Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division to them in California. TECHNOLOGY TRANSFER PROGRAM MAY 2011, VOL. 3, NO. 1 California's Transition

California at Berkeley, University of

2

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division of asphalt pavements. TECHNOLOGY TRANSFER PROGRAM JULY 2010, VOL. 2, NO. 1 Warm Mix Asphalt Hits the Road, and California LTAP Field Engineer, Technology Transfer Program, Institute of Transportation Studies, UC Berkeley

California at Berkeley, University of

3

Technology Transfer Ombudsman Program | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Ombudsman Program Technology Transfer Ombudsman Program The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November...

4

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network [OSTI]

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division solve the very serious problem of waste tire disposal. TECHNOLOGY TRANSFER PROGRAM SEPTEMBER 2009, VOL, University of California Pavement Research Center, and California LTAP Field Engineer, Technology Transfer

California at Berkeley, University of

5

SHARED TECHNOLOGY TRANSFER PROGRAM  

SciTech Connect (OSTI)

The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderock unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.

GRIFFIN, JOHN M. HAUT, RICHARD C.

2008-03-07T23:59:59.000Z

6

NREL: Technology Transfer - Commercialization Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies TheState andPrograms

7

TECH TRANSFER TECHNOLOGY TRANSFER PROGRAM INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF CALIFORNIA, BERKELEY  

E-Print Network [OSTI]

TECH TRANSFER TECHNOLOGY TRANSFER PROGRAM · INSTITUTE OF TRANSPORTATION STUDIES · UNIVERSITY THURSDAY SATURDAYFRIDAYWEDNESDAYTUESDAY TECHNOLOGY TRANSFER PROGRAM · INSTITUTE OF TRANSPORTATION STUDIES's to another year of working safer and smarter. Laura Melendy Director, Technology Transfer Program #12;AUGUST

California at Berkeley, University of

8

National Aeronautics and Space Administration NASA Technology Transfer Program  

E-Print Network [OSTI]

National Aeronautics and Space Administration NASA Technology Transfer Program Bringing NASA of technology transfer that NASA maximizes the benefit of the Nation's investment in cutting-edge research technology transfer has made us confident that these solutions, while originally conceived to solve NASA

Waliser, Duane E.

9

A model technology transfer program for independent operators  

SciTech Connect (OSTI)

In August 1992, the Energy Research Center (ERC) at the University of Kansas was awarded a contract by the US Department of Energy (DOE) to develop a technology transfer regional model. This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program.

Schoeling, L.G.

1996-08-01T23:59:59.000Z

10

Technology Transfer Ombudsman Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergy Secretary ChuAsWhatThe Technology Transfer

11

A model technology transfer program for independent operators: Kansas Technology Transfer Model (KTTM)  

SciTech Connect (OSTI)

This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program. The original Tertiary Oil Recovery Project (TORP) activities, upon which the KTTM is based, were developed and tested for Kansas and have proved to be effective in assisting independent operators in utilizing technology. Through joint activities of TORP and the Kansas Geological Survey (KGS), the KTTM was developed and documented for application in other oil-producing regions. During the course of developing this model, twelve documents describing the implementation of the KTTM were developed as deliverables to DOE. These include: (1) a problem identification (PI) manual describing the format and results of six PI workshops conducted in different areas of Kansas, (2) three technology workshop participant manuals on advanced waterflooding, reservoir description, and personal computer applications, (3) three technology workshop instructor manuals which provides instructor material for all three workshops, (4) three technologies were documented as demonstration projects which included reservoir management, permeability modification, and utilization of a liquid-level acoustic measuring device, (5) a bibliography of all literature utilized in the documents, and (6) a document which describes the KTTM.

Schoeling, L.G.

1993-09-01T23:59:59.000Z

12

NREL: Technology Transfer - Commercialization Assistance Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies TheState and

13

VIEWS ON U.S. WATER RESEARCH AND TECHNOLOGY TRANSFER PROGRAMS  

E-Print Network [OSTI]

#12;VIEWS ON U.S. WATER RESEARCH AND TECHNOLOGY TRANSFER PROGRAMS By MAMADOU H. WATT, Director . . . . . . . . . . 18 5. Technology Transfer and Information Dissemination . . . . 20 5.1 Definition and Purpose. . . . . . . . . . . . . . . 20 5.2 The Process of Technology Transfer. . . . . . . . . 21 5.3 Products of Technology Transfer

District of Columbia, University of the

14

Cast Metals Coalition Technology Transfer and Program Management Final Report  

SciTech Connect (OSTI)

The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, new technologies enabling energy efficiencies and environment-friendly improvements are slow to develop, and have trouble obtaining a broad application. The CMC team was able to effectively and efficiently transfer the results of DOE's metalcasting R&D projects to industry by utilizing and delivering the numerous communication vehicles identified in the proposal. The three metalcasting technical associations achieved significant technology transition results under this program. In addition to reaching over 23,000 people per year through Modern Casting and 28,000 through Engineered Casting Solutions, AFS had 84 national publications and reached over 1,200 people annually through Cast Metals Institute (CMI) education courses. NADCA's education department reached over 1,000 people each year through their courses, in addition to reaching over 6,000 people annually through Die Casting Engineer, and publishing 58 papers. The SFSA also published 99 research papers and reached over 1,000 people annually through their member newsletters. In addition to these communication vehicles, the CMC team conducted numerous technical committee meetings, project reviews, and onsite visits. All of these efforts to distribute the latest metalcasting technologies contributed to the successful deployment of DOE's R&D projects into industry. The DOE/CMC partnership demonstrated significant success in the identification and review of relevant and easy-to-implement metalcasting energy-saving processes and technologies so that the results are quickly implemented and become general practice. The results achieved in this program demonstrate that sustained technology transfer efforts are a critical step in the deployment of R&D projects to industry.

Gwyn, Mike

2009-03-31T23:59:59.000Z

15

The Sandia National Laboratories technology transfer program for physical protection technologies  

SciTech Connect (OSTI)

As the Lead Laboratory for the Department of Energy in the field of physical security, Sandia National Laboratories has had the opportunity to collect extensive amounts of information on the technologies of physical security. Over the past 15 years, the volume of this knowledge has become so extensive that Sandia is now taking steps to make this information as available as possible to the DOE community and, where possible, other government agencies and NRC licensees. Through these technology transfer efforts, there are also programs available that allow cooperative research agreements between Sandia and the private sector as well. Six different technology transfer resources are being developed and used by the Safeguards Engineering Department: (1) tech transfer manuals; (2) SAND documents; (3) safeguards libraries; (4) training courses conferences; (5) technical assistance tours; and (6) cooperative research developments agreements (CRADAs).

Green, M.; Miyoshi, D.; Dry, B.

1990-01-01T23:59:59.000Z

16

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2007 Prepared by: National Institute to present to the President and the Congress this Federal Laboratory Technology Transfer Report summarizing the achievements of Federal technology transfer and partnering programs of the Federal research and development

Perkins, Richard A.

17

Inspection of selected issues regarding the Department`s Enhanced Technology Transfer Program  

SciTech Connect (OSTI)

An inspection was conducted to review the Department of Energy`s Enhanced Technology Transfer Program, now referred to as the Department`s Technology Transfer Program, in order to improve the effectiveness of the program and to identify issues that require management attention. Specifically, selected Departmental and Laboratory plans, policies, and procedures for implementing technology transfer activities were reviewed. Legislation, Department directives, Management and Operating contract clauses, and selected Cooperative Research and Development Agreements/Joint Work Statements were also collected and reviewed. The inspection identified four issues for management`s attention: (1) there is a lack of uniform budget guidelines for the Department`s technology transfer activities, (2) there is a lack of objectives for the Department`s Technology Transfer Program, (3) the budget and accounting information submitted to the Office of Management and Budget regarding the Department`s technology transfer activities is incomplete, and (4) there is a Department`s Technology Transfer Program. The report includes specific recommendations to address these matters.

Not Available

1994-07-01T23:59:59.000Z

18

Information systems and technology transfer programs on geothermal energy and other renewable sources of energy  

SciTech Connect (OSTI)

In order to remain competitive, it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them, is also given.

Lippmann, M.J.; Antunez, E.

1996-01-01T23:59:59.000Z

19

Information systems and technology transfer programs on geothermal energy and other renewable sources of energy  

SciTech Connect (OSTI)

In order to remain competitive it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them is also given.

Lippmann, Marcelo J.; Antunez, Emilio u.

1996-01-24T23:59:59.000Z

20

Transferring building energy technologies by linking government and private-sector programs  

SciTech Connect (OSTI)

The US Department of Energy's Office of Building Technologies (OBT) may wish to use existing networks and infrastructures wherever possible to transfer energy-efficiency technologies for buildings. The advantages of relying on already existing networks are numerous. These networks have in place mechanisms for reaching audiences interested in energy-efficiency technologies in buildings. Because staffs in trade and professional organizations and in state and local programs have responsibilities for brokering information for their members or client organizations, they are open to opportunities to improve their performance in information transfer. OBT, as an entity with primarily R D functions, is, by cooperating with other programs, spared the necessity of developing an extensive technology transfer program of its own, thus reinventing the wheel.'' Instead, OBT can minimize its investment in technology transfer by relying extensively on programs and networks already in place. OBT can work carefully with staff in other organizations to support and facilitate their efforts at information transfer and getting energy-efficiency tools and technologies into actual use. Consequently, representatives of some 22 programs and organizations were contacted, and face-to-face conversations held, to explore what the potential might be for transferring technology by linking with OBT. The briefs included in this document were derived from the discussions, the newly published Directory of Energy Efficiency Information Services for the Residential and Commercial Sectors, and other sources provided by respondents. Each brief has been sent to persons contacted for their review and comment one or more times, and each has been revised to reflect the review comments.

Farhar, B.C.

1990-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Technology transfer 1994  

SciTech Connect (OSTI)

This document, Technology Transfer 94, is intended to communicate that there are many opportunities available to US industry and academic institutions to work with DOE and its laboratories and facilities in the vital activity of improving technology transfer to meet national needs. It has seven major sections: Introduction, Technology Transfer Activities, Access to Laboratories and Facilities, Laboratories and Facilities, DOE Office, Technologies, and an Index. Technology Transfer Activities highlights DOE`s recent developments in technology transfer and describes plans for the future. Access to Laboratories and Facilities describes the many avenues for cooperative interaction between DOE laboratories or facilities and industry, academia, and other government agencies. Laboratories and Facilities profiles the DOE laboratories and facilities involved in technology transfer and presents information on their missions, programs, expertise, facilities, and equipment, along with data on whom to contact for additional information on technology transfer. DOE Offices summarizes the major research and development programs within DOE. It also contains information on how to access DOE scientific and technical information. Technologies provides descriptions of some of the new technologies developed at DOE laboratories and facilities.

Not Available

1994-01-01T23:59:59.000Z

22

INL Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Through collaboration with industry partners, INL's Technology Deployment office makes available to American agencies and international organizations unique...

23

A technology transfer plan for the US Department of Energy's Electric Energy Systems Program  

SciTech Connect (OSTI)

The major objective of this study was to develop a technology transfer plan that would be both practical and effective in promoting the transfer of the products of DOE/EES research to appropriate target audiences. The study drew upon several major components of the marketing process in developing this plan: definition/charcterization of the products being produced by the DOE/EES program, identification/characterization of possible users of the products being produced by the program, and documentation/analysis of the methods currently being used to promote the adoption of DOE/EES products. Fields covered include HVDC, new materials, superconductors, electric field effects, EMP impacts, battery storage/load leveling, automation/processing concepts, normal/emergency operating concepts, Hawaii deep water cable, and failure mechanisms.

Harrer, B.J.; Hurwitch, J.W.; Davis, L.J.

1986-11-01T23:59:59.000Z

24

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2008 Prepared by: National Institute to submit this fiscal year 2008 Technology Transfer Summary Report to the President and the Congress transfer authorities established by the Technology Transfer Commercialization Act of 2000 (P.L. 106

Perkins, Richard A.

25

Technology Transfer Office FY2011 Annual Report  

E-Print Network [OSTI]

Technology Transfer Office FY2011 Annual Report #12;TECHNOLOGY TRANSFER ADVISORY COMMITTEES The UC San Diego Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the university? s technology transfer program. This standing committee is appointed by the chancellor

Hasty, Jeff

26

Technology Transfer office 2008 Annual Report  

E-Print Network [OSTI]

Technology Transfer office 2008 Annual Report #12;The UC San Diego Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the university's technology transfer program. It meets periodically to assess UC San Diego's technology transfer practices and guides the overall

Fainman, Yeshaiahu

27

Technology Transfer and Intellectual Property Services  

E-Print Network [OSTI]

Technology Transfer and Intellectual Property Services B I E N N I A L R E P O R T 03­04 #12;University of California, San Diego Technology Transfer Advisory Committee The UCSD Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the UCSD Technology Transfer Program

Fainman, Yeshaiahu

28

Technology Transfer Reports  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer Initiatives USEFUL LINKS Association of University Technology Managers (AUTM) Federal Laboratory...

29

Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Federal Laboratory Technology Transfer Fiscal Year 2009 Prepared by: National Institute to submit this fiscal year 2009 Technology Transfer Summary Report to the President and the Congress in accordance with 15 USC Sec 3710(g)(2) for an annual summary on the implementation of technology transfer

Perkins, Richard A.

30

Geo energy research and development: technology transfer  

SciTech Connect (OSTI)

Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

Traeger, R.K.

1982-03-01T23:59:59.000Z

31

Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.  

SciTech Connect (OSTI)

Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

2007-01-01T23:59:59.000Z

32

Entrepreneurial separation to transfer technology.  

SciTech Connect (OSTI)

Entrepreneurial separation to transfer technology (ESTT) program is that entrepreneurs terminate their employment with Sandia. The term of the separation is two years with the option to request a third year. Entrepreneurs are guaranteed reinstatement by Sandia if they return before ESTT expiration. Participants may start up or helpe expand technology businesses.

Fairbanks, Richard R.

2010-09-01T23:59:59.000Z

33

Technology Application Centers: Facilitating Technology Transfer  

E-Print Network [OSTI]

transfer plus technology application. A&C Enercom has learned from experience that technology deployment will not occur unless utilities achieve both technology transfer (e.g, the dissemination of information) and technology application (e.g., the direct...

Kuhel, G. J.

34

Technology Transfer Office November 2009  

E-Print Network [OSTI]

Technology Transfer Office November 2009 INVENTION AGREEMENT In consideration of my employment in writing to Dartmouth through the Technology Transfer Office any such discovery or invention and identify

Myers, Lawrence C.

35

Technology transfer @ VUB Hugo Loosvelt  

E-Print Network [OSTI]

13/12/2012 Technology transfer @ VUB Hugo Loosvelt #12;VUB in Brussels www.vub.ac.be including or conclude licensing contracts #12;Technology transfer TTI assists academics to realise knowledge transfer by needed for R&D collaboration, licensing and spin-out company formation Technology transfer is the process

Steels, Luc

36

Ames Lab 101: Technology Transfer  

ScienceCinema (OSTI)

Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

Covey, Debra

2012-08-29T23:59:59.000Z

37

Ames Lab 101: Technology Transfer  

SciTech Connect (OSTI)

Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

Covey, Debra

2010-01-01T23:59:59.000Z

38

VOLUNTARY LEAVE TRANSFER PROGRAM  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

VOLUNTARY LEAVE TRANSFER PROGRAM LIST Name Organization Fairbanks, Mary H. AU Garnett-Harris, Deborah A. AU James, Debra A. AU Johnston, Robyne AU May, Melanie P. AU Pickens,...

39

Technology transfer 1995  

SciTech Connect (OSTI)

Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

Not Available

1995-01-01T23:59:59.000Z

40

NREL: Technology Transfer - Ombuds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNicheTechnology Transfer Ombuds

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary stent is a small,...

42

NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Basic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basic Immobilized Amine Sorbent (BIAS) Process Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Capturing carbon dioxide (CO 2 ) from the flue or...

43

Geothermal R&D Program Technology Transfer Outlook, FY-85 through FY-1989  

SciTech Connect (OSTI)

This is an internal DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form. (DJE - 2005)

None

1986-03-01T23:59:59.000Z

44

Hydropower Program Technology Overview  

SciTech Connect (OSTI)

New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

Not Available

2001-10-01T23:59:59.000Z

45

Technology Transfer Overview | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technology Transfer Overview Technology Transfer Overview Through strategic investments in science and technology, the U.S. Department of Energy (DOE) helps power and secure...

46

Technology Transfer Expansion Planned UTCA is conducting a major project  

E-Print Network [OSTI]

Technology Transfer Expansion Planned UTCA is conducting a major project to evaluate and extend its technology transfer activities (UTCA project 03217). Steven Jones and David Eckhoff of UAB are working to expand the current technology transfer program to showcase the successes of the UTCA projects. Samples

Carver, Jeffrey C.

47

Targeted Technology Transfer to US Independents  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

Donald F. Duttlinger; E. Lance Cole

2006-09-29T23:59:59.000Z

48

INTRODUCTION TO THE TECHNOLOGY TRANSFER OFFICE The Technology Transfer Office directly contributes to the three-pronged mission of Dartmouth  

E-Print Network [OSTI]

contributes to the three-pronged mission of Dartmouth College: teaching, research and public service setting. The Technology Transfer Office provides public service by transferring technologies to industry Business Innovation Research (SBIR), Small Business Technology Transfer program (STTR), and New Hampshire

49

Summary Report on Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Summary Report on Federal Laboratory Technology Transfer Agency Approaches; FY 2001 Activity Metrics and Outcomes 2002 Report to the President and the Congress under the Technology Transfer: FEDERAL LAB TECHNOLOGY TRANSFER TABLE OF CONTENTS LIST OF FIGURES AND TABLES

Perkins, Richard A.

51

A planning framework for transferring building energy technologies: Executive Summary  

SciTech Connect (OSTI)

Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report summarizes some of the key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (the full report is published under SERI number TP-260-3729). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes in summary these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some example technology transfer activities; and summarizes the Advisory Group's recommendations.

Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

1990-08-01T23:59:59.000Z

52

A planning framework for transferring building energy technologies  

SciTech Connect (OSTI)

Accelerating the adoption of new and existing cost-effective technologies has significant potential to reduce the energy consumed in US buildings. This report presents key results of an interlaboratory technology transfer planning effort in support of the US Department of Energy's Office of Building Technologies (OBT). A guiding assumption for planning was that OBT's R D program should forge linkages with existing programs whose goals involved enhancing energy efficiency in buildings. An ad hoc Technology Transfer Advisory Group reviewed the existing analysis and technology transfer program, brainstormed technology transfer approaches, interviewed DOE program managers, identified applicable research results, and developed a framework that management could use in deciding on the best investments of technology transfer resources. Representatives of 22 organizations were interviewed on their views of the potential for transferring energy efficiency technologies through active linking with OBT. The report describes these programs and interview results; outlines OBT tools, technologies, and practices to be transferred; defines OBT audiences; identifies technology transfer functions and presents a framework devised using functions and audiences; presents some 60 example technology transfer activities; and documents the Advisory Group's recommendations. 37 refs., 3 figs., 12 tabs.

Farhar, B C; Brown, M A; Mohler, B L; Wilde, M; Abel, F H

1990-07-01T23:59:59.000Z

53

USDOE Technology Transfer, Working with DOE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment SBIRSTTR - Small Business Innovation Research and Small Business Technology Transfer Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer...

54

Technology Transfer for Brownfields Redevelopment Project | Department...  

Broader source: Energy.gov (indexed) [DOE]

Technology Transfer for Brownfields Redevelopment Project Technology Transfer for Brownfields Redevelopment Project The U.S. Department of Energy has provided six computers to...

55

Successfully transfer HPI proprietary technology  

SciTech Connect (OSTI)

Intellectual property such as petrochemical/refining licensed technologies are revenue generators for many operating and E/C companies. Successful transfers of available technologies involve many critical elements beyond the basic design engineering stages. Buyers and sellers both have obligations to the licensing agreements. These obligations will vary widely as to the clients` needs and strengths, especially for facilities to be constructed in developing areas. Using the author`s guidelines can streamline new technology evaluations and acquisitions.

Hassan, N. [BE and K, Newark, DE (United States)

1997-02-01T23:59:59.000Z

56

New Technology Demonstration Program  

E-Print Network [OSTI]

New Technology Demonstration Program Technical Brief FEMPFederal Energy Management Program Tom for saving energy in refrigerated walk-in coolers, and to evaluate the potential for this technology in Federal facilities. The focus of this study was on a single manufacturer of the technology, Nevada Energy

57

Technology Transfer and Commercialization Annual Report 2008  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) is a Department of Energy (DOE) multi-program national laboratory that conducts research and development in all DOE mission areas. Like all other federal laboratories, INL has a statutory, technology transfer mission to make its capabilities and technologies available to all federal agencies, to state and local governments, and to universities and industry. To fulfill this mission, INL encourages its scientific, engineering, and technical staff to disclose new inventions and creations to ensure the resulting intellectual property is captured, protected, and made available to others who might benefit from it. As part of the mission, intellectual property is licensed to industrial partners for commercialization, creating jobs and delivering the benefits of federally funded technology to consumers. In other cases, unique capabilities are made available to other federal agencies or to regional small businesses to solve specific technical challenges. In other interactions, INL employees work cooperatively with researchers and other technical staff of our partners to further develop emerging technologies. This report is a catalog of selected INL technology transfer and commercialization transactions during this past year. The size and diversity of INL technical resources, coupled with the large number of relationships with other organizations, virtually ensures that a report of this nature will fail to capture all interactions. Recognizing this limitation, this report focuses on transactions that are specifically authorized by technology transfer legislation (and corresponding contractual provisions) or involve the transfer of legal rights to technology to other parties. This report was compiled from primary records, which were readily available to the INLs Office of Technology Transfer & Commercialization. The accomplishments cataloged in the report, however, reflect the achievements and creativity of the highly skilled researchers, technicians, support staff, and operators of the INL workforce. Their achievements and recognized capabilities are what make the accomplishments cataloged here possible. Without them, none of these transactions would occur.

Michelle R. Blacker

2008-12-01T23:59:59.000Z

58

Technology Transfer Plan  

SciTech Connect (OSTI)

BPF developed the concept of a mobile, on-site NORM remediation and disposal process in late 1993. Working with Conoco and receiving encouragement born the Department of Energy, Metarie Office, and the Texas Railroad Commission the corporation conducted extensive feasibility studies on an on-site disposal concept. In May 1994, the Department of Energy issued a solicitation for cooperative agreement proposal for, "Development and Testing of a Method for Treatment and Underground Disposal of Naturally Occurring Radioactive Materials (NORM)". BPF submitted a proposal to the solicitation in July 1994, and was awarded a cooperative agreement in September 1995. BPF proposed and believed that proven equipment and technology could be incorporated in to a mobile system. The system would allow BPF to demonstrate an environmentally sound and commercially affordable method for treatment and underground disposal of NORM. The key stop in the BPF process incorporates injection of the dissolved radioactive materials into a water injection or disposal well. Disposal costs in the BPF proposal of July 1995 were projected to range from $1000 to $5000 per cubic yard. The process included four separate steps. (1) De-oiling (2) Volume Reduction (3) Chemical Dissolution of the Radium (4) Injection

None

1998-12-31T23:59:59.000Z

59

Technology Transfer and Intellectual Property Services  

E-Print Network [OSTI]

Technology Transfer and Intellectual Property Services 2005 A n n u a l R e p o r t #12;The UCSD Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the UCSD Technology chancellor of Research. It meets periodically to assess UCSD technology transfer policy and guide

Fainman, Yeshaiahu

60

An Inventor's Guide to Technology Transfer  

E-Print Network [OSTI]

An Inventor's Guide to Technology Transfer at the Massachusetts Institute of Technology on the University of Michigan's "Inventor's Guide to Technology Transfer," with adaptations for MIT and the MIT of Technology Transfer for their kind permission to use their excellent material and to the University

Reuter, Martin

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

MHD Technology Transfer, Integration and Review Committee  

SciTech Connect (OSTI)

This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.

Not Available

1992-01-01T23:59:59.000Z

62

MHD Technology Transfer, Integration and Review Committee  

SciTech Connect (OSTI)

As part of the MHD Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The Charter of the TTIRC, which was approved by the DOE in June 1988 and distributed to the committee members, is included as part of this Summary. As stated in the Charter, the purpose of this committee is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the US MHD Program. The DOE fiscal year 1989 MHD Program Plan Schedule is included at the end of this Summary. The MHD Technology Transfer, Integration and Review Committee's activities to date have focused primarily on the technology transfer'' aspects of its charter. It has provided a forum for the dissemination of technical and programmatic information among workers in the field of MHD and to the potential end users, the utilities, by holding semi-annual meetings. The committee publishes this semi-annual report, which presents in Sections 2 through 11 capsule summaries of technical progress for all DOE Proof-of-Concept MHD contracts and major test facilities.

Not Available

1989-10-01T23:59:59.000Z

63

Geo energy research and development: technology transfer update  

SciTech Connect (OSTI)

Sandia Geo Energy Programs in geothermal, coal, oil and gas, and synfuel technologies have been effective in transferring research concepts to applications in private industry. This report updates the previous summary (SAND82-0211, March 1982) to include recent technology transfers and to reflect recent changes in philosophy on technology transfer. Over 40 items transferred to industry have been identified in the areas of Hardware, Risk Removal and Understanding. Successful transfer is due largely to personal interactions between Sandia engineers and the technical staffs of private industry.

Traeger, R.K.; Dugan, V.L.

1983-01-01T23:59:59.000Z

64

Technology Transfer award funding data* Figure 1. Current Technology Transfer awards  

E-Print Network [OSTI]

6 1 4 3 48 23 30 10 Technology Transfer award funding data* Figure 1. Current Technology Transfer awards Numbers represent active grants as at 1 October 2013 Figure 2. Technology Transfer award Transfer funding division. In the 2012/13 financial year Technology Transfer approved awards worth a total

Rambaut, Andrew

65

Technology Innovation Program 2010ANNUAL REPORT  

E-Print Network [OSTI]

Technology Innovation Program 2010ANNUAL REPORT 2010ANNUAL REPORT Technology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology Innovation ProgramTechnology

66

Attn Technology Transfer Questions.txt - Notepad  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Attn Technology Transfer Questions.txt From: eschaput esandc@prodigy.net Sent: Monday, January 26, 2009 10:31 PM To: GC-62 Subject: Attn: Technology Transfer Questions We have...

67

Spin-out Company Portfolio Technology Transfer  

E-Print Network [OSTI]

Spin-out Company Portfolio 2012 Technology Transfer The Sir Colin Campbell Building The University `Entrepreneurial University of the Year' in 2008. The Technology Transfer Office (TTO) has close links detail. Dr Susan Huxtable Director, Technology Transfer Tel: +44 (0)115 84 66388 Email: susan

Aickelin, Uwe

68

Frequently Asked Questions 1. Technology Transfer  

E-Print Network [OSTI]

Frequently Asked Questions 1. Technology Transfer 2. Patent 3. Requirements for obtaining a patent is not addressed, please contact Colleen Michael at 631-344 -4919. #12;What is Technology Transfer? Technology Transfer is the process of developing practical applications for the results of scientific research

69

Bidirectional Technology Transfer: Sabbaticals in Industry  

E-Print Network [OSTI]

Bidirectional Technology Transfer: Sabbaticals in Industry Mark D. Hill University of Wisconsin---not just technology transfer---through a ten­month sabbatical in an industrial product group. I advocate product group. The next sections discuss technology transfer, my recent sabbatical, and conclude

Hill, Mark D.

70

Requirements Engineering Technology Transfer: An Experience Report  

E-Print Network [OSTI]

Requirements Engineering Technology Transfer: An Experience Report Francisco A. C. Pinheiro1 Julio of software engineering technology transfer was identified by Pfleeger (1999). She came to the con- clusion Journal of Technology Transfer, 28, 159­165, 2003 ©2003 Kluwer Academic Publishers. Manufactured

Leite, Julio Cesar Sampaio do Prado

71

Technology Transfer at Penn State University  

E-Print Network [OSTI]

Technology Transfer at Penn State University An Inventor's Guide to #12;Our mission is to protect on the University of Michigan's "Inventor's Guide to Technology Transfer," with adaptation for Penn State, and the staff of the UM Office of Technology Transfer for their kind permission to use their excellent material

Lee, Dongwon

72

Summary Report on Federal Laboratory Technology Transfer  

E-Print Network [OSTI]

Summary Report on Federal Laboratory Technology Transfer FY 2003 Activity Metrics and Outcomes 2004 Report to the President and the Congress under the Technology Transfer and Commercialization Act Office Chapter 2. Trends in Federal Lab Technology Transfer 2.1 Cooperative Research and Development

Perkins, Richard A.

73

Technology Transfer from the University of Oxford  

E-Print Network [OSTI]

Technology Transfer from the University of Oxford www.isis-innovation.com #12;Isis Innovation Ltd Oxford Technology Transfer IP, Patents, Licences, Spin-outs, Material Sales, Seed Funds, Isis Angels Network Oxford Expertise Consulting, Services Isis Consulting Business Technology Transfer and Innovation

Paxton, Anthony T.

74

Research and Technology Transfer Faculty Conference  

E-Print Network [OSTI]

Research and Technology Transfer Faculty Conference August 18th 2014 Bruce D. Honeyman Office of the VPRTT #12;Role of the Office of the Vice President for Research and Technology Transfer · `The role Poate. · Support Mines' Strategic Plan Office of the Vice President of Research and Technology Transfer

75

WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY?  

E-Print Network [OSTI]

1 WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY? A Comparison with Biotech, where technology transfer and knowledge-bridging will play a pivotal role in the industrial dynamics of the microelectronics sector. Keywords. Nanotechnology ­ biotechnology ­ microelectronics ­ technology transfer

Paris-Sud XI, Université de

76

Trinity Technology Transfer News December 2012  

E-Print Network [OSTI]

Trinity Technology Transfer News December 2012 SRS was set up by Dr Paul Sutton and Prof Linda licensing fees. Dr. Margaret Woods | Technology Transfer Manager mjwoods@tcd.ie Ms. Audrey Crosbie;Trinity Technology Transfer News December 2012 Trinity Campus Company Funding Round EmpowerTheUser (www

O'Mahony, Donal E.

77

Small Business Innovation Research and Small Business Technology Transfer  

Broader source: Energy.gov [DOE]

The DOE Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs are highly competitive opportunities that encourage U.S.-based small businesses to engage in...

78

NREL: Technology Transfer - Technologies Available for Licensing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNicheTechnology Transfer

79

Molecular Science and Technology (MST) Program The Taiwan International Graduate Program (TIGP), Academia Sinica  

E-Print Network [OSTI]

Molecular Science and Technology (MST) Program The Taiwan International Graduate Program (TIGP Science and Technology (MST) graduate program: (1) Chemical dynamics and molecular spectroscopy, and transient species, and covers mechanisms involved in photodissociation, reactive scattering, energy transfer

80

Climate Change: A Challenge to the Means of Technology Transfer  

E-Print Network [OSTI]

TO THE MEANS OF TECHNOLOGY TRANSFER Gordon J. MacDonaldthe importance of technology transfer in dealing withthe discussion of technology transfer has centered on

MacDonald, Gordon J. F.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Intellectual Property Protection and Technology Transfer: Evidence From US Multinationals  

E-Print Network [OSTI]

International Technology Transfer? Empirical Evidence FromProtection and Technology Transfer: Evidence from USProperty Protection and Technology Transfer Evidence from US

Kanwar, Sunil

2007-01-01T23:59:59.000Z

82

Guidance for Preparing Annual Agency Technology Transfer Reports Under the Technology Transfer Commercialization Act  

E-Print Network [OSTI]

Guidance for Preparing Annual Agency Technology Transfer Reports Under the Technology Transfer U.S. Department of Commerce in conjunction with The Interagency Working Group on Technology Transfer May 2013 #12;2 Introduction Under the Technology Transfer Commercialization Act of 2000 (P.L. 106

83

Data analysis, analytical support, and technology transfer support for the Federal Energy Management Program Office of Conservation and Renewable Energy Department of Energy. Final technical report, August 8, 1987--August 7, 1992  

SciTech Connect (OSTI)

Activities included the collecting, reporting, and analysis of Federal energy usage and cost data; development of program guidance and policy analysis of Federal energy usage and cost data; development of program guidance and policy analysis; inter-agency liaison; promotion of energy efficiency initiatives; and extensive technology transfer and outreach activities.

Tremper, C.

1992-12-31T23:59:59.000Z

84

TECHNOLOGY PROGRAM PLAN  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOLID OXIDE FUEL CELLS U.S. DEPARTMENT OF ENERGY TECHNOLOGY PROGRAM PLAN PREFACE ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United...

85

SMU Geothermal Conference 2011 - Geothermal Technologies Program...  

Energy Savers [EERE]

SMU Geothermal Conference 2011 - Geothermal Technologies Program SMU Geothermal Conference 2011 - Geothermal Technologies Program DOE Geothermal Technologies Program presentation...

86

Building Technologies Program | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Technologies Program SHARE Building Technologies Program The Building Technologies Program Office administratively facilitates the integration of ORNL research across...

87

Technology Assistance Program | Partnerships | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assistance Program SHARE Technology Assistance Program Electronics Research Assistance is available for small business licensees of ORNL technologies to leverage ORNL's expertise...

88

TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised of American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during FY04. Activities remained at high levels. Board and staff interaction has defined strategic thrusts to further outreach. Networking, involvement in technical activities and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom line information stimulates cooperative ventures with other organizations. Efforts to build the contact database and a growing E-mail Technology Alert service are expanding PTTC's audience.

Donald F. Duttlinger; E. Lance Cole

2005-01-01T23:59:59.000Z

89

Ft Scott Community College Transfer Program to University of Kansas  

E-Print Network [OSTI]

461 Probability & Statistics (Computer Engineering & Electrical Engineering)) 3 No Equivalent BASIC & Computer Science (Computer Engineering, Computer Science, Electrical Engineering, Information TechnologyFt Scott Community College Transfer Program to University of Kansas B.S. Electrical Engineering

90

Technology Innovation Program Advisory Board  

E-Print Network [OSTI]

Technology Innovation Program Advisory Board 2009 Annual Report of the #12;2009 Annual Report of the Technology Innovation Program Advisory Board U.S. Department of Commerce National Institute of Standards and Technology Technology Innovation Program February 2010 #12;For Information regarding the Technology

Magee, Joseph W.

91

International technology transfer, firm productivity and employment.  

E-Print Network [OSTI]

??This dissertation contributes to the empirical literature on the effects of international technology transfer on firms' productivity and employment in developing and transition countries. It (more)

Pantea, Smaranda

2012-01-01T23:59:59.000Z

92

Transfer of hot dry rock technology  

SciTech Connect (OSTI)

The Hot Dry Rock Geothermal Energy Development Program has focused worldwide attention on the facts that natural heat in the upper part of the earth's crust is an essentially inexhaustible energy resource which is accessible almost everywhere, and that practical means now exist to extract useful heat from the hot rock and bring it to the earth's surface for beneficial use. The Hot Dry Rock Program has successfully constructed and operated a prototype hot, dry rock energy system that produced heat at the temperatures and rates required for large-scale space heating and many other direct uses of heat. The Program is now in the final stages of constructing a larger, hotter system potentially capable of satisfying the energy requirements of a small, commercial, electrical-generating power plant. To create and understand the behavior of such system, it has been necessary to develop or support the development of a wide variety of equipment, instruments, techniques, and analyses. Much of this innovative technology has already been transferred to the private sector and to other research and development programs, and more is continuously being made available as its usefulness is demonstrated. This report describes some of these developments and indicates where this new technology is being used or can be useful to industry, engineering, and science.

Smith, M.C.

1985-11-01T23:59:59.000Z

93

Water Power Program: Marine and Hydrokinetic Technologies  

Broader source: Energy.gov [DOE]

Pamphlet that describes the Office of EERE's Water Power Program in fiscal year 2009, including the fiscal year 2009 funding opportunities, the Small Business Innovation Research and Small Business Technology Transfer Programs, the U.S. hydrodynamic testing facilities, and the fiscal year 2008 Advanced Water Projects awards.

94

NETL Technology Transfer Case Studies and Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of a 2012 R&D 100 Award and a 2010 Federal Laboratory Consortium Excellence in Technology Transfer Award. This technology is available for licensing PLATINUM-CHROMIUM ALLOY FOR...

95

SWAMI II technology transfer plan  

SciTech Connect (OSTI)

Thousands of drums of radioactive/hazardous/mixed waste are currently stored at DOE sites throughout US; they are stored in warehouse facilities on an interim basis, pending final disposition. Recent emphasis on anticipated decommissioning of facilities indicates that many more drums of waste will be generated, requiring additional storage. Federal and state regulations dictate that hazardous waste covered by RCRA be inspected periodically for container degradation and to verify inventories. All known DOE waste storage facilities are currently inspected manually. A system to perform robotic inspection of waste drums is under development by the SRTC Robotics Group of WSRC; it is called the Stored Waste Autonomous Mobile Inspector (SWAMI). The first version, SWAMI I, was developed by the Savannah River Technology Center (SRTC) as a proof of principle system for autonomous inspection of drums in a warehouse. SWAMI I was based on the Transitions Research Corporation (TRC) HelpMate mobile robot. TRC modified the Helpmate to navigate in aisles of drums. SRTC added subsystems to SWAMI I to determine its position in open areas, read bar code labels on the drums up to three levels high, capture images of the drums and perform a radiation survey of the floor in the aisles. The radiation survey was based on SRTC patented technology first implemented on the Semi-Intelligent Mobile Observing Navigator (SIMON). The radiation survey is not essential for the inspection of drums, but is an option that can increase the utility and effectiveness of SWAMI in warehouses with radioactive and/or mixed waste. All the sensors on SWAMI I were fixed on the vehicle. From the success of SWAMI I, a second version, SWAMI II, was developed; it will be evaluated at Fernald and tested with two other mobile robots. Intent is to transfer the technology developed for SWAMI I and II to industry so that it can supply additional units for purchase for drum inspection.

Ward, C.R.; Peterson, K.D.; Harpring, L.J.; Immel, D.M.; Jones, J.D.; Mallet, W.R.

1995-12-31T23:59:59.000Z

96

Evolution of technology transfer in Latin America  

SciTech Connect (OSTI)

The author discusses how Latin American countries have grown up buying technology, transferring technology from more developed nations, and attempting to adapt it to their own countries for their own environment. Although this is the approach that was and is necessary, there are still some shortfalls that have occurred in the process of licensing and acquisition of technology. Governments around the world also have had powerful impacts on technology transfer. Those in Latin America are no exception.

Kahl, L.F. (Carborundum Co., Niagara Falls, NY (USA))

1989-07-01T23:59:59.000Z

97

Environmental Technology Verification Program  

E-Print Network [OSTI]

Environmental Technology Verification Program Quality Management Plan (QMP) for the ETV Materials Management and Remediation Center Version 1.0 #12;QUALITY MANAGEMENT PLAN (QMP) for the ETV MATERIALS MANAGEMENT AND REMEDIATION CENTER Version 1.0 (SIGNATURE ON FILE) Teri Richardson 3-13-09 EPA MMR CENTER

98

Contacts for the Assistant General Counsel for Technology Transfer...  

Broader source: Energy.gov (indexed) [DOE]

Technology Transfer and Procurement Contacts for the Assistant General Counsel for Technology Transfer and Procurement Subject MatterFunctional Area Lead Backup Technology...

99

Accelerating the transfer in Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building Technologies Office AboutAccelerateAccelerating the

100

Technology Innovation Program Advisory Board  

E-Print Network [OSTI]

Technology Innovation Program Advisory Board 2009 Annual Report of the Technology Innovation Program Advisory Board 2010 Annual Report of the #12;2010 Annual Report of the Technology Innovation Program Advisory Board U.S. Department of Commerce National Institute of Standards and Technology

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Houston, We Have a Success Story: Technology Transfer at the NASA IV&V Facility  

E-Print Network [OSTI]

Houston, We Have a Success Story: Technology Transfer at the NASA IV&V Facility Ken McGill, Wes of and technology transfer from NASA's research program in Independent Verification and Validation (IV, Verification. Keywords Technology transfer, Independent Verification and Validation, Research. 1. INTRODUCTION

Dekhtyar, Alexander

102

Information Technology Tools for Multifamily Building Programs...  

Energy Savers [EERE]

Information Technology Tools for Multifamily Building Programs Information Technology Tools for Multifamily Building Programs Better Buildings Neighborhood Program Multifamily ...

103

Fuel Cell Technologies Program Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CSD Workshop Washington, DC Fuel Cell Technologies Program Overview Dr. Sunita Satyapal Director, Fuel Cell Technologies Office Energy Efficiency and Renewable Energy U.S....

104

Targeted Technology Transfer to US Independents  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers, working in conjunction with the Independent Petroleum Association of America (IPAA), the U.S. Department of Energy (DOE) and selected universities, in 1994 as a national not-for-profit organization. Its goal is to transfer Exploration and Production (E&P) technology to the domestic upstream petroleum industry, in particular to the small independent operators. PTTC connects producers, technology providers and innovators, academia, and university/industry/government research and development (R&D) groups. From inception PTTC has received federal funding through DOE's oil and natural gas program managed by the National Energy Technology Laboratory (NETL). With higher funding available in its early years, PTTC was able to deliver well more than 100 workshops per year, drawing 6,000 or more attendees per year. Facing the reality of little or no federal funding in the 2006-2007 time frame, PTTC and the American Association of Petroleum Geologists (AAPG) worked together for PTTC to become a subsidiary organization of AAPG. This change brings additional organizational and financial resources to bear for PTTC's benefit. PTTC has now been 'powered by AAPG' for two full fiscal years. There is a clear sense that PTTC has stabilized and is strengthening its regional workshop and national technology transfer programs and is becoming more entrepreneurial in exploring technology transfer opportunities beyond its primary DOE contract. Quantitative accomplishments: PTTC has maintained its unique structure of a national organization working through Regional Lead Organizations (RLOs) to deliver local, affordable workshops. During the contract period PTTC consolidated from 10 to six regions efficiency and alignment with AAPG sections. The number of workshops delivered by its RLOs during the contract period is shown below. Combined attendance over the period was approximately 32,000, 70% of whom were repeat attendees. Participant feedback established that 40% of them said they had applied a technology they learned of through PTTC. Central/Eastern Gulf Univ. of Alabama, LSU Center for Energy Studies 77 Eastern West Virginia University, Illinois Geological Survey, W. Michigan Univ. 99 Midcontinent University of Kansas, University of Tulsa, Okla. Geological Survey (past) 123 Rocky Mountains Colorado School of Mines 147 Texas/SE New Mexico Bureau of Economic Geology, U. of Texas at Austin 85 West Coast Conservation Committee of California O&G Producers, Univ. So. Cal. (past) 54 At the national level HQ went from an office in Houston to a virtual office in the Tulsa, Okla. area with AAPG providing any physical assets required. There are no employees, rather several full time and several part time contractors. Since inception, PTTC has produced quarterly and mailed the 16-page Network News newsletter. It highlights new advances in technology and has a circulation of 19,000. It also produces the Tech Connections Column in The American Oil & Gas Reporter, with a circulation of 13,000. On an approximate three-week frequency, the electronic Email Tech Alert goes out to 9,000 readers. The national staff also maintains a central website with information of national interest and individual sections for each of the six regions. The national organization also provides legal and accounting services, coordinates the RLO activities, exhibits at at least major national and other meetings, supports the volunteer Board as it provides strategic direction, and is working to restore the Producer Advisory Groups to bolster the regional presence. Qualitative Value: Three qualitative factors confirm PTTC's value to the domestic O&G producing industry. First, AAPG was willing to step in and rescue PTTC, believing it was of significant interest to its domestic membership and of potential value internationally. Second, through a period of turmoil and now with participant fees dramatically increased, industry participants 'keep coming back' to wo

E. Lance Cole

2009-09-30T23:59:59.000Z

105

DOE Facilities Technology Partnering Programs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes roles and responsibilities for the oversight, management and administration of technology partnerships and associated technology transfer mechanisms, and clarifies related policies and procedures. Does not cancel other directives.

2001-01-12T23:59:59.000Z

106

February 2000 Advanced Technology Program  

E-Print Network [OSTI]

OF COMMERCE Economic Assessment Office Technology Administration Advanced Technology Program National .................................................................................................6 V. IIH Focused Program Project Selection Process information infrastructure in healthcare. A discussion of the ATP "white paper" process4 notes differences

107

Nuclear Technology Programs  

SciTech Connect (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1988. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission-product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

Harmon, J.E. (ed.)

1990-10-01T23:59:59.000Z

108

FUEL CELL TECHNOLOGIES PROGRAM Technologies  

E-Print Network [OSTI]

and fuel cells offer great promise for our energy future. Fuel cell vehicles are not yet commercially, such as a hydrogen fueling station or hydrogen fuel cell vehicle. Technology validation does not certify, and the Federal Government to evaluate hydrogen fuel cell vehicle and infrastructure technologies together in real

109

Requirements Engineering and Technology Transfer: Obstacles, Incentives and Improvement Agenda  

E-Print Network [OSTI]

Requirements Engineering and Technology Transfer: Obstacles, Incentives and Improvement Agenda technology transfer. In addition, major incentives for using RE methods are discussed, along with ideas engineering; Technology transfer 1. Introduction In a 1993 evaluation of requirements engineering (RE

Leite, Julio Cesar Sampaio do Prado

110

Assessing Software Engineering Technology Transfer  

E-Print Network [OSTI]

, and technology infusion, or the adoption of a new technology by an individual organization. 1 #12;Table ¢ ¡ £ ¡ ¢ ¡ ¡ ¢ ¡ ¡ ¡ ¢ ¡ £ ¤ £ ¡ ¡ ¢ ¡ ¡ ¢ ¡ ¡ £ ¤ £ ¡ ¢ ¡ ¡ ¡ ¢ ¡ ¡ ¢ ¡ £ ¡ ¢ 15 3.4 Exporting and Infusing Technology ¡ ¡ ¡ ¢ ¡ £ ¤ £ ¡ ¡ ¢ ¡ ¡ ¢ ¡ ¡ £ ¤ £ ¡ ¢ ¡ ¡ ¡ ¢ ¡ ¡ ¢ ¡ £ ¡ ¢ 16 4 Infusion of Technology 18 4.1 Technologies of Interest

Zelkowitz, Marvin V.

111

TECHNOLOGY TRANSFER QUESTIONS..txt - Notepad  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rfien@campbellap.com Sent: Monday, January 26, 2009 5:34 PM To: GC-62 Subject: TECHNOLOGY TRANSFER QUESTIONS. Sensitivity: Confidential To Whom It May Concern, Campbell Applied...

112

Business Plan Competitions and Technology Transfer  

SciTech Connect (OSTI)

An evaluation of business plan competitions, with a focus on the NREL-hosted Industry Growth Forum, and how it helps cleantech startups secure funding and transfer their technology to market.

Worley, C.M.; Perry, T.D., IV

2012-09-01T23:59:59.000Z

113

[Technology transfer of building materials by ECOMAT  

SciTech Connect (OSTI)

This report discusses the plan for technology transfer of building materials developed by ECOMAT to the commercial private sector. Some of the materials are briefly discussed like foams, fiber reinforcement, fly ash development, and polymer fillers.

NONE

1996-01-01T23:59:59.000Z

114

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

115

Office of the Assistant General Counsel for Technology Transfer...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer & Intellectual Property Office of the Assistant General Counsel for Technology Transfer & Intellectual Property The Office of the Assistant General Counsel for...

116

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

117

Service for Research Management & Technology Transfer NEWS & EVENTS  

E-Print Network [OSTI]

Service for Research Management & Technology Transfer NEWS & EVENTS IX Premio de Investigación for Research Management & Technology Transfer #12;

Escolano, Francisco

118

NREL: Technology Transfer - Technology Partnership Agreements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo of theNews AprilTechnology

119

Technology Transfer at VTIP VTIP in 20 Minutes  

E-Print Network [OSTI]

Technology Transfer at VTIP VTIP in 20 Minutes What You Need to Know Virginia Tech Intellectual Properties, Inc. #12;Technology Transfer at VTIP VTIP Overview Virginia Tech Intellectual Properties, Inc;Technology Transfer at VTIP Tech Transfer · The tech transfer process typically includes: · Identifying new

Liskiewicz, Maciej

120

Funding Opportunity: Geothermal Technologies Program Seeks Technologie...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS Funding Opportunity: Geothermal Technologies...

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Technology transfer | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeignTechnology-Selection-Process SignL. PaulTechnology

122

Browser-based Software for Technology Transfer Judith Bishop  

E-Print Network [OSTI]

1 Browser-based Software for Technology Transfer Judith Bishop Jonathan de Halleux Nikolai Tillmann Technology transfer is typically viewed as being from academia to industry but it can indeed go in either Keywords Technology transfer, browser-based software, F#, Pex4Fun INTRODUCTION Technology transfer is most

Xie, Tao

123

Clean coal technology programs: program update 2006  

SciTech Connect (OSTI)

The purpose of the Clean Coal Technology Programs: Program Update 2006 is to provide an updated status of the DOE commercial-scale demonstrations of clean coal technologies (CCTs). These demonstrations are performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII) and the Clean Coal Power Initiative (CCPI). Program Update 2006 provides 1) a discussion of the role of clean coal technology demonstrations in improving the nation's energy security and reliability, while protecting the environment using the nation's most abundant energy resource - coal; 2) a summary of the funding and costs of the demonstrations; and 3) an overview of the technologies being demonstrated, with fact sheets for demonstration projects that are active, recently completed, withdrawn or ended, including status as of June 30 2006. 4 apps.

NONE

2006-09-15T23:59:59.000Z

124

Clean Coal Technology Programs: Program Update 2009  

SciTech Connect (OSTI)

The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nations energy security and reliability, while protecting the environment using the nations most abundant energy resourcecoal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

None

2009-10-01T23:59:59.000Z

125

2010 DOE EERE Vehicle Technologies Program Merit Review ? Technology...  

Energy Savers [EERE]

Technology Integration 2010 DOE EERE Vehicle Technologies Program Merit Review Technology Integration Technology integration merit review results 2010amr08.pdf More...

126

Technology transfer in the petrochemical industry  

SciTech Connect (OSTI)

The paper deals with the development of the Japanese petrochemical industry from the 1950s through the 1960s solely from the standpoint of the process of technology transplantation. The Japanese petrochemical industry in this period is interesting as it relates to technology transfer to Japan because: (1) It was an industry at the core of the heavy and chemical industries, which were an important pillar of Japan's industrial policy; (2) It was a new technical field with no past history; and (3) Unraveling of technology was successfully pursued, with the result that Japan became a petrochemical technology-exporting country in the 1960s.

Tanaka, M.

1994-01-01T23:59:59.000Z

127

Los Alamos National Laboratory and technology transfer  

SciTech Connect (OSTI)

From its beginning in 1943, Los Alamos National Laboratory (Los Alamos) has traditionally used science and technology to fine creative, but practical solutions to complex problems. Los Alamos National Laboratory is operated by the University of California, under contact to the Department of Energy. We are a Government Owned-contractor Operated (GOCO) facility, and a Federally-funded research and Development Center (FFRDC). At Los Alamos, our mission is to apply science and engineering capabilities to problems of national security. Recently our mission has been broadened to include technology transfer to ensure the scientific and technical solutions are available to the marketplace. We are, in staff and technical capabilities, one of the worlds largest multidisciplinary, multiprogram laboratories. We conduct extensive research in energy, nuclear safeguards and security, biomedical science, conventional defense technologies, space science, computational science, environmental protection and cleanup, materials science, and other basic sciences. Since 1980, by a series of laws and executive orders, the resources of the federal laboratories have been made increasingly available to private industry via technology transfer efforts. Los Alamos National Laboratory uses a variety of technology transfer methods including laboratory visits, cooperative research, licensing, contract research, user facility access, personnel exchanges, consulting, publications, and workshops, seminars and briefings. We also use unique approaches, such as our negotiating teams, to ensure that transfer of our developed technology takes place in an open and competitive manner. During my presentation, I will discuss the overall process and some of the mechanism that we use at Los Alamos to transfer laboratory developed technology.

Bearce, T.D.

1992-01-01T23:59:59.000Z

128

Los Alamos National Laboratory and technology transfer  

SciTech Connect (OSTI)

From its beginning in 1943, Los Alamos National Laboratory (Los Alamos) has traditionally used science and technology to fine creative, but practical solutions to complex problems. Los Alamos National Laboratory is operated by the University of California, under contact to the Department of Energy. We are a Government Owned-contractor Operated (GOCO) facility, and a Federally-funded research and Development Center (FFRDC). At Los Alamos, our mission is to apply science and engineering capabilities to problems of national security. Recently our mission has been broadened to include technology transfer to ensure the scientific and technical solutions are available to the marketplace. We are, in staff and technical capabilities, one of the worlds largest multidisciplinary, multiprogram laboratories. We conduct extensive research in energy, nuclear safeguards and security, biomedical science, conventional defense technologies, space science, computational science, environmental protection and cleanup, materials science, and other basic sciences. Since 1980, by a series of laws and executive orders, the resources of the federal laboratories have been made increasingly available to private industry via technology transfer efforts. Los Alamos National Laboratory uses a variety of technology transfer methods including laboratory visits, cooperative research, licensing, contract research, user facility access, personnel exchanges, consulting, publications, and workshops, seminars and briefings. We also use unique approaches, such as our negotiating teams, to ensure that transfer of our developed technology takes place in an open and competitive manner. During my presentation, I will discuss the overall process and some of the mechanism that we use at Los Alamos to transfer laboratory developed technology.

Bearce, T.D.

1992-05-01T23:59:59.000Z

129

TECHNOLOGY PROGRAM PLAN  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Department of Energy's (DOE) Carbon Capture program is conducted under the Clean Coal Research Program (CCRP). DOE's overarching mission is to increase the energy...

130

TECHNOLOGY PROGRAM PLAN  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Department of Energy's (DOE) Advanced Turbines program is conducted under the Clean Coal Research Program (CCRP). DOE's overarching mission is to increase the energy...

131

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New(19):4355-4364 Nidhi Sabharwal, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal

132

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal@rockefeller.edu #12;

de Lange, Titia

133

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Sabharwal, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal

134

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New,049,814 · US Patent 8,553,143 Nidhi Sabharwal, Ph.D. Technology Manager Technology Transfer (212) 327

135

Mike Paulus Director - Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program PreliminaryA3, 1999ofMike Henderson Instruments HighMikeMike

136

Effective Transfer of Industrial Energy Conservation Technologies  

E-Print Network [OSTI]

. Various avenues exist for transferring energy conservation technologies to industry. Briefing documents, presentations at trade meetings and con ferences, or simple diffusion by word-of-mouth are a few methods. However, when left to chance, tech... of 444 ESL-IE-83-04-68 Proceedings from the Fifth Industrial Energy Technology Conference Volume II, Houston, TX, April 17-20, 1983 TABLE 1. Current Energy Impacts of Foam Processing of Textiles BROADWOVENS AND KNITS User Site (a) Average Production...

Clement, M.; Vallario, R. W.

1983-01-01T23:59:59.000Z

137

BMDO: New Mexico Technology Transfer Demonstration Project. Interim final report  

SciTech Connect (OSTI)

The BMDO-New Mexico Technology Transfer Demonstration Project(BMDO-NM) was a collaborative effort among the national laboratories to identify and evaluate the commercial potential of selected SDI-funded technologies. The project was funded by BMDO (formerly known as the Strategic Defense Initiative Office or SDIO), the Technology Enterprise Division (NM-TED) of the NM Economic Development Division, and the three National Laboratories. The project was managed and supervised by SAGE Management Partners of Albuquerque, and project funding was administered through the University of New Mexico. The BMDO-NM Demonstration Project focused on the development of a process to assist technology developers in the evaluation of selected BMDO technology programs so that commercialization decisions can be made in an accelerated manner. The project brought together BMDO, the NM-TED, the University of New Mexico, and three New Mexico Federal laboratories -- Los Alamos (DOE), Phillips (DOD) and Sandia (DOE). Each national laboratory actively participated throughout the project through its technology transfer offices. New Mexico was selected as the site for the Demonstration Program because of its three national and federal research laboratories engaged in BMDO programs, and the existing relationship among state govemment, the labs, universities and local economic development and business assistance organizations. Subsequent Commercialization and Implementation phases for the selected technologies from LANL and SNL were completed by SAGE and the Project Team. Funding for those phases was provided by the individual labs as well as BMDO and NM-TED in kind services. NM-TED played a proactive role in this New Mexico partnership. Its mandate is to promote technology-based economic development, with a commitment to facilitate the use of technology by industry and business statewide. TED assumed the role of program manager and executing agent for BMDO in this demonstration project.

Not Available

1993-11-01T23:59:59.000Z

138

CIOSS Five Year Review 5. Technology Transfer  

E-Print Network [OSTI]

SST fields will be documented in a peer-reviewed paper, as will the wind climatologies of CheltonCIOSS Five Year Review 5. Technology Transfer 10-11-06 A. How are research results from and the nature of the collaboration. As an example, the collaboration between Richard Reynolds and Dudley Chelton

Kurapov, Alexander

139

Dartmouth College Technology Transfer Office Annual Report  

E-Print Network [OSTI]

and public service missions of Dartmouth College. 1 #12;Invention Disclosures Research Enterprise Support, such as Small Business Innovation Research (SBIR), Small Business Technology Transfer (STTR), and New Hampshire of the sluggish economy, we were able to secure 6 new licenses, including one to local start-up ImmuNext, Inc

Myers, Lawrence C.

140

Oregon Health & Science University Technology Transfer and Business Development  

E-Print Network [OSTI]

Oregon Health & Science University Technology Transfer and Business Development Annual Report 2011 Business Development 6 Impacting Global Health - Drs. David and Deborah Lewinsohn Technology Transfer 7 System OHSU is reinventing technology transfer. Over the years the office has evolved from "Tech Transfer

Chapman, Michael S.

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Knowledge Capture and Transfer Program  

Broader source: Energy.gov [DOE]

The Office of Learning and Workforce Development is working with Heads of Departmental Elements, DOE senior leaders and subject-matter-experts to capture and transfer the knowledge and experiences...

142

Knowledge Capture and Transfer Program | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Knowledge Capture and Transfer Program Knowledge Capture and Transfer Program The Office of Learning and Workforce Development is working with Heads of Departmental Elements, DOE...

143

Knowledge Capture and Transfer Program (KCTP) "Newly Created...  

Broader source: Energy.gov (indexed) [DOE]

Knowledge Capture and Transfer Program (KCTP) "Newly Created" Powerpedia Page Knowledge Capture and Transfer Program (KCTP) "Newly Created" Powerpedia Page June 3, 2014 - 1:36pm...

144

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New://newswire.rockefeller.edu/?page=engine&id=939 Nidhi Sabharwal, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

145

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Sabharwal, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

146

DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Safety Codes and Standards...

147

New Technology Demonstration Program  

E-Print Network [OSTI]

of systems. [1] The selected vendors are: OEM/Equipment Vendor Trane Large Building Controls Vendors Johnson Controls Siemens Building Technologies Small Building Controls Vendors With utility deregulation Technologies Teletrol Systems Software Vendors Tridium Electric Eye 3]. In many of the EMCIS products studied

148

Education and Research Transfer Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Business Program Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

149

DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...  

Broader source: Energy.gov (indexed) [DOE]

8.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Validation 2008 Annual Merit Review Results Summary - 16. Technology...

150

The Picatinny Technology Transfer Innovation Center: A business incubator concept adapted to federal laboratory technology transfer  

SciTech Connect (OSTI)

In recent years, the US defense industrial base spawned the aerospace industry, among other successes, and served as the nation`s technology seed bed. However, as the defense industrial base shrinks and public and private resources become scarcer, the merging of the commercial and defense communities becomes necessary to maintain national technological competencies. Cooperative efforts such as technology transfer provide an attractive, cost-effective, well-leveraged alternative to independently funded research and development (R and D). The sharing of knowledge, resources, and innovation among defense contractors and other public sector firms, academia, and other organizations has become exceedingly attractive. Recent legislation involving technology transfer provides for the sharing of federal laboratory resources with the private sector. The Army Research, Development and Engineering Center (ARDEC), Picatinny Arsenal, NJ, a designer of weapons systems, is one of the nation`s major laboratories with this requirement. To achieve its important technology transfer mission, ARDEC reviewed its capabilities, resources, intellectual property, and products with commercial potential. The purpose of the review was to develop a viable plan for effecting a technology transfer cultural change within the ARDEC, Picatinny Arsenal and with the private sector. This report highlights the issues identified, discussed, and resolved prior to the transformation of a temporarily vacant federal building on the Picatinny installation into a business incubator. ARDEC`s discussions and rationale for the decisions and actions that led to the implementation of the Picatinny Technology Transfer Innovation Center are discussed.

Wittig, T. [Geo-Centers, Inc. (United States); Greenfield, J. [Armaments Research, Development and Engineering Center, Picatinny Arsenal, NJ (United States)

1996-10-01T23:59:59.000Z

151

Hydrogen, Fuel Cells and Infrastructure Technologies Program...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit Review and Peer Evaluation Report Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003...

152

President Obama visits Geothermal Technologies Program Partner...  

Energy Savers [EERE]

President Obama visits Geothermal Technologies Program Partner President Obama visits Geothermal Technologies Program Partner May 2, 2011 - 1:41pm Addthis President Obama visited...

153

Advanced Technology Vehicles Manufacturing Incentive Program...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

154

Hydrogen, Fuel Cells and Infrastructure Technologies Program...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report...

155

Entrepreneurial Programs | Tech Transfer | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

economic development in the region and state is to support the creation of new start-ups businesses that can will license ORNL technology and focus on developing commercial...

156

Technology Transfer of Computational Intelligence for Manufacturing Process Control  

E-Print Network [OSTI]

Technology Transfer of Computational Intelligence for Manufacturing Process Control Alice E. Smith applications is a large and uncertain step. This paper focuses on the technology transfer issues and solutions

Smith, Alice E.

157

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New,383,370. Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto

158

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

159

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.1016/j.jmb.2008.01.066 Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327

160

Response to the Notice of Inquiry: Technology Transfer Practices...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Attn: Technology Transfer Questions ')lh ' ; ;09 Hra:41 Subject: Questions Concerning Technology...

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

OSWER source book: Training and technology-transfer resources  

SciTech Connect (OSTI)

The OSWER Source Book consolidates information on the numerous training and other technology transfer resources sponsored by EPA's Office of Solid Waste and Emergency Response (OSWER) and others. The OSWER Source Book provides descriptions of training courses, videos and publications of interest to Federal and State personnel working in solid and hazardous waste management. The OSWER Source Book should be especially useful to Federal personnel working in programs under authorities of the RCRA, CERCLA, SARA, or other similar Federal environmental management and restoration programs.

Not Available

1991-05-01T23:59:59.000Z

162

Geothermal Today: 2005 Geothermal Technologies Program Highlights  

SciTech Connect (OSTI)

This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

Not Available

2005-09-01T23:59:59.000Z

163

Research and Technology Transfer Organization www.techtransfer.psu.edu  

E-Print Network [OSTI]

Research and Technology Transfer Organization www.techtransfer.psu.edu from idea to product #12;About us Research and Technology Transfer Organization from idea to product The Penn State Research and Technology Transfer Organization (RTTO) consists of four units working together to connect industry to Penn

Guiltinan, Mark

164

CERNA WORKING PAPER SERIES Innovation and international technology transfer  

E-Print Network [OSTI]

1 CERNA WORKING PAPER SERIES Innovation and international technology transfer: The case technology transfer: The case of the Chinese photovoltaic industry Arnaud de la Tour, Matthieu Glachant, Yann emphasis on the role of technology transfers and innovation. Our analysis combines a review

Paris-Sud XI, Université de

165

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www

166

Chapter 9 Research & Technology Transfer (2 Edition) 118  

E-Print Network [OSTI]

117 #12;Chapter 9 ­ Research & Technology Transfer (2 nd Edition) 118 Chapter 9 Research & Technology Transfer Goals Excellence in research and scholarly activity is a central tenet of the University the Office of Technology Transfer and the Business Engagement Center. Overview Most of this chapter examines

Michigan, University of

167

April 12, 2013 OHSU Office of Technology Transfer & Business Development  

E-Print Network [OSTI]

April 12, 2013 OHSU Office of Technology Transfer & Business Development Brown Bag Series -"TTBD of Technology Transfer & Business Development (TTBD) is the place to start. Join us for a brown bag presentation and Q&A on"TTBD: An Overview"led by Andrew Watson, PhD, CLP, Interim Director, Technology Transfer

Chapman, Michael S.

168

Office of Technology Transfer 1 | P a g e  

E-Print Network [OSTI]

Office of Technology Transfer 1 | P a g e Updated.02.23.12_KT Instructions for submitting; Office of Technology Transfer 2 | P a g e Updated.02.23.12_KT 4 myUM Authentication's window of screen. Invention Disclosure Form #12; Office of Technology Transfer 3 | P a g e

Weber, David J.

169

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.1217207109 Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

170

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New activation. Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

171

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10065 www

172

Technology Transfer David Basin and Thai Son Hoang  

E-Print Network [OSTI]

Technology Transfer David Basin and Thai Son Hoang Institute of Information Security, ETH Zurich, Switzerland Abstract. This paper presents our experience of knowledge and technology transfer within the lessons learned and what we would do differently in future technology transfer projects. Keywords

Basin, David

173

Federal Technology Transfer Data 1987-2009 Gary Anderson  

E-Print Network [OSTI]

Federal Technology Transfer Data 1987-2009 Gary Anderson Economist National Institute of Standards. Among other things, this Act explicitly incorporated technology transfer into the mission of all federal departments and agencies. More recently, the Technology Transfer Commercialization Act of 2000 revised

Perkins, Richard A.

174

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue NewRNA and antisense therapeutics Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

175

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto

de Lange, Titia

176

AUGUST 7, 2013 OHSU Office of Technology Transfer & Business Development  

E-Print Network [OSTI]

AUGUST 7, 2013 OHSU Office of Technology Transfer & Business Development Brown Bag Series "Software Patent Associate of Technology Transfer & Business Development (TTBD). August 7, 2013 from 12:00 - 1. Technology Transfer & Business Development www.ohsu.edu/techtransfer techmgmt@ohsu.edu 503-494-8200 #12;

Chapman, Michael S.

177

April 3, 2013 OHSU Office of Technology Transfer & Business Development  

E-Print Network [OSTI]

April 3, 2013 OHSU Office of Technology Transfer & Business Development Brown Bag Series -"TTBD of Technology Transfer & Business Development (TTBD) is the place to start. Join us for a brown bag presentation and Q&A on"TTBD: An Overview"led by Andrew Watson, PhD, CLP, Interim Director, Technology Transfer

Chapman, Michael S.

178

Chapter 9 Research & Technology Transfer (3 Edition) 118  

E-Print Network [OSTI]

117 #12;Chapter 9 ­ Research & Technology Transfer (3 rd Edition) 118 Chapter 9 Research & Technology Transfer Goals Excellence in research and scholarly activity is a central tenet of the University the Office of Technology Transfer and the Business Engagement Center. Overview Most of this chapter examines

Eustice, Ryan

179

Chapter 9 Research & Technology Transfer (4 Edition) 117  

E-Print Network [OSTI]

116 #12;Chapter 9 ­ Research & Technology Transfer (4 th Edition) 117 Chapter 9 Research & Technology Transfer Goals Excellence in research and scholarly activity is a central tenet of the University the Office of Technology Transfer and the Business Engagement Center. Overview Most of this chapter examines

Awtar, Shorya

180

FY05 Targeted Technology Transfer to US Independents  

SciTech Connect (OSTI)

Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within a National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions, the PTTC from the start has captured and reported data that document the myriad ways its programs impact industry. Of 119 workshops in FY05 where repeat attendance was reported, 59 percent of attendees on average had attended a PTTC event previously, indicating that a majority felt they were receiving enough value to come back. It also is encouraging that, after 11 years, PTTC events continue to attract new people. The form used at workshops to get participants feedback asks for a ''yes'' or ''no'' response to the question: ''Have you used any new technologies based on knowledge gained through PTTC?'' With data now available from 611 workshops, 41 percent of respondents said, ''yes'', confirming that people are applying the information they receive at PTTC workshops. PTTC in FY04 asked RLO directors, oilfield service companies and producers in 11 areas with significant technological barriers to adding new reserves to estimate the ''PTTC Impact Factor''--that is, the percentage of the total reserves added in their areas that logically could be attributed to PTTC's efforts. Of the estimated 1,266 million barrels of oil equivalent (BOE) added in the 11 areas, participants estimated that roughly 88 million BOE had been added as a result of PTTC's techtransfer efforts. PTTC's 10 regions are the primary delivery mechanism for technology transfer. Attendance at PTTC regional activities set a record in FY05, with 8,900 individuals attending 154 workshops, lunch-and-learn events, or student training and internships. When appropriate, regional workshops incorporate R&D findings from DOE-funded projects. This year HQ began a ''Microhole Technology Integration'' Initiative with DOE to more clearly present their microhole program to producers. Often events are held cooperatively with other national organizations, regional producer associations and professional society groups. This practice leverages outreach and engenders future cooperation. Of the more than 61,000 individuals PTTC has attracted to its events since its inception, more than 15,000 have attended in the past two years. Eight-eight percent of PTTC event attendees during FY05 were from industry. The numb

Donald F. Duttlinger; E. Lance Cole

2005-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Robotics Technology Development Program. Technology summary  

SciTech Connect (OSTI)

The Robotics Technology Development Program (RTDP) is a ``needs-driven`` effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination & Dismantlement (D&D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D&D and CC&AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

Not Available

1994-02-01T23:59:59.000Z

182

Technology transfer significance of the International Safeguards Project Office  

SciTech Connect (OSTI)

The safeguards implemented by the International Atomic Energy Agency (IAEA) are of major importance to the non-proliferation objectives of the United States of America and other nations of the world. Assurance of safeguards effectiveness is mandatory to continued peaceful use of nuclear power. To enhance the ability of the IAEA to apply safeguards effectively, and to ensure that the IAEA does not lack technical assistance in critical areas, the US Congress has made available a special authorization for a Program for Technical Assistance to IAEA Safeguards (POTAS). This substantial program of technology transfer was initiated in 1976. The United States Departments of State and Energy, the Arms control and Disarmament Agency and the Nuclear Regulatory Commission have each accepted responsibility for parts of the Program for Technical Assistance to IAEA Safeguards. Funding is provided by state through the Foreign Assistance Act. This report provides a discussion of this program.

Marcuse, W.; Waligura, A.J.

1988-06-01T23:59:59.000Z

183

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology.S. patent application US 2013-0064762-A1 is pending. Tari Suprapto, Ph.D. Assistant Director Technology

184

ARRA Proposed Award: Energy Technology Assistance Program  

E-Print Network [OSTI]

ARRA Proposed Award: Energy Technology Assistance Program Statewide Program ­ covering Greater Sub contractors: California Lighting Technology Center California Labor Management Cooperation multiplier) Partnering Clean Energy Workforce Training Programs: Sacramento Employment Training Agency

185

High Efficiency Engine Technologies Program  

SciTech Connect (OSTI)

Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in on-engine testing. (2) A compressor technology that demonstrated 1.5% improvement in compressor efficiency on gas stand compared to production available compressors. (3) A power turbine with high efficiency bearing system that demonstrated excellent rotordynamic stability throughout the required speed range, up to 60,000 rpm. (4) A predicted improvement (using engine simulation) in engine thermal efficiency of 7% at the peak torque design point, when combining the technologies developed in this program.

Rich Kruiswyk

2010-07-13T23:59:59.000Z

186

TECHNOLOGY INNOVATION PROGRAM National Institute of Standards and Technology  

E-Print Network [OSTI]

TECHNOLOGY INNOVATION PROGRAM National Institute of Standards and Technology Gaithersburg, MD 20899 ADVANCED TECHNOLOGIES FOR CIVIL INFRASTRUCTURE The Technology Innovation Program (TIP) at the National Institute of Standards and Technology was established to assist U.S. businesses and institutions of higher

Magee, Joseph W.

187

innovati nAdvanced Heat Transfer Technologies Increase Vehicle  

E-Print Network [OSTI]

innovati nAdvanced Heat Transfer Technologies Increase Vehicle Performance and Reliability Keeping with industry to develop and demonstrate advanced heat transfer technologies such as jet impingement cooling for thermal grease and significantly enhances direct heat transfer from the electronics. A series of nozzles

188

EPA and the Federal Technology Transfer Act: Opportunity knocks  

SciTech Connect (OSTI)

In 1986, the Federal Technology Transfer Act (FTTA) was established to promote a closer, collaborative relationship between federal government agencies and the private sector. With the increasing need for new cost-effective technologies to prevent and control pollution, both the US Environmental Protection Agency (EPA) and private industry are encouraged to facilitate the transfer of knowledge and technology under this Act. The FTTA removed several of the legal and institutional barriers to cooperative research that existed before the Act`s passage. Through the FTTA, the government strives to promote the movement of its products, processes, skills, and knowledge into the private sector for further development and commercialization by encouraging the exchange of technical personnel and the sharing of facilities and other resources. Collaborative efforts between industry, federal agencies, and academia are made possible through cooperative research and development agreements (CRADAs). Forty-two CRADAs and five licensing agreements have been initiated with EPA under this program. This paper provides an overview of this new and innovative program within the EPA. 1 fig., 2 tabs.

Gatchett, A.M.; Fradkin, L.; Moore, M.; Gorman, T.; Ehrlich, A. [Environmental Protection Agency, Washington, DC (United States)

1990-12-31T23:59:59.000Z

189

Technology transfer -- protecting technologies during the transfer cycle (intellectual property issues)  

SciTech Connect (OSTI)

The success of technology transfer agreements depends not just on the technical work, but on how well the arrangements to protect and dispose of the intellectual properties that make up the technologies are handled. Pertinent issues that impact the protection and disposition of intellectual properties during the technology transfer process at Sandia National Laboratories, a multiprogram laboratory operated for the Department of Energy by the Martin Marietta Corporation, are discussed. Subjects addressed include the contracting mechanisms (including the Cooperative Research and Development Agreement [CRADA] and the Work-for-Others agreement), proprietary information, The Freedom of Information Act, patents and copyrights, the statement of work, Protected CRADA Information, licensing considerations, title to intellectual properties, march-in rights, and nondisclosure agreements.

Graham, G.G.

1993-12-31T23:59:59.000Z

190

Argonne Electrochemical Technology ProgramArgonne Electrochemical Technology Program Effects of Fuel Composition on  

E-Print Network [OSTI]

Argonne Electrochemical Technology ProgramArgonne Electrochemical Technology Program Effects. Applegate, L. Miller, Cecille Rossignol Argonne National Laboratory Annual Review The Hydrogen, Fuel Cells Argonne National Laboratory Annual Review The Hydrogen, Fuel Cells & Infrastructure Technologies Program

191

Formal Methods Technology Transfer: A View from NASA  

E-Print Network [OSTI]

Formal Methods Technology Transfer: A View from NASA James L. Caldwell Flight Electronics Home Page on the World­Wide Web 1 . In this paper I remark on the technology transfer strategy and its Formal Methods Home Page on the World­Wide Web. In this paper we concentrate on aspects of technology

Caldwell, James

192

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New:1484-1488. #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology

193

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic  

E-Print Network [OSTI]

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic Technology Researchers of the Vienna University of Technology and the Medical University of Vienna have found application filed International patent application (PCT) filed Next steps · Electrophysiological testing

Szmolyan, Peter

194

Nuclear export and technology transfer controls  

SciTech Connect (OSTI)

A review of the U.S. implementation of nuclear export and technology transfer controls is undertaken to assess whether the U.S. controls is undertaken to assess whether the U.S. controls meet the full scope of the international commitment toward non-proliferation controls. The international non-proliferation controls have been incorporated into CoCom, the Coordinating Committee of the multinational organization established to protect the mutual interests of the participating countries in the area of strategic export controls. However, this CoCom list is classified and each participating country implements these controls pursuant to its own laws. A comparison to the non-proliferation controls promulgated by the U.K. is used to verify that the U.S. controls are at least as comprehensive as the British controls.

Hower, J.J.; Primeau, S.J. (Eagle Research Group, Inc., Arlington, VA (US))

1988-01-01T23:59:59.000Z

195

Clean Coal Technology Demonstration Program. Program update 1995  

SciTech Connect (OSTI)

This document describes activities of the U.S. Clean Coal Technology Program for the time of 1985-1995. Various clean coal technologies are described.

NONE

1996-04-01T23:59:59.000Z

196

USDOE Technology Transfer, Responses to the Notice of Inquiry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On November 26, 2008, a Notice of Inquiry regarding Questions Concerning Technology Transfer Practices at DOE Laboratories was posted for public comment. DOE received...

197

USDOE Technology Transfer, Frequently Asked Questions about Agreement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

were raised in public responses to a DOE Request for Information on improving technology transfer. These concerns include requirements for advance payments, indemnification and...

198

USDOE Technology Transfer, Working with DOE Labs - Arrangements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

alone, our 17 National Laboratories and 5 facilities engaged in more than 12,000 technology transfer transactions. These included more than 700 CRADAs, 2500 WFO Agreements, more...

199

Notice of Inquiry: Technology Transfer Practices at Department...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OFFICE OF THE PROVOST AND EXECUTIVE VICE PRESIDENT - ACADEMIC AFFAIRS OFFICE OF TECHNOLOGY TRANSFER 1111 Franklin Street, 5 th Floor Oakland, California 94607-5200 Web Site:...

200

INTERNAL POSTING - Head of Technology Transfer, Patents & Publications...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

INTERNAL POSTING - Head of Technology Transfer, Patents & Publications Department: Best Practices Supervisor(s): John Delooper Staff: AM 7 Requisition Number: 1400936 The Head of...

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Characterization and Development of Advanced Heat Transfer Technologies (Presentation)  

SciTech Connect (OSTI)

This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

Kelly, K.

2009-05-01T23:59:59.000Z

202

Management of international transfer of innovative technologies in the enterprise.  

E-Print Network [OSTI]

?? The objective is to clarify the concept of technology transfer and the accompanying components to deliver them to the reader. The object of this (more)

Trofimchuk, Olena

2012-01-01T23:59:59.000Z

203

Secretarial Policy Statement on Technology Transfer at Department...  

Broader source: Energy.gov (indexed) [DOE]

Secretarial Policy Statement on Technology Transfer at Department of Energy Facilities Introduction This Policy Statement is designed to help guide and strengthen the Department of...

204

Published by ORNL's Energy Efficiency and Renewable Energy Program (www.ornl.gov/Energy_Eff) No. 2 1999 Technology Transfer Repays  

E-Print Network [OSTI]

Published by ORNL's Energy Efficiency and Renewable Energy Program (www.ornl.gov/Energy_Eff) No. 2 you about the exciting R&D work going on in the Energy Efficiency and Renewable Energy Program at ORNL

Pennycook, Steve

205

Geothermal Technologies Program Overview Presentation at Stanford...  

Energy Savers [EERE]

Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

206

Technology Innovation Program Guidelines and Documentation  

E-Print Network [OSTI]

#12;Technology Innovation Program Guidelines and Documentation Requirements for Research Involving ............................................................................ 5 F. Required Documentation.............................................................................. 16 D. Required Documentation

Magee, Joseph W.

207

How to Qualify for NIH Small Business Innovation and Technology Transfer Grants  

E-Print Network [OSTI]

How to Qualify for NIH Small Business Innovation and Technology Transfer Grants Professional) and Small Business Technology Transfer (STTR) proposal development services to technology based

Berdichevsky, Victor

208

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Information U.S. Patent 7,323,683 (issued January 28, 2008) Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

209

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New. References Sandu, et al. 2010. J. Cell. Biol, 190:1039-52. Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

210

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New://www.nature.com/tp/journal/v4/n1/abs/tp2013124a.html Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327

de Lange, Titia

211

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10065 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu Alleles of Human Kappa Opioid Receptors and Uses Thereof

212

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu A Novel Disc-Based Apparatus for High-Throughput Sample

213

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu A Novel Regulator Of Extracellular Virulence Genes

214

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network [OSTI]

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu Novel Inhibitors of Thrombotic Clot Formation RU808+ RU

215

SEC. 3012. TECHNOLOGY INNOVATION PROGRAM. (a) REPEAL OF ADVANCED TECHNOLOGY PROGRAM.--Section 28  

E-Print Network [OSTI]

SEC. 3012. TECHNOLOGY INNOVATION PROGRAM. (a) REPEAL OF ADVANCED TECHNOLOGY PROGRAM.--Section 28 of the National Institute of Standards and Technology Act (15 U.S.C. 278n) is repealed. (b) ESTABLISHMENT OF TECHNOLOGY INNOVATION PROGRAM.-- The National Institute of Standards and Technology Act (15 U.S.C. 271 et seq

Magee, Joseph W.

216

Clean Coal Technology Demonstration Program: Program Update 2000  

SciTech Connect (OSTI)

Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

2001-04-01T23:59:59.000Z

217

Clean Coal Technology Demonstration Program: Program Update 1999  

SciTech Connect (OSTI)

Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

2000-04-01T23:59:59.000Z

218

Clean Coal Technology Demonstration Program: Program Update 2001  

SciTech Connect (OSTI)

Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results. Also includes Power Plant Improvement Initiative Projects.

Assistant Secretary for Fossil Energy

2002-07-30T23:59:59.000Z

219

Clean Coal Technology Demonstration Program: Program Update 1998  

SciTech Connect (OSTI)

Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

1999-03-01T23:59:59.000Z

220

International technology transfer for climate change mitigation and the cases of Russia and China  

SciTech Connect (OSTI)

The environmental agenda for mitigating climate change through international transfers of technology is linked with a diverse literature, reviewed here within a framework that combines technological, agent/agenda, and market/transaction perspectives. Literature that bears on international technology transfer for climate change mitigation is similar in many ways for Russia and China: opportunities for energy efficiency and renewable energy, economic reform and restructuring, the difficulties enterprises face in responding to market conditions, international assistance policies, international joint ventures, market intermediation, and capacity building for market development. In both countries, capacity building means enhancing market-oriented capabilities in addition to technological capabilities. For Russia, institutional development is critical, such as new commercial legal codes and housing-sector changes beyond privatization. For China, technology policies and modernization programs significantly influence technology transfers. 234 refs., 3 tabs.

Martinot, E. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group] [Univ. of California, Berkeley, CA (United States). Energy and Resources Group; [Stockholm Environment Inst., Boston, MA (United States); Sinton, J.E. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group] [Univ. of California, Berkeley, CA (United States). Energy and Resources Group; [Lawrence Berkeley National Lab., CA (United States). International Energy Studies Group; Haddad, B.M. [Univ. of California, Berkeley, CA (United States)] [Univ. of California, Berkeley, CA (United States)

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fossil Energy Advanced Research and Technology Development Materials Program  

SciTech Connect (OSTI)

Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

Cole, N.C.; Judkins, R.R. (comps.)

1992-12-01T23:59:59.000Z

222

DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Program 8-5 Overview of Clean Cities and Top Accomplishments: Dennis Smith, U.S. Department of Energy 1. Was the Sub-program area adequately covered? Were...

223

Analysis and technology transfer report, 1989 and 1990  

SciTech Connect (OSTI)

The buildings sector used 29.6 quadrillion Btus (quads) of energy in 1989, or 36 percent of the total primary energy consumed in the United States. The major uses are for space heating and cooling, water heating, refrigeration, and lighting. Electricity is the dominant fuel, followed by natural gas, petroleum, and other fuels. Although there were dramatic improvements in energy efficiency in this sector from 1975 to 1985, in recent years energy use has grown rapidly. The large growth expected in commercial building floor space and in residential units means that total building-sector energy consumption could increase dramatically by the year 2030. The mission of the US DOE's Office of Building Technologies (OBT) is to lead a national program supporting private sector efforts to improve the energy efficiency of the nation's buildings and to increase their utilization of renewable energy sources. The Office is also responsible for energy efficiency planning and management for Federal buildings as well as buildings-related associated information, financial incentives, and regulatory functions that are determined to be appropriate for the Federal government. To accomplish its goals, OBT plans and conducts research and development to make technologies available and provides information on their effectiveness. The selection and management of OBT research activities requires an understanding of where and how energy is used within the buildings sectors, how energy use is expected to change in the future, and the potential impact of new and emerging technologies on energy use. Analysis activities serve to collect energy use information, provide the analysis necessary to apply this information to research and development planning, and develop analysis tools which the program uses to set priorities for research projects. This report summarizes analysis and technology transfer activities undertaken by OBT during 1989 and 1990. 101 refs., 19 figs., 9 tabs.

Not Available

1991-08-01T23:59:59.000Z

224

Clean Coal Technology Programs: Program Update 2003 (Volume 1)  

SciTech Connect (OSTI)

Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

2003-12-01T23:59:59.000Z

225

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2013 Activities and Achievements  

E-Print Network [OSTI]

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2013 Activities Institute for Telecommunication Sciences Pursuant to the Technology Transfer and Commercialization Act This report summarizes technology transfer activities and achievements of the Department of Commerce's (DOC

226

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2012 Activities and Achievements  

E-Print Network [OSTI]

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2012 Activities Institute for Telecommunication Sciences Pursuant to the Technology Transfer and Commercialization Act This report summarizes technology transfer activities and achievements of the Department of Commerce's (DOC

227

Abi Barrow, PhD Founding Director of the Massachusetts Technology Transfer Center  

E-Print Network [OSTI]

Abi Barrow, PhD Founding Director of the Massachusetts Technology Transfer Center Dr. Abigail Barrow is the Founding Director of the Massachusetts Technology Transfer Center (MTTC). She and accelerates technology transfer between all universities, hospitals and research institutions

Vajda, Sandor

228

EDINBURGH TECHNOLOGY TRANSFER CENTRE LIMITED GUIDE TO INFORMATION AVAILABLE THROUGH OUR PUBLICATION SCHEME  

E-Print Network [OSTI]

EDINBURGH TECHNOLOGY TRANSFER CENTRE LIMITED GUIDE TO INFORMATION AVAILABLE THROUGH OUR PUBLICATION and what it might cost. Edinburgh Technology Transfer Centre Limited ("the company") has adopted the Model Unless otherwise stated, Edinburgh Technology Transfer Centre Limited reserves copyright in all

Edinburgh, University of

229

Geothermal Technologies Program Annual Peer Review Presentation...  

Office of Environmental Management (EM)

Annual Peer Review Presentation By Doug Hollett Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett 2012 Peer Review presentation by Doug Hollett,...

230

Technology Transfer Webinar on November 12: High-Performance...  

Broader source: Energy.gov (indexed) [DOE]

DOEOE and EPRI will host a technology transfer webinar on Wednesday, November 12, 2014 from noon to 2 p.m. (ET). The purpose of this open webinar is to disseminate results and...

231

Notice of Inquiry: Technology Transfer Practices at Department...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

electronically to GC-62@hq.doe.gov Office of the Assistant General Counsel for Technology Transfer U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 Dear...

232

Questions concerning Technology Transfer Practices at DOE Labs...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

concerning Technology Transfer Practices at DOE Labs.txt From: Gary S. Selwyn gary.selwyn@apjet.com Sent: Tuesday, February 10, 2009 7:00 PM To: GC-62 Subject: Questions...

233

ORNL technology transfer continues strong upward trend | ornl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

help utilities achieve deeper and broader energy savings from their energy efficiency and demand-response programs. Dry Surface Technologies of Guthrie, Okla, licensed Barrian, a...

234

E-Print Network 3.0 - accelerating technology transfer Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technology transfer Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerating technology transfer Page: << < 1 2 3 4 5 > >> 1 BOARD OF TRUSTEES...

235

Oswer source book. Volume 1. Training and technology transfer resources, 1992-1993  

SciTech Connect (OSTI)

The OSWER Source Book provides a consolidated listing of training and technology transfer resources of potential interest to U.S. Environmental Protection Agency (EPA), State, and local government personnel concerned with solid and hazardous waste management. Volume I contains information on OSWER training (including the CERCLA Education Center), publications, videotapes, information systems and software, and support programs.

Not Available

1992-09-01T23:59:59.000Z

236

1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program  

E-Print Network [OSTI]

, and Specialty Vehicles Fuel cells can be a cost-competitive option for critical-load facilities, backup power1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies

237

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

Donald Duttlinger

1999-12-01T23:59:59.000Z

238

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

Unknown

1999-10-31T23:59:59.000Z

239

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

During FY00, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY00, which lay the groundwork for further growth in the future.

Unknown

2000-05-01T23:59:59.000Z

240

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel  

E-Print Network [OSTI]

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Storage Hydrogen Storage Developing safe, reliable, compact, and cost-effective hydrogen storage tech- nologies is one be Stored? Hydrogen storage will be required onboard vehicles and at hydrogen production sites, hydrogen

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel  

E-Print Network [OSTI]

collectors. In a Polymer Electrolyte Membrane (PEM) fuel cell, which is widely regarded as the most promisingFUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fuel Cells -- is the key to making it happen. Stationary fuel cells can be used for backup power, power for remote loca

242

technology offer Research and Transfer Support | Tanja Sovic-Gasser  

E-Print Network [OSTI]

technology offer Research and Transfer Support | Tanja Sovic-Gasser Favoritenstrasse 16/E0154 | A of the deposition process their surface topography can be adjusted for repellent - "easy to clean" properties-current pulse phase are major problems in industrial applications. Technology Electroplating is done at constant

Szmolyan, Peter

243

Oil and gas technology transfer activities and potential in eight major producing states. Volume 1  

SciTech Connect (OSTI)

In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

Not Available

1993-07-01T23:59:59.000Z

244

ENGINEERING TECHNOLOGY Engineering Technology  

E-Print Network [OSTI]

, Mechatronics Technology, and Renewable Energy Technology. Career Opportunities Graduates of four: business administration, wind farm management, aircraft maintenance, tooling production, quality and safety or selected program track focus. Transfer students must talk to their advisor about transferring their courses

245

Environmental technologies program, Fiscal year 1994  

SciTech Connect (OSTI)

This document presents details of the technology that is currently being demonstrated at the Hanford Site. The program is testing technology for cost and time savings in the following clean-up areas: detection and characterization; soil and ground water remediation; remote handling; waste minimization; and high-level, low-level, and mixed waste treatment. This document also contains a technology integration section.

NONE

1994-12-31T23:59:59.000Z

246

Technology Roadmap Research Program for the Steel Industry  

SciTech Connect (OSTI)

The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

Joseph R. Vehec

2010-12-30T23:59:59.000Z

247

Geothermal Reservoir Well Stimulation Program: technology transfer  

SciTech Connect (OSTI)

Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

Not Available

1980-05-01T23:59:59.000Z

248

Geothermal Reservoir Well Stimulation Program: technology transfer  

SciTech Connect (OSTI)

The following are included: review of available data from previous fracturing stimulation operations, stimulation process variables, fracturing fluid design, hydraulic fracture design, stimulation case histories, and selected bibliography. (MHR)

Not Available

1980-05-01T23:59:59.000Z

249

Clean Coal Technology Demonstration Program: Program update 1993  

SciTech Connect (OSTI)

The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a $6.9 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Technology has a vital role in ensuring that coal can continue to serve U.S. energy interests and enhance opportunities for economic growth and employment while meeting the national committment to a clean and healthy global environment. These technologies are being advanced through the CCT Program. The CCT Program supports three substantive national objectives: ensuring a sustainable environment through technology; enhancing energy efficiency and reliability; providing opportunities for economic growth and employment. The technologies being demonstrated under the CCT Program reduce the emissions of sulfur oxides, nitrogen oxides, greenhouse gases, hazardous air pollutants, solid and liquid wastes, and other emissions resulting from coal use or conversion to other fuel forms. These emissions reductions are achieved with efficiencies greater than or equal to currently available technologies.

Not Available

1994-03-01T23:59:59.000Z

250

Clean Technology Evaluation & Workforce Development Program  

SciTech Connect (OSTI)

The overall objective of the Clean Technology Evaluation portion of the award was to design a process to speed up the identification of new clean energy technologies and match organizations to testing and early adoption partners. The project was successful in identifying new technologies targeted to utilities and utility technology integrators, in developing a process to review and rank the new technologies, and in facilitating new partnerships for technology testing and adoption. The purpose of the Workforce Development portion of the award was to create an education outreach program for middle & high-school students focused on clean technology science and engineering. While originally targeting San Diego, California and Cambridge, Massachusetts, the scope of the program was expanded to include a major clean technology speaking series and expo as part of the USA Science & Engineering Festival on the National Mall in Washington, D.C.

Patricia Glaza

2012-12-01T23:59:59.000Z

251

Geothermal energy technology program summary  

SciTech Connect (OSTI)

The progress to date of the geothermal energy program of the US Department of Energy is briefly summarized, including federal/industry cooperation, program focus, and a budget summary. (ACR)

Not Available

1985-05-01T23:59:59.000Z

252

Technology Transfer The Institute could not accomplish its goals without shar-  

E-Print Network [OSTI]

Technology Transfer The Institute could not accomplish its goals without shar- ing its expertise. Technology transfer also communicates to the world who we are--raising the profile of the Institute and its report highlights some of our technology transfer activities over the past year. Technology Transfer

Minnesota, University of

253

Technology Transfer The Research Profile of the Johannes Gutenberg University Mainz  

E-Print Network [OSTI]

Science Research Technology Transfer The Research Profile of the Johannes Gutenberg University Mainz #12;#12;Science Research Technology Transfer 3 Foreword In light of the tough international Technology Transfer 38 Imprint Contents Science Research Technology Transfer 5 #12;Clear Commitment

Kaus, Boris

254

Research Projects > Research Services > Technology Transfer Cover: Electromagnetic Collapse of Metallic Cylinders  

E-Print Network [OSTI]

Research Projects > Research Services > Technology Transfer INDUSTRY GUIDE TO TECHNION #12;Cover > Research Services > Technology Transfer Produced by Technion Research and Development Foundation (TRDF Technology Transfer 25 Technion Technology Transfer (T3 ) 30 Alfred Mann Institute at the Technion (AMIT) 31

Avron, Joseph

255

Clean Coal Technology Demonstration Program. Program update 1994  

SciTech Connect (OSTI)

The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

NONE

1995-04-01T23:59:59.000Z

256

Fuel Cell Technologies Program Overview  

E-Print Network [OSTI]

per kW, 5,000-hr durability Hydrogen Cost Technology Validation: Technologies Techno Barri y g. Benefits · Efficiencies can be 60% (electrical) and 3 60% (electrical) and 85% (with CHP) · > 90% reduction (> 40% increase over 2008) Fuel cells can be a cost-competitive option for critical

257

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic-Gasser  

E-Print Network [OSTI]

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic for repellent - "easy to clean" properties ­ or vice versa for fluid retention properties as well, properties applications. Technology Electroplating is done at constant current density and structure formation is done

Szmolyan, Peter

258

Oswer source book. Volume 1. Training and technology transfer resources, 1992-1993  

SciTech Connect (OSTI)

Volumes I and II of The OSWER Source Book provide information on the many training courses, publications, videotapes, and information systems and software available to support EPA staff, State and local agencies, and others involved in managing the Nation's hazardous and solid waste programs. The Office of Solid Waste and Emergency Response's (OSWER) Technology Innovation Office (TIO) has compiled listings of the most significant training and technology transfer resources available to assist individuals with the responsibility for accomplishing OSWER's mission. Volume I of The Source Book contains listings of OSWER and other office training courses, publications, videotapes, information systems and software, and support programs devoted to hazardous and solid waste issues.

Not Available

1992-09-01T23:59:59.000Z

259

Technoclimat- Green Technologies Demonstration Program (Quebec, Canada)  

Broader source: Energy.gov [DOE]

The Green technologies demonstration program aiming to reduce greenhouse gas emissions is a product of Measure 20 of the 2006-2012 Climate Change Action Plan (CCAP). This CCAP measure encourages...

260

Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Page 1 of 3 10.6 Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture  

E-Print Network [OSTI]

Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Page 1 of 3 10.6 Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Policy Number & Name: 10.6 Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Approval

Yang, Eui-Hyeok

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NREL: Awards and Honors - Technology Transfer Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of Women |hitsAwards and Honors(PPS) CoatingTechnology

262

assessment technology program: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

"Advanced Technology Program Information Infrastructure for Healthcare Focused 137 Technology assessment of renewable energy sustainability in South Africa. Open Access...

263

FY 2014 Annual Progress Report- Electric Drive Technologies Program  

Broader source: Energy.gov [DOE]

FY 2014 Annual Progress Report for the Electric Drive Technologies Program of the Vehicle Technologies Office, DOE/EE-1163

264

Office of Technology Transfer and Innovation Partnerships, Innovative Technologies Complex, Suite 2100 Mailing Address: PO Box 6000, Binghamton, New York 13902-6000  

E-Print Network [OSTI]

Office of Technology Transfer and Innovation Partnerships, Innovative Technologies Complex, Suite Hancock Assistant Director for Licensing Binghamton University Office of Technology Transfer

Suzuki, Masatsugu

265

Recovery Act - Geothermal Technologies Program:Ground Source...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps A detailled description of the...

266

DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Fuel Cell Technologies Program Record, Record 11003, Fuel Cell Stack Durability DOE Fuel Cell Technologies Program Record, Record 11003, Fuel Cell Stack Durability Dated...

267

Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard...  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview Presented at the DOE-DOD...

268

DOE Vehicle Technologies Program 2009 Merit Review Report - Energy...  

Energy Savers [EERE]

Energy Storage DOE Vehicle Technologies Program 2009 Merit Review Report - Energy Storage Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview2.pdf...

269

Emerging Technologies Program Overview - 2014 BTO Peer Review...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the Building Technologies Office's Emerging Technologies Program. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs....

270

DOE Vehicle Technologies Program 2009 Merit Review Report - Lightweigh...  

Broader source: Energy.gov (indexed) [DOE]

6.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials DOE Vehicle Technologies Program 2009 Merit Review Report -...

271

DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

1.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Energy Storage DOE Vehicle...

272

DOE Vehicle Technologies Program 2009 Merit Review Report - Advanced...  

Broader source: Energy.gov (indexed) [DOE]

4.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials DOE Vehicle Technologies Program 2009 Merit Review Report -...

273

DOE Vehicle Technologies Program 2009 Merit Review Report - Acronyms...  

Energy Savers [EERE]

Acronyms DOE Vehicle Technologies Program 2009 Merit Review Report - Acronyms Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview11.pdf More...

274

DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion...  

Broader source: Energy.gov (indexed) [DOE]

7.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Lightweight Materials DOE Vehicle Technologies Program 2009 Merit Review Report -...

275

DOE Vehicle Technologies Program 2009 Merit Review Report - PI...  

Energy Savers [EERE]

PI and Project Cross Reference DOE Vehicle Technologies Program 2009 Merit Review Report - PI and Project Cross Reference Merit review of DOE Vehicle Technologies Program research...

276

DOE Vehicle Technologies Program 2009 Merit Review Report - Safety...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Safety Codes and Standards DOE Vehicle Technologies Program 2009 Merit Review Report - Safety Codes and Standards Merit review of DOE Vehicle Technologies Program research efforts...

277

accelerator technology program: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Suzuki, Masatsugu 2 ACCELERATED LAW PROGRAM Stevens Institute of Technology offers a Engineering Websites Summary: ACCELERATED LAW PROGRAM Stevens Institute of Technology...

278

Cummins SuperTruck Program - Technology and System Level Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

Cummins SuperTruck Program - Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology and...

279

Cummins SuperTruck Program - Technology Demonstration of Highly...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SuperTruck Program - Technology Demonstration of Highly Efficient Clean, Diesel Powered Class 8 Trucks Cummins SuperTruck Program - Technology Demonstration of Highly Efficient...

280

Characterization monitoring & sensor technology crosscutting program  

SciTech Connect (OSTI)

The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the OFfice of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60).

NONE

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

FUEL CELL TECHNOLOGIES PROGRAM Safety, Codes, and  

E-Print Network [OSTI]

. Many odorants can also contaminate fuel cells. Hydrogen burns very quickly. Under optimal combustionFUEL CELL TECHNOLOGIES PROGRAM Safety, Codes, and Standards Hydrogen and fuel cell technologies, nuclear, natural gas, and coal with carbon sequestration. Fuel cells provide a highly efficient means

282

The Drafting Technology Program offers a certificate or associate of applied science in drafting technology. The certificate program  

E-Print Network [OSTI]

DRAFTING TECHNOLOGY The Drafting Technology Program offers a certificate or associate of applied science in drafting technology. The certificate program offers a choice of six areas of emphasis: architectural drafting; civil drafting; information technology; mechanical and electrical drafting; process

Ickert-Bond, Steffi

283

HUMID AIR TURBINE CYCLE TECHNOLOGY DEVELOPMENT PROGRAM  

SciTech Connect (OSTI)

The Humid Air Turbine (HAT) Cycle Technology Development Program focused on obtaining HAT cycle combustor technology that will be the foundation of future products. The work carried out under the auspices of the HAT Program built on the extensive low emissions stationary gas turbine work performed in the past by Pratt & Whitney (P&W). This Program is an integral part of technology base development within the Advanced Turbine Systems Program at the Department of Energy (DOE) and its experiments stretched over 5 years. The goal of the project was to fill in technological data gaps in the development of the HAT cycle and identify a combustor configuration that would efficiently burn high moisture, high-pressure gaseous fuels with low emissions. The major emphasis will be on the development of kinetic data, computer modeling, and evaluations of combustor configurations. The Program commenced during the 4th Quarter of 1996 and closed in the 4th Quarter of 2001. It teamed the National Energy Technology Laboratory (NETL) with P&W, the United Technologies Research Center (UTRC), and a subcontractor on-site at UTRC, kraftWork Systems Inc. The execution of the program started with bench-top experiments that were conducted at UTRC for extending kinetic mechanisms to HAT cycle temperature, pressure, and moisture conditions. The fundamental data generated in the bench-top experiments was incorporated into the analytical tools available at P&W to design the fuel injectors and combustors. The NETL then used the hardware to conduct combustion rig experiments to evaluate the performance of the combustion systems at elevated pressure and temperature conditions representative of the HAT cycle. The results were integrated into systems analysis done by kraftWork to verify that sufficient understanding of the technology had been achieved and that large-scale technological application and demonstration could be undertaken as follow-on activity. An optional program extended the experimental combustion evaluations to several specific technologies that can be used with HAT technology. After 5 years of extensive research and development, P&W is pleased to report that the HAT Technology Development Program goals have been achieved. With 0 to 10 percent steam addition, emissions achieved during this program featured less than 8 ppm NO{sub x}, less than 16 ppm CO, and unburned hydrocarbons corrected to 15 percent O{sub 2} for an FT8 engine operating between 0 and 120 F with 65 to 100 percent power at any day.

Richard Tuthill

2002-07-18T23:59:59.000Z

284

Technology transfer: A cooperative agreement and success story  

SciTech Connect (OSTI)

This paper describes the cooperative agreement between the U.S. Department of Energy and Envirocare of Utah, Inc., wherein the former transferred macroencapsulative technology to the latter for purposes of demonstrating commercialization of treatment and disposal of 225, 000 Kg of radioactive lead stored at departmental installations.

Reno, H.W.; McNeel, K. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Armstrong, A.T. [USDOE Idaho Operations Office, Idaho Falls, ID (United States); Vance, J.K. [Envirocare of Utah, Inc., Salt Lake City, UT (UNited States)

1996-08-01T23:59:59.000Z

285

Pathways to Technology Transfer and Adoption: Achievements and Challenges (Mini-Tutorial)  

E-Print Network [OSTI]

Pathways to Technology Transfer and Adoption: Achievements and Challenges (Mini-Tutorial) Dongmei. There are some common challenges faced when pursuing technology transfer and adoption while particular challenges transfer and adoption. This mini-tutorial presents achievements and challenges of technology transfer

Xie, Tao

286

Technology transfer by CDM projects: a comparison of Brazil, China, India and Mexico  

E-Print Network [OSTI]

Technology transfer by CDM projects: a comparison of Brazil, China, India and Mexico Antoine (Dechezleprêtre et al., 2008), we gave a general description of technology transfers by CDM projects and we important role in facilitating international technology transfers through the CDM. International transfers

287

Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP). Technology summary  

SciTech Connect (OSTI)

The Characterization, Monitoring, and Sensor Technology Integrated Program seeks to deliver needed technologies, timely and cost-effectively, to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The scope of characterizations monitoring, and sensor technology needs that are required by those organizations encompass: (1) initial location and characterization of wastes and waste environments - prior to treatment; (2) monitoring of waste retrieval, remediation and treatment processes; (3) characterization of the co-position of final waste treatment forms to evaluate the performance of waste treatments processes; and (4) site closure and compliance monitoring. Wherever possible, the CMST-IP fosters technology transfer and commercialization of technologies that it sponsors.

Not Available

1994-04-01T23:59:59.000Z

288

Fermilab | Office of Partnerships and Technology Transfer | Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000Technology | GISMO GISMO Great

289

An Inventor's Guide:Technology Transfer at LSU Health Sciences Center -New Orleans Office of Technology Management  

E-Print Network [OSTI]

1 An Inventor's Guide:Technology Transfer at LSU Health Sciences Center - New Orleans Office://www.lsuhsc.edu/administration/academic/otm/ #12;2 A MESSAGE FROM THE DIRECTOR The `An Inventor's Guide: Technology Transfer at LSU Health Sciences Center' outlines the essential elements of technology transfer and commercialization on our campus

290

An Inventor's Guide:Technology Transfer at LSU Health Sciences Center New Orleans Office of Technology Management  

E-Print Network [OSTI]

1 An Inventor's Guide:Technology Transfer at LSU Health Sciences Center New Orleans Office://www.lsuhsc.edu/administration/academic/otm/ #12;2 A MESSAGE FROM THE DIRECTOR The `An Inventor's Guide: Technology Transfer at LSU Health Sciences Center' outlines the essential elements of technology transfer and commercialization on our campus

291

Technology Entrepreneurship Program Real-world practice with real-world technologies  

E-Print Network [OSTI]

Technology Entrepreneurship Program Real-world practice with real-world technologies What it's all about Pacific Northwest National Laboratory's (PNNL) Technology Entrepreneurship Program (TEP) provides university students with access to PNNL-developed available technologies. Laboratory staff work

292

PROGRAM OPPORTUNITY NOTICE Building Natural Gas Technology (BNGT) Grant  

E-Print Network [OSTI]

PROGRAM OPPORTUNITY NOTICE Building Natural Gas Technology (BNGT) Grant Program PON-13-503 http ............................................................................................................................5 PIER NATURAL GAS RESEARCH PROGRAM

293

Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer  

SciTech Connect (OSTI)

The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Programs is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months..

Burn, G. (comp.)

1990-07-01T23:59:59.000Z

294

MHD magnet technology development program summary, September 1982  

SciTech Connect (OSTI)

The program of MHD magnet technology development conducted for the US Department of Energy by the Massachusetts Institute of Technology during the past five years is summarized. The general strategy is explained, the various parts of the program are described and the results are discussed. Subjects covered include component analysis, research and development aimed at improving the technology base, preparation of reference designs for commercial-scale magnets with associated design evaluations, manufacturability studies and cost estimations, the detail design and procurement of MHD test facility magnets involving transfer of technology to industry, investigations of accessory subsystem characteristics and magnet-flow-train interfacing considerations and the establishment of tentative recommendations for design standards, quality assurance procedures and safety procedures. A systematic approach (framework) developed to aid in the selection of the most suitable commercial-scale magnet designs is presented and the program status as of September 1982 is reported. Recommendations are made for future work needed to complete the design evaluation and selection process and to provide a sound technological base for the detail design and construction of commercial-scale MHD magnets. 85 references.

Not Available

1983-11-01T23:59:59.000Z

295

MHD Technology Transfer, Integration and Review Committee. Second semiannual status report, July 1988--March 1989  

SciTech Connect (OSTI)

As part of the MHD Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The Charter of the TTIRC, which was approved by the DOE in June 1988 and distributed to the committee members, is included as part of this Summary. As stated in the Charter, the purpose of this committee is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the US MHD Program. The DOE fiscal year 1989 MHD Program Plan Schedule is included at the end of this Summary. The MHD Technology Transfer, Integration and Review Committee`s activities to date have focused primarily on the ``technology transfer`` aspects of its charter. It has provided a forum for the dissemination of technical and programmatic information among workers in the field of MHD and to the potential end users, the utilities, by holding semi-annual meetings. The committee publishes this semi-annual report, which presents in Sections 2 through 11 capsule summaries of technical progress for all DOE Proof-of-Concept MHD contracts and major test facilities.

Not Available

1989-10-01T23:59:59.000Z

296

Characterization, monitoring, and sensor technology crosscutting program: Technology summary  

SciTech Connect (OSTI)

The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.

NONE

1995-06-01T23:59:59.000Z

297

1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program  

E-Print Network [OSTI]

Electricity Natural Gas Power Heat + Cooling Electricity Cooling Natural GasNatural Gas or Biogas Fuel Cell H Excess for Our Energy Future 5 | Fuel Cell Technologies Program eere.energy.govSource: US DOE 10/2010 #12;Biogas Cell Technologies Program eere.energy.gov #12;Biogas Resource Example: Methane from Waste Water

298

Vehicle Technologies Program: Goals, Strategies, and Top Accomplishments (Brochure)  

SciTech Connect (OSTI)

Fact sheet describes the Vehicle Technologies Program and its goals, strategies and top accomplishments.

Not Available

2010-12-01T23:59:59.000Z

299

Fuel Cell Technologies Program Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen TelescopeRenewable 0 0 Program

300

Fuel Cell Technologies Program Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen TelescopeRenewable 0 0 ProgramFuel

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Technology Innovation Program | Partnerships | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR8,MaterialsTechnologist inFundInnovation Program

302

Clean coal technology demonstration program: Program update 1996-97  

SciTech Connect (OSTI)

The Clean Coal Technology Demonstration Program (known as the CCT Program) reached a significant milestone in 1996 with the completion of 20 of the 39 active projects. The CCT Program is responding to a need to demonstrate and deploy a portfolio of technologies that will assure the U.S. recoverable coal reserves of 297 billion tons could continue to supply the nation`s energy needs economically and in a manner that meets the nation`s environmental objectives. This portfolio of technologies includes environmental control devices that contributed to meeting the accords on transboundary air pollution recommended by the Special Envoys on Acid Rain in 1986. Operational, technical, environmental, and economic performance information and data are now flowing from highly efficient, low-emission, advanced power generation technologies that will enable coal to retain its prominent role into the next millennium. Further, advanced technologies are emerging that will enhance the competitive use of coal in the industrial sector, such as in steelmaking. Coal processing technologies will enable the entire coal resource base to be used while complying with environmental requirements. These technologies are producing products used by utilities and industrial processes. The capability to coproduce products, such as liquid and solid fuels, electricity, and chemicals, is being demonstrated at a commercial scale by projects in the CCT Program. In summary, this portfolio of technologies is satisfying the national need to maintain a multifuel energy mix in which coal is a key component because of its low-cost, availability, and abundant supply within the nation`s borders.

NONE

1997-10-01T23:59:59.000Z

303

Project Summary for Small Business Technology Transfer (STTR) Phase II Proposal  

E-Print Network [OSTI]

Project Summary for Small Business Technology Transfer (STTR) Phase II Proposal Title: Real-time Analysis and Feedback during Colonoscopy to improve Quality This Small Business Technology Transfer Phase

Oh, JungHwan

304

Software Tools for Technology Transfer manuscript No. (will be inserted by the editor)  

E-Print Network [OSTI]

Software Tools for Technology Transfer manuscript No. (will be inserted by the editor) Tradeoff manuscript, published in "Software Tools for Technology Transfer (STTT) 15, 3 (2013) 229-245" DOI : 10.1007/s

Paris-Sud XI, Université de

305

Made in China : A Norwegian Perspective on How Cultural Differences Affect Technology Transfer.  

E-Print Network [OSTI]

??In this thesis, an attempt to incorporate cross-cultural research to an innovation-oriented approach to technology transfer is made. As cultural aspects of international technology transfer (more)

Gulliksen, Jrgen Horn

2010-01-01T23:59:59.000Z

306

The EMDEX Project: Technology transfer and occupational measurements  

SciTech Connect (OSTI)

The Electric and Magnetic Field Measurement Project for Utilities -- the EPRI EMDEX Project -- is a multifaceted project entailing technology transfer, measurement protocol design, data management, and exposure assessment analyses. The specific objectives of the project in order of priority were: to transfer the EMDEX technology to utilities; to develop measurement protocols and data management capabilities for large exposure data sets; and to collect, analyze, and document 60-Hz electric and magnetic field exposures for a diverse population. Transfer of the EPRI Electric and Magnetic Field Digital Exposure system (EMDEX) technology to the participating utilities was accomplished through training and through extensive involvement in the exposure data collection effort. Field exposure data measured by an EMDEX system were collected by volunteer utility employees at 59 sites in the US and three other countries between October 1988 and September 1989. Approximately 50,000 hours of magnetic field and 23,000 hours of electric field exposure records taken at 10-second intervals were obtained, of which 70% were from Work environments. Exposures and time spent in environments have been analyzed by Primary Work Environment, by occupied environment, and by job classification. Generally, the measured fields and exposures in the Generation, Transmission, Distribution and Substation environments were higher than in other occupational environments in utilities. The Nonwork fields and exposures for workers associated with various categories were comparable. Evaluation of the project by participants indicated general satisfaction with the EMDEX system and with this approach to technology transfer. This document, Volume 3 contains appendices with a complete set of project protocols, project materials, and extensive data tables.

Not Available

1990-11-01T23:59:59.000Z

307

Technology Transfer Sustaining Our Legacy of Addressing National Challenges  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeignTechnology-Selection-Process Sign In About |Transfer

308

Technology Transfer Working Group (TTWG) | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration atStandardsAnalysis »Technology Transfer Working

309

US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer  

SciTech Connect (OSTI)

Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, and the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.

Hsieh, S.T. [Tulane Univ., New Orleans, LA (United States). US/China Inst.; Atwood, T. [Dept. of Energy, Washington, DC (United States); Qiu Daxiong [Tsinghua Univ., Beijing (China); Zhang Guocheng [State Science and Technology Commission, Beijing (China)

1997-12-31T23:59:59.000Z

310

The EMDEX Project: Technology transfer and occupational measurements  

SciTech Connect (OSTI)

The Electric and Magnetic Field Measurement Project for Utilities -- the EPRI EMDEX Project -- is a multifaceted project entailing technology transfer, measurement protocol design, data management, and exposure assessment analyses. The specific objectives of the project in order of priority were: (1) to transfer the EMDEX technology to utilities; (2) to develop measurement protocols and data management capabilities for large exposure data sets; and (3) to collect, analyze, and document 60-Hz electric and magnetic field exposures for a diverse population. Transfer of the EPRI Electric and Magnetic Field Digital Exposure system (EMDEX) technology to the participating utilities was accomplished through training and through extensive involvement in the exposure data collection effort. Documentation of the EMDEX Project is contained in three volumes: Volume 1 summarizes the methods and results, and provides and assessment of project objectives; Volume 2 provides detailed descriptions of methods, procedures, protocols, materials and analyses; and Volume 3 contains appendices with a complete set of project protocols, project materials, and extensive data tables. 8 refs., 12 figs., 2 tabs.

Bracken, T.D.

1990-11-01T23:59:59.000Z

311

Connect, Collaborate, Commercialize There are many different opportunities for engagement and technology transfer at Georgia  

E-Print Network [OSTI]

and technology transfer at Georgia Tech. Working together we can tailor a relationship unique to your company

Garmestani, Hamid

312

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.

Unknown

2000-11-01T23:59:59.000Z

313

Office of Industrial Technologies: Summary of program results  

SciTech Connect (OSTI)

Working in partnership with industry, the US Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) is helping reduce industrial energy use, emissions, and waste while boosting productivity. Operating within the Office of Energy Efficiency and Renewable Energy (EE), OIT conducts research, development, demonstration, and technology transfer efforts that are producing substantial, measurable benefits to industry. This document summarizes some of the impacts of OIT`s programs through 1997. OIT tracks energy savings as well as other benefits associated with the successfully commercialized technologies resulting from OIT-supported research partnerships. Specifically, a chart shows current and cumulative energy savings as well as cumulative reductions of various air pollutants including particulates, volatile organic compounds (VOCs), nitrogen oxides (NO{sub x}), sulfur oxides (SO{sub x}), and the greenhouse gas, carbon dioxide (CO{sub 2}). The bulk of the document consists of four appendices. Appendix 1 describes the technologies currently available commercially, along with their applications and benefits; Appendix 2 describes the OIT-supported emerging technologies that are likely to be commercialized within the next year or two; Appendix 3 describes OIT-sponsored technologies used in commercial applications in the past that are no longer tracked; and Appendix 4 describes the methodology used to assess and track OIT-supported technologies.

NONE

1999-01-01T23:59:59.000Z

314

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

SciTech Connect (OSTI)

The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). To do this, Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify hydrogen- and fuel-cell-related patents that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of hydrogen- and fuel-cell-related grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs, and within the FCT portfolio.

Weakley, Steven A.; Brown, Scott A.

2011-09-29T23:59:59.000Z

315

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

SciTech Connect (OSTI)

The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify patents related to hydrogen and fuel cells that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs that are related to hydrogen and fuel cells.

Weakley, Steven A.

2012-09-28T23:59:59.000Z

316

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage  

E-Print Network [OSTI]

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen Storage Developing safe, reliable, compact, and cost of space. Where and How Will Hydrogen be Stored? Hydrogen storage will be required onboard vehicles to storing hydrogen include: · Physical storage of compressed hydrogen gas in high pressure tanks (up to 700

317

FUEL CELL TECHNOLOGIES PROGRAM Small Business  

E-Print Network [OSTI]

FUEL CELL TECHNOLOGIES PROGRAM Small Business Innovation Research (SBIR) Award Success Story Fuel up to 90 MW per year with full utilization. FuelCell Energy has received Small Business Innovation compression at fueling stations. However in the short term, EHCs can be used to compress hydro

318

FUEL CELL TECHNOLOGIES PROGRAM Small Business  

E-Print Network [OSTI]

FUEL CELL TECHNOLOGIES PROGRAM Small Business Innovation Research (SBIR) Award Success Story Proton Energy Systems Proton Energy Systems is a suc- cessful small business specializing in clean production that can be coupled with HOGEN RE® hydrogen generators are wind, solar, hydro, and wave power. Proton

319

Technology Innovation Program Programmatic Plan: FY 2011 FY 2014  

E-Print Network [OSTI]

Technology Innovation Program Programmatic Plan: FY 2011 FY 2014 Critical National Need Area & intelligent automation (#3) Technologies to enable a smart grid (#4) Technologies for water availability (#6) Sustainability Technologies for personalized medicine (#5) Complex networks Manufacturing Advanced sensing

Magee, Joseph W.

320

The World Wide Web and Technology Transfer at NASA Langley Research Center  

E-Print Network [OSTI]

The World Wide Web and Technology Transfer at NASA Langley Research Center Michael L. Nelson with a reorganization of LaRC to provide a more concentrated focus on technology transfer to both aerospace and non allows for the implementation, evolution and integration of many technology transfer applications

Nelson, Michael L.

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

X. SELECTED ADMINISTRATIVE POLICIES FOR FACULTY H. Technology Transfer (Patent) Policy  

E-Print Network [OSTI]

X. SELECTED ADMINISTRATIVE POLICIES FOR FACULTY H. Technology Transfer (Patent) Policy 1. Introduction a. Relation of Technology Transfer to the Mission of the College A significant aspect available for public use and benefit. This "technology transfer" is accomplished in many ways, including

Kasman, Alex

322

Software Tools for Technology Transfer manuscript No. (will be inserted by the editor)  

E-Print Network [OSTI]

Software Tools for Technology Transfer manuscript No. (will be inserted by the editor) Editorial W This marks the inaugural issue of the Springer­Verlag journal Software Tools for Technology Transfer (STTT. This aim goes hand in hand with the technology transfer support offered by the related Electronic Tool

Cleaveland, Rance

323

Trinity Technology Transfer News In recent months Creme has been working with their customers  

E-Print Network [OSTI]

Trinity Technology Transfer News April 2013 In recent months Creme has been working. Margaret Woods | Technology Transfer Manager mjwoods@tcd.ie Ms. Audrey Crosbie | Industry Liaison Manager Enterprise Ireland technology Transfer grant, 2007-2012 Creme Global, is a TCD campus company spun out

O'Mahony, Donal E.

324

Trinity Technology Transfer News TTCCDD CCaammppuuss CCoommppaannyy ttoo llaauunncchh nneeww pprroodduucctt  

E-Print Network [OSTI]

Trinity Technology Transfer News TTCCDD CCaammppuuss CCoommppaannyy ttoo llaauunncchh nneeww programmes". One of the functions of the Technology Transfer Office is to promote and foster a culture communities. All members of the TTO deliver seminars, workshops, and course modules on IP, technology transfer

O'Mahony, Donal E.

325

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2008 Activities and Achievements  

E-Print Network [OSTI]

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2008 Activities--Institute for Telecommunication Sciences In response to the: Technology Transfer and Commercialization Act of 2000 (P.L. 106 (FY) 2008. At the Department of Commerce, technology transfer is a significant part of the mission

Perkins, Richard A.

326

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2011 Activities and Achievements  

E-Print Network [OSTI]

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2011 Activities Pursuant to the Technology Transfer Commercialization Act of 2000 (Pub. L. 106-404) January 2012 #12;ii This page is intentionally left blank FOREWORD This report summarizes technology transfer activities

Perkins, Richard A.

327

PATENTING AND LICENSING The major thrust of the Technology Transfer Office's activity is directed towards  

E-Print Network [OSTI]

PATENTING AND LICENSING The major thrust of the Technology Transfer Office's activity that he or she may have created an invention, to promptly report it to the Technology Transfer Office. 2. Patentability Determination After the invention is reported to the Technology Transfer Office

328

Specificationbased Testing of Reactive Software: A Case Study in Technology Transfer  

E-Print Network [OSTI]

Specification­based Testing of Reactive Software: A Case Study in Technology Transfer Lalita be effective in practice. The case study illustrates that technology transfer efforts can benefit from that limit formal methods technology transfer. We also found that there is often a tension between the scope

Porter, Adam

329

CONNET -DESIGN ISSUES1 Issues in Designing a European Technology Transfer Network for the  

E-Print Network [OSTI]

CONNET - DESIGN ISSUES1 Issues in Designing a European Technology Transfer Network of European Union's Technology Transfer Network such a one-stop-shop for the construction industry of Europe and techniques that enable technology transfer to SMEs as well as provide new business opportunities and models

Amor, Robert

330

A GRADUATE'S ROLE IN TECHNOLOGY TRANSFER: FROM REQUIREMENTS TO DESIGN WITH UML  

E-Print Network [OSTI]

A GRADUATE'S ROLE IN TECHNOLOGY TRANSFER: FROM REQUIREMENTS TO DESIGN WITH UML Stephen Hallinan in the discipline of software engineering and is often categorised under the umbrella of technology transfer analyse the role of a recently qualified stu- dent1 in facilitating technology transfer in the form

Gibson, J. Paul

331

februari 2008 MassMass transfer & separation technology 424302 2008transfer & separation technology 424302 2008 --APPENDIXAPPENDIX  

E-Print Network [OSTI]

Multicomponent mixturesmixtures"" by J.A.by J.A. WesselinghWesselingh & R. Krishna,& R. Krishna, DelftDelft University Press (2000Transfer in MulticomponentMulticomponent mixturesmixtures"" by J.A.by J.A. WesselinghWesselingh & R. Krishna,& R. Krishna"" by J.A.by J.A. WesselinghWesselingh & R. Krishna,& R. Krishna, DelftDelft University Press (2000

Zevenhoven, Ron

332

Fuel Technologies: Goals, Strategies, and Top Accomplishments; Vehicle Technologies Program (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet describes the top accomplishments, goals, and strategies of DOE's Fuel Technologies sub program.

Not Available

2009-04-01T23:59:59.000Z

333

Technology and Consumer Products Branch: program plan  

SciTech Connect (OSTI)

The primary objective of the Technology and Consumer Products Branch (TCP) is to encourage the development and commercialization of energy-efficient technologies and equipment used in buildings and purchased by consumers. The TCP program conducts technical research, development, and demonstration efforts jointly funded with private industry, educational institutions, utilities, and other Federal and state agencies as appropriate. All contracts, grants, or interagency agreements have the major thrust of developing products and disseminating information that will accelerate commercial availability of energy-efficient, low-cost, reliable technologies, techniques, and products suitable for use by consumers and design professionals in the residential and commercial building sectors. Specifically, the technologies pursued by the branch include heating and cooling systems, consumer appliances, lighting design, and systems. Projects for each of these areas are summarized briefly, and publications resulting from the activities are listed.

None

1980-03-01T23:59:59.000Z

334

The FreedomCAR & Vehicle Technologies Health Impacts Program...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

FreedomCAR & Vehicle Technologies Health Impacts Program - The Collaborative Lubricating Oil Study on Emissions (CLOSE) Project The FreedomCAR & Vehicle Technologies Health Impacts...

335

Technology Adoption and Commercialization Program (New Brunswick, Canada)  

Broader source: Energy.gov [DOE]

The Technology Adoption and Commercialization Program (TAC) is intended to encourage the adoption of improved technologies and processes by offsetting some of the direct costs associated with...

336

NANOTECHNOLOGY GRADUATE PROGRAM SEMINAR SERIES STEVENS INSTITUTE OF TECHNOLOGY  

E-Print Network [OSTI]

NANOTECHNOLOGY GRADUATE PROGRAM SEMINAR SERIES STEVENS INSTITUTE OF TECHNOLOGY NANOTECHNOLOGY and Engineering Drexel University Nanofiber technology is a branch of nanotechnology that concerns the processing

Fisher, Frank

337

DOE Vehicle Technologies Program 2009 Merit Review Report - Fuels...  

Broader source: Energy.gov (indexed) [DOE]

5.pdf More Documents & Publications 2010 DOE EERE Vehicle Technologies Program Merit Review - Fuels Technologies 2011 Annual Merit Review Results Report - Fuels & Lubricants DOE...

338

Status of the DOE Battery and Electrochemical Technology Program V  

SciTech Connect (OSTI)

The program consists of two activities, Technology Base Research (TBR) managed by the Lawrence Berkeley Laboratory (LBL) and Exploratory Technology Development and Testing (EDT) managed by the Sandia National Laboratories (SNL). The status of the Battery Energy Storage Test (BEST) Facility is presented, including the status of the batteries to be tested. ECS program contributions to the advancement of the lead-acid battery and specific examples of technology transfer from this program are given. The advances during the period December 1982 to June 1984 in the characterization and performance of the lead-acid, iron/nickel-oxide, iron/air, aluminum/air, zinc/bromide, zinc/ferricyanide, and sodium/sulfur batteries and in fuel cells for transport are summarized. Novel techniques and the application of established techniques to the study of electrode processes, especially the electrode/electrolyte interface, are described. Research with the potential of leading to improved ceramic electrolytes and positive electrode container and current-collectors for the sodium/sulfur battery is presented. Advances in the electrocatalysis of the oxygen (air) electrode and the relationship of these advances to the iron/air and aluminum/air batteries and to the fuel cell are noted. The quest for new battery couples and battery materials is reviewed. New developments in the modeling of electrochemical cell and electrode performance with the approaches to test these models are reported.

Roberts, R.

1985-06-01T23:59:59.000Z

339

Geothermal Technologies Program Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program...

340

Fuel Cell Technologies Program FY 2013 Budget Request Rollout...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program FY 2013 Budget Request Rollout to Stakeholders Fuel Cell Technologies Program FY 2013 Budget Request Rollout to Stakeholders Presentation by Sunita Satyapal at the FY 2013...

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geothermal Technologies Program Multi-Year Research, Development...  

Office of Environmental Management (EM)

Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with...

342

Alternative Fuel and Advanced Technology Vehicles Pilot Program...  

Open Energy Info (EERE)

Program Emissions Benefit Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool...

343

Vehicle Technologies Office Merit Review 2014: SuperTruck Program...  

Energy Savers [EERE]

SuperTruck Program: Engine Project Review Vehicle Technologies Office Merit Review 2014: SuperTruck Program: Engine Project Review Presentation given by Detroit Diesel Corporation...

344

Small Business Technology Transfer (STTR) Programs Participating DOE Research Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite Cultural Resourcestepidum FMOSmallResearch

345

Building technologies program. 1995 annual report  

SciTech Connect (OSTI)

The 1995 annual report discusses laboratory activities in the Building Technology Program. The report is divided into four categories: windows and daylighting, lighting systems, building energy simulation, and advanced building systems. The objective of the Building Technologies program is to assist the U.S. building industry in achieving substantial reductions in building-sector energy use and associated greenhouse gas emissions while improving comfort, amenity, health, and productivity in the building sector. Past efforts have focused on windows and lighting, and on the simulation tools needed to integrate the full range of energy efficiency solutions into achievable, cost-effective design solutions for new and existing buildings. Current research is based on an integrated systems and life-cycle perspective to create cost-effective solutions for more energy-efficient, comfortable, and productive work and living environments. Sixteen subprograms are described in the report.

Selkowitz, S.E.

1996-05-01T23:59:59.000Z

346

Technology transfer package on seismic base isolation - Volume III  

SciTech Connect (OSTI)

This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume III contains supporting materials not included in Volumes I and II.

NONE

1995-02-14T23:59:59.000Z

347

NREL: Technology Transfer - The Quest for Inexpensive Silicon Solar Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNicheTechnology TransferThe Quest

348

NREL: Technology Transfer - The Quest for Inexpensive Silicon Solar Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOther FederalNicheTechnology TransferThe

349

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC's accomplishments during FY02. Activities were maintained at recent record levels. Strategic planning from multiple sources within the framework of the organization gives PTTC the vision to have even more impact in the future. The Houston Headquarters (HQ) location has strived to serve PTTC well in better connecting with producers and the service sector. PTTC's reputation for unbiased bottom line information stimulates cooperative ventures with other organizations. Efforts to build the contact database, exhibit at more trade shows and a new E-mail Technology Alert service are expanding PTTC's audience. All considered, the PTTC network has proven to be an effective way to reach domestic producers locally, regionally and nationally.

Unknown

2002-11-01T23:59:59.000Z

350

Bioenergy Technologies Office Multi-Year Program Plan: May 2013...  

Energy Savers [EERE]

Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update Bioenergy Technologies Office Multi-Year Program Plan: May 2013 Update This is the May 2013 Update to the...

351

IPIRG programs - advances in pipe fracture technology  

SciTech Connect (OSTI)

This paper presents an overview of the advances made in fracture control technology as a result of the research performed in the International Piping Integrity Research Group (IPIRG) program. The findings from numerous experiments and supporting analyses conducted to investigate the behavior of circumferentially flawed piping and pipe systems subjected to high-rate loading typical of seismic events are summarized. Topics to be discussed include; (1) Seismic loading effects on material properties, (2) Piping system behavior under seismic loads, (3) Advances in elbow fracture evaluations, and (4) {open_quotes}Real{close_quotes} piping system response. The presentation for each topic will be illustrated with data and analytical results. In each case, the state-of-the-art in fracture mechanics prior to the first IPIRG program will be contrasted with the state-of-the-art at the completion of the IPIRG-2 program.

Wilkowski, G.; Olson, R.; Scott, P. [Batelle, Columbus, OH (United States)

1997-04-01T23:59:59.000Z

352

Cummins SuperTruck Program - Technology and System Level Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

On Program Participants - Collaborations Cummins Inc. - Cummins Fuel Systems - Cummins Turbo Technologies - Cummins Emissions Solutions - Cummins Electronics - Cummins Filtration...

353

Cummins SuperTruck Program - Technology Demonstration of Highly...  

Broader source: Energy.gov (indexed) [DOE]

On Program Participants - Collaborations Cummins Inc. - Cummins Fuel Systems - Cummins Turbo Technologies - Cummins Emissions Solutions - Cummins Electronics - Cummins Filtration...

354

2011 DOE Hydrogen Program and Vehicle Technologies Office Annual...  

Broader source: Energy.gov (indexed) [DOE]

Office Plenary Session Program Analysis Ward Analyst Technology Integration Smith and Bezanson Vehicle & Systems Simulation & Testing Slezak Materials Schutte Materials...

355

Systems Integration: Solar Energy Technologies Program (SETP) (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its systems integration subprogram.

Not Available

2009-10-01T23:59:59.000Z

356

Technology Transfer Office (TTO) Promote and facilitate the transfer of UC San Diego innovations for the benefit of the University community and the public.  

E-Print Network [OSTI]

Technology Transfer Office (TTO) MISSION Promote and facilitate the transfer of UC San Diego San Diego established its Technology Transfer Office (TTO) to promote and facilitate this process TECHNOLOGY TRANSFER RESULTS FY2000 ­ FY2007 Fiscal Year 2000 2001 2002 2003 2004 2005 2006 2007 Licenses 47

Fainman, Yeshaiahu

357

Clean coal technology: Export finance programs  

SciTech Connect (OSTI)

Participation by US firms in the development of Clean Coal. Technology (CCT) projects in foreign countries will help the United States achieve multiple national objectives simultaneously--addressing critical goals related to energy, environmental technology, industrial competitiveness and international trade. US participation in these projects will result in an improved global environment, an improvement in the balance of payments and an increase in US jobs. Meanwhile, host countries will benefit from the development of economically- and environmentally-sound power facilities. The Clean Air Act Amendments of 1990 (Public Law 101-549, Section 409) as supplemented by a requirement in the Energy Policy Act of 1992 (Public Law 102-486, Section 1331(f)) requires that the Secretary of Energy, acting through the Trade Promotion Coordinating Committee Subgroup on Clean Coal Technologies, submit a report to Congress with information on the status of recommendations made in the US Department of Energy, Clean Coal Technology Export Programs, Report to the United States Congress, February 1992. Specific emphasis is placed on the adequacy of financial assistance for export of CCTS. This report fulfills the requirements of the Act. In addition, although this report focuses on CCT power projects, the issues it raises about the financing of these projects are also relevant to other CCT projects such as industrial applications or coal preparation, as well as to a much broader range of energy and environmental technology projects worldwide.

Not Available

1993-09-30T23:59:59.000Z

358

Program of Study_________________________ Michigan Technological University Graduate School  

E-Print Network [OSTI]

Program of Study_________________________ Michigan Technological University Graduate School Letter, to the Graduate School, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931. Name. ____________________________________ Applicant's signature Date The undersigned, if admitted to graduate study at Michigan Technological

359

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization efficiently has an impact on business economics as the focus remains on proven applicable technologies, which target cost reduction and efficiency gains.

Donald Duttlinger

2001-11-01T23:59:59.000Z

360

National Advanced Drilling and Excavation Technologies Program  

SciTech Connect (OSTI)

The second meeting of Federal agency representatives interested in the National Advanced Drilling and Excavation Technologies (NADET) Program took place on June 15, 1993. The Geothermal Division of the U.S. Department of Energy (DOE) hosted the meeting at the Washington, D.C., offices of DOE. Representatives from the National Science Foundation, U.S. Geological Survey, U.S. Bureau of Mines, National Institute of Standards and Technology, National Aeronautics and Space Administration, Environmental Protection Agency, and various offices within the Department of Energy attended. For a complete list of attendees see Attachment A. The purpose of the meeting was: (1) to cover the status of efforts to gain formal approval for NADET, (2) to brief participants on events since the last meeting, especially two recent workshops that explored research needs in drilling and excavation, (3) to review some recent technological advances, and (4) to solicit statements of the importance of improving drilling and excavation technologies to the missions of the various agencies. The meeting agenda is included as Attachment B.

None

1993-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EV Charging Through Wireless Power Transfer: Analysis of Efficiency Optimization and Technology Trends  

SciTech Connect (OSTI)

This paper is aimed at reviewing the technology trends for wireless power transfer (WPT) for electric vehicles (EV). It also analyzes the factors affecting its efficiency and describes the techniques currently used for its optimization. The review of the technology trends encompasses both stationary and moving vehicle charging systems. The study of the stationary vehicle charging technology is based on current implementations and on-going developments at WiTricity and Oak Ridge National Lab (ORNL). The moving vehicle charging technology is primarily described through the results achieved by the Korean Advanced Institute of Technology (KAIST) along with on-going efforts at Stanford University. The factors affecting the efficiency are determined through the analysis of the equivalent circuit of magnetic resonant coupling. The air gap between both transmitting and receiving coils along with the magnetic field distribution and the relative impedance mismatch between the related circuits are the primary factors affecting the WPT efficiency. Currently the industry is looking at an air gap of 25 cm or below. To control the magnetic field distribution, Kaist has recently developed the Shaped Magnetic Field In Resonance (SMFIR) technology that uses conveniently shaped ferrite material to provide low reluctance path. The efficiency can be further increased by means of impedance matching. As a result, Delphi's implementation of the WiTricity's technology exhibits a WPT efficiency above 90% for stationary charging while KAIST has demonstrated a maximum efficiency of 83% for moving vehicle with its On Line Vehicle (OLEV) project. This study is restricted to near-field applications (short and mid-range) and does not address long-range technology such as microwave power transfer that has low efficiency as it is based on radiating electromagnetic waves. This paper exemplifies Delphi's work in powertrain electrification as part of its innovation for the real world program geared toward a safer, greener and more connected driving. Moreover, it draws from and adds to Dr. Andrew Brown Jr.'s SAE books 'Active Safety and the Mobility Industry', 'Connectivity and Mobility Industry', and 'Green Technologies and the Mobility Industry'. Magnetic resonant coupling is the foundation of modern wireless power transfer. Its efficiency can be controlled through impedance matching and magnetic field shaping. Current implementations use one or both of these control methods and enable both stationary and mobile charging with typical efficiency within the 80% and 90% range for an air gap up to 25 cm.

Miller, John M [ORNL; Rakouth, Heri [Delphi Automotive Systems, USA; Suh, In-Soo [Korea Advanced Institute of Science and Technology

2012-01-01T23:59:59.000Z

362

Can sustainable development be facilitated through regime-based preventative technology transfer?.  

E-Print Network [OSTI]

??This International Relations study examines the relationship between sustainable development and preventative technology transfer. Specifically, the focus is on whether preventative environmental regimes (facilitating organisations) (more)

Valentin, Jorg D.

2010-01-01T23:59:59.000Z

363

Technology transfer and U.S. national security policy| The Joint Strike Fighter.  

E-Print Network [OSTI]

?? This is a dissertation about United States international technology transfer policy relating to the Department of Defense (DOD) F-35 Joint Strike Fighter (JSF) weapons (more)

Krueger, Richard D.

2010-01-01T23:59:59.000Z

364

An extended model for measuring the technology transfer potentials at the industrial level.  

E-Print Network [OSTI]

??Technology contributes to the development of society and economy of the nation through the invention, diffusion, transfer, and application of new knowledge. In the emerging (more)

Pachamuthu, Sathayanarayanan

2011-01-01T23:59:59.000Z

365

Technology Assistance Program Growing technology-based business with free service  

E-Print Network [OSTI]

Technology Assistance Program Growing technology-based business with free service Economic Development Is your small, technology-based business faced with a specific challenge, but lacking scientist or engineer help your company? If the answer is yes, the Technology Assistance Program (TAP

366

Development and transfer of fuel fabrication and utilization technology for research reactors  

SciTech Connect (OSTI)

Approximately 300 research reactors supplied with US-enriched uranium are currently in operation in about 40 countries, with a variety of types, sizes, experiment capabilities and applications. Despite the usefulness and popularity of research reactors, relatively few innovations in their core design have been made in the last fifteen years. The main reason can be better understood by reviewing briefly the history of research reactor fuel technology and enrichment levels. Stringent requirements on the enrichment of the uranium to be used in research reactors were considered and a program was launched to assist research reactors in continuing their operation with the new requirements and with minimum penalties. The goal of the new program, the Reduced Enrichment Research and Test Reactor (RERTR) Program, is to develop the technical means to utilize LEU instead of HEU in research reactors without significant penalties in experiment performance, operating costs, reactor modifications, and safety characteristics. This paper reviews briefly the RERTR Program activities with special emphasis on the technology transfer aspects of interest to this conference.

Travelli, A.; Domagala, R.F.; Matos, J.E.; Snelgrove, J.L.

1982-01-01T23:59:59.000Z

367

Oswer source book. Volume 2. Training and technology transfer resources, 1992-1993  

SciTech Connect (OSTI)

Volumes I and II of The OSWER Source Book provide information on the many training courses, publications, videotapes, and information systems and software available to support EPA staff, State and local agencies, and others involved in managing the Nation's hazardous and solid waste programs. The Office of Solid Waste and Emergency Response's (OSWER) Technology Innovation Office (TIO) has compiled listings of the most significant training and technology transfer resources available to assist individuals with the responsibility for accomplishing OSWER's mission. Volume II contains frequently requested OSW publications, including those that address municipal solid waste and recycling. This second volume of The Source Book is new for this edition, and provides much additional information compared to the earlier version.

Not Available

1992-09-01T23:59:59.000Z

368

Southern California Clean Energy Technology Acceleration Program Educational Webinars  

E-Print Network [OSTI]

Southern California Clean Energy Technology Acceleration Program Educational Webinars OUR FIRST WEBINAR IS IN ONE WEEK! As a part of the Technology Acceleration Program, applicants will be provided the commercialization of their technologies. These workshops will be presented as Webinars that will, at initial

Talley, Lynne D.

369

Clean Coal Technology Programs: Completed Projects (Volume 2)  

SciTech Connect (OSTI)

Annual report on the Clean Coal Technology Demonstration Program (CCTDP), Power Plant Improvement Initiative (PPII), and Clean Coal Power Initiative (CCPI). The report addresses the roles of the programs, implementation, funding and costs, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

Assistant Secretary for Fossil Energy

2003-12-01T23:59:59.000Z

370

Exploratory Technology Research Program for Electrochemical Energy Storage. Annual report, 1992  

SciTech Connect (OSTI)

This report summarizes the progress made by the Exploratory Technology Research (ETR) Program for Electrochemical Energy Storage during calendar year 1992. The primary objective of the ETR Program, which is sponsored by the US Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance, durability and economic requirements for electric vehicles (EVs). The ultimate goal is to transfer the most-promising electrochemical technologies to the private sector or to another DOE program (e.g., SNL`s Electric Vehicle Advanced Battery Systems Development Program, EVABS) for further development and scale-up. Besides LBL, which has overall responsibility for the ETR Program, LANL and BNL have participated in the ETR Program by providing key research support in several of the program elements. The ETR Program consists of three major elements: Exploratory Research; Applied Science Research; and Air Systems Research. The objectives and the specific battery and electrochemical systems addressed by each program element are discussed in the following sections, which also include technical summaries that relate to the individual programs. Financial information that relates to the various programs and a description of the management activities for the ETR Program are described in the Executive Summary.

Kinoshita, K. [ed.

1993-10-01T23:59:59.000Z

371

SUNY Technology Accelerator Fund PROGRAM: Complete Guidelines can be found at SUNY Technology Accelerator Fund 2014  

E-Print Network [OSTI]

SUNY Technology Accelerator Fund PROGRAM: Complete Guidelines can be found at SUNY Technology Accelerator Fund 2014 OBJECTIVES: The SUNY Technology Accelerator Fund ("TAF") provides funding to support the advancement of SUNY technologies from the lab to the marketplace. In many cases, SUNY technology developed

Suzuki, Masatsugu

372

WE INVEST IN TECHNOLOGY. NOW LET US INVEST IN YOU. Leap Technology Program  

E-Print Network [OSTI]

WE INVEST IN TECHNOLOGY. NOW LET US INVEST IN YOU. Leap Technology Program Fidelity Investments innovation, and effective deployment of leading-edge technologies. Our entry-level technology training, Quality Assurance, Mainframe Development and Technology Infrastructure and Engineering (TIE). Upon

Virginia Tech

373

(Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs  

SciTech Connect (OSTI)

Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

None

1988-02-01T23:59:59.000Z

374

Energy Conservation Aspect of Energy Systems Technology Education Program  

E-Print Network [OSTI]

The primary purpose of this paper is to present a brief explanation of the Energy Systems Technology Education Program (ESTEP). This program is a system of continuing education that has been devised for the technical and supervisory personnel...

McBride, R. B.

1982-01-01T23:59:59.000Z

375

DOE Vehicle Technologies Program 2009 Merit Review Report  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Program 8-5 Overview of Clean Cities and Top Accomplishments: Dennis Smith, U.S. Department of Energy 1. Was the Sub-program area adequately covered? Were...

376

Ocean Energy Technology Overview: Federal Energy Management Program (FEMP)  

SciTech Connect (OSTI)

Introduction to and overview of ocean renewable energy resources and technologies prepared for the U.S. Department of Energy Federal Energy management Program.

Not Available

2009-07-01T23:59:59.000Z

377

Fuel Cell Technologies Program Overview: 2010 Annual Merit Review...  

Broader source: Energy.gov (indexed) [DOE]

Overview: 2010 Annual Merit Review and Peer Evaluation Meeting Fuel Cell Technologies Program Overview: 2010 Annual Merit Review and Peer Evaluation Meeting Presentation by Richard...

378

2010 DOE EERE Vehicle Technologies Program Merit Review - Energy...  

Energy Savers [EERE]

Energy Storage 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy Storage Energy storage research and development merit review results 2010amr02.pdf More Documents...

379

Fuel Cell Technologies Program Overview: 2010 Annual Merit Review...  

Energy Savers [EERE]

0 Annual Merit Review and Peer Evaluation Meeting Fuel Cell Technologies Program Overview: 2010 Annual Merit Review and Peer Evaluation Meeting Presentation by Richard Farmer at...

380

2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...  

Energy Savers [EERE]

- Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

DOE Vehicle Technologies Program 2009 Merit Review Report - Power...  

Energy Savers [EERE]

Power Electronics and Electric Motors DOE Vehicle Technologies Program 2009 Merit Review Report - Power Electronics and Electric Motors 2009meritreview3.pdf More Documents &...

382

ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 105: ELECTRICAL SYSTEMS  

E-Print Network [OSTI]

1 ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 105: ELECTRICAL SYSTEMS Instructor: Albert LozanoF) - Value of capacitors: -Printed on body of capacitor (physically large capacitors) -Code (useless) -If

Lozano-Nieto, Albert

383

ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 105 ELECTRICAL SYSTEMS  

E-Print Network [OSTI]

ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 105 ­ ELECTRICAL SYSTEMS LABORATORY EXPERIENCES will become familiar with solar cells as photovoltaic energy converters. Secondly, students will practice

Lozano-Nieto, Albert

384

2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Combustion 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced Combustion Advanced combustion research and development merit review results 2010amr04.pdf...

385

Concentrating Solar Power: Solar Energy Technologies Program (SETP) (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

Not Available

2009-10-01T23:59:59.000Z

386

Assignment 6: Heat Transfer Page 1 of 8 600.112: Introduction to Programming  

E-Print Network [OSTI]

Assignment 6: Heat Transfer Page 1 of 8 600.112: Introduction to Programming for Scientists and Engineers Assignment 6: Heat Transfer Peter H. Fr¨ohlich phf@cs.jhu.edu Joanne Selinski joanne to Programming for Scientists and Engineers is all about heat transfer and how to simulate it. There are three

Fröhlich, Peter

387

DOE Solar Energy Technologies Program FY 2005 Annual Report  

SciTech Connect (OSTI)

The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2006-03-01T23:59:59.000Z

388

MHD Technology Transfer, Integration and Review Committee. Fifth semi-annual status report, April 1990--September 1990  

SciTech Connect (OSTI)

This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.

Not Available

1992-01-01T23:59:59.000Z

389

PROJECTS FROM FEDERAL REGION IX DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PROGRAM PART II  

E-Print Network [OSTI]

Appropriate Energy Technology Resource Center .IX DOE Appropriate Energy Technology Pilot Program - PartIX DOE Appropriate Energy Technology Pilot Program - Part I;

Case, C.W.

2012-01-01T23:59:59.000Z

390

MHD Technology Transfer, Integration and Review Committee. Seventh semi-annual status report, April 1991--September 1991  

SciTech Connect (OSTI)

This seventh semi-annual status report of the MHD Technology Transfer, Integration and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1991 through September 1991. It includes a summary and minutes of the General Committee meeting, progress summaries of ongoing POC contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months. The meeting included test plan with Western coal, seed regeneration economics, power management for the integrated topping cycle and status of the Clean Coal Technology Proposal activities. Appendices cover CDIF operations HRSR development, CFFF operations etc.

Not Available

1993-02-01T23:59:59.000Z

391

Int. J. Technology Transfer and Commercialisation, Vol. 8, No. 1, 2009 51 Copyright 2009 Inderscience Enterprises Ltd.  

E-Print Network [OSTI]

Int. J. Technology Transfer and Commercialisation, Vol. 8, No. 1, 2009 51 Copyright © 2009. Technology Transfer and Commercialisation, Vol. 8, No. 1, pp.51­87. Biographical notes: Kevin W. Boyack spent

392

UNLOCKING THE TREASURE CHEST OF LEVEL-II RADAR DATA: LESSONS IN TECHNOLOGY TRANSFER POLICY FOR THE ATMOSPHERIC SCIENCES  

E-Print Network [OSTI]

P 1.6 UNLOCKING THE TREASURE CHEST OF LEVEL-II RADAR DATA: LESSONS IN TECHNOLOGY TRANSFER POLICY This analysis of Level-II radar data presents a great success story about partnerships in technology transfer

393

A study on international technology transfer critical factors in Hong Kong/Pearl River Delta manufacturing industries.  

E-Print Network [OSTI]

???International Technology Transfer (ITT) has been increasingly an important issue in technology diffusion, and has accumulated a vast body of research over past years. ITT (more)

Dong, Qiuling (???)

2008-01-01T23:59:59.000Z

394

Argonne Electrochemical Technology Program Sulfur removal from reformate  

E-Print Network [OSTI]

Argonne Electrochemical Technology Program Sulfur removal from reformate Xiaoping Wang, Theodore Krause, and Romesh Kumar Chemical Engineering Division Argonne National Laboratory Hydrogen, Fuel Cells, and Infrastructure Technologies 2003 Merit Review Berkeley, CA May 19-22, 2003 #12;Argonne Electrochemical Technology

395

DOE Solar Energy Technologies Program: FY 2004 Annual Report  

SciTech Connect (OSTI)

The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2005-10-01T23:59:59.000Z

396

DOE Solar Energy Technologies Program FY 2006 Annual Report  

SciTech Connect (OSTI)

The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2007-07-01T23:59:59.000Z

397

DOE Solar Energy Technologies Program 2007 Annual Report  

SciTech Connect (OSTI)

The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2008-07-01T23:59:59.000Z

398

Technology needs for remediation: Hanford and other DOE sites. Buried Waste Integrated Demonstration Program  

SciTech Connect (OSTI)

Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy`s (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL`s Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

Stapp, D.C.

1993-01-01T23:59:59.000Z

399

Taiwan International Graduate Program Sustainable Chemical Science and Technology  

E-Print Network [OSTI]

to sustainable energy 2. construction of supramolecular materials for recognition, self- assemblyTaiwan International Graduate Program Sustainable Chemical Science and Technology Taiwan of the Program to offer Ph.D. education programs only in inter-disciplinary areas in the physical sciences

400

ACCELERATED LAW PROGRAM Stevens Institute of Technology offers a  

E-Print Network [OSTI]

ACCELERATED LAW PROGRAM Stevens Institute of Technology offers a six-year combined Bachelor's/J.D. degree program for students interested in pursuing the accelerated law option. After three years of study they attended. ADMISSION REQUIREMENTS In order to be considered for the Accelerated Law Program, students must

Yang, Eui-Hyeok

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu University of Memphis Licensing Opportunity  

E-Print Network [OSTI]

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu University over time #12;Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Why it's Better Aerogel

Dasgupta, Dipankar

402

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Wireless Compact Radar  

E-Print Network [OSTI]

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Wireless 1: Ramp signals obtained from Target #12;Kevin P. Boggs || Office of Technology Transfer || 901.242 m. #12;Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs

Dasgupta, Dipankar

403

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu AutoWitness  

E-Print Network [OSTI]

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Auto and lifelong traumatic experience for its victims. #12;Kevin P. Boggs || Office of Technology Transfer || 901://www.popsci.com/science/article/2010-10/brilliant-10-santosh-kumar-sensor-guru #12;Kevin P. Boggs || Office of Technology Transfer

Dasgupta, Dipankar

404

9Tomorrow's Technology Transfer Volume 1, Number 1 WiNter 2009 small U.S. businesses would have certainty  

E-Print Network [OSTI]

9Tomorrow's Technology Transfer Volume 1, Number 1 WiNter 2009 small U.S. businesses would have of technology transfer. Interest expanded until, in 2006, AUTM's Licensing SurveyTM identified tech- nology "Communicating the Full Value of Aca- demic Technology Transfer: Some Lessons Learned," originally published

McQuade, D. Tyler

405

Operational safety enhancement of Soviet-designed nuclear reactors via development of nuclear power plant simulators and transfer of related technology  

SciTech Connect (OSTI)

The US Department of Energy (DOE), under the US government`s International Nuclear Safety Program (INSP), is implementing a program of developing and providing simulators for many of the Russian and Ukrainian Nuclear Power Plants (NPPs). Pacific Northwest National Laboratory (PNNL) and Brookhaven National Laboratory (BNL) manage and provide technical oversight of the various INSP simulator projects for DOE. The program also includes a simulator technology transfer process to simulator design organizations in Russia and Ukraine. Training programs, installation of new simulators, and enhancements in existing simulators are viewed as providing a relatively fast and cost-effective technology transfer that will result in measurable improvement in the safety culture and operation of NPPs. A review of this program, its present status, and its accomplishments are provided in this paper.

Kohut, P.; Epel, L.G.; Tutu, N.K. [and others

1998-08-01T23:59:59.000Z

406

Geothermal Drilling and Completion Technology Development Program Annual Progress Report  

SciTech Connect (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the timely development of geothermal resources in the US. The Division of Geothermal Energy (DGE) of the Department of Energy (DOE) has initiated a development program aimed at reducing well costs through improvements in the technology used to drill and complete geothermal wells. Sandia National Laboratories (SNL) has been selected to manage this program for DOE/DGE. Based on analyses of existing well costs, cost reduction goals have been set for the program. These are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987. To meet these goals, technology development in a wide range of areas is required. The near-term goal will be approached by improvements in conventional, rotary drilling technology. The long-term goal will require the development of an advanced drilling and completion system. Currently, the program is emphasizing activities directed at the near-term cost reduction goal, but increased emphasis on advanced system development is anticipated as time progresses. The program is structured into six sub-elements: Drilling Hardware, Drilling Fluids, Completion Technology, Lost Circulation Control Methods, Advanced Drilling Systems, and Supporting Technology. Technology development in each of these areas is conducted primarily through contracts with private industries and universities. Some projects are conducted internally by Sandia. This report describes the program, status, and results of ongoing R and D within the program for the 1980 fiscal year.

Varnado, S. G.

1981-03-01T23:59:59.000Z

407

CLOUD COMPUTING TECHNOLOGIES PROGRAM An eleven-week in-depth program in the principles, methods, and technologies of Cloud Computing  

E-Print Network [OSTI]

CLOUD COMPUTING TECHNOLOGIES PROGRAM An eleven-week in-depth program in the principles, methods, and technologies of Cloud Computing DePaul University's Cloud Computing Technologies Program provides a broad understanding of the different leading Cloud Computing technologies. The program is designed to quickly educate

Schaefer, Marcus

408

Exploratory Technology Research Program for Electrochemical Energy Storage - Annual Report for 1998  

SciTech Connect (OSTI)

The US Department of Energy's (DOE) Office of Advanced Automotive Technologies conducts research and development on advanced rechargeable batteries for application in electric vehicles (EVs) and hybrid systems. Efforts are focused on advanced batteries that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. DOE battery R and D supports two major programs: the US Advanced Battery Consortium (USABC), which develops advanced batteries for EVS, and the Partnership for a New Generation of Vehicles (PNGV), which seeks to develop passenger vehicles with a fuel economy equivalent to 80 mpg of gasoline. This report describes the activities of the Exploratory Technology Research (ETR) Program, managed by the Lawrence Berkeley National Laboratory (LBNL). The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and PNGV Programs, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1998. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Program Summary.

Kinoshita, K. (editor)

1999-06-01T23:59:59.000Z

409

Chapter 212: Role of Standardization in Technology Development, Transfer, Diffusion and Management  

E-Print Network [OSTI]

Chapter 212: Role of Standardization in Technology Development, Transfer, Diffusion and Management by John W. Bagby Abstract Since the industrial revolution, standardization has become a hybrid. Standards are increasingly developed outside government regulatory venues in consortia and other forms

Bagby, John

410

EA-1175: Proposed Title Transfer of East Tennessee Technology Park Land and Facilities, Oak Ridge, Tennessee  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to transfer the title of unneeded DOE real property located at the U.S. Department of Energy East Tennessee Technology Park (ETTP) in...

411

The role of immigrant scientists and entrepreneurs in international technology transfer  

E-Print Network [OSTI]

This thesis characterizes the important role of US ethnic scientists and entrepreneurs for international technology diffusion. Chapter 1 studies the transfer of tacit knowledge regarding new innovations through ethnic ...

Kerr, William Robert, Ph. D. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

412

Energy Technology Transfer for Industry Through the Texas Energy Extension Service  

E-Print Network [OSTI]

ENERGY TECHNOLOGY TRANSFER FOR INDUSTRY THROUGH THE TEXAS ENERGY EXTENSION SERVICE Stephen Riter Texas Energy Extension Service. Texas A&M University College Station, Texas ABSTRACT The Texas Energy Extension Service (EES) is one of ten...

Riter, S.

1979-01-01T23:59:59.000Z

413

Closing the loop : improving technology transfer by learning from the past  

E-Print Network [OSTI]

Technology transfer is a significant challenge within the highly regulated pharmaceutical industry. While much focus is put on the logistics and strategy of the process, less attention has been paid to how to change the ...

Witinski, Paul (Paul F.)

2010-01-01T23:59:59.000Z

414

Demonstration: The Key to Technology Transfer in the Field of Energy Conservation in the UK  

E-Print Network [OSTI]

Technology transfer has been one of the most intractable problems faced on a worldwide basis. The problem is particularly acute in the field of energy efficiency because none of the 3 major parties involved, the researcher, the manufacturer...

Carter, D. E. F.; Lawrence, J. E.

1983-01-01T23:59:59.000Z

415

Vehicle Technologies Office Merit Review 2014: Advanced Wireless Power Transfer and Infrastructure Analysis  

Broader source: Energy.gov [DOE]

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

416

Exploratory technology research program for electrochemical energy storage. Annual report for 1996  

SciTech Connect (OSTI)

The U.S. Department of Energy`s Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the United States Advanced Battery Consortium (USABC) and Advanced Battery R&D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The USABC, a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for EVs. In addition, DOE is actively involved in the Partnership for a New Generation of Vehicles (PNGV) Program which seeks to develop passenger vehicles with a range equivalent to 80 mpg of gasoline. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and the PNGV Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1996. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary.

Kinoshita, K. [ed.

1997-06-01T23:59:59.000Z

417

Fossil Energy Advanced Research and Technology Development (AR&TD) Materials Program semiannual progress report for the period ending September 30, 1991. Fossil Energy Program  

SciTech Connect (OSTI)

The objective of the Fossil Energy Advanced Research and Technology Development Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The Program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. Research is outlined in four areas: Ceramics, New Alloys, Corrosion and Erosion Research, and Technology Development and Transfer. (VC)

Judkins, R.R.; Cole, N.C. [comps.

1992-04-01T23:59:59.000Z

418

USDOE Technology Transfer, Working with Department of Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cutting Edge Research DOE National Laboratories and facilities have expertise in many areas that support key national missions and are also critical to major high-technology...

419

The 1986-93 Clean Coal Technology Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

1986-93 Clean Coal Technology Program The 1986-93 Clean Coal Technology Program Begun in 1986, the Clean Coal Technology Program was the most ambitious government-industry...

420

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...  

Broader source: Energy.gov (indexed) [DOE]

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NREL Fuel Cell and Hydrogen Technologies Program Overview (Presentation)  

SciTech Connect (OSTI)

The presentation, 'NREL Fuel Cell and Hydrogen Technologies Program Overview,' was presented at the Fuel Cell and Hydrogen Energy Expo and Policy Forum, April 24, 2013, Washington, D.C.

Gearhart, C.

2013-05-01T23:59:59.000Z

422

DOE Vehicle Technologies Program 2009 Merit Review Report - Energy...  

Broader source: Energy.gov (indexed) [DOE]

Technologies (BATT) Program Venkat Srinivasan (Lawrence Berkeley National Laboratory (LBNL)) 2-40 3.50 3.25 3.50 2.75 3.28 Electrode Construction and Analysis Vince Battaglia...

423

High Technology School-to-Work Program at Argonne  

ScienceCinema (OSTI)

Argonne's High Technology School-to-Work Program for Chicago Public School Students. Supported by the Illinois Department of Commerce and Economic Opportunity, Chicago Public Schools, Argonne National Laboratory and the City of Chicago.

None

2013-04-19T23:59:59.000Z

424

DOE Solar Energy Technologies Program: Overview and Highlights  

SciTech Connect (OSTI)

A non-technical overview of the U.S. Department of Energy's Solar Energy Technologies Program, including sections on photovoltaics (PV), concentrating solar power, and solar heating and lighting R&D.

Not Available

2006-05-01T23:59:59.000Z

425

Building technological capability within satellite programs in developing countries  

E-Print Network [OSTI]

Global participation in space activity is growing as satellite technology matures and spreads. Countries in Africa, Asia and Latin America are creating or reinvigorating national satellite programs. These countries are ...

Wood, Danielle Renee

2012-01-01T23:59:59.000Z

426

EIS-0146: Programmatic for Clean Coal Technology Demonstration Program  

Broader source: Energy.gov [DOE]

This programmatic environmental impact statement assesses the environmental impacts of continuing the Clean Coal Technology Demonstration Program involving the selection, for cost-shared federal funding, of one or more clean coal projects proposed by the private sector.

427

Native American Training Program in Petroleum Technology  

SciTech Connect (OSTI)

This report outlines a comprehensive training program for members of Native American tribes whose lands have oil and gas resources. The program has two components: short courses and internships. Programs are proposed for: (1) adult tribes representatives who are responsible for managing tribal mineral holdings, setting policy, or who work in the oil and gas industry; (2) graduate and undergraduate college students who are tribal members and are studying in the appropriate fields; and (3) high school and middle school teachers, science teachers. Materials and program models already have been developed for some components of the projects. The plan is a coordinated, comprehensive effort to use existing resources to accomplish its goals. Partnerships will be established with the tribes, the BIA, tribal organizations, other government agencies, and the private sector to implement the program.

Ho, Winifred M.; Kokesh, Judith H.

1999-04-27T23:59:59.000Z

428

Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors  

SciTech Connect (OSTI)

The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

Radulescu, Laura ['Horia Hulubei' National Institute of Nuclear Physics and Engineering, PO BOX MG-6, Bucharest 077125 (Romania); Pavelescu, Margarit [Academy of Romanian Scientists, Bucharest (Romania)

2010-01-21T23:59:59.000Z

429

Building Technologies Program - 1995 Annual Report  

E-Print Network [OSTI]

Design Tool for Small Commercial Buildings A DOE-funded industry/laboratory collaboration between the Passive Solardesign guidance for the optimal utiliza- tion of passive solar technologies in small commercial buildings.

Selkowitz, S.E.

2010-01-01T23:59:59.000Z

430

Transfer Information Sheet for SUNY Canton College of Technology  

E-Print Network [OSTI]

elective 3 Bsad 340 Bus Communications Bus elective 3 Science elective Lab Science recommended GenEd"L" 3-4 Humanities elective Cinema, theater, art, music, etc recommended GenEd "A" 3 Semester 4 Bus elective Bsad 310 Science elective Any Elective 3-4 GenEd Elective Any GenEd 3 Total transfer credits 57-61 Recommended

Suzuki, Masatsugu

431

Exploratory Technology Research Program for electrochemical energy storage: Annual report for 1993  

SciTech Connect (OSTI)

The U.S. Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

Kinoshita, K. [ed.

1994-09-01T23:59:59.000Z

432

U.S. Department of Energy Fuel Cell Technologies Program: 18th...  

Energy Savers [EERE]

Technologies Program: 18th World Hydrogen Energy Conference U.S. Department of Energy Fuel Cell Technologies Program: 18th World Hydrogen Energy Conference Presentation by Nancy...

433

Buildings R&D Breakthroughs: Technologies and Products Supported by the Building Technologies Program  

SciTech Connect (OSTI)

The purpose of the project described in this report is to identify and characterize commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energys Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects funded by BTPs Emerging Technologies subprogram from 2005-2011.

Weakley, Steven A.

2012-04-15T23:59:59.000Z

434

InformationTechnologiesPrograms extension.uci.edu/seo  

E-Print Network [OSTI]

InformationTechnologiesPrograms extension.uci.edu/seo Search Engine Optimization Specialized of excellence. Search Engine Optimization Specialized Studies The demand for Search Engine Optimization (SEO. This program is designed to teach students the process of Search Engine Optimization (SEO) which

Rose, Michael R.

435

Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs  

SciTech Connect (OSTI)

A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

Not Available

1980-08-01T23:59:59.000Z

436

Clean coal technologies: Research, development, and demonstration program plan  

SciTech Connect (OSTI)

The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

Not Available

1993-12-01T23:59:59.000Z

437

Exploratory technology research program for electrochemical energy storage, annual report for 1997  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE) Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced Battery R and D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1997. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary. The general R and D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, and establishment of engineering principles applicable to electrochemical energy storage. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs.

Kinoshita, K. [ed.

1998-06-01T23:59:59.000Z

438

Progress in The Lost Circulation Technology Development Program  

SciTech Connect (OSTI)

Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the US Department of Energy. The goal of the program is to reduce lost circulation costs by 30--50{percent} through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April, 1990--March, 1991. 4 refs., 15 figs., 1 tab.

Glowka, D.A.; Schafer, D.M.; Loeppke, G.E.; Wright, E.K.

1991-01-01T23:59:59.000Z

439

1 | Fuel Cell Technologies Program Source: US DOE 9/9/2011 eere.energy.gov FUEL CELL TECHNOLOGIES PROGRAM  

E-Print Network [OSTI]

&D needs for hydrogen and fuel cell manufacturing · Report of workshop proceedings including plenary projections show significant growth in Asia and Europe. Annual granted fuel cell patents per country of origin1 | Fuel Cell Technologies Program Source: US DOE 9/9/2011 eere.energy.gov FUEL CELL TECHNOLOGIES

440

Fossil Energy Advanced Research and Technology Development Materials Program. Semiannual progress report for the period ending September 30, 1992  

SciTech Connect (OSTI)

Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

Cole, N.C.; Judkins, R.R. [comps.

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

2014 WIND POWER PROGRAM PEER REVIEW-ACCELERATE TECHNOLOGY TRANSFER  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-December 2013 issue ofOfficeEnergy Two2014Department

442

Successful Oil and Gas Technology Transfer Program Extended to 2015 |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4 Recovery Act/Buy AmericanDepartment of

443

Building Technologies Program: Building America Publications  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEFAprilBudgetAbout » Building Technologies

444

Building Technologies Program Website | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHISBrickyardRepower JumpBuilding Technologies

445

New Technology Demonstration Program FEMPFederal Energy Management Program  

E-Print Network [OSTI]

Efficiency and Renewable Energy, Federal Energy Management Program, of the U.S. Department of Energy under federal facilities, the fastest growing end-use of electric energy is found in concentrations of computing to their agency mission will present a serious challenge to meeting the aggressive new energy efficiency goals

446

Technology transfer, resources import, and economic growth of newly industrializing countries  

SciTech Connect (OSTI)

The general characteristics of developing economies are poor resources endowments and relatively backward technologies. These characteristics are considered to be obstacles to economic growth. Yet, despite embodying these characteristics, Hong Kong, Korea, Singapore, and Taiwan have grown rapidly in the past two decades. Their phenomenal growth is attributed to rapid export expansion which serves as a vehicle in securing the financing of resources import and technology transfer. The important role of export expansion was investigated in models of economic growth and international trade. The models generally fall into two classes. The first class is solely concerned with the importation of resources while the second class emphasizes transfer of technology. This dissertation presents a new class of model combining the two existing classes. In the new model, resources are being introduced into the technology transfer model developed by Feldstein and Hartman, Berglas and Jones, and Khang. Thus, the new model contains two types of imports instead of one. The two imports are advanced capital, which embodies advanced technology, and resources. The new model explains fully the phenomenal growth of the four Asian NICs by demonstrating that rapid economic growth requires massive technology transfer and the alleviation of resource constraints.

Cheung, Y.H.

1984-01-01T23:59:59.000Z

447

Superconducting technology program: Sandia 1995 annual report  

SciTech Connect (OSTI)

Sandia`s STP program is a thallium-based high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, open-system thick film conductor development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The research efforts currently underway are: (1) process development and characterization of thallium-based high-temperature superconducting closed system wire and tape; (2) investigation of the synthesis and processing of thallium-based thick films using two-zone processing; and (3) cryogenic design of a 30K superconducting motor. This report outlines the research that has been performed during FY95 in each of these areas.

Roth, E.P. [Sandia National Labs., Albuquerque, NM (United States). Superconductivity Materials and Technology Dept.

1996-03-01T23:59:59.000Z

448

The joint DoD/DOE Munitions Technology Development Program  

SciTech Connect (OSTI)

The joint Department of Defense (DoD)/Department of Energy (DOE) Munitions Technology Development Program is a cooperative, jointly funded effort of research and development to improve nonnuclear munitions technology across all service mission areas. This program is enabled under a Memorandum of Understanding, approved in 1985 between the DoD and the DOE, that tasks the nuclear weapons laboratories of the DOE to solve problems in conventional defense. The selection of the technical areas to be investigated is based on their importance to the military services, the needs that are common to the conventional and nuclear weapons programs, the expertise of the performing organization, and the perceived benefit to the overall national defense efforts. The research benefits both DoD and DOE programs; therefore, funding, planning, and monitoring are joint activities. Technology Coordination Groups (TCGs), organized by topical areas, serve as technology liaisons between the DoD and DOE for the exchange of information. The members of the TCGs are technical experts who meet semiannually in an informal workshop format to coordinate multiagency requirements, establish project plans, monitor technical activity, and develop classification guidance. A technical advisory committee of senior DoD and DOE managers administers the program and provides guidance on policy and strategy. The abstracts in this volume were collected from the technical progress report for fiscal year 1993. The annual report is organized by major technology areas. Telephone and fax numbers for the principal contacts are provided with each abstract.

Repa, J.V. Jr.

1994-08-01T23:59:59.000Z

449

Transmission and distribution technologies: Program overview, FY 1993--FY 1994  

SciTech Connect (OSTI)

Electricity is the lifeblood of our Nation`s economy and a critical contributor to our standard of living. For decades, increases in the gross domestic product (GDP) have been accompanied by increases in electricity use. This overview provides the reader with an introduction to the US Department of Energy`s (DOE`s) T&D Technologies Program. It shows how the program is meeting the challenges being imposed on the T&D infrastructure by the changing electric power industry and how the Nation will benefit from its efforts. The overview describes the program`s ongoing projects and discusses the new projects being initiated in fiscal year (FY) 1995.

NONE

1995-06-01T23:59:59.000Z

450

Advanced Thermionic Technology Program: summary report. Volume 1. Final report  

SciTech Connect (OSTI)

This report summarizes the progress made by the Advanced Thermionic Technology Program during the past several years. This program, sponsored by the US Department of Energy, has had as its goal adapting thermionic devices to generate electricity in a terrestrial (i.e., combustion) environment. The technology has previously been developed for astronautical applications. The report is organized in four volumes, each focused as much as possible on the needs of a particular audience. Volume 1 contains Part A, the Executive Summary. This Executive Summary describes the accomplishments of the Program in brief, but assumes the reader's familiarity with the thermionic process and the technical issues associated with the Program. For this reason, Volume 1 also contains Part B, a minimally technical overview of the Advanced Thermionic Technology Program. Volume 2 (Part C) concentrates on the progress made in developing and fabricating the ''current generation'' of chemical vapor deposited hot shell thermionic converters and is addressed to those primarily concerned with today's capabilities in terrestrial thermionic technology. Volume 3 (Part D) contains the results of systems studies of primary interest to those involved in identifying and evaluating applications for thermionics. Volume 4 (Part E) is a highly technical discussion of the attempts made by the program to push the state-of-the-art beyond the current generation of converters and is directed toward potential researchers engaged in this same task. These technical discussions are complemented with Appendices where appropriate.

Not Available

1984-10-01T23:59:59.000Z

451

LANL Transfers Glowing Bio Technology to Sandia Biotech  

ScienceCinema (OSTI)

Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action.

Nakhla, Tony;

2014-06-25T23:59:59.000Z

452

LANL Transfers Glowing Bio Technology to Sandia Biotech  

SciTech Connect (OSTI)

Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action.

Nakhla, Tony; ,

2012-05-21T23:59:59.000Z

453

Technology_Transfer_Memo.pdf | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration atStandardsAnalysis »Technology Transferto

454

ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1996  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1996 Annual Program Review held July 31 and August 1, 1996. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

Koncinski, W.S. [ed.; Hawsey, R.A. [comp.

1997-05-01T23:59:59.000Z

455

ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 1999  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26--28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

Hawsey, R.A.; Murphy, A.W

2000-04-01T23:59:59.000Z

456

ORNL Superconducting Technology Program for Electric Power Systems: Annual Report for FY 1999  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26-28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

Hawsey, R.A.

2000-06-13T23:59:59.000Z

457

Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

Zemach, Ezra

458

BPA Energy Efficiency Emerging Technologies Program Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience Program CumulusA t iBudget2/4/139/4/2012 B O NBelowEfficiency

459

Superconducting Technology Program Sandia 1994 Annual Report  

SciTech Connect (OSTI)

Sandia`s STP program is a four-part high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, thallium-based HTS film development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The four research efforts currently underway are: (1) Process research on the material synthesis of high-temperature superconductors, (2) Investigation of the synthesis and processing of thallium-based high-temperature superconducting thick films, (3) Process development and characterization of high-temperature superconducting wire and tape, and (4) Cryogenic design of a high-temperature superconducting motor. This report outlines the research that has been performed during FY94 in each of these four areas. Major areas of research are described, although no attempt has been made to exhaustively include all work performed in each of these areas.

Roth, E.P.

1995-10-01T23:59:59.000Z

460

Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer We outline the differences of Chinese MSW characteristics from Western MSW. Black-Right-Pointing-Pointer We model the requirements of four clusters of plant owner/operators in China. Black-Right-Pointing-Pointer We examine the best technology fit for these requirements via a matrix. Black-Right-Pointing-Pointer Variance in waste input affects result more than training and costs. Black-Right-Pointing-Pointer For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future.

Dorn, Thomas, E-mail: thomas.dorn@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Nelles, Michael, E-mail: michael.nelles@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Flamme, Sabine, E-mail: flamme@fh-muenster.de [University of Applied Sciences Muenster, Corrensstrasse 25, 48149 Muenster (Germany); Jinming, Cai [Hefei University of Technology, 193 Tunxi Road, 230009 Hefei (China)

2012-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

U.S.-MEXICO TECHNOLOGY TRANSFER; BILATERAL TECHNICAL EXCHANGES FOR SUSTAINABLE ECONOMIC GROWTH IN THE BORDER REGION  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) maintains a strong commitment to transfer the results of its science and technology programs to the private sector. The intent is to apply innovative and sometimes advanced technologies to address needs while simultaneously stimulating new commercial business opportunities. Such focused technology transfer was evident in the late 1990s as the results of DOE investments in environmental management technology development led to new tools for characterizing and remediating contaminated sites as well as handling and minimizing the generation of hazardous wastes. The Departments Office of Environmental Management was attempting to reduce the cost, accelerate the schedule, and improve the efficacy of clean-up efforts in the nuclear weapons complex. It recognized that resulting technologies had broader world market applications and that their commercialization would further reduce costs and facilitate deployment of improved technology at DOE sites. DOEs Albuquerque Operations Office (now part of the National Nuclear Security Administration) began in 1995 to build the foundation for a technology exchange program with Mexico. Initial sponsorship for this work was provided by the Departments Office of Environmental Management. As part of this effort, Applied Sciences Laboratory, Inc. (ASL) was contracted by the DOE Albuquerque office to identify Mexicos priority environmental management needs, identify and evaluate DOE-sponsored technologies as potential solutions for those needs, and coordinate these opportunities with decision makers from Mexicos federal government. That work led to an improved understanding of many key environmental challenges that Mexico faces and the many opportunities to apply DOEs technologies to help resolve them. The above results constituted, in large part, the foundation for an initial DOE-funded program to apply the Departments technology base to help address some of Mexicos challenging environmental issues. The results also brought focus to the potential contributions that DOEs science and technology could make for solving the many difficult, multi-generational problems faced by hundreds of bi-national communities along the 2,000-mile shared border of the United States and Mexico. Efforts to address these U.S.-Mexico border issues were initially sponsored by the DOEs Albuquerque and Carlsbad offices. In subsequent years, the U.S. Congress directed appropriations to DOEs Carlsbad office to address public health, safety and security issues prevalent within U.S.-Mexico border communities. With ASLs assistance, DOEs Albuquerque office developed contacts and formed partnerships with interested U.S and Mexican government, academic, and commercial organizations. Border industries, industrial effluents, and public health conditions were evaluated and documented. Relevant technologies were then matched to environmental problem sets along the border. Several technologies that were identified and subsequently supported by this effort are now operational in a number of U.S.-Mexico border communities, several communities within Mexicos interior states, and in other parts of Latin America. As a result, some serious public health threats within these communities caused by exposure to toxic airborne pollutants have been reduced. During this time, DOEs Carlsbad office hosted a bilateral conference to establish a cross-border consensus on what should be done on the basis of these earlier investigative efforts. Participating border region stakeholders set an agenda for technical collaborations. This agenda was supported by several Members of Congress who provided appropriations and directed DOEs Carlsbad office to initiate technology demonstration projects. During the following two years, more than 12 private-sector and DOE-sponsored technologies were demonstrated in partnership with numerous border community stakeholders. All technologies were well received and their effectiveness at addressing health, safety and security issues w

Jimenez, Richard, D., Dr.

2007-10-01T23:59:59.000Z

462

Western Partnership for Environmental Technology Education Faculty Internship Program  

SciTech Connect (OSTI)

As an important element within Western Partnership for Environmental Technology Education (PETE), summer internship opportunities are made available to environmental technology instructors, primarily at the community-college level, at participating federal laboratories, test facilities, state regulatory agencies and in private industry. The Program is intended to provide instructors with the opportunity to gain practical experience and understanding within the broad area of environmental technology to enhance the development and presentation of environmental technology curricula. Internship content is intended to be flexible to provide experiences which will relate to and meet the specific needs of the intern and his/her college. The Faulty Internship Program provides business and government with the opportunity to strengthen the educational process and to expand potential candidate pools for employment.

Zehnder, N. [Sandia National Labs., Livermore, CA (United States)

1994-12-31T23:59:59.000Z

463

Technology transfer effectiveness through international joint ventures (IJVs) to their component suppliers: a study of the automotive industry of Pakistan.  

E-Print Network [OSTI]

??This thesis investigates the important topic of technology transfer effectiveness from international joint ventures (IJVs) established in the automotive industry of Pakistan to their local (more)

Khan, Sardar Zaheer Ahmad

2011-01-01T23:59:59.000Z

464

The Influence of Inward Technology Transfers and International Entrepreneurial Orientation on the Export Performance of Egyptian SMEs.  

E-Print Network [OSTI]

??This study examines the influence of inward technology transfers and international entrepreneurial orientation (IEO) on the export performance of small and medium-sized firms (SMEs). IEO (more)

Gaber, Heba

2013-01-01T23:59:59.000Z

465

LANL Transfers Glowing Bio Technology to Sandia Biotech  

SciTech Connect (OSTI)

Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action. http://www.lanl.gov/news/stories/glowing-future-for-los-alamos-and-sandia-b iotech-partnership.html

Rorick, Kevin

2012-01-01T23:59:59.000Z

466

Fermilab | Office of Partnerships and Technology Transfer | Fermilab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000Technology | GISMO GISMO Great Ideas

467

Fermilab | Office of Partnerships and Technology Transfer | Work for Others  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility ofSmall15.000Technology | GISMO GISMO

468

Technology Transfer: Triggering New Global Markets and Job Growth |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergy Secretary ChuAsWhatThe Technology

469

Sandia National Laboratories: Small Business Technology Transfer Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking WorkTransformationSiting Siting At theprogram Technology

470

LANL Transfers Glowing Bio Technology to Sandia Biotech  

ScienceCinema (OSTI)

Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action. http://www.lanl.gov/news/stories/glowing-future-for-los-alamos-and-sandia-b iotech-partnership.html

Rorick, Kevin

2012-08-02T23:59:59.000Z

471

Geothermal technology development program. Annual progress report, October 1981-September 1982  

SciTech Connect (OSTI)

The status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program is described. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement.

Kelsey, J.R. (ed.)

1983-08-01T23:59:59.000Z

472

Overview of the Defense Programs Research and Technology Development Program for Fiscal Year 1993  

SciTech Connect (OSTI)

This documents presents a programmatic overview and program element plan summaries for conceptual design and assessment; physics; computation and modeling; system engineering science and technology; electronics, photonics, sensors, and mechanical components; chemistry and materials; special nuclear materials, tritium, and explosives.

Not Available

1993-09-30T23:59:59.000Z

473

Technology transfer equipment qualification methodology for shelf life determination  

SciTech Connect (OSTI)

Discussions with a number of Nuclear Utilities revealed that equipment qualified for 10 to 40 years in the harsh environment of the plant was being assigned shelf lives of only 5 to 10 years in the benign environment of the warehouse, and then the materials were being trashed. One safety-related equipment supplier was assigning a 10-year qualified life, from date of shipment, with no recognition of the difference in the aging rate in the plant vs. that in the warehouse. Many suppliers assign shelf lives based on product warranty considerations rather than actual product degradation. An EPRI program was initiated to evaluate the methods used to assign shelf lives and to adapt the Arrhenius methodology, used in equipment qualification, to assign technically justifiable shelf lives. Temperature is the main factor controlling shelf life; however, atmospheric pressure, humidity, ultraviolet light, ozone and other atmospheric contaminants were also considered. A list of 70 representative materials was addressed in the program. All of these were found to have shelf lives of 14 years to greater than 60 years, except for 19 items. For 18 of these items, there was no data available except for the manufacturer`s recommendation.

Anderson, J.W. [Wyle Labs., Huntsville, AL (United States)] [Wyle Labs., Huntsville, AL (United States)

1995-08-01T23:59:59.000Z

474

technology offer Vienna University of Technology/ Research and Transfer Support | Hildegard Sieberth  

E-Print Network [OSTI]

developed. The liquid precursors can be either cured in vivo or printed by additive manufacturing technology be tuned, in-vivo curing or high resolution additive manufacturing is not possible Technology A new

Szmolyan, Peter

475

Cross-border transfer of climate change mitigation technologies : the case of wind energy from Denmark and Germany to India  

E-Print Network [OSTI]

This research investigated the causal factors and processes of international development and diffusion of wind energy technology by examining private sector cross-border technology transfer from Denmark and Germany to India ...

Mizuno, Emi, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

476

Advanced ignition and propulsion technology program  

SciTech Connect (OSTI)

This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Reliable engine re-ignition plays a crucial role in enabling commercial and military aircraft to fly safely at high altitudes. This project addressed research elements critical to the optimization of laser-based igniter. The effort initially involved a collaborative research and development agreement with B.F. Goodrich Aerospace and Laser Fare, Inc. The work involved integrated experiments with theoretical modeling to provide a basic understanding of the chemistry and physics controlling the laser-induced ignition of fuel aerosols produced by turbojet engine injectors. In addition, the authors defined advanced laser igniter configurations that minimize laser packaging size, weight, complexity and power consumption. These innovative ignition concepts were shown to reliably ignite jet fuel aerosols over a broad range of fuel/air mixture and a t fuel temperatures as low as -40 deg F. The demonstrated fuel ignition performance was highly superior to that obtained by the state-of-the-art, laser-spark ignition method utilizing comparable laser energy. The authors also developed a laser-based method that effectively removes optically opaque deposits of fuel hydrocarbon combustion residues from laser window surfaces. Seven patents have been either issued or are pending that resulted from the technology developments within this project.

Oldenborg, R.; Early, J.; Lester, C.

1998-11-01T23:59:59.000Z

477

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers to make timely, informed technology decisions. Functioning as a cohesive national organization, PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 3 Satellite Offices that encompass all of the oil- and natural gas-producing regions in the U.S. Active volunteer leadership from the Board and regional Producer Advisory Groups keeps activities focused on producer's needs. Technical expertise and personal networks of national and regional staff enable PTTC to deliver focused, technology-related information in a manner that is cost and time effective for independents. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with matching state and industry funding, forming a unique partnership. This final report summarizes PTTC's accomplishments. In this final fiscal year of the contract, activities exceeded prior annual activity levels by significant percentages. Strategic planning implemented during the year is focusing PTTC's attention on changes that will bear fruit in the future. Networking and connections are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom-line information stimulates cooperative ventures. In FY03 PTTC's regions held 169 workshops, drawing 8,616 attendees. There were nearly 25,000 reported contacts. This represents a 38% increase in attendance and 34% increase in contacts as compared to FY02 activity. Repeat attendance at regional workshops, a measure of customer satisfaction and value received, remained strong at 50%. 39% of participants in regional workshops respond ''Yes'' on feedback forms when asked if they are applying technologies based on knowledge gained through PTTC. This feedback confirms that producers are taking action with the information they receive. RLO Directors captured examples demonstrating how PTTC activities influenced industry activity. Additional follow-up in all regions explored industry's awareness of PTTC and the services it provides. PTTC publishes monthly case studies in the ''Petroleum Technology Digest in World Oil'' and monthly Tech Connections columns in the ''American Oil and Gas Reporter''. Email Tech Alerts are utilized to notify the O&G community of DOE solicitations and demonstration results, PTTC key technical information and meetings, as well as industry highlights. Workshop summaries are posted online at www.pttc.org. PTTC maintains an active exhibit schedule at national industry events. The national communications effort continues to expand the audience PTTC reaches. The network of national and regional websites has proven effective for conveying technology-related information and facilitating user's access to basic oil and gas data, which supplement regional and national newsletters. The regions frequently work with professional societies and producer associations in co-sponsored events and there is a conscious effort to incorporate findings from DOE-supported research, development and demonstration (RD&D) projects within events. The level of software training varies by region, with the Rocky Mountain Region taking the lead. Where appropriate, regions develop information products that provide a service to industry and, in some cases, generate moderate revenues. Data access is an on-going industry priority, so all regions work to facilitate access to public source databases. Various outreach programs also emanate from the resource centers, including targeted visits to producers.

Donald F. Duttlinger; E. Lance Cole

2003-12-15T23:59:59.000Z

478

Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program Issues and Strategy for Fusion Nuclear Science Facility (FNSF)  

E-Print Network [OSTI]

Need for Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program ­Issues and Strategy for Fusion Nuclear Science Facility (FNSF) ­Key R&D Areas to begin NOW (modeling 12, 2010 #12;Fusion Nuclear Science and Technology (FNST) FNST is the science engineering technology

Abdou, Mohamed

479

Cask systems development program seal technology  

SciTech Connect (OSTI)

General design or test performance requirements for radioactive materials (RAM) packages are specified in Title 10 of the US Code of Federal Regulations Part 71 (10 CFR 71). Seals that provide the containment system interface between the packaging body and the closure must function in both high- and low-temperature environments under dynamic and static conditions. Experiments were performed to characterize the performance of several seal materials at low temperatures. Helium leak tests on face seals were used to compare the materials. Materials tested include butyl, neoprene, ethylene propylene, fuorosilicone, silicone, Eypel, Kalrez, Teflon, fluorocarbon, and Teflon/silicone composites. Results show that the seal materials tested, with the exception of silicone S613-60, are not leak tight at manufacturer low-temperature ratings. This paper documents the initial series of experiments developed to characterize the performance of several static seals under conditions representative of RAM transport container environments. Helium leak rates of face seals were measured at low and ambient temperatures to compare seal materials. As scaling laws have not been developed for seals, the leakage rates measured in this program are intended to be used in a qualitative rather than quantitative manner. 5 refs., 7 figs., 2 tabs.

Madsen, M.M.; Edwards, K.R.; Humphreys, D.L.

1991-01-01T23:59:59.000Z

480

Long-Term Stewardship Program Science and Technology Requirements  

SciTech Connect (OSTI)

Many of the United States hazardous and radioactively contaminated waste sites will not be sufficiently remediated to allow unrestricted land use because funding and technology limitations preclude cleanup to pristine conditions. This means that after cleanup is completed, the Department of Energy will have long-term stewardship responsibilities to monitor and safeguard more than 100 sites that still contain residual contamination. Long-term stewardship encompasses all physical and institutional controls, institutions, information, and other mechanisms required to protect human health and the environment from the hazards remaining. The Department of Energy Long-Term Stewardship National Program is in the early stages of development, so considerable planning is still required to identify all the specific roles and responsibilities, policies, and activities needed over the next few years to support the programs mission. The Idaho National Engineering and Environmental Laboratory was tasked with leading the development of Science and Technology within the Long-Term Stewardship National Program. As part of that role, a task was undertaken to identify the existing science and technology related requirements, identify gaps and conflicts that exist, and make recommendations to the Department of Energy for future requirements related to science and technology requirements for long-term stewardship. This work is summarized in this document.

Joan McDonald

2002-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Invitation/Program Technology Watch Day on Future Biofuels  

E-Print Network [OSTI]

Invitation/Program Technology Watch Day on Future Biofuels and 4. TMFB International Workshop;International Research Centers Focussing on Future Biofuels are Presenting Their Research Approaches and Current Concerning Future Biofuels DBFZ ­ Deutsches Biomasseforschungszentrum M. Seiffert, F. Mueller-Langer German

482

White Papers Submitted to the Technology Innovation Program  

E-Print Network [OSTI]

White Papers Submitted to the Technology Innovation Program interested parties to submit white papers describing an area of critical national need and how those needs-risk, high-reward R&D. White papers could discuss any area of critical national need of interest

Magee, Joseph W.

483

ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 105: ELECTRICAL SYSTEMS  

E-Print Network [OSTI]

1 ELECTRICAL ENGINEERING TECHNOLOGY PROGRAM EET 105: ELECTRICAL SYSTEMS Instructor: Albert Lozano: Majority Accidents CAN happen at lower voltages Most common hazard in electronics work Energy stored by capacitors, especially those used in by power supply subcircuits: High Energy Good practice: Short out leads

Lozano-Nieto, Albert

484

ERDC/ELTR-12-25 Army Range Technology Program  

E-Print Network [OSTI]

ERDC/ELTR-12-25 Army Range Technology Program Large-Scale Physical Separation of Depleted Uranium-Scale Physical Separation of Depleted Uranium from Soil Steven Larson, Victor Medina, John Ballard, Chris Griggs) at Yuma Proving Ground (YPG) to evaluate this technique for removal of depleted uranium (DU) metal from

US Army Corps of Engineers

485

GRADUATE STUDIES IN BUILDING TECHNOLOGY AN INTERDISCIPLINARY PROGRAM INCLUDING  

E-Print Network [OSTI]

-growing economies in other parts of the world, there is a growing demand for practical, sustainable building designs as the broader architectural design and construction processes. Likely careers of graduates are in the building1 GRADUATE STUDIES IN BUILDING TECHNOLOGY AN INTERDISCIPLINARY PROGRAM INCLUDING DEPARTMENT

Reif, Rafael

486

Preliminary Technical Risk Analysis for the Geothermal Technologies Program  

SciTech Connect (OSTI)

This report explains the goals, methods, and results of a probabilistic analysis of technical risk for a portfolio of R&D projects in the DOE Geothermal Technologies Program ('the Program'). The analysis is a task by Princeton Energy Resources International, LLC (PERI), in support of the National Renewable Energy Laboratory (NREL) on behalf of the Program. The main challenge in the analysis lies in translating R&D results to a quantitative reflection of technical risk for a key Program metric: levelized cost of energy (LCOE). This requires both computational development (i.e., creating a spreadsheet-based analysis tool) and a synthesis of judgments by a panel of researchers and experts of the expected results of the Program's R&D.

McVeigh, J.; Cohen, J.; Vorum, M.; Porro, G.; Nix, G.

2007-03-01T23:59:59.000Z

487

Training and Qualification Program at the Simulation Technology Laboratory  

SciTech Connect (OSTI)

This report describes the Training and Qualification Program at the Simulation Technology Laboratory (STL). The main facility at STL is Hermes III, a twenty megavolt accelerator which is used to test military hardware for vulnerability to gamma-rays. The facility is operated and maintained by a staff of twenty engineers and technicians. This program is designed to ensure that these personnel are adequately trained and qualified to perform their jobs in a safe and efficient manner. Copies of actual documents used in the program are included in appendices. This program meets all the requirements for training and qualification in the DOE Orders on Conduct of Operations and Quality Assurance, and may be useful to other organizations desiring to come into compliance with these orders.

Zawadzkas, G.A.

1992-03-01T23:59:59.000Z

488

Accelerator technology program. Status report, October 1984-March 1985  

SciTech Connect (OSTI)

Activities of the racetrack-microtron development programs are highlighted, one of which is being done in collaboration with the National Bureau of Standards and the other with the University of Illinois; the BEAR (Beam Experiment Aboard Rocket) project; work in beam dynamics; the proposed LAMPF II accelerator; and the Proton Storage Ring. Discussed next is radio-frequency and microwave technology, followed by activities in accelerator theory and simulation, and free-electron laser technology. The report concludes with a listing of papers published during this reporting period.

Jameson, R.A.; Schriber, S.O. (comps.)

1986-04-01T23:59:59.000Z

489

Cloud County Community College Transfer Program to University of Kansas  

E-Print Network [OSTI]

& Computer Science (Computer Engineering, Computer Science, Electrical Engineering, Information Technology #12;Cloud County Community College Computer Science ~updated August 30, 2013 CM 127 THE SHORT STORY 3 & THE HUMAN EXPRNC 3 CM 148 AMERICAN CINEMA 3 HU 201 HUMANITIES 3 HU 202 HUMANITIES 2 3 RE 104 WORLD RELIGIONS

490

Advanced Researech and Technology Development fossil energy materials program: Semiannual progress report for the period ending September 30, 1988  

SciTech Connect (OSTI)

The objective of the ARandTD Fossil Energy Materials Program is to conduct research and development on materials for fossil energy applications with a focus on the longer-term and generic needs of the various fossil fuel technologies. The program includes research aimed toward a better understanding of materials behavior in fossil energy environments and the development of new materials capable of substantial enhancement of plant operations and reliability. The ORNL Fossil Energy Materials Program Office compiles and issues this combined semiannual progress report from camera-ready copies submitted by each of the participating subcontractor organizations. This report of activities on the program is organized in accordance with a work breakdown structure in which projects are organized according to materials research thrust areas. These areas are (1) Structural Ceramics, (2) Alloy Development and Mechanical Properties, (3) Corrosion and Erosion of Alloys, and (4) Assessments and Technology Transfer. Individual projects are processed separately for the data bases.

Not Available

1989-01-01T23:59:59.000Z

491

TECHNOLOGY TRANSFER  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClient update resolve008 HighDepartmentTopic Groups

492

Technology Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and How To License ORNL

493

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency.

Unknown

2003-04-30T23:59:59.000Z

494

Nuclear Technology Programs semiannual progress report, April-- September 1990  

SciTech Connect (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

Harmon, J.E. [ed.

1992-06-01T23:59:59.000Z

495

Nuclear Technology Programs semiannual progress report, April-- September 1990  

SciTech Connect (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April--September 1990. These programs involve R D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation's high-level waste repositories.

Harmon, J.E. (ed.)

1992-06-01T23:59:59.000Z

496

Nuclear Technology Programs semiannual progress report, October 1988--March 1989  

SciTech Connect (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1988--March 1989. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned with examining the feasibility of substituting low-enriched for high-enriched uranium in the production of fission product {sup 99}Mo. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories. 127 refs., 76 figs., 103 tabs.

Harmon, J.E. [ed.

1990-12-01T23:59:59.000Z

497

Nuclear technology programs; Semiannual progress report, October 1989--March 1990  

SciTech Connect (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1989--March 1990. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions, the thermophysical properties of metal fuel and blanket materials of the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. Another effort is concerned water waste stream generated in production of 2,4,6-trinitrotoluene. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

Harmon, J.E. [ed.

1992-01-01T23:59:59.000Z

498

Nuclear technology programs. Semiannual progress report, April--September 1991  

SciTech Connect (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April through September 1991. These programs involve R & D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transport of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

Not Available

1993-07-01T23:59:59.000Z

499

Nuclear Technology Programs semiannual progress report, October 1990--March 1991  

SciTech Connect (OSTI)

This document reports on the work done by the Nuclear Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1990--March 1991. These programs involve R&D in three areas: applied physical chemistry, separation science and technology, and nuclear waste management. The work in applied physical chemistry includes investigations into the processes that control the release and transpose of fission products under accident-like conditions in a light water reactor, the thermophysical properties of the metal fuel in the Integral Fast Reactor, and the properties of selected materials in environments simulating those of fusion energy systems. In the area of separation science and technology, the bulk of the effort is concerned with developing and implementing processes for the removal and concentration of actinides from waste streams contaminated by transuranic elements. In the area of waste management, investigations are underway on the performance of materials in projected nuclear repository conditions to provide input to the licensing of the nation`s high-level waste repositories.

NONE

1992-12-01T23:59:59.000Z

500

Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993  

SciTech Connect (OSTI)

The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

Not Available

1990-07-01T23:59:59.000Z