed by researchers at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) have earned 2009 Excellence in Technology Transfer Awards from the Federal Laboratory Consortium for Technology Transfer (FLC). Both technologies enable the cleaner use of coal for electricity production and have been licensed to the private sector for commercial development. The awards will be formally presented at the annual FLC national meeting to be held May 4-7, 2009, in Charlotte, N.C. The national awards are given for outstanding work commercializing new and innovative technologies developed

170

Technology Transfer: Triggering New Global Markets and Job Growth |  

Broader source: Energy.gov (indexed) [DOE]

Technology Transfer: Triggering New Global Markets and Job Growth Technology Transfer: Triggering New Global Markets and Job Growth Technology Transfer: Triggering New Global Markets and Job Growth September 20, 2011 - 11:33am Addthis The Global Positioning System (GPS) was initially a government technology developed to guide nuclear missiles, and is one of the many examples of the economic potential of successful technology transfer -- the now worldwide location technologies market is projected to grow to $75 billion by 2013. The Global Positioning System (GPS) was initially a government technology developed to guide nuclear missiles, and is one of the many examples of the economic potential of successful technology transfer -- the now worldwide location technologies market is projected to grow to $75 billion by 2013.

171

Overcoming Barriers to the Transfer and Diffusion of Climate Technologies |  

Open Energy Info (EERE)

Overcoming Barriers to the Transfer and Diffusion of Climate Technologies Overcoming Barriers to the Transfer and Diffusion of Climate Technologies Jump to: navigation, search Tool Summary Name: Overcoming Barriers to the Transfer and Diffusion of Climate Technologies Agency/Company /Organization: UNEP-Risoe Centre Sector: Energy, Climate Focus Area: Greenhouse Gas Topics: Technology characterizations Resource Type: Publications, Guide/manual, Training materials Website: uneprisoe.org/ Cost: Free Overcoming Barriers to the Transfer and Diffusion of Climate Technologies Screenshot References: UNEP-Risoe[1] Logo: Overcoming Barriers to the Transfer and Diffusion of Climate Technologies This guidebook deals with the transfer of proven technologies both between countries and within them. "The purpose of the TNA project is to assist participant developing country

172

UNIDO ICS Portal for Technology Transfer | Open Energy Information  

Open Energy Info (EERE)

UNIDO ICS Portal for Technology Transfer UNIDO ICS Portal for Technology Transfer Jump to: navigation, search Tool Summary Name: UNIDO ICS Portal for Technology Transfer Agency/Company /Organization: United Nations Industrial Development Organization Sector: Energy Topics: Technology characterizations Resource Type: Dataset Website: portal.ics.trieste.it/Portal/Default.aspx References: UNIDO ICS Portal for Technology Transfer[1] This article is a stub. You can help OpenEI by expanding it. References ↑ "UNIDO ICS Portal for Technology Transfer" Retrieved from "http://en.openei.org/w/index.php?title=UNIDO_ICS_Portal_for_Technology_Transfer&oldid=329335" Categories: Tools Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

173

NETL Technology Transfer Agreements & Research Partnerships Available  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How to Partner How to Partner Technology Transfer NETL Technology Transfer Agreements & Research Partnerships Pouring molten metal into a lost foam, loose sand casting for cast steel armorplate Pouring molten metal into a lost foam, loose sand casting for cast steel armorplate A technology transfer agreement with the National Energy Technology Laboratory (NETL) provides access to the research and development expertise, facilities, and intellectual property of a government research facility. Specializing in fossil fuel energy research, NETL technology transfer options include: Research Partnership Notice - "Seeking Partnerships on Field Research Related to Shale Gas Development" Cooperative Research and Development Agreement (CRADA) Contributed Funds-in Agreement (CFA)

174

Technology transfer -- protecting technologies during the transfer cycle (intellectual property issues)  

SciTech Connect (OSTI)

The success of technology transfer agreements depends not just on the technical work, but on how well the arrangements to protect and dispose of the intellectual properties that make up the technologies are handled. Pertinent issues that impact the protection and disposition of intellectual properties during the technology transfer process at Sandia National Laboratories, a multiprogram laboratory operated for the Department of Energy by the Martin Marietta Corporation, are discussed. Subjects addressed include the contracting mechanisms (including the Cooperative Research and Development Agreement [CRADA] and the Work-for-Others agreement), proprietary information, The Freedom of Information Act, patents and copyrights, the statement of work, Protected CRADA Information, licensing considerations, title to intellectual properties, march-in rights, and nondisclosure agreements.

Graham, G.G.

1993-12-31T23:59:59.000Z

175

Formal Methods Technology Transfer: A View from NASA  

E-Print Network [OSTI]

Formal Methods Technology Transfer: A View from NASA James L. Caldwell Flight Electronics Home Page on the World­Wide Web 1 . In this paper I remark on the technology transfer strategy and its Formal Methods Home Page on the World­Wide Web. In this paper we concentrate on aspects of technology

Caldwell, James

176

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New:1484-1488. #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology

177

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic  

E-Print Network [OSTI]

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic Technology Researchers of the Vienna University of Technology and the Medical University of Vienna have found application filed International patent application (PCT) filed Next steps · Electrophysiological testing

Szmolyan, Peter

178

Geo energy research and development: technology transfer update  

SciTech Connect (OSTI)

Sandia Geo Energy Programs in geothermal, coal, oil and gas, and synfuel technologies have been effective in transferring research concepts to applications in private industry. This report updates the previous summary (SAND82-0211, March 1982) to include recent technology transfers and to reflect recent changes in philosophy on technology transfer. Over 40 items transferred to industry have been identified in the areas of Hardware, Risk Removal and Understanding. Successful transfer is due largely to personal interactions between Sandia engineers and the technical staffs of private industry.

Traeger, R.K.; Dugan, V.L.

1983-01-01T23:59:59.000Z

179

NETL: News Release - NETL Recognized for Technology Transfer Success  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9, 2011 9, 2011 NETL Recognized for Technology Transfer Success NETL's commitment to transferring advanced energy technologies from the laboratory into the marketplace has again won recognition from the Federal Laboratory Consortium for Technology Transfer (FLC). This year, four research groups will receive regional FLC awards for their efforts in commercializing technologies developed at NETL. Technology transfer - moving a new technology from the inventor's workbench or laboratory to a company that will market the product - is the crucial and essential step that gives an invention the means to be of service to the greatest number of people. The FLC awards, established in 1984, recognize laboratory employees who have done an outstanding work in technology transfer over the past year.

180

Technology Transfer | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Laboratory Policy (LP) LP Home About Laboratory Appraisal Process Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management &...

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fermilab | Office of Partnerships and Technology Transfer | Documents...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Record of Invention (ROI) Information Sample Record of Invention * Fermilab Technology Transfer Policies and Procedures Manual - DRAFT Non-Proprietary User Agreement * This...

182

Fermilab | Office of Partnerships and Technology Transfer | Available...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Available for Licensing. Interested parties should contact the Partnerships and Technology Transfer at the address shown below. Under authority granted by the US DOE the...

183

Fermilab | Office of Partnerships and Technology Transfer | Columns...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology transfer at Fermilab Bruce Chrisman In an effort to fuel the economy and foster innovation, President Obama recently issued a directive to all the national laboratories...

184

INTERNAL POSTING - Head of Technology Transfer, Patents & Publications...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INTERNAL POSTING - Head of Technology Transfer, Patents & Publications Department: Best Practices Supervisor(s): John Delooper Staff: AM 7 Requisition Number: 1400936 The Head of...

185

Management of international transfer of innovative technologies in the enterprise.  

E-Print Network [OSTI]

?? The objective is to clarify the concept of technology transfer and the accompanying components to deliver them to the reader. The object of this… (more)

Trofimchuk, Olena

2012-01-01T23:59:59.000Z

186

Characterization and Development of Advanced Heat Transfer Technologies (Presentation)  

SciTech Connect (OSTI)

This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

Kelly, K.

2009-05-01T23:59:59.000Z

187

Brookhaven National Laboratory technology transfer report, fiscal year 1986  

SciTech Connect (OSTI)

An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

Not Available

1986-01-01T23:59:59.000Z

188

Response to Notice of Inquiry: Technology Transfer Practices at DOE  

Broader source: Energy.gov (indexed) [DOE]

Response to Notice of Inquiry: Technology Transfer Practices at DOE Response to Notice of Inquiry: Technology Transfer Practices at DOE Laboratories (73 FR 2036) by Batelle Energy Alliance, LLC. Response to Notice of Inquiry: Technology Transfer Practices at DOE Laboratories (73 FR 2036) by Batelle Energy Alliance, LLC. Response to Notice of Inquiry: Technology Transfer Practices at DOE Laboratories (73 FR 2036) by Batelle Energy Alliance, LLC. This letter includes the BEA response (the contractor for Idaho National Laboratory) to the DOE's inquiry regarding suggestions for its Technology Transfer Practices. Recommended improvements include: more flexible transactional agreements to meet the diverse needs of interested parties, more support for commercial investors considering higher risk technologies, the removal of some of the U.S. manufacturing requirements, and more rights

189

COST TRANSFERS TO FEDERALLY FUNDED AWARDS California Institute of Technology  

E-Print Network [OSTI]

COST TRANSFERS TO FEDERALLY FUNDED AWARDS California Institute of Technology Pasadena, California 7: A cost transfer is an after-the-fact transfer of costs (labor or non-labor) from a sponsored or non- sponsored award to a federally funded award. Ideally, all costs should be charged to the appropriate federal

190

How to Qualify for NIH Small Business Innovation and Technology Transfer Grants  

E-Print Network [OSTI]

How to Qualify for NIH Small Business Innovation and Technology Transfer Grants Professional) and Small Business Technology Transfer (STTR) proposal development services to technology based

Berdichevsky, Victor

191

Responses To Questions Concerning Technology Transfer Practices at DOE  

Broader source: Energy.gov (indexed) [DOE]

Responses To Questions Concerning Technology Transfer Practices at Responses To Questions Concerning Technology Transfer Practices at DOE Laboratories Responses To Questions Concerning Technology Transfer Practices at DOE Laboratories AllianceForSustainableEnergy Battelle Department of Economic and Community Development Planar Energy Devices Center for Hydrogen Research Electric Power Research Institute (EPRI) APJeT, Inc. Pacific Northwest National Laboratory (PNNL) American Superconductor (AMSC) Economic Development Partnership Campbell Applied Physics, Inc. Oak Ridge Economic Partnership Purdue University Council on Governmental Relations Cummins University of California ORNL Tech Transfer Jet Propulsion Laboratory (JPL) Eastman Chemical Company Sandia National Laboratories Lawrence Livermore National Laboratory Oak Ridge National Laboratory

192

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Information U.S. Patent 7,323,683 (issued January 28, 2008) Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

193

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New. References Sandu, et al. 2010. J. Cell. Biol, 190:1039-52. Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

194

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New://www.nature.com/tp/journal/v4/n1/abs/tp2013124a.html Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327

de Lange, Titia

195

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10065 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu Alleles of Human Kappa Opioid Receptors and Uses Thereof

196

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu A Novel Disc-Based Apparatus for High-Throughput Sample

197

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu A Novel Regulator Of Extracellular Virulence Genes

198

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu Novel Inhibitors of Thrombotic Clot Formation RU808+ RU

199

Technology adaptation and boundary management in bona fide virtual groups.  

E-Print Network [OSTI]

In this research project composed of multiple case studies, I focused on how bona fide virtual groups appropriated multiple media to facilitate group boundary construction and boundary management, which are preconditions of group identity formation...

Zhang, Huiyan

2006-04-12T23:59:59.000Z

200

Virtual environmental applications for buried waste characterization technology evaluation report  

SciTech Connect (OSTI)

The project, Virtual Environment Applications for Buried Waste Characterization, was initiated in the Buried Waste Integrated Demonstration Program in fiscal year 1994. This project is a research and development effort that supports the remediation of buried waste by identifying and examining the issues, needs, and feasibility of creating virtual environments using available characterization and other data. This document describes the progress and results from this project during the past year.

NONE

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fermilab | Office of Partnerships and Technology Transfer | Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnerships and Technology Transfer Partnerships and Technology Transfer U.S. Department of Energy Fermilab Fermilab: Home Help Press Room Phone Book Fermilab at Work Search Search Go Skip over navigation to main content Office of Partnerships and Technology Transfer Fermilab Technology Available Technologies CRADA Model CRADA Joint Work Statement CRADA OCI Certification SC Foreign Work for Other Sheet WFO Model Work for Others SC Foreign Work for Other Sheet WFO Questionnaire Documents and Forms Related Links Accelerators for America's Future Department of Energy Technology Transfer Follow Fermilab On... Facebook Twitter YouTube Quantum Diaries More ways to follow us U.S. Department of Energy Home Page HEP Program News & Information Interactions.org Particle Physics News Image Bank Fermilab in the News Quantum Diaries

202

Successful Oil and Gas Technology Transfer Program Extended to 2015 |  

Broader source: Energy.gov (indexed) [DOE]

Successful Oil and Gas Technology Transfer Program Extended to 2015 Successful Oil and Gas Technology Transfer Program Extended to 2015 Successful Oil and Gas Technology Transfer Program Extended to 2015 June 23, 2010 - 1:00pm Addthis Washington, D.C. - The Stripper Well Consortium (SWC) - a program that has successfully provided and transferred technological advances to small, independent oil and gas operators over the past nine years - has been extended to 2015 by the U.S. Department of Energy (DOE). An industry-driven consortium initiated in 2000, SWC's goal is to keep "stripper wells" productive in an environmentally safe manner, maximizing the recovery of domestic hydrocarbon resources. The consortium is managed and administered by The Pennsylvania State University on behalf of DOE; the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL)

203

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2013 Activities and Achievements  

E-Print Network [OSTI]

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2013 Activities Institute for Telecommunication Sciences Pursuant to the Technology Transfer and Commercialization Act This report summarizes technology transfer activities and achievements of the Department of Commerce's (DOC

204

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2012 Activities and Achievements  

E-Print Network [OSTI]

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2012 Activities Institute for Telecommunication Sciences Pursuant to the Technology Transfer and Commercialization Act This report summarizes technology transfer activities and achievements of the Department of Commerce's (DOC

205

Abi Barrow, PhD Founding Director of the Massachusetts Technology Transfer Center  

E-Print Network [OSTI]

Abi Barrow, PhD Founding Director of the Massachusetts Technology Transfer Center Dr. Abigail Barrow is the Founding Director of the Massachusetts Technology Transfer Center (MTTC). She and accelerates technology transfer between all universities, hospitals and research institutions

Vajda, Sandor

206

EDINBURGH TECHNOLOGY TRANSFER CENTRE LIMITED GUIDE TO INFORMATION AVAILABLE THROUGH OUR PUBLICATION SCHEME  

E-Print Network [OSTI]

EDINBURGH TECHNOLOGY TRANSFER CENTRE LIMITED GUIDE TO INFORMATION AVAILABLE THROUGH OUR PUBLICATION and what it might cost. Edinburgh Technology Transfer Centre Limited ("the company") has adopted the Model Unless otherwise stated, Edinburgh Technology Transfer Centre Limited reserves copyright in all

Edinburgh, University of

207

Transfer and commercialisation of contaminated groundwater remediation technologies  

Science Journals Connector (OSTI)

High costs and poor performance of conventional groundwater remediation technologies have brought a call for the deployment of innovative technologies capable of attaining regulatory standards while satisfying time and budget constraints. To develop an innovative technology in the laboratory and ultimately transition it to full-scale commercialisation, presents challenges at various levels. Scientific and engineering problems and regulatory and legal issues exist that must be dealt with when moving a technology from the laboratory to the field. Importantly, cost and performance data must be presented in a manner that convinces stakeholders that the technology can accomplish remediation more economically, safely and efficiently than conventional technologies. The challenges of transferring and commercialising innovative groundwater remediation technologies and strategies that may be used to help overcome these challenges are discussed. Case studies of groundwater remediation technology transfer are presented.

Mark N. Goltz; Kenneth J. Williamson

2002-01-01T23:59:59.000Z

208

Department of Energy Announces Technology Transfer Coordinator | Department  

Broader source: Energy.gov (indexed) [DOE]

Technology Transfer Coordinator Technology Transfer Coordinator Department of Energy Announces Technology Transfer Coordinator February 23, 2010 - 12:00am Addthis Washington, D.C. - U.S. Department of Enery Secretary Steven Chu announced today that Dr. Karina Edmonds will join the Department of Energy as its new Technology Transfer Coordinator. Dr. Edmonds will be responsible for working with the Department's National Laboratories to accelerate the process of moving discoveries from the laboratory to the private sector, ensuring that America's scientific leadership translates into new, high-paying jobs for America's families. Dr. Edmonds is scheduled to join the Department starting in April 2010. "I am pleased to have Karina join our team at the Department of Energy," said Secretary Chu. "Having Karina oversee a coordinated, strategic

209

Notice of Inquiry: Technology Transfer Practices at Department...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electronically to GC-62@hq.doe.gov Office of the Assistant General Counsel for Technology Transfer U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 Dear...

210

Heterojunction solar cells produced by porous silicon layer transfer technology  

Science Journals Connector (OSTI)

In this paper, we present the result of heterojunction solar cells based on porous silicon layer transfer technology. a-Si/c-Si structured solar cells were prepared in which the c-Si ... was investigated. The spe...

Zhihao Yue; Honglie Shen; Lei Zhang; Bin Liu; Chao Gao; Hongjie Lv

2012-09-01T23:59:59.000Z

211

Small Business Innovation Research and Small Business Technology Transfer  

Broader source: Energy.gov [DOE]

The DOE Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs are highly competitive opportunities that encourage U.S.-based small businesses to engage in...

212

Technology Transfer: A Review for Biomedical Researchers  

Science Journals Connector (OSTI)

...involves 2 major technologies-mass spectrometry...collection and handling, and on the available...preparation and handling, robotic sample...subject selection procedures, confounding...these methods and technologies. A list of biospecimens...this article are applied for different epidemiologic...

Robert Kneller

2001-04-01T23:59:59.000Z

213

Technology Transfer at Berkeley Lab: Success Stories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Start-Up Companies Based on Berkeley Lab Technology Start-Up Companies Based on Berkeley Lab Technology Since 1990, Berkeley Lab technology has formed the basis for over 30 start-ups, creating over 2,000 new jobs in these companies alone. These technologies include solar cells, genomics-related software, nanotechnology, drug development, x-ray imaging, materials sciences processing, biomolecular tagging, and energy-efficiency home improvements. The majority of these companies are located in California (see map on the right). Company Business Year* FTE** Exogen heliotrope logo Next generation technologies to monitor individual DNA damage for personalized and preventative health care 2013 N/A Heliotrope heliotrope logo New materials and manufacturing processes for electrochomic devices including energy-saving, smart windows 2013 N/A

214

technology offer Research and Transfer Support | Tanja Sovic-Gasser  

E-Print Network [OSTI]

technology offer Research and Transfer Support | Tanja Sovic-Gasser Favoritenstrasse 16/E0154 | A of the deposition process their surface topography can be adjusted for repellent - "easy to clean" properties-current pulse phase are major problems in industrial applications. Technology Electroplating is done at constant

Szmolyan, Peter

215

Technology transfer: solar power and distributed rural electrification  

Science Journals Connector (OSTI)

The research objective is to assess and transfer high efficiency multi-junction photovoltaic cell technology developed at the National Renewable Energy Lab to a start-up venture. The technology integrates a rooftop satellite-dish sized reflector that tracks and concentrates solar energy onto the target cell. There are still rural communities in the world where

Stephen W. Jordan; Tugrul U. Daim

2012-01-01T23:59:59.000Z

216

Methods for Climate Change Technology Transfer Needs Assessments and  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Methods for Climate Change Technology Transfer Needs Assessments and Implementing Activities: Experiences of Developing and Transition Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Methods for Climate Change Technology Transfer Needs Assessments and Implementing Activities: Experiences of Developing and Transition Countries Focus Area: Energy Access Topics: Potentials & Scenarios Website: www.climatetech.net/pdf/Ccmethod.pdf Equivalent URI: cleanenergysolutions.org/content/methods-climate-change-technology-tra Language: English

217

by E. Lance Cole Operations Manager Petroleum Technology Transfer Council  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

World Energy Vol. 11 No. 2 2008 World Energy Vol. 11 No. 2 2008 2 by E. Lance Cole Operations Manager Petroleum Technology Transfer Council Jim Blankenship Geoscience Director American Association of Petroleum Geologists Tom Williams PTTC Board Member and Retired Vice President, Technology Services Noble Corporation Ken Oglesby Managing Partner Impact Technologies LLC E&P Technology: From Idea to Widespread Adoption in the U.S. M any factors influence the degree to which a new exploration and production (E&P) technology is accepted by industry and grows to realize its full market potential. These include the introduction of a good idea that is needed by industry, intellectual property protection, capitalization at each level of development, field testing, the business model, technology transfer and

218

International low carbon technology transfer: Do intellectual property regimes matter?  

Science Journals Connector (OSTI)

Abstract Transfer of low carbon technologies to developing countries has been recognized as important in global efforts to limit climate change. Yet the mechanics of international technology transfer, especially around intellectual property rights, have remained a controversial issue in international negotiations. Using a new dataset on international partnerships in China and India in three key low carbon technologies—solar photovoltaics, electric vehicles, and coal gasification/integrated gasification combined cycle—and complementary expert interviews we study the dynamics of the transfer of intellectual property and the underlying drivers that guide the development of business strategies and partnerships in the context of transitioning intellectual property regimes in emerging markets. We find that weak intellectual property regimes are indeed a hindrance to the diffusion of certain classes of low carbon technologies: (i) for cutting-edge technologies, (ii) for fully-embodied (explicitly codified) technologies, and (iii) for small firms. However, we also find that intellectual property issues do not represent a barrier to the diffusion of the relatively mature and low to medium cost low carbon technologies that are materially (at scale) most important for carbon dioxide emissions reduction in the short to medium term. Competitive technology supply, shifting market dynamics, and increasingly vigorous domestic innovation coupled with mechanisms and opportunities to structure credible intellectual property deals allow for the diffusion of key low carbon technologies to occur within the context of existing business, political, and institutional structures.

Varun Rai; Kaye Schultz; Erik Funkhouser

2014-01-01T23:59:59.000Z

219

Technology Transfer: Success Stories: Honors and Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Honors and Awards Honors and Awards R & D Magazine's R&D 100 Awards are presented to the 100 most technologically significant new technologies each year. Below is a list of Berkeley Lab award winners over the past 27 years. Go here for an overview of Berkeley Lab's approach to preparing R&D 100 Awards nominations. Technology Title R&D 100 Principal Investigators High Throughput NIMS Screening 2013 Trent Northen (co-entry with Nextval Systems) Bacteriophage Power Generator 2013 Seung-Wuk Lee Conducting Polymer Binder for High Capacity Lithium Ion Batteries 2013 Gao Liu OSCARS: On-demand Secure Circuits and Reservation System 2013 Chin Guok Universal Smart Window Coating 2013 Delia Milliron, Guillermo Garcia, Raffaella Buonsanti, Anna Llordés Campanile Probe 2013 Alex Weber-Bargioni, P. James Schuck, Stefano Cabrini

220

Virtual water transfers unlikely to redress inequality in global water use This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network [OSTI]

Virtual water transfers unlikely to redress inequality in global water use This article has been) 024017 (6pp) doi:10.1088/1748-9326/6/2/024017 Virtual water transfers unlikely to redress inequality in global water use D A Seekell, P D'Odorico and M L Pace Department of Environmental Sciences, University

Pace, Michael L.

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Joint design and technology transfer for CANDU projects in Korea  

SciTech Connect (OSTI)

Since the first commercial operation of Kori Unit 1 in April 1978, nine nuclear units are operating and seven, including three CANDU 6 reactors (Wolsong 2, 3 & 4), are currently under construction in Korea. One of the cornerstones of Korea`s nuclear energy policy is the drive for technological self-reliance. Thus, as part of the Wolsong Project scope, a Technology Transfer Agreement for CANDU NSSS System Design was concluded. Under tills agreement Atomic Energy of Canada Limited (AECL) is transferring technologies relating to CANDU 6 NSSS design to Korea Atomic Energy Research Institute (KAERI). As a result KAERI is now performing joint design with AECL for the NSSS of the Wolsong Projects. The current NSSS engineering and design progress for Wolsong 2, 3 & 4 is 58 percent as of December 1993. AECL and KAERI will also pursue the development of advanced technology including a large CANDU system on the basis of CANDU 6 technology.

Harris, D.; Lee, I.H.

1994-12-31T23:59:59.000Z

222

Technology Transfer The Institute could not accomplish its goals without shar-  

E-Print Network [OSTI]

Technology Transfer The Institute could not accomplish its goals without shar- ing its expertise. Technology transfer also communicates to the world who we are--raising the profile of the Institute and its report highlights some of our technology transfer activities over the past year. Technology Transfer

Minnesota, University of

223

Technology Transfer The Research Profile of the Johannes Gutenberg University Mainz  

E-Print Network [OSTI]

Science Research Technology Transfer The Research Profile of the Johannes Gutenberg University Mainz #12;#12;Science Research Technology Transfer 3 Foreword In light of the tough international Technology Transfer 38 Imprint Contents Science Research Technology Transfer 5 #12;Clear Commitment

Kaus, Boris

224

Research Projects > Research Services > Technology Transfer Cover: Electromagnetic Collapse of Metallic Cylinders  

E-Print Network [OSTI]

Research Projects > Research Services > Technology Transfer INDUSTRY GUIDE TO TECHNION #12;Cover > Research Services > Technology Transfer Produced by Technion Research and Development Foundation (TRDF Technology Transfer 25 Technion Technology Transfer (T3 ) 30 Alfred Mann Institute at the Technion (AMIT) 31

Avron, Joseph

225

VIEWS ON U.S. WATER RESEARCH AND TECHNOLOGY TRANSFER PROGRAMS  

E-Print Network [OSTI]

#12;VIEWS ON U.S. WATER RESEARCH AND TECHNOLOGY TRANSFER PROGRAMS By MAMADOU H. WATT, Director . . . . . . . . . . 18 5. Technology Transfer and Information Dissemination . . . . 20 5.1 Definition and Purpose. . . . . . . . . . . . . . . 20 5.2 The Process of Technology Transfer. . . . . . . . . 21 5.3 Products of Technology Transfer

District of Columbia, University of the

226

International Center for Environmental Technology Transfer | Open Energy  

Open Energy Info (EERE)

Transfer Transfer Jump to: navigation, search Logo: International Center for Environmental Technology Transfer Name International Center for Environmental Technology Transfer Place Yokkaichi, Japan Year founded 1990 Coordinates 34.9651567°, 136.6244847° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9651567,"lon":136.6244847,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

NREL: Technology Transfer - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Innovation Portal Energy Innovation Portal Get the EERE Energy Innovation Portal widget and many other great free widgets at Widgetbox! Not seeing a widget? (More info) NREL developed and manages the Energy Innovation Portal for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). The portal provides streamlined searching and browsing of patents, patent applications, and marketing summaries for clean energy technologies available for licensing from DOE laboratories and participating research institutions. Visit the EERE Energy Innovation Portal. For more information about NREL's involvement with the portal, read NREL Helps DOE Promote Cutting-Edge Technology. Contact If you have any questions about the portal, contact Matthew Ringer,

228

TRANSfer - Towards climate-friendly transport technologies and measures |  

Open Energy Info (EERE)

TRANSfer - Towards climate-friendly transport technologies and measures TRANSfer - Towards climate-friendly transport technologies and measures Jump to: navigation, search Tool Summary Name: TRANSfer - Towards climate-friendly transport technologies and measures Agency/Company /Organization: GIZ Focus Area: Governance - Planning - Decision-Making Structure Topics: Best Practices Resource Type: Reports, Journal Articles, & Tools Website: transferproject.org/index.php/hb During the 3-year project, project partners will develop the online handbook 'Navigating Transport NAMAs' with practical advice on how to develop and implement a mitigation action in the transport sector. The handbook will consist of a generic part with general information on transport NAMAs and a number of case studies which will be based on south-south networks of countries and practical implementation within the

229

Federal Laboratory Consortium Excellence in Technology Transfer Award |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Federal Laboratory Federal Laboratory Consortium Excellence in Technology Transfer Award About Organization Budget Field Offices Federal Advisory Committees History Scientific and Technical Information Honors & Awards Presidential Early Career Awards for Scientists and Engineers (PECASE) The Enrico Fermi Award The Ernest Orlando Lawrence Award DOE Nobel Laureates Federal Laboratory Consortium Excellence in Technology Transfer Award R&D 100 Awards Jobs Brochures, Logos, & Information Resources Contact Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Honors & Awards Federal Laboratory Consortium Excellence in Technology Transfer Award Print Text Size: A A A RSS Feeds FeedbackShare Page Estimates are that fully half the growth in the American economy in the

230

Technology Transfer at Berkeley Lab: For Berkeley Lab Researchers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Webcasts from Transferring Technology to the Marketplace Spring 2006 Series Webcasts from Transferring Technology to the Marketplace Spring 2006 Series Eureka! - Inventing and what happens next? Speakers share what makes a commercially successful invention and what happens on the pathway from invention to the marketplace. Click here for the webcast (60 min) or just hear Paul Avlivisatos' talk here (9 min). Speakers: Steve Chu, LBNL Lab Director Paul Alivisatos, Associate Lab Director and Founder of Nanosys Cheryl Fragiadakis, Technology Transfer Department Head Patenting - The ins and outs of this mysterious process Better understand why patent and copyright protection is so important, how the process works, and what role the inventor plays. Click here for the webcast (60 min). Speakers: Tim Lithgow, Patent Department Head Michael Fuller, Partner, Knobbe Martens Olson & Bear, L.L.P.

231

USDOE Technology Transfer, Responses to the Notice of Inquiry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the National Labs About the National Labs Designated User Facilities TECH TRANSFER AGREEMENTS (CRADA) Cooperative Research and Development Agreement (PDF file | Word doc) User Agreement - Proprietary User Agreement - Non-proprietary Work for Others Agreement (PDF file | Word doc) USEFUL LINKS DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) FLC Technology Locator Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Responses to the Notice of Inquiry Introduction On November 26, 2008, a Notice of Inquiry regarding Questions Concerning Technology Transfer Practices at DOE Laboratories was posted for public comment. DOE received thirty-six responses to that notice. Numerous persons

232

Technology Transfer at Berkeley Lab: For Berkeley Lab Researchers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Steven Chu Steven Chu "Technology transfer is a superb opportunity to demonstrate the value of our discoveries and to benefit society. It is an area I would like to see grow." Steve Chu, Secretary, US Department of Energy, and Former Lab Director What You Need to Know and Do What you, as a Berkeley Lab researcher or guest, need to do to protect the intellectual property you create to meet Lab requirements and how publishing and pursuing a patent are fully compatible. The Tech Transfer Proces The steps to patent, market and commercialize an invention and the role of Technology Transfer and Intellectual Property Management (TTIPM). Business Development Services Resources available within TTIPM to help move your technology to market. Berkeley Lab LaunchPad Services available at the Lab and beyond to help launch your startup

233

National Lab Technology Transfer Making a Difference | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

National Lab Technology Transfer Making a Difference National Lab Technology Transfer Making a Difference National Lab Technology Transfer Making a Difference August 28, 2013 - 11:10am Addthis Incorporation of a new CO2 sorbent into commercial heating, ventilation, and air conditioning (HVAC) systems will save energy and reduce operating costs. HVAC is one of the largest consumers of electric power in the United States, responsible for more than half of the load on the electric grid in many major cities. NETL work has led to a patented CO2 sorbent that has now been licensed commercially. Incorporation of a new CO2 sorbent into commercial heating, ventilation, and air conditioning (HVAC) systems will save energy and reduce operating costs. HVAC is one of the largest consumers of electric power in the United

234

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic-Gasser  

E-Print Network [OSTI]

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic for repellent - "easy to clean" properties ­ or vice versa for fluid retention properties as well, properties applications. Technology Electroplating is done at constant current density and structure formation is done

Szmolyan, Peter

235

Transfer of security technology from Sandia to industry  

SciTech Connect (OSTI)

The National Competitiveness Technology Transfer Act of 1989 made technology transfer a mission for the national laboratories. The intent is to maximize the benefit from public monies and to improve the economic position of US industry in the world marketplace. A key instrument created by this legislation is the Cooperative Research and Development Agreement (CRADA) between a private company and a government-owned contractor-operated R D lab. Under these provisions, the national laboratories can negotiate directly with industry, grant title to intellectual property developed in a CRADA, and withhold publication of commercially-valuable information developed in a CRADA for up to five years. Sandia National Laboratories is very proactive in the transfer of technology developed as the DOE lead laboratory for physical security R D and from work for other government agencies. Specific security-related products have frequently evolved from government user needs into initial concepts followed by research and development into field prototypes which finally have a system design package appropriate for transfer to industry. In the past year several meetings announced in the Commerce Business Daily (CBD) were held with industry to present specific systems and to initiate discussions toward establishing a GRADA and/or granting a product license. Several examples and updates will be presented to illustrate this new process for security technology transfer from Sandia to industry. 2 refs.

Williams, J.D.; Matter, J.C.

1991-01-01T23:59:59.000Z

236

Comments About The Impact of Federal Technology Transfer on the Commercialization Process  

Science Journals Connector (OSTI)

Much has been said about technology transfer and little about technology commercialization. My comments will focus on the commercialization of public sector technology by industry.

James P. Wilhelm

1994-01-01T23:59:59.000Z

237

Technology transfer of small-scale energy technologies in the US Pacific Territories  

SciTech Connect (OSTI)

From 1977 to 1981 the Department of Energy has awarded 32 grants for small-scale energy projects in the US Pacific Territories. A critical issue with these projects has been transferring the technology within the community once the project has been completed. Certain projects are more successful at this than others. There are elements common to projects which are the most successful in this regard. In addition, there appear to be five different types of technology transfer processes. This paper identifies these processes, illustrates each with a case study, and points out the common elements. Perhaps this information can be used when designing other projects to facilitate technology transfer in developing countries.

Case, C.W.

1982-01-01T23:59:59.000Z

238

Robot Task Execution with Telepresence Using Virtual Reality Technology  

E-Print Network [OSTI]

Yang**, and Marcelo Ang, Jr.** *Gintic Institute of Manufacturing Technology 71 Nanyang Drive Singapore National Laboratory in 1945 for the safe handling of radioactive isotopes. Electrical servomechanisms soon replaced the direct mechanical tape and cable linkages. An anthropomorphic teleoperator has human like form

Ang Jr.,, Marcelo H.

239

Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Page 1 of 3 10.6 Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture  

E-Print Network [OSTI]

Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Page 1 of 3 10.6 Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Policy Number & Name: 10.6 Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Approval

Yang, Eui-Hyeok

240

Sustainable development and technology transfer opportunities in the Sudan  

Science Journals Connector (OSTI)

The aim of this article is to develop a framework for identifying technology transfer opportunities in the Sudan to strengthen research and academic institutions' role in closing the productivity gap and achieving sustainable development. The paper critically examines the different problems and challenges facing technology transfer in the Sudan with particular focus on agricultural research and technology. This paper also evaluates the implementation capacity constraints, which exist in formal agricultural research, and the impact this has on the development of the agricultural sector of the Sudanese economy. Finally, a number of findings emerge, which outline the key issues relating to effectively managing the technological transformation in the Sudan as well as helping policy makers to take appropriate and immediate measures to achieve sustainable development in the Sudan.

Allam Ahmed

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NREL: Technology Transfer - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 December 3, 2008 DOE to Award $14.55 Million for Advanced Vehicle Technologies Ford Motor Company has received funds from the U.S. Department of Energy to develop an energy-efficient way to cool, heat, and ventilate cars. NREL will serve on Ford's project team. November 20, 2008 NREL, Brazilian Energy Company to Collaborate on Bioenergy The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) and Petróleo Brasileiro S.A. (Petrobras) announced today that they have signed an agreement that could accelerate the development and international commercialization of biofuels. The announcement was made at the International Biofuels Conference in Sao Paulo, Brazil. November 13, 2008 NREL and Private Industry Begin Nationwide Solar Measuring Network

242

Office of Technology Transfer and Innovation Partnerships, Innovative Technologies Complex, Suite 2100 Mailing Address: PO Box 6000, Binghamton, New York 13902-6000  

E-Print Network [OSTI]

Office of Technology Transfer and Innovation Partnerships, Innovative Technologies Complex, Suite Hancock Assistant Director for Licensing Binghamton University Office of Technology Transfer

Suzuki, Masatsugu

243

Advances in energy-transfer technology  

SciTech Connect (OSTI)

This paper discusses the technology of drying and curing inks, coatings and adhesives which is changing rapidly as converters and manufacturers strive to comply with regulations governing airborne emissions as well as discharge of liquid and solid wastes. Compliance with these regulations will become more difficult in the coming decade as the Clean Air Act's increasingly stringent limitations on emissions of volatile organic compounds are implemented to support the intentions of the Montreal protocol. Many of the customary solvents are being eliminated, and the volume of production for many others will be severely reduced. For some companies, the switch to the new materials means updating or replacing antiquated hot-air drying systems with high-velocity impingement ovens with higher temperature capabilities. Probably the least-expansive alternative to replacing the entire oven is to retrofit the installation with infrared (IR) energy in the form of separate predryers or postheaters or, in some cases, to install auxiliary IR heaters between the hot-air nozzles within the oven.

Terpstra, L. (Glenro, Inc., Paterson, NJ (US))

1992-06-01T23:59:59.000Z

244

Technology transfer: A cooperative agreement and success story  

SciTech Connect (OSTI)

This paper describes the cooperative agreement between the U.S. Department of Energy and Envirocare of Utah, Inc., wherein the former transferred macroencapsulative technology to the latter for purposes of demonstrating commercialization of treatment and disposal of 225, 000 Kg of radioactive lead stored at departmental installations.

Reno, H.W.; McNeel, K. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Armstrong, A.T. [USDOE Idaho Operations Office, Idaho Falls, ID (United States); Vance, J.K. [Envirocare of Utah, Inc., Salt Lake City, UT (UNited States)

1996-08-01T23:59:59.000Z

245

Systemic problems in technology transfer in emerging markets  

Science Journals Connector (OSTI)

This study analyses a case of a Korean company that imported the manufacturing technology of diesel engines from West Germany back in the 1970s when Korea was in a state of an emerging market. The first objective of this study is to identify the systemic nature of the problems that arose in the course of the transfer of technology from an advanced country to an emerging market. The second objective of this study is to explore the technology policies that the Korean government adopted to help Korean business firms solve the systemic problems.

Suck-Chul Yoon

2009-01-01T23:59:59.000Z

246

Pathways to Technology Transfer and Adoption: Achievements and Challenges (Mini-Tutorial)  

E-Print Network [OSTI]

Pathways to Technology Transfer and Adoption: Achievements and Challenges (Mini-Tutorial) Dongmei. There are some common challenges faced when pursuing technology transfer and adoption while particular challenges transfer and adoption. This mini-tutorial presents achievements and challenges of technology transfer

Xie, Tao

247

Technology transfer by CDM projects: a comparison of Brazil, China, India and Mexico  

E-Print Network [OSTI]

Technology transfer by CDM projects: a comparison of Brazil, China, India and Mexico Antoine (Dechezleprêtre et al., 2008), we gave a general description of technology transfers by CDM projects and we important role in facilitating international technology transfers through the CDM. International transfers

248

NREL: Technology Transfer - Materials Exposure Testing Market Expands with  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Exposure Testing Market Expands with Ultra-Accelerated Weathering Materials Exposure Testing Market Expands with Ultra-Accelerated Weathering System In this video, NREL researchers Gary Jorgenson and Carl Bingham discuss the NREL-developed ultra accelerated weathering system and its ability to revolutionize the weathering industry. Get the Adobe Flash Player to see this video. Credit: Fireside Production Learn more about the Ultra Accelerated Weathering System. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News Contacts Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit

249

An Inventor's Guide:Technology Transfer at LSU Health Sciences Center -New Orleans Office of Technology Management  

E-Print Network [OSTI]

1 An Inventor's Guide:Technology Transfer at LSU Health Sciences Center - New Orleans Office://www.lsuhsc.edu/administration/academic/otm/ #12;2 A MESSAGE FROM THE DIRECTOR The `An Inventor's Guide: Technology Transfer at LSU Health Sciences Center' outlines the essential elements of technology transfer and commercialization on our campus

250

An Inventor's Guide:Technology Transfer at LSU Health Sciences Center New Orleans Office of Technology Management  

E-Print Network [OSTI]

1 An Inventor's Guide:Technology Transfer at LSU Health Sciences Center New Orleans Office://www.lsuhsc.edu/administration/academic/otm/ #12;2 A MESSAGE FROM THE DIRECTOR The `An Inventor's Guide: Technology Transfer at LSU Health Sciences Center' outlines the essential elements of technology transfer and commercialization on our campus

251

Virtual active filters for HVDC networks using V2G technology F.R. Islam  

E-Print Network [OSTI]

Virtual active filters for HVDC networks using V2G technology F.R. Islam , H.R. Pota School 23 July 2013 Keywords: Power system HVDC Active filter PHEV V2G a b s t r a c t Active and passive filters are essential to maintain the power quality of a HVDC link. In this paper the Vehicle to Grid (V2G

Pota, Himanshu Roy

252

The EMDEX Project: Technology transfer and occupational measurements  

SciTech Connect (OSTI)

The Electric and Magnetic Field Measurement Project for Utilities -- the EPRI EMDEX Project -- is a multifaceted project entailing technology transfer, measurement protocol design, data management, and exposure assessment analyses. The specific objectives of the project in order of priority were: to transfer the EMDEX technology to utilities; to develop measurement protocols and data management capabilities for large exposure data sets; and to collect, analyze, and document 60-Hz electric and magnetic field exposures for a diverse population. Transfer of the EPRI Electric and Magnetic Field Digital Exposure system (EMDEX) technology to the participating utilities was accomplished through training and through extensive involvement in the exposure data collection effort. Field exposure data measured by an EMDEX system were collected by volunteer utility employees at 59 sites in the US and three other countries between October 1988 and September 1989. Approximately 50,000 hours of magnetic field and 23,000 hours of electric field exposure records taken at 10-second intervals were obtained, of which 70% were from Work environments. Exposures and time spent in environments have been analyzed by Primary Work Environment, by occupied environment, and by job classification. Generally, the measured fields and exposures in the Generation, Transmission, Distribution and Substation environments were higher than in other occupational environments in utilities. The Nonwork fields and exposures for workers associated with various categories were comparable. Evaluation of the project by participants indicated general satisfaction with the EMDEX system and with this approach to technology transfer. This document, Volume 3 contains appendices with a complete set of project protocols, project materials, and extensive data tables.

Not Available

1990-11-01T23:59:59.000Z

253

US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer  

SciTech Connect (OSTI)

Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, and the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.

Hsieh, S.T. [Tulane Univ., New Orleans, LA (United States). US/China Inst.; Atwood, T. [Dept. of Energy, Washington, DC (United States); Qiu Daxiong [Tsinghua Univ., Beijing (China); Zhang Guocheng [State Science and Technology Commission, Beijing (China)

1997-12-31T23:59:59.000Z

254

The EMDEX Project: Technology transfer and occupational measurements  

SciTech Connect (OSTI)

The Electric and Magnetic Field Measurement Project for Utilities -- the EPRI EMDEX Project -- is a multifaceted project entailing technology transfer, measurement protocol design, data management, and exposure assessment analyses. The specific objectives of the project in order of priority were: (1) to transfer the EMDEX technology to utilities; (2) to develop measurement protocols and data management capabilities for large exposure data sets; and (3) to collect, analyze, and document 60-Hz electric and magnetic field exposures for a diverse population. Transfer of the EPRI Electric and Magnetic Field Digital Exposure system (EMDEX) technology to the participating utilities was accomplished through training and through extensive involvement in the exposure data collection effort. Documentation of the EMDEX Project is contained in three volumes: Volume 1 summarizes the methods and results, and provides and assessment of project objectives; Volume 2 provides detailed descriptions of methods, procedures, protocols, materials and analyses; and Volume 3 contains appendices with a complete set of project protocols, project materials, and extensive data tables. 8 refs., 12 figs., 2 tabs.

Bracken, T.D.

1990-11-01T23:59:59.000Z

255

Project Summary for Small Business Technology Transfer (STTR) Phase II Proposal  

E-Print Network [OSTI]

Project Summary for Small Business Technology Transfer (STTR) Phase II Proposal Title: Real-time Analysis and Feedback during Colonoscopy to improve Quality This Small Business Technology Transfer Phase

Oh, JungHwan

256

Software Tools for Technology Transfer manuscript No. (will be inserted by the editor)  

E-Print Network [OSTI]

Software Tools for Technology Transfer manuscript No. (will be inserted by the editor) Tradeoff manuscript, published in "Software Tools for Technology Transfer (STTT) 15, 3 (2013) 229-245" DOI : 10.1007/s

Paris-Sud XI, Université de

257

Made in China : A Norwegian Perspective on How Cultural Differences Affect Technology Transfer.  

E-Print Network [OSTI]

??In this thesis, an attempt to incorporate cross-cultural research to an innovation-oriented approach to technology transfer is made. As cultural aspects of international technology transfer… (more)

Gulliksen, Jørgen Horn

2010-01-01T23:59:59.000Z

258

Connect, Collaborate, Commercialize There are many different opportunities for engagement and technology transfer at Georgia  

E-Print Network [OSTI]

and technology transfer at Georgia Tech. Working together we can tailor a relationship unique to your company

Garmestani, Hamid

259

februari 2008 MassMass transfer & separation technology 424302 2008transfer & separation technology 424302 2008 --APPENDIXAPPENDIX  

E-Print Network [OSTI]

Multicomponent mixturesmixtures"" by J.A.by J.A. WesselinghWesselingh & R. Krishna,& R. Krishna, DelftDelft University Press (2000Transfer in MulticomponentMulticomponent mixturesmixtures"" by J.A.by J.A. WesselinghWesselingh & R. Krishna,& R. Krishna"" by J.A.by J.A. WesselinghWesselingh & R. Krishna,& R. Krishna, DelftDelft University Press (2000

Zevenhoven, Ron

260

The World Wide Web and Technology Transfer at NASA Langley Research Center  

E-Print Network [OSTI]

The World Wide Web and Technology Transfer at NASA Langley Research Center Michael L. Nelson with a reorganization of LaRC to provide a more concentrated focus on technology transfer to both aerospace and non allows for the implementation, evolution and integration of many technology transfer applications

Nelson, Michael L.

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Houston, We Have a Success Story: Technology Transfer at the NASA IV&V Facility  

E-Print Network [OSTI]

Houston, We Have a Success Story: Technology Transfer at the NASA IV&V Facility Ken McGill, Wes of and technology transfer from NASA's research program in Independent Verification and Validation (IV, Verification. Keywords Technology transfer, Independent Verification and Validation, Research. 1. INTRODUCTION

Dekhtyar, Alexander

262

X. SELECTED ADMINISTRATIVE POLICIES FOR FACULTY H. Technology Transfer (Patent) Policy  

E-Print Network [OSTI]

X. SELECTED ADMINISTRATIVE POLICIES FOR FACULTY H. Technology Transfer (Patent) Policy 1. Introduction a. Relation of Technology Transfer to the Mission of the College A significant aspect available for public use and benefit. This "technology transfer" is accomplished in many ways, including

Kasman, Alex

263

Software Tools for Technology Transfer manuscript No. (will be inserted by the editor)  

E-Print Network [OSTI]

Software Tools for Technology Transfer manuscript No. (will be inserted by the editor) Editorial W This marks the inaugural issue of the Springer­Verlag journal Software Tools for Technology Transfer (STTT. This aim goes hand in hand with the technology transfer support offered by the related Electronic Tool

Cleaveland, Rance

264

Trinity Technology Transfer News In recent months Creme has been working with their customers  

E-Print Network [OSTI]

Trinity Technology Transfer News April 2013 In recent months Creme has been working. Margaret Woods | Technology Transfer Manager mjwoods@tcd.ie Ms. Audrey Crosbie | Industry Liaison Manager Enterprise Ireland technology Transfer grant, 2007-2012 Creme Global, is a TCD campus company spun out

O'Mahony, Donal E.

265

Trinity Technology Transfer News TTCCDD CCaammppuuss CCoommppaannyy ttoo llaauunncchh nneeww pprroodduucctt  

E-Print Network [OSTI]

Trinity Technology Transfer News TTCCDD CCaammppuuss CCoommppaannyy ttoo llaauunncchh nneeww programmes". One of the functions of the Technology Transfer Office is to promote and foster a culture communities. All members of the TTO deliver seminars, workshops, and course modules on IP, technology transfer

O'Mahony, Donal E.

266

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2008 Activities and Achievements  

E-Print Network [OSTI]

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2008 Activities--Institute for Telecommunication Sciences In response to the: Technology Transfer and Commercialization Act of 2000 (P.L. 106 (FY) 2008. At the Department of Commerce, technology transfer is a significant part of the mission

Perkins, Richard A.

267

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2011 Activities and Achievements  

E-Print Network [OSTI]

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2011 Activities Pursuant to the Technology Transfer Commercialization Act of 2000 (Pub. L. 106-404) January 2012 #12;ii This page is intentionally left blank FOREWORD This report summarizes technology transfer activities

Perkins, Richard A.

268

PATENTING AND LICENSING The major thrust of the Technology Transfer Office's activity is directed towards  

E-Print Network [OSTI]

PATENTING AND LICENSING The major thrust of the Technology Transfer Office's activity that he or she may have created an invention, to promptly report it to the Technology Transfer Office. 2. Patentability Determination After the invention is reported to the Technology Transfer Office

269

Specificationbased Testing of Reactive Software: A Case Study in Technology Transfer  

E-Print Network [OSTI]

Specification­based Testing of Reactive Software: A Case Study in Technology Transfer Lalita be effective in practice. The case study illustrates that technology transfer efforts can benefit from that limit formal methods technology transfer. We also found that there is often a tension between the scope

Porter, Adam

270

CONNET -DESIGN ISSUES1 Issues in Designing a European Technology Transfer Network for the  

E-Print Network [OSTI]

CONNET - DESIGN ISSUES1 Issues in Designing a European Technology Transfer Network of European Union's Technology Transfer Network such a one-stop-shop for the construction industry of Europe and techniques that enable technology transfer to SMEs as well as provide new business opportunities and models

Amor, Robert

271

A GRADUATE'S ROLE IN TECHNOLOGY TRANSFER: FROM REQUIREMENTS TO DESIGN WITH UML  

E-Print Network [OSTI]

A GRADUATE'S ROLE IN TECHNOLOGY TRANSFER: FROM REQUIREMENTS TO DESIGN WITH UML Stephen Hallinan in the discipline of software engineering and is often categorised under the umbrella of technology transfer analyse the role of a recently qualified stu- dent1 in facilitating technology transfer in the form

Gibson, J. Paul

272

FY05 Targeted Technology Transfer to US Independents  

SciTech Connect (OSTI)

Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within a National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions, the PTTC from the start has captured and reported data that document the myriad ways its programs impact industry. Of 119 workshops in FY05 where repeat attendance was reported, 59 percent of attendees on average had attended a PTTC event previously, indicating that a majority felt they were receiving enough value to come back. It also is encouraging that, after 11 years, PTTC events continue to attract new people. The form used at workshops to get participants feedback asks for a ''yes'' or ''no'' response to the question: ''Have you used any new technologies based on knowledge gained through PTTC?'' With data now available from 611 workshops, 41 percent of respondents said, ''yes'', confirming that people are applying the information they receive at PTTC workshops. PTTC in FY04 asked RLO directors, oilfield service companies and producers in 11 areas with significant technological barriers to adding new reserves to estimate the ''PTTC Impact Factor''--that is, the percentage of the total reserves added in their areas that logically could be attributed to PTTC's efforts. Of the estimated 1,266 million barrels of oil equivalent (BOE) added in the 11 areas, participants estimated that roughly 88 million BOE had been added as a result of PTTC's techtransfer efforts. PTTC's 10 regions are the primary delivery mechanism for technology transfer. Attendance at PTTC regional activities set a record in FY05, with 8,900 individuals attending 154 workshops, lunch-and-learn events, or student training and internships. When appropriate, regional workshops incorporate R&D findings from DOE-funded projects. This year HQ began a ''Microhole Technology Integration'' Initiative with DOE to more clearly present their microhole program to producers. Often events are held cooperatively with other national organizations, regional producer associations and professional society groups. This practice leverages outreach and engenders future cooperation. Of the more than 61,000 individuals PTTC has attracted to its events since its inception, more than 15,000 have attended in the past two years. Eight-eight percent of PTTC event attendees during FY05 were from industry. The numb

Donald F. Duttlinger; E. Lance Cole

2005-11-01T23:59:59.000Z

273

USDOE Technology Transfer, Frequently Asked Questions about Agreement for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Frequently Asked Questions about ACT: Frequently Asked Questions about ACT: Q1: What is ACT (Agreement for Commercializing Technology)? A1: ACT is a pilot program under which businesses may partner with participating DOE laboratories for research and development that commercializes technology. Q2: Why is this pilot being introduced? A2: ACT is being piloted to address concerns about difficulties in partnering with the DOE laboratories that were raised in public responses to a DOE Request for Information on improving technology transfer. These concerns include requirements for advance payments, indemnification and government use rights in intellectual property. Q3: Who can partner with the laboratories under ACT? A3: ACT is available to a full range of sponsors, including start-ups, small and large businesses that provide private funding to

274

EPA and the Federal Technology Transfer Act: Opportunity knocks  

SciTech Connect (OSTI)

In 1986, the Federal Technology Transfer Act (FTTA) was established to promote a closer, collaborative relationship between federal government agencies and the private sector. With the increasing need for new cost-effective technologies to prevent and control pollution, both the US Environmental Protection Agency (EPA) and private industry are encouraged to facilitate the transfer of knowledge and technology under this Act. The FTTA removed several of the legal and institutional barriers to cooperative research that existed before the Act`s passage. Through the FTTA, the government strives to promote the movement of its products, processes, skills, and knowledge into the private sector for further development and commercialization by encouraging the exchange of technical personnel and the sharing of facilities and other resources. Collaborative efforts between industry, federal agencies, and academia are made possible through cooperative research and development agreements (CRADAs). Forty-two CRADAs and five licensing agreements have been initiated with EPA under this program. This paper provides an overview of this new and innovative program within the EPA. 1 fig., 2 tabs.

Gatchett, A.M.; Fradkin, L.; Moore, M.; Gorman, T.; Ehrlich, A. [Environmental Protection Agency, Washington, DC (United States)

1990-12-31T23:59:59.000Z

275

Security technologies and protocols for Asynchronous Transfer Mode networks  

SciTech Connect (OSTI)

Asynchronous Transfer Mode (ATM) is a new data communications technology that promises to integrate voice, video, and data traffic into a common network infrastructure. In order to fully utilize ATM`s ability to transfer real-time data at high rates, applications will start to access the ATM layer directly. As a result of this trend, security mechanisms at the ATM layer will be required. A number of research programs are currently in progress which seek to better understand the unique issues associated with ATM security. This paper describes some of these issues, and the approaches taken by various organizations in the design of ATM layer security mechanisms. Efforts within the ATM Forum to address the user communities need for ATM security are also described.

Tarman, T.D.

1996-06-01T23:59:59.000Z

276

Technology Transfer Office (TTO) Promote and facilitate the transfer of UC San Diego innovations for the benefit of the University community and the public.  

E-Print Network [OSTI]

Technology Transfer Office (TTO) MISSION Promote and facilitate the transfer of UC San Diego San Diego established its Technology Transfer Office (TTO) to promote and facilitate this process TECHNOLOGY TRANSFER RESULTS FY2000 ­ FY2007 Fiscal Year 2000 2001 2002 2003 2004 2005 2006 2007 Licenses 47

Fainman, Yeshaiahu

277

Secretarial Policy Statement on Technology Transfer at Department of Energy Facilities  

Broader source: Energy.gov (indexed) [DOE]

Secretarial Policy Statement on Secretarial Policy Statement on Technology Transfer at Department of Energy Facilities Introduction This Policy Statement is designed to help guide and strengthen the Department of Energy's technology transfer efforts and to heighten awareness of the importance of technology transfer activities throughout DOE. For purposes of this document, the term "technology transfer" refers to the process by which knowledge, intellectual property or capabilities developed at the Department of Energy's National Laboratories, single- purpose research facilities, and other facilities ("Facilities") are transferred to any other entity, including private industry, academia, state and local governments, or other government entities to meet public and private needs. The Policy Statement follows upon

278

USDOE Technology Transfer, Working with DOE Labs - Arrangements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Arrangements Arrangements To see the content of this image, Get Adobe Flash player . Mouse over map to see Laboratory locations and websites. See larger map of DOE National Laboratories. During 2008 alone, our 17 National Laboratories and 5 facilities engaged in more than 12,000 technology transfer transactions. These included more than 700 CRADAs, 2500 WFO Agreements, more than 2800 user facility agreements, and more than 6,000 licenses. They also reported more than 1400 inventions, filing more than 900 patent applications. They were issued nearly 400 patents and logged more than 561,050 downloads of their copyrighted open-source software. Collaborative Research Cooperative Research and Development (CRADA) arrangements allow for collaborative work and either cost-sharing or funds to be provided by the

279

Technology transfer package on seismic base isolation - Volume II  

SciTech Connect (OSTI)

This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume II contains the proceedings for the Short Course on Seismic Base Isolation held in Berkeley, California, August 10-14, 1992.

NONE

1995-02-14T23:59:59.000Z

280

Analysis and technology transfer report, 1989 and 1990  

SciTech Connect (OSTI)

The buildings sector used 29.6 quadrillion Btus (quads) of energy in 1989, or 36 percent of the total primary energy consumed in the United States. The major uses are for space heating and cooling, water heating, refrigeration, and lighting. Electricity is the dominant fuel, followed by natural gas, petroleum, and other fuels. Although there were dramatic improvements in energy efficiency in this sector from 1975 to 1985, in recent years energy use has grown rapidly. The large growth expected in commercial building floor space and in residential units means that total building-sector energy consumption could increase dramatically by the year 2030. The mission of the US DOE's Office of Building Technologies (OBT) is to lead a national program supporting private sector efforts to improve the energy efficiency of the nation's buildings and to increase their utilization of renewable energy sources. The Office is also responsible for energy efficiency planning and management for Federal buildings as well as buildings-related associated information, financial incentives, and regulatory functions that are determined to be appropriate for the Federal government. To accomplish its goals, OBT plans and conducts research and development to make technologies available and provides information on their effectiveness. The selection and management of OBT research activities requires an understanding of where and how energy is used within the buildings sectors, how energy use is expected to change in the future, and the potential impact of new and emerging technologies on energy use. Analysis activities serve to collect energy use information, provide the analysis necessary to apply this information to research and development planning, and develop analysis tools which the program uses to set priorities for research projects. This report summarizes analysis and technology transfer activities undertaken by OBT during 1989 and 1990. 101 refs., 19 figs., 9 tabs.

Not Available

1991-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Technology transfer and U.S. national security policy| The Joint Strike Fighter.  

E-Print Network [OSTI]

?? This is a dissertation about United States international technology transfer policy relating to the Department of Defense (DOD) F-35 Joint Strike Fighter (JSF) weapons… (more)

Krueger, Richard D.

2010-01-01T23:59:59.000Z

282

An extended model for measuring the technology transfer potentials at the industrial level.  

E-Print Network [OSTI]

??Technology contributes to the development of society and economy of the nation through the invention, diffusion, transfer, and application of new knowledge. In the emerging… (more)

Pachamuthu, Sathayanarayanan

2011-01-01T23:59:59.000Z

283

The Impact of the Federal Technology Transfer on the Commercialization Process Conflict of Interest  

Science Journals Connector (OSTI)

Like Roger Lewis (see p. 109), this paper focuses primarily on the DOE component of federal technology transfer and, in that area, the issue of conflict of interest.

Albert Sopp

1994-01-01T23:59:59.000Z

284

Can sustainable development be facilitated through regime-based preventative technology transfer?.  

E-Print Network [OSTI]

??This International Relations study examines the relationship between sustainable development and preventative technology transfer. Specifically, the focus is on whether preventative environmental regimes (facilitating organisations)… (more)

Valentin, Jorg D.

2010-01-01T23:59:59.000Z

285

Comparing Perception of Real and Virtual Architectural Space Using Video Game Technology  

E-Print Network [OSTI]

questions in a virtual and real version of the same building and the results were compared. It was found that in the virtual environment people tended to underestimate and to perceive distance less accurately than in real space. Findings show...

Spross, Matthew

2011-04-25T23:59:59.000Z

286

Geothermal Elastomeric Materials Technology-Transfer (GEM-TT) Program. Final report  

SciTech Connect (OSTI)

The primary objective, to promote broad use of the earlier developed elastomers technology appears to have been successfully accomplished. The expertise was transferred to three rubber products manufacturers, and is currently commercially available. Significant substantiation of the viability of the technology was fostered through supporting and tracking numerous test efforts in various industry laboratories and out in the field. Numerous papers were presented on the technology and information was also disseminated verbally and by providing data packages. The formal and informal technology transfer effort are described. Several secondary spin-offs also resulted. Steps toward a better understanding of the complex technology transfer process were achieved. The experience provides a data point illustrating one way that technology transfer can be accomplished and a data point which can be used to evaluate its effectiveness. And finally studies were made assessing the potential of elastomers to perform at even higher temperatures.

Hirasuna, A.R.; Friese, G.J.; Stephens, C.A.

1982-12-01T23:59:59.000Z

287

Virtual Oxygen Sensor for Innovative NOx and PM Emission Control...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies A virtual O2 sensor for...

288

Int. J. Technology Transfer and Commercialisation, Vol. 8, No. 1, 2009 51 Copyright 2009 Inderscience Enterprises Ltd.  

E-Print Network [OSTI]

Int. J. Technology Transfer and Commercialisation, Vol. 8, No. 1, 2009 51 Copyright © 2009. Technology Transfer and Commercialisation, Vol. 8, No. 1, pp.51­87. Biographical notes: Kevin W. Boyack spent

289

UNLOCKING THE TREASURE CHEST OF LEVEL-II RADAR DATA: LESSONS IN TECHNOLOGY TRANSFER POLICY FOR THE ATMOSPHERIC SCIENCES  

E-Print Network [OSTI]

P 1.6 UNLOCKING THE TREASURE CHEST OF LEVEL-II RADAR DATA: LESSONS IN TECHNOLOGY TRANSFER POLICY This analysis of Level-II radar data presents a great success story about partnerships in technology transfer

290

A study on international technology transfer critical factors in Hong Kong/Pearl River Delta manufacturing industries.  

E-Print Network [OSTI]

???International Technology Transfer (ITT) has been increasingly an important issue in technology diffusion, and has accumulated a vast body of research over past years. ITT… (more)

Dong, Qiuling (???)

2008-01-01T23:59:59.000Z

291

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Wireless Compact Radar  

E-Print Network [OSTI]

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Wireless 1: Ramp signals obtained from Target #12;Kevin P. Boggs || Office of Technology Transfer || 901.242 m. #12;Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs

Dasgupta, Dipankar

292

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu AutoWitness  

E-Print Network [OSTI]

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Auto and lifelong traumatic experience for its victims. #12;Kevin P. Boggs || Office of Technology Transfer || 901://www.popsci.com/science/article/2010-10/brilliant-10-santosh-kumar-sensor-guru #12;Kevin P. Boggs || Office of Technology Transfer

Dasgupta, Dipankar

293

9Tomorrow's Technology Transfer Volume 1, Number 1 WiNter 2009 small U.S. businesses would have certainty  

E-Print Network [OSTI]

9Tomorrow's Technology Transfer Volume 1, Number 1 WiNter 2009 small U.S. businesses would have of technology transfer. Interest expanded until, in 2006, AUTM's Licensing SurveyTM identified tech- nology "Communicating the Full Value of Aca- demic Technology Transfer: Some Lessons Learned," originally published

McQuade, D. Tyler

294

Questions concerning Technology Transfer Practices at DOE Labs.txt - Notepad  

Broader source: Energy.gov (indexed) [DOE]

concerning Technology Transfer Practices at DOE Labs.txt concerning Technology Transfer Practices at DOE Labs.txt From: Gary S. Selwyn [gary.selwyn@apjet.com] Sent: Tuesday, February 10, 2009 7:00 PM To: GC-62 Subject: Questions concerning Technology Transfer Practices at DOE Labs In response to the request for written comments, as listed in the Federal Register, Vol 73, No. 229, APJeT, Inc. offers the comments below. APJET is an early-stage, technology company that has licensed technology developed at Los Alamos National Laboratory. APJET has been a licensee for 7 years, has 10 employees in NM and NC, is the largest spin-off from LANL in its history, and the author of these responses is the founder of APJET and a former technical staff member from LANL. Question #3: US Competitiveness It is highly restrictive to require that the recipient of new technology from the

295

International technology transfer for climate change mitigation and the cases of Russia and China  

SciTech Connect (OSTI)

The environmental agenda for mitigating climate change through international transfers of technology is linked with a diverse literature, reviewed here within a framework that combines technological, agent/agenda, and market/transaction perspectives. Literature that bears on international technology transfer for climate change mitigation is similar in many ways for Russia and China: opportunities for energy efficiency and renewable energy, economic reform and restructuring, the difficulties enterprises face in responding to market conditions, international assistance policies, international joint ventures, market intermediation, and capacity building for market development. In both countries, capacity building means enhancing market-oriented capabilities in addition to technological capabilities. For Russia, institutional development is critical, such as new commercial legal codes and housing-sector changes beyond privatization. For China, technology policies and modernization programs significantly influence technology transfers. 234 refs., 3 tabs.

Martinot, E. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group] [Univ. of California, Berkeley, CA (United States). Energy and Resources Group; [Stockholm Environment Inst., Boston, MA (United States); Sinton, J.E. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group] [Univ. of California, Berkeley, CA (United States). Energy and Resources Group; [Lawrence Berkeley National Lab., CA (United States). International Energy Studies Group; Haddad, B.M. [Univ. of California, Berkeley, CA (United States)] [Univ. of California, Berkeley, CA (United States)

1997-12-31T23:59:59.000Z

296

International technology transfer and its impact on innovation enhancement for firms based in Sri Lanka  

Science Journals Connector (OSTI)

This paper presents research findings from industrial firms based in Sri Lanka who need to acquire new technologies from the external environment in order to compete and upgrade their innovation capabilities. We analyse some of the key challenges faced by the recipients of knowledge in international technology transfer projects from the perspective of technology receiver firms based in a developing country. Through this technology transfer process the receiver firms attempt to utilise knowledge, from the technology senders based in advanced countries, in order to help them upgrade their innovation capabilities. This upgrading process involves overcoming some challenges related to training provision, human resources, language barriers, complexity of transfer process, and recipient's lack of absorptive capacity. We present a number of important managerial implications, especially relevant for technology receivers in developing countries.

Khaleel Malik; Vathsala Wickramasinghe

2013-01-01T23:59:59.000Z

297

Questions concerning Technology Transfer Practices at DOE Labs.txt - Notepad  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

concerning Technology Transfer Practices at DOE Labs.txt concerning Technology Transfer Practices at DOE Labs.txt From: Gary S. Selwyn [gary.selwyn@apjet.com] Sent: Tuesday, February 10, 2009 7:00 PM To: GC-62 Subject: Questions concerning Technology Transfer Practices at DOE Labs In response to the request for written comments, as listed in the Federal Register, Vol 73, No. 229, APJeT, Inc. offers the comments below. APJET is an early-stage, technology company that has licensed technology developed at Los Alamos National Laboratory. APJET has been a licensee for 7 years, has 10 employees in NM and NC, is the largest spin-off from LANL in its history, and the author of these responses is the founder of APJET and a former technical staff member from LANL. Question #3: US Competitiveness It is highly restrictive to require that the recipient of new technology from the

298

Notice of Inquiry: Technology Transfer Practices at Department of Energy (DOE) Laboratories (73 FR 72036)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

V V E R S I T Y O F C A L I F O R N I A BERKELEY * DAVIS * IRVINE * LOS ANGELES * MERCED * RIVERSIDE * SAN DIEGO * SAN FRANCISCO SANTA BARBARA * SANTA CRUZ OFFICE OF THE PROVOST AND EXECUTIVE VICE PRESIDENT - ACADEMIC AFFAIRS OFFICE OF TECHNOLOGY TRANSFER 1111 Franklin Street, 5 th Floor Oakland, California 94607-5200 Web Site: www.ucop.edu/ott/ Tel: (510) 587-6000 Fax: (510) 587-6090 January 23, 2009 Submitted electronically to GC-62@hq.doe.gov Office of the Assistant General Counsel for Technology Transfer and Intellectual Property U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 Attn: Technology Transfer Questions Subject: Notice of Inquiry: Technology Transfer Practices at Department of Energy (DOE) Laboratories (73 FR 72036)

299

Energy Technology Transfer for Industry Through the Texas Energy Extension Service  

E-Print Network [OSTI]

ENERGY TECHNOLOGY TRANSFER FOR INDUSTRY THROUGH THE TEXAS ENERGY EXTENSION SERVICE Stephen Riter Texas Energy Extension Service. Texas A&M University College Station, Texas ABSTRACT The Texas Energy Extension Service (EES) is one of ten...

Riter, S.

1979-01-01T23:59:59.000Z

300

Closing the loop : improving technology transfer by learning from the past  

E-Print Network [OSTI]

Technology transfer is a significant challenge within the highly regulated pharmaceutical industry. While much focus is put on the logistics and strategy of the process, less attention has been paid to how to change the ...

Witinski, Paul (Paul F.)

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Demonstration: The Key to Technology Transfer in the Field of Energy Conservation in the UK  

E-Print Network [OSTI]

Technology transfer has been one of the most intractable problems faced on a worldwide basis. The problem is particularly acute in the field of energy efficiency because none of the 3 major parties involved, the researcher, the manufacturer...

Carter, D. E. F.; Lawrence, J. E.

1983-01-01T23:59:59.000Z

302

EA-1175: Proposed Title Transfer of East Tennessee Technology Park Land and Facilities, Oak Ridge, Tennessee  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to transfer the title of unneeded DOE real property located at the U.S. Department of Energy East Tennessee Technology Park (ETTP) in...

303

Fostering Technology Transfer, Innovation, and Entrepreneurship from the Perspective of a Public University  

Science Journals Connector (OSTI)

The obvious role a technology transfer office plays is in facilitating industry-sponsored research. In fiscal year 2012, the UCLA OIP-ISR executed 483 total agreements with 226 ... they are in many instances work...

Benjamin Chu

2013-01-01T23:59:59.000Z

304

Federal assistance program. Geothermal technology transfer. Project status report, May 1986  

SciTech Connect (OSTI)

Progress for the month of May, 1986, is described. Projects include evaluation of direct heating of greenhouses and other businesses, technology transfer to consultants, developers and users, and program monitor activities. (ACR)

Lienau, P.J.; Culver, G.

1986-05-01T23:59:59.000Z

305

Chapter 212: Role of Standardization in Technology Development, Transfer, Diffusion and Management  

E-Print Network [OSTI]

Chapter 212: Role of Standardization in Technology Development, Transfer, Diffusion and Management by John W. Bagby Abstract Since the industrial revolution, standardization has become a hybrid. Standards are increasingly developed outside government regulatory venues in consortia and other forms

Bagby, John

306

National Technology Transfer and Advancement Act of 1995 [Public Law (PL)  

Broader source: Energy.gov (indexed) [DOE]

National Technology Transfer and Advancement Act of 1995 [Public National Technology Transfer and Advancement Act of 1995 [Public Law (PL) 104-113] National Technology Transfer and Advancement Act of 1995 [Public Law (PL) 104-113] On March 7, 1996, President Clinton signed into law "The National Technology Transfer and Advancement Act of 1995." The new law, referred to as PL 104-113, serves to continue the policy changes initiated in the 1980s under Office of Management and Budget (OMB) Circular A-119 (OMB A-119), Federal Participation in the Development and Use of Voluntary Standards, that are transitioning the Executive branch of the Federal Government from a developer of internal standards to a customer of external standards. Section 12, "Standards Conformity," of the act states that "...all Federal

307

BioenergizeME Virtual Science Fair: Science & Technology Sustainable Transportation Fuels  

Broader source: Energy.gov [DOE]

This infographic was created by students from Sun Valley High School in Aston, PA, as part of the U.S. Department of Energy-BioenergizeME Virtual Science Fair.

308

Characterization and Development of Advanced Heat Transfer Technologies  

Broader source: Energy.gov [DOE]

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

309

Characterization and Development of Advanced Heat Transfer Technologies  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

310

NREL: Technology Transfer - NREL Analyzes Floating Offshore Wind...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL Analyzes Floating Offshore Wind Technology for Statoil November 6, 2014 NREL engineers traveled to Oslo, Norway, to meet with Statoil representatives regarding NREL's analysis...

311

NETL: Tech Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Licensing & Technology Transfer Available Technologies Partnerships and Licensing Success Stories Contact Us Technology transfer is the process of transferring new technologies...

312

Innovation and technology transfer in Latin America: a review of recent trends and policies  

Science Journals Connector (OSTI)

The paper reviews available indicators on science and technology for Latin America and discusses their shortcomings to reflect innovative activities undertaken in the region. It also considers transfer of technology flows and newly emerging patterns in technology supply. Special consideration is given to policies on science and technology applied in various Latin American countries, and to changes in their objectives and instruments as they are adapted to a more open and competitive economic scenario. The paper highlights the shortcomings of existing policies, and the need for new approaches which appropriately differentiate scientific and technological goals.

Carlos M. Correa

1995-01-01T23:59:59.000Z

313

USDOE Technology Transfer, Working with Department of Energy Labs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cutting Edge Research Cutting Edge Research DOE National Laboratories and facilities have expertise in many areas that support key national missions and are also critical to major high-technology industries and services. Technology collaborations between industry and DOE laboratories mutually leverage each partner's resources to meet common or compatible objectives. Find laboratories and investigators doing cutting edge research in specific scientific and technological areas of interest. To pick resource(s) or to search by field(s), see Advanced Search Get the Science Accelerator widget at Widgetbox! Not seeing a widget? (More info) Science Accelerator is a gateway to science, including R&D results, project descriptions, accomplishments, DOE and Lab patents and more Resources made available by the Office of Scientific and Technical

314

NREL: Technology Transfer - NREL and SkyFuel Partnership Reflects Bright  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy In this video, NREL Principal Scientist Gary Jorgensen and SkyFuel Chief Technology Officer Randy Gee talk about their partnership to develop a thin film to substitute for bulkier glass mirrors on solar-collecting parabolic troughs. Get the Adobe Flash Player to see this video. Credit: Fireside Production More Information For more information about NREL's partnership with SkyFuel, read Award-Winning Reflector to Cut Solar Cost and New Solar Technology Concentrates on Cost, Efficiency. Learn more about NREL's Concentrating Solar Power Research. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities

315

1 - Mapping virtual worlds  

Science Journals Connector (OSTI)

Abstract Virtual worlds are many and varied. In investigating the scope of virtual communities, it is important to understand social and theoretical issues that impact online participants. Such issues as gender, ontology, socio-technological integration, and corporeal interface all impact exploration of virtual worlds.

Woody Evans

2011-01-01T23:59:59.000Z

316

Lawrence Berkeley National Lab_Technology_Transfer_Contact_Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact Us Contact Us chemistry, cleantech, bioenergy, environmental remediation, physical biosciences, geothermal energy, scintillating materials batteries, oil exploration, fuel cells, thin film deposition, gamma and neutron generators, materials physics, material science, nanotechnology, photovoltaics, electronic and photonic devices, NMR and MRI, optics, computing sciences biotechnology, life sciences, physical biosciences, genomics, nanotechnology To file a complaint or provide feedback on the work we do, please contact our Ombudsman. For licensing inquiries, please fill out our online Technology Licensing form or send e-mail to TTD@lbl.gov. To receive customized email alerts about Berkeley Lab technologies, please complete our Tech Alerts form. For any General Law matters handled by Patent Attorneys, work is under

317

LANL Transfers Glowing Bio Technology to Sandia Biotech  

SciTech Connect (OSTI)

Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action.

Nakhla, Tony; ,

2012-05-21T23:59:59.000Z

318

Asian and Pacific Centre for Transfer of Technology (APCTT) | Open Energy  

Open Energy Info (EERE)

and Pacific Centre for Transfer of Technology (APCTT) and Pacific Centre for Transfer of Technology (APCTT) Jump to: navigation, search Name Asian and Pacific Centre for Transfer of Technology (APCTT) Address Qutab Institutional Area, India Place India Coordinates 28.5384902°, 77.1844619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.5384902,"lon":77.1844619,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

Cleaner coal technology transfer to China: a ''win-win'' opportunity for sustainable development?  

Science Journals Connector (OSTI)

This paper examines the role of companies and state institutions in OECD countries in helping China to accelerate the development and deployment of cleaner coal technologies. It focuses particularly on the scope for these technologies to deliver ''win-win'' benefits to China by increasing economic efficiency and reducing environmental emissions. Critical examinations of cleaner coal technologies and technology transfer processes are followed by empirical evidence of both government and private company experiences in this area. From this evidence, the barriers to the further uptake of ''win-win'' opportunities are explored and some conclusions and implications are put forward for consideration by governments and firms.

Jim Watson

2002-01-01T23:59:59.000Z

320

Technology Transfer: Success Stories: Industry-Lab Research Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry-Lab Collaboration Industry-Lab Collaboration Below are some of Berkeley Lab's collaborative research projects performed with industry. Companies Technologies Applied Materials, Inc. Particle -Free Wafer Processing Boeing, StatOil Hydro Techno Economic Model for Commercial Cellulosic Biorefineries Capintec, Inc. Compact Scintillation Camera for Medical Imaging Catalytica, Inc. Optimized Catalysts For The Cracking of Heavier Petroleum Feedstocks Chiron Corporation High Throughput Assay for Screening Novel Anti-Cancer Compounds CVC-Commonwealth Scientific Corp. Advanced Hard Carbon Plasma Deposition System with Application to the Magnetic Storage Industry E.I. du Pont de Nemours & Company Catalytic Conversion of Chloro-Fluorocarbons over Palladium-Carbon Catalysts Empire Magnetics, Inc.

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

LANL Transfers Glowing Bio Technology to Sandia Biotech  

SciTech Connect (OSTI)

Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action. http://www.lanl.gov/news/stories/glowing-future-for-los-alamos-and-sandia-b iotech-partnership.html

Rorick, Kevin

2012-01-01T23:59:59.000Z

322

Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer We outline the differences of Chinese MSW characteristics from Western MSW. Black-Right-Pointing-Pointer We model the requirements of four clusters of plant owner/operators in China. Black-Right-Pointing-Pointer We examine the best technology fit for these requirements via a matrix. Black-Right-Pointing-Pointer Variance in waste input affects result more than training and costs. Black-Right-Pointing-Pointer For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future.

Dorn, Thomas, E-mail: thomas.dorn@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Nelles, Michael, E-mail: michael.nelles@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Flamme, Sabine, E-mail: flamme@fh-muenster.de [University of Applied Sciences Muenster, Corrensstrasse 25, 48149 Muenster (Germany); Jinming, Cai [Hefei University of Technology, 193 Tunxi Road, 230009 Hefei (China)

2012-11-15T23:59:59.000Z

323

Licensing and {open_quotes}CRADA`s{close_quotes} in Oak Ridge technology transfer  

SciTech Connect (OSTI)

In the belief that effective technology transfer is a ``contact sport,`` Martin Marietta Energy Systems (Energy Systems), the Department of Energy`s (DOE`s) management contractor in Oak Ridge, Tennessee, encourages its research and engineering employees to directly interact with their commercial-sector counterparts. Over the years, relationships which have been initiated through such technical interactions have led to many of the patent licenses ad cooperative research and development agreements (CRADAs) which currently exist among Energy Systems, US companies, universities, and industrial consortia. The responsibility for creating and implementing Energy Systems policies and procedures to accomplish DOE`s technology transfer objectives in Oak Ridge lies with the Office of Technology Transfer (OTT). In addition, licensing executives within OTT are responsible for negotiating the terms and conditions of patent licenses and CRADAs for the commercialization of government-funded technologies and research expertise. Other technology transfer initiatives in Oak Ridge help companies in a wide range of industries overcome manufacturing obstacles, enabling them to retain existing jobs and to create new business opportunities.

Prosser, G.A.

1993-10-01T23:59:59.000Z

324

Technology transfer effectiveness through international joint ventures (IJVs) to their component suppliers: a study of the automotive industry of Pakistan.  

E-Print Network [OSTI]

??This thesis investigates the important topic of technology transfer effectiveness from international joint ventures (IJVs) established in the automotive industry of Pakistan to their local… (more)

Khan, Sardar Zaheer Ahmad

2011-01-01T23:59:59.000Z

325

The Influence of Inward Technology Transfers and International Entrepreneurial Orientation on the Export Performance of Egyptian SMEs.  

E-Print Network [OSTI]

??This study examines the influence of inward technology transfers and international entrepreneurial orientation (IEO) on the export performance of small and medium-sized firms (SMEs). IEO… (more)

Gaber, Heba

2013-01-01T23:59:59.000Z

326

NETL: News Release - DOE Transfers Steel Casting Technology to Rock Island  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

31, 2007 31, 2007 DOE Transfers Steel Casting Technology to Rock Island Arsenal Army Facility to Produce Improved Armor in War on Terrorism WASHINGTON, DC - A steel casting technology developed by the U.S. Department of Energy has been transferred to the U.S. Army's Rock Island Arsenal to manufacture improved armor for vehicles used in the global war on terrorism. MORE INFO Learn more about NETL's cooperative research with the Army The Office of Fossil Energy's National Energy Technology Laboratory (NETL) provided the Rock Island Arsenal with process guidelines, parameters, expertise, and patterns to set up and operate a facility for making steel castings using an NETL-developed process called loose-bonded sand, lost-foam technology. The facilities at the arsenal, in Rock Island, Ill.,

327

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

Donald Duttlinger

1999-12-01T23:59:59.000Z

328

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

During FY00, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY00, which lay the groundwork for further growth in the future.

Unknown

2000-05-01T23:59:59.000Z

329

technology offer Vienna University of Technology/ Research and Transfer Support | Hildegard Sieberth  

E-Print Network [OSTI]

developed. The liquid precursors can be either cured in vivo or printed by additive manufacturing technology be tuned, in-vivo curing or high resolution additive manufacturing is not possible Technology A new

Szmolyan, Peter

330

NREL: Technology Transfer - Cooperative Research and Development Agreements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cooperative Research and Development Agreements Cooperative Research and Development Agreements NREL uses a cooperative research and development agreement (CRADA) when a partner and the lab intend to collaborate on a project. It protects a company's and NREL's existing intellectual property, and allows the company to negotiate for an exclusive field-of-use license to subject inventions that arise during the CRADA's execution. The agreement type used depends on the business, and the specific partnership selected is determined on a case-by-case basis. Types CRADA types include: Shared-Resources A joint research project between NREL and a partner to develop, advance, or commercialize an NREL-developed technology without funds changing hands. It must fit within the scope of a project at NREL that's funded by the U.S.

331

Virtual Teams Demystified: An Integrative Framework for Understanding Virtual Teams  

Science Journals Connector (OSTI)

Virtual teams have been researched intensely in the last ten years and there is a growing body of literature on the topic. At this point, the authors need an integrative theory-driven framework through which they can conceptualize the notion of virtual ... Keywords: Emergent Team Processes, Emergent Team States, Information Technology, Team Design, Virtual Team Effectiveness, Virtual Teams

Olivier Caya; Mark Mortensen; Alain Pinsonneault

2013-04-01T23:59:59.000Z

332

Virtual vision: visual sensor networks in virtual reality  

Science Journals Connector (OSTI)

The virtual vision paradigm features a unique synergy of computer graphics, artificial life, and computer vision technologies. Virtual vision prescribes visually and behaviorally realistic virtual environments as a simulation tool in support of research ... Keywords: reality emulator, smart cameras, virtual vision

Faisal Z. Qureshi; Demetri Terzopoulos

2007-11-01T23:59:59.000Z

333

Cross-border transfer of climate change mitigation technologies : the case of wind energy from Denmark and Germany to India  

E-Print Network [OSTI]

This research investigated the causal factors and processes of international development and diffusion of wind energy technology by examining private sector cross-border technology transfer from Denmark and Germany to India ...

Mizuno, Emi, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

334

Environmental technology transfer and commercial viability: a synthesis of three case studies  

Science Journals Connector (OSTI)

Based on a ''Model for Preparing Case Studies of Environmental Technology Transfer'', three case studies are developed to contribute insights on the development and commercialisation of environmental technology. Two cases address soil and groundwater contamination: Dynamic Underground Stripping (DUS) developed by Lawrence Livermore National Laboratory and Gravity Pressure Vessel (GPV) by GeneSyst International. The third case: Biodiesel Fuel (BIO), produced by Biodiesel Industries and Pacific Biodiesel, is a diesel fuel substitute. A synthesis across the research model above is provided, along with critical success factors for these examples of environmental technology commercialisation.

Willard Price

2005-01-01T23:59:59.000Z

335

Virtual Solar System Project: Learning Through a Technology-Rich, Inquiry-Based, Participatory Learning Environment  

Science Journals Connector (OSTI)

In this manuscript we describe an introductory astronomy course for undergraduate students in which we moved from the large-lecture format to one in which students were immersed in a technologically-rich, inquiry...

Sasha A. Barab; Kenneth E. Hay; Kurt Squire…

2000-03-01T23:59:59.000Z

336

Virtual Science Fair | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Virtual Science Fair Virtual Science Fair The Bioenergy Technology Office (BETO) is hosting a national virtual science fair that engages 9th-12th grade students in learning about...

337

Microsoft Virtualization: Master Microsoft Server, Desktop, Application, and Presentation Virtualization  

Science Journals Connector (OSTI)

Virtualization technologies help IT organizations in three ways: cost-cutting, ease of administration, and the overall effect of IT on the environment. Virtualization cuts costs by reducing the amount of capital resources (equipment), power, and cooling ...

Thomas Olzak; James Sabovik; Jason Boomer; Robert M. Keefer

2010-06-01T23:59:59.000Z

338

MHD Technology Transfer, Integration and Review Committee. Second semiannual status report, July 1988--March 1989  

SciTech Connect (OSTI)

As part of the MHD Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The Charter of the TTIRC, which was approved by the DOE in June 1988 and distributed to the committee members, is included as part of this Summary. As stated in the Charter, the purpose of this committee is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the US MHD Program. The DOE fiscal year 1989 MHD Program Plan Schedule is included at the end of this Summary. The MHD Technology Transfer, Integration and Review Committee`s activities to date have focused primarily on the ``technology transfer`` aspects of its charter. It has provided a forum for the dissemination of technical and programmatic information among workers in the field of MHD and to the potential end users, the utilities, by holding semi-annual meetings. The committee publishes this semi-annual report, which presents in Sections 2 through 11 capsule summaries of technical progress for all DOE Proof-of-Concept MHD contracts and major test facilities.

Not Available

1989-10-01T23:59:59.000Z

339

DeLone & McLean IS Success Model in Evaluating Knowledge Transfer in a Virtual Learning Environment  

Science Journals Connector (OSTI)

DeLone & McLean's success model has been actively used since its first introduction in 1992. In this article, the authors extend this model to describe the success of knowledge sharing in an information system that included a part of the knowledge ... Keywords: Apprenticeship, DeLone & McLean Success Model, Knowledge Management, Knowledge Sharing, Systems Analysis, User Attitudes, Virtual Learning Environment

Raija Halonen; Heli Thomander; Elisa Laukkanen

2010-04-01T23:59:59.000Z

340

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency.

Unknown

2003-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Charting the routes to commercialization: The absorption and transfer of energy conservation technologies  

Science Journals Connector (OSTI)

This study examines how innovations in Energy Conservation Technologies (ECT's) developed through public sponsorship become commercialized. In the typical ECT project, public support is used as a catalyst bringing public and private organizations together to perform the work. The variety of routes to commercialization this creates can be analysed using two concepts: absorption and transfer. Absorption is adoption of an ECT by an organization participating in the project. Transfer is adoption by non-participants. Two cases sponsored by the New York State Energy Research and Development Authority (the Energy Authority) are analysed. In the first case commercialization is limited to the absorption process. In the second case both absorption and transfer are used in commercialization.

Gordon Kingsley; Barry Bozeman

1997-01-01T23:59:59.000Z

342

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.

Unknown

2000-11-01T23:59:59.000Z

343

The EMDEX (Electric and Magnetic Field Digital Exposure) Project: Technology transfer and occupational measurements  

SciTech Connect (OSTI)

The Electric and Magnetic Field Measurement Project for Utilities -- the EPRI EMDEX Project -- is a multifaceted project entailing technology transfer, measurement protocol design, data management, and exposure assessment analyses. The specific objectives of the project in order to priority were: (1) to transfer the EMDEX technology to utilities; (2) to develop measurement protocols and data management capabilities for large exposure data sets; and (3) to collect, analyze, and document 60-Hz electric and magnetic field exposures for a diverse population. Transfer of the EPRI Electric and Magnetic Field Digital Exposure system (EMDEX) technology to the participating utilities was accomplished through training and through extensive involvement in the exposure data collection effort. Documentation of the EMDEX Project is contained in three volumes: Volume 1 summarizes the methods and results, and provides an assessment of project objectives; Volume 2 provides detailed descriptions of methods, procedures, protocols, materials and analyses, and Volume 3 contains appendices with a complete set of project protocols, project materials, and extensive data tables. 12 refs., 27 figs., 23 tabs.

Not Available

1990-11-01T23:59:59.000Z

344

The following national Sea Grant aquaculture extension and technology transfer projects were awarded in 2012 (final year of three-year projects from a 2010 competition)  

E-Print Network [OSTI]

The following national Sea Grant aquaculture extension and technology transfer projects were Oregon Sea Grant Aquaculture Extension and Technology Transfer $99,906 Puerto Rico Sea Grant Chaparro extension and technology transfer in Washington and the Pacific Northwest $100,000 Wisconsin Sea Grant

345

Conflict of Interest Relating Specifically to Technology Transfer Agreements The University increasingly grants the right to exploit its IP and/or know-how to commercial  

E-Print Network [OSTI]

Conflict of Interest Relating Specifically to Technology Transfer Agreements The University that may arise as a result of technology transfer transactions. 1. When a primary candidate for a technology transfer agreement is identified and before any agreement is negotiated, the Industrial Liaison

Schellekens, Michel P.

346

Technology Transfer: An Integrated `Culture-Friendly' I.J. Bate, A. Burns, T.O. Jackson, T.P. Kelly,  

E-Print Network [OSTI]

Technology Transfer: An Integrated `Culture-Friendly' Approach I.J. Bate, A. Burns, T.O. Jackson, T. This is in contrast to many other technology transfer initiatives which have failed because academics have not truly not been prepared to perform the technology transfer in a suitable incremental and consultative manner. 1

Kelly, Tim

347

Technology Transfer and Intellectual Property Services TechTIPS a n n u a l r e p o r t 2 0 0 2  

E-Print Network [OSTI]

Technology Transfer and Intellectual Property Services · TechTIPS a n n u a l r e p o r t 2 0 0 2 #12;University of California, San Diego Technology Transfer Advisory Committee Richard Attiyeh Vice Management and Planning The UCSD Technology Transfer Advisory Committee (TTAC) is responsible for general

Fainman, Yeshaiahu

348

[To be printed on the headed notepaper of the Administering Organisation or its Technology Transfer Group (if an independent organisation) or the Company  

E-Print Network [OSTI]

[To be printed on the headed notepaper of the Administering Organisation or its Technology Transfer of Signature:___________________________ [Signed by Head Technology Transfer Office (TTO) or Group on behalf of Administering Organisation or its Technology Transfer Group if independent or if the University does not have

Rambaut, Andrew

349

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Novel Real-Time Sub-Millimeter Imaging Device and Methods  

E-Print Network [OSTI]

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Novel Real || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu The image scanning methodology makes #12;Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs

Dasgupta, Dipankar

350

Geothermal technology transfer for direct heat applications: Final report, 1983--1988  

SciTech Connect (OSTI)

This report describes a geothermal technology transfer program, performed by Oregon Institute of Technology's Geo-Heat Center, used to aid in the development of geothermal energy for direct heat applications. It provides a summary of 88 technical assistance projects performed in 10 states for space heating, district heating, green-houses, aquaculture, industrial processing, small scale binary electric power generation and heat pump applications. It describes an inventory compiled for over 100 direct heat projects that contains information on project site, resource and engineering data. An overview of information services is provided to users of the program which includes; advisory, referrals, literature distribution, geothermal technology library, quarterly Bulletin, training programs, presentations and tours, and reporting of activities for the USDOE Geothermal Progress Monitor.

Lienau, P.J.; Culver, G.

1988-01-01T23:59:59.000Z

351

FW Response to Notice of Inquire on Questions Concerning Technology Transfer Tractices at DOE Laboratories.txt - Notepad  

Broader source: Energy.gov (indexed) [DOE]

esponse to Notice of Inquire on Questions Concerning Technology Transfer Tractices at DOE Laboratories. esponse to Notice of Inquire on Questions Concerning Technology Transfer Tractices at DOE Laboratories. From: Malozemoff, Alex [AMalozemoff@amsc.com] Sent: Tuesday, January 27, 2009 4:09 PM To: GC-62 Cc: Ballard, Thomas B.; McGahn, Daniel Subject: FW: Response to Notice of Inquire on Questions Concerning Technology Transfer Tractices at DOE Laboratories > Response to Fed Register 73, no. 229, Nov. 26, 2008 Notices > > DOE Questions Concerning Technology Transfer Practices at DOE > Laboratories > > Answer by > > Dr. Alexis P. Malozemoff > Executive V. P. and Chief Technical Officer > American Superconductor > 64 Jackson Rd., Devens MA 01434 USA > ph: 978-842-3331 > cell: 508-243-9693 > amalozemoff@amsc.com > > 1. American Superconductor (AMSC), a leader in alternative energy

352

Virtual Leadership in Brazil - Virtual Intelligence in Multinational Companies.  

E-Print Network [OSTI]

?? As the technology develops, the communication infrastructure continues to innovate and increase competitiveness. For companies in a country such as Brazil, communicating virtually may… (more)

Wikström, Ida

2014-01-01T23:59:59.000Z

353

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. PTTC's Board made a strategic decision to relocate the Headquarters (HQ) office from Washington, DC to Houston, Texas. Driving force behind relocation was to better connect with independent producers, but cost savings could also be realized. Relocation was accomplished in late December 2000, with the HQ office being fully operational by January 2001. Early indications are that the HQ relocation is, in fact, enabling better networking with senior executives of independents in the Houston oil community. New Board leadership, elected in March 2001, will continue to effectively guide PTTC.

Unknown

2001-05-01T23:59:59.000Z

354

Virtual Circuits (OSCARS)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Virtual Circuits (OSCARS) Virtual Circuits (OSCARS) Services Overview ECS Audio/Video Conferencing Fasterdata IPv6 Network Network Performance Tools (perfSONAR) ESnet OID Registry PGP Key Service Virtual Circuits (OSCARS) OSCARS Case Study Documentation Links Hardware Requirements DOE Grids Service Transition Contact Us Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Virtual Circuits (OSCARS) ESnet's On-Demand Secure Circuits and Advance Reservation System (OSCARS) provides multi-domain, high-bandwidth virtual circuits that guarantee end-to-end network data transfer performance. Originally a research concept, OSCARS has grown into a robust production service. Currently

355

Technology Transfer: Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Materials Advanced Materials Adjustably Inducing Biaxial Strain in Thin Films Bone Replacement and Dental Materials Flexibone: Osteo-mimetic Composites Graded Bioactive Glass and Glass/Ceramic Coatings for Metal Bone Implants Injectable Hydrogel-Based Biodegradable Bone Replacement Materials Mineralization of Biocompatible Scaffolds Peptides for the Controllable Promotion or Inhibition of Bone Growth Remineralization and Repair of Calcified Tissues Using Biomimetic Polymer Boron Nitride Converted Carbon Fibers Catalysts for Reduction of SO2 to Elemental Sulfur Catalyst Exchanges Deuterium or Tritium into Organic and Organometallic Compounds Direct Thin Film Path to Low Cost, Large Area III-V Photovoltaics Easily Assembled Porous Thin Films Full Spectrum Semiconducting Material for Affordable, Highly

356

Event:Technology Transfer in Energy and Efficient Lighting to Combat  

Open Energy Info (EERE)

in Energy and Efficient Lighting to Combat in Energy and Efficient Lighting to Combat Climate Change Jump to: navigation, search Calendar.png Technology Transfer in Energy and Efficient Lighting to Combat Climate Change: on 2011/09/28 The objective of the workshop is to assess opportunities for transition to efficient lighting in the Middle East and North African region. In addition to detailed Country Lighting Assessments, UNEP will present a report on state of efficient lighting in the region by listing projects, activities and identifying obstacles and challenges facing the lighting sector. The workshop will further examine the economic and environmental benefits from shifting to efficient lighting. Space is limited so pre-registration is required. Please contact Abdul-Majeid Haddad, Regional Climate Change

357

Scale-up and Technology Transfer of Protein-based Plastic Products  

SciTech Connect (OSTI)

Over the last number of years researchers at ISU have been developing protein based plastics from soybeans, funded by Soy Works Corporation. These materials have been characterized and the processing of these materials into prototype products has been demonstrated. A wide range of net-shape forming processes, including but not limited to extrusion, injection molding and compression molding have been studied. Issues, including technology transfer, re-formulation and product consistency, have been addressed partially during this contract. Also, commercial-scale processing parameters for protein based plastic products were designed, but not yet applicable in the industry. Support in the trouble shooting processing and the manufacturing of protein based plastic products was provided by Iowa State University during the one year contract.

Grewell, David

2008-12-08T23:59:59.000Z

358

International technology transfer (ITT) and corporate social responsibility (CSR) : A study in the interaction of two business functions within the Norwegian petroleum company Statoil.  

E-Print Network [OSTI]

??I study Statoil?s use of international technology transfer (ITT) and corporate social responsibility (CSR), and ways in which the two business functions interact within Statoil.… (more)

Bakken, Bent Egil Roalkvam

2011-01-01T23:59:59.000Z

359

The influence of customer familiarity and personal innovativeness toward information technologies on the sense of virtual community and participation  

Science Journals Connector (OSTI)

The aim of this study is to investigate, on the one hand, the main effects of personal innovativeness and familiarity on perceived community support in the domain of the social network site Tuenti, and, on the other hand, the moderating effects of personal ... Keywords: familiarity, moderating effects, perceived community support, personal innovativeness, sense of virtual community, social network sites

Manuel J. Sánchez-Franco; José Antonio Carballar-Falcón; Francisco J. Martínez-López; Juan Carlos Gázquez-Abad

2011-09-01T23:59:59.000Z

360

Development and transfer of fuel fabrication and utilization technology for research reactors  

SciTech Connect (OSTI)

Approximately 300 research reactors supplied with US-enriched uranium are currently in operation in about 40 countries, with a variety of types, sizes, experiment capabilities and applications. Despite the usefulness and popularity of research reactors, relatively few innovations in their core design have been made in the last fifteen years. The main reason can be better understood by reviewing briefly the history of research reactor fuel technology and enrichment levels. Stringent requirements on the enrichment of the uranium to be used in research reactors were considered and a program was launched to assist research reactors in continuing their operation with the new requirements and with minimum penalties. The goal of the new program, the Reduced Enrichment Research and Test Reactor (RERTR) Program, is to develop the technical means to utilize LEU instead of HEU in research reactors without significant penalties in experiment performance, operating costs, reactor modifications, and safety characteristics. This paper reviews briefly the RERTR Program activities with special emphasis on the technology transfer aspects of interest to this conference.

Travelli, A.; Domagala, R.F.; Matos, J.E.; Snelgrove, J.L.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

University incubators as agents for technology transfer and economic growth: case studies in USA, Finland and Ukraine  

Science Journals Connector (OSTI)

This paper discusses the contributions of university incubators to: technology intelligence, transfer and commercialisation; regional economic development. We utilise the case method and describe the history and contributions of university-based incubators started by the authors in the USA (1982), Ukraine (1992) and Finland (1996). We also discuss the role of the Rensselaer Polytechnic Institute Office of Technology Commercialisation for assisting the incubator companies to evaluate and commercialise new technologies. We conclude with the 'lessons learned' and guidelines that may be useful to national economists, university administrators, and regional agencies that are managing new business incubators as agents for economic growth.

Pier A. Abetti; Charles Rancourt

2008-01-01T23:59:59.000Z

362

A Study of the Relationship of Communication Technology Configurations in Virtual Research Environments and Effectiveness of Collaborative Research  

E-Print Network [OSTI]

provided an analysis of VRE from a technological standpoint and developed a conceptual model that identified factors facilitating collaboration effectiveness with a primary focus on technology. VRE portals were at the core of the investigation...

Ahmed, Iftekhar

2010-01-16T23:59:59.000Z

363

Determination of technology transfer requirements for enhanced oil recovery. Final report  

SciTech Connect (OSTI)

A detailed field study was conducted to determine the technical information needs of current and potential users of enhanced oil recovery data. Under the direction of the Bartlesville Energy Technology Center (BETC), the study (1) identifies groups which have a need for EOR-related information, (2) delineate the specific information needs of each user-group, and (3) outlines methods for improved transfer of appropriate information to the end users. This study also assesses attitudes toward the EOR-related efforts of the US Department of Energy (DOE) and the BETC, and the role each should play in facilitating the commercialization of EOR processes. More than 300 users and potential users of EOR information were surveyed. Included in the survey sample were representatives of major oil companies, independent oil companies, engineering consulting firms, university and private research organizations, financial institutions and federal, state, and local policy-making bodies. In-depth questionnaires were specifically designed for each group. This study analyzes each group's position pertaining to (1) current level of EOR activity or interest, (2) current and projected EOR information needs, (3) assessments of the BETC's current information services and suggestions for improvement, (4) delineation of technical and economic constraints to increased EOR activity, and (5) steps the DOE might take to enhance the attractiveness of commercial EOR operations.

Wilson, T.D.; Scott, J.P.

1980-09-01T23:59:59.000Z

364

Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.  

SciTech Connect (OSTI)

Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

2007-01-01T23:59:59.000Z

365

Office of Technology Transfer and Innovation Partnerships, PO Box 6000, Binghamton, NY, 13902-6000. Ph: (607) 777-5870. FORM TT-2 Revised 03/19/09 FORM TT -2  

E-Print Network [OSTI]

Office of Technology Transfer and Innovation Partnerships, PO Box 6000, Binghamton, NY, 13902-6000. Ph: (607) 777-5870. FORM TT-2 Revised 03/19/09 FORM TT - 2 Technology Transfer NEW TECHNOLOGY DISCLOSURE PLEASE SUBMIT COMPLETED FORM TO OFFICE OF TECHNOLOGY TRANSFER AND INNOVATIVE PARTNERSHIPS 1

Suzuki, Masatsugu

366

2815 San Gabriel Austin, Texas 78705 www.ic2.utexas.edu 512.475.8900 Butler, John Sibley and David V. Gibson (eds.), 2011. Global Perspectives on Technology Transfer and  

E-Print Network [OSTI]

Sibley and David V. Gibson (eds.), 2011. Global Perspectives on Technology Transfer and Commercialization. "University Technology Transfer," U.S. Economic Outlook, 2/4 2011, 31-33. Echeverri-Carroll, Elsie L has produced a catalog of cutting-edge research on new technologies, technology transfer

Ghosh, Joydeep

367

System Management Software for Virtual Environments  

SciTech Connect (OSTI)

Recently there has been an increased interest in the use of system-level virtualization using mature solutions such as Xen, QEMU, or VMWare. These virtualization platforms are being used in distributed and parallel environments including high performance computing. The use of virtual machines within such environments introduces new challenges to system management. These include tedious tasks such as deploying para-virtualized host operating systems to support virtual machine execution or virtual overlay networks to connect these virtual machines. Additionally, there is the problem of machine definition and deployment, which is complicated by differentiation in the underlying virtualization technology. This paper discusses tools for the deployment and management of both host operating systems and virtual machines in clusters. We begin with an overview of system-level virtualization and move on to a description of tools that we have developed to aid with these environments. These tools extend prior work in the area of cluster installation, configuration and management.

Vallee, Geoffroy R [ORNL; Naughton, III, Thomas J [ORNL; Scott, Stephen L [ORNL

2007-01-01T23:59:59.000Z

368

July 24, 2009, Visiting Speakers Program - Public-Private Partnerships and Technology Transfer by Dr. Ralph Taylor-Smith  

Broader source: Energy.gov (indexed) [DOE]

Tech-Transfer & the 21 Tech-Transfer & the 21 st Century Public-Private Partnership Ralph E. Taylor-Smith PhD MBA Battelle Venture Partners DOE-NAPA Forum Washington DC July 24, 2009 Commentary: Derived from Private-Sector Perspective on Tech-Commercialization * Active venture-capital (VC) industry player; various early-stage tech start-ups (federally-funded R&D) * University teaching as active adjunct Professor on Tech-Entrepreneurship & Industrial Innovation * Technology I-Banking (M&A, IPOs) on Wall-St * Prior decade-long industrial experience at Bell Labs as R&D scientist and technology manager * LLNL Industrial Advisory Board; NSF SBIR/STTR Focus on taking Federally-funded R&D to Commercial Market * DOE National Lab focus: LawrenceLivermore, OakRidge, Pacific Northwest, Brookhaven,

369

University incubators as agents for technology transfer and economic growth: case studies in USA, Ukraine and Finland  

Science Journals Connector (OSTI)

It is estimated that there are 4500 incubators worldwide; growing at an annual rate of 30%, and that approximately 1500 are connected with universities. However, due to the lack of reliable statistics, there are valid questions concerning the contributions of university incubators to: technology transfer and commercialisation; and to regional economic development. To answer these two questions, we utilise the case method and describe the history and contributions of university-based incubators started by authors in the USA (1982), Ukraine (1992) and Finland (1996). We conclude with 'lessons learned' and guidelines that may be useful to national economists, government officials, university administrators and faculty, and to regional economic development agencies that are planning or managing new business incubators as agents for technology transfer and economic growth.

Pier A. Abetti; Charles F. Rancourt

2006-01-01T23:59:59.000Z

370

MHD Technology Transfer, Integration and Review Committee. Seventh semi-annual status report, April 1991--September 1991  

SciTech Connect (OSTI)

This seventh semi-annual status report of the MHD Technology Transfer, Integration and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1991 through September 1991. It includes a summary and minutes of the General Committee meeting, progress summaries of ongoing POC contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months. The meeting included test plan with Western coal, seed regeneration economics, power management for the integrated topping cycle and status of the Clean Coal Technology Proposal activities. Appendices cover CDIF operations HRSR development, CFFF operations etc.

Not Available

1993-02-01T23:59:59.000Z

371

MHD Technology Transfer, Integration and Review Committee. Fifth semi-annual status report, April 1990--September 1990  

SciTech Connect (OSTI)

This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.

Not Available

1992-01-01T23:59:59.000Z

372

The Division of Research Affairs (DRA) and the Technology Transfer Office (TTO work together to serve SDSU for the management of new intellectual property developed by SDSU faculty and staff. Both play  

E-Print Network [OSTI]

The Division of Research Affairs (DRA) and the Technology Transfer Office (TTO work together are important documents for technology transfer; they can be both free as well as generate revenue, they allow

Ponce, V. Miguel

373

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four: business administration, wind farm management, aircraft maintenance, tooling production, quality and safety or selected program track focus. Transfer students must talk to their advisor about transferring their courses

375

In Proceedings of the Symposium on Virtual Reality Software and Technology (VRST-97), Lausanne, Switzerland, September 1517, 1997, pp. 8794  

E-Print Network [OSTI]

), 81925 Munich, Germany EE Dept., California Inst. of Technology, MC 136-93, Pasadena, CA 91125 Autodesk-2100 Dept of Comp & Info Science, IUPUI, 723 W. Michigan St, Indianapolis, IN 46202-5132 Email: dieter.koller@autodesk

Barr, Al

376

Issue 01 September 2009 This issue: 1 STFC Innovations Ltd to lead ESA's UK technology transfer work 2 RSE/STFC Enterprise Fellowships 3 RSE/STFC Enterprise Fellowships  

E-Print Network [OSTI]

Issue 01 September 2009 This issue: 1 STFC Innovations Ltd to lead ESA's UK technology transfer in knowledge exchange and technology transfer has been recognised with the awarding of a prestigious contract by the European Space Agency (ESA). STFC Innovations Ltd to lead ESA's UK technology transfer work STFC

377

Social capitalism: an economic paradigm for the transfer and commercialisation of technology  

Science Journals Connector (OSTI)

A new economic paradigm has emerged over the last 30 years, mainly in a few European countries, especially the Nordic countries over the last ten years, some states within the USA and the People's Republic of China: social capitalism. The core issues of this new form of economic system were exposed in the US 2000 election, which pitted the forces of the ''old economic paradigm'' against the ''new economic paradigm''. These issues are poised to repeat themselves in the USA in 2002 and again in 2004. The conflict is represented in the political economy of both party candidates as a dramatic move from the old economy of the 1980 era of Margaret Thatcher and Ronald Reagan toward a more compassionate government and economic model. Due to the selection of the US president by the American Supreme Court, the old economy forces ''won'' the White House. Nevertheless, the elements and forces of the new economy are pervasive and well established in many American states. What the new economy ''social capitalism'' paradigm argues is that government is not invisible, as in the Adam Smith ideal ''free market'' form of capitalism. Nor is government all intrusive, as with Keynes or even Schumpeter. Instead, government must be active and protect societal issues that impact on every citizen in all sectors that have an impact on an economy: education, infrastructure, health, water, energy, and the environment. Government's role is to provide guidance through regulation and to stimulate business and economic growth through investment. More recently (2002), the revelations of the excesses and abuses of a ''free market'' by private corporations, such as Enron in the USA, demonstrate the need for an active government role in business development and operations in critical infrastructure sectors. This paper examines not only the philosophical roots of social capitalism, but also gives short business cases of how business development can be enhanced through the transfer and commercialisation of energy and environmental technologies. Our premise is that, if nations are to advance then they must share in the commercialisation of knowledge capital, innovations, and new business developments for the benefit of everyone. Competition must be replaced by collaboration.

Woodrow W. Clark; Xing Li

2004-01-01T23:59:59.000Z

378

U.S.-MEXICO TECHNOLOGY TRANSFER; BILATERAL TECHNICAL EXCHANGES FOR SUSTAINABLE ECONOMIC GROWTH IN THE BORDER REGION  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) maintains a strong commitment to transfer the results of its science and technology programs to the private sector. The intent is to apply innovative and sometimes advanced technologies to address needs while simultaneously stimulating new commercial business opportunities. Such focused “technology transfer” was evident in the late 1990s as the results of DOE investments in environmental management technology development led to new tools for characterizing and remediating contaminated sites as well as handling and minimizing the generation of hazardous wastes. The Department’s Office of Environmental Management was attempting to reduce the cost, accelerate the schedule, and improve the efficacy of clean-up efforts in the nuclear weapons complex. It recognized that resulting technologies had broader world market applications and that their commercialization would further reduce costs and facilitate deployment of improved technology at DOE sites. DOE’s Albuquerque Operations Office (now part of the National Nuclear Security Administration) began in 1995 to build the foundation for a technology exchange program with Mexico. Initial sponsorship for this work was provided by the Department’s Office of Environmental Management. As part of this effort, Applied Sciences Laboratory, Inc. (ASL) was contracted by the DOE Albuquerque office to identify Mexico’s priority environmental management needs, identify and evaluate DOE-sponsored technologies as potential solutions for those needs, and coordinate these opportunities with decision makers from Mexico’s federal government. That work led to an improved understanding of many key environmental challenges that Mexico faces and the many opportunities to apply DOE’s technologies to help resolve them. The above results constituted, in large part, the foundation for an initial DOE-funded program to apply the Department’s technology base to help address some of Mexico’s challenging environmental issues. The results also brought focus to the potential contributions that DOE’s science and technology could make for solving the many difficult, multi-generational problems faced by hundreds of bi-national communities along the 2,000-mile shared border of the United States and Mexico. Efforts to address these U.S.-Mexico border issues were initially sponsored by the DOE’s Albuquerque and Carlsbad offices. In subsequent years, the U.S. Congress directed appropriations to DOE’s Carlsbad office to address public health, safety and security issues prevalent within U.S.-Mexico border communities. With ASL’s assistance, DOE’s Albuquerque office developed contacts and formed partnerships with interested U.S and Mexican government, academic, and commercial organizations. Border industries, industrial effluents, and public health conditions were evaluated and documented. Relevant technologies were then matched to environmental problem sets along the border. Several technologies that were identified and subsequently supported by this effort are now operational in a number of U.S.-Mexico border communities, several communities within Mexico’s interior states, and in other parts of Latin America. As a result, some serious public health threats within these communities caused by exposure to toxic airborne pollutants have been reduced. During this time, DOE’s Carlsbad office hosted a bilateral conference to establish a cross-border consensus on what should be done on the basis of these earlier investigative efforts. Participating border region stakeholders set an agenda for technical collaborations. This agenda was supported by several Members of Congress who provided appropriations and directed DOE’s Carlsbad office to initiate technology demonstration projects. During the following two years, more than 12 private-sector and DOE-sponsored technologies were demonstrated in partnership with numerous border community stakeholders. All technologies were well received and their effectiveness at addressing health, safety and security issues w

Jimenez, Richard, D., Dr.

2007-10-01T23:59:59.000Z

379

Advanced Heat Transfer Technologies Increase Vehicle Performance and Reliability, The Spectrum of Clean Energy Innovation (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Heat Transfer Advanced Heat Transfer Technologies Increase Vehicle Performance and Reliability Keeping yourself cool while driving your car on a hot, sunny day can be a challenge. But it can be even more challenging to cool the power electronic components that are critically important in hybrid electric and all-electric vehicles. Researchers at the National Renewable Energy Laboratory (NREL) investigate and develop these vehicles and their components to help reduce our use of imported petroleum and curb the emissions associated with climate change. A vehicle's power electronic components include the motor controller, converters, and inverters that condition the flow of electrical power between the battery and the electric motor. The problem is that power electronics generate a lot of heat. This heat can decrease

380

Virtually simulating the next generation of clean energy technologies: NETL's AVESTAR Center is dedicated to the safe, reliable and efficient operation of advanced energy plants with carbon capture  

SciTech Connect (OSTI)

Imagine using a real-time virtual simulator to learn to fly a space shuttle or rebuild your car's transmission without touching a piece of equipment or getting your hands dirty. Now, apply this concept to learning how to operate and control a state-of-the-art, electricity-producing power plant capable of carbon dioxide (CO{sub 2}) capture. That's what the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTAR) Center (www.netl.doe.gov/avestar) is designed to do. Established as part of the Department of Energy's (DOE) initiative to advance new clean energy technology for power generation, the AVESTAR Center focuses primarily on providing simulation-based training for process engineers and energy plant operators, starting with the deployment of a first-of-a-kind operator training simulator for an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Based on Invensys Operations Management's SimSci-Esscor DYNSIM software, the high-fidelity dynamic simulator provides realistic training on IGCC plant operations, including normal and faulted operations, as well as plant start-up, shutdown and power demand load changes. The highly flexible simulator also allows for testing of different types of fuel sources, such as petcoke and biomass, as well as co-firing fuel mixtures. The IGCC dynamic simulator is available at AVESTAR's two locations, NETL (Figure 1) and West Virginia University's National Research Center for Coal and Energy (www.nrcce.wvu.edu), both in Morgantown, W.Va. By offering a comprehensive IGCC training program, AVESTAR aims to develop a workforce well prepared to operate, control and manage commercial-scale gasification-based power plants with CO{sub 2} capture. The facility and simulator at West Virginia University promotes NETL's outreach mission by offering hands-on simulator training and education to researchers and university students.

Zitney, S.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NASA Langley's Research and Technology-Transfer Program in Formal Methods  

E-Print Network [OSTI]

are to make formal methods practical for use on life critical systems, and to or- chestrate the transfer and ultrareliable electronics systems [8]. 1.1 Why Formal Methods Are Necessary Digital systems (both hardware through the system with all possible inputs[5]. The hardware industry also faces serious di

Butler, Ricky W.

382

July 24, 2009; Visiting Speakers Program - Public-Private Partnerships and Technology Transfer by Dr. Cynthia McIntyre  

Broader source: Energy.gov (indexed) [DOE]

21 21 st Century Public-Private Partnership and Technology Transfer Perspective Dr. Cynthia McIntyre Senior Vice President US Council on Competitiveness July 24, 2009 Global Strategies for Competitiveness Public Private Partnerships › R & D: Europe, Asia, Middle East/Africa, Latin America › Manufacturing: Europe - Council on Competitiveness Copyright© 2009 Permission Required to Reproduce in any Format PRACE: Partnership for Advanced Computing in Europe * A consortium of the 16 leading supercomputing centers in Europe designed to strengthen European science, engineering and supercomputer technologies and thus secure Europe a pioneering role in the global competition * Populated by European companies that need to stay ahead of their competition -

383

The application of virtual reality in astronomy education  

Science Journals Connector (OSTI)

In this paper, we study the virtual reality technologies for developing a virtual astronomical museum, which can be applied in astronomy education. The museum contains four exhibition areas of the following topics: Astronomy Technologies, the Moon ... Keywords: astronomy education, internet, virtual reality, web-based learning

W. Tarng; H. Liou

2007-06-01T23:59:59.000Z

384

Demonstration and Transfer of Selected New Technologies for Animal Waste Pollution Control  

E-Print Network [OSTI]

Technical Report April 2009 D e m o n s tr a t i o n and Transfer of Selected New Technolo g i e s for Animal Waste Pollution Control TSSWCB Project 03-10 Final Report Prepared by: Dr. Saqib Mukhtar, Texas AgriLife Extension Service... ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..............7 Technolo g y De monstr a t i o n s and Methodol o g y ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Geotube ? Dewater i n g System...

Mukhtar, Saqib; Gregory, Lucas

385

Sensors and nuclear power. Report by the Technology Transfer Sensors Task Team  

SciTech Connect (OSTI)

The existing sensor systems for the basic process parameters in nuclear power plant operation have limitations with respect to accuracy, ease of maintenance and signal processing. These limitations comprise the economy of nuclear power generation. To reduce the costs and improve performance of nuclear power plant fabrication, operation, maintenance and repair we need to advance the sensor technology being applied in the nuclear industry. The economic viability and public acceptance of nuclear power will depend on how well we direct and apply technological advances to the industry. This report was prepared by a team with members representing a wide range of the nuclear industry embracing the university programs, national laboratories, architect engineers and reactor manufacturers. An intensive effort was made to survey current sensor technology, evaluate future trends and determine development needs. This included literature surveys, visits with utilities, universities, laboratories and organizations outside the nuclear industry. Several conferences were attended to take advantage of the access to experts in selected topics and to obtain opinions. Numerous telephone contacts and exchanges by mail supplemented the above efforts. Finally, the broad technical depth of the team members provided the basis for the stimulating working sessions during which this report was organized and drafted.

Not Available

1985-06-01T23:59:59.000Z

386

Technology Deployment Annual Report 2009  

SciTech Connect (OSTI)

Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties.

Keith Arterburn

2009-12-01T23:59:59.000Z

387

Worldwide R&D of Virtual Observatory  

E-Print Network [OSTI]

Virtual Observatory (VO) is a data intensive online astronomical research and education environment, taking advantages of advanced information technologies to achieve seamless and uniform access to astronomical information. The concept of VO was introduced in late of 1990s to meet challenges brought up with data avalanche in astronomy. This paper reviews current status of International Virtual Observatory Alliance, technical highlights from world wide VO projects, and a brief introduction of Chinese Virtual Observatory.

Chenzhou Cui; Yongheng Zhao

2007-11-27T23:59:59.000Z

388

Energy conservation: a route to improved distillation profitability. Executive briefing report, technology transfer  

SciTech Connect (OSTI)

The savings potential of energy-conservation measures applied to distillation is examined. The document catalogs all of the various energy-conservation options applicable to distillation; categorizes the options by investment required; and describes in detail the options having a significant potential to reduce distillation energy requirements economically. A technology applications manual designed to assist distillation process engineers who will perform technical and economic analyses to determine the conservation measures most suitable for their particular plant is also available (DOE/CS/4431-T2).

Not Available

1980-01-01T23:59:59.000Z

389

Virtual nuclear weapons  

SciTech Connect (OSTI)

The term virtual nuclear weapons proliferation and arsenals, as opposed to actual weapons and arsenals, has entered in recent years the American lexicon of nuclear strategy, arms control, and nonproliferation. While the term seems to have an intuitive appeal, largely due to its cyberspace imagery, its current use is still vague and loose. The author believes, however, that if the term is clearly delineated, it might offer a promising approach to conceptualizing certain current problems of proliferation. The first use is in a reference to an old problem that has resurfaced recently: the problem of growing availability of weapon-usable nuclear materials in civilian nuclear programs along with materials made `excess` to defense needs by current arms reduction and dismantlement. It is argued that the availability of these vast materials, either by declared nuclear-weapon states or by technologically advanced nonweapon states, makes it possible for those states to rapidly assemble and deploy nuclear weapons. The second use has quite a different set of connotations. It is derived conceptually from the imagery of computer-generated reality. In this use, one thinks of virtual proliferation and arsenals not in terms of the physical hardware required to make the bomb but rather in terms of the knowledge/experience required to design, assemble, and deploy the arsenal. Virtual weapons are a physics reality and cannot be ignored in a world where knowledge, experience, materials, and other requirements to make nuclear weapons are widespread, and where dramatic army reductions and, in some cases, disarmament are realities. These concepts are useful in defining a continuum of virtual capabilities, ranging from those at the low end that derive from general technology diffusion and the existence of nuclear energy programs to those at the high end that involve conscious decisions to develop or maintain militarily significant nuclear-weapon capabilities.

Pilat, J.F.

1997-08-01T23:59:59.000Z

390

Virtual Classroom | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Virtual Classroom Virtual Classroom Adobe Connect is as web conferencing tool that is being used as a virtual classroom in an ongoing pilot to conduct virtual Instructor Led...

391

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

: business administration, energy management, wind farm management, automation and controls, aircraft, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four students must talk to their advisor about transferring their courses over for WSU credit. Laboratory

392

EA-2000: Proposed Land Transfer to Develop a General Aviation Airport at the East Tennessee Technology Park Heritage Center, Oak Ridge, Tennessee  

Broader source: Energy.gov [DOE]

DOE is preparing an EA to assess potential environmental impacts of the proposed land transfer to the Metropolitan Knoxville Airport Authority for the development of a general aviation airport at the East Tennessee Technology Park Heritage Center, in Oak Ridge, Tennessee. Public Comment Opportunities None available at this time. Documents Available for Download No downloads found for this office.

393

UNL POLICY FOR DIVISION OF NET ROYALTY AND PROCEEDS Section 5 of the RP-4.4.2 Regents' Patent and Technology Transfer Policy includes  

E-Print Network [OSTI]

UNL POLICY FOR DIVISION OF NET ROYALTY AND PROCEEDS Section 5 of the RP-4.4.2 Regents' Patent and Technology Transfer Policy includes information on the division of net royalties and proceeds: "With respect by the University associated with such action. After such expenses are reimbursed, royalties and other proceeds from

Logan, David

394

Virtual impactor  

DOE Patents [OSTI]

A virtual impactor is described having improved efficiency and low wall losses in which a core of clean air is inserted into the aerosol flow while aerosol flow is maintained adjacent to the inner wall surfaces of the focusing portion of the impactor. The flow rate of the core and the length of the throat of the impactor's collection probe, as well as the dimensional relationships of other components of the impactor adjacent the separation region of the impactor, are selected to optimize separation efficiency. 4 figs.

Yeh, H.C.; Chen, B.T.; Cheng, Y.S.; Newton, G.J.

1988-08-30T23:59:59.000Z

395

Analyzing and Improving MPI Communication Performance in Overcommitted Virtualized Systems  

Science Journals Connector (OSTI)

Nowadays, it is an important trend in the system domain to use the software-based virtualization technology to build the execution environments (e.g., Clouds) and serve high performance computing (HPC) applications. However, with the extra virtualization ... Keywords: virtualization, cloud, MPI, performance

Zhiyuan Shao; Qiang Wang; Xuejiao Xie; Hai Jin; Ligang He

2011-07-01T23:59:59.000Z

396

I/O Performance of Virtualized Cloud Environments  

E-Print Network [OSTI]

Technologies in High Performance Computing. In 2nd IEEEon UnConventional high performance computing workshop plususing virtual high-performance computing: a case study using

Ghoshal, Devarshi

2013-01-01T23:59:59.000Z

397

Virtual Oxygen Sensor for Innovative NOx and PM Emission Control...  

Broader source: Energy.gov (indexed) [DOE]

2009 - Poster Session August 3 rd , Hyatt Regency Dearborn Hotel Virtual Oxygen Sensor Innovative NOx and PM Emission Control Technologies J. Seebode, E. Stlting,...

398

Building Virtual Worlds: A City Planning Perspective  

E-Print Network [OSTI]

to the internet and the application of internet technologies in private company `intranets.' The obvious result.ingram@cs.nott.ac.uk Computing, networking and virtual reality technologies are gradually approaching the level of maturity where The relentless expansion of computing technology into our workplaces and homes in the past 15­20 years is plain

Bowden, Richard

399

Virtual Prairie  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Visualizing a Real Prairie: Visualizing a Real Prairie: Tools to Represent Your Data Site Index for ( Quadrat Study Project - Prairie Advocates Project - Online Prairie Data) You may use the virtual prairies you create in your presentation. You will need to save the screen or browser window to save the images you create. On the Macintosh, you type open apple-shift-3 to make a Picture file on the hard drive. You can edit these files with Adobe Photoshop or other image editing applications and put them in your report. On a PC with Windows 95, you can type the key combination of "print screen" and the alt key to save what you have displayed in the browser window to the clipboard and then paste it into an image editing application or directly into your report. Create a Quadrat Using Real Data.

400

NETL Researcher Honored with 2013 Federal Laboratory Award Morgantown, W.Va. - Dr. Stephen E. Zitney of the National Energy Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Researcher Honored with 2013 Federal Laboratory Award Researcher Honored with 2013 Federal Laboratory Award Morgantown, W.Va. - Dr. Stephen E. Zitney of the National Energy Technology Laboratory (NETL) has been awarded a Mid-Atlantic region Federal Laboratory Consortium (FLC) award for Excellence in Technology Transfer for his work on the 3D Virtual Energy Plant Simulator and Immersive Training System. The 3D Virtual Energy Plant Simulator and Immersive Training System (ITS) deployed at NETL's Advanced Virtual Energy Simulation Training and Research (AVESTAR ® ) Center delivers the first virtual energy plant for training, research, and development. NETL and its training partners are using the system to deliver realistic, cost-effective, and low-risk workforce training to the energy industries. Virtual reality-based training

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Federal technology transfer requirements :a focused study of principal agencies approaches with implications for the Department of Homeland Security.  

SciTech Connect (OSTI)

This report provides relevant information and analysis to the Department of Homeland Security (DHS) that will assist DHS in determining how to meet the requirements of federal technology transfer legislation. These legal requirements are grouped into five categories: (1) establishing an Office of Research and Technology Applications, or providing the functions thereof; (2) information management; (3) enabling agreements with non-federal partners; (4) royalty sharing; and (5) invention ownership/obligations. These five categories provide the organizing framework for this study, which benchmarks other federal agencies/laboratories engaged in technology transfer/transition Four key agencies--the Department of Health & Human Services (HHS), the U.S. Department of Agriculture (USDA), the Department of Energy (DOE), and the Department of Defense (DoD)--and several of their laboratories have been surveyed. An analysis of DHS's mission needs for commercializing R&D compared to those agencies/laboratories is presented with implications and next steps for DHS's consideration. Federal technology transfer legislation, requirements, and practices have evolved over the decades as agencies and laboratories have grown more knowledgeable and sophisticated in their efforts to conduct technology transfer and as needs and opinions in the federal sector have changed with regards to what is appropriate. The need to address requirements in a fairly thorough manner has, therefore, resulted in a lengthy paper. There are two ways to find summary information. Each chapter concludes with a summary, and there is an overall ''Summary and Next Steps'' chapter on pages 57-60. For those readers who are unable to read the entire document, we recommend referring to these pages.

Koker, Denise; Micheau, Jill M.

2006-07-01T23:59:59.000Z

402

Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report  

SciTech Connect (OSTI)

Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50¢/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12¢/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

Grogan, Dylan C. P.

2013-08-15T23:59:59.000Z

403

Heat Transfer Technology  

E-Print Network [OSTI]

,(C) 122 (5OJ 140 (6OJ 158 (70 DRY TOWER 6< F, (K) (15)18 (10) 36 (20 ~ATER "OUT" F, (C) 27 104 (40) 113 (45) 122 (50 ApPROACH F, (C) (15)18 (10) 36 (20 DRY BULB F, (D 27 (30)86 (30) 86(3086 Wn SFrTlo. WATER "IN" F, (() 104 (40) 113 (45) 122... (50 IIET TOWER 6t F, (K) 18 (10) 0 WATER "OlIT" F, (D S 86 (30) 104 (40) ApPROACH F, (K) ~~ (~l 27 (15)3 (5) ~ET BULB F, (C) 77 (25) 77 (25) 77 (25 VARIATiON OF TEMPERATURES AS A FUNCTION OF THE MODE OF OPERATION. To decrease...

Lefevre, M. R.

1984-01-01T23:59:59.000Z

404

Technology Transfer Webinar on November 12: High-Performance Hybrid Simulation/Measurement-Based Tools for Proactive Operator Decision-Support  

Broader source: Energy.gov [DOE]

DOE/OE and EPRI will host a technology transfer webinar on Wednesday, November 12, 2014 from noon to 2 p.m. (ET). The purpose of this open webinar is to disseminate results and outcomes of the recently completed project “High-Performance Hybrid Simulation/Measurement-Based Tools for Proactive Operator Decision-Support,” which is one of the awarded projects of the DOE Advanced Modeling Grid Research Program.

405

Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer progress report for DOE (Department of Energy) Office of Buildings Energy Research  

SciTech Connect (OSTI)

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

Burn, G. (comp.)

1990-08-01T23:59:59.000Z

406

Technology transfer of an innovative remediation technology from the laboratory to the field: a case study of in situ aerobic cometabolic bioremediation  

Science Journals Connector (OSTI)

Scaling-up an environmental remediation technology from the laboratory to the field ... in order to demonstrate and evaluate a new remediation technology in the field. Finally, to commercialize an innovative tech...

M. N. Goltz; G. C. Mandalas; G. D. Hopkins…

1998-06-01T23:59:59.000Z

407

Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 5 Report: Generation IV Reactor Virtual Mockup Proof-of-Principle Study  

SciTech Connect (OSTI)

Task 5 report is part of a 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Created a virtual mockup of PBMR reactor cavity and discussed applications of virtual mockup technology to improve Gen IV design review, construction planning, and maintenance planning.

Timothy Shaw; Anthony Baratta; Vaughn Whisker

2005-02-28T23:59:59.000Z

408

MATERIALS TRANSFER AGREEMENT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MTAXX-XXX 1 MATERIAL TRANSFER AGREEMENT for Manufacturing Demonstration Facility and Carbon Fiber Technology Facility In order for the RECIPIENT to obtain materials, the RECIPIENT...

409

Tutorial on Technology Transfer and Survey Design and Data Collection for Measuring Internet and Intranet Existence, Usage, and Impact (Survey-2000) in Acute Care Hospitals in the United States  

Science Journals Connector (OSTI)

This paper provides a tutorial of technology transfer for management information systems in health ... was to measure the levels of Internet and Intranet existence and usage in acute care hospitals. ... provide b...

Myron Hatcher

2001-02-01T23:59:59.000Z

410

VIRTUAL PRESENTERS: TOWARDS INTERACTIVE VIRTUAL PRESENTATIONS  

E-Print Network [OSTI]

the interesting parts of a sculpture or painting, addressing one, several or all persons in his or her audience be a painting, displayed and explained in a virtual museum environment. There are many examples of research they aim at giving the presentation task to a robot or virtual agent. In the latter case we can have one

Nijholt, Anton

411

Autonomous Virtual Mobile Nodes  

E-Print Network [OSTI]

This paper presents a new abstraction for virtual infrastructure in mobile ad hoc networks. An AutonomousVirtual Mobile Node (AVMN) is a robust and reliable entity that is designed to cope with theinherent difficulties ...

Dolev, Shlomi

2005-06-15T23:59:59.000Z

412

Technolog  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

413

High Breakdown ( > \\hbox {1500 V} ) AlGaN/GaN HEMTs by Substrate-Transfer Technology  

E-Print Network [OSTI]

In this letter, we present a new technology to increase the breakdown voltage of AlGaN/GaN high-electron-mobility transistors (HEMTs) grown on Si substrates. This new technology is based on the removal of the original Si ...

Lu, Bin

414

U.S. Department of Energy U.S. Department of Energy National Energy Technology Laboratory National Energy Technology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

For Immediate Release For Immediate Release Shelley Martin, 304-285-0228 April 16, 2010 The National Energy Technology Laboratory has announced that Stephen E. Zitney and Terry Jordan will receive the 2010 Federal Laboratory Consortium (FLC) Excellence in Technology Transfer Award. Their award is for work on the Virtual Engineering - Process Simulator Interface (VE-PSI) and will be presented at a ceremony on Thursday, April 29, 2010 at the FLC National Meeting in Albuquerque, New Mexico. VE-PSI is new, innovative software technology that provides engineers with a tool to design and optimize energy plants within a virtual engineering environment. Engineering data from process simulation, computational fluid dynamics, and computer-aided design can be seamlessly integrated and easily analyzed within an immersive,

415

The potential environmental gains from recycling waste plastics: Simulation of transferring recycling and recovery technologies to Shenyang, China  

SciTech Connect (OSTI)

Research highlights: {yields} Urban symbiosis creates compatibility of industrial development and waste management. {yields} Mechanical technology leads to more CO{sub 2} emission reduction. {yields} Energy recovery technology leads to more fossil fuel saving. {yields} Clean energy makes recycling technologies cleaner. {yields} Demand management is crucial for realizing potential environmental gains of recycling. - Abstract: With the increasing attention on developing a low-carbon economy, it is necessary to seek appropriate ways on reducing greenhouse gas (GHG) emissions through innovative municipal solid waste management (MSWM), such as urban symbiosis. However, quantitative assessments on the environmental benefits of urban symbiosis, especially in developing countries, are limited because only a limited number of planned synergistic activities have been successful and it is difficult to acquire detailed inventory data from private companies. This paper modifies and applies a two-step simulation system and used it to assess the potential environmental benefits, including the reduction of GHG emissions and saving of fossil fuels, by employing various Japanese plastics recycling/energy-recovery technologies in Shenyang, China. The results showed that among various recycling/energy-recovery technologies, the mechanical waste plastics recycling technology, which produces concrete formwork boards (NF boards), has the greatest potential in terms of reducing GHG emissions (1.66 kg CO{sub 2}e/kg plastics), whereas the technology for the production of refuse plastic fuel (RPF) has the greatest potential on saving fossil fuel consumption (0.77 kgce/kg-plastics). Additional benefits can be gained by applying combined technologies that cascade the utilization of waste plastics. Moreover, the development of clean energy in conjunction with the promotion of new waste plastics recycling programs could contribute to additional reductions in GHG emissions and fossil fuel consumption.

Chen Xudong, E-mail: chen.xudong@nies.go.jp [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601 (Japan); Xi Fengming [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Geng Yong, E-mail: gengyong@iae.ac.cn [Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016 (China); Fujita, Tsuyoshi [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya City 464-8601 (Japan)

2011-01-15T23:59:59.000Z

416

Environmental Baseline Survey Report for the Title Transfer of Parcel ED-9 at the East Tennessee Technology Park, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This environmental baseline survey (EBS) report documents the baseline environmental conditions of the U. S. Department of Energy's (DOE's) Parcel ED-9 at the East Tennessee Technology Park (ETTP). Parcel ED-9 consists of about 13 acres that DOE proposes to transfer to Heritage Center, LLC (hereafter referred to as 'Heritage Center'), a subsidiary of the Community Reuse Organization of East Tennessee (CROET). The 13 acres include two tracts of land, referred to as ED-9A (7.06 acres) and ED-9B (5.02 acres), and a third tract consisting of about 900 linear feet of paved road and adjacent right-of-way, referred to as ED-9C (0.98 acres). Transfer of the title to ED-9 will be by deed under a Covenant Deferral Request (CDR) pursuant to Section 120(h)(3)(C) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This report provides a summary of information to support the transfer of this government-owned property at ETTP to a non-federal entity.

SAIC

2010-05-01T23:59:59.000Z

417

How the alliance pie is split: Value appropriation by each partner in cross-border technology transfer alliances  

Science Journals Connector (OSTI)

Abstract Almost no academic papers treat a crucial aspect of alliances – the determinants of the division of alliance value over the partners. Analyzing a sample of cross-border alliances, technology providing partners increase their share of total alliance returns when accepting riskier forms of compensation. Returns to a partner, and the risk they assume, are shown to be correlated through minimum sales or minimum royalty agreement clauses. Firms with stronger technical capabilities gain more from technology alliances. The bargaining power wielded by each party, while negotiating the structure of an alliance, influences each partner's share of overall alliance benefits.

Farok J. Contractor; James A. Woodley

2014-01-01T23:59:59.000Z

418

Multimodal astronaut virtual training prototype  

Science Journals Connector (OSTI)

A few dedicated training simulator applications exist that mix realistic interaction devices—like real cockpits in flight simulators—with virtual environment (VE) components. Dedicated virtual reality (VR) systems have been utilized also in astronaut training. However there are no detailed descriptions of projection wall VR systems and related interaction techniques for astronaut assembly training in zero gravity conditions. Back projection technology tends to have certain advantages over head mounted displays including less simulation sickness and less restricted user movement. A prototype was built to evaluate the usefulness of projection technology \\{VEs\\} and interaction techniques for astronaut training. This was achieved by first constructing a PC cluster-based general purpose VE software and hardware platform. This platform was used to implement a testing prototype for astronaut assembly sequence training. An interaction tool battery was designed for the purposes of viewpoint control and object handling. A selected training task was implemented as a case study for further analysis based on laptop usage in the Fluid Science Laboratory (FSL) inside the Columbus module in the International Space Station (ISS). User tests were conducted on the usability of the prototype for the intended training purpose. The results seem to indicate that projection technology-based VE systems and suitably selected interaction techniques can be successfully utilized in zero gravity training operations.

Jukka Rönkkö; Jussi Markkanen; Raimo Launonen; Marinella Ferrino; Enrico Gaia; Valter Basso; Harshada Patel; Mirabelle D’Cruz; Seppo Laukkanen

2006-01-01T23:59:59.000Z

419

Heat Transfer Fluids Containing Nanoparticles | Argonne National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat Transfer Fluids Containing Nanoparticles Technology available for licensing: A stable, nonreactive nanofluid that exhibits enhanced heat transfer properties with only a...

420

Recreating living experiences from past memories through virtual worlds for people with dementia  

Science Journals Connector (OSTI)

This paper describes a study aimed to understand the use of 3D virtual world (VW) technology to support life engagement for people with dementia in long-term care. Three versions of VW prototypes (reminiscence room, virtual tour and gardening) utilising ... Keywords: 3d virtual worlds, care home, dementia, gesture-based interaction, older people

Panote Siriaraya; Chee Siang Ang

2014-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Technology Partnering Mechanisms  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

expand a business with INL technologies, or require business support our Technology Transfer team is available to discuss the following contractual mechanisms: Cooperative...

422

U.S.-U.K. Collaboration on Virtual Plant Simulation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S.-U.K. Collaboration on U.S.-U.K. Collaboration on Virtual Plant Simulation Background Under the auspices of the U.S.-U.K. Memorandum of Understanding and Implementing Agreement for Fossil Energy Research and Technology Development, the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) participated in a three-year collaboration on virtual plant simulation with a project team supported by the Department for Business, Enterprise & Regulatory Reform in

423

Remotely Deployed Virtual Sensors  

E-Print Network [OSTI]

Remotely Deployed Virtual Sensors TR-UTEDGE-2007-010 Sanem Kabadayi Christine Julien © Copyright 2007 The University of Texas at Austin #12;Remotely Deployed Virtual Sensors Sanem Kabadayi that run on mobile client devices connect to the sensors of a multihop sensor network. For emerging

Julien, Christine

424

Rural Solar Cookers, an Alternative to Reduce the Timber Resource Extraction through the Use of Renewable Energy Sources: Technology Transfer and Monitoring Project  

Science Journals Connector (OSTI)

Abstract In this paper, it's presented an integral project of technology transfer. Based in the development of several prototypes of solar cookers, all of them with our own design and construction, whose functionality is to compound parabolic concentrators of revolution, this project performed how to implement this ecotechnology. The prototype implemented uses mirror polished aluminum reflectors, aluminum pressure cooker manual tracking device and solar tilt. With the help of social programs, 70 solar cookers were implemented in an indigenous community in Michoacán, México; previously it was implemented a diagnostic of timber resources consumption to each beneficiary family. Also, firing tests were performed with various prototypes plots to select the best one with thermal and ergonomic characteristics. The project expects to reduce the consumption of timber as fuel used for cooking by 30%; to encourage the use of renewable energy, to mitigate respiratory diseases caused by the inhalation of combustion smoke and help the family's economy. Currently we are working with the monitoring to quantify the improvements achieved in consumption-appropriation. There is already an user manual of maintenance and construction of solar cookers in the indigenous language and the project wants to be the basis for future Eco technologies’ implementations.

Luis Bernardo López Sosa; Mauricio González Avilés; Dante González Pérez; Yuritzi Solís Gutiérrez

2014-01-01T23:59:59.000Z

425

Isothermal Battery Calorimeter Technology Transfer and Development: Cooperative Research and Development Final Report, CRADA Number CRD-12-461  

SciTech Connect (OSTI)

During the last 15 years, NREL has been utilizing its unique expertise and capabilities to work with industry partners on battery thermal testing and electric and hybrid vehicle simulation and testing. Further information and publications about NREL's work and unique capabilities in battery testing and modeling can be found at NREL's Energy Storage website: http://www.nrel.gov/vehiclesandfuels/energystorage/. Particularly, NREL has developed and fabricated a large volume isothermal battery calorimeter that has been made available for licensing and potential commercialization (http://techportal.eere.energy.gov/technology.do/techID=394). In summer of 2011, NREL developed and fabricated a smaller version of the large volume isothermal battery calorimeter, called hereafter 'cell-scale LVBC.' NETZSCH Instruments North America, LLC is a leading company in thermal analysis, calorimetry, and determination of thermo-physical properties of materials (www.netzsch-thermal-analysis.com). NETZSCH is interested in evaluation and eventual commercialization of the NREL large volume isothermal battery calorimeter.

Pesaran, A.; Keyser, M.

2014-12-01T23:59:59.000Z

426

Vehicle Technologies Office: Federal Laboratory Consortium Excellence in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Federal Laboratory Federal Laboratory Consortium Excellence in Technology Transfer Awards to someone by E-mail Share Vehicle Technologies Office: Federal Laboratory Consortium Excellence in Technology Transfer Awards on Facebook Tweet about Vehicle Technologies Office: Federal Laboratory Consortium Excellence in Technology Transfer Awards on Twitter Bookmark Vehicle Technologies Office: Federal Laboratory Consortium Excellence in Technology Transfer Awards on Google Bookmark Vehicle Technologies Office: Federal Laboratory Consortium Excellence in Technology Transfer Awards on Delicious Rank Vehicle Technologies Office: Federal Laboratory Consortium Excellence in Technology Transfer Awards on Digg Find More places to share Vehicle Technologies Office: Federal Laboratory Consortium Excellence in Technology Transfer Awards on

427

ARM - Measurement - Virtual temperature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsVirtual temperature govMeasurementsVirtual temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Virtual temperature The virtual temperature Tv = T(1 + rv/{epsilon}), where rv is the mixing ratio, and {epsilon} is the ratio of the gas constants of air and water vapor ( 0.622). Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CO2FLX : Carbon Dioxide Flux Measurement Systems MWRP : Microwave Radiometer Profiler RWP : Radar Wind Profiler

428

Virtual planetarium in cyberstage  

Science Journals Connector (OSTI)

We describe an educational application in virtual environment, intended for teaching and demonstration of basics of astronomy. The application includes 3D models of 30 objects in the Solar System, 3200 nearby stars, a large database, containing textual ...

Valery Burkin; Martin Göbel; Frank Hasenbrink; Stanislav Klimenko; Igor Nikitin; Henrik Tramberend

2000-06-01T23:59:59.000Z

429

Jefferson Lab Virtual Tour  

ScienceCinema (OSTI)

Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

None

2014-05-22T23:59:59.000Z

430

Vehicle Technologies Office: Awards Received | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Energy's national laboratories in moving fundamental research into technology and towards commercialization. The Federal Laboratory Consortium Excellence in Technology Transfer...

431

Virtual "Open House" Makes it Easier to Tour NETL Labs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Virtual "Open House" Makes it Easier to Tour NETL Labs Virtual "Open House" Makes it Easier to Tour NETL Labs Virtual "Open House" Makes it Easier to Tour NETL Labs July 11, 2013 - 3:47pm Addthis Virtual “Open House” Makes it Easier to Tour NETL Labs NETL's Virtual Open House Have you ever wondered what it's like to work with a first class technology lab? Are you looking for a cutting-edge facility where you can be a part of important research projects? Or are you just interested in the latest research on energy technologies? The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has just made it easier for you with a one-stop web "open house" that provides an overview from the lab's director, briefings from other lab leaders, and a virtual tour of its sites in Oregon, Pennsylvania, and

432

Virtual "Open House" Makes it Easier to Tour NETL Labs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Virtual "Open House" Makes it Easier to Tour NETL Labs Virtual "Open House" Makes it Easier to Tour NETL Labs Virtual "Open House" Makes it Easier to Tour NETL Labs July 11, 2013 - 3:47pm Addthis Virtual “Open House” Makes it Easier to Tour NETL Labs NETL's Virtual Open House Have you ever wondered what it's like to work with a first class technology lab? Are you looking for a cutting-edge facility where you can be a part of important research projects? Or are you just interested in the latest research on energy technologies? The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has just made it easier for you with a one-stop web "open house" that provides an overview from the lab's director, briefings from other lab leaders, and a virtual tour of its sites in Oregon, Pennsylvania, and

433

Michigan Technological University Virtual Event Management  

E-Print Network [OSTI]

..................................................................................................................................19 Common Symbols Additional help information is available by clicking on this icon throughout the system. Use this icon to add things ­ add a room to your request, add a group to your dropdown, etc. Use this icon to remove things ­ remove a room from your request, remove a group, etc. Use this icon to select

434

An Overview of strategic measures to assess workforce needs and ensure technology transfer to meet current and future nuclear power operations  

SciTech Connect (OSTI)

Between 1956 and 1989, the number of operating commercial nuclear power plants in the United States increased from none to 109. With the exception of a few plants that were still in final construction, no new nuclear power plants were ordered in the United States as the new millennium began. In 2005, the federal government pronounced the need for new electric power generating systems during the first quarter of the 21. century. The need comes from a desire to curb our reliance on fossil fuels, as well as to provide for a cleaner environment. One of those fuel systems noted was nuclear energy. Given the time between the last active period of nuclear power plant development and construction, there is a need to supply a talented and well-prepared workforce to operate the new plants. It will also be necessary to assess the needs of our current fleet of operating nuclear power plants, of which many are in the process of re-licensing, yet also facing an aging plant workforce. This paper will review and discuss measures to assess diverse workforce needs and technology transfer to meet current licensing requirements as that of future nuclear power plant development in the United States. (authors)

Vincenti, J.R. [acuri.net, 1344 Curtin Street, State College, PA (United States); Stigers, R.A. [Senior Health Physicist-Radwaste, PPL Susquehanna, Berwick, PA (United States)

2007-07-01T23:59:59.000Z

435

A study of B(s)0 to J/psi phi in the D0 experiment and an example of HEP technology transfer  

SciTech Connect (OSTI)

After years of preparation, data taking with the upgraded D0 detector at the Tevatron proton-antiproton collider has begun. The large amount of data produced in a p{bar p}-collider requires sophisticated triggers to filter out the interesting events. Described in this thesis is the development of trigger software for the newly implemented Silicon Microstrip Tracker. D0 is a multi-purpose detector with a broad physics program. one area being studied at D0 is B mesons. An algorithm for reconstructing the B{sub s}{sup 0} and B{sub d}{sup 0} mesons and for measuring their lifetimes has been developed and is described in this thesis. The results suggest that an improvement of the current lifetime measurements can be achieved within the next two years. The reconstruction of a J/{psi} meson forms the basis for a wide range of b-physics. Data taken with the muon system during the commissioning period of the detector has been analyzed and a signal for the J/{psi} meson has been found. Systematic transfer of HEP technologies into other areas and their commercial exploitation plays an important role in the future of particle physics. An area of particular interest is DNA sequencing as shown by the recent completion of the sequencing of the human genome. The final part of this thesis details the development of a simulation for a high throughput sequencing device which is currently being developed at Imperial College.

Bauer, Daniela Ursula; /Imperial Coll., London; ,

2002-01-01T23:59:59.000Z

436

The 1st International Symposium on Micro & Nano Technology, 14-17 March, 2004, Honolulu, Hawaii, USA MOLECULAR DYNAMICS SIMULATIONS OF HEAT TRANSFER ISSUES  

E-Print Network [OSTI]

, USA MOLECULAR DYNAMICS SIMULATIONS OF HEAT TRANSFER ISSUES IN CARBON NANOTUBES S. Maruyama, Y-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, JAPAN ABSTRACT Several heat transfer problems related to single, and thermal boundary resistance in a junction of nanotubes are reviewed. Then, the heat transfer from an SWNT

Maruyama, Shigeo

437

NETL: Technology Transfer - Available Technologies for Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Month Posted Partnership Opportunity Patent Information 11/2013 Method and Apparatus for Production of Mixed-Metal Oxide Catalysts U.S. Patent Pending 8/2013 3D Gradient Coatings for Components in Aggressive Operating Conditions U.S. Patent Pending 8/2013 Separation of CO2 From Multi-Component Gas Streams U.S. Patent Pending 6/2013 Carbon Capture with Ionic Liquid Sorbents 8,383,026 6/2013 Method for Surge Recovery in Fuel Cell Turbine Hybrids U.S. Patent Pending 5/2013 Control of Slag Chemistry for the Reduction of Viscosity and Refractory Corrosion U.S. Patent Pending 5/2013 Method to Improve Steel Creep Strength by Alloy Design and Heat Treatment U.S. Patent Pending 5/2013 Spheroid-Encapsulated Ionic Liquids for Gas Separation U.S. Patent

438

NETL: Technology Transfer - Available Technologies for Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry Chemistry Month Posted Partnership Opportunity Patent Information 11/2013 Method and Apparatus for Production of Mixed-Metal Oxide Catalysts U.S. Patent Pending 6/2013 Carbon Capture with Ionic Liquid Sorbents 8,383,026 5/2013 Spheroid-Encapsulated Ionic Liquids for Gas Separation U.S. Patent Pending 5/2013 Pyrochlore-Based Catalysts for Syngas-Derived Alcohol Synthesis U.S. Patent Pending 3/2013 Metal Oxide Promoters for Improving the Reactivity and Capacity of Oxygen Carriers for the Chemical Looping Combustion Process U.S. Patent Pending 10/2012 Fuel Cell-Fuel Cell Hybrid System 6,623,880 10/2012 Visible Light Photoreduction of CO2 Using Heterostructured Catalysts U.S. Patent Pending 2/2012 Method for the Production of Mineral Wool and Iron from Serpentine Ore 8,033,140

439

Heat transfer dynamics  

SciTech Connect (OSTI)

As heat transfer technology increases in complexity, it becomes more difficult for those without thermal dynamics engineering training to choose between competitive heat transfer systems offered to meet their drying requirements. A step back to the basics of heat transfer can help professional managers and papermakers make informed decisions on alternative equipment and methods. The primary forms of heat and mass transfer are reviewed with emphasis on the basics, so a practical understanding of each is gained. Finally, the principles and benefits of generating infrared energy by combusting a gaseous hydrocarbon fuel are explained.

Smith, T.M. (Marsden, Inc., Pennsauken, NJ (United States))

1994-08-01T23:59:59.000Z

440

ViSTREET: An Educational Virtual Environment for the Teaching of Road Safety Skills to School Students  

Science Journals Connector (OSTI)

Virtual reality (VR) has been prevalently used as a tool to help students learn and to simulate situations that are too hazardous to practice in real life. The present study aims to explore the capability of VR to achieve these two purposes and demonstrate ... Keywords: educational virtual environments, instructional technology, road safety education, virtual reality

Kee Man Chuah; Chwen Jen Chen; Chee Siong Teh

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 4 Report: Virtual Mockup Maintenance Task Evaluation  

SciTech Connect (OSTI)

Task 4 report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. This report focuses on using Full-scale virtual mockups for nuclear power plant training applications.

Timothy Shaw; Anthony Baratta; Vaughn Whisker

2005-02-28T23:59:59.000Z

442

Exploring Genome Rearrangements using Virtual Hybridization Mahdi Belcaid1  

E-Print Network [OSTI]

are paired. Bottom: fragment of the dataset constructed in 1938 by Dobzhansky and Sturtevant to compare whole of reproducing inde- pendently the datasets, and of including new sequenced genomes in existing dataset, or even- ported extensive transfer of chloroplast DNA to nuclear DNA [4]. VIRTUAL HYBRIDIZATION Approximate string

Chauve, Cedric

443

Environmental Baseline Survey Report for the Title Transfer of Land Parcel ED-4 at the East Tennessee Technology Park, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This environmental baseline survey (EBS) report documents the baseline environmental conditions of a land parcel referred to as 'ED-4' (ED-4) at the U. S. Department of Energy's (DOE's) East Tennessee Technology Park (ETTP). DOE is proposing to transfer the title of this land to the Heritage Center, LLC. Parcel ED-4 is a land parcel that consists of two noncontiguous areas comprising a total of approximately 18 acres located east of the ETTP. The western tract of ED-4 encompasses approximately 8.5 acres in the northeastern quadrant of the intersection of Boulevard Road and Highway 58. The eastern tract encompasses an area of approximately 9.5 acres in the northwestern quadrant of the intersection of Blair Road and Highway 58 (the Oak Ridge Turnpike). Aerial photographs and site maps from throughout the history of the ETTP, going back to its initial development in the 1940s as the Oak Ridge Gaseous Diffusion Plant (ORGDP), indicate that this area has been undeveloped woodland with the exception of three support facilities for workers constructing the ORGDP since federal acquisition in 1943. These three support facilities, which were located in the western tract of ED-4, included a recreation hall, the Town Hall Camp Operations Building, and the Property Warehouse. A railroad spur also formerly occupied a portion of Parcel ED-4. These former facilities only occupied approximately 5 percent of the total area of Parcel ED-4. This report provides supporting information for the transfer of this government-owned property at ETTP to a non-federal entity. This EBS is based upon the requirements of Sect. 120(h) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). In order to support a Clean Parcel Determination (CPD) in accordance with CERCLA Sect. 120(h)(4)(d), groundwater and sediment samples were collected within, and adjacent to, the Parcel ED-4 study area. The potential for DOE to make a CPD for ED-4 is further supported by a No Further Investigation (NFI) determination made on land that adjoins ED-4 to the east (DOE 1997a) and to the south (DOE 1997b).

SAIC

2008-05-01T23:59:59.000Z

444

Multimodal astronaut virtual training prototype  

Science Journals Connector (OSTI)

A few dedicated training simulator applications exist that mix realistic interaction devices-like real cockpits in flight simulators-with virtual environment (VE) components. Dedicated virtual reality (VR) systems have been utilized also in astronaut ...

Jukka Rönkkö; Jussi Markkanen; Raimo Launonen; Marinella Ferrino; Enrico Gaia; Valter Basso; Harshada Patel; Mirabelle D'Cruz; Seppo Laukkanen

2006-03-01T23:59:59.000Z

445

Technology Transfer Success Stories, Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environment Environment Navigate Home About Us Contact Information Hide Thumbs First Previous Pause Next Last Set Speed Slideshow speed: 5 seconds Move Autoinduction system New Image Set Autoinduction Autoinduction System The award winning Overnight Express(tm) Autoinduction System developed at BNL simplifies protein production in the widely used T7 gene expression system. Decontamination Foam-based decontamination Foam-based decontamination, developed at INL and licensed to Environmental Alternatives, Inc. provides for non-destructive removal and decontamination of radionuclides from concrete and other surfaces. Motion to energy power generation system Motion to Energy Power Generation System Motion to energy power generation system, developed at INL with its licensee M2E Power, Inc., converts the power of motion into electrical

446

Technology Transfer Success Stories, Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Energy Navigate Home About Us Contact Information Hide Thumbs First Previous Pause Next Last Set Speed Slideshow speed: 5 seconds Move Autoinduction system New Image Set Autoinduction Autoinduction System The award winning Overnight Express(tm) Autoinduction System developed at BNL simplifies protein production in the widely used T7 gene expression system. Decontamination Foam-based decontamination Foam-based decontamination, developed at INL and licensed to Environmental Alternatives, Inc. provides for non-destructive removal and decontamination of radionuclides from concrete and other surfaces. Motion to energy power generation system Motion to Energy Power Generation System Motion to energy power generation system, developed at INL with its licensee M2E Power, Inc., converts the power of motion into electrical

447

Improving virtual environments analysis process  

Science Journals Connector (OSTI)

The use of Virtual Environments (VEs) is increasing rapidly and people are demanding easier and more credible ways to interact with these new sites. We define a VE as a special kind of 3D virtual environment, inhabited by avatars which represent humans ... Keywords: analysis process, software engineering, use concept, virtual environment

Maria-Isabel Sánchez-Segura; Angelica De Antonio; Antonio De Amescua

2005-08-01T23:59:59.000Z

448

The hiphop virtual machine  

Science Journals Connector (OSTI)

The HipHop Virtual Machine (HHVM) is a JIT compiler and runtime for PHP. While PHP values are dynamically typed, real programs often have latent types that are useful for optimization once discovered. Some types can be proven through static analysis, ... Keywords: dynamic languages, jit compiler, php, tracelet

Keith Adams, Jason Evans, Bertrand Maher, Guilherme Ottoni, Andrew Paroski, Brett Simmers, Edwin Smith, Owen Yamauchi

2014-10-01T23:59:59.000Z

449

The Virtual Physiological Human  

Science Journals Connector (OSTI)

...levels. However, technology, being based...tachycardia simulation procedure can be applied, allowing for...significant information technology challenge: Haidar...Institute of Technology Peter Kohl University...at Congrex for handling the original...

2011-01-01T23:59:59.000Z

450

Shielded cells transfer automation  

SciTech Connect (OSTI)

Nuclear waste from shielded cells is removed, packaged, and transferred manually in many nuclear facilities. Radiation exposure is absorbed by operators during these operations and limited only through procedural controls. Technological advances in automation using robotics have allowed a production waste removal operation to be automated to reduce radiation exposure. The robotic system bags waste containers out of glove box and transfers them to a shielded container. Operators control the system outside the system work area via television cameras. 9 figures.

Fisher, J J

1984-01-01T23:59:59.000Z

451

NETL: Gasification Systems - Advanced Virtual Energy Simulation Training  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Virtual Energy Simulation Training And Research (AVESTAR(tm)) Facility Advanced Virtual Energy Simulation Training And Research (AVESTAR(tm)) Facility Project No: Adv Gas-FY131415 Task 6 Developed as a part of NETL's initiative to advance new clean coal technology, the Advanced Virtual Energy Simulation Training And Research (AVESTARTM) Center is focused on training engineers and energy plant operators in the efficient, productive, and safe operation of highly efficient power generation systems that also protect the environment. Comprehensive dynamic simulator-based instruction better prepares operators and engineers to manage advanced energy plants according to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. Advanced Virtual Energy Simulation Training and Research Center - AVESTAR

452

Building Energy Software Tools Directory: IES Virtual Environment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IES Virtual Environment IES Virtual Environment IES Virtual Environment Logo The IES Virtual Environment (IESVE) is a powerful, in-depth suite of building performance analysis tools. It allows the design and operation of comfortable buildings that consume significantly less energy. Whether working on a new build or renovation project, the VE allows designers to test different options, identify best passive solutions, compare low-carbon & renewable technologies, and draw conclusions on energy use, CO2 emissions, occupant comfort, and much more. There are various tools in the suite; each designed to provide sustainable analysis at levels suitable for different design team members and design stages. All utilise our Apache dynamic thermal simulation engine, and an integrated central data model, which has direct links to SketchUp™,

453

Implementing virtual reality interfaces for the geosciences  

SciTech Connect (OSTI)

For the past few years, a multidisciplinary team of computer and earth scientists at Lawrence Berkeley National Laboratory has been exploring the use of advanced user interfaces, commonly called {open_quotes}Virtual Reality{close_quotes} (VR), coupled with visualization and scientific computing software. Working closely with industry, these efforts have resulted in an environment in which VR technology is coupled with existing visualization and computational tools. VR technology may be thought of as a user interface. It is useful to think of a spectrum, ranging the gamut from command-line interfaces to completely immersive environments. In the former, one uses the keyboard to enter three or six-dimensional parameters. In the latter, three or six-dimensional information is provided by trackers contained either in hand-held devices or attached to the user in some fashion, e.g. attached to a head-mounted display. Rich, extensible and often complex languages are a vehicle whereby the user controls parameters to manipulate object position and location in a virtual world, but the keyboard is the obstacle in that typing is cumbersome, error-prone and typically slow. In the latter, the user can interact with these parameters by means of motor skills which are highly developed. Two specific geoscience application areas will be highlighted. In the first, we have used VR technology to manipulate three-dimensional input parameters, such as the spatial location of injection or production wells in a reservoir simulator. In the second, we demonstrate how VR technology has been used to manipulate visualization tools, such as a tool for computing streamlines via manipulation of a {open_quotes}rake.{close_quotes} The rake is presented to the user in the form of a {open_quotes}virtual well{close_quotes} icon, and provides parameters used by the streamlines algorithm.

Bethel, W.; Jacobsen, J. [Lawrence Berkeley National Laboratory, CA (United States); Austin, A.; Lederer, M. [BP Exploration, Houston, TX (United States); Little, T. [Landmark Graphics Corp., Houston, TX (United States)

1996-06-01T23:59:59.000Z

454

Daonity – Grid security from two levels of virtualization  

Science Journals Connector (OSTI)

The service oriented architecture of grid computing has been thoughtfully engineered to achieve a service level virtualization: not only should a grid be a virtual machine (also known as a virtual organization, VO) of unbounded computational power and storage capacity, but also should the virtual machine be serviceable in all circumstances independent from serviceability of any of its component. At present, a grid VO as a result of service level virtualization only is more or less confined to participants from scientific computing communities, i.e., can have a limited scale. It is widely agreed that for a grid to pool resources of truly unbounded scale, commercial enterprises and in particular server-abundant financial institutions, should also “go for the grid,” i.e., open up their servers for being used by grid VO constructions. We believed that it is today's inadequate strength of the grid security practice that is the major hurdle to prevent commercial organizations from serving and participating the grid. This article presents the work of Daonity which is our attempt to strengthening grid security. We identify that a security service which we name behavior conformity be desirable for grid computing. Behavior conformity for grid computing is an assurance that ad hoc related principals (users, platforms or instruments) forming a grid VO must each act in conformity with the rules for the VO constitution. We apply trusted computing technologies to achieve two levels of virtualization: resource virtualization and platform virtualization. The former is about behavior conformity in a grid VO and the latter, that in an operating system. With these two levels of virtualization working together it is possible to build a grid of truly unbounded scale by VO including servers from commercial organizations.

Haibo Chen; Jieyun Chen; Wenbo Mao; Fei Yan

2007-01-01T23:59:59.000Z

455

A Virtual Test Facility for the Simulation of Dynamic Response in Materials  

Science Journals Connector (OSTI)

The Center for Simulating Dynamic Response of Materials at the California Institute of Technology is constructing a virtual shock physics facility for studying the response of various target materials to very strong shocks. The Virtual Test Facility ... Keywords: parallel computing, shock physics simulation

Julian Cummings; Michael Aivazis; Ravi Samtaney; Raul Radovitzky; Sean Mauch; Dan Meiron

2002-08-01T23:59:59.000Z

456

The Consistency of Virtual Organizations Enabling Capabilities and Improvements in Knowledge Management Performance  

Science Journals Connector (OSTI)

The success of a virtual organization VO largely depends on the effective collaboration of its members in orchestrating their knowledge, skills, core competences and resources. It enables the VOs to enhance competitive capabilities and respond better ... Keywords: Contingency Theory, Enabling Capabilities, Information and Communication Technology, Knowledge Management, Knowledge Management Performance KMP, Virtual Organization VO

Ali Moeini; Alireza Farmahini Farahani; Ahad Zare Ravasan

2013-04-01T23:59:59.000Z

457

The Round Earth Project: Deep Learning in a Collaborative Virtual World  

E-Print Network [OSTI]

The Round Earth Project: Deep Learning in a Collaborative Virtual World Andrew Johnson, Thomas Earth Project is investigating how virtual re- ality technology can be used to help teach concepts that the Earth is spherical when their everyday experiences tell them it is at. 1 Introduction The concept

Johnson, Andrew

458

Using Virtual Organizations Membership System with EDG's Grid Security and Database Access  

E-Print Network [OSTI]

Using Virtual Organizations Membership System with EDG's Grid Security and Database Access Marko University of Technology March 17, 2004 Keywords: Grid security, virtual organizations, Grid use case. This paper describes the European Data Grid's (EDG's) java security system and Spitfire database access

Haak, Hein

459

A multi-agent based infrastructure to support virtual communities in elderly care  

Science Journals Connector (OSTI)

The growing numbers of the elderly population impose an urgent need to develop new approaches to care provision. The convergence of a number of technologies such as multi-agent systems, federated information management, safe communications, hypermedia ... Keywords: agent-based systems, care provision, care services, elderly care support, elderly population, federated information management, multi-agent systems, virtual community, virtual organisation

Luis M. Camarinha-Matos; Hamideh Afsarmanesh

2004-10-01T23:59:59.000Z

460

Transferring Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transferring Data Transferring Data to and from NERSC Yushu Yao 1 Tuesday, March 8, 2011 Overview 2 * Structure of NERSC Systems and Disks * Data Transfer Nodes * Transfer Data from/to NERSC - scp/sftp - bbcp - GridFTP * Sharing Data Within NERSC Tuesday, March 8, 2011 Systems and Disks 3 System Hopper Franklin Carver Euclid Data Transfer Node PDSF Global Home ($HOME) Global Scratch ($GSCRATCH) Project Directory Local Non-shared Scratch Data transfer nodes can access most of the disks, suggested for transferring data in/out NERSC Tuesday, March 8, 2011 Data Transfer Nodes * Two Servers Available Now: - dtn01.nersc.gov and dtn02.nersc.gov - Accessible by all NERSC users * Designed to Transfer Data: - High speed connection to HPSS and NGF (Global Home, Project, and Global Scratch) - High speed ethernet to wide area network

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Virtual Machine in Automation Projects.  

E-Print Network [OSTI]

?? Virtual machine, as an engineering tool, has recently been introduced into automation projects in Tetra Pak Processing System AB. The goal of this paper… (more)

Xing, Xiaoyuan

2010-01-01T23:59:59.000Z

462

Stereo Panorama Personal Virtual Environment  

Science Journals Connector (OSTI)

We describe a personal panoramic virtual environment system with an autostereoscopic display. We discuss swing panoramic image capture, automatic disparity control, spatial sampling,...

Wang, Chiao; Garagate, Jui; Sawchuk, Alexander A

463

Students Share Experiences from First Run of BioenergizeME Virtual Science Fair  

Broader source: Energy.gov [DOE]

Last week concluded the beta run of the Bioenergy Technologies Office (BETO) sponsored BioenergizeME Virtual Science Fair—a high school competition that has students create and share infographics about bioenergy concepts.

464

A Decade of Increased Oil Recovery in Virtual Reality  

Science Journals Connector (OSTI)

In the early '90s, VR was still in its infancy, but the Norwegian oil company Norsk Hydro saw the technology's potential. Still, there was no framework for developing VR for exploration and production. Working with the Norwegian research institute Christian ... Keywords: virtual reality, petroleum industry, oil exploration and production

Endre M. Lidal; Tor Langeland; Christopher Giertsen; Jens Grimsgaard; Rolf Helland

2007-11-01T23:59:59.000Z

465

Virtual Cloud: Rent Out the Rented Resources Sheheryar Malik  

E-Print Network [OSTI]

Virtual Cloud: Rent Out the Rented Resources Sheheryar Malik Research Team OASIS INRIA Sophia.huet@inria.fr Abstract--With the advent in cloud computing technologies, use of cloud computing infrastructure to the cloud infrastructure. Over a small period of time, it has substantiated to be an attractive choice

Boyer, Edmond

466

Preparing for Transfer Biological Engineering  

E-Print Network [OSTI]

Environmental Engineering Game Design Industrial Systems & Information Technology Information Science MaterialsPreparing for Transfer Majors: Biological Engineering Chemical Engineering Civil Engineering Computer Science Electrical & Computer Engineering Engineering Physics Environmental Engineering

Walter, M.Todd

467

Virtual stationary timed automata for mobile networks  

E-Print Network [OSTI]

In this thesis, we formally define a programming abstraction for mobile networks called the Virtual Stationary Automata programming layer, consisting of real mobile clients, virtual timed I/O automata called virtual ...

Nolte, Tina Ann, 1979-

2009-01-01T23:59:59.000Z

468

Uncertainty and Virtual Particles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Incertidumbre y partículas virtuales Incertidumbre y partículas virtuales Volver Principal ESTOY PERDIDO!!! El principio de incerteza de Heisenberg: En 1927, Heisenberg enunció una propiedad fundamental de la mecánica cuántica que dice que es imposible medir EN FORMA EXACTA AMBOS, la posición de una partícula y su ímpetu. Cuanto mayor sea la precisión con que determinamos una, menos sabremos de la otra. Este es el llamado Principio de incerteza de Heisenberg. La relación matemática que lo expresa es: Significa que la incertidumbre en la posición (x), multiplicada por la incertidumbre en el momento (p), es mayor o igual que una constante (h-barra dividido por dos.) Este principio puede también ser escrito en términos de energía y tiempo: Significa que la incertidumbre en la energía de una partícula

469

Virtual Optical Comparator  

SciTech Connect (OSTI)

The Virtual Optical Comparator, VOC, was conceived as a result of the limitations of conventional optical comparators and vision systems. Piece part designs for mechanisms have started to include precision features on the face of parts that must be viewed using a reflected image rather than a profile shadow. The VOC concept uses a computer generated overlay and a digital camera to measure features on a video screen. The advantage of this system is superior edge detection compared to traditional systems. No vinyl charts are procured or inspected. The part size and expensive fixtures are no longer a concern because of the range of the X-Y table of the Virtual Optical Comparator. Product redesigns require only changes to the CAD image overlays; new vinyl charts are not required. The inspection process is more ergonomic by allowing the operator to view the part sitting at a desk rather than standing over a 30 inch screen. The procurement cost for the VOC will be less than a traditional comparator with a much smaller footprint with less maintenance and energy requirements.

Thompson, Greg

2008-10-20T23:59:59.000Z

470

Virtual university-oriented cooperative mobile agent middleware  

Science Journals Connector (OSTI)

The autonomy, cooperativity, intelligence and mobility of mobile agents make them overcome the weakness of the traditional distributed computation mode of C/S and B/S, and bring new innovative solutions to the collaborative teaching, collaborative learning and collaborative management in virtual universities. However, nowadays most of the research in mobile agent technology in terms of the Virtual University is mostly focused on a certain application for some particular users. As a result, these researches do not provide an effective control mechanism for the universal management of multiapplication agents that work for the multiusers with multicharacters. This has prevented the implementation and promulgation of agent technology in virtual universities. As far as such insufficiency is concerned, this paper demonstrates its own solution. In this paper, a Virtual University-Oriented cooperative Mobile Agent Middleware (VUMAM) and a Virtual University framework based on VUMAM are designed. In addition, the paper discusses the assignment of agent characters and function, agent naming, the control mechanism of cooperative agents and the extendability of VUMAM.

Wenqing Peng; Yuanming Luo

2006-01-01T23:59:59.000Z

471

Available Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 News Stories (and older) 6 News Stories (and older) 12.21.2005___________________________________________________________________ Genzyme acquires gene therapy technology invented at Berkeley Lab. Read more here. 07.19.2005 _________________________________________________________________ Symyx, a start up company using Berkeley Lab combinatorial chemistry technology licensed by the Technology Transfer Department and developed by Peter Schultz and colleagues in the Materials Sciences Division, will be honored with Frost & Sullivan's 2005 Technology Leadership Award at their Excellence in Emerging Technologies Awards Banquet for developing enabling technologies and methods to aid better, faster and more efficient R&D. Read more here. 07.11.2005 _________________________________________________________________ Nanosys, Inc., a Berkeley Lab startup, is among the solar nanotech companies investors along Sand Hill Road in Menlo Park hope that thinking small will translate into big profits. Read more here.

472

Engineering Virtualized Services Elvira Albert  

E-Print Network [OSTI]

Engineering Virtualized Services Elvira Albert Complutense University of Madrid, Spain elvira project FP7-610582 ENVISAGE: Engineering Virtualized Services (http://www.envisage-project.eu). level of an application-level service at the expense of potentially changing its cost profile. In traditional engineering

Johnsen, Einar Broch

473

Vehicle Technologies Office: Budget | Department of Energy  

Energy Savers [EERE]

funding does not include Small Business Innovation Research and Small Business Technology Transfer Programs. For more information on the Vehicle Technologies Office's Fiscal Year...

474

Technologies | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

You may also want to refer to our list of helpful resources for the technology transfer process. For additional information, contact the Office of Technology Commercialization...

475

Sandia National Laboratories: Fuel Cell Technologies Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Technologies Office Federal Laboratory Consortium Regional Technology-Transfer Awards Salute Innovation, Commercialization at Sandia On September 23, 2014, in...

476

Vehicle Technologies Office: 2008 Advanced Power Electronics...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies An integrated approach towards efficient, scalable, and low...

477

Biofuel technology at Argonne | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-Site environmental protection --Site waste management -Site sustainability --Site pollution prevention Operations -Business diversity -Technology transfer -Procurement -Human...

478

Unlocking Customer Value: The Virtual Power Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant The utility world has changed drastically in the last 10 years. New technologies like Smart Meters and fully functional Smart Grid concepts have made large inroads into the utility space and no one should want to be left behind. Utilities also face additional pressures from regulatory bodies who are continuing to encourage carbon reduction and greater customer flexibility. Utilities need to balance these new requirements with the financial obligations of providing reliable power (at a reasonable price) while attempting to meet shareholder expectations. Each of these goals are not necessarily complimentary, thus utilities need to determine how to address each one.

479

Unlocking Customer Value: The Virtual Power Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant Unlocking Customer Value: The Virtual Power Plant The utility world has changed drastically in the last 10 years. New technologies like Smart Meters and fully functional Smart Grid concepts have made large inroads into the utility space and no one should want to be left behind. Utilities also face additional pressures from regulatory bodies who are continuing to encourage carbon reduction and greater customer flexibility. Utilities need to balance these new requirements with the financial obligations of providing reliable power (at a reasonable price) while attempting to meet shareholder expectations. Each of these goals are not necessarily complimentary, thus utilities need to determine how to address each one.

480

Virtual humans: back to the future  

Science Journals Connector (OSTI)

This paper essentially tries to examine all the roles that Virtual Humans can play in empowering human expression, and the research challenges we have to face to make this possible. It starts with a short history of Virtual Humans and how we contribute ... Keywords: computer animation, virtual humans, virtual reality

Nadia Magnenat Thalmann; Daniel Thalmann

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer virtual" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Building Technologies Office: Emerging Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Creating the Next Generation of Energy Efficient Technology Creating the Next Generation of Energy Efficient Technology The Emerging Technologies team partners with national laboratories, industry, and universities to advance research, development, and commercialization of energy efficient and cost effective building technologies. These partnerships help foster American ingenuity to develop cutting-edge technologies that have less than 5 years to market readiness, and contribute to the goal to reduce energy consumption by at least 50%. Sandia Cooler's innovative, compact design combines a fan and a finned metal heat sink into a single element, efficiently transferring heat in microelectronics and reducing energy use. Supporting Innovative Research to Help Reduce Energy Use and Advance Manufacturing Learn More

482

Virtual gap dielectric wall accelerator  

DOE Patents [OSTI]

A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

2013-11-05T23:59:59.000Z

483

Buried waste integrated demonstration technology integration process  

SciTech Connect (OSTI)

A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

Ferguson, J.S.; Ferguson, J.E.

1992-04-01T23:59:59.000Z

484

Buried waste integrated demonstration technology integration process  

SciTech Connect (OSTI)

A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

Ferguson, J.S.; Ferguson, J.E.

1992-04-01T23:59:59.000Z

485

Vehicle Technologies Office: Software Tools  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Software Tools Software Tools Several software programs are available, either for free or for a nominal charge, that can assist fleet managers and technology developers in assessing the potential impacts of implementing new technologies. Autonomie Autonomie is a Plug-and-Play Powertrain and Vehicle Model Architecture and Development Environment to support the rapid evaluation of new powertrain/propulsion technologies for improving fuel economy through virtual design and analysis in a math-based simulation environment. Developed in partnership with General Motors, Autonomie is an open architecture to support the rapid integration and analysis of powertrain/propulsion systems and technologies for rapid technology sorting and evaluation of fuel economy improvement under dynamic/transient testing conditions. The capability to sort technologies rapidly in a virtual design environment results in faster improvements in real-world fuel consumption by reducing the time necessary to develop and bring new technologies onto our roads.

486

Science &Technology Facilities Council  

E-Print Network [OSTI]

and Science & Technology Facilities Council invite you to The ESA Technology Transfer Network SpaceTech2012Science &Technology Facilities Council Innovations Issue 31 October 2012 This issue: 1 STFC International prize for `no needles' breast cancer diagnosis technique 6 CEOI Challenge Workshop ­ Current

487

Reti attive di distribuzione: le applicazioni Virtual Power Plant e Virtual Utility.  

E-Print Network [OSTI]

??Il presente lavoro si occupa di nuove applicazioni per la gestione e l’ottimizzazione di risorse distribuite, così dette Virtual Power Plant (VPP) o Virtual Utility… (more)

Baroncelli, Paolo

2005-01-01T23:59:59.000Z

488

Manufacturing technology  

SciTech Connect (OSTI)

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

489

The acceptance and use of a virtual learning environment in China  

Science Journals Connector (OSTI)

The success of a virtual learning environment (VLE) depends to a considerable extent on student acceptance and use of such an e-learning system. After critically assessing models of technology adoption, including the Technology Acceptance Model (TAM), ... Keywords: Adult learning, Computer-mediated communication, Distance education and telelearning, Distributed learning environments

Erik M. van Raaij; Jeroen J. L. Schepers

2008-04-01T23:59:59.000Z

490

Technology Innovation Honoring Students, Faculty, and Staff  

E-Print Network [OSTI]

2012 Technology Innovation Awards Honoring Students, Faculty, and Staff for their Dedication Portland, Oregon Sponsored by: #12;2012 Technology Innovation Awards WELCOME & AWARDS REMARKS Andrew R.O. Watson, PhD, CLP Interim Director, Technology Transfer Technology Transfer and Business Development

Chapman, Michael S.

491

Improving federal technology commercialization: Some recommendations from a field study  

Science Journals Connector (OSTI)

This study identified three distinct roles of the federal technology-transfer process in the Huntsville, Alabama region: sponsors, developers, and adopters. The basic structure of transfer barrie...

Mary S. Spann Ph.D.; Mel Adams Ph.D.…

492

A model of virtual interference  

E-Print Network [OSTI]

We set up an experiment with two independent laser beams that cross at a small angle, spatially separate, and end at detectors in front of each beam. The setup allows us to obtain maximum path or which-way information, K=1. However, when we scan a thin wire across the beam intersection the which-way information drops to K=0.985. The thin wire serves to verify the presence of an interference pattern with visibility, V=0.833, at the beam intersection. Our results appear to be in conflict with the complementarity inequality, V^2+K^2 smaller or equal to 1. We introduce a model that describes a virtual interference pattern. We resolve our paradoxical findings by proposing that the complementarity inequality does not apply to virtual interference patterns but only to physically real ones. We find that the interference pattern in our setup is virtual.

Flores, Eduardo V; Scaturro, Jeffrey

2014-01-01T23:59:59.000Z

493

Frame Heat Transfer Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Developing Low-Conductance Window Frames: Capabilities and Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools Arild Gustavsen 1,* , Dariush Arasteh 2 , Bjørn Petter Jelle 3,4 , Charlie Curcija 5 and Christian Kohler 2 1 Department of Architectural Design, History and Technology, Norwegian University of Science and Technology, Alfred Getz vei 3, NO-7491 Trondheim, Norway 2 Windows and Daylighting Group, Lawrence Berkeley National Laboratory, 1 Cyclotron Road Mail Stop 90R3111, Berkeley, CA 94720- 8134, USA 3 Department of Civil and Transport Engineering, Norwegian University of Science and Technology, Høgskoleringen 7A, NO-7491 Trondheim, Norway 4 Department of Building Materials and Structures, SINTEF Building and Infrastructure, Høgskoleringen 7B,NO-7465 Trondheim, Norway

494

Efficient Checkpointing of Virtual Machines using Virtual Machine Introspection  

SciTech Connect (OSTI)

Cloud Computing environments rely heavily on system-level virtualization. This is due to the inherent benefits of virtualization including fault tolerance through checkpoint/restart (C/R) mechanisms. Because clouds are the abstraction of large data centers and large data centers have a higher potential for failure, it is imperative that a C/R mechanism for such an environment provide minimal latency as well as a small checkpoint file size. Recently, there has been much research into C/R with respect to virtual machines (VM) providing excellent solutions to reduce either checkpoint latency or checkpoint file size. However, these approaches do not provide both. This paper presents a method of checkpointing VMs by utilizing virtual machine introspection (VMI). Through the usage of VMI, we are able to determine which pages of memory within the guest are used or free and are better able to reduce the amount of pages written to disk during a checkpoint. We have validated this work by using various benchmarks to measure the latency along with the checkpoint size. With respect to checkpoint file size, our approach results in file sizes within 24% or less of the actual used memory within the guest. Additionally, the checkpoint latency of our approach is up to 52% faster than KVM s default method.

Aderholdt, Ferrol [Tennessee Technological University] [Tennessee Technological University; Han, Fang [Tennessee Technological University] [Tennessee Technological University; Scott, Stephen L [ORNL] [ORNL; Naughton, III, Thomas J [ORNL

2014-01-01T23:59:59.000Z

495

Virtual articulation and kinematic abstraction in robotics  

E-Print Network [OSTI]

This thesis presents the theory, implementation, novel applications, and experimental validation of a general-purpose framework for applying virtual modifications to an articulated robot, or virtual articulations. These ...

Vona, Marsette Arthur, 1977-

2009-01-01T23:59:59.000Z

496

Construction of Matlab Circuit Analysis Virtual Laboratory  

Science Journals Connector (OSTI)

The Matlab virtual laboratory was composed of the management ... the CGI interface to link the pilot designed project  would to complete the virtual  simulation. Practice...

Shoucheng Ding

2012-01-01T23:59:59.000Z

497

A Virtual Environment Framework For Software Engineering  

E-Print Network [OSTI]

A Virtual Environment Framework For Software Engineering Stephen E. Dossick Submitted in partial Environment Framework for Software Engineering Stephen E. Dossick The field of Software Engineering, responsible for mapping project artifacts into virtual environment furnishings, and the CHIME Theme Manager

Kaiser, Gail E.

498

Instructions for Using Virtual Private Network (VPN)  

Broader source: Energy.gov [DOE]

Virtual Private Network (VPN) provides access to network drives and is recommended for use only from a EITS provided laptop.

499

VIRTUAL TRAINING CENTRE FOR SHOE DESIGN: A SAMPLE VIRTUAL TRAINING ENVIRONMENT  

E-Print Network [OSTI]

VIRTUAL TRAINING CENTRE FOR SHOE DESIGN: A SAMPLE VIRTUAL TRAINING ENVIRONMENT Aura Mihai1 , Mehmet@tex.tuiasi.ro Abstract It is a fact that virtual training has become a key issue in training. There are numerous virtual learning and training environments and, in parallel with this, there are various approaches and tools

Aristomenis, Antoniadis

500

PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES  

SciTech Connect (OSTI)

A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the US. Approximately 1300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Information System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; William Raatz; Cari Breton; Stephen C. Ruppel; Charles Kerans; Mark H. Holtz

2003-04-01T23:59:59.000Z