Powered by Deep Web Technologies
Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NREL: Technology Transfer - Commercialization Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercialization Programs Commercialization Programs Through our commercialization programs, we help accelerate the transfer of renewable energy and energy efficiency technologies into the marketplace. Clean Energy Alliance The Clean Energy Alliance is an alliance of the nation's top business incubators that provide business services to nascent clean energy entrepreneurs. NREL partners with these elite business incubators to help foster the growth of robust clean energy businesses and commercialize their technologies. Colorado Center for Renewable Energy Economic Development Formerly the Colorado Cleantech Initiative program, the Colorado Center for Renewable Energy Economic Development (CREED) is a joint effort between NREL, the State of Colorado, and affiliated stakeholders to provide

2

TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 PDF TECHNOLOGY...

3

The Impact of Federal Technology Transfer on the Commercialization Process  

Science Journals Connector (OSTI)

Some people find the suggestion that federal technology transfer can impact technology commercialization impossible to accept. Federal technology transfer can, and does, impact the overall technology commercialization

Roger A. Lewis

1994-01-01T23:59:59.000Z

4

NREL: Technology Transfer - Agreements for Commercializing Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Agreements for Commercializing Technology Agreements for Commercializing Technology NREL uses Agreements for Commercializing Technology (ACT) when a partner seeks highly-specialized or technical services to complete a project. An ACT agreement also authorizes participating contractor-operated DOE laboratories, such as NREL, to partner with businesses using more flexible terms that are aligned with industry practice. The agreement type used depends on the business, and the specific partnership selected is determined on a case-by-case basis. Benefits The benefits of Agreements for Commercializing Technology include: Intellectual Property Rights. ACT provides a more flexible framework for negotiation of intellectual property rights to facilitate moving technology from the laboratory to the marketplace as quickly as possible.

5

Guidance for Preparing Annual Agency Technology Transfer Reports Under the Technology Transfer Commercialization Act  

E-Print Network (OSTI)

Guidance for Preparing Annual Agency Technology Transfer Reports Under the Technology Transfer U.S. Department of Commerce in conjunction with The Interagency Working Group on Technology Transfer May 2013 #12;2 Introduction Under the Technology Transfer Commercialization Act of 2000 (P.L. 106

6

Comments About The Impact of Federal Technology Transfer on the Commercialization Process  

Science Journals Connector (OSTI)

Much has been said about technology transfer and little about technology commercialization. My comments will focus on the commercialization of public sector technology by industry.

James P. Wilhelm

1994-01-01T23:59:59.000Z

7

Charting the routes to commercialization: The absorption and transfer of energy conservation technologies  

Science Journals Connector (OSTI)

This study examines how innovations in Energy Conservation Technologies (ECT's) developed through public sponsorship become commercialized. In the typical ECT project, public support is used as a catalyst bringing public and private organizations together to perform the work. The variety of routes to commercialization this creates can be analysed using two concepts: absorption and transfer. Absorption is adoption of an ECT by an organization participating in the project. Transfer is adoption by non-participants. Two cases sponsored by the New York State Energy Research and Development Authority (the Energy Authority) are analysed. In the first case commercialization is limited to the absorption process. In the second case both absorption and transfer are used in commercialization.

Gordon Kingsley; Barry Bozeman

1997-01-01T23:59:59.000Z

8

Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency & Renewable and Energy - Commercialization Energy Efficiency & Renewable and Energy - Commercialization Deployment SBIR/STTR - Small Business Innovation Research and Small Business Technology Transfer USEFUL LINKS Contract Opportunities: FBO.gov FedConnect.net Grant Opportunities DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Licensing Guide and Sample License The Technology Transfer Working Group (TTWG), made up of representatives from each DOE Laboratory and Facility, recently created a Licensing Guide and Sample License [762-KB PDF]. The Guide will serve to provide a general understanding of typical contract terms and provisions to help reduce both

9

Technology Transfer Ombudsman Program  

Energy.gov (U.S. Department of Energy (DOE))

The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000. Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national...

10

Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government...

11

Federal Laboratory Technology Transfer  

E-Print Network (OSTI)

Federal Laboratory Technology Transfer Fiscal Year 2008 Prepared by: National Institute to submit this fiscal year 2008 Technology Transfer Summary Report to the President and the Congress transfer authorities established by the Technology Transfer Commercialization Act of 2000 (P.L. 106

Perkins, Richard A.

12

Connect, Collaborate, Commercialize There are many different opportunities for engagement and technology transfer at Georgia  

E-Print Network (OSTI)

and technology transfer at Georgia Tech. Working together we can tailor a relationship unique to your company

Garmestani, Hamid

13

Sandia National Laboratories: technology transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

technology transfer Federal Laboratory Consortium Regional Technology-Transfer Awards Salute Innovation, Commercialization at Sandia On September 23, 2014, in Capabilities, Carbon...

14

TECHNOLOGY TRANSFER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

404-NOV. 1, 2000 404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT TITLE. This Act may be cited as the ''Technology Transfer Commer- cialization Act of 2000''. SEC. 2. FINDINGS. The Congress finds that- (1) the importance of linking our unparalleled network of over 700 Federal laboratories and our Nation's universities with United States industry continues to hold great promise

15

The Impact of the Federal Technology Transfer on the Commercialization Process Conflict of Interest  

Science Journals Connector (OSTI)

Like Roger Lewis (see p. 109), this paper focuses primarily on the DOE component of federal technology transfer and, in that area, the issue of conflict of interest.

Albert Sopp

1994-01-01T23:59:59.000Z

16

COMMERCIALIZING TECHNOLOGIES &  

E-Print Network (OSTI)

measurement." Dan Gillings President Applied Technology Associates NMSBA reduced my manufacturing costs by 20 a patent for a revolutionary new, even more shock absorbent mouthguard they will manufacture from material including a new additive. 2 Animated Talking Toys Heilbron Associates had acquired rights to a fiber optic

17

Environmental technology transfer and commercial viability: a synthesis of three case studies  

Science Journals Connector (OSTI)

Based on a ''Model for Preparing Case Studies of Environmental Technology Transfer'', three case studies are developed to contribute insights on the development and commercialisation of environmental technology. Two cases address soil and groundwater contamination: Dynamic Underground Stripping (DUS) developed by Lawrence Livermore National Laboratory and Gravity Pressure Vessel (GPV) by GeneSyst International. The third case: Biodiesel Fuel (BIO), produced by Biodiesel Industries and Pacific Biodiesel, is a diesel fuel substitute. A synthesis across the research model above is provided, along with critical success factors for these examples of environmental technology commercialisation.

Willard Price

2005-01-01T23:59:59.000Z

18

Technology Transfer: About the Technology Transfer Department  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Technology Transfer and Intellectual Property Management About the Technology Transfer and Intellectual Property Management Department The Technology Transfer Department helps move technologies from the Lab to the marketplace to benefit society and the U. S. economy. We accomplish this through developing and managing an array of partnerships with the private and public sectors. What We Do We license a wide range of cutting-edge technologies to companies that have the financial, R & D, manufacturing, marketing, and managerial capabilities to successfully commercialize Lab inventions. In addition, we manage lab-industry research partnerships, ensure that inventions receive appropriate patent or copyright protection, license technology to start-up companies, distribute royalties to the Lab and to inventors and serve as

19

NREL: Technology Transfer - About Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

About Technology Transfer About Technology Transfer Through technology partnerships, NREL seeks to reduce private sector risk and enable investment in the adoption of renewable energy and energy efficiency technologies. The transfer of these technologies to the marketplace helps displace oil, reduce carbon emissions, and increase U.S. industry competitiveness. Principles NREL develops and implements technology partnerships based on the standards established by the following principles: Balancing Public and Private Interest Form partnerships that serve the public interest and advance U.S. Department of Energy goals. Demonstrate appropriate stewardship of publicly funded assets, yielding national benefits. Provide value to the commercial partner. Focusing on Outcomes Develop mutually beneficial collaborations through processes, which are

20

Technology Commercialization and Business Innovation | Department...  

Energy Savers (EERE)

commercialization and business innovation funding programs: SunShot Incubator Program Small Business Innovation Research and Small Business Technology Transfer (SBIRSTTR)....

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NREL: Technology Transfer Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Technology Transfer Search More Search Options Site Map The National Renewable Energy Laboratory (NREL) works with industry and organizations to transfer renewable energy and energy efficiency technologies into the marketplace. Working with Us We offer many opportunities and ways for you to partner with us. Learn more about our technology partnership agreements and services: Agreements for Commercializing Technology Cooperative Research and Development Agreements Technologies Available for Licensing Technology Partnerships Work for Others Research Facilities NREL follows its principles for establishing mutually beneficial technology partnerships. Through our commercialization programs, we work to stimulate the market for clean energy technologies and foster the growth of clean energy start-ups.

22

Partnerships and Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooperative Research and Development Agreement Cooperative Research and Development Agreement visualization scientist A Cooperative Research and Development Agreement (CRADA) is a mechanism whereby non-federal entities (industry, universities, non-profits, etc.) can collaborate with federal laboratories on research and development projects. CRADAs are specifically technology transfer agreements; technologies developed under CRADAs are expected to be transferred to the private sector for commercial exploitation, either by the non-federal partner or another licensee of such technologies. CRADAs were authorized by the Stevenson-Wydler Technology Innovation Act of 1980 (Public Law 96-480); the authority for government-owned, contractor-operated laboratories such as ORNL to enter into CRADAs was granted by the National Competitiveness Technology Transfer Act of 1989

23

Technology Commercialization Program 1991  

SciTech Connect

This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

Not Available

1991-11-01T23:59:59.000Z

24

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Software and Information Technologies Software and Information Technologies Algorithm for Correcting Detector Nonlinearites Chatelet: More Accurate Modeling for Oil, Gas or Geothermal Well Production Collective Memory Transfers for Multi-Core Processors Energy Efficiency Software EnergyPlus:Energy Simulation Software for Buildings Tools, Guides and Software to Support the Design and Operation of Energy Efficient Buildings Flexible Bandwidth Reservations for Data Transfer Genomic and Proteomic Software LABELIT - Software for Macromolecular Diffraction Data Processing PHENIX - Software for Computational Crystallography Vista/AVID: Visualization and Allignment Software for Comparative Genomics Geophysical Software Accurate Identification, Imaging, and Monitoring of Fluid Saturated Underground Reservoirs

25

Accelerating the transfer in Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerating the transfer in Technology Transfer Accelerating the transfer in Technology Transfer Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Accelerating the transfer in Technology Transfer Express Licensing fast tracks commercialization. May 1, 2013 Division Leader Dave Pesiri Division Leader Dave Pesiri. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Express Licensing program To better serve its partners, one of the first improvements the Lab's Technology Transfer Division (TT) has made is through its new Express Licensing initiative. Standardized license agreements and fee structures will remove long and complicated negotiations and decrease the time required to get patented Lab technology and software into the hands of

26

NREL: Technology Transfer - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Webmaster Webmaster To report any problems on or ask a question about the NREL Technology Transfer Web site, you may contact the Webmaster using the online form below. If you have a question or concern that's not related to this Web site, please see our list of contacts for assistance. To contact the Webmaster, please provide your name, e-mail address, and message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News

27

NREL: Technology Transfer - Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Contacts Here you'll find contact information and resources to help answer any questions you may have about NREL's technology transfer and commercialization opportunities. Agreement for Commercializing Technology For more information about NREL's agreements for commercializing technology, contact Anne Miller, 303-384-7353. Financial and Funding Assistance NREL does not provide financial or funding assistance for any research projects. If you're a startup company, small business, or an inventor, visit the following Web sites: Grants.gov Small Business Administration. Industry Growth Forum Visit the NREL Industry Growth Forum website or contact Kate Cheesbrough for more information about this event. Investors and Entrepreneurs For more information about NREL's Innovation and Entrepreneurship Center,

28

Technology Commercialization Fund - EERE Commercialization Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Fund The Technology Commercialization Fund (TCF) is designed to complement angel investment or early stage corporate product development. The fund totaled nearly 14.3 million in...

29

NREL: Technology Transfer - Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events February 2014 NASEO Energy Outlook Conference February 4 - 7, 2014 Washington , DC Add to calendar Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News Contacts Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Alliance for Sustainable Energy, LLC

30

INL Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Through collaboration with industry partners, INL's Technology Deployment office makes available to American agencies and international organizations unique...

31

Commercialization of clean coal technologies  

SciTech Connect

The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

Bharucha, N. [Dept. of Primary Industries and Energy, Canberra (Australia)

1994-12-31T23:59:59.000Z

32

Energy Efficient Commercial Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Technologies April 11th, 2012 Presented by: Warren Willits Energy Solutions Center (202) 824-7150 www.ESCenter.org Federal Utility Partnership Working Group Spring 2012 Jekyll Island, GA Todays Energy Efficient Technologies  Water Heating  Heating  Air Conditioning  Humidity Control  CHP / Cogeneration Atmospheric Direct Vent High Efficiency .7 EF Atmospheric water heaters now available 97 % efficient tank water heaters now available Traditional Tank Style Water Heating  Tankless Water Heaters  EF = .82 Standard Unit  EF = .97 Condensing  Solar Water Heaters  With H.E. gas back up systems Newer Water Heaters Water Heater Life Cycle Cost Life Cycle Costs Electric Tank Water Heater Gas Water Heater

33

Summary Report on Federal Laboratory Technology Transfer  

E-Print Network (OSTI)

Summary Report on Federal Laboratory Technology Transfer FY 2003 Activity Metrics and Outcomes 2004 Report to the President and the Congress under the Technology Transfer and Commercialization Act Office Chapter 2. Trends in Federal Lab Technology Transfer 2.1 Cooperative Research and Development

Perkins, Richard A.

34

Partnerships and Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnerships and Technology Transfer User Facilities Visiting Us Contact Us Home About Us Success Stories Events News ORNL Inventors (internal only) Find a Technology Search go...

35

Industry Partnerships | BNL Technology Commercialization and Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Industry Licensing The Office of Technology Commercialization and Partnerships (TCP) grants licenses for BNL-developed intellectual property to existing and start-up companies that are technically and financially capable of turning early-stage technology into commercial products. Nonexclusive and exclusive licenses are granted. TCP is committed to negotiating fair and reasonable license agreements that are beneficial to both parties. Search available technologies | See DOE Tech Transfer Working Group Licensing Guide (PDF) Sponsored Research BNL has many ways of collaborating with industry on emerging technologies that are geared toward bringing new technologies to the marketplace. Learn more | See Guide to Partnering with DOE's National Laboratories (PDF)

36

Federal Laboratory Technology Transfer  

E-Print Network (OSTI)

Federal Laboratory Technology Transfer Fiscal Year 2007 Prepared by: National Institute to present to the President and the Congress this Federal Laboratory Technology Transfer Report summarizing the achievements of Federal technology transfer and partnering programs of the Federal research and development

Perkins, Richard A.

37

Federal Laboratory Technology Transfer  

E-Print Network (OSTI)

Federal Laboratory Technology Transfer Fiscal Year 2009 Prepared by: National Institute to submit this fiscal year 2009 Technology Transfer Summary Report to the President and the Congress in accordance with 15 USC Sec 3710(g)(2) for an annual summary on the implementation of technology transfer

Perkins, Richard A.

38

Technology Transfer Ombudsman Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Technology Transfer Ombudsman Program Technology Transfer Ombudsman Program The Technology Transfer Commercialization Act of 2000, Public Law 106-404 (PDF) was enacted in November 2000. Pursuant to Section 11, Technology Partnerships Ombudsman, each DOE national laboratory and research facility has appointed a technology partnership ombudsman (ombuds). The role of the ombuds is prevention and early resolution of disputes between the lab and inventors or private companies over technology transfer issues such as infringement, intellectual property rights, royalties and licensing, etc. The Director, Office of Conflict Prevention and Resolution, coordinates this program and compiles data for quarterly reports. See the Department of Energy Technology Transfer Ombuds (PDF).

39

The process of technology commercialization.  

E-Print Network (OSTI)

?? This thesis investigates, describes and understands the extensive process of technology commercialization. What stages there are, important aspects and implications. It is structured as (more)

Holmgren, Annie

2007-01-01T23:59:59.000Z

40

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

test test Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Energy ENERGY EFFICIENT TECHNOLOGIES Aerosol Sealing Aerosol Remote Sealing System Clog-free Atomizing and Spray Drying Nozzle Air-stable Nanomaterials for Efficient OLEDs Solvent Processed Nanotube Composites OLEDS with Air-stable Structured Electrodes APIs for Online Energy Saving Tools: Home Energy Saver and EnergyIQ Carbon Dioxide Capture at a Reduced Cost Dynamic Solar Glare Blocking System Electrochromic Device Controlled by Sunlight Electrochromic Windows with Multiple-Cavity Optical Bandpass Filter Electrochromic Window Technology Portfolio Universal Electrochromic Smart Window Coating

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Please refer to the list of technologies below for licensing and research Please refer to the list of technologies below for licensing and research collaboration availability. If you can't find the technology you're interested in, please contact us at TTD@lbl.gov. Biotechnology and Medicine DIAGNOSTICS AND THERAPEUTICS CANCER CANCER PROGNOSTICS 14-3-3 Sigma as a Biomarker of Basal Breast Cancer ANXA9: A Therapeutic Target and Predictive Marker for Early Detection of Aggressive Breast Cancer Biomarkers for Predicting Breast Cancer Patient Response to PARP Inhibitors Breast Cancer Recurrence Risk Analysis Using Selected Gene Expression Comprehensive Prognostic Markers and Therapeutic Targets for Drug-Resistant Breast Cancers Diagnostic Test to Personalize Therapy Using Platinum-based Anticancer Drugs Early Detection of Metastatic Cancer Progenitor Cells

42

Technology Commercialization & Partnerships | BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Commercialization & Partnerships Technology Commercialization & Partnerships Home For BNL Inventors For Industry For Entrepreneurs Sponsored Research Search Technologies Patents Contacts TCP Director Connie Cleary Tech Commercialization Christine Brakel Cyrena Condemi Kimberley Elcess Poornima Upadhya Partnerships Mike Furey, Manager Ginny Coccorese Alison Schwarz Intellectual Property Legal Group (Legal Dept.) Dorene Price, Chief Intellectual Property Counsel Lars Husebo, Attorney Maria Pacella, Sr. Staff Specialist William Russell, Asst. Staff Specialist INNOVATION MEETS BUSINESS at Brookhaven National Laboratory. WE GRANT LICENSES for our intellectual property to existing and start up companies. WE SEEK FUNDING from experienced investors to develop our intellectual assets. Tech Commercialization News

43

Technology Transfer Reporting Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

form is to be completed by the TTO for individual inquiry/case activity during the quarter as required form is to be completed by the TTO for individual inquiry/case activity during the quarter as required by the Technology Transfer Commercialization Act of 2000. Mouse over definitions and descriptions appear over text/check boxes where appropriate. After completing this form, click on the submit button. *If you have no TTO activity for the quarter, please fill in your name, FY and quarter, lab or facility and check the box "No Quarterly Activity". Initial Ombuds Contact: ____________________ Type: Inquiry Case Ombuds Name: __________________________ Time Spent: (Hours) ______________ Final Ombuds Involvement: _________________ Laboratory or Facility: AMES ANL BNL LBNL INL KCP LANL NREL LLNL NBL NETL PNNL NNSS ORNL PXSO SRNL

44

NREL: Technology Transfer - Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Facilities Research Facilities Photo of Solar Energy Research Facility building at NREL. NREL's Solar Energy Research Facility is one of many world-class facilities available to public and private agencies. For developing commercially viable energy products, organizations may partner with NREL to use our state-of-the-art laboratories, and testing and user facilities. Visit NREL's Research Facilities Web site to learn more about them. We typically develop technology partnership agreements for using our facilities and/or working with our researchers. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News Contacts Did you find what you needed?

45

Technology Transfer: Available Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Sources and Beam Technologies Ion Sources and Beam Technologies GENERATORS AND DETECTORS Compact, Safe and Energy Efficient Neutron Generator Fast Pulsed Neutron Generator High Energy Gamma Generator Lithium-Drifted Silicon Detector with Segmented Contacts Low Power, High Energy Gamma Ray Detector Calibration Device Nested Type Coaxial Neutron Generator Neutron and Proton Generators: Cylindrical Neutron Generator with Nested Option, IB-1764 Neutron-based System for Nondestructive Imaging, IB-1794 Mini Neutron Tube, IB-1793a Ultra-short Ion and Neutron Pulse Production, IB-1707 Mini Neutron Generator, IB-1793b Compact Spherical Neutron Generator, IB-1675 Plasma-Driven Neutron/Gamma Generators Portable, Low-cost Gamma Source for Active Interrogation ION SOURCES WITH ANTENNAS External Antenna for Ion Sources

46

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network (OSTI)

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division to them in California. TECHNOLOGY TRANSFER PROGRAM MAY 2011, VOL. 3, NO. 1 California's Transition

California at Berkeley, University of

47

Conflict of Interest Relating Specifically to Technology Transfer Agreements The University increasingly grants the right to exploit its IP and/or know-how to commercial  

E-Print Network (OSTI)

Conflict of Interest Relating Specifically to Technology Transfer Agreements The University that may arise as a result of technology transfer transactions. 1. When a primary candidate for a technology transfer agreement is identified and before any agreement is negotiated, the Industrial Liaison

Schellekens, Michel P.

48

Technology Commercialization: Opportunities and Challenges  

Science Journals Connector (OSTI)

Commercialization of technology from university and national laboratory ... in the early 1970s to an active process in the 1990s, involving exclusive licensing ... development professional involved in the licen...

K. L. Crandell

1991-01-01T23:59:59.000Z

49

Accelerating the transfer in Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerating the transfer in Technology Transfer Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2014 - Jan. 2015...

50

Technology Application Centers: Facilitating Technology Transfer  

E-Print Network (OSTI)

transfer plus technology application. A&C Enercom has learned from experience that technology deployment will not occur unless utilities achieve both technology transfer (e.g, the dissemination of information) and technology application (e.g., the direct...

Kuhel, G. J.

51

Technology Transfer Summit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agenda as of April 9, 2012 Agenda as of April 9, 2012 Technology Transfer Summit April 16, 2012 IMC - Trinity Ballroom 4 8:00 - 8:10 Welcome & Introduction Pete Tseronis, DOE Chief Technology Officer 8:10 - 8:50 Accelerating Transfer Within an Innovation Ecosystem Debra M. Amidon, Founder and Chief Strategist, ENTOVATION International, and Author, The Innovation SuperHighway 8:50 - 9:20 Tech Transfer - Predicaments, Perplexities, and Possible Panaceas Rex Northen, Executive Director, Cleantech Open 9:20 - 9:50 A Systems Approach to Innovation Mike Schwenk, Vice President and Director Technology Deployment and Outreach, Pacific Northwest National Laboratory (PNNL) 9:50 - 10:15 DOE's Online Tech Transfer Ecosystem - aka...Stop Building Moai! Robert Bectel, Senior Policy Advisor / Chief Technology Officer

52

Technology Transfer Reporting Form | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transfer Reporting Form Technology Transfer Reporting Form Technology Transfer Reporting Form More Documents & Publications Technology Partnership Ombudsman - Roles,...

53

Technology Transfer Office November 2009  

E-Print Network (OSTI)

Technology Transfer Office November 2009 INVENTION AGREEMENT In consideration of my employment in writing to Dartmouth through the Technology Transfer Office any such discovery or invention and identify

Myers, Lawrence C.

54

Commercialization of sustainable energy technologies  

Science Journals Connector (OSTI)

Commercialization efforts to diffuse sustainable energy technologies (SETs11The \\{SETs\\} can be viewed as a portfolio of technologies, which are expected to use renewable energy resources as input to produce modern energy carriers. ) have so far remained as the biggest challenge in the field of renewable energy and energy efficiency. Limited success of diffusion through government driven pathways urges the need for market based approaches. This paper reviews the existing state of commercialization of \\{SETs\\} in the backdrop of the basic theory of technology diffusion. The different \\{SETs\\} in India are positioned in the technology diffusion map to reflect their slow state of commercialization. The dynamics of SET market is analysed to identify the issues, barriers and stakeholders in the process of SET commercialization. By upgrading the potential adopters to techno-entrepreneurs, the study presents the mechanisms for adopting a private sector driven business model approach for successful diffusion of SETs. This is expected to integrate the processes of market transformation and entrepreneurship development with innovative regulatory, marketing, financing, incentive and delivery mechanisms leading to SET commercialization.

P. Balachandra; Hippu Salk Kristle Nathan; B. Sudhakara Reddy

2010-01-01T23:59:59.000Z

55

Technology Transfer Overview  

Energy.gov (U.S. Department of Energy (DOE))

DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the maturation and deployment of DOE discoveries, providing ongoing economic, security and environmental benefits for all Americans.

56

NREL: Technology Transfer - Ombuds  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Ombuds Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership, patent, and licensing activities. As a designated neutral party, our ombuds provides confidential, resolution-focused services. Through the ombuds process, we encourage collaborative techniques such as mediation to facilitate the speedy and low-cost resolution of complaints and disputes, when appropriate. The NREL Ombuds does not: Handle contract negotiation or other legal issues Act as a decision maker or draw conclusions Investigate or make formal recommendations on findings of fact. The ombuds also does not replace, override, or influence formal review or appeal mechanisms, or serve as an intermediary when legal action is

57

Building Technologies Office: Commercial Reference Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Reference Commercial Reference Buildings to someone by E-mail Share Building Technologies Office: Commercial Reference Buildings on Facebook Tweet about Building Technologies Office: Commercial Reference Buildings on Twitter Bookmark Building Technologies Office: Commercial Reference Buildings on Google Bookmark Building Technologies Office: Commercial Reference Buildings on Delicious Rank Building Technologies Office: Commercial Reference Buildings on Digg Find More places to share Building Technologies Office: Commercial Reference Buildings on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

58

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Partnership Opportunities with the Department of Energy to someone by E-mail Share Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Facebook Tweet about Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Twitter Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Google Bookmark Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Delicious Rank Building Technologies Office: Commercial Building Partnership Opportunities with the Department of Energy on Digg Find More places to share Building Technologies Office: Commercial

59

TECHNOLOGY LICENSE APPLICATION Office of Technology Transfer  

E-Print Network (OSTI)

Page 1 TECHNOLOGY LICENSE APPLICATION Office of Technology Transfer UT-Battelle, LLC (UT. One of the functions of UT-BATTELLE's Office of Technology Transfer is to negotiate license agreements

Pennycook, Steve

60

Technology Transfer: Site Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Site Map About Us About Technology Transfer Contact Us Available Technologies Advanced Materials Biofuels Biotechnology and Medicine Developing World Energy Environmental Technologies Imaging and Lasers Ion Sources and Beam Technologies Nanotechnology and Microtechnology Software and Information Technology For Industry Licensing Overview Frequently Asked Questions Partnering with Berkeley Lab Licensing Interest Form Receive New Tech Alerts For Researchers What You Need to Know and Do The Tech Transfer Process Forms Record of Invention (Word doc -- please do not use earlier PDF version of the form) Software Disclosure and Abstract (PDF, use Adobe Acrobat or Adobe Reader 9 and up ONLY to complete the form) Policies Conflict of Interest Outside Empolyment Export Control FAQs for Researchers

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

International Commercial Vehicle Technology Symposium  

E-Print Network (OSTI)

Cluster (CVC), the Fraunhofer Innovations Cluster for Digital Commercial Vehicle Technology (DNT Fraunhofer Innovation Cluster DNT/FUMI, Fraunhofer ITWM Opening of exhibition and come together WEDNESDAY, 12 innovation projects between the industry and the scientific fraternity. A network like the CVA works like

Steidl, Gabriele

62

SRNL - Technology Transfer - Ombudsman  

NLE Websites -- All DOE Office Websites (Extended Search)

Ombudsman Ombudsman Ombudsman Program Policy The Department of Energy and its management and operating contractors (M & O Contractors) engaging in technology partnership activities, share a mutual objective to ensure complete fairness in the transfer of federally funded technologies into the marketplace for the benefit of the U.S. economy. This includes an interest in open lines of communication and the early identification of issues, complaints and disputes between contractors and their existing or potential partners. The Technology Transfer Ombudsman Program provides an independent point of contact for concerns about technology transfer i SRS Sign ssues, complaints and disputes. The mission of the Ombudsman Program is to elevate to the appropriate SRNS officials the information needed to identify and resolve problems thereby improving satisfaction with SRNS practices and reducing the occasion for formal disputes and litigation. The Ombudsman will not be involved in the merits of cases that are the subject of ongoing dispute resolution or litigation, or investigation incidents thereto. The Ombudsman is not established to be a super-administrator, re-doing what specialized officials have already done. Rather, the Ombudsman is to ensure that appropriate SRNS officials consider all pertinent information when deciding the company's position on a technology transfer complaint. To request forms or acquire additional information contact: Michael Wamstad, 803-725-3751 or mike.wamstad@srs.gov.

63

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network (OSTI)

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division of asphalt pavements. TECHNOLOGY TRANSFER PROGRAM JULY 2010, VOL. 2, NO. 1 Warm Mix Asphalt Hits the Road, and California LTAP Field Engineer, Technology Transfer Program, Institute of Transportation Studies, UC Berkeley

California at Berkeley, University of

64

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program  

E-Print Network (OSTI)

PAVEMENT TECHNOLOGY UPDATE This Technology Transfer Program publication is funded by the Division solve the very serious problem of waste tire disposal. TECHNOLOGY TRANSFER PROGRAM SEPTEMBER 2009, VOL, University of California Pavement Research Center, and California LTAP Field Engineer, Technology Transfer

California at Berkeley, University of

65

Technology transfer @ VUB Hugo Loosvelt  

E-Print Network (OSTI)

13/12/2012 Technology transfer @ VUB Hugo Loosvelt #12;VUB in Brussels www.vub.ac.be including or conclude licensing contracts #12;Technology transfer TTI assists academics to realise knowledge transfer by needed for R&D collaboration, licensing and spin-out company formation Technology transfer is the process

Steels, Luc

66

Technology Transfer Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Research Projects Agency-Energy (ARPA-E) Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer Initiatives USEFUL LINKS Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) FLC Technology Locator Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Reports Navigate Home About Us Contact Information Hide Thumbs First Previous Pause Next Last Set Speed Slideshow speed: 5 seconds Move Autoinduction system New Image Set Autoinduction Autoinduction System The award winning Overnight Express(tm) Autoinduction System developed at BNL simplifies protein production in the widely used T7 gene expression system. Decontamination Foam-based decontamination

67

Ames Lab 101: Technology Transfer  

SciTech Connect

Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

Covey, Debra

2010-01-01T23:59:59.000Z

68

Ombuds Services for Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Tech Transfer Ombuds Ombuds Services for Technology Transfer Committed to the fair and equitable treatment of all employees, contractors, and persons doing business with the...

69

NREL: Technology Transfer - NREL, Collaborators Complete Gearbox...  

NLE Websites -- All DOE Office Websites (Extended Search)

technical innovation within the global wind energy industry. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing...

70

Technology Development and Commercialization | Argonne National...  

NLE Websites -- All DOE Office Websites (Extended Search)

New Technology Fact Sheets Synthesizing Pharmaceuticals Using Containerless Processing Commercialization target set for larger, more precise photodetectors to aid science,...

71

From Innovation to Commercialization: Tech Transfer at the National Labs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

From Innovation to Commercialization: Tech Transfer at the National From Innovation to Commercialization: Tech Transfer at the National Labs From Innovation to Commercialization: Tech Transfer at the National Labs August 26, 2013 - 5:28pm Addthis Argonne National Lab scientists Jeff Elam (left) and Anil Mane’s work in nanocomposite charge drain coatings represents a significant breakthrough in the efforts to develop microelectromechanical systems, or MEMS. This new technology earned one of the 36 R&D 100 awards from R&D Magazine that the National Labs took home in 2013. | Image courtesy of Argonne National Laboratory. Argonne National Lab scientists Jeff Elam (left) and Anil Mane's work in nanocomposite charge drain coatings represents a significant breakthrough in the efforts to develop microelectromechanical systems, or MEMS. This new

72

Economic Analysis of Commercial Idling Reduction Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies: Which idling reduction system is most economical for truck owners? Economic Analysis of Commercial Idling Reduction Technologies: Which idling reduction system...

73

Federal Technology Transfer Data 1987-2009 Gary Anderson  

E-Print Network (OSTI)

Federal Technology Transfer Data 1987-2009 Gary Anderson Economist National Institute of Standards. Among other things, this Act explicitly incorporated technology transfer into the mission of all federal departments and agencies. More recently, the Technology Transfer Commercialization Act of 2000 revised

Perkins, Richard A.

74

Working with SRNL - Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

SRNL GO Tech Briefs Contacts Ombudsman Tech Home SRNL Home Working with SRNL Technology Transfer 2014 SRNL Research and Technology Recognition Reception Click to view the 2014...

75

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2013 Activities and Achievements  

E-Print Network (OSTI)

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2013 Activities Institute for Telecommunication Sciences Pursuant to the Technology Transfer and Commercialization Act This report summarizes technology transfer activities and achievements of the Department of Commerce's (DOC

76

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2012 Activities and Achievements  

E-Print Network (OSTI)

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2012 Activities Institute for Telecommunication Sciences Pursuant to the Technology Transfer and Commercialization Act This report summarizes technology transfer activities and achievements of the Department of Commerce's (DOC

77

NETL Technologies Recognized for Technology Development, Transfer |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recognized for Technology Development, Transfer Recognized for Technology Development, Transfer NETL Technologies Recognized for Technology Development, Transfer October 25, 2013 - 1:31pm Addthis Did you know? The Federal Laboratory Consortium for Technology Transfer is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. In consonance with the Federal Technology Transfer Act of 1986 and related federal policy, the mission of the FLC is to promote and facilitate the rapid movement of federal laboratory research results and technologies into the mainstream of the U.S. economy. Learn more about the FLC. A great invention that sits on a shelf, gathering dust, benefits no one.

78

NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary stent is a small,...

79

NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Basic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic Immobilized Amine Sorbent (BIAS) Process Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Capturing carbon dioxide (CO 2 ) from the flue or...

80

USDOE Technology Transfer, Working with DOE  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency & Renewable and Energy - Commercialization Energy Efficiency & Renewable and Energy - Commercialization Deployment SBIR/STTR - Small Business Innovation Research and Small Business Technology Transfer Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer Initiatives USEFUL LINKS Contract Opportunities: FBO.gov FedConnect.net Grant Opportunities DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 Working with DOE Navigate Home About Us Contact Information Hide Thumbs First Previous Pause Next Last Set Speed Slideshow speed: 5 seconds Move Decontamination New Image Set Autoinduction Autoinduction System The award winning Overnight Express(tm) Autoinduction System developed at

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Building Technologies Office: Commercial Building Research  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail to someone by E-mail Share Building Technologies Office: Commercial Building Research on Facebook Tweet about Building Technologies Office: Commercial Building Research on Twitter Bookmark Building Technologies Office: Commercial Building Research on Google Bookmark Building Technologies Office: Commercial Building Research on Delicious Rank Building Technologies Office: Commercial Building Research on Digg Find More places to share Building Technologies Office: Commercial Building Research on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score Energy Modeling Software Global Superior Energy Performance Partnership

82

Technology Transfer: Success Stories: Licensed Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Licensed Technologies Licensed Technologies Here are some of our licensees and the technologies they are commercializing; see our Start-Up Company page for more of our technology licenses. Company (Licensee) Technology Life Technologies Corp. Cell lines for breast cancer research Bristol Myers Squibb; Novartis; Plexxikon Inc.; Wyeth Research; GlaxoSmithKline; Johnson & Johnson; Boehringer Ingelheim Pharmaceuticals, Inc.; Genzyme Software for automated macromolecular crystallography Shell International Exploration and Production; ConnocoPhillips Company; StatOil ASA; Schlumburger Technology Corportation; BHP Billiton Ltd.; Chevron Energy Technology Company; EniTecnologie S.p.A. Geo-Hydrophysical modeling software Microsoft Home Energy Saver software distribution Kalinex Colorimetric bioassay

83

NETL Inventions Earn 2009 Technology Transfer Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inventions Earn 2009 Technology Transfer Awards Inventions Earn 2009 Technology Transfer Awards NETL Inventions Earn 2009 Technology Transfer Awards February 13, 2009 - 12:00pm Addthis Washington, DC -- Two technologies developed by researchers at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) have earned 2009 Excellence in Technology Transfer Awards from the Federal Laboratory Consortium for Technology Transfer (FLC). Both technologies enable the cleaner use of coal for electricity production and have been licensed to the private sector for commercial development. The awards will be formally presented at the annual FLC national meeting to be held May 4-7, 2009, in Charlotte, N.C. The national awards are given for outstanding work commercializing new and innovative technologies developed

84

NREL: Technology Transfer - Technology Partnership Agreements  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Partnership Agreements Technology Partnership Agreements Through technology partnership agreements, NREL provides partners with technical support to help commercialize and deploy energy technologies and products. We do not fund any projects under a technology partnership agreement. The partner provides the necessary resources and covers our costs of providing technical services. NREL does provide funding opportunities through competitively placed contracts. For more information, see our business opportunities. Process The technology partnership agreement process basically includes 11 steps. See the NREL Technology Partnership Agreement Process flowchart. We are committed to working through these steps in a timely manner. Experience suggests that the fastest means to reach an agreement is through

85

2011 Pathways to Commercial Success: Technologies and Products...  

Energy Savers (EERE)

1 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2011 Pathways to Commercial Success: Technologies and Products Supported...

86

2012 Pathways to Commercial Success: Technologies and Products...  

Energy Savers (EERE)

2 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2012 Pathways to Commercial Success: Technologies and Products Supported...

87

2013 Pathways to Commercial Success: Technologies and Products...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office 2013 Pathways to Commercial Success: Technologies and Products Supported...

88

TECHNOLOGY TRANSFER QUESTIONS..txt - Notepad  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TECHNOLOGY TRANSFER QUESTIONS..txt TECHNOLOGY TRANSFER QUESTIONS..txt From: Bob Fien [rfien@campbellap.com] Sent: Monday, January 26, 2009 5:34 PM To: GC-62 Subject: TECHNOLOGY TRANSFER QUESTIONS. Sensitivity: Confidential To Whom It May Concern, Campbell Applied Physics, Inc has been working with several DOE labs (e.g., Oak Ridge, Pacific Northwest, Laurence Livermore, Sandia) on various commercialization projects and, has been asked to submit answers to the questions presented in 72036 Federal Register / Vol. 73, No. 229 concerning our experiences. Please accept the following as our response to that request. 1. Existing and Other Agreements (4sub questions): The DOE labs currently offer CRADAs, WFO Agreements, and User Agreements, all briefly referenced below. The DOE Orders and model agreements for CRADAs, WFO and

90

Summary Report on Federal Laboratory Technology Transfer  

E-Print Network (OSTI)

Summary Report on Federal Laboratory Technology Transfer Agency Approaches; FY 2001 Activity Metrics and Outcomes 2002 Report to the President and the Congress under the Technology Transfer: FEDERAL LAB TECHNOLOGY TRANSFER TABLE OF CONTENTS LIST OF FIGURES AND TABLES

Perkins, Richard A.

91

Technology transfer | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology transfer Technology transfer Technology available for licensing: CURLSNovember 21, 2013 Containment Unidirectional Resource Loading System expands flexibility of glove boxes and other containment systems. Read more about Technology available for licensing: CURLS Rhodobacter System for the Expression of Membrane Proteins Using photosynthetic bacteria (Rhodobacter) for the expression of heterologous membrane proteins Read more about Rhodobacter System for the Expression of Membrane Proteins Synthesizing Membrane Proteins Using In Vitro Methodology This in vitro, cell-free expression system caters to the production of protein types that are challenging to study: membrane proteins, membrane-associated proteins, and soluble proteins that require complex redox cofactors.

92

Contact NETL Technology Transfer Group  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Technology Transfer Group techtransfer@netl.doe.gov May 2012 Significance * Applicable to subcritical and supercritical air-fired boiler designs * Eliminates the need to mimic air-fired heat transfer characteristics in order to meet existing dry steam load demands * Reduces retrofit complexity, time, and cost Applications * Retrofitting of conventional air-fired boilers Opportunity Research is active on the patent-pending technology, titled "Temperature

93

Commercializing Department of Energy Technologies: Success Stories  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercializing Department of Energy Commercializing Department of Energy Technologies: Success Stories Entrepreneurs in clean energy, medicine, advanced manufacturing, information technology, and other fields will build the new industries of the 21st century, and help solve some of our toughest global challenges. The country's National Laboratories are playing a key role in helping start-ups, and in some cases established corporations, meet those challenges while positioning the U.S. to be a leader in major industries. Ampulse Corp., Oak Ridge sign licensing agreement for photovoltaic technology - Ampulse Corporation is a venture capital-backed company leveraging proprietary and patented technology developed at the National Renewal Energy Laboratory (NREL)

94

Sandia National Laboratories: Small Business Technology Transfer...  

NLE Websites -- All DOE Office Websites (Extended Search)

Business Technology Transfer Research program JBEI Research Receives Strong Industry Interest in DOE Technology Transfer Call On September 18, 2013, in Biofuels, Biomass, Energy,...

95

Secretary Bodman Announces DOE Technology Transfer Coordinator...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Technology Transfer Coordinator Secretary Bodman Announces DOE Technology Transfer Coordinator June 29, 2007 - 2:36pm Addthis Establishes Policy Board; Strengthens DOE Efforts...

96

Technology_Transfer_Memo.pdf | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

TechnologyTransferMemo.pdf TechnologyTransferMemo.pdf TechnologyTransferMemo.pdf More Documents & Publications PolicyStatementonTechnologyTransfer.pdf...

97

Commercialization of biomass ethanol technology  

Science Journals Connector (OSTI)

With the recent commissioning of the National Renewable Energy Laboratorys (NREL) process development unit, through the support of the US Department of Energy (DOE) Biofuels Program, the technology to convert...

Jonathan R. Mielenz; Dianne Koepping

1996-01-01T23:59:59.000Z

98

Commercialization of Biomass Ethanol Technology  

Science Journals Connector (OSTI)

With the recent commissioning of the National Renewable Energy Laboratorys (NREL) process development unit, through the support of the US Department of Energy (DOE) Biofuels Program, the technology to convert...

Jonathan R. Mielenz; Dianne Koepping

1996-01-01T23:59:59.000Z

99

Environmental management technology demonstration and commercialization  

SciTech Connect

The Energy & Environmental Research Center (EERC), a contract-supported organization focused on technology research, development, demonstration, and commercialization (RDD&C), is entering its second year of a Cooperative Agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) to facilitate the development, demonstration, and commercialization of innovative environmental management (EM) technologies in support of the activities of DOE`s Office of Environmental Science and Technology (EM-50) under DOE`s EM Program. This paper reviews the concept and approach of the program under the METC-EERC EM Cooperative Agreement and profiles the role the program is playing in the commercialization of five EM technologies.

Daly, D.J.; Erickson, T.A.; Groenewold, G.H. [and others

1995-12-31T23:59:59.000Z

100

Building Technologies Office: Commercial Building Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Building Commercial Building Codes and Standards to someone by E-mail Share Building Technologies Office: Commercial Building Codes and Standards on Facebook Tweet about Building Technologies Office: Commercial Building Codes and Standards on Twitter Bookmark Building Technologies Office: Commercial Building Codes and Standards on Google Bookmark Building Technologies Office: Commercial Building Codes and Standards on Delicious Rank Building Technologies Office: Commercial Building Codes and Standards on Digg Find More places to share Building Technologies Office: Commercial Building Codes and Standards on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database Research & Development Codes & Standards Popular Commercial Links

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Commercialization of Coal-to-Liquids Technology  

SciTech Connect

The report provides an overview of the current status of coal-to-liquids (CTL) commercialization efforts, including an analysis of efforts to develop and implement large-scale, commercial coal-to-liquids projects to create transportation fuels. Topics covered include: an overview of the history of coal usage and the current market for coal; a detailed description of what coal-to-liquids technology is; the history of coal-to-liquids development and commercial application; an analysis of the key business factors that are driving the increased interest in coal-to-liquids; an analysis of the issues and challenges that are hindering the commercialization of coal-to-liquids technology; a review of available coal-to-liquids technology; a discussion of the economic drivers of coal-to-liquids project success; profiles of key coal-to-liquids developers; and profiles of key coal-to-liquids projects under development.

NONE

2007-08-15T23:59:59.000Z

102

Hydrogen Storage Technologies: Long-Term Commercialization Approach...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies: Long-Term Commercialization Approach with First Products First Hydrogen Storage Technologies: Long-Term Commercialization Approach with First Products First Presented...

103

2009 Pathways to Commercial Success: Technologies and Products...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program 2009 Pathways to Commercial Success:...

104

Partnerships and Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Work for Others Agreement Work for Others Agreement scientists The DOE national laboratories were granted the authority to perform work for others by the Atomic Energy Act of 1954 [Public Law 83-703; 42 USC 2053]. Work For Others programs at the DOE national laboratories are governed by DOE Directive 481.1-1A, "Reimbursable Work for Non-Federal Sponsors: Process Manual." Work For Others agreements provide an excellent way for companies, universities, and other entities to access the unique facilities, technologies, and expertise available at ORNL on a project-specific basis. This gives the sponsor access to research and development expertise and technology unavailable in the private sector, without having to expend the capital cost of developing or re-creating such facilities, expertise, and technology for itself.

105

Building Technologies Office: About the Commercial Buildings Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Commercial About the Commercial Buildings Integration Program to someone by E-mail Share Building Technologies Office: About the Commercial Buildings Integration Program on Facebook Tweet about Building Technologies Office: About the Commercial Buildings Integration Program on Twitter Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Google Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Delicious Rank Building Technologies Office: About the Commercial Buildings Integration Program on Digg Find More places to share Building Technologies Office: About the Commercial Buildings Integration Program on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database

106

Technology Transfer Office FY2011 Annual Report  

E-Print Network (OSTI)

Technology Transfer Office FY2011 Annual Report #12;TECHNOLOGY TRANSFER ADVISORY COMMITTEES The UC San Diego Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the university? s technology transfer program. This standing committee is appointed by the chancellor

Hasty, Jeff

107

Technology Transfer office 2008 Annual Report  

E-Print Network (OSTI)

Technology Transfer office 2008 Annual Report #12;The UC San Diego Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the university's technology transfer program. It meets periodically to assess UC San Diego's technology transfer practices and guides the overall

Fainman, Yeshaiahu

108

Technology Transfer and Intellectual Property Services  

E-Print Network (OSTI)

Technology Transfer and Intellectual Property Services B I E N N I A L R E P O R T 03­04 #12;University of California, San Diego Technology Transfer Advisory Committee The UCSD Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the UCSD Technology Transfer Program

Fainman, Yeshaiahu

109

NREL: Technology Transfer - News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News December 13, 2013 NREL Electrode Innovation Poised to Shake Up the Li-ion Battery Industry NREL's groundbreaking manufacturing process uses a special kind of carbon nanotube to increase the volume of active material that can be stored within an electrode. November 12, 2013 Brilliant White Light with Amber LEDs; NREL Licensing Webinar December 10th NREL's Amber LED technology, when combined with red, green and blue LEDs, produces a broad-spectrum white light more efficiently than current LEDs. This new technology, which is available for licensing from NREL, results in a low-cost, easy-to-manufacture white LED, with improved luminosity. October 21, 2013 NREL Forum Attracts Clean Energy Investors and Entrepreneurs Thirty clean energy companies, including seven companies based in Colorado,

110

MHD Technology Transfer, Integration and Review Committee  

SciTech Connect

As part of the MHD Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The Charter of the TTIRC, which was approved by the DOE in June 1988 and distributed to the committee members, is included as part of this Summary. As stated in the Charter, the purpose of this committee is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the US MHD Program. The DOE fiscal year 1989 MHD Program Plan Schedule is included at the end of this Summary. The MHD Technology Transfer, Integration and Review Committee's activities to date have focused primarily on the technology transfer'' aspects of its charter. It has provided a forum for the dissemination of technical and programmatic information among workers in the field of MHD and to the potential end users, the utilities, by holding semi-annual meetings. The committee publishes this semi-annual report, which presents in Sections 2 through 11 capsule summaries of technical progress for all DOE Proof-of-Concept MHD contracts and major test facilities.

Not Available

1989-10-01T23:59:59.000Z

111

NETL: News Release - NETL Recognized for Technology Transfer Success  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2011 9, 2011 NETL Recognized for Technology Transfer Success NETL's commitment to transferring advanced energy technologies from the laboratory into the marketplace has again won recognition from the Federal Laboratory Consortium for Technology Transfer (FLC). This year, four research groups will receive regional FLC awards for their efforts in commercializing technologies developed at NETL. Technology transfer - moving a new technology from the inventor's workbench or laboratory to a company that will market the product - is the crucial and essential step that gives an invention the means to be of service to the greatest number of people. The FLC awards, established in 1984, recognize laboratory employees who have done an outstanding work in technology transfer over the past year.

112

Brookhaven National Laboratory technology transfer report, fiscal year 1986  

SciTech Connect

An increase in the activities of the Office of Research and Technology Applications (ORTA) is reported. Most of the additional effort has been directed to the regional electric utility initiative, but intensive efforts have been applied to the commercialization of a compact synchrotron storage ring for x-ray lithography applications. At least six laboratory technologies are reported as having been transferred or being in the process of transfer. Laboratory accelerator technology is being applied to study radiation effects, and reactor technology is being applied for designing space reactors. Technologies being transferred and emerging technologies are described. The role of the ORTA and the technology transfer process are briefly described, and application assessment records are given for a number of technologies. A mini-incubator facility is also described. (LEW)

Not Available

1986-01-01T23:59:59.000Z

113

An Inventor's Guide:Technology Transfer at LSU Health Sciences Center -New Orleans Office of Technology Management  

E-Print Network (OSTI)

1 An Inventor's Guide:Technology Transfer at LSU Health Sciences Center - New Orleans Office://www.lsuhsc.edu/administration/academic/otm/ #12;2 A MESSAGE FROM THE DIRECTOR The `An Inventor's Guide: Technology Transfer at LSU Health Sciences Center' outlines the essential elements of technology transfer and commercialization on our campus

114

An Inventor's Guide:Technology Transfer at LSU Health Sciences Center New Orleans Office of Technology Management  

E-Print Network (OSTI)

1 An Inventor's Guide:Technology Transfer at LSU Health Sciences Center New Orleans Office://www.lsuhsc.edu/administration/academic/otm/ #12;2 A MESSAGE FROM THE DIRECTOR The `An Inventor's Guide: Technology Transfer at LSU Health Sciences Center' outlines the essential elements of technology transfer and commercialization on our campus

115

Response to Notice of Inquiry: Technology Transfer Practices at DOE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Response to Notice of Inquiry: Technology Transfer Practices at DOE Response to Notice of Inquiry: Technology Transfer Practices at DOE Laboratories (73 FR 2036) by Batelle Energy Alliance, LLC. Response to Notice of Inquiry: Technology Transfer Practices at DOE Laboratories (73 FR 2036) by Batelle Energy Alliance, LLC. Response to Notice of Inquiry: Technology Transfer Practices at DOE Laboratories (73 FR 2036) by Batelle Energy Alliance, LLC. This letter includes the BEA response (the contractor for Idaho National Laboratory) to the DOE's inquiry regarding suggestions for its Technology Transfer Practices. Recommended improvements include: more flexible transactional agreements to meet the diverse needs of interested parties, more support for commercial investors considering higher risk technologies, the removal of some of the U.S. manufacturing requirements, and more rights

116

Technology Transfer and Intellectual Property Services  

E-Print Network (OSTI)

Technology Transfer and Intellectual Property Services 2005 A n n u a l R e p o r t #12;The UCSD Technology Transfer Advisory Committee (TTAC) is responsible for general oversight of the UCSD Technology chancellor of Research. It meets periodically to assess UCSD technology transfer policy and guide

Fainman, Yeshaiahu

117

An Inventor's Guide to Technology Transfer  

E-Print Network (OSTI)

An Inventor's Guide to Technology Transfer at the Massachusetts Institute of Technology on the University of Michigan's "Inventor's Guide to Technology Transfer," with adaptations for MIT and the MIT of Technology Transfer for their kind permission to use their excellent material and to the University

Reuter, Martin

118

Assessment of Energy Impact of Window Technologies for Commercial Buildings  

E-Print Network (OSTI)

1.2 quads. Future window technologies offer energy savingsImpact of Window Technologies for Commercial BuildingsEnvironmental Energy Technologies Division October 2009 This

Hong, Tianzhen

2014-01-01T23:59:59.000Z

119

Technology Transfer award funding data* Figure 1. Current Technology Transfer awards  

E-Print Network (OSTI)

6 1 4 3 48 23 30 10 Technology Transfer award funding data* Figure 1. Current Technology Transfer awards Numbers represent active grants as at 1 October 2013 Figure 2. Technology Transfer award Transfer funding division. In the 2012/13 financial year Technology Transfer approved awards worth a total

Rambaut, Andrew

120

Energy Department Announces New Lab Program to Accelerate Commercialization of Clean Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE))

WASHINGTON Today, the Department of Energy launched a new $2.3 million pilot program to accelerate the transfer of innovative clean energy technologies from the DOEs National Laboratories into the commercial marketplace

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Investment Partnerships | Technology Commercialization and Partnerships |  

NLE Websites -- All DOE Office Websites (Extended Search)

Entrepreneurs and Investors Entrepreneurs and Investors For Investors Entrepreneurs looking to form a start-up company around Brookhaven technologies and investors seeking to partner in the development of Brookhaven's intellectual assets are encouraged to contact a TCP professional to discuss your specific commercialization and partnership needs. New Venture Formation Technologies offered to potential licensees are often early-stage technologies that need considerable development. As a result, the start-up needs to focus much of its resources to "productize" the technology and launch it into the market. In light of that, we accept equity in a new venture as partial consideration for technology licensing-related transactions, so as to diminish the cash burden faced by the entrepreneurs. We understand the challenges faced by entrepreneurs and

122

Technology Transfer Overview | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Services » Technology Transfer and Procurement » Technology Services » Technology Transfer and Procurement » Technology Transfer & Intellectual Property » Technology Transfer Overview Technology Transfer Overview Through strategic investments in science and technology, the U.S. Department of Energy (DOE) helps power and secure America's future. DOE's capabilities, and the innovations it supports, help ensure the country's role as a leader in science and technology. In particular, technology transfer supports the maturation and deployment of DOE discoveries, providing ongoing economic, security and environmental benefits for all Americans. "Technology transfer" refers to the process by which knowledge, intellectual property, or capabilities developed at the Department of Energy's National Laboratories, single-purpose research facilities, plants,

123

National Lab Technology Transfer Making a Difference | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Lab Technology Transfer Making a Difference National Lab Technology Transfer Making a Difference National Lab Technology Transfer Making a Difference August 28, 2013 - 11:10am Addthis Incorporation of a new CO2 sorbent into commercial heating, ventilation, and air conditioning (HVAC) systems will save energy and reduce operating costs. HVAC is one of the largest consumers of electric power in the United States, responsible for more than half of the load on the electric grid in many major cities. NETL work has led to a patented CO2 sorbent that has now been licensed commercially. Incorporation of a new CO2 sorbent into commercial heating, ventilation, and air conditioning (HVAC) systems will save energy and reduce operating costs. HVAC is one of the largest consumers of electric power in the United

124

Voestalpine Anarbeitung: Commercialization Framework for Technology Development Projects  

Science Journals Connector (OSTI)

...voestalpine Anarbeitung GmbH developed a framework for commercializing technology development (TD) projects in the automotive supply industry, which demonstrates how a commercialization process can be structur...

Kurt Gaubinger; Fiona Schweitzer

2014-01-01T23:59:59.000Z

125

NREL: Technology Transfer - Success Stories  

NLE Websites -- All DOE Office Websites (Extended Search)

Success Stories Success Stories We'd like to share our stories about innovation, industry partnerships, and the path towards commercializing renewable energy and energy efficiency technologies developed at NREL. Materials Exposure Testing Market Expands with Ultra-Accelerated Weathering System The Ultra-Accelerated Weathering System will change the weathering industry. A partnership with Atlas, one of the leader's in materials exposure testing, will take NREL's technology to industry. Watch the video. NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy For the next generation of parabolic troughs, NREL Principal Scientist Gary Jorgensen and SkyFuel Chief Technology Officer Randy Gee have developed a lower-cost, more durable solution to glass mirrors. Watch the video.

126

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2008 Activities and Achievements  

E-Print Network (OSTI)

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2008 Activities--Institute for Telecommunication Sciences In response to the: Technology Transfer and Commercialization Act of 2000 (P.L. 106 (FY) 2008. At the Department of Commerce, technology transfer is a significant part of the mission

Perkins, Richard A.

127

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2011 Activities and Achievements  

E-Print Network (OSTI)

Annual Report on Technology Transfer: Approach and Plans, Fiscal Year 2011 Activities Pursuant to the Technology Transfer Commercialization Act of 2000 (Pub. L. 106-404) January 2012 #12;ii This page is intentionally left blank FOREWORD This report summarizes technology transfer activities

Perkins, Richard A.

128

Awards recognize outstanding innovation in Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

recognize outstanding innovation Awards recognize outstanding innovation in Technology Transfer The award honors inventors whose patented invention exhibits significant...

129

Building Technologies Office: Commercial Building Energy Asset Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Development to someone by E-mail Program Development to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Score Program Development on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Score Program Development on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Score Program Development on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Score Program Development on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Score Program Development on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator

130

Spin-out Company Portfolio Technology Transfer  

E-Print Network (OSTI)

Spin-out Company Portfolio 2012 Technology Transfer The Sir Colin Campbell Building The University `Entrepreneurial University of the Year' in 2008. The Technology Transfer Office (TTO) has close links detail. Dr Susan Huxtable Director, Technology Transfer Tel: +44 (0)115 84 66388 Email: susan

Aickelin, Uwe

131

Frequently Asked Questions 1. Technology Transfer  

E-Print Network (OSTI)

Frequently Asked Questions 1. Technology Transfer 2. Patent 3. Requirements for obtaining a patent is not addressed, please contact Colleen Michael at 631-344 -4919. #12;What is Technology Transfer? Technology Transfer is the process of developing practical applications for the results of scientific research

132

Bidirectional Technology Transfer: Sabbaticals in Industry  

E-Print Network (OSTI)

Bidirectional Technology Transfer: Sabbaticals in Industry Mark D. Hill University of Wisconsin---not just technology transfer---through a ten­month sabbatical in an industrial product group. I advocate product group. The next sections discuss technology transfer, my recent sabbatical, and conclude

Hill, Mark D.

133

Requirements Engineering Technology Transfer: An Experience Report  

E-Print Network (OSTI)

Requirements Engineering Technology Transfer: An Experience Report Francisco A. C. Pinheiro1 Julio of software engineering technology transfer was identified by Pfleeger (1999). She came to the con- clusion Journal of Technology Transfer, 28, 159­165, 2003 ©2003 Kluwer Academic Publishers. Manufactured

Leite, Julio Cesar Sampaio do Prado

134

Technology Transfer at Penn State University  

E-Print Network (OSTI)

Technology Transfer at Penn State University An Inventor's Guide to #12;Our mission is to protect on the University of Michigan's "Inventor's Guide to Technology Transfer," with adaptation for Penn State, and the staff of the UM Office of Technology Transfer for their kind permission to use their excellent material

Lee, Dongwon

135

Technology Transfer from the University of Oxford  

E-Print Network (OSTI)

Technology Transfer from the University of Oxford www.isis-innovation.com #12;Isis Innovation Ltd Oxford Technology Transfer IP, Patents, Licences, Spin-outs, Material Sales, Seed Funds, Isis Angels Network Oxford Expertise Consulting, Services Isis Consulting Business Technology Transfer and Innovation

Paxton, Anthony T.

136

Research and Technology Transfer Faculty Conference  

E-Print Network (OSTI)

Research and Technology Transfer Faculty Conference August 18th 2014 Bruce D. Honeyman Office of the VPRTT #12;Role of the Office of the Vice President for Research and Technology Transfer · `The role Poate. · Support Mines' Strategic Plan Office of the Vice President of Research and Technology Transfer

137

Trinity Technology Transfer News December 2012  

E-Print Network (OSTI)

Trinity Technology Transfer News December 2012 SRS was set up by Dr Paul Sutton and Prof Linda licensing fees. Dr. Margaret Woods | Technology Transfer Manager mjwoods@tcd.ie Ms. Audrey Crosbie;Trinity Technology Transfer News December 2012 Trinity Campus Company Funding Round EmpowerTheUser (www

O'Mahony, Donal E.

138

Policy_Statement_on_Technology_Transfer.pdf | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PolicyStatementonTechnologyTransfer.pdf PolicyStatementonTechnologyTransfer.pdf PolicyStatementonTechnologyTransfer.pdf More Documents & Publications...

139

Climate Change: A Challenge to the Means of Technology Transfer  

E-Print Network (OSTI)

TO THE MEANS OF TECHNOLOGY TRANSFER Gordon J. MacDonaldthe importance of technology transfer in dealing withthe discussion of technology transfer has centered on

MacDonald, Gordon J. F.

1992-01-01T23:59:59.000Z

140

Intellectual Property Protection and Technology Transfer: Evidence From US Multinationals  

E-Print Network (OSTI)

International Technology Transfer? Empirical Evidence FromProtection and Technology Transfer: Evidence from USProperty Protection and Technology Transfer Evidence from US

Kanwar, Sunil

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NREL: Technology Transfer - Licensing Agreements  

NLE Websites -- All DOE Office Websites (Extended Search)

Licensing Agreements Licensing Agreements Through licensing agreements, NREL provides industry with an opportunity to commercialize NREL-developed energy technologies and products. Our licensing opportunities are available to both small and large businesses-from start-ups to Fortune 500 companies. Process The licensing agreement process basically includes seven steps. See the NREL Licensing Agreement Process flowchart. We are committed to working through these steps in a timely manner. Experience suggests that the fastest means to reach an agreement is through direct communications to create understanding and agree on actions. 1. Identify and Qualify Opportunity To identify an opportunity, a company can browse the technologies available for licensing. When an opportunity has been identified, NREL then asks the company to

142

Building Technologies Office: Commercial Building Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Photo of NREL senior engineer Eric Kozubal examining a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner with a graph superimposed on the photo that shows how hot humid air, in red, changes to cool dry air, in blue, as the air passes through the DEVap core. National Renewable Energy Laboratory senior engineer Eric Kozubal examines a prototype airflow channel of the desiccant enhanced evaporative (DEVap) air conditioner, an example of the advanced technology research the Building Technologies Office supports. The superimposed graph shows hot humid air (red) changing to cool dry air (blue) as the air passes through the DEVap core. Credit: Pat Corkery, NREL PIX 17437 The Building Technologies Office (BTO) researches advanced technologies, systems, tools, and strategies to improve the energy performance of commercial buildings. Industry partners and national laboratories help identify market needs and solutions that accelerate the development of highly energy-efficient buildings. This page outlines some of BTO's principal research projects. For more BTO research results, visit the Commercial Buildings Resource Database.

143

Building Technologies Office: Sensor Suitcase for Small Commercial Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensor Suitcase for Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project to someone by E-mail Share Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Facebook Tweet about Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Twitter Bookmark Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Google Bookmark Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Delicious Rank Building Technologies Office: Sensor Suitcase for Small Commercial Building Retro-Commissioning Research Project on Digg

144

NASA Partners License Nanotube Technology for Commercial Use...  

NLE Websites -- All DOE Office Websites (Extended Search)

prnewswire.comnews-releasesnasa-partners-license-nanotube-technology-for-commercial-use-149724205.html Submitted: Monday, April 3...

145

Apply: Commercial Building Technology Demonstrations (DE-FOA...  

Office of Environmental Management (EM)

Technologies (BENEFIT) - 2014 (DE-FOA-0001027) Energy Savings Through Improved Mechanical Systems and Building Envelope Technologies (DE-FOA-0000621) Commercial Building...

146

Improving federal technology commercialization: Some recommendations from a field study  

Science Journals Connector (OSTI)

This study identified three distinct roles of the federal technology-transfer process in the Huntsville, Alabama region: sponsors, developers, and adopters. The basic structure of transfer barrie...

Mary S. Spann Ph.D.; Mel Adams Ph.D.

147

2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

Energy.gov (U.S. Department of Energy (DOE))

DOE Fuel Cell Technologies Office report on commercialization of fuel cell and hydrogen technologies and products supported by the program.

148

2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

Energy.gov (U.S. Department of Energy (DOE))

DOE Fuel Cell Technologies Office FY 2011 report on commercialization of fuel cell and hydrogen technologies and products.

149

Technology transfer: A cooperative agreement and success story  

SciTech Connect

This paper describes the cooperative agreement between the U.S. Department of Energy and Envirocare of Utah, Inc., wherein the former transferred macroencapsulative technology to the latter for purposes of demonstrating commercialization of treatment and disposal of 225, 000 Kg of radioactive lead stored at departmental installations.

Reno, H.W.; McNeel, K. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Armstrong, A.T. [USDOE Idaho Operations Office, Idaho Falls, ID (United States); Vance, J.K. [Envirocare of Utah, Inc., Salt Lake City, UT (UNited States)

1996-08-01T23:59:59.000Z

150

Center for the Commercialization of Electric Technologies | Open Energy  

Open Energy Info (EERE)

Commercialization of Electric Technologies Commercialization of Electric Technologies Jump to: navigation, search Name Center for the Commercialization of Electric Technologies Place Austin, Texas Zip 78701 Product Texas-based research institution that promotes the development of the electrical system. References Center for the Commercialization of Electric Technologies[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Center for the Commercialization of Electric Technologies is a company located in Austin, Texas . References ↑ "Center for the Commercialization of Electric Technologies" Retrieved from "http://en.openei.org/w/index.php?title=Center_for_the_Commercialization_of_Electric_Technologies&oldid=343363

151

2010 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

Energy.gov (U.S. Department of Energy (DOE))

DOE Fuel Cell Technolgies Office report on commercialization of fuel cell and hydrogen technologies and products

152

Technology Transfer Commercialization Act of 2000  

Energy.gov (U.S. Department of Energy (DOE))

PUBLIC LAW 106404NOV. 1, 2000 To improve the ability of Federal agencies to license federally owned inventions.

153

International Commercial Arbitration and Technology Transfer Disputes.  

E-Print Network (OSTI)

??The thesis explores the concept of International Arbitration, an alternative to litigation. It argues the benefits and the inherent limitations parties are likely to face (more)

Boban, Jaan

2012-01-01T23:59:59.000Z

154

Working with SRNL - Technology Transfer - Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

SRNL GO Tech Briefs Contacts Ombudsman Tech Home SRNL Home Working with SRNL - Technology Transfer Contacts Dale Haas, Manager (Acting) Strategic Development and Technical...

155

International technology transfer, firm productivity and employment.  

E-Print Network (OSTI)

??This dissertation contributes to the empirical literature on the effects of international technology transfer on firms' productivity and employment in developing and transition countries. It (more)

Pantea, Smaranda

2012-01-01T23:59:59.000Z

156

Building Technologies Office: Take Action to Save Energy in Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Take Action to Save Take Action to Save Energy in Commercial Buildings to someone by E-mail Share Building Technologies Office: Take Action to Save Energy in Commercial Buildings on Facebook Tweet about Building Technologies Office: Take Action to Save Energy in Commercial Buildings on Twitter Bookmark Building Technologies Office: Take Action to Save Energy in Commercial Buildings on Google Bookmark Building Technologies Office: Take Action to Save Energy in Commercial Buildings on Delicious Rank Building Technologies Office: Take Action to Save Energy in Commercial Buildings on Digg Find More places to share Building Technologies Office: Take Action to Save Energy in Commercial Buildings on AddThis.com... About Take Action to Save Energy Manage Organizational Energy Use Design & Construct New Buildings

157

SWAMI II technology transfer plan  

SciTech Connect

Thousands of drums of radioactive/hazardous/mixed waste are currently stored at DOE sites throughout US; they are stored in warehouse facilities on an interim basis, pending final disposition. Recent emphasis on anticipated decommissioning of facilities indicates that many more drums of waste will be generated, requiring additional storage. Federal and state regulations dictate that hazardous waste covered by RCRA be inspected periodically for container degradation and to verify inventories. All known DOE waste storage facilities are currently inspected manually. A system to perform robotic inspection of waste drums is under development by the SRTC Robotics Group of WSRC; it is called the Stored Waste Autonomous Mobile Inspector (SWAMI). The first version, SWAMI I, was developed by the Savannah River Technology Center (SRTC) as a proof of principle system for autonomous inspection of drums in a warehouse. SWAMI I was based on the Transitions Research Corporation (TRC) HelpMate mobile robot. TRC modified the Helpmate to navigate in aisles of drums. SRTC added subsystems to SWAMI I to determine its position in open areas, read bar code labels on the drums up to three levels high, capture images of the drums and perform a radiation survey of the floor in the aisles. The radiation survey was based on SRTC patented technology first implemented on the Semi-Intelligent Mobile Observing Navigator (SIMON). The radiation survey is not essential for the inspection of drums, but is an option that can increase the utility and effectiveness of SWAMI in warehouses with radioactive and/or mixed waste. All the sensors on SWAMI I were fixed on the vehicle. From the success of SWAMI I, a second version, SWAMI II, was developed; it will be evaluated at Fernald and tested with two other mobile robots. Intent is to transfer the technology developed for SWAMI I and II to industry so that it can supply additional units for purchase for drum inspection.

Ward, C.R.; Peterson, K.D.; Harpring, L.J.; Immel, D.M.; Jones, J.D.; Mallet, W.R.

1995-12-31T23:59:59.000Z

158

NETL Technology Transfer Case Studies and Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

of a 2012 R&D 100 Award and a 2010 Federal Laboratory Consortium Excellence in Technology Transfer Award. This technology is available for licensing PLATINUM-CHROMIUM ALLOY FOR...

159

Fermilab | Office of Partnerships and Technology Transfer | Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Working Group Fall 2014 Meeting November 5-6, 2014 Register Online DRAFT Agenda (PDF) DRAFT Agenda Agenda 1 Agenda 2 Last modified: 11042014...

160

Contacts for the Assistant General Counsel for Technology Transfer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Transfer and Procurement Contacts for the Assistant General Counsel for Technology Transfer and Procurement Subject MatterFunctional Area Lead Backup Technology...

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NREL: Technology Transfer - Innovative Way to Test Batteries...  

NLE Websites -- All DOE Office Websites (Extended Search)

high volumes of tests across a variety of applications. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing...

162

Building Technologies Office: Commercial Building Energy Asset Scoring Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Scoring Tool to someone by E-mail Scoring Tool to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Scoring Tool on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Scoring Tool on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification

163

Building Technologies Office: Commercial Building Energy Asset Score Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Tool Report to someone by E-mail Tool Report to someone by E-mail Share Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Facebook Tweet about Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Twitter Bookmark Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Google Bookmark Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Delicious Rank Building Technologies Office: Commercial Building Energy Asset Score Tool Report on Digg Find More places to share Building Technologies Office: Commercial Building Energy Asset Score Tool Report on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides

164

Technology Adoption and Commercialization Program (New Brunswick, Canada) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Adoption and Commercialization Program (New Brunswick, Adoption and Commercialization Program (New Brunswick, Canada) Technology Adoption and Commercialization Program (New Brunswick, Canada) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Maximum Rebate $15,000 (Canadian) Program Info State New Jersey Program Type Grant Program Loan Program Provider New Brunswick Economic Development The Technology Adoption and Commercialization Program (TAC) is intended to encourage the adoption of improved technologies and processes by offsetting

165

Technology complexity, technology transfer mechanisms and sustainable development  

Science Journals Connector (OSTI)

Abstract Merging climate change mitigation and sustainable development in developing countries is pivotal for the transition towards low carbon growth pathways. This paper combines the field of technology transfer and technology-specific aspects with sustainable development objectives. The general climate change mitigation paradigm has shifted from project oriented mitigation action to more strategic, country-wide, cross-sectoral mitigation plans, in order to explicitly take into account also economic development goals. Local technology needs and socio-technical circumstances are important towards economic development induced by technology transfer. Yet, this approach is not sufficient for the success of technology transfer, which shall also deliver on economic development. A strategy for the adoption of technologies, as well as the broadening of the domestic technology manufacturing base, needs to consider also the technology properties itself in greater detail. The technology transfer process should emphasize the economic developmental purpose as well as the properties of technologies. Thus, I propose a detailed assessment of the technology and its potential of being adopted by suggesting that technology complexity assessments should be integrated into technology transfer mechanisms. By using CSP, PV and wind technology as examples, I describe how the evaluation of technology complexity and of potential economic development, determined by demand for manufactured goods and services within domestic economies, which could lead to job creation and value added, could be used to inform policy makers.

Julian Blohmke

2014-01-01T23:59:59.000Z

166

High Performance Commercial Buildings Technology Roadmap | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » High Performance Commercial Buildings Technology Roadmap Jump to: navigation, search Tool Summary Name: High Performance Commercial Buildings Technology Roadmap Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Technology characterizations Resource Type: Dataset Website: www.nrel.gov/docs/fy01osti/30171.pdf References: High Performance Commercial Buildings Technology Roadmap[1] Overview "This technology roadmap describes the vision and strategies for addressing these challenges developed by representatives of the buildings industry. Collaborative research, development, and deployment of new technologies, coupled with an integrated "whole-buildings" approach, can shape future

167

TECH TRANSFER TECHNOLOGY TRANSFER PROGRAM INSTITUTE OF TRANSPORTATION STUDIES UNIVERSITY OF CALIFORNIA, BERKELEY  

E-Print Network (OSTI)

TECH TRANSFER TECHNOLOGY TRANSFER PROGRAM · INSTITUTE OF TRANSPORTATION STUDIES · UNIVERSITY THURSDAY SATURDAYFRIDAYWEDNESDAYTUESDAY TECHNOLOGY TRANSFER PROGRAM · INSTITUTE OF TRANSPORTATION STUDIES's to another year of working safer and smarter. Laura Melendy Director, Technology Transfer Program #12;AUGUST

California at Berkeley, University of

168

New Air and Water-Resistive Barrier Technologies for Commercial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New Air and Water-Resistive Barrier Technologies for Commercial Buildings Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: 3M - Minneapolis, MN DOE Funding:...

169

NREL: Technology Transfer - Technologies Available for Licensing  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Available for Licensing Technologies Available for Licensing Photo of NREL scientist in the NREL Hydrogen Lab. NREL's scientists and engineers develop award-winning technologies available for licensing. NREL scientists and engineers produce breakthrough and award-winning renewable energy and energy efficiency technologies that are available for licensing. We have many licensing opportunities for NREL-developed technologies, including our featured LED technologies. To see all our technologies available for licensing, visit the EERE Innovation Portal and search for NREL. Learn about our licensing agreement process. Contact For more information about licensing NREL-developed technologies, contact Eric Payne, 303-275-3166. Ombuds NREL strives to quickly resolve any issue or concern you may have regarding

170

Joint design and technology transfer for CANDU projects in Korea  

SciTech Connect

Since the first commercial operation of Kori Unit 1 in April 1978, nine nuclear units are operating and seven, including three CANDU 6 reactors (Wolsong 2, 3 & 4), are currently under construction in Korea. One of the cornerstones of Korea`s nuclear energy policy is the drive for technological self-reliance. Thus, as part of the Wolsong Project scope, a Technology Transfer Agreement for CANDU NSSS System Design was concluded. Under tills agreement Atomic Energy of Canada Limited (AECL) is transferring technologies relating to CANDU 6 NSSS design to Korea Atomic Energy Research Institute (KAERI). As a result KAERI is now performing joint design with AECL for the NSSS of the Wolsong Projects. The current NSSS engineering and design progress for Wolsong 2, 3 & 4 is 58 percent as of December 1993. AECL and KAERI will also pursue the development of advanced technology including a large CANDU system on the basis of CANDU 6 technology.

Harris, D.; Lee, I.H.

1994-12-31T23:59:59.000Z

171

Technology Transfer at Berkeley Lab: For Berkeley Lab Researchers  

NLE Websites -- All DOE Office Websites (Extended Search)

Webcasts from Transferring Technology to the Marketplace Spring 2006 Series Webcasts from Transferring Technology to the Marketplace Spring 2006 Series Eureka! - Inventing and what happens next? Speakers share what makes a commercially successful invention and what happens on the pathway from invention to the marketplace. Click here for the webcast (60 min) or just hear Paul Avlivisatos' talk here (9 min). Speakers: Steve Chu, LBNL Lab Director Paul Alivisatos, Associate Lab Director and Founder of Nanosys Cheryl Fragiadakis, Technology Transfer Department Head Patenting - The ins and outs of this mysterious process Better understand why patent and copyright protection is so important, how the process works, and what role the inventor plays. Click here for the webcast (60 min). Speakers: Tim Lithgow, Patent Department Head Michael Fuller, Partner, Knobbe Martens Olson & Bear, L.L.P.

172

Technology Transfer at Berkeley Lab: For Berkeley Lab Researchers  

NLE Websites -- All DOE Office Websites (Extended Search)

Steven Chu Steven Chu "Technology transfer is a superb opportunity to demonstrate the value of our discoveries and to benefit society. It is an area I would like to see grow." Steve Chu, Secretary, US Department of Energy, and Former Lab Director What You Need to Know and Do What you, as a Berkeley Lab researcher or guest, need to do to protect the intellectual property you create to meet Lab requirements and how publishing and pursuing a patent are fully compatible. The Tech Transfer Proces The steps to patent, market and commercialize an invention and the role of Technology Transfer and Intellectual Property Management (TTIPM). Business Development Services Resources available within TTIPM to help move your technology to market. Berkeley Lab LaunchPad Services available at the Lab and beyond to help launch your startup

173

at the Boise State West Campus TECHNOLOGY COMMERCIALIZATION  

E-Print Network (OSTI)

at the Boise State West Campus TECHNOLOGY COMMERCIALIZATION Process from Concept to Market PHASES Is the management team operational? COMMERCIAL PHASE Stage 5 Growth PRODUCTION STEP 13 Is production process TECenter COMMERCIALIZATION MODEL PHASES, STAGES, & STEPS TECHNICAL MARKET BUSINESS CONCEPT PHASE Stage 1

Barrash, Warren

174

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

Fuel Cell Technologies Publication and Product Library (EERE)

This report identifies the commercial and near-commercial (emerging) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies

175

Building Technologies Office: Open-Protocol Platform for Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Open-Protocol Platform Open-Protocol Platform for Commercial Building Operations and Energy Management Algorithm Research Project to someone by E-mail Share Building Technologies Office: Open-Protocol Platform for Commercial Building Operations and Energy Management Algorithm Research Project on Facebook Tweet about Building Technologies Office: Open-Protocol Platform for Commercial Building Operations and Energy Management Algorithm Research Project on Twitter Bookmark Building Technologies Office: Open-Protocol Platform for Commercial Building Operations and Energy Management Algorithm Research Project on Google Bookmark Building Technologies Office: Open-Protocol Platform for Commercial Building Operations and Energy Management Algorithm Research Project on Delicious Rank Building Technologies Office: Open-Protocol Platform for

176

Requirements Engineering and Technology Transfer: Obstacles, Incentives and Improvement Agenda  

E-Print Network (OSTI)

Requirements Engineering and Technology Transfer: Obstacles, Incentives and Improvement Agenda technology transfer. In addition, major incentives for using RE methods are discussed, along with ideas engineering; Technology transfer 1. Introduction In a 1993 evaluation of requirements engineering (RE

Leite, Julio Cesar Sampaio do Prado

177

Assessing Software Engineering Technology Transfer  

E-Print Network (OSTI)

, and technology infusion, or the adoption of a new technology by an individual organization. 1 #12;Table ¢ ¡ £ ¡ ¢ ¡ ¡ ¢ ¡ ¡ ¡ ¢ ¡ £ ¤ £ ¡ ¡ ¢ ¡ ¡ ¢ ¡ ¡ £ ¤ £ ¡ ¢ ¡ ¡ ¡ ¢ ¡ ¡ ¢ ¡ £ ¡ ¢ 15 3.4 Exporting and Infusing Technology ¡ ¡ ¡ ¢ ¡ £ ¤ £ ¡ ¡ ¢ ¡ ¡ ¢ ¡ ¡ £ ¤ £ ¡ ¢ ¡ ¡ ¡ ¢ ¡ ¡ ¢ ¡ £ ¡ ¢ 16 4 Infusion of Technology 18 4.1 Technologies of Interest

Zelkowitz, Marvin V.

178

Attn Technology Transfer Questions.txt - Notepad  

NLE Websites -- All DOE Office Websites (Extended Search)

Attn Technology Transfer Questions.txt Attn Technology Transfer Questions.txt From: eschaput [esandc@prodigy.net] Sent: Monday, January 26, 2009 10:31 PM To: GC-62 Subject: Attn: Technology Transfer Questions We have reviewed the DOE "Questions Concerning Technology Transfer Practices at DOE Laboratories" (Federal Register notice of November 26, 2008), with the following comments and suggestions for your consideration. DOE asked five questions and the following thoughts be provided for your consideration: Question #1 - Are existing arrangements adequate? Answer #1 - The existing types of arrangement are generally adequate, but their application should be broadened and their implementation streamlined. a.. The application of "User Agreements" should be broadened to soften the effect

179

Technology Transfer: A Review for Biomedical Researchers  

Science Journals Connector (OSTI)

...shift in research emphasis away from fundamental research, conflict of interest, and...cooperation suggests that one of the fundamental flaws of the Japanese technology transfer...Cancer institute (NCI). Investigators Handbook. A Manual for Participants in Clinical...

Robert Kneller

2001-04-01T23:59:59.000Z

180

TECHNOLOGY TRANSFER QUESTIONS..txt - Notepad  

NLE Websites -- All DOE Office Websites (Extended Search)

rfien@campbellap.com Sent: Monday, January 26, 2009 5:34 PM To: GC-62 Subject: TECHNOLOGY TRANSFER QUESTIONS. Sensitivity: Confidential To Whom It May Concern, Campbell Applied...

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Technology Transfer: A Review for Biomedical Researchers  

Science Journals Connector (OSTI)

...Administration, Army, Navy, and Air Force combined). Fifty-seven % of the NIHs...cooperation suggests that one of the fundamental flaws of the Japanese technology transfer...Cancer institute (NCI). Investigators Handbook. A Manual for Participants in Clinical...

Robert Kneller

2001-04-01T23:59:59.000Z

182

WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY?  

E-Print Network (OSTI)

1 WHICH MODEL OF TECHNOLOGY TRANSFER FOR NANOTECHNOLOGY? A Comparison with Biotech.genet@grenoble-em.com Website: www.nanoeconomics.eu Abstract. Nanotechnologies are often presented as breakthrough innovations. This article investigates the model of knowledge transfer in the nanotechnologies in depth, by comparing

Paris-Sud XI, Université de

183

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

184

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

185

ORNL technology transfer continues strong upward trend | ornl...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ron Walli Communications 865.576.0226 ORNL technology transfer continues strong upward trend Mike Paulus, director of Technology Transfer, says initiatives like SPARK have been...

186

Service for Research Management & Technology Transfer NEWS & EVENTS  

E-Print Network (OSTI)

Service for Research Management & Technology Transfer NEWS & EVENTS IX Premio de Investigación for Research Management & Technology Transfer #12;

Escolano, Francisco

187

Technology Transfer Webinar on November 12: High-Performance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Transfer Webinar on November 12: High-Performance Hybrid SimulationMeasurement-Based Tools for Proactive Operator Decision-Support Technology Transfer Webinar on...

188

USDOE Technology Transfer, Frequently Asked Questions about Agreement for  

NLE Websites -- All DOE Office Websites (Extended Search)

Frequently Asked Questions about ACT: Frequently Asked Questions about ACT: Q1: What is ACT (Agreement for Commercializing Technology)? A1: ACT is a pilot program under which businesses may partner with participating DOE laboratories for research and development that commercializes technology. Q2: Why is this pilot being introduced? A2: ACT is being piloted to address concerns about difficulties in partnering with the DOE laboratories that were raised in public responses to a DOE Request for Information on improving technology transfer. These concerns include requirements for advance payments, indemnification and government use rights in intellectual property. Q3: Who can partner with the laboratories under ACT? A3: ACT is available to a full range of sponsors, including start-ups, small and large businesses that provide private funding to

189

Transfer of security technology from Sandia to industry  

SciTech Connect

The National Competitiveness Technology Transfer Act of 1989 made technology transfer a mission for the national laboratories. The intent is to maximize the benefit from public monies and to improve the economic position of US industry in the world marketplace. A key instrument created by this legislation is the Cooperative Research and Development Agreement (CRADA) between a private company and a government-owned contractor-operated R D lab. Under these provisions, the national laboratories can negotiate directly with industry, grant title to intellectual property developed in a CRADA, and withhold publication of commercially-valuable information developed in a CRADA for up to five years. Sandia National Laboratories is very proactive in the transfer of technology developed as the DOE lead laboratory for physical security R D and from work for other government agencies. Specific security-related products have frequently evolved from government user needs into initial concepts followed by research and development into field prototypes which finally have a system design package appropriate for transfer to industry. In the past year several meetings announced in the Commerce Business Daily (CBD) were held with industry to present specific systems and to initiate discussions toward establishing a GRADA and/or granting a product license. Several examples and updates will be presented to illustrate this new process for security technology transfer from Sandia to industry. 2 refs.

Williams, J.D.; Matter, J.C.

1991-01-01T23:59:59.000Z

190

New venture commercialization of clean energy technologies  

E-Print Network (OSTI)

Clean energy technologies lower harmful emissions associated with the generation and use of power (e.g. CO2) and many of these technologies have been shown to be cost effective and to provide significant benefits to adopters. ...

Miller, David S. (David Seth)

2007-01-01T23:59:59.000Z

191

EA-1750: Smart Grid, Center for Commercialization of Electric Technology,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

750: Smart Grid, Center for Commercialization of Electric 750: Smart Grid, Center for Commercialization of Electric Technology, Technology Solutions for Wind Integration in ERCOT, Houston, Texas EA-1750: Smart Grid, Center for Commercialization of Electric Technology, Technology Solutions for Wind Integration in ERCOT, Houston, Texas Summary This EA evaluates the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 to the Center for Commercialization of Electric Technology to facilitate the development and demonstration of a multi-faceted, synergistic approach to managing fluctuations in wind power within the Electric Reliability Council of Texas transmission grid. Public Comment Opportunities No public comment opportunities available at this time.

192

Successful Clean Coal Technology Licensed for Commercial Application |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Successful Clean Coal Technology Licensed for Commercial Successful Clean Coal Technology Licensed for Commercial Application Successful Clean Coal Technology Licensed for Commercial Application July 26, 2010 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) has received the first installment from a repayment agreement for the Liquid Phase Methanol (LPMEOH™) Process. A royalty license issued for the advanced methanol production system underscores the clean coal technology's presence in the commercial market. The DOE-funded LPMEOH Process, developed in collaboration with Air Products and Chemicals Inc., has been licensed to Woodland Biofuel Inc., who intends to use the technology to develop a wood-gasification process to produce methanol from wood-scrap. The first facility is planned in New York State.

193

DOE Announces Up to $7 Million for Technology Commercialization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces Up to $7 Million for Technology Commercialization DOE Announces Up to $7 Million for Technology Commercialization Acceleration DOE Announces Up to $7 Million for Technology Commercialization Acceleration August 29, 2008 - 3:20pm Addthis WASHINGTON - DOE Principal Deputy Assistant Secretary for Energy Efficiency and Renewable Energy John Mizroch today announced the availability of up to $7 million to accelerate the movement of clean energy technologies from DOE's world-class national laboratories to the marketplace. The funding will help post-research technologies move toward commercial viability by providing pre-venture capital funding for activities such as prototype development, demonstration projects and market research. The funding will advance President Bush's comprehensive strategy to reduce our nation's

194

NREL: Technology Transfer - Materials Exposure Testing Market Expands with  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Exposure Testing Market Expands with Ultra-Accelerated Weathering Materials Exposure Testing Market Expands with Ultra-Accelerated Weathering System In this video, NREL researchers Gary Jorgenson and Carl Bingham discuss the NREL-developed ultra accelerated weathering system and its ability to revolutionize the weathering industry. Get the Adobe Flash Player to see this video. Credit: Fireside Production Learn more about the Ultra Accelerated Weathering System. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News Contacts Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit

195

Targeted Technology Transfer to US Independents  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

Donald F. Duttlinger; E. Lance Cole

2006-09-29T23:59:59.000Z

196

New and Underutilized Technology: Commercial Ground Source Heat Pumps |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Ground Source Heat Commercial Ground Source Heat Pumps New and Underutilized Technology: Commercial Ground Source Heat Pumps October 8, 2013 - 2:59pm Addthis The following information outlines key deployment considerations for commercial ground source heat pumps within the Federal sector. Benefits Commercial ground source heat pumps are ground source heat pump with loops that feed multiple packaged heat pumps and a single ground source water loop. Unit capacity is typically 1-10 tons and may be utilized in an array of multiple units to serve a large load. Application Condensing boilers are appropriate for housing, service, office, and research and development applications. Key Factors for Deployment FEMP has made great progress with commercial ground source heat pump technology deployment within the Federal sector. Primary barriers deal with

197

NREL: Technology Transfer - Technologies Available for Licensing  

NLE Websites -- All DOE Office Websites (Extended Search)

New Amber LEDs for High-Efficiency Solid-State Lighting New Amber LEDs for High-Efficiency Solid-State Lighting NREL is closing the LED "green gap" with a patent-pending technology that allows for easy manufacturing of low-cost amber LEDs that-when combined with red, green, and blue LEDs-produce brilliant broad-spectrum white light more efficiently than current LEDs. This color-mixing technique enables low-cost, easy-to-manufacture white LEDs with improved luminosity. This novel device architecture achieves greater efficiencies than current amber LEDs. In addition, the color-mixing approach avoids the energy losses associated with producing white light via conventional (phosphor-converted blue) LEDs. NREL's game-changing innovation could transform the market for solid-state lighting (SSL) for industry, businesses, and consumers. It also will impact

198

Technology Transfer at VTIP VTIP in 20 Minutes  

E-Print Network (OSTI)

Technology Transfer at VTIP VTIP in 20 Minutes What You Need to Know Virginia Tech Intellectual Properties, Inc. #12;Technology Transfer at VTIP VTIP Overview Virginia Tech Intellectual Properties, Inc;Technology Transfer at VTIP Tech Transfer · The tech transfer process typically includes: · Identifying new

Liskiewicz, Maciej

199

DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supported Coal Cleaning Technology Succeeds in Commercial Supported Coal Cleaning Technology Succeeds in Commercial Demonstration DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration January 4, 2011 - 12:00pm Addthis Washington, DC - A novel technology that could help release some of the currently unusable energy in an estimated 2 billion tons of U.S. coal waste has been successfully demonstrated by a Department of Energy (DOE) supported project. The full-scale test of the advanced hyperbaric centrifuge technology at a Jim Walter Resources Inc. coal-cleaning plant in Alabama resulted in the successful reduction of moisture from ultrafine coal waste. The test builds on an eight-year cooperative effort between the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL) and the Virginia

200

Technology Transfer: For Industry:SBIR Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

For Industry Licensing Overview Frequently Asked Questions Partnering with Berkeley Lab Available Technologies See Also Licensed Technologies Start-up Companies Licensing Interest Form Receive New Tech Alerts Partner Smart with Berkeley Lab (Downloadable Copy, 1.4MB, PDF) Berkeley Lab Economic Impact Report Technology Transfer Opportunities (TTOs) for SBIR and STTR Programs FY2014 Phase 1 Release 1 Selected topic and subtopics contained in this page are designated as Technology Transfer Opportunities (TTOs) from Berkeley Lab. 10. BASIC ENERGY SCIENCES (Phase I $225,000 / Phase II: $1,500,000): Contact: Shanshan Li, Shanshanli@lbl.gov, 510-486-5366 For a description of the technology, publications (if available) and latest patent status, click on the TTO tracking number link.

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Commercial development of environmental technologies for the automotive industry towards a new model of technological innovation  

Science Journals Connector (OSTI)

Economic importance of environmental issues is increasing, and new technologies are expected to reduce pollution derived both from productive processes and products, with costs that are still unknown. Until now, there is still little knowledge concerning the process of technological innovation in this field. What does exist is outdated due to rapid change in technology. In this paper, we analyse the development of Zinc Air Fuel Cells (ZAFC) and their transfer from research laboratories to large mass production. ZAFC are a new ''environmental technology'', proved to have a commercial value, that can be used for building Zero Emission Vehicles (ZEV). Although ZAFC performances are higher than traditional lead-acid batteries ones, difficulties in funding ZAFC engineering and ''moving'' them from laboratories to production caused some years delay in their diffusion. On the basis of this ''paradigmatic'' case, we argue that existing economic and organisational literature concerning technological innovation is not able to fully explain steps followed in developing environmental technologies. Existing models mainly consider adoption problems as due to market uncertainty, weak appropriability regime, lack of a dominant design, and difficulties in reconfiguring organisational routines. Additionally, the following aspects play a fundamental role in developing environmental technologies, pointing out how technological trajectories depend both on exogenous market conditions and endogenous firm competencies: 1. regulations concerning introduction of ZEV ''create'' market demand and business development for new technologies; they impose constraints that can be met only by segmenting transportation market at each stage of technology development; 2. each stage of technology development requires alternative forms of division and coordination of innovative labour; upstream and downstream industries are involved in new forms of inter-firm relationships, causing a reconfiguration of product architecture and reducing effects of path dependency; 3. product differentiation increases firm capabilities to plan at the same time technology introduction and customer selection, while meeting requirements concerning ''network externalities''; 4. it is necessary to find and/or create alternative funding sources for each research, development and design stage of the new technologies. From this discussion, we will draw some conclusions and issues for further researches concerning government policy and firms' strategies for sustaining the process of technological innovation and transfer.

Woodrow W. Clark II; Emilio Paolucci

2001-01-01T23:59:59.000Z

202

Browser-based Software for Technology Transfer Judith Bishop  

E-Print Network (OSTI)

1 Browser-based Software for Technology Transfer Judith Bishop Jonathan de Halleux Nikolai Tillmann Technology transfer is typically viewed as being from academia to industry but it can indeed go in either Keywords Technology transfer, browser-based software, F#, Pex4Fun INTRODUCTION Technology transfer is most

Xie, Tao

203

Building Technologies Office: Commercial Building Partnership Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Opportunities with the Department of Energy Partnership Opportunities with the Department of Energy Working with industry representatives and partners is critical to achieving significant improvements in the energy efficiency of new and existing commercial buildings. Here you will learn more about the government-industry partnerships that move us toward that goal. Key alliances and partnerships include: Photo of downtown Pittsburgh, Pennsylvania, a municipal Better Buildings Challenge partner, at dusk. Credit: iStockphoto Better Buildings Challenge This national leadership initiative calls on corporate officers, university presidents, and local leaders to progess towards the goal of making American buildings 20 percent more energy-efficient by 2020. Photo of Jim McClendon of Walmart speaking during the CBEA Executive Exchange with Commercial Building Stakeholders forum at the National Renewable Energy Laboratory in Golden, Colorado, on May 24, 2012.

204

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program - 2011  

Fuel Cell Technologies Publication and Product Library (EERE)

This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell

205

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2013  

Fuel Cell Technologies Publication and Product Library (EERE)

This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell T

206

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program - 2012  

Fuel Cell Technologies Publication and Product Library (EERE)

This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell T

207

SRNL - Technology Transfer - Tech Briefs  

NLE Websites -- All DOE Office Websites (Extended Search)

Tech home Tech home SRNL home SRS home Tech Briefs Examples of SRNL technologies available for collaboration (CRADA) and licensing. Remote Electrical Throw Device Magnetic Release Coupling InviziMark: Concealed Identification System Elemental Mercury Probe Environmental Biocatalyst - BioTiger(tm) Microbial Based Chlorinated Ethene Destruction Boron-Structured Nano-Proportional Counters Acoustic Door Latch Detector (Smart Latch(tm)) SoundAnchor(tm) Nondestructive Testing Method Microwave Off-Gas Treatment System IDEAS Program (Individuals Developing Effective Alternative Solutions) Hybrid Microwave Energy Nanoparticle-Enhanced Ionic Liquids (NEILs) Groundwater and Wastewater Remediation Using Agricultural Oils Aerosol-to-Liquid Particle Extraction System (ALPES) Double Coil Condenser Apparatus

208

University of Minnesota Start-up Guide Office for Technology Commercialization (OTC) -Venture Center  

E-Print Network (OSTI)

IN THE TECHNOLOGY COMMERCIALIZATION PROCESS .......................................... 3 1. OTC's IntellectualUniversity of Minnesota Start-up Guide Office for Technology Commercialization (OTC) - Venture................................................................................................................. 1 TECHNOLOGY COMMERCIALIZATION AT THE UNIVERSITY OF MINNESOTA ..................... 2 STEPS

Amin, S. Massoud

209

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New(19):4355-4364 Nidhi Sabharwal, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal

210

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal@rockefeller.edu #12;

de Lange, Titia

211

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Sabharwal, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal

212

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New,049,814 · US Patent 8,553,143 Nidhi Sabharwal, Ph.D. Technology Manager Technology Transfer (212) 327

213

Effective Transfer of Industrial Energy Conservation Technologies  

E-Print Network (OSTI)

. Various avenues exist for transferring energy conservation technologies to industry. Briefing documents, presentations at trade meetings and con ferences, or simple diffusion by word-of-mouth are a few methods. However, when left to chance, tech... of 444 ESL-IE-83-04-68 Proceedings from the Fifth Industrial Energy Technology Conference Volume II, Houston, TX, April 17-20, 1983 TABLE 1. Current Energy Impacts of Foam Processing of Textiles BROADWOVENS AND KNITS User Site (a) Average Production...

Clement, M.; Vallario, R. W.

1983-01-01T23:59:59.000Z

214

Building Technologies Office: Take Action to Save Energy in Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

in Commercial Buildings in Commercial Buildings Commercial building owners, operators and tenants can start saving energy today and use those cost savings for other critical parts of their businesses. The Building Technologies Office offers Commercial Buildings Resource Database and opportunities to partner with peers and technical experts. Photo of participants listening to a speaker at the Commercial Building Energy Alliances Executive Exchange with Commercial Building Stakeholders forum at the National Renewable Energy Laboratory (NREL) in Golden, Colorado, on May 24, 2012. Credit: Dennis Schroeder, NREL PIX 20913 Manage Organizational Energy Use Managing energy by creating a culture of efficiency throughout an organization can result in significant energy and monetary savings. Photo of NREL's Research Support Facility under construction, with two workers straddling I-beams.

215

COMMERCIALIZING  

NLE Websites -- All DOE Office Websites (Extended Search)

COMMERCIALIZING TECHNOLOGIES & CREATING JOBS Our location in the SS&TP plays a vital role in our ability to leverage the deep domain expertise of Sandia. Our proximity to the Labs...

216

Search Technolgies | BNL Technology Commercialization and Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Technologies... Search Search Technologies... Search Search In: All Categories advanced materials biotechnology & health copyrights & software electronics & instrumentation energy environment mechanical innovations nanotechnology Search Fields: Title Summary Description Benefits Patent Abstract Application & Industries Toggle Advanced Search Options shadow Browse by Categories and Tags advanced materials biotechnology & health copyrights & software electronics & instrumentation energy environment mechanical innovations nanotechnology acyl - ACP desaturase adenovirus agricultural biotechnology air quality alane aluminum hydride amplifier analog-to-digital antireflective ASIC atmosphere bacterial expression battery BHJ biofuel boron neutron capture calibration cancer carbon monoxide

217

US/China Energy and Environmental Technology Center (EETC) international business development and technology transfer  

SciTech Connect

Since January 1997, the US/China Energy and Environmental Technology Center (EETC) in Beijing has been jointly operated by Tulane University and Tsinghua University. EETC is established to encourage the adoption of technologies for energy production with improved environmental performance which are essential for supporting economic growth and managing the Global Warming and Climate Change issues. International cooperation is critical to insure the environmental and energy security on a global basis. For example, the US has acquired a great deal of useful experience in clean coal technology which has been demonstrated with major utilities in commercial operations. The adaption of, and the installation of, clean coal technology should be given high priority. Worldwide, the continuous exchange of information and technology between developed and developing nations relating to the current and future clean coal technologies is of great importance. Developed nations which possess environmental responsive technologies and financial resources should work closely with developing nations to facilitate technology transfer and trade of technologies. International cooperation will lower the cost of deploying clean coal technologies directed toward the clean production of energy. This paper presents the updated activities of EETC on facilitating technology transfer and promoting the clean use of coal to satisfy growing energy demand in China.

Hsieh, S.T. [Tulane Univ., New Orleans, LA (United States). US/China Inst.; Atwood, T. [Dept. of Energy, Washington, DC (United States); Qiu Daxiong [Tsinghua Univ., Beijing (China); Zhang Guocheng [State Science and Technology Commission, Beijing (China)

1997-12-31T23:59:59.000Z

218

Commercialization of coal to liquids technology  

SciTech Connect

After an overview of the coal market, technologies for producing liquids from coal are outlined. Commercialisation of coal-to-liquid fuels, the economics of coal-to-liquids development and the role of the government are discussed. Profiles of 8 key players and the profiles of 14 projects are finally given. 17 figs., 8 tabs.

NONE

2007-07-01T23:59:59.000Z

219

Dartmouth College Technology Transfer Office Annual Report  

E-Print Network (OSTI)

and public service missions of Dartmouth College. 1 #12;Invention Disclosures Research Enterprise Support, such as Small Business Innovation Research (SBIR), Small Business Technology Transfer (STTR), and New Hampshire of the sluggish economy, we were able to secure 6 new licenses, including one to local start-up ImmuNext, Inc

Myers, Lawrence C.

220

CIOSS Five Year Review 5. Technology Transfer  

E-Print Network (OSTI)

SST fields will be documented in a peer-reviewed paper, as will the wind climatologies of CheltonCIOSS Five Year Review 5. Technology Transfer 10-11-06 A. How are research results from and the nature of the collaboration. As an example, the collaboration between Richard Reynolds and Dudley Chelton

Kurapov, Alexander

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Oregon Health & Science University Technology Transfer and Business Development  

E-Print Network (OSTI)

Oregon Health & Science University Technology Transfer and Business Development Annual Report 2011 Business Development 6 Impacting Global Health - Drs. David and Deborah Lewinsohn Technology Transfer 7 System OHSU is reinventing technology transfer. Over the years the office has evolved from "Tech Transfer

Chapman, Michael S.

222

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New://newswire.rockefeller.edu/?page=engine&id=939 Nidhi Sabharwal, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

223

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Sabharwal, Ph.D. Technology Manager Office of Technology Transfer (212) 327-7092 nsabharwal@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

224

Three Regional Partnerships Target Technology Commercialization, Job Growth  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Partnerships Target Technology Commercialization, Regional Partnerships Target Technology Commercialization, Job Growth Three Regional Partnerships Target Technology Commercialization, Job Growth October 14, 2011 - 6:03pm Addthis Dr. Thomas O’Neal of the University of Central Florida at Optigrate, a manufacturer of optical electronic components. Both the university and manufacturer are part of the Igniting Innovation Cleantech Acceleration Network. Dr. Thomas O'Neal of the University of Central Florida at Optigrate, a manufacturer of optical electronic components. Both the university and manufacturer are part of the Igniting Innovation Cleantech Acceleration Network. Sarah Jane Maxted Special Assistant, Office of Energy Efficiency & Renewable Energy What does this project do? The challenge encourages and rewards "Proof of Concept Centers,"

225

DOE Technology Transfer Website Features New Tool to Search Tech Transfer  

Office of Scientific and Technical Information (OSTI)

Technology Transfer Website Features New Tool to Search Tech Transfer Technology Transfer Website Features New Tool to Search Tech Transfer Information from DOE National Laboratories December 3, 2012 DOE Technology Transfer Website Features New Tool to Search Tech Transfer Information from DOE National Laboratories The Department of Energy (DOE) Technology Transfer website has a new search feature that for the first time allows searching of technology transfer information across the DOE national laboratories. The new tool enables users to search all of DOE's technology transfer information, including inventions, patents and other applied research, available from DOE's national laboratories in real time. Using web-crawling technology, the search capability allows users to enter a single query for a technology transfer term; the search feature returns a

226

Technology Transfer for Brownfields Redevelopment Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Transfer for Brownfields Redevelopment Project Technology Transfer for Brownfields Redevelopment Project Technology Transfer for Brownfields Redevelopment Project The U.S. Department of Energy has provided six computers to Prichard to improve its decision-making process through Geographic Information System (GIS) as a decision-making tool. The agency has provided GIS training and other technical assistance in Prichard's Brownfields redevelopment effort. Other National Conference of Black Mayors' cities that have received computers for technology centers and technology transfer are Hayti Heights, Missouri; East St. Louis, Illinois; and Glenarden, Maryland. Technology Transfer for Brownfields Redevelopment Project (July 1998) More Documents & Publications Environmental Justice and Public Participation Through Technology-

227

Radiation Preservation of Food, Commercialization Technology and Economics in Radiation Processing  

Science Journals Connector (OSTI)

Radiation Preservation of Food, Commercialization Technology and Economics in Radiation Processing ...

H. F. Kraybill; D. C. Brunton

1960-05-01T23:59:59.000Z

228

MHD Technology Transfer, Integration and Review Committee  

SciTech Connect

This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.

Not Available

1992-01-01T23:59:59.000Z

229

Technology Transfer of Computational Intelligence for Manufacturing Process Control  

E-Print Network (OSTI)

Technology Transfer of Computational Intelligence for Manufacturing Process Control Alice E. Smith applications is a large and uncertain step. This paper focuses on the technology transfer issues and solutions

Smith, Alice E.

230

National Technology Transfer and Advancement Act of 1995 [Public...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Transfer and Advancement Act of 1995 Public Law (PL) 104-113 National Technology Transfer and Advancement Act of 1995 Public Law (PL) 104-113 On March 7, 1996,...

231

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New,383,370. Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto

232

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

233

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.1016/j.jmb.2008.01.066 Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327

234

Tag: technology transfer | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

technology transfer Tag: technology transfer Displaying 1 - 8 of 8... Category: News Fuels for the final frontier Y-12 is taking its uranium expertise to the next level - outer...

235

Fermilab | Office of Partnerships and Technology Transfer | Fermilab...  

NLE Websites -- All DOE Office Websites (Extended Search)

Invention reporting is the responsibility of the individual inventors. The technology transfer program for the Laboratory is coordinated by the Partnerships and Technology...

236

Geothermal Elastomeric Materials Technology-Transfer (GEM-TT) Program. Final report  

SciTech Connect

The primary objective, to promote broad use of the earlier developed elastomers technology appears to have been successfully accomplished. The expertise was transferred to three rubber products manufacturers, and is currently commercially available. Significant substantiation of the viability of the technology was fostered through supporting and tracking numerous test efforts in various industry laboratories and out in the field. Numerous papers were presented on the technology and information was also disseminated verbally and by providing data packages. The formal and informal technology transfer effort are described. Several secondary spin-offs also resulted. Steps toward a better understanding of the complex technology transfer process were achieved. The experience provides a data point illustrating one way that technology transfer can be accomplished and a data point which can be used to evaluate its effectiveness. And finally studies were made assessing the potential of elastomers to perform at even higher temperatures.

Hirasuna, A.R.; Friese, G.J.; Stephens, C.A.

1982-12-01T23:59:59.000Z

237

Renae Speck Commercialization Manager  

NLE Websites -- All DOE Office Websites (Extended Search)

Manager Renae Speck, Ph.D is a Commercialization Manager in the Office of Technology Transfer in the Partnership Directorate at the United States Department of Energy's Oak...

238

Building Technologies Office: Commercial Building Codes and Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes and Standards Codes and Standards Photo of two inspectors looking at a clipboard on a commercial building site with the steel frame of a commercial building in the background. Local code officials enforce building energy codes. Credit: iStockphoto Once an energy-efficient technology or practice is widely available in the market, it can become the baseline of performance through building energy codes and equipment standards. The Building Technologies Office (BTO) provides support to states and local governments as they adopt and monitor commercial building code as well as builders working to meet and exceed code. BTO also develops test procedures and minimum efficiency standards for commercial equipment. Building Energy Codes DOE encourages using new technologies and better building practices to improve energy efficiency. Mandating building energy efficiency by including it in state and local codes is an effective strategy for achieving that goal. The Building Energy Codes Program works with the International Code Council (ICC), American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Illuminating Engineering Society of North America (IESNA), American Institute of Architects (AIA), the building industry, and state and local officials to develop and promote more stringent and easy-to-understand building energy codes and to assess potential code barriers to new energy-efficient technologies.

239

Technology Brief: Analysis of Current-Day Commercial Electrolyzers  

SciTech Connect

This factsheet provides an overview of the current state of electrolytic hydrogen production technologies and an economic analysis of the processes and systems available as of December 2003. The operating specifications and hydrogen production costs of commercially available electrolyzers from five manufacturers, i.e., Stuart, Teledyne, Proton, Norsk Hydro, and Avalence, are compared.

Not Available

2004-09-01T23:59:59.000Z

240

Research and Technology Transfer Organization www.techtransfer.psu.edu  

E-Print Network (OSTI)

Research and Technology Transfer Organization www.techtransfer.psu.edu from idea to product #12;About us Research and Technology Transfer Organization from idea to product The Penn State Research and Technology Transfer Organization (RTTO) consists of four units working together to connect industry to Penn

Guiltinan, Mark

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CERNA WORKING PAPER SERIES Innovation and international technology transfer  

E-Print Network (OSTI)

1 CERNA WORKING PAPER SERIES Innovation and international technology transfer: The case technology transfer: The case of the Chinese photovoltaic industry Arnaud de la Tour, Matthieu Glachant, Yann emphasis on the role of technology transfers and innovation. Our analysis combines a review

Paris-Sud XI, Université de

242

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www

243

Chapter 9 Research & Technology Transfer (2 Edition) 118  

E-Print Network (OSTI)

117 #12;Chapter 9 ­ Research & Technology Transfer (2 nd Edition) 118 Chapter 9 Research & Technology Transfer Goals Excellence in research and scholarly activity is a central tenet of the University the Office of Technology Transfer and the Business Engagement Center. Overview Most of this chapter examines

Michigan, University of

244

April 12, 2013 OHSU Office of Technology Transfer & Business Development  

E-Print Network (OSTI)

April 12, 2013 OHSU Office of Technology Transfer & Business Development Brown Bag Series -"TTBD of Technology Transfer & Business Development (TTBD) is the place to start. Join us for a brown bag presentation and Q&A on"TTBD: An Overview"led by Andrew Watson, PhD, CLP, Interim Director, Technology Transfer

Chapman, Michael S.

245

Office of Technology Transfer 1 | P a g e  

E-Print Network (OSTI)

Office of Technology Transfer 1 | P a g e Updated.02.23.12_KT Instructions for submitting; Office of Technology Transfer 2 | P a g e Updated.02.23.12_KT 4 myUM Authentication's window of screen. Invention Disclosure Form #12; Office of Technology Transfer 3 | P a g e

Weber, David J.

246

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.1217207109 Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

247

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New activation. Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

248

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10065 www

249

National Aeronautics and Space Administration NASA Technology Transfer Program  

E-Print Network (OSTI)

National Aeronautics and Space Administration NASA Technology Transfer Program Bringing NASA of technology transfer that NASA maximizes the benefit of the Nation's investment in cutting-edge research technology transfer has made us confident that these solutions, while originally conceived to solve NASA

Waliser, Duane E.

250

Technology Transfer David Basin and Thai Son Hoang  

E-Print Network (OSTI)

Technology Transfer David Basin and Thai Son Hoang Institute of Information Security, ETH Zurich, Switzerland Abstract. This paper presents our experience of knowledge and technology transfer within the lessons learned and what we would do differently in future technology transfer projects. Keywords

Basin, David

251

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue NewRNA and antisense therapeutics Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New

252

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto

de Lange, Titia

253

AUGUST 7, 2013 OHSU Office of Technology Transfer & Business Development  

E-Print Network (OSTI)

AUGUST 7, 2013 OHSU Office of Technology Transfer & Business Development Brown Bag Series "Software Patent Associate of Technology Transfer & Business Development (TTBD). August 7, 2013 from 12:00 - 1. Technology Transfer & Business Development www.ohsu.edu/techtransfer techmgmt@ohsu.edu 503-494-8200 #12;

Chapman, Michael S.

254

April 3, 2013 OHSU Office of Technology Transfer & Business Development  

E-Print Network (OSTI)

April 3, 2013 OHSU Office of Technology Transfer & Business Development Brown Bag Series -"TTBD of Technology Transfer & Business Development (TTBD) is the place to start. Join us for a brown bag presentation and Q&A on"TTBD: An Overview"led by Andrew Watson, PhD, CLP, Interim Director, Technology Transfer

Chapman, Michael S.

255

Chapter 9 Research & Technology Transfer (3 Edition) 118  

E-Print Network (OSTI)

117 #12;Chapter 9 ­ Research & Technology Transfer (3 rd Edition) 118 Chapter 9 Research & Technology Transfer Goals Excellence in research and scholarly activity is a central tenet of the University the Office of Technology Transfer and the Business Engagement Center. Overview Most of this chapter examines

Eustice, Ryan

256

Chapter 9 Research & Technology Transfer (4 Edition) 117  

E-Print Network (OSTI)

116 #12;Chapter 9 ­ Research & Technology Transfer (4 th Edition) 117 Chapter 9 Research & Technology Transfer Goals Excellence in research and scholarly activity is a central tenet of the University the Office of Technology Transfer and the Business Engagement Center. Overview Most of this chapter examines

Awtar, Shorya

257

Technology Transfer Expansion Planned UTCA is conducting a major project  

E-Print Network (OSTI)

Technology Transfer Expansion Planned UTCA is conducting a major project to evaluate and extend its technology transfer activities (UTCA project 03217). Steven Jones and David Eckhoff of UAB are working to expand the current technology transfer program to showcase the successes of the UTCA projects. Samples

Carver, Jeffrey C.

258

Annual Report on DOE Technology Transfer FY 2007 and 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Report Annual Report on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2007 and 2008 Prepared by: Office of Laboratory Policy and Evaluation Office of Science and National Nuclear Security Administration U.S. Department of Energy In Coordination With: Technology Transfer Policy Board Technology Transfer Working Group U.S. Department of Energy December 2009 ii TABLE OF CONTENTS Background .......... .................................................................................................................................................1 Technology Partnering Policy .................................................................................................................................1

259

Analysis of Technology Transfer in CDM Projects | Open Energy Information  

Open Energy Info (EERE)

Analysis of Technology Transfer in CDM Projects Analysis of Technology Transfer in CDM Projects Jump to: navigation, search Tool Summary Name: Analysis of Technology Transfer in CDM Projects Agency/Company /Organization: United Nations Framework Convention on Climate Change Sector: Energy, Land Topics: Finance, Implementation Resource Type: Publications Website: cdm.unfccc.int/Reference/Reports/TTreport/TTrep08.pdf Analysis of Technology Transfer in CDM Projects Screenshot References: Analysis of Technology Transfer in CDM Projects[1] Overview "Although the Clean Development Mechanism (CDM) does not have an explicit technology transfer mandate, it may contribute to technology transfer by financing emission reduction projects using technologies currently not available in the host countries. This report analyzes the claims of

260

INTRODUCTION TO THE TECHNOLOGY TRANSFER OFFICE The Technology Transfer Office directly contributes to the three-pronged mission of Dartmouth  

E-Print Network (OSTI)

contributes to the three-pronged mission of Dartmouth College: teaching, research and public service setting. The Technology Transfer Office provides public service by transferring technologies to industry Business Innovation Research (SBIR), Small Business Technology Transfer program (STTR), and New Hampshire

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program August 2010 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Fuel Cell Technologies Program iii Table of Contents Summary ...............................................................................................................................................................................v 1.0 Introduction ............................................................................................................................................................... 1-1 1.1 Organization of the FCT Program ..................................................................................................................

262

WICHITA STATE UNIVERSITY RESEARCH AND TECHNOLOGY TRANSFER 1845 Fairmount Street Wichita, Kansas 67260-0007 tele: (316) 978-3285 fax: (316) 978-3750  

E-Print Network (OSTI)

WICHITA STATE UNIVERSITY RESEARCH AND TECHNOLOGY TRANSFER 1845 Fairmount Street Wichita, Kansas for each of its virtual development tools. www.vimo-tech.com ### CONTACT: Becky Hundley Technology Transfer for the commercialization of Olivares' technology is one that John Tomblin, vice president of research and technology

263

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;The Rockefeller University Office of Technology.S. patent application US 2013-0064762-A1 is pending. Tari Suprapto, Ph.D. Assistant Director Technology

264

TARGETED TECHNOLOGY TRANSFER TO US INDEPENDENTS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers with timely, informed technology decisions during Fiscal Year 2004 (FY04). PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 2 satellite offices. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and other cooperative outreach efforts. PTTC's Headquarters (HQ) staff receives direction from a National Board of Directors predominantly comprised of American natural gas and oil producers to plan and manage the overall technology transfer program. PTTC HQ implements a comprehensive communications program by interconnecting the talents of the National Board, 10 Regional Producer Advisory Groups (PAG) and the RLOs with industry across the U.S. PTTC effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, namely the Strategic Center for Natural Gas and Oil with state and industry contributions to share application of upstream technologies. Ultimately, these efforts factor in to provide a safe, secure and reliable energy supply for American consumers. This integrated resource base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results regarding domestic production figures. PTTC is increasingly recognized as a critical resource for information and access to technologies by providing direct contact with research, development and demonstration (RD&D) results. A key to the program is demonstrating proven technologies that can be applied broadly and rapidly. This technical progress report summarizes PTTC's accomplishments during FY04. Activities remained at high levels. Board and staff interaction has defined strategic thrusts to further outreach. Networking, involvement in technical activities and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom line information stimulates cooperative ventures with other organizations. Efforts to build the contact database and a growing E-mail Technology Alert service are expanding PTTC's audience.

Donald F. Duttlinger; E. Lance Cole

2005-01-01T23:59:59.000Z

265

EPA and the Federal Technology Transfer Act: Opportunity knocks  

SciTech Connect

In 1986, the Federal Technology Transfer Act (FTTA) was established to promote a closer, collaborative relationship between federal government agencies and the private sector. With the increasing need for new cost-effective technologies to prevent and control pollution, both the US Environmental Protection Agency (EPA) and private industry are encouraged to facilitate the transfer of knowledge and technology under this Act. The FTTA removed several of the legal and institutional barriers to cooperative research that existed before the Act`s passage. Through the FTTA, the government strives to promote the movement of its products, processes, skills, and knowledge into the private sector for further development and commercialization by encouraging the exchange of technical personnel and the sharing of facilities and other resources. Collaborative efforts between industry, federal agencies, and academia are made possible through cooperative research and development agreements (CRADAs). Forty-two CRADAs and five licensing agreements have been initiated with EPA under this program. This paper provides an overview of this new and innovative program within the EPA. 1 fig., 2 tabs.

Gatchett, A.M.; Fradkin, L.; Moore, M.; Gorman, T.; Ehrlich, A. [Environmental Protection Agency, Washington, DC (United States)

1990-12-31T23:59:59.000Z

266

Building Successful Technology Commercialization Teams: Pilot Empirical Support for the Theory of Cascading Commitment  

Science Journals Connector (OSTI)

Improving the process of commercializing a technology from a public ... understanding of which factors actually contribute to successful commercialization. Such factors are complex, including the ... project eval...

David Large; Keith Belinko; Katerina Kalligatsi

2000-06-01T23:59:59.000Z

267

International technology transfer for climate change mitigation and the cases of Russia and China  

SciTech Connect

The environmental agenda for mitigating climate change through international transfers of technology is linked with a diverse literature, reviewed here within a framework that combines technological, agent/agenda, and market/transaction perspectives. Literature that bears on international technology transfer for climate change mitigation is similar in many ways for Russia and China: opportunities for energy efficiency and renewable energy, economic reform and restructuring, the difficulties enterprises face in responding to market conditions, international assistance policies, international joint ventures, market intermediation, and capacity building for market development. In both countries, capacity building means enhancing market-oriented capabilities in addition to technological capabilities. For Russia, institutional development is critical, such as new commercial legal codes and housing-sector changes beyond privatization. For China, technology policies and modernization programs significantly influence technology transfers. 234 refs., 3 tabs.

Martinot, E. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group] [Univ. of California, Berkeley, CA (United States). Energy and Resources Group; [Stockholm Environment Inst., Boston, MA (United States); Sinton, J.E. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group] [Univ. of California, Berkeley, CA (United States). Energy and Resources Group; [Lawrence Berkeley National Lab., CA (United States). International Energy Studies Group; Haddad, B.M. [Univ. of California, Berkeley, CA (United States)] [Univ. of California, Berkeley, CA (United States)

1997-12-31T23:59:59.000Z

268

Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)  

SciTech Connect

The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

Not Available

2014-10-01T23:59:59.000Z

269

Technological development for commercialization of amorphous silicon based multijunction modules  

SciTech Connect

Some of the significant steps in technological development for large-scale commercialization of amorphous silicon (a-Si:H) based multijunction photovoltaic modules are presented. These developments are establishing a high quality baseline process for manufacturing large-area ({approximately}8 ft{sup 2}) a-Si:H/a-SiGe:H tandem junction modules with improved stabilized conversion efficiency, throughput, yield, and reduced materials usage.

Yang, L.; Bennett, M.; Chen, L. [Solarex, Newtown, PA (United States)] [and others

1996-12-31T23:59:59.000Z

270

Office of the Assistant General Counsel for Technology Transfer &  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Transfer & Intellectual Property Technology Transfer & Intellectual Property Office of the Assistant General Counsel for Technology Transfer & Intellectual Property The Office of the Assistant General Counsel for Technology Transfer and Intellectual Property is responsible for providing legal counsel to Departmental elements on all matters relating to intellectual property (including patents, trademarks, copyrights, and technical data) and transfer of those rights from Department laboratories to the private sector in accordance with established legal authorities. The Office is also responsible for investigating and disposing of copyright and patent infringement actions against the Department. Additional information on intellectual property is available here. Among its duties, the Office obtains, administers, and licenses

271

Technology Transfer: Triggering New Global Markets and Job Growth |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Transfer: Triggering New Global Markets and Job Growth Technology Transfer: Triggering New Global Markets and Job Growth Technology Transfer: Triggering New Global Markets and Job Growth September 20, 2011 - 11:33am Addthis The Global Positioning System (GPS) was initially a government technology developed to guide nuclear missiles, and is one of the many examples of the economic potential of successful technology transfer -- the now worldwide location technologies market is projected to grow to $75 billion by 2013. The Global Positioning System (GPS) was initially a government technology developed to guide nuclear missiles, and is one of the many examples of the economic potential of successful technology transfer -- the now worldwide location technologies market is projected to grow to $75 billion by 2013.

272

Building Technologies Office: Commercial Building Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Development Research and Development Photo of NREL researcher Jeff Tomberlin working on a data acquisition panel at the Building Efficiency Data Acquisition and Control Laboratory at NREL's Thermal Test Facility. The Building Technology Program funds research that can dramatically improve energy efficiency in commercial buildings. Credit: Dennis Schroeder, NREL PIX 20181 The Building Technologies Office (BTO) invests in technology research and development activities that can dramatically reduce energy consumption and energy waste in buildings. Buildings in the United States use nearly 40 quadrillion British thermal units (Btu) of energy for space heating and cooling, lighting, and appliances, an amount equivalent to the annual amount of electricity delivered by more than 3,800 500-megawatt coal-fired power plants. The BTO technology portfolio aims to help reduce building energy requirements by 50% through the use of improved appliances; windows, walls, and roofs; space heating and cooling; lighting; and whole building design strategies.

273

Overcoming Barriers to the Transfer and Diffusion of Climate Technologies |  

Open Energy Info (EERE)

Overcoming Barriers to the Transfer and Diffusion of Climate Technologies Overcoming Barriers to the Transfer and Diffusion of Climate Technologies Jump to: navigation, search Tool Summary Name: Overcoming Barriers to the Transfer and Diffusion of Climate Technologies Agency/Company /Organization: UNEP-Risoe Centre Sector: Energy, Climate Focus Area: Greenhouse Gas Topics: Technology characterizations Resource Type: Publications, Guide/manual, Training materials Website: uneprisoe.org/ Cost: Free Overcoming Barriers to the Transfer and Diffusion of Climate Technologies Screenshot References: UNEP-Risoe[1] Logo: Overcoming Barriers to the Transfer and Diffusion of Climate Technologies This guidebook deals with the transfer of proven technologies both between countries and within them. "The purpose of the TNA project is to assist participant developing country

274

UNIDO ICS Portal for Technology Transfer | Open Energy Information  

Open Energy Info (EERE)

UNIDO ICS Portal for Technology Transfer UNIDO ICS Portal for Technology Transfer Jump to: navigation, search Tool Summary Name: UNIDO ICS Portal for Technology Transfer Agency/Company /Organization: United Nations Industrial Development Organization Sector: Energy Topics: Technology characterizations Resource Type: Dataset Website: portal.ics.trieste.it/Portal/Default.aspx References: UNIDO ICS Portal for Technology Transfer[1] This article is a stub. You can help OpenEI by expanding it. References ↑ "UNIDO ICS Portal for Technology Transfer" Retrieved from "http://en.openei.org/w/index.php?title=UNIDO_ICS_Portal_for_Technology_Transfer&oldid=329335" Categories: Tools Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

275

NREL: Technology Transfer - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 December 3, 2008 DOE to Award $14.55 Million for Advanced Vehicle Technologies Ford Motor Company has received funds from the U.S. Department of Energy to develop an energy-efficient way to cool, heat, and ventilate cars. NREL will serve on Ford's project team. November 20, 2008 NREL, Brazilian Energy Company to Collaborate on Bioenergy The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) and Petróleo Brasileiro S.A. (Petrobras) announced today that they have signed an agreement that could accelerate the development and international commercialization of biofuels. The announcement was made at the International Biofuels Conference in Sao Paulo, Brazil. November 13, 2008 NREL and Private Industry Begin Nationwide Solar Measuring Network

276

NETL Technology Transfer Agreements & Research Partnerships Available  

NLE Websites -- All DOE Office Websites (Extended Search)

How to Partner How to Partner Technology Transfer NETL Technology Transfer Agreements & Research Partnerships Pouring molten metal into a lost foam, loose sand casting for cast steel armorplate Pouring molten metal into a lost foam, loose sand casting for cast steel armorplate A technology transfer agreement with the National Energy Technology Laboratory (NETL) provides access to the research and development expertise, facilities, and intellectual property of a government research facility. Specializing in fossil fuel energy research, NETL technology transfer options include: Research Partnership Notice - "Seeking Partnerships on Field Research Related to Shale Gas Development" Cooperative Research and Development Agreement (CRADA) Contributed Funds-in Agreement (CFA)

277

Technology transfer -- protecting technologies during the transfer cycle (intellectual property issues)  

SciTech Connect

The success of technology transfer agreements depends not just on the technical work, but on how well the arrangements to protect and dispose of the intellectual properties that make up the technologies are handled. Pertinent issues that impact the protection and disposition of intellectual properties during the technology transfer process at Sandia National Laboratories, a multiprogram laboratory operated for the Department of Energy by the Martin Marietta Corporation, are discussed. Subjects addressed include the contracting mechanisms (including the Cooperative Research and Development Agreement [CRADA] and the Work-for-Others agreement), proprietary information, The Freedom of Information Act, patents and copyrights, the statement of work, Protected CRADA Information, licensing considerations, title to intellectual properties, march-in rights, and nondisclosure agreements.

Graham, G.G.

1993-12-31T23:59:59.000Z

278

Formal Methods Technology Transfer: A View from NASA  

E-Print Network (OSTI)

Formal Methods Technology Transfer: A View from NASA James L. Caldwell Flight Electronics Home Page on the World­Wide Web 1 . In this paper I remark on the technology transfer strategy and its Formal Methods Home Page on the World­Wide Web. In this paper we concentrate on aspects of technology

Caldwell, James

279

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New:1484-1488. #12;The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology

280

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic  

E-Print Network (OSTI)

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic Technology Researchers of the Vienna University of Technology and the Medical University of Vienna have found application filed International patent application (PCT) filed Next steps · Electrophysiological testing

Szmolyan, Peter

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Geo energy research and development: technology transfer update  

SciTech Connect

Sandia Geo Energy Programs in geothermal, coal, oil and gas, and synfuel technologies have been effective in transferring research concepts to applications in private industry. This report updates the previous summary (SAND82-0211, March 1982) to include recent technology transfers and to reflect recent changes in philosophy on technology transfer. Over 40 items transferred to industry have been identified in the areas of Hardware, Risk Removal and Understanding. Successful transfer is due largely to personal interactions between Sandia engineers and the technical staffs of private industry.

Traeger, R.K.; Dugan, V.L.

1983-01-01T23:59:59.000Z

282

Response to Incorporation of Supplemental Gonadotropins for Donor and Recipient Protocols in Commercial Bovine Embryo Transfer  

E-Print Network (OSTI)

Superovulation of donor cows, embryo transfer, and estrus synchronization of recipients are widely used technologies in the purebred cattle industry. Progress continues to be made to achieve efficient and economic use of these technologies...

Chiles, Kelley

2012-07-16T23:59:59.000Z

283

Government support for the commercialization of new energy technologies : an analysis and exploration of the issues  

E-Print Network (OSTI)

This report examines the issues associated with government programs proposed for the "commercialization" of new energy technologies; these programs

Policy Study Group, MIT Energy Lab

1976-01-01T23:59:59.000Z

284

Commercialization possibilities of Stirling engine technology for microscale power generation in Sweden; MicroStirling.  

E-Print Network (OSTI)

?? The presented masters thesis has evaluated the possibility of commercializing a research project at the Royal Institute of Technologys (KTH) Department of Energy Technology (more)

Backman, Peter

2012-01-01T23:59:59.000Z

285

Technology Transfer | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Laboratory Policy (LP) LP Home About Laboratory Appraisal Process Laboratory Planning Process Laboratory Directed Research and Development (LDRD) Management &...

286

Fermilab | Office of Partnerships and Technology Transfer | Documents...  

NLE Websites -- All DOE Office Websites (Extended Search)

Record of Invention (ROI) Information Sample Record of Invention * Fermilab Technology Transfer Policies and Procedures Manual - DRAFT Non-Proprietary User Agreement * This...

287

Fermilab | Office of Partnerships and Technology Transfer | Available...  

NLE Websites -- All DOE Office Websites (Extended Search)

Available for Licensing. Interested parties should contact the Partnerships and Technology Transfer at the address shown below. Under authority granted by the US DOE the...

288

Fermilab | Office of Partnerships and Technology Transfer | Columns...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology transfer at Fermilab Bruce Chrisman In an effort to fuel the economy and foster innovation, President Obama recently issued a directive to all the national laboratories...

289

INTERNAL POSTING - Head of Technology Transfer, Patents & Publications...  

NLE Websites -- All DOE Office Websites (Extended Search)

INTERNAL POSTING - Head of Technology Transfer, Patents & Publications Department: Best Practices Supervisor(s): John Delooper Staff: AM 7 Requisition Number: 1400936 The Head of...

290

Management of international transfer of innovative technologies in the enterprise.  

E-Print Network (OSTI)

?? The objective is to clarify the concept of technology transfer and the accompanying components to deliver them to the reader. The object of this (more)

Trofimchuk, Olena

2012-01-01T23:59:59.000Z

291

Characterization and Development of Advanced Heat Transfer Technologies (Presentation)  

SciTech Connect

This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

Kelly, K.

2009-05-01T23:59:59.000Z

292

2815 San Gabriel Austin, Texas 78705 www.ic2.utexas.edu 512.475.8900 Butler, John Sibley and David V. Gibson (eds.), 2011. Global Perspectives on Technology Transfer and  

E-Print Network (OSTI)

Sibley and David V. Gibson (eds.), 2011. Global Perspectives on Technology Transfer and Commercialization. "University Technology Transfer," U.S. Economic Outlook, 2/4 2011, 31-33. Echeverri-Carroll, Elsie L has produced a catalog of cutting-edge research on new technologies, technology transfer

Ghosh, Joydeep

293

Vehicle Technologies Office: Awards Received | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy's national laboratories in moving fundamental research into technology and towards commercialization. The Federal Laboratory Consortium Excellence in Technology Transfer...

294

Assessment of Energy Impact of Window Technologies for Commercial Buildings  

E-Print Network (OSTI)

average commercial buildings site energy usage of 91 kBtu/commercial buildings, even though the average Energy Usage

Hong, Tianzhen

2014-01-01T23:59:59.000Z

295

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 1: ITP-Sponsored Technologies Commercially Available  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 DOE Industrial Technologies Program 15 DOE Industrial Technologies Program Appendix 1: ITP-Sponsored Technologies Commercially Available Aluminum ........................................................................................................................................... 19 u Aluminum Reclaimer for Foundry Applications .................................................................................................................................. 20 u Isothermal Melting................................................................................................................................................................................ 21 Chemicals........................................................................................................................................... 23

296

Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Commercial Commercial Industrial Lighting Energy Smart Grocer Program HVAC Program Shell Measures Commercial Kitchen & Food Service Equipment Plug Load New...

297

COST TRANSFERS TO FEDERALLY FUNDED AWARDS California Institute of Technology  

E-Print Network (OSTI)

COST TRANSFERS TO FEDERALLY FUNDED AWARDS California Institute of Technology Pasadena, California 7: A cost transfer is an after-the-fact transfer of costs (labor or non-labor) from a sponsored or non- sponsored award to a federally funded award. Ideally, all costs should be charged to the appropriate federal

298

How to Qualify for NIH Small Business Innovation and Technology Transfer Grants  

E-Print Network (OSTI)

How to Qualify for NIH Small Business Innovation and Technology Transfer Grants Professional) and Small Business Technology Transfer (STTR) proposal development services to technology based

Berdichevsky, Victor

299

Responses To Questions Concerning Technology Transfer Practices at DOE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Responses To Questions Concerning Technology Transfer Practices at Responses To Questions Concerning Technology Transfer Practices at DOE Laboratories Responses To Questions Concerning Technology Transfer Practices at DOE Laboratories AllianceForSustainableEnergy Battelle Department of Economic and Community Development Planar Energy Devices Center for Hydrogen Research Electric Power Research Institute (EPRI) APJeT, Inc. Pacific Northwest National Laboratory (PNNL) American Superconductor (AMSC) Economic Development Partnership Campbell Applied Physics, Inc. Oak Ridge Economic Partnership Purdue University Council on Governmental Relations Cummins University of California ORNL Tech Transfer Jet Propulsion Laboratory (JPL) Eastman Chemical Company Sandia National Laboratories Lawrence Livermore National Laboratory Oak Ridge National Laboratory

300

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New Information U.S. Patent 7,323,683 (issued January 28, 2008) Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New. References Sandu, et al. 2010. J. Cell. Biol, 190:1039-52. Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu #12;

302

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New://www.nature.com/tp/journal/v4/n1/abs/tp2013124a.html Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327

de Lange, Titia

303

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10065 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu Alleles of Human Kappa Opioid Receptors and Uses Thereof

304

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu A Novel Disc-Based Apparatus for High-Throughput Sample

305

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu A Novel Regulator Of Extracellular Virulence Genes

306

The Rockefeller University Office of Technology Transfer 502 Founders Hall  

E-Print Network (OSTI)

The Rockefeller University Office of Technology Transfer 502 Founders Hall 1230 York Avenue New York, NY 10021-6399 www.rockefeller.edu/techtransfer Tari Suprapto, Ph.D. Assistant Director Technology Transfer (212) 327-7095 tsuprapto@rockefeller.edu Novel Inhibitors of Thrombotic Clot Formation RU808+ RU

307

Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program  

Fuel Cell Technologies Publication and Product Library (EERE)

This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Ce

308

Fermilab | Office of Partnerships and Technology Transfer | Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnerships and Technology Transfer Partnerships and Technology Transfer U.S. Department of Energy Fermilab Fermilab: Home Help Press Room Phone Book Fermilab at Work Search Search Go Skip over navigation to main content Office of Partnerships and Technology Transfer Fermilab Technology Available Technologies CRADA Model CRADA Joint Work Statement CRADA OCI Certification SC Foreign Work for Other Sheet WFO Model Work for Others SC Foreign Work for Other Sheet WFO Questionnaire Documents and Forms Related Links Accelerators for America's Future Department of Energy Technology Transfer Follow Fermilab On... Facebook Twitter YouTube Quantum Diaries More ways to follow us U.S. Department of Energy Home Page HEP Program News & Information Interactions.org Particle Physics News Image Bank Fermilab in the News Quantum Diaries

309

Licensing and {open_quotes}CRADA`s{close_quotes} in Oak Ridge technology transfer  

SciTech Connect

In the belief that effective technology transfer is a ``contact sport,`` Martin Marietta Energy Systems (Energy Systems), the Department of Energy`s (DOE`s) management contractor in Oak Ridge, Tennessee, encourages its research and engineering employees to directly interact with their commercial-sector counterparts. Over the years, relationships which have been initiated through such technical interactions have led to many of the patent licenses ad cooperative research and development agreements (CRADAs) which currently exist among Energy Systems, US companies, universities, and industrial consortia. The responsibility for creating and implementing Energy Systems policies and procedures to accomplish DOE`s technology transfer objectives in Oak Ridge lies with the Office of Technology Transfer (OTT). In addition, licensing executives within OTT are responsible for negotiating the terms and conditions of patent licenses and CRADAs for the commercialization of government-funded technologies and research expertise. Other technology transfer initiatives in Oak Ridge help companies in a wide range of industries overcome manufacturing obstacles, enabling them to retain existing jobs and to create new business opportunities.

Prosser, G.A.

1993-10-01T23:59:59.000Z

310

Analysis and technology transfer report, 1989 and 1990  

SciTech Connect

The buildings sector used 29.6 quadrillion Btus (quads) of energy in 1989, or 36 percent of the total primary energy consumed in the United States. The major uses are for space heating and cooling, water heating, refrigeration, and lighting. Electricity is the dominant fuel, followed by natural gas, petroleum, and other fuels. Although there were dramatic improvements in energy efficiency in this sector from 1975 to 1985, in recent years energy use has grown rapidly. The large growth expected in commercial building floor space and in residential units means that total building-sector energy consumption could increase dramatically by the year 2030. The mission of the US DOE's Office of Building Technologies (OBT) is to lead a national program supporting private sector efforts to improve the energy efficiency of the nation's buildings and to increase their utilization of renewable energy sources. The Office is also responsible for energy efficiency planning and management for Federal buildings as well as buildings-related associated information, financial incentives, and regulatory functions that are determined to be appropriate for the Federal government. To accomplish its goals, OBT plans and conducts research and development to make technologies available and provides information on their effectiveness. The selection and management of OBT research activities requires an understanding of where and how energy is used within the buildings sectors, how energy use is expected to change in the future, and the potential impact of new and emerging technologies on energy use. Analysis activities serve to collect energy use information, provide the analysis necessary to apply this information to research and development planning, and develop analysis tools which the program uses to set priorities for research projects. This report summarizes analysis and technology transfer activities undertaken by OBT during 1989 and 1990. 101 refs., 19 figs., 9 tabs.

Not Available

1991-08-01T23:59:59.000Z

311

Center for the Commercialization of Electric Technologies Smart Grid  

Open Energy Info (EERE)

Project Project Jump to: navigation, search Project Lead Center for the Commercialization of Electric Technologies Country United States Headquarters Location Austin, Texas Recovery Act Funding $13,516,546.00 Total Project Value $27,419,424.00 Coordinates 30.267153°, -97.7430608° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

312

Successful Oil and Gas Technology Transfer Program Extended to 2015 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Successful Oil and Gas Technology Transfer Program Extended to 2015 Successful Oil and Gas Technology Transfer Program Extended to 2015 Successful Oil and Gas Technology Transfer Program Extended to 2015 June 23, 2010 - 1:00pm Addthis Washington, D.C. - The Stripper Well Consortium (SWC) - a program that has successfully provided and transferred technological advances to small, independent oil and gas operators over the past nine years - has been extended to 2015 by the U.S. Department of Energy (DOE). An industry-driven consortium initiated in 2000, SWC's goal is to keep "stripper wells" productive in an environmentally safe manner, maximizing the recovery of domestic hydrocarbon resources. The consortium is managed and administered by The Pennsylvania State University on behalf of DOE; the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL)

313

NREL: Technology Transfer - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

will work to facilitate the potential establishment of a test site for commercial wind turbines off the Delaware coast. June 10, 2010 EPRI Joins SolarTAC The Electric Power...

314

Commercialization effort in support of electroslag-casting technology  

SciTech Connect

This report summarizes the results of an effort to revive interest in the electroslag casting (ESC) of components in the United States. The ESC process is an extension of a well established electroslag-remelting (ESR) process. Both processes use the electrode of a material that is continuously melted and cast in a water-cooled copper mold. For simple shapes, the mold can be movable, allowing the continuous casting of long lengths. In an effort to revive US industries` interest in ESC, the following approaches were taken: (1) US industries with prior experience in ESC or currently operating an ESR unit were contacted, followed up with telephone conversation, and/or sent copies of prior published reports on the topic, and, in some cases, personal visits were made; (2) with two companies, a potential interest in ESC was worked out by initially conducting ESR; and (3) to further strengthen the industrial interest, the newly developed iron-aluminide alloy, FA-129, was chosen as the material of choice for this study. The two industrial companies that worked with ORNL were Special Metals Corporation (New Hartford, New York) and Precision Rolled Products, Inc. (PRP) [Florham Park, New Jersey]. Even with its advantages, a survey of the industry indicated that ESC technology has a very limited chance of advancement in the United States. However, the processing of rounds and slabs by the ESR process is a well established commercial technology and will continue to expand. 16 figs, 3 tabs, 12 refs.

Sikka, V.K.

1993-06-01T23:59:59.000Z

315

ThermalEngineeringLaboratory,VanderbiltUniversity Convection Heat Transfer of Nanofluids in Commercial  

E-Print Network (OSTI)

in Commercial Electronic Cooling Systems N.A. Roberts and D.G. Walker Department of Mechanical Engineering in real systems · Benefits of nanofluids ­ reduced sedimentation and viscosity ­ reduced damageThermalEngineeringLaboratory,VanderbiltUniversity Convection Heat Transfer of Nanofluids

Walker, D. Greg

316

Abi Barrow, PhD Founding Director of the Massachusetts Technology Transfer Center  

E-Print Network (OSTI)

Abi Barrow, PhD Founding Director of the Massachusetts Technology Transfer Center Dr. Abigail Barrow is the Founding Director of the Massachusetts Technology Transfer Center (MTTC). She and accelerates technology transfer between all universities, hospitals and research institutions

Vajda, Sandor

317

EDINBURGH TECHNOLOGY TRANSFER CENTRE LIMITED GUIDE TO INFORMATION AVAILABLE THROUGH OUR PUBLICATION SCHEME  

E-Print Network (OSTI)

EDINBURGH TECHNOLOGY TRANSFER CENTRE LIMITED GUIDE TO INFORMATION AVAILABLE THROUGH OUR PUBLICATION and what it might cost. Edinburgh Technology Transfer Centre Limited ("the company") has adopted the Model Unless otherwise stated, Edinburgh Technology Transfer Centre Limited reserves copyright in all

Edinburgh, University of

318

Transfer and commercialisation of contaminated groundwater remediation technologies  

Science Journals Connector (OSTI)

High costs and poor performance of conventional groundwater remediation technologies have brought a call for the deployment of innovative technologies capable of attaining regulatory standards while satisfying time and budget constraints. To develop an innovative technology in the laboratory and ultimately transition it to full-scale commercialisation, presents challenges at various levels. Scientific and engineering problems and regulatory and legal issues exist that must be dealt with when moving a technology from the laboratory to the field. Importantly, cost and performance data must be presented in a manner that convinces stakeholders that the technology can accomplish remediation more economically, safely and efficiently than conventional technologies. The challenges of transferring and commercialising innovative groundwater remediation technologies and strategies that may be used to help overcome these challenges are discussed. Case studies of groundwater remediation technology transfer are presented.

Mark N. Goltz; Kenneth J. Williamson

2002-01-01T23:59:59.000Z

319

2009 Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program  

Energy.gov (U.S. Department of Energy (DOE))

This report documents the results of an effort to identify and characterize commercial and emerging technologies and products that benefited from the support of the Hydrogen, Fuel Cells and Infrastructure Technologies Program.

320

Department of Energy Announces Technology Transfer Coordinator | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Transfer Coordinator Technology Transfer Coordinator Department of Energy Announces Technology Transfer Coordinator February 23, 2010 - 12:00am Addthis Washington, D.C. - U.S. Department of Enery Secretary Steven Chu announced today that Dr. Karina Edmonds will join the Department of Energy as its new Technology Transfer Coordinator. Dr. Edmonds will be responsible for working with the Department's National Laboratories to accelerate the process of moving discoveries from the laboratory to the private sector, ensuring that America's scientific leadership translates into new, high-paying jobs for America's families. Dr. Edmonds is scheduled to join the Department starting in April 2010. "I am pleased to have Karina join our team at the Department of Energy," said Secretary Chu. "Having Karina oversee a coordinated, strategic

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Notice of Inquiry: Technology Transfer Practices at Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

electronically to GC-62@hq.doe.gov Office of the Assistant General Counsel for Technology Transfer U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 Dear...

322

Heterojunction solar cells produced by porous silicon layer transfer technology  

Science Journals Connector (OSTI)

In this paper, we present the result of heterojunction solar cells based on porous silicon layer transfer technology. a-Si/c-Si structured solar cells were prepared in which the c-Si ... was investigated. The spe...

Zhihao Yue; Honglie Shen; Lei Zhang; Bin Liu; Chao Gao; Hongjie Lv

2012-09-01T23:59:59.000Z

323

Small Business Innovation Research and Small Business Technology Transfer  

Energy.gov (U.S. Department of Energy (DOE))

The DOE Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs are highly competitive opportunities that encourage U.S.-based small businesses to engage in...

324

Pennsylvania: Window Technology First of Its Kind for Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE))

The Opti Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of America's commercial building space.

325

Technology Transfer: A Review for Biomedical Researchers  

Science Journals Connector (OSTI)

...involves 2 major technologies-mass spectrometry...collection and handling, and on the available...preparation and handling, robotic sample...subject selection procedures, confounding...these methods and technologies. A list of biospecimens...this article are applied for different epidemiologic...

Robert Kneller

2001-04-01T23:59:59.000Z

326

Technology Transfer at Berkeley Lab: Success Stories  

NLE Websites -- All DOE Office Websites (Extended Search)

Start-Up Companies Based on Berkeley Lab Technology Start-Up Companies Based on Berkeley Lab Technology Since 1990, Berkeley Lab technology has formed the basis for over 30 start-ups, creating over 2,000 new jobs in these companies alone. These technologies include solar cells, genomics-related software, nanotechnology, drug development, x-ray imaging, materials sciences processing, biomolecular tagging, and energy-efficiency home improvements. The majority of these companies are located in California (see map on the right). Company Business Year* FTE** Exogen heliotrope logo Next generation technologies to monitor individual DNA damage for personalized and preventative health care 2013 N/A Heliotrope heliotrope logo New materials and manufacturing processes for electrochomic devices including energy-saving, smart windows 2013 N/A

327

Hanford Tank Initiative (HTI) & Acquire Commercial Technology for Retrieval Report & Database  

SciTech Connect

The data base is an annotated bibliography of technology evaluations and demonstrations conducted in previous years by the Hanford Tank Initiative (HTI) and the Acquire Commercial Technology for Retrieval (ACTR) programs.

SEDERBURG, J. P

2000-08-31T23:59:59.000Z

328

technology offer Research and Transfer Support | Tanja Sovic-Gasser  

E-Print Network (OSTI)

technology offer Research and Transfer Support | Tanja Sovic-Gasser Favoritenstrasse 16/E0154 | A of the deposition process their surface topography can be adjusted for repellent - "easy to clean" properties-current pulse phase are major problems in industrial applications. Technology Electroplating is done at constant

Szmolyan, Peter

329

Technology transfer: solar power and distributed rural electrification  

Science Journals Connector (OSTI)

The research objective is to assess and transfer high efficiency multi-junction photovoltaic cell technology developed at the National Renewable Energy Lab to a start-up venture. The technology integrates a rooftop satellite-dish sized reflector that tracks and concentrates solar energy onto the target cell. There are still rural communities in the world where

Stephen W. Jordan; Tugrul U. Daim

2012-01-01T23:59:59.000Z

330

Methods for Climate Change Technology Transfer Needs Assessments and  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Methods for Climate Change Technology Transfer Needs Assessments and Implementing Activities: Experiences of Developing and Transition Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Methods for Climate Change Technology Transfer Needs Assessments and Implementing Activities: Experiences of Developing and Transition Countries Focus Area: Energy Access Topics: Potentials & Scenarios Website: www.climatetech.net/pdf/Ccmethod.pdf Equivalent URI: cleanenergysolutions.org/content/methods-climate-change-technology-tra Language: English

331

by E. Lance Cole Operations Manager Petroleum Technology Transfer Council  

NLE Websites -- All DOE Office Websites (Extended Search)

World Energy Vol. 11 No. 2 2008 World Energy Vol. 11 No. 2 2008 2 by E. Lance Cole Operations Manager Petroleum Technology Transfer Council Jim Blankenship Geoscience Director American Association of Petroleum Geologists Tom Williams PTTC Board Member and Retired Vice President, Technology Services Noble Corporation Ken Oglesby Managing Partner Impact Technologies LLC E&P Technology: From Idea to Widespread Adoption in the U.S. M any factors influence the degree to which a new exploration and production (E&P) technology is accepted by industry and grows to realize its full market potential. These include the introduction of a good idea that is needed by industry, intellectual property protection, capitalization at each level of development, field testing, the business model, technology transfer and

332

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office  

NLE Websites -- All DOE Office Websites (Extended Search)

OFFICE OFFICE Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office September 2013 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Fuel Cell Technologies Office Notice This report is being disseminated by the Department of Energy. As such, this document was prepared in compliance with Section 515 of the Treasury and General Government Appropriations Act for Fiscal Year 2001(Public Law 106-554) and information quality guidelines issued by the Department of Energy. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness

333

International low carbon technology transfer: Do intellectual property regimes matter?  

Science Journals Connector (OSTI)

Abstract Transfer of low carbon technologies to developing countries has been recognized as important in global efforts to limit climate change. Yet the mechanics of international technology transfer, especially around intellectual property rights, have remained a controversial issue in international negotiations. Using a new dataset on international partnerships in China and India in three key low carbon technologiessolar photovoltaics, electric vehicles, and coal gasification/integrated gasification combined cycleand complementary expert interviews we study the dynamics of the transfer of intellectual property and the underlying drivers that guide the development of business strategies and partnerships in the context of transitioning intellectual property regimes in emerging markets. We find that weak intellectual property regimes are indeed a hindrance to the diffusion of certain classes of low carbon technologies: (i) for cutting-edge technologies, (ii) for fully-embodied (explicitly codified) technologies, and (iii) for small firms. However, we also find that intellectual property issues do not represent a barrier to the diffusion of the relatively mature and low to medium cost low carbon technologies that are materially (at scale) most important for carbon dioxide emissions reduction in the short to medium term. Competitive technology supply, shifting market dynamics, and increasingly vigorous domestic innovation coupled with mechanisms and opportunities to structure credible intellectual property deals allow for the diffusion of key low carbon technologies to occur within the context of existing business, political, and institutional structures.

Varun Rai; Kaye Schultz; Erik Funkhouser

2014-01-01T23:59:59.000Z

334

Technology Transfer: Success Stories: Honors and Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Honors and Awards Honors and Awards R & D Magazine's R&D 100 Awards are presented to the 100 most technologically significant new technologies each year. Below is a list of Berkeley Lab award winners over the past 27 years. Go here for an overview of Berkeley Lab's approach to preparing R&D 100 Awards nominations. Technology Title R&D 100 Principal Investigators High Throughput NIMS Screening 2013 Trent Northen (co-entry with Nextval Systems) Bacteriophage Power Generator 2013 Seung-Wuk Lee Conducting Polymer Binder for High Capacity Lithium Ion Batteries 2013 Gao Liu OSCARS: On-demand Secure Circuits and Reservation System 2013 Chin Guok Universal Smart Window Coating 2013 Delia Milliron, Guillermo Garcia, Raffaella Buonsanti, Anna Llordés Campanile Probe 2013 Alex Weber-Bargioni, P. James Schuck, Stefano Cabrini

335

Building Technologies Office: Renovate and Retrofit Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Renovate and Retrofit Commercial Buildings for Energy Efficiency Renovate and Retrofit Commercial Buildings for Energy Efficiency Photo of the Denver skyline with Wells Fargo Center building in the center of the image and the Rocky Mountains in the background. A local law firm upgraded one floor of their offices in the Wells Fargo Center (center) in Denver as part of Commercial Building Partnerships. Renovation, retrofit and refurbishment of existing buildings represent an opportunity to upgrade the energy performance of commercial building assets for their ongoing life. Often retrofit involves modifications to existing commercial buildings that may improve energy efficiency or decrease energy demand. In addition, retrofits are often used as opportune time to install distributed generation to a building. Energy efficiency retrofits can reduce the operational costs, particularly in older buildings, as well as help to attract tenants and gain a market edge.

336

Energy Department Announces $10 Million for Innovative Commercial Building Technologies and Unveils New Commercial Buildings 101 Video  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced a $10 million funding opportunity to help demonstrate and deploy energy efficiency technologies for commercial buildings, including projects that will bring next generation building systems and components to a broader market faster helping to save building owners and businesses money by saving energy.

337

Technology Transfer The Institute could not accomplish its goals without shar-  

E-Print Network (OSTI)

Technology Transfer The Institute could not accomplish its goals without shar- ing its expertise. Technology transfer also communicates to the world who we are--raising the profile of the Institute and its report highlights some of our technology transfer activities over the past year. Technology Transfer

Minnesota, University of

338

Technology Transfer The Research Profile of the Johannes Gutenberg University Mainz  

E-Print Network (OSTI)

Science Research Technology Transfer The Research Profile of the Johannes Gutenberg University Mainz #12;#12;Science Research Technology Transfer 3 Foreword In light of the tough international Technology Transfer 38 Imprint Contents Science Research Technology Transfer 5 #12;Clear Commitment

Kaus, Boris

339

Research Projects > Research Services > Technology Transfer Cover: Electromagnetic Collapse of Metallic Cylinders  

E-Print Network (OSTI)

Research Projects > Research Services > Technology Transfer INDUSTRY GUIDE TO TECHNION #12;Cover > Research Services > Technology Transfer Produced by Technion Research and Development Foundation (TRDF Technology Transfer 25 Technion Technology Transfer (T3 ) 30 Alfred Mann Institute at the Technion (AMIT) 31

Avron, Joseph

340

VIEWS ON U.S. WATER RESEARCH AND TECHNOLOGY TRANSFER PROGRAMS  

E-Print Network (OSTI)

#12;VIEWS ON U.S. WATER RESEARCH AND TECHNOLOGY TRANSFER PROGRAMS By MAMADOU H. WATT, Director . . . . . . . . . . 18 5. Technology Transfer and Information Dissemination . . . . 20 5.1 Definition and Purpose. . . . . . . . . . . . . . . 20 5.2 The Process of Technology Transfer. . . . . . . . . 21 5.3 Products of Technology Transfer

District of Columbia, University of the

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

International Center for Environmental Technology Transfer | Open Energy  

Open Energy Info (EERE)

Transfer Transfer Jump to: navigation, search Logo: International Center for Environmental Technology Transfer Name International Center for Environmental Technology Transfer Place Yokkaichi, Japan Year founded 1990 Coordinates 34.9651567°, 136.6244847° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9651567,"lon":136.6244847,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

342

NREL: Technology Transfer - Energy Innovation Portal  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Innovation Portal Energy Innovation Portal Get the EERE Energy Innovation Portal widget and many other great free widgets at Widgetbox! Not seeing a widget? (More info) NREL developed and manages the Energy Innovation Portal for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). The portal provides streamlined searching and browsing of patents, patent applications, and marketing summaries for clean energy technologies available for licensing from DOE laboratories and participating research institutions. Visit the EERE Energy Innovation Portal. For more information about NREL's involvement with the portal, read NREL Helps DOE Promote Cutting-Edge Technology. Contact If you have any questions about the portal, contact Matthew Ringer,

343

TRANSfer - Towards climate-friendly transport technologies and measures |  

Open Energy Info (EERE)

TRANSfer - Towards climate-friendly transport technologies and measures TRANSfer - Towards climate-friendly transport technologies and measures Jump to: navigation, search Tool Summary Name: TRANSfer - Towards climate-friendly transport technologies and measures Agency/Company /Organization: GIZ Focus Area: Governance - Planning - Decision-Making Structure Topics: Best Practices Resource Type: Reports, Journal Articles, & Tools Website: transferproject.org/index.php/hb During the 3-year project, project partners will develop the online handbook 'Navigating Transport NAMAs' with practical advice on how to develop and implement a mitigation action in the transport sector. The handbook will consist of a generic part with general information on transport NAMAs and a number of case studies which will be based on south-south networks of countries and practical implementation within the

344

Federal Laboratory Consortium Excellence in Technology Transfer Award |  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Laboratory Federal Laboratory Consortium Excellence in Technology Transfer Award About Organization Budget Field Offices Federal Advisory Committees History Scientific and Technical Information Honors & Awards Presidential Early Career Awards for Scientists and Engineers (PECASE) The Enrico Fermi Award The Ernest Orlando Lawrence Award DOE Nobel Laureates Federal Laboratory Consortium Excellence in Technology Transfer Award R&D 100 Awards Jobs Brochures, Logos, & Information Resources Contact Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Honors & Awards Federal Laboratory Consortium Excellence in Technology Transfer Award Print Text Size: A A A RSS Feeds FeedbackShare Page Estimates are that fully half the growth in the American economy in the

345

USDOE Technology Transfer, Responses to the Notice of Inquiry  

NLE Websites -- All DOE Office Websites (Extended Search)

About the National Labs About the National Labs Designated User Facilities TECH TRANSFER AGREEMENTS (CRADA) Cooperative Research and Development Agreement (PDF file | Word doc) User Agreement - Proprietary User Agreement - Non-proprietary Work for Others Agreement (PDF file | Word doc) USEFUL LINKS DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) FLC Technology Locator Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 link to Adobe PDF Reader link to Adobe Flash player Responses to the Notice of Inquiry Introduction On November 26, 2008, a Notice of Inquiry regarding Questions Concerning Technology Transfer Practices at DOE Laboratories was posted for public comment. DOE received thirty-six responses to that notice. Numerous persons

346

MHD Technology Transfer, Integration and Review Committee. Second semiannual status report, July 1988--March 1989  

SciTech Connect

As part of the MHD Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The Charter of the TTIRC, which was approved by the DOE in June 1988 and distributed to the committee members, is included as part of this Summary. As stated in the Charter, the purpose of this committee is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the US MHD Program. The DOE fiscal year 1989 MHD Program Plan Schedule is included at the end of this Summary. The MHD Technology Transfer, Integration and Review Committee`s activities to date have focused primarily on the ``technology transfer`` aspects of its charter. It has provided a forum for the dissemination of technical and programmatic information among workers in the field of MHD and to the potential end users, the utilities, by holding semi-annual meetings. The committee publishes this semi-annual report, which presents in Sections 2 through 11 capsule summaries of technical progress for all DOE Proof-of-Concept MHD contracts and major test facilities.

Not Available

1989-10-01T23:59:59.000Z

347

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic-Gasser  

E-Print Network (OSTI)

technology offer Vienna University of Technology | Research and Transfer Support | Tanja Sovic for repellent - "easy to clean" properties ­ or vice versa for fluid retention properties as well, properties applications. Technology Electroplating is done at constant current density and structure formation is done

Szmolyan, Peter

348

EA-1929: NorthStar Medical Technologies LLC, Commercial Domestic Production  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: NorthStar Medical Technologies LLC, Commercial Domestic 9: NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99 EA-1929: NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99 SUMMARY This EA evaluates the potential environmental impacts of a proposal to use federal funds to support and accelerate Northstar Medical Radioisotopes' project to develop domestic, commercial production capability for the medical isotope Molybdenum-99 without the use of highly enriched uranium. PUBLIC COMMENT OPPORTUNITIES None available this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 24, 2012 EA-1929: Finding of No Significant Impact NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99

349

EA-1929: NorthStar Medical Technologies LLC, Commercial Domestic Production  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29: NorthStar Medical Technologies LLC, Commercial Domestic 29: NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99 EA-1929: NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99 SUMMARY This EA evaluates the potential environmental impacts of a proposal to use federal funds to support and accelerate Northstar Medical Radioisotopes' project to develop domestic, commercial production capability for the medical isotope Molybdenum-99 without the use of highly enriched uranium. PUBLIC COMMENT OPPORTUNITIES None available this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 24, 2012 EA-1929: Finding of No Significant Impact NorthStar Medical Technologies LLC, Commercial Domestic Production of the Medical Isotope Molybdenum-99

350

Assessment of Energy Impact of Window Technologies for Commercial Buildings  

E-Print Network (OSTI)

Energy Usage Intensity (EUI) of commercial buildings showednatural gas. The site energy EUI listed in Table 15 to Tableis calculated as, Site Energy EUI (kBtu/ft) = Site Energy (

Hong, Tianzhen

2014-01-01T23:59:59.000Z

351

Technology transfer of small-scale energy technologies in the US Pacific Territories  

SciTech Connect

From 1977 to 1981 the Department of Energy has awarded 32 grants for small-scale energy projects in the US Pacific Territories. A critical issue with these projects has been transferring the technology within the community once the project has been completed. Certain projects are more successful at this than others. There are elements common to projects which are the most successful in this regard. In addition, there appear to be five different types of technology transfer processes. This paper identifies these processes, illustrates each with a case study, and points out the common elements. Perhaps this information can be used when designing other projects to facilitate technology transfer in developing countries.

Case, C.W.

1982-01-01T23:59:59.000Z

352

Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Page 1 of 3 10.6 Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture  

E-Print Network (OSTI)

Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Page 1 of 3 10.6 Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Policy Number & Name: 10.6 Policy on University Subsidiaries, Technology Transfer Activities and Joint Venture Approval

Yang, Eui-Hyeok

353

Sustainable development and technology transfer opportunities in the Sudan  

Science Journals Connector (OSTI)

The aim of this article is to develop a framework for identifying technology transfer opportunities in the Sudan to strengthen research and academic institutions' role in closing the productivity gap and achieving sustainable development. The paper critically examines the different problems and challenges facing technology transfer in the Sudan with particular focus on agricultural research and technology. This paper also evaluates the implementation capacity constraints, which exist in formal agricultural research, and the impact this has on the development of the agricultural sector of the Sudanese economy. Finally, a number of findings emerge, which outline the key issues relating to effectively managing the technological transformation in the Sudan as well as helping policy makers to take appropriate and immediate measures to achieve sustainable development in the Sudan.

Allam Ahmed

2005-01-01T23:59:59.000Z

354

Building Technologies Office: Qualified Software for Calculating Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Qualified Software for Calculating Commercial Building Tax Deductions Qualified Software for Calculating Commercial Building Tax Deductions On this page you'll find a list of qualified computer software for calculating commercial building energy and power cost savings that meet federal tax incentive requirements. To submit software for consideration to be added to this list, please read Requirements and Submission Process for Qualified Software. Qualified Software per IRS Notice 2006-52 as amplified by IRS Notice 2008-40, Section 4 The following software satisfies the requirements under Internal Revenue Service (IRS) Code §179D (c)(1) and (d) Regulations, Notice 2006-52 Section 6, dated June 2, 2006 as amplified by Notice 2008-40, Section 4. See the IRS requirements document for each version of software for details.

355

Office of Technology Transfer and Innovation Partnerships, Innovative Technologies Complex, Suite 2100 Mailing Address: PO Box 6000, Binghamton, New York 13902-6000  

E-Print Network (OSTI)

Office of Technology Transfer and Innovation Partnerships, Innovative Technologies Complex, Suite Hancock Assistant Director for Licensing Binghamton University Office of Technology Transfer

Suzuki, Masatsugu

356

Advances in energy-transfer technology  

SciTech Connect

This paper discusses the technology of drying and curing inks, coatings and adhesives which is changing rapidly as converters and manufacturers strive to comply with regulations governing airborne emissions as well as discharge of liquid and solid wastes. Compliance with these regulations will become more difficult in the coming decade as the Clean Air Act's increasingly stringent limitations on emissions of volatile organic compounds are implemented to support the intentions of the Montreal protocol. Many of the customary solvents are being eliminated, and the volume of production for many others will be severely reduced. For some companies, the switch to the new materials means updating or replacing antiquated hot-air drying systems with high-velocity impingement ovens with higher temperature capabilities. Probably the least-expansive alternative to replacing the entire oven is to retrofit the installation with infrared (IR) energy in the form of separate predryers or postheaters or, in some cases, to install auxiliary IR heaters between the hot-air nozzles within the oven.

Terpstra, L. (Glenro, Inc., Paterson, NJ (US))

1992-06-01T23:59:59.000Z

357

Hydrogen Storage Technologies Long-term commercialization approach  

E-Print Network (OSTI)

per unit power helps show the market space for fuel cell power plants. #12;Propane in generator Gas/diesel in generator Gas/diesel in generator BA55 series batteries AA battery Auto Develop and commercialize high-cost/low-power #12;Potential market area for fuel cells (or other power plants). Defined by peak power vs. cost per

358

Systemic problems in technology transfer in emerging markets  

Science Journals Connector (OSTI)

This study analyses a case of a Korean company that imported the manufacturing technology of diesel engines from West Germany back in the 1970s when Korea was in a state of an emerging market. The first objective of this study is to identify the systemic nature of the problems that arose in the course of the transfer of technology from an advanced country to an emerging market. The second objective of this study is to explore the technology policies that the Korean government adopted to help Korean business firms solve the systemic problems.

Suck-Chul Yoon

2009-01-01T23:59:59.000Z

359

Pathways to Technology Transfer and Adoption: Achievements and Challenges (Mini-Tutorial)  

E-Print Network (OSTI)

Pathways to Technology Transfer and Adoption: Achievements and Challenges (Mini-Tutorial) Dongmei. There are some common challenges faced when pursuing technology transfer and adoption while particular challenges transfer and adoption. This mini-tutorial presents achievements and challenges of technology transfer

Xie, Tao

360

Technology transfer by CDM projects: a comparison of Brazil, China, India and Mexico  

E-Print Network (OSTI)

Technology transfer by CDM projects: a comparison of Brazil, China, India and Mexico Antoine (Dechezleprêtre et al., 2008), we gave a general description of technology transfers by CDM projects and we important role in facilitating international technology transfers through the CDM. International transfers

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

SRC 7439-R3 Energy Edge Impact Evaluation Early Overview, Final Report. R. Diamond, J. Harris, M. Piette, O. deBuen, and B. Nordman. Lawrence Berkeley Lab. (1290). Commercial...

362

Building Technologies Office: Commercial Building Energy Asset Score  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Asset Score Energy Asset Score Photo of a laptop with energy asset score image on the screen The free online Asset Scoring Tool will generate a score based on inputs about the building envelope and buildling systems (heating, ventilation, cooling, lighting, and service hot water). Launch Energy Asset Score The U.S. Department of Energy (DOE) is developing a Commercial Building Energy Asset Score (Asset Score) program to allow building owners and managers to more accurately assess building energy performance. The Asset Score program will act as a national standard and will include the Commercial Building Energy Asset Scoring Tool (Asset Scoring Tool) to evaluate the physical characteristics and as-built energy efficiency of buildings. The Asset Scoring Tool will identify cost-effective energy efficient improvements that, if implemented, can reduce energy bills and potentially improve building asset value. View the Asset Score fact sheet for a brief overview of the program.

363

Dynamic partnership: A new approach to EM technology commercialization and deployment  

SciTech Connect

The task of restoring nuclear defense complex sites under the U.S. Department of Energy (DOE) Environmental Management (EM) Program presents an unprecedented challenge to the environmental restoration community. Effective and efficient cleanup requires the timely development or modification of novel cleanup technologies applicable to radioactive wastes. Fostering the commercialization of these innovative technologies is the mission of EM-50, the EM Program Office of Science and Technology. However, efforts are often arrested at the {open_quotes}valley of death,{close_quotes} the general term for barriers to demonstration, commercialization, and deployment. The Energy & Environmental Research Center (EERC), a not-for-profit, contract-supported organization focused on research, development, demonstration, and commercialization (RDD&C) of energy and environmental technologies, is in the second year of a cooperative agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) designed to deliver EM technologies into the commercial marketplace through a unique combination of technical support, real-world demonstration, and brokering. This paper profiles this novel approach, termed {open_quotes}Dynamic Partnership,{close_quotes} and reviews the application of this concept to the ongoing commercialization and deployment of four innovative cleanup technologies. 2 tabs.

Daly, D.J.; Erickson, T.A.; Groenewold, G.H. [and others

1996-12-31T23:59:59.000Z

364

The EMDEX Project: Technology transfer and occupational measurements  

SciTech Connect

The Electric and Magnetic Field Measurement Project for Utilities -- the EPRI EMDEX Project -- is a multifaceted project entailing technology transfer, measurement protocol design, data management, and exposure assessment analyses. The specific objectives of the project in order of priority were: to transfer the EMDEX technology to utilities; to develop measurement protocols and data management capabilities for large exposure data sets; and to collect, analyze, and document 60-Hz electric and magnetic field exposures for a diverse population. Transfer of the EPRI Electric and Magnetic Field Digital Exposure system (EMDEX) technology to the participating utilities was accomplished through training and through extensive involvement in the exposure data collection effort. Field exposure data measured by an EMDEX system were collected by volunteer utility employees at 59 sites in the US and three other countries between October 1988 and September 1989. Approximately 50,000 hours of magnetic field and 23,000 hours of electric field exposure records taken at 10-second intervals were obtained, of which 70% were from Work environments. Exposures and time spent in environments have been analyzed by Primary Work Environment, by occupied environment, and by job classification. Generally, the measured fields and exposures in the Generation, Transmission, Distribution and Substation environments were higher than in other occupational environments in utilities. The Nonwork fields and exposures for workers associated with various categories were comparable. Evaluation of the project by participants indicated general satisfaction with the EMDEX system and with this approach to technology transfer. This document, Volume 3 contains appendices with a complete set of project protocols, project materials, and extensive data tables.

Not Available

1990-11-01T23:59:59.000Z

365

Apply: Commercial Building Technology Demonstrations (DE-FOA-0001084)  

Energy.gov (U.S. Department of Energy (DOE))

Closed Deadline: May 19, 2014 DOE seeks to fund demonstration and deployment activities for technologies that are ready for market adoption but that may be underutilized due to market barriers including perception of risk, gaps in information and data on performance as well as cost.

366

The EMDEX Project: Technology transfer and occupational measurements  

SciTech Connect

The Electric and Magnetic Field Measurement Project for Utilities -- the EPRI EMDEX Project -- is a multifaceted project entailing technology transfer, measurement protocol design, data management, and exposure assessment analyses. The specific objectives of the project in order of priority were: (1) to transfer the EMDEX technology to utilities; (2) to develop measurement protocols and data management capabilities for large exposure data sets; and (3) to collect, analyze, and document 60-Hz electric and magnetic field exposures for a diverse population. Transfer of the EPRI Electric and Magnetic Field Digital Exposure system (EMDEX) technology to the participating utilities was accomplished through training and through extensive involvement in the exposure data collection effort. Documentation of the EMDEX Project is contained in three volumes: Volume 1 summarizes the methods and results, and provides and assessment of project objectives; Volume 2 provides detailed descriptions of methods, procedures, protocols, materials and analyses; and Volume 3 contains appendices with a complete set of project protocols, project materials, and extensive data tables. 8 refs., 12 figs., 2 tabs.

Bracken, T.D.

1990-11-01T23:59:59.000Z

367

Project Summary for Small Business Technology Transfer (STTR) Phase II Proposal  

E-Print Network (OSTI)

Project Summary for Small Business Technology Transfer (STTR) Phase II Proposal Title: Real-time Analysis and Feedback during Colonoscopy to improve Quality This Small Business Technology Transfer Phase

Oh, JungHwan

368

Software Tools for Technology Transfer manuscript No. (will be inserted by the editor)  

E-Print Network (OSTI)

Software Tools for Technology Transfer manuscript No. (will be inserted by the editor) Tradeoff manuscript, published in "Software Tools for Technology Transfer (STTT) 15, 3 (2013) 229-245" DOI : 10.1007/s

Paris-Sud XI, Université de

369

Made in China : A Norwegian Perspective on How Cultural Differences Affect Technology Transfer.  

E-Print Network (OSTI)

??In this thesis, an attempt to incorporate cross-cultural research to an innovation-oriented approach to technology transfer is made. As cultural aspects of international technology transfer (more)

Gulliksen, Jrgen Horn

2010-01-01T23:59:59.000Z

370

februari 2008 MassMass transfer & separation technology 424302 2008transfer & separation technology 424302 2008 --APPENDIXAPPENDIX  

E-Print Network (OSTI)

Multicomponent mixturesmixtures"" by J.A.by J.A. WesselinghWesselingh & R. Krishna,& R. Krishna, DelftDelft University Press (2000Transfer in MulticomponentMulticomponent mixturesmixtures"" by J.A.by J.A. WesselinghWesselingh & R. Krishna,& R. Krishna"" by J.A.by J.A. WesselinghWesselingh & R. Krishna,& R. Krishna, DelftDelft University Press (2000

Zevenhoven, Ron

371

July 24, 2009, Visiting Speakers Program - Public-Private Partnerships and Technology Transfer by Dr. Ralph Taylor-Smith  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tech-Transfer & the 21 Tech-Transfer & the 21 st Century Public-Private Partnership Ralph E. Taylor-Smith PhD MBA Battelle Venture Partners DOE-NAPA Forum Washington DC July 24, 2009 Commentary: Derived from Private-Sector Perspective on Tech-Commercialization * Active venture-capital (VC) industry player; various early-stage tech start-ups (federally-funded R&D) * University teaching as active adjunct Professor on Tech-Entrepreneurship & Industrial Innovation * Technology I-Banking (M&A, IPOs) on Wall-St * Prior decade-long industrial experience at Bell Labs as R&D scientist and technology manager * LLNL Industrial Advisory Board; NSF SBIR/STTR Focus on taking Federally-funded R&D to Commercial Market * DOE National Lab focus: LawrenceLivermore, OakRidge, Pacific Northwest, Brookhaven,

372

The World Wide Web and Technology Transfer at NASA Langley Research Center  

E-Print Network (OSTI)

The World Wide Web and Technology Transfer at NASA Langley Research Center Michael L. Nelson with a reorganization of LaRC to provide a more concentrated focus on technology transfer to both aerospace and non allows for the implementation, evolution and integration of many technology transfer applications

Nelson, Michael L.

373

Houston, We Have a Success Story: Technology Transfer at the NASA IV&V Facility  

E-Print Network (OSTI)

Houston, We Have a Success Story: Technology Transfer at the NASA IV&V Facility Ken McGill, Wes of and technology transfer from NASA's research program in Independent Verification and Validation (IV, Verification. Keywords Technology transfer, Independent Verification and Validation, Research. 1. INTRODUCTION

Dekhtyar, Alexander

374

X. SELECTED ADMINISTRATIVE POLICIES FOR FACULTY H. Technology Transfer (Patent) Policy  

E-Print Network (OSTI)

X. SELECTED ADMINISTRATIVE POLICIES FOR FACULTY H. Technology Transfer (Patent) Policy 1. Introduction a. Relation of Technology Transfer to the Mission of the College A significant aspect available for public use and benefit. This "technology transfer" is accomplished in many ways, including

Kasman, Alex

375

Software Tools for Technology Transfer manuscript No. (will be inserted by the editor)  

E-Print Network (OSTI)

Software Tools for Technology Transfer manuscript No. (will be inserted by the editor) Editorial W This marks the inaugural issue of the Springer­Verlag journal Software Tools for Technology Transfer (STTT. This aim goes hand in hand with the technology transfer support offered by the related Electronic Tool

Cleaveland, Rance

376

Trinity Technology Transfer News In recent months Creme has been working with their customers  

E-Print Network (OSTI)

Trinity Technology Transfer News April 2013 In recent months Creme has been working. Margaret Woods | Technology Transfer Manager mjwoods@tcd.ie Ms. Audrey Crosbie | Industry Liaison Manager Enterprise Ireland technology Transfer grant, 2007-2012 Creme Global, is a TCD campus company spun out

O'Mahony, Donal E.

377

Trinity Technology Transfer News TTCCDD CCaammppuuss CCoommppaannyy ttoo llaauunncchh nneeww pprroodduucctt  

E-Print Network (OSTI)

Trinity Technology Transfer News TTCCDD CCaammppuuss CCoommppaannyy ttoo llaauunncchh nneeww programmes". One of the functions of the Technology Transfer Office is to promote and foster a culture communities. All members of the TTO deliver seminars, workshops, and course modules on IP, technology transfer

O'Mahony, Donal E.

378

PATENTING AND LICENSING The major thrust of the Technology Transfer Office's activity is directed towards  

E-Print Network (OSTI)

PATENTING AND LICENSING The major thrust of the Technology Transfer Office's activity that he or she may have created an invention, to promptly report it to the Technology Transfer Office. 2. Patentability Determination After the invention is reported to the Technology Transfer Office

379

Specificationbased Testing of Reactive Software: A Case Study in Technology Transfer  

E-Print Network (OSTI)

Specification­based Testing of Reactive Software: A Case Study in Technology Transfer Lalita be effective in practice. The case study illustrates that technology transfer efforts can benefit from that limit formal methods technology transfer. We also found that there is often a tension between the scope

Porter, Adam

380

CONNET -DESIGN ISSUES1 Issues in Designing a European Technology Transfer Network for the  

E-Print Network (OSTI)

CONNET - DESIGN ISSUES1 Issues in Designing a European Technology Transfer Network of European Union's Technology Transfer Network such a one-stop-shop for the construction industry of Europe and techniques that enable technology transfer to SMEs as well as provide new business opportunities and models

Amor, Robert

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A GRADUATE'S ROLE IN TECHNOLOGY TRANSFER: FROM REQUIREMENTS TO DESIGN WITH UML  

E-Print Network (OSTI)

A GRADUATE'S ROLE IN TECHNOLOGY TRANSFER: FROM REQUIREMENTS TO DESIGN WITH UML Stephen Hallinan in the discipline of software engineering and is often categorised under the umbrella of technology transfer analyse the role of a recently qualified stu- dent1 in facilitating technology transfer in the form

Gibson, J. Paul

382

Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report  

SciTech Connect

Appendices are presented from a study performed on a concept model system for the commercialization of Los Alamos National Laboratory technologies via small businesses. Topics include a summary of information from the joint MCC/Los Alamos technology conference; a comparison of New Mexico infrastructure to other areas; a typical licensing agreement; technology screening guides; summaries of specific DOE/UC/Los Alamos documents; a bibliography; the Oak Ridge National Laboratory TCRD; The Ames Center for Advanced Technology Development; Los Alamos licensing procedures; presentation of slides from monthly MCC/Los Alamos review meetings; generalized entrepreneurship model; and a discussion on receiving equity for technology.

Brice, R.; Carton, D.; Rhyne, T. [and others] [and others

1997-06-01T23:59:59.000Z

383

FY05 Targeted Technology Transfer to US Independents  

SciTech Connect

Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. PTTC's technology-transfer programs enhance U.S. national security. PTTC administers the only nation-wide, comprehensive program dedicated to maximizing America's supplies of domestic oil and gas. PTTC conducts grassroots programs through 10 Regional Lead Organizations (RLOs) and two satellite offices, leveraging their preexisting connections with industry. This organizational structure helps bring researchers and academia to the table. Nationally and regionally, volunteers within a National Board and Regional Producer Advisory Groups guide efforts. The National Board meets three times per year, an important function being approving the annual plans and budgets developed by the regions and Headquarters (HQ). Between Board meetings, an active Management and Budget Committee guide HQ activity. PTTC itself undergoes a thorough financial audit each year. The PTTC's HQ staff plans and manages all aspects of the PTTC program, conducts nation-wide technology-transfer activities, and implements a comprehensive communications program. Networking, involvement in technical activities, and an active exhibit schedule are increasing PTTC's sphere of influence with both producers and the oilfield service sector. Circulation for ''PTTC Network News'', the quarterly newsletter, has risen to nearly 17,500. About 7,500 people receive an email Technology Alert on an approximate three-week frequency. Case studies in the ''Petroleum Technology Digest in World Oil'' appear monthly, as do ''Tech Connections'' columns in ''The American Oil and Gas Reporter''. As part of its oversight responsibility for the regions, the PTTC from the start has captured and reported data that document the myriad ways its programs impact industry. Of 119 workshops in FY05 where repeat attendance was reported, 59 percent of attendees on average had attended a PTTC event previously, indicating that a majority felt they were receiving enough value to come back. It also is encouraging that, after 11 years, PTTC events continue to attract new people. The form used at workshops to get participants feedback asks for a ''yes'' or ''no'' response to the question: ''Have you used any new technologies based on knowledge gained through PTTC?'' With data now available from 611 workshops, 41 percent of respondents said, ''yes'', confirming that people are applying the information they receive at PTTC workshops. PTTC in FY04 asked RLO directors, oilfield service companies and producers in 11 areas with significant technological barriers to adding new reserves to estimate the ''PTTC Impact Factor''--that is, the percentage of the total reserves added in their areas that logically could be attributed to PTTC's efforts. Of the estimated 1,266 million barrels of oil equivalent (BOE) added in the 11 areas, participants estimated that roughly 88 million BOE had been added as a result of PTTC's techtransfer efforts. PTTC's 10 regions are the primary delivery mechanism for technology transfer. Attendance at PTTC regional activities set a record in FY05, with 8,900 individuals attending 154 workshops, lunch-and-learn events, or student training and internships. When appropriate, regional workshops incorporate R&D findings from DOE-funded projects. This year HQ began a ''Microhole Technology Integration'' Initiative with DOE to more clearly present their microhole program to producers. Often events are held cooperatively with other national organizations, regional producer associations and professional society groups. This practice leverages outreach and engenders future cooperation. Of the more than 61,000 individuals PTTC has attracted to its events since its inception, more than 15,000 have attended in the past two years. Eight-eight percent of PTTC event attendees during FY05 were from industry. The numb

Donald F. Duttlinger; E. Lance Cole

2005-11-01T23:59:59.000Z

384

Technology Transfer: Success Stories: Industry-Lab Research Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry-Lab Collaboration Industry-Lab Collaboration Below are some of Berkeley Lab's collaborative research projects performed with industry. Companies Technologies Applied Materials, Inc. Particle -Free Wafer Processing Boeing, StatOil Hydro Techno Economic Model for Commercial Cellulosic Biorefineries Capintec, Inc. Compact Scintillation Camera for Medical Imaging Catalytica, Inc. Optimized Catalysts For The Cracking of Heavier Petroleum Feedstocks Chiron Corporation High Throughput Assay for Screening Novel Anti-Cancer Compounds CVC-Commonwealth Scientific Corp. Advanced Hard Carbon Plasma Deposition System with Application to the Magnetic Storage Industry E.I. du Pont de Nemours & Company Catalytic Conversion of Chloro-Fluorocarbons over Palladium-Carbon Catalysts Empire Magnetics, Inc.

385

Technology data characterizing water heating in commercial buildings: Application to end-use forecasting  

SciTech Connect

Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

Sezgen, O.; Koomey, J.G.

1995-12-01T23:59:59.000Z

386

Technologies | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

You may also want to refer to our list of helpful resources for the technology transfer process. For additional information, contact the Office of Technology Commercialization...

387

Sandia National Laboratories: Fuel Cell Technologies Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office Federal Laboratory Consortium Regional Technology-Transfer Awards Salute Innovation, Commercialization at Sandia On September 23, 2014, in...

388

Federal and Non-federal Funding Sources | BNL Technology Commercialization  

NLE Websites -- All DOE Office Websites (Extended Search)

Sponsored Research Sponsored Research Federal Resources Non-federal Resources Federal Agencies and Resources Below are links to a range of federal agencies and resources, including direct links to specific information for seeking research grant support. Please note that the inclusion of a particular agency or program office does not mean that national laboratories are in all cases eligible to receive funding from that entity. If you have questions regarding BNL's eligibility for a particular program, please contact Alison Schwartz, (631) 344-3428. Federal Agencies Department of Agriculture (USDA) Department of Commerce (DOC) National Institute of Standards and Technology National Oceanic and Atmospheric Administration Department of Defense (DOD) Department of Education (ED) Department of Energy (DOE)

389

First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project...  

Office of Science (SC) Website

First Commercial, Grid-Connected, Hydrokinetic Tidal Energy Project in North America Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR...

390

Commercial Demonstration of Wood Recovery, Recycling, and Value Adding Technologies  

SciTech Connect

This commercial demonstration project demonstrated the technical feasibility of converting low-value, underutilized and waste stream solid wood fiber material into higher valued products. With a growing need to increase product/production yield and reduce waste in most sawmills, few recovery operations and practically no data existed to support the viability of recovery operations. Prior to our efforts, most all in the forest products industry believed that recovery was difficult, extremely labor intensive, not cost effective, and that recovered products had low value and were difficult to sell. This project provided an opportunity for many within the industry to see through demonstration that converting waste stream material into higher valued products does in fact offer a solution. Our work, supported by the U.S. Department of Energy, throughout the project aimed to demonstrate a reasonable approach to reducing the millions of recoverable solid wood fiber tons that are annually treated as and converted into low value chips, mulch and fuel. Consequently sawmills continue to suffer from reduced availability of forest resources, higher raw material costs, growing waste disposal problems, increased global competition, and more pressure to operate in an Environmentally Friendly manner. It is our belief (based upon the experience of this project) that the successful mainstreaming of the recovery concept would assist in alleviating this burden as well as provide for a realistically achievable economic benefit to those who would seriously pursue the concept and tap into the rapidly growing ''GREEN'' building marketplace. Ultimately, with participation and aggressive pursuit of the recovery concept, the public would benefit in that: (1) Landfill/disposal waste volume could be reduced adding greater life to existing municipal landfill sites thereby minimizing the need to prematurely license and open added facilities. Also, there would be a cost avoidance benefit associated to what would have been the added municipal (community) management costs involved with maintaining closed landfills. (2) With greater quantities of recovered material being returned to and integrated into manufacturing and the marketplace, reduced demand upon virgin wood sources could help lead the way to promoting improved relations and environmental balance between producers and consumers further expanding the value of our natural resource without adding environmental burden.

Auburn Machinery, Inc.

2004-07-15T23:59:59.000Z

391

Security technologies and protocols for Asynchronous Transfer Mode networks  

SciTech Connect

Asynchronous Transfer Mode (ATM) is a new data communications technology that promises to integrate voice, video, and data traffic into a common network infrastructure. In order to fully utilize ATM`s ability to transfer real-time data at high rates, applications will start to access the ATM layer directly. As a result of this trend, security mechanisms at the ATM layer will be required. A number of research programs are currently in progress which seek to better understand the unique issues associated with ATM security. This paper describes some of these issues, and the approaches taken by various organizations in the design of ATM layer security mechanisms. Efforts within the ATM Forum to address the user communities need for ATM security are also described.

Tarman, T.D.

1996-06-01T23:59:59.000Z

392

Hydrogen Storage Technologies: Long-Term Commercialization Approach with First Products First  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Long-term commercialization approach with first products first Hydrogen and Fuel Cell Technologies Manufacturing R&D Workshop Washington, DC Glenn Rambach August 11, 2011 Potential market area for fuel cells (or other power plants). Defined by peak power vs. cost per unit power capacity (W vs. $/kW) for typical applications currently satisfied by legacy technologies. Auto Transit bus 2-cycle scooter Portable generator Wheelchair Fork lift Telecom backup Strategic portable Educational device Retail A Less difficult Less difficult (smaller units) (cost tolerant market) Auto Transit bus 2-cycle scooter Portable generator Wheelchair Fork lift Telecom backup Strategic portable Educational device Retail A Range of application size and specific cost that all can be commercially satisfied

393

Technology Transfer Office (TTO) Promote and facilitate the transfer of UC San Diego innovations for the benefit of the University community and the public.  

E-Print Network (OSTI)

Technology Transfer Office (TTO) MISSION Promote and facilitate the transfer of UC San Diego San Diego established its Technology Transfer Office (TTO) to promote and facilitate this process TECHNOLOGY TRANSFER RESULTS FY2000 ­ FY2007 Fiscal Year 2000 2001 2002 2003 2004 2005 2006 2007 Licenses 47

Fainman, Yeshaiahu

394

Secretarial Policy Statement on Technology Transfer at Department of Energy Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretarial Policy Statement on Secretarial Policy Statement on Technology Transfer at Department of Energy Facilities Introduction This Policy Statement is designed to help guide and strengthen the Department of Energy's technology transfer efforts and to heighten awareness of the importance of technology transfer activities throughout DOE. For purposes of this document, the term "technology transfer" refers to the process by which knowledge, intellectual property or capabilities developed at the Department of Energy's National Laboratories, single- purpose research facilities, and other facilities ("Facilities") are transferred to any other entity, including private industry, academia, state and local governments, or other government entities to meet public and private needs. The Policy Statement follows upon

395

NREL: Technology Transfer - Cooperative Research and Development Agreements  

NLE Websites -- All DOE Office Websites (Extended Search)

Cooperative Research and Development Agreements Cooperative Research and Development Agreements NREL uses a cooperative research and development agreement (CRADA) when a partner and the lab intend to collaborate on a project. It protects a company's and NREL's existing intellectual property, and allows the company to negotiate for an exclusive field-of-use license to subject inventions that arise during the CRADA's execution. The agreement type used depends on the business, and the specific partnership selected is determined on a case-by-case basis. Types CRADA types include: Shared-Resources A joint research project between NREL and a partner to develop, advance, or commercialize an NREL-developed technology without funds changing hands. It must fit within the scope of a project at NREL that's funded by the U.S.

396

Grid-Competitive Residential and Commercial Fully Automated PV Systems Technology: Final technical Report, August 2011  

SciTech Connect

Under DOE's Technology Pathway Partnership program, SunPower Corporation developed turn-key, high-efficiency residential and commercial systems that are cost effective. Key program objectives include a reduction in LCOE values to 9-12 cents/kWh and 13-18 cents/kWh respectively for the commercial and residential markets. Target LCOE values for the commercial ground, commercial roof, and residential markets are 10, 11, and 13 cents/kWh. For this effort, SunPower collaborated with a variety of suppliers and partners to complete the tasks below. Subcontractors included: Solaicx, SiGen, Ribbon Technology, Dow Corning, Xantrex, Tigo Energy, and Solar Bridge. SunPower's TPP addressed nearly the complete PV value chain: from ingot growth through system deployment. Throughout the award period of performance, SunPower has made progress toward achieving these reduced costs through the development of 20%+ efficient modules, increased cell efficiency through the understanding of loss mechanisms and improved manufacturing technologies, novel module development, automated design tools and techniques, and reduced system development and installation time. Based on an LCOE assessment using NREL's Solar Advisor Model, SunPower achieved the 2010 target range, as well as progress toward 2015 targets.

Brown, Katie E.; Cousins, Peter; Culligan, Matt; Jonathan Botkin; DeGraaff, David; Bunea, Gabriella; Rose, Douglas; Bourne, Ben; Koehler, Oliver

2011-08-26T23:59:59.000Z

397

Scale-up and Technology Transfer of Protein-based Plastic Products  

SciTech Connect

Over the last number of years researchers at ISU have been developing protein based plastics from soybeans, funded by Soy Works Corporation. These materials have been characterized and the processing of these materials into prototype products has been demonstrated. A wide range of net-shape forming processes, including but not limited to extrusion, injection molding and compression molding have been studied. Issues, including technology transfer, re-formulation and product consistency, have been addressed partially during this contract. Also, commercial-scale processing parameters for protein based plastic products were designed, but not yet applicable in the industry. Support in the trouble shooting processing and the manufacturing of protein based plastic products was provided by Iowa State University during the one year contract.

Grewell, David

2008-12-08T23:59:59.000Z

398

PhD student in Energy Technology, specifically in Commercial refrigeration systems with CO2 as refrigerant  

E-Print Network (OSTI)

the use of carbon dioxide as refrigerant in supermarket refrigeration systems. The work includes fieldPhD student in Energy Technology, specifically in Commercial refrigeration systems with CO2 a PhD student in Energy Technology, specifically Commercial refrigeration systems with CO2

Kazachkov, Ivan

399

USDOE Technology Transfer, Working with DOE Labs - Arrangements  

NLE Websites -- All DOE Office Websites (Extended Search)

Arrangements Arrangements To see the content of this image, Get Adobe Flash player . Mouse over map to see Laboratory locations and websites. See larger map of DOE National Laboratories. During 2008 alone, our 17 National Laboratories and 5 facilities engaged in more than 12,000 technology transfer transactions. These included more than 700 CRADAs, 2500 WFO Agreements, more than 2800 user facility agreements, and more than 6,000 licenses. They also reported more than 1400 inventions, filing more than 900 patent applications. They were issued nearly 400 patents and logged more than 561,050 downloads of their copyrighted open-source software. Collaborative Research Cooperative Research and Development (CRADA) arrangements allow for collaborative work and either cost-sharing or funds to be provided by the

400

Technology transfer package on seismic base isolation - Volume II  

SciTech Connect

This Technology Transfer Package provides some detailed information for the U.S. Department of Energy (DOE) and its contractors about seismic base isolation. Intended users of this three-volume package are DOE Design and Safety Engineers as well as DOE Facility Managers who are responsible for reducing the effects of natural phenomena hazards (NPH), specifically earthquakes, on their facilities. The package was developed as part of DOE's efforts to study and implement techniques for protecting lives and property from the effects of natural phenomena and to support the International Decade for Natural Disaster Reduction. Volume II contains the proceedings for the Short Course on Seismic Base Isolation held in Berkeley, California, August 10-14, 1992.

NONE

1995-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration  

SciTech Connect

Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

Bai, Xuemei [Cellana LLC; Sabarsky, Martin

2013-09-30T23:59:59.000Z

402

Technology transfer and U.S. national security policy| The Joint Strike Fighter.  

E-Print Network (OSTI)

?? This is a dissertation about United States international technology transfer policy relating to the Department of Defense (DOD) F-35 Joint Strike Fighter (JSF) weapons (more)

Krueger, Richard D.

2010-01-01T23:59:59.000Z

403

An extended model for measuring the technology transfer potentials at the industrial level.  

E-Print Network (OSTI)

??Technology contributes to the development of society and economy of the nation through the invention, diffusion, transfer, and application of new knowledge. In the emerging (more)

Pachamuthu, Sathayanarayanan

2011-01-01T23:59:59.000Z

404

Can sustainable development be facilitated through regime-based preventative technology transfer?.  

E-Print Network (OSTI)

??This International Relations study examines the relationship between sustainable development and preventative technology transfer. Specifically, the focus is on whether preventative environmental regimes (facilitating organisations) (more)

Valentin, Jorg D.

2010-01-01T23:59:59.000Z

405

Determination of technology transfer requirements for enhanced oil recovery. Final report  

SciTech Connect

A detailed field study was conducted to determine the technical information needs of current and potential users of enhanced oil recovery data. Under the direction of the Bartlesville Energy Technology Center (BETC), the study (1) identifies groups which have a need for EOR-related information, (2) delineate the specific information needs of each user-group, and (3) outlines methods for improved transfer of appropriate information to the end users. This study also assesses attitudes toward the EOR-related efforts of the US Department of Energy (DOE) and the BETC, and the role each should play in facilitating the commercialization of EOR processes. More than 300 users and potential users of EOR information were surveyed. Included in the survey sample were representatives of major oil companies, independent oil companies, engineering consulting firms, university and private research organizations, financial institutions and federal, state, and local policy-making bodies. In-depth questionnaires were specifically designed for each group. This study analyzes each group's position pertaining to (1) current level of EOR activity or interest, (2) current and projected EOR information needs, (3) assessments of the BETC's current information services and suggestions for improvement, (4) delineation of technical and economic constraints to increased EOR activity, and (5) steps the DOE might take to enhance the attractiveness of commercial EOR operations.

Wilson, T.D.; Scott, J.P.

1980-09-01T23:59:59.000Z

406

COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS  

SciTech Connect

As an outgrowth of the Technology Reinvestment Program of the 1990s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment, tooling, methods and skilled personnel. The final magnet system measured 14 feet in diameter, 10 feet in height, and weighed about 35 tons. The superconducting magnet and design technology was successfully implemented and demonstrated. The project was not successfully concluded however; as the critical planned final demonstration was not achieved. The utilities could not understand or clarify their future business needs and the regulatory requirements, because of the deregulation policies and practices of the country. Much uncertainty existed which prevented utilities from defining business plans, including asset allocation and cost recovery. Despite the technical successes and achievements, the commercial development could not be implemented and achieved. Thus, the demonstration of this enhancement to the utilitys transmission system and to the reliability of the nations electrical grid was not achieved. The factory was ultimately discontinued and the technology, equipment and product were placed in storage.

CHARLES M. WEBER

2008-06-24T23:59:59.000Z

407

An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies  

SciTech Connect

This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

Spencer, D.F. [SIMTECHE, Half Moon Bay, CA (United States)

1997-12-31T23:59:59.000Z

408

Developing knowledge transfer-oriented ethical cultures in US government agencies regulating the commercial use of nuclear power  

Science Journals Connector (OSTI)

Knowledge management is the practice of capturing critical information and making the right information available to the right people at the right time. Such practices are critical for US government agencies that must make ethical and safety-oriented decisions in regulating commercial operations and waste disposal in the nuclear power industry. The development of knowledge management and knowledge transfer practices related to ethical decision making is critical in preventing the loss of skills, experience, routines and capabilities when employees with expertise on the ethical issues of nuclear power regulation leave their respective organisations. This article uses applied research to explore the required measures for developing knowledge transfer-oriented ethical cultures in government organisations. The goal of this research is to develop solutions that can influence the international world of practice in the areas of knowledge transfer and ethical leadership development.

Darrell Norman Burrell; Emad Rahim; Krista Juris; Zara Sette

2010-01-01T23:59:59.000Z

409

TECHNOLOGY DATA CHARACTERIZING LIGHTING IN COMMERCIAL BUILDINGS: APPLICATION TO END-USE FORECASTING WITH COMMEND 4.0  

E-Print Network (OSTI)

LBL-34243 UC - 1600 TECHNOLOGY DATA CHARACTERIZING LIGHTING IN COMMERCIAL BUILDINGS: APPLICATION Technologies, and the Office of Environmental Analysis, Office of Policy, Planning, and Analysis of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. #12;Technology Data Characterizing Lighting

410

Vehicle Technologies Office 2013 Merit Review: A System for Automatically Maintaining Pressure in a Commercial Truck Tire  

Energy.gov (U.S. Department of Energy (DOE))

A presentation given by PPG during the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting on a system for automatically maintaining tire pressure in commercial truck tires.

411

Vehicle Technologies Office Merit Review 2014: Development and Commercialization of a Novel Low-Cost Carbon Fiber  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Zoltek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development and commercialization of a...

412

Preparation for commercial demonstration of biomass-to-ethanol conversion technology. Final report  

SciTech Connect

The objective of this program was to complete the development of a commercially viable process to produce fuel ethanol from renewable cellulosic biomass. The program focused on pretreatment, enzymatic hydrolysis, and fermentation technologies where Amoco has a unique proprietary position. Assured access to low-cost feedstock is a cornerstone of attractive economics for cellulose to ethanol conversion in the 1990s. Most of Amoco`s efforts in converting cellulosic feedstocks to ethanol before 1994 focused on using paper from municipal solid waste as the feed. However, while many municipalities and MSW haulers expressed interest in Amoco`s technology, none were willing to commit funding to process development. In May, 1994 several large agricultural products companies showed interest in Amoco`s technology, particularly for application to corn fiber. Amoco`s initial work with corn fiber was encouraging. The project work plan was designed to provide sufficient data on corn fiber conversion to convince a major agriculture products company to participate in the construction of a commercial demonstration facility.

NONE

1997-07-01T23:59:59.000Z

413

Summary tables of six commercially available entry control and contraband detection technologies.  

SciTech Connect

Existing contraband detection and entry control devices such as metal detectors, X-ray machines, and radiation monitors were investigated for their capability to operate in an automated environment. In addition, a limited number of new devices for detection of explosives, chemicals, and biological agents were investigated for their feasibility for inclusion in future physical security systems. The tables in this document resulted from this investigation, which was part of a conceptual design upgrade for the United States Mints. This summary of commercially available technologies was written to provide a reference for physical security upgrades at other sites.

Hunter, John Anthony

2005-07-01T23:59:59.000Z

414

Hydrogen as transport fuel in Iceland. The political, technological and commercial story of ECTOS  

Science Journals Connector (OSTI)

Through the political, the technological and the commercial story of the early phases of the ECTOS project and its background, the implementation of hydrogen as transport fuel in Iceland is analysed. The presence of large amounts of geothermal energy is the resource basis for the governmental plans for converting Iceland into a hydrogen economy. Strong political commitment has established the framework for this transition. The goal of replacing the import of fossil fuels by 2030??2040 has provided motivation and support for hydrogen R&D projects. The early public scepticism turned into general support when large multinational companies entered the scene.

Otto Andersen

2007-01-01T23:59:59.000Z

415

Feasibility Study For Use Of Commercial Cask Vendor Dry Transfer Systems To Unload Used Fuel Assemblies In L-Area  

SciTech Connect

The purpose of this study is to determine whether a commercial dry transfer system (DTS) could be used for loading or unloading used nuclear fuel (UNF) in L-Basin and to determine if a DTS pool adapter could be made for L-Basin Transfer Pit #2 that could accommodate a variety of DTS casks and fuel baskets or canisters up to 24 diameter.[1, 2] This study outlines the technical feasibility of accommodating different vendor dry transfer systems in the L-Basin Transfer Bay with a general work scope. It identifies equipment needing development, facility modifications, and describes the needed analyses and calculations. After reviewing the L-Basin Transfer Bay area layout and information on the only DTS system currently in use for the Nuclear Assurance Corporation Legal Weight Truck cask (NAC LWT), the authors conclude that use of a dry transfer cask is feasible. AREVA was contacted and acknowledged that they currently do not have a design for a dry transfer cask for their new Transnuclear Long Cask (TN-LC) cask. Nonetheless, this study accounted for a potential future DTS from AREVA to handle fuel baskets up to 18 in diameter. Due to the layout of the Transfer Bay, it was determined that a DTS cask pool adapter designed specifically for spanning Pit #2 and placed just north of the 70 Ton Cask lid lifting superstructure would be needed. The proposed pool adapter could be used to transition a fuel basket up to 24 in diameter and ~11 feet long from a dry transfer cask to the basin. The 18 and 24 applications of the pool adapter are pending vendor development of dry transfer casks that accommodate these diameters. Once a fuel basket has been lowered into Pit #2 through a pool adapter, a basket cart could be used to move the basket out from under the pool adapter for access by the 5 Ton Crane. The cost to install a dry transfer cask handling system in L-Area capable of handling multiple vendor provided transport and dry transfer casks and baskets with different diameters and lengths would likely be on the same order of magnitude as the Basin Modifications project. The cost of a DTS capability is affected by the number of design variations of different vendor transport and dry transfer casks to be considered for design input. Some costs would be incurred for each vendor DTS to be handled. For example, separate analyses would be needed for each dry transfer cask type such as criticality, shielding, dropping a dry transfer cask and basket, handling and auxiliary equipment, procedures, operator training, readiness assessments, and operational readiness reviews. A DTS handling capability in L-Area could serve as a backup to the Shielded Transfer System (STS) for unloading long casks and could support potential future missions such as the Idaho National Laboratory (INL) Exchange or transferring UNF from wet to dry storage.

Krementz, Dan; Rose, David; Dunsmuir, Mike

2014-02-06T23:59:59.000Z

416

Int. J. Technology Transfer and Commercialisation, Vol. 8, No. 1, 2009 51 Copyright 2009 Inderscience Enterprises Ltd.  

E-Print Network (OSTI)

Int. J. Technology Transfer and Commercialisation, Vol. 8, No. 1, 2009 51 Copyright © 2009. Technology Transfer and Commercialisation, Vol. 8, No. 1, pp.51­87. Biographical notes: Kevin W. Boyack spent

417

UNLOCKING THE TREASURE CHEST OF LEVEL-II RADAR DATA: LESSONS IN TECHNOLOGY TRANSFER POLICY FOR THE ATMOSPHERIC SCIENCES  

E-Print Network (OSTI)

P 1.6 UNLOCKING THE TREASURE CHEST OF LEVEL-II RADAR DATA: LESSONS IN TECHNOLOGY TRANSFER POLICY This analysis of Level-II radar data presents a great success story about partnerships in technology transfer

418

A study on international technology transfer critical factors in Hong Kong/Pearl River Delta manufacturing industries.  

E-Print Network (OSTI)

???International Technology Transfer (ITT) has been increasingly an important issue in technology diffusion, and has accumulated a vast body of research over past years. ITT (more)

Dong, Qiuling (???)

2008-01-01T23:59:59.000Z

419

Final technical report: Commercialization of the Biofine technology for levulinic acid production from paper sludge  

SciTech Connect

This project involved a three-year program managed by BioMetics, Inc. (Waltham, MA) to demonstrate the commercial feasibility of Biofine thermochemical process technology for conversion of cellulose-containing wastes or renewable materials into levulinic acid, a versatile platform chemical. The program, commencing in October 1995, involved the design, procurement, construction and operation of a plant utilizing the Biofine process to convert 1 dry ton per day of paper sludge waste. The plant was successfully designed, constructed, and commissioned in 1997. It was operated for a period of one year on paper sludge from a variety of source paper mills to collect data to verify the design for a commercial scale plant. Operational results were obtained for four different feedstock varieties. Stable, continuous operation was achieved for two of the feedstocks. Continuous operation of the plant at demonstration scale provided the opportunity for process optimization, development of operational protocols, operator training and identification of suitable materials of construction for scale up to commercial operation . Separated fiber from municipal waster was also successfully processed. The project team consisted of BioMetics Inc., Great Lakes Chemical Corporation (West Lafayette, IN), and New York State Energy Research and Development Authority (Albany, NY).

Fitzpatrick, Stephen W.

2002-04-23T23:59:59.000Z

420

Development of a new technology product evaluation model for assessing commercialization opportunities using Delphi method and fuzzy AHP approach  

Science Journals Connector (OSTI)

Abstract As the number of new products developed by new technologies has increased, the importance of the commercialization of new technology products has become crucial to manufactures in the successful delivery of valuable new products and services. This study classified success factors for commercialization of new products and analyzed which factors should be primarily considered. Based on the literature review and Delphi method, we identified four decision areas and further prioritized the sixteen factors under a hierarchy model structured by fuzzy AHP (analytic hierarchy process) approach. The FAHP is conducted by 111 R&D and business experts working at the worlds major players in machinery industry; using the priorities of success factors derived by FAHP, we devise an example of commercialization assessment model. The paper drives the assessment initiatives of the new product development in manufactures and provides them with practical implications about the commercialization of new technology product.

Jaemin Cho; Jaeho Lee

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Thin Film CIGS and CdTe Photovoltaic Technologies: Commercialization, Critical Issues, and Applications; Preprint  

SciTech Connect

We report here on the major commercialization aspects of thin-film photovoltaic (PV) technologies based on CIGS and CdTe (a-Si and thin-Si are also reported for completeness on the status of thin-film PV). Worldwide silicon (Si) based PV technologies continues to dominate at more than 94% of the market share, with the share of thin-film PV at less than 6%. However, the market share for thin-film PV in the United States continues to grow rapidly over the past several years and in CY 2006, they had a substantial contribution of about 44%, compared to less than 10% in CY 2003. In CY 2007, thin-film PV market share is expected to surpass that of Si technology in the United States. Worldwide estimated projections for CY 2010 are that thin-film PV production capacity will be more than 3700 MW. A 40-MW thin-film CdTe solar field is currently being installed in Saxony, Germany, and will be completed in early CY 2009. The total project cost is Euro 130 million, which equates to an installed PV system price of Euro 3.25/-watt averaged over the entire solar project. This is the lowest price for any installed PV system in the world today. Critical research, development, and technology issues for thin-film CIGS and CdTe are also elucidated in this paper.

Ullal, H. S.; von Roedern, B.

2007-09-01T23:59:59.000Z

422

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Wireless Compact Radar  

E-Print Network (OSTI)

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Wireless 1: Ramp signals obtained from Target #12;Kevin P. Boggs || Office of Technology Transfer || 901.242 m. #12;Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs

Dasgupta, Dipankar

423

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu AutoWitness  

E-Print Network (OSTI)

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Auto and lifelong traumatic experience for its victims. #12;Kevin P. Boggs || Office of Technology Transfer || 901://www.popsci.com/science/article/2010-10/brilliant-10-santosh-kumar-sensor-guru #12;Kevin P. Boggs || Office of Technology Transfer

Dasgupta, Dipankar

424

9Tomorrow's Technology Transfer Volume 1, Number 1 WiNter 2009 small U.S. businesses would have certainty  

E-Print Network (OSTI)

9Tomorrow's Technology Transfer Volume 1, Number 1 WiNter 2009 small U.S. businesses would have of technology transfer. Interest expanded until, in 2006, AUTM's Licensing SurveyTM identified tech- nology "Communicating the Full Value of Aca- demic Technology Transfer: Some Lessons Learned," originally published

McQuade, D. Tyler

425

Questions concerning Technology Transfer Practices at DOE Labs.txt - Notepad  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

concerning Technology Transfer Practices at DOE Labs.txt concerning Technology Transfer Practices at DOE Labs.txt From: Gary S. Selwyn [gary.selwyn@apjet.com] Sent: Tuesday, February 10, 2009 7:00 PM To: GC-62 Subject: Questions concerning Technology Transfer Practices at DOE Labs In response to the request for written comments, as listed in the Federal Register, Vol 73, No. 229, APJeT, Inc. offers the comments below. APJET is an early-stage, technology company that has licensed technology developed at Los Alamos National Laboratory. APJET has been a licensee for 7 years, has 10 employees in NM and NC, is the largest spin-off from LANL in its history, and the author of these responses is the founder of APJET and a former technical staff member from LANL. Question #3: US Competitiveness It is highly restrictive to require that the recipient of new technology from the

426

International technology transfer and its impact on innovation enhancement for firms based in Sri Lanka  

Science Journals Connector (OSTI)

This paper presents research findings from industrial firms based in Sri Lanka who need to acquire new technologies from the external environment in order to compete and upgrade their innovation capabilities. We analyse some of the key challenges faced by the recipients of knowledge in international technology transfer projects from the perspective of technology receiver firms based in a developing country. Through this technology transfer process the receiver firms attempt to utilise knowledge, from the technology senders based in advanced countries, in order to help them upgrade their innovation capabilities. This upgrading process involves overcoming some challenges related to training provision, human resources, language barriers, complexity of transfer process, and recipient's lack of absorptive capacity. We present a number of important managerial implications, especially relevant for technology receivers in developing countries.

Khaleel Malik; Vathsala Wickramasinghe

2013-01-01T23:59:59.000Z

427

Questions concerning Technology Transfer Practices at DOE Labs.txt - Notepad  

NLE Websites -- All DOE Office Websites (Extended Search)

concerning Technology Transfer Practices at DOE Labs.txt concerning Technology Transfer Practices at DOE Labs.txt From: Gary S. Selwyn [gary.selwyn@apjet.com] Sent: Tuesday, February 10, 2009 7:00 PM To: GC-62 Subject: Questions concerning Technology Transfer Practices at DOE Labs In response to the request for written comments, as listed in the Federal Register, Vol 73, No. 229, APJeT, Inc. offers the comments below. APJET is an early-stage, technology company that has licensed technology developed at Los Alamos National Laboratory. APJET has been a licensee for 7 years, has 10 employees in NM and NC, is the largest spin-off from LANL in its history, and the author of these responses is the founder of APJET and a former technical staff member from LANL. Question #3: US Competitiveness It is highly restrictive to require that the recipient of new technology from the

428

2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Fuel Cell Technologies Program iii Table of Contents Summary ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� v 1.0 Introduction ����������������������������������������������������������������������������������������������������������������������������������������������������������������

429

Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Fuel Cell Technologies Program iii Table of Contents Summary ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� v 1.0 Introduction ����������������������������������������������������������������������������������������������������������������������������������������������������������������

430

Buried Waste Integrated Demonstration commercialization actions plans. Volume 1  

SciTech Connect

The Buried Waste Integrated Demonstration (BWID) is sponsored by US Department of Energy (DOE) Office of Technology Development. BWID supports the development and demonstration of a suite of technologies that when integrated with commercially available baseline technologies form a comprehensive system for the effective and efficient remediation of buried waste throughout the DOE complex. BWID evaluates, validates, and demonstrates technologies and transfers this information throughout DOE and private industry to support DOE. remediation planning and implementation activities. This report documents commercialization action plans for five technologies with near-term commercialization/ implementation potential as well as provides a status of commercial and academic partners for each technology.

Kaupanger, R.M. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Glore, D. [Advanced Sciences, Inc. (United States)

1994-04-01T23:59:59.000Z

431

U.S.-MEXICO TECHNOLOGY TRANSFER; BILATERAL TECHNICAL EXCHANGES FOR SUSTAINABLE ECONOMIC GROWTH IN THE BORDER REGION  

SciTech Connect

The U.S. Department of Energy (DOE) maintains a strong commitment to transfer the results of its science and technology programs to the private sector. The intent is to apply innovative and sometimes advanced technologies to address needs while simultaneously stimulating new commercial business opportunities. Such focused technology transfer was evident in the late 1990s as the results of DOE investments in environmental management technology development led to new tools for characterizing and remediating contaminated sites as well as handling and minimizing the generation of hazardous wastes. The Departments Office of Environmental Management was attempting to reduce the cost, accelerate the schedule, and improve the efficacy of clean-up efforts in the nuclear weapons complex. It recognized that resulting technologies had broader world market applications and that their commercialization would further reduce costs and facilitate deployment of improved technology at DOE sites. DOEs Albuquerque Operations Office (now part of the National Nuclear Security Administration) began in 1995 to build the foundation for a technology exchange program with Mexico. Initial sponsorship for this work was provided by the Departments Office of Environmental Management. As part of this effort, Applied Sciences Laboratory, Inc. (ASL) was contracted by the DOE Albuquerque office to identify Mexicos priority environmental management needs, identify and evaluate DOE-sponsored technologies as potential solutions for those needs, and coordinate these opportunities with decision makers from Mexicos federal government. That work led to an improved understanding of many key environmental challenges that Mexico faces and the many opportunities to apply DOEs technologies to help resolve them. The above results constituted, in large part, the foundation for an initial DOE-funded program to apply the Departments technology base to help address some of Mexicos challenging environmental issues. The results also brought focus to the potential contributions that DOEs science and technology could make for solving the many difficult, multi-generational problems faced by hundreds of bi-national communities along the 2,000-mile shared border of the United States and Mexico. Efforts to address these U.S.-Mexico border issues were initially sponsored by the DOEs Albuquerque and Carlsbad offices. In subsequent years, the U.S. Congress directed appropriations to DOEs Carlsbad office to address public health, safety and security issues prevalent within U.S.-Mexico border communities. With ASLs assistance, DOEs Albuquerque office developed contacts and formed partnerships with interested U.S and Mexican government, academic, and commercial organizations. Border industries, industrial effluents, and public health conditions were evaluated and documented. Relevant technologies were then matched to environmental problem sets along the border. Several technologies that were identified and subsequently supported by this effort are now operational in a number of U.S.-Mexico border communities, several communities within Mexicos interior states, and in other parts of Latin America. As a result, some serious public health threats within these communities caused by exposure to toxic airborne pollutants have been reduced. During this time, DOEs Carlsbad office hosted a bilateral conference to establish a cross-border consensus on what should be done on the basis of these earlier investigative efforts. Participating border region stakeholders set an agenda for technical collaborations. This agenda was supported by several Members of Congress who provided appropriations and directed DOEs Carlsbad office to initiate technology demonstration projects. During the following two years, more than 12 private-sector and DOE-sponsored technologies were demonstrated in partnership with numerous border community stakeholders. All technologies were well received and their effectiveness at addressing health, safety and security issues w

Jimenez, Richard, D., Dr.

2007-10-01T23:59:59.000Z

432

Tapping Our Commercial Potential: Work with the National Labs | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tapping Our Commercial Potential: Work with the National Labs Tapping Our Commercial Potential: Work with the National Labs Tapping Our Commercial Potential: Work with the National Labs October 12, 2011 - 9:59am Addthis Tapping Our Commercial Potential: Work with the National Labs Karina Edmonds Karina Edmonds Technology Transfer Coordinator In order to transform our nation's energy system and secure U.S. leadership in energy technologies, we must maximize the potential of the scientific discoveries made in our National Laboratories. In 2010 alone, the Energy Department's 17 National Laboratories and 5 facilities executed more than 13,500 technology transfer transactions. These transactions include a range of other research and development agreements as well as the licensing of laboratory technologies, negotiated by technology transfer offices across the Department. Technology Transfer

433

Notice of Inquiry: Technology Transfer Practices at Department of Energy (DOE) Laboratories (73 FR 72036)  

NLE Websites -- All DOE Office Websites (Extended Search)

V V E R S I T Y O F C A L I F O R N I A BERKELEY * DAVIS * IRVINE * LOS ANGELES * MERCED * RIVERSIDE * SAN DIEGO * SAN FRANCISCO SANTA BARBARA * SANTA CRUZ OFFICE OF THE PROVOST AND EXECUTIVE VICE PRESIDENT - ACADEMIC AFFAIRS OFFICE OF TECHNOLOGY TRANSFER 1111 Franklin Street, 5 th Floor Oakland, California 94607-5200 Web Site: www.ucop.edu/ott/ Tel: (510) 587-6000 Fax: (510) 587-6090 January 23, 2009 Submitted electronically to GC-62@hq.doe.gov Office of the Assistant General Counsel for Technology Transfer and Intellectual Property U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 Attn: Technology Transfer Questions Subject: Notice of Inquiry: Technology Transfer Practices at Department of Energy (DOE) Laboratories (73 FR 72036)

434

Energy Technology Transfer for Industry Through the Texas Energy Extension Service  

E-Print Network (OSTI)

ENERGY TECHNOLOGY TRANSFER FOR INDUSTRY THROUGH THE TEXAS ENERGY EXTENSION SERVICE Stephen Riter Texas Energy Extension Service. Texas A&M University College Station, Texas ABSTRACT The Texas Energy Extension Service (EES) is one of ten...

Riter, S.

1979-01-01T23:59:59.000Z

435

Closing the loop : improving technology transfer by learning from the past  

E-Print Network (OSTI)

Technology transfer is a significant challenge within the highly regulated pharmaceutical industry. While much focus is put on the logistics and strategy of the process, less attention has been paid to how to change the ...

Witinski, Paul (Paul F.)

2010-01-01T23:59:59.000Z

436

Demonstration: The Key to Technology Transfer in the Field of Energy Conservation in the UK  

E-Print Network (OSTI)

Technology transfer has been one of the most intractable problems faced on a worldwide basis. The problem is particularly acute in the field of energy efficiency because none of the 3 major parties involved, the researcher, the manufacturer...

Carter, D. E. F.; Lawrence, J. E.

1983-01-01T23:59:59.000Z

437

EA-1175: Proposed Title Transfer of East Tennessee Technology Park Land and Facilities, Oak Ridge, Tennessee  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposal to transfer the title of unneeded DOE real property located at the U.S. Department of Energy East Tennessee Technology Park (ETTP) in...

438

Fostering Technology Transfer, Innovation, and Entrepreneurship from the Perspective of a Public University  

Science Journals Connector (OSTI)

The obvious role a technology transfer office plays is in facilitating industry-sponsored research. In fiscal year 2012, the UCLA OIP-ISR executed 483 total agreements with 226 ... they are in many instances work...

Benjamin Chu

2013-01-01T23:59:59.000Z

439

Federal assistance program. Geothermal technology transfer. Project status report, May 1986  

SciTech Connect

Progress for the month of May, 1986, is described. Projects include evaluation of direct heating of greenhouses and other businesses, technology transfer to consultants, developers and users, and program monitor activities. (ACR)

Lienau, P.J.; Culver, G.

1986-05-01T23:59:59.000Z

440

Chapter 212: Role of Standardization in Technology Development, Transfer, Diffusion and Management  

E-Print Network (OSTI)

Chapter 212: Role of Standardization in Technology Development, Transfer, Diffusion and Management by John W. Bagby Abstract Since the industrial revolution, standardization has become a hybrid. Standards are increasingly developed outside government regulatory venues in consortia and other forms

Bagby, John

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

National Technology Transfer and Advancement Act of 1995 [Public Law (PL)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Technology Transfer and Advancement Act of 1995 [Public National Technology Transfer and Advancement Act of 1995 [Public Law (PL) 104-113] National Technology Transfer and Advancement Act of 1995 [Public Law (PL) 104-113] On March 7, 1996, President Clinton signed into law "The National Technology Transfer and Advancement Act of 1995." The new law, referred to as PL 104-113, serves to continue the policy changes initiated in the 1980s under Office of Management and Budget (OMB) Circular A-119 (OMB A-119), Federal Participation in the Development and Use of Voluntary Standards, that are transitioning the Executive branch of the Federal Government from a developer of internal standards to a customer of external standards. Section 12, "Standards Conformity," of the act states that "...all Federal

442

Characterization and Development of Advanced Heat Transfer Technologies  

Energy.gov (U.S. Department of Energy (DOE))

2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

443

Characterization and Development of Advanced Heat Transfer Technologies  

Energy.gov (U.S. Department of Energy (DOE))

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

444

NREL: Technology Transfer - NREL Analyzes Floating Offshore Wind...  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL Analyzes Floating Offshore Wind Technology for Statoil November 6, 2014 NREL engineers traveled to Oslo, Norway, to meet with Statoil representatives regarding NREL's analysis...

445

An Assessment of the Commercial Availability of Carbon Dioxide Capture and Storage Technologies as of June 2009  

SciTech Connect

Currently, there is considerable confusion within parts of the carbon dioxide capture and storage (CCS) technical and regulatory communities regarding the maturity and commercial readiness of the technologies needed to capture, transport, inject, monitor and verify the efficacy of carbon dioxide (CO2) storage in deep, geologic formations. The purpose of this technical report is to address this confusion by discussing the state of CCS technological readiness in terms of existing commercial deployments of CO2 capture systems, CO2 transportation pipelines, CO2 injection systems and measurement, monitoring and verification (MMV) systems for CO2 injected into deep geologic structures. To date, CO2 has been captured from both natural gas and coal fired commercial power generating facilities, gasification facilities and other industrial processes. Transportation via pipelines and injection of CO2 into the deep subsurface are well established commercial practices with more than 35 years of industrial experience. There are also a wide variety of MMV technologies that have been employed to understand the fate of CO2 injected into the deep subsurface. The four existing end-to-end commercial CCS projects Sleipner, Snhvit, In Salah and Weyburn are using a broad range of these technologies, and prove that, at a high level, geologic CO2 storage technologies are mature and capable of deploying at commercial scales. Whether wide scale deployment of CCS is currently or will soon be a cost-effective means of reducing greenhouse gas emissions is largely a function of climate policies which have yet to be enacted and the publics willingness to incur costs to avoid dangerous anthropogenic interference with the Earths climate. There are significant benefits to be had by continuing to improve through research, development, and demonstration suite of existing CCS technologies. Nonetheless, it is clear that most of the core technologies required to address capture, transport, injection, monitoring, management and verification for most large CO2 source types and in most CO2 storage formation types, exist.

Dooley, James J.; Davidson, Casie L.; Dahowski, Robert T.

2009-06-26T23:59:59.000Z

446

Technology data characterizing refrigeration in commercial buildings: Application to end-use forecasting with COMMEND 4.0  

SciTech Connect

In the United States, energy consumption is increasing most rapidly in the commercial sector. Consequently, the commercial sector is becoming an increasingly important target for state and federal energy policies and also for utility-sponsored demand side management (DSM) programs. The rapid growth in commercial-sector energy consumption also makes it important for analysts working on energy policy and DSM issues to have access to energy end-use forecasting models that include more detailed representations of energy-using technologies in the commercial sector. These new forecasting models disaggregate energy consumption not only by fuel type, end use, and building type, but also by specific technology. The disaggregation of the refrigeration end use in terms of specific technologies, however, is complicated by several factors. First, the number of configurations of refrigeration cases and systems is quite large. Also, energy use is a complex function of the refrigeration-case properties and the refrigeration-system properties. The Electric Power Research Institute`s (EPRI`s) Commercial End-Use Planning System (COMMEND 4.0) and the associated data development presented in this report attempt to address the above complications and create a consistent forecasting framework. Expanding end-use forecasting models so that they address individual technology options requires characterization of the present floorstock in terms of service requirements, energy technologies used, and cost-efficiency attributes of the energy technologies that consumers may choose for new buildings and retrofits. This report describes the process by which we collected refrigeration technology data. The data were generated for COMMEND 4.0 but are also generally applicable to other end-use forecasting frameworks for the commercial sector.

Sezgen, O.; Koomey, J.G.

1995-12-01T23:59:59.000Z

447

An evaluation of market penetration forecasting methodologies for new residential and commercial energy technologies  

SciTech Connect

Forecasting market penetration is an essential step in the development and assessment of new technologies. This report reviews several methodologies that are available for market penetration forecasting. The primary objective of this report is to help entrepreneurs understand these methodologies and aid in the selection of one or more of them for application to a particular new technology. This report also illustrates the application of these methodologies, using examples of new technologies, such as the heat pump, drawn from the residential and commercial sector. The report concludes with a brief discussion of some considerations in selecting a forecasting methodology for a particular situation. It must be emphasized that the objective of this report is not to construct a specific market penetration model for new technologies but only to provide a comparative evaluation of methodologies that would be useful to an entrepreneur who is unfamiliar with the range of techniques available. The specific methodologies considered in this report are as follows: subjective estimation methods, market surveys, historical analogy models, time series models, econometric models, diffusion models, economic cost models, and discrete choice models. In addition to these individual methodologies, which range from the very simple to the very complex, two combination approaches are also briefly discussed: (1) the economic cost model combined with the diffusion model and (2) the discrete choice model combined with the diffusion model. This discussion of combination methodologies is not meant to be exhaustive. Rather, it is intended merely to show that many methodologies often can complement each other. A combination of two or more different approaches may be better than a single methodology alone.

Raju, P.S.; Teotia, A.P.S.

1985-05-01T23:59:59.000Z

448

NETL: Tech Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Licensing & Technology Transfer Available Technologies Partnerships and Licensing Success Stories Contact Us Technology transfer is the process of transferring new technologies...

449

Technology transfer of an innovative remediation technology from the laboratory to the field: a case study of in situ aerobic cometabolic bioremediation  

Science Journals Connector (OSTI)

Scaling-up an environmental remediation technology from the laboratory to the field ... in order to demonstrate and evaluate a new remediation technology in the field. Finally, to commercialize an innovative tech...

M. N. Goltz; G. C. Mandalas; G. D. Hopkins

1998-06-01T23:59:59.000Z

450

Innovation and technology transfer in Latin America: a review of recent trends and policies  

Science Journals Connector (OSTI)

The paper reviews available indicators on science and technology for Latin America and discusses their shortcomings to reflect innovative activities undertaken in the region. It also considers transfer of technology flows and newly emerging patterns in technology supply. Special consideration is given to policies on science and technology applied in various Latin American countries, and to changes in their objectives and instruments as they are adapted to a more open and competitive economic scenario. The paper highlights the shortcomings of existing policies, and the need for new approaches which appropriately differentiate scientific and technological goals.

Carlos M. Correa

1995-01-01T23:59:59.000Z

451

Technology data characterizing space conditioning in commercial buildings: Application to end-use forecasting with COMMEND 4.0  

SciTech Connect

In the US, energy consumption is increasing most rapidly in the commercial sector. Consequently, the commercial sector is becoming an increasingly important target for state and federal energy policies and also for utility-sponsored demand side management (DSM) programs. The rapid growth in commercial-sector energy consumption also makes it important for analysts working on energy policy and DSM issues to have access to energy end-use forecasting models that include more detailed representations of energy-using technologies in the commercial sector. These new forecasting models disaggregate energy consumption not only by fuel type, end use, and building type, but also by specific technology. The disaggregation of space conditioning end uses in terms of specific technologies is complicated by several factors. First, the number of configurations of heating, ventilating, and air conditioning (HVAC) systems and heating and cooling plants is very large. Second, the properties of the building envelope are an integral part of a building`s HVAC energy consumption characteristics. Third, the characteristics of commercial buildings vary greatly by building type. The Electric Power Research Institute`s (EPRI`s) Commercial End-Use Planning System (COMMEND 4.0) and the associated data development presented in this report attempt to address the above complications and create a consistent forecasting framework. This report describes the process by which the authors collected space-conditioning technology data and then mapped it into the COMMEND 4.0 input format. The data are also generally applicable to other end-use forecasting frameworks for the commercial sector.

Sezgen, O.; Franconi, E.M.; Koomey, J.G.; Greenberg, S.E.; Afzal, A.; Shown, L.

1995-12-01T23:59:59.000Z

452

USDOE Technology Transfer, Working with Department of Energy Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

Cutting Edge Research Cutting Edge Research DOE National Laboratories and facilities have expertise in many areas that support key national missions and are also critical to major high-technology industries and services. Technology collaborations between industry and DOE laboratories mutually leverage each partner's resources to meet common or compatible objectives. Find laboratories and investigators doing cutting edge research in specific scientific and technological areas of interest. To pick resource(s) or to search by field(s), see Advanced Search Get the Science Accelerator widget at Widgetbox! Not seeing a widget? (More info) Science Accelerator is a gateway to science, including R&D results, project descriptions, accomplishments, DOE and Lab patents and more Resources made available by the Office of Scientific and Technical

453

Not-In-Kind Technologies for Residential and Commercial Unitary Equipment  

SciTech Connect

This project was initiated by the Department of Energy in response to a request from the HVAC industry for consolidated information about alternative heating and cooling cycles and for objective comparisons of those cycles in space conditioning applications. Twenty-seven different heat pumping technologies are compared on energy use and operating costs using consistent operating conditions and assumptions about component efficiencies for all of them. This report provides a concise summary of the underlying principals of each technology, its advantages and disadvantages, obstacles to commercial development, and economic feasibility. Both positive and negative results in this study are valuable; the fact that many of the cycles investigated are not attractive for space conditioning avoids any additional investment of time or resources in evaluating them for this application. In other cases, negative results in terms of the cost of materials or in cycle efficiencies identify where significant progress needs to be made in order for a cycle to become commercially attractive. Specific conclusions are listed for many of the technologies being promoted as alternatives to electrically-driven vapor compression heat pumps using fluorocarbon refrigerants. Although reverse Rankine cycle heat pumps using hydrocarbons have similar energy use to conventional electric-driven heat pumps, there are no significant energy savings due to the minor differences in estimated steady-state performance; higher costs would be required to accommodate the use of a flammable refrigerant. Magnetic and compressor-driven metal hydride heat pumps may be able to achieve efficiencies comparable to reverse Rankine cycle heat pumps, but they are likely to have much higher life cycle costs because of high costs for materials and peripheral equipment. Both thermoacoustic and thermionic heat pumps could have lower life cycle costs than conventional electric heat pumps because of reduced equipment and maintenance costs although energy use would be higher. There are strong opportunities for gas-fired heat pumps to reduce both energy use and operating costs outside of the high cooling climates in the southeast, south central states, and the southwest. Diesel and IC (Otto) engine-driven heat pumps are commercially available and should be able to increase their market share relative to gas furnaces on a life cycle cost basis; the cost premiums associated with these products, however, make it difficult to achieve three or five year paybacks which adversely affects their use in the U.S. Stirling engine-driven and duplex Stirling heat pumps have been investigated in the past as potential gas-fired appliances that would have longer lives and lower maintenance costs than diesel and IC engine-driven heat pumps at slightly lower efficiencies. These potential advantages have not been demonstrated and there has been a low level of interest in Stirling engine-driven heat pumps since the late 1980's. GAX absorption heat pumps have high heating efficiencies relative to conventional gas furnaces and are viable alternatives to furnace/air conditioner combinations in all parts of the country outside of the southeast, south central states, and desert southwest. Adsorption heat pumps may be competitive with the GAX absorption system at a higher degree of mechanical complexity; insufficient information is available to be more precise in that assessment.

Fischer, S.K.

2001-01-11T23:59:59.000Z

454

Development of Black Silicon Antireflection Control and Passivation Technology for Commercial Application: Cooperative Research and Development Final Report, CRADA Number CRD-12-475  

SciTech Connect

The work involves the development of a commercial manufacturing process for both multicrystalline and monocrystalline solar cells that combines Natcore's patent pending passivation technology.

Yuan, H. C.

2014-06-01T23:59:59.000Z

455

NREL: Technology Transfer - NREL and SkyFuel Partnership Reflects Bright  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy NREL and SkyFuel Partnership Reflects Bright Future for Solar Energy In this video, NREL Principal Scientist Gary Jorgensen and SkyFuel Chief Technology Officer Randy Gee talk about their partnership to develop a thin film to substitute for bulkier glass mirrors on solar-collecting parabolic troughs. Get the Adobe Flash Player to see this video. Credit: Fireside Production More Information For more information about NREL's partnership with SkyFuel, read Award-Winning Reflector to Cut Solar Cost and New Solar Technology Concentrates on Cost, Efficiency. Learn more about NREL's Concentrating Solar Power Research. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities

456

Lawrence Berkeley National Lab_Technology_Transfer_Contact_Us  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Contact Us chemistry, cleantech, bioenergy, environmental remediation, physical biosciences, geothermal energy, scintillating materials batteries, oil exploration, fuel cells, thin film deposition, gamma and neutron generators, materials physics, material science, nanotechnology, photovoltaics, electronic and photonic devices, NMR and MRI, optics, computing sciences biotechnology, life sciences, physical biosciences, genomics, nanotechnology To file a complaint or provide feedback on the work we do, please contact our Ombudsman. For licensing inquiries, please fill out our online Technology Licensing form or send e-mail to TTD@lbl.gov. To receive customized email alerts about Berkeley Lab technologies, please complete our Tech Alerts form. For any General Law matters handled by Patent Attorneys, work is under

457

LANL Transfers Glowing Bio Technology to Sandia Biotech  

SciTech Connect

Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action.

Nakhla, Tony; ,

2012-05-21T23:59:59.000Z

458

Commercial Buildings Consortium  

Energy.gov (U.S. Department of Energy (DOE))

Commercial Buildings Integration Project for the 2013 Building Technologies Office's Program Peer Review

459

Asian and Pacific Centre for Transfer of Technology (APCTT) | Open Energy  

Open Energy Info (EERE)

and Pacific Centre for Transfer of Technology (APCTT) and Pacific Centre for Transfer of Technology (APCTT) Jump to: navigation, search Name Asian and Pacific Centre for Transfer of Technology (APCTT) Address Qutab Institutional Area, India Place India Coordinates 28.5384902°, 77.1844619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":28.5384902,"lon":77.1844619,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH  

SciTech Connect

Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create nine (9) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry FGD technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

Roy Scandrol

2003-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

COMMERCIAL DEMONSTRATION OF THE MANUFACTURED AGGREGATE PROCESSING TECHNOLOGY UTILIZING SPRAY DRYER ASH  

SciTech Connect

Universal Aggregates, LLC proposes to design, construct and operate a lightweight aggregate manufacturing plant at the Birchwood Power Facility in King George, Virginia. The installation and start-up expenses for the Birchwood Aggregate Facility are $19.5 million. The DOE share is $7.2 million (37%) and the Universal Aggregates share is $12.3 (63%). The project team consists of CONSOL Energy Inc., P.J. Dick, Inc., SynAggs, LLC, and Universal Aggregates, LLC. The Birchwood Facility will transform 115,000 tons per year of spray dryer by-products that are currently being disposed of in an offsite landfill into 167,000 tons of a useful product, lightweight aggregates that can be used to manufacture lightweight aggregates that can be used to manufacture lightweight and medium weight masonry blocks. In addition to the environmental benefits, the Birchwood Facility will create eight (8) manufacturing jobs plus additional employment in the local trucking industry to deliver the aggregate to customers or reagents to the facility. A successful demonstration would lead to additional lightweight aggregate manufacturing facilities in the United States. There are currently twenty-one (21) spray dryer facilities operating in the United States that produce an adequate amount of spray dryer by-product to economically justify the installation of a lightweight aggregate manufacturing facility. Industry sources believe that as additional scrubbing is required, dry flue gas desulfurization (FGD) technologies will be the technology of choice. Letters from potential lightweight aggregate customers indicate that there is a market for the product once the commercialization barriers are eliminated by this demonstration project.

Roy Scandrol

2003-04-01T23:59:59.000Z

462

Cleaner coal technology transfer to China: a ''win-win'' opportunity for sustainable development?  

Science Journals Connector (OSTI)

This paper examines the role of companies and state institutions in OECD countries in helping China to accelerate the development and deployment of cleaner coal technologies. It focuses particularly on the scope for these technologies to deliver ''win-win'' benefits to China by increasing economic efficiency and reducing environmental emissions. Critical examinations of cleaner coal technologies and technology transfer processes are followed by empirical evidence of both government and private company experiences in this area. From this evidence, the barriers to the further uptake of ''win-win'' opportunities are explored and some conclusions and implications are put forward for consideration by governments and firms.

Jim Watson

2002-01-01T23:59:59.000Z

463

LANL Transfers Glowing Bio Technology to Sandia Biotech  

SciTech Connect

Partnering with Los Alamos National Laboratory, an Albuquerque-based company is seeking to transform the way protein and peptide analysis is conducted around the world. Sandia Biotech is using a biological technology licensed from Los Alamos called split green fluorescent protein (sGFP), as a detecting and tracking tool for the protein and peptide industry, valuable in the fields of Alzheimer's research, drug development and other biotechnology fields using protein folding to understand protein expression and mechanisms of action. http://www.lanl.gov/news/stories/glowing-future-for-los-alamos-and-sandia-b iotech-partnership.html

Rorick, Kevin

2012-01-01T23:59:59.000Z

464

Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer We outline the differences of Chinese MSW characteristics from Western MSW. Black-Right-Pointing-Pointer We model the requirements of four clusters of plant owner/operators in China. Black-Right-Pointing-Pointer We examine the best technology fit for these requirements via a matrix. Black-Right-Pointing-Pointer Variance in waste input affects result more than training and costs. Black-Right-Pointing-Pointer For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the various technologies available. It is hoped that the resulting research can build a bridge between technology transfer research and waste disposal research in order to enhance the exchange of more sustainable solutions in future.

Dorn, Thomas, E-mail: thomas.dorn@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Nelles, Michael, E-mail: michael.nelles@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Flamme, Sabine, E-mail: flamme@fh-muenster.de [University of Applied Sciences Muenster, Corrensstrasse 25, 48149 Muenster (Germany); Jinming, Cai [Hefei University of Technology, 193 Tunxi Road, 230009 Hefei (China)

2012-11-15T23:59:59.000Z

465

Technology transfer effectiveness through international joint ventures (IJVs) to their component suppliers: a study of the automotive industry of Pakistan.  

E-Print Network (OSTI)

??This thesis investigates the important topic of technology transfer effectiveness from international joint ventures (IJVs) established in the automotive industry of Pakistan to their local (more)

Khan, Sardar Zaheer Ahmad

2011-01-01T23:59:59.000Z

466

The Influence of Inward Technology Transfers and International Entrepreneurial Orientation on the Export Performance of Egyptian SMEs.  

E-Print Network (OSTI)

??This study examines the influence of inward technology transfers and international entrepreneurial orientation (IEO) on the export performance of small and medium-sized firms (SMEs). IEO (more)

Gaber, Heba

2013-01-01T23:59:59.000Z

467

NETL: News Release - DOE Transfers Steel Casting Technology to Rock Island  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2007 31, 2007 DOE Transfers Steel Casting Technology to Rock Island Arsenal Army Facility to Produce Improved Armor in War on Terrorism WASHINGTON, DC - A steel casting technology developed by the U.S. Department of Energy has been transferred to the U.S. Army's Rock Island Arsenal to manufacture improved armor for vehicles used in the global war on terrorism. MORE INFO Learn more about NETL's cooperative research with the Army The Office of Fossil Energy's National Energy Technology Laboratory (NETL) provided the Rock Island Arsenal with process guidelines, parameters, expertise, and patterns to set up and operate a facility for making steel castings using an NETL-developed process called loose-bonded sand, lost-foam technology. The facilities at the arsenal, in Rock Island, Ill.,

468

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

Donald Duttlinger

1999-12-01T23:59:59.000Z

469

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

During FY00, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY00, which lay the groundwork for further growth in the future.

Unknown

2000-05-01T23:59:59.000Z

470

technology offer Vienna University of Technology/ Research and Transfer Support | Hildegard Sieberth  

E-Print Network (OSTI)

developed. The liquid precursors can be either cured in vivo or printed by additive manufacturing technology be tuned, in-vivo curing or high resolution additive manufacturing is not possible Technology A new

Szmolyan, Peter

471

Cross-border transfer of climate change mitigation technologies : the case of wind energy from Denmark and Germany to India  

E-Print Network (OSTI)

This research investigated the causal factors and processes of international development and diffusion of wind energy technology by examining private sector cross-border technology transfer from Denmark and Germany to India ...

Mizuno, Emi, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

472

Washington, D.C. and Indiana: Allison Hybrid Technology Achieves Commercial Success  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE partner, Allison Transmission, Inc., has achieved commercial success in the greater Washington, D.C. area, with 1,480 hybrid buses on the road.

473

Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings  

E-Print Network (OSTI)

Study in Energy Efficiency in Buildings August Nationalelectric loads in buildings: energy efficiency (for steady-and Energy Efficiency Options Using Commercial Building

Piette, Mary Ann; Kiliccote, Sila

2006-01-01T23:59:59.000Z

474

ANNOUNCEMENT OF FEDERAL FUNDING OPPORTUNITY (FFO) Small Business Innovation Research (SBIR) Technology Commercialization Assistance Program  

E-Print Network (OSTI)

, accredited institutions of higher education, state or local governments, or commercial organizations...................................................................................... 3 IV. Application and Submission Information ..................................................... 4 V. Application Review Information

475

An evaluation of three commercially available technologies forreal-time measurement of rates of outdoor airflow into HVAC systems  

SciTech Connect

During the last few years, new technologies have been introduced for real-time continuous measurement of the flow rates of outdoor air (OA) into HVAC systems; however, an evaluation of these measurements technologies has not previously been published. This document describes a test system and protocols developed for a controlled evaluation of these measurement technologies. The results of tests of three commercially available measurement technologies are also summarized. The test system and protocol were judged practical and very useful. The three commercially available measurement technologies should provide reasonably, e.g., 20%, accurate measurements of OA flow rates as long as air velocities are maintained high enough to produce accurately measurable pressure signals. In HVAC systems with economizer controls, to maintain the required air velocities the OA intake will need to be divided into two sections in parallel, each with a separate OA damper. All of the measurement devices had pressure drops that are likely to be judged acceptable. The influence of wind on the accuracy of these measurement technologies still needs to be evaluated.

Fisk, William J.; Faulkner, David; Sullivan, Douglas P.

2004-10-28T23:59:59.000Z

476

ITP Industrial Materials: Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet overviewing project that reduces the cost of carbon fiber raw materials and processing technologies

477

Request for Information: High Impact Commercial Building Technology Deployment (DE-FOA-0001086)  

Energy.gov (U.S. Department of Energy (DOE))

Closed Deadline: May 30, 2014 This RFI seeks information regarding the development and maintenance of new and existing tools, specifications, case studies and other resources actively deployed by the Commercial Buildings Integration program.

478

Thin-film solar cells: review of materials, technologies and commercial status  

Science Journals Connector (OSTI)

As apparent from Table1..., showing the production volume for different manufacturers of these thin-film technologies over the past 3years, rapidly-growing ... are also increasing rapidly, the thin-film technologies

Martin A. Green

2007-10-01T23:59:59.000Z

479

Technological assessment and evaluation of high power batteries and their commercial values  

E-Print Network (OSTI)

Lithium Ion (Li-ion) battery technology has the potential to compete with the more matured Nickel Metal Hydride (NiMH) battery technology in the Hybrid Electric Vehicle (HEV) energy storage market as it has higher specific ...

Teo, Seh Kiat

2006-01-01T23:59:59.000Z

480

Federal technology transfer requirements :a focused study of principal agencies approaches with implications for the Department of Homeland Security.  

SciTech Connect

This report provides relevant information and analysis to the Department of Homeland Security (DHS) that will assist DHS in determining how to meet the requirements of federal technology transfer legislation. These legal requirements are grouped into five categories: (1) establishing an Office of Research and Technology Applications, or providing the functions thereof; (2) information management; (3) enabling agreements with non-federal partners; (4) royalty sharing; and (5) invention ownership/obligations. These five categories provide the organizing framework for this study, which benchmarks other federal agencies/laboratories engaged in technology transfer/transition Four key agencies--the Department of Health & Human Services (HHS), the U.S. Department of Agriculture (USDA), the Department of Energy (DOE), and the Department of Defense (DoD)--and several of their laboratories have been surveyed. An analysis of DHS's mission needs for commercializing R&D compared to those agencies/laboratories is presented with implications and next steps for DHS's consideration. Federal technology transfer legislation, requirements, and practices have evolved over the decades as agencies and laboratories have grown more knowledgeable and sophisticated in their efforts to conduct technology transfer and as needs and opinions in the federal sector have changed with regards to what is appropriate. The need to address requirements in a fairly thorough manner has, therefore, resulted in a lengthy paper. There are two ways to find summary information. Each chapter concludes with a summary, and there is an overall ''Summary and Next Steps'' chapter on pages 57-60. For those readers who are unable to read the entire document, we recommend referring to these pages.

Koker, Denise; Micheau, Jill M.

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "technology transfer commercialization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Development and Commercialization of Alternative Carbon Fiber Precursors and Conversion Technologies- Advanced Conversion  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

482

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency.

Unknown

2003-04-30T23:59:59.000Z

483

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.

Unknown

2000-11-01T23:59:59.000Z

484

The EMDEX (Electric and Magnetic Field Digital Exposure) Project: Technology transfer and occupational measurements  

SciTech Connect

The Electric and Magnetic Field Measurement Project for Utilities -- the EPRI EMDEX Project -- is a multifaceted project entailing technology transfer, measurement protocol design, data management, and exposure assessment analyses. The specific objectives of the project in order to priority were: (1) to transfer the EMDEX technology to utilities; (2) to develop measurement protocols and data management capabilities for large exposure data sets; and (3) to collect, analyze, and document 60-Hz electric and magnetic field exposures for a diverse population. Transfer of the EPRI Electric and Magnetic Field Digital Exposure system (EMDEX) technology to the participating utilities was accomplished through training and through extensive involvement in the exposure data collection effort. Documentation of the EMDEX Project is contained in three volumes: Volume 1 summarizes the methods and results, and provides an assessment of project objectives; Volume 2 provides detailed descriptions of methods, procedures, protocols, materials and analyses, and Volume 3 contains appendices with a complete set of project protocols, project materials, and extensive data tables. 12 refs., 27 figs., 23 tabs.

Not Available

1990-11-01T23:59:59.000Z

485

Doug Speight Senior Commercialization Manager Doug Speight is Senior Commercialization Manager at Oak Ridge National  

NLE Websites -- All DOE Office Websites (Extended Search)

Doug Speight, 865/241-6564, dspeight@ornl.gov Doug Speight, 865/241-6564, dspeight@ornl.gov Doug Speight Senior Commercialization Manager Doug Speight is Senior Commercialization Manager at Oak Ridge National Laboratory where he focuses on intellectual property management and technology commercialization opportunities. In addition to holding past leadership appointments at North Carolina A&T State University (NC A&T), he has ten years of technology transfer and commercialization experience with both NC A&T and NASA and seven years of entrepreneurial experience in a tech-based startup. Speight formerly served as the Assistant Vice Chancellor for Outreach & Economic Development at NC A&T where his duties included management of Technology Transfer, Venture Development and

486

Energy Department Invests Over $7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department announced more than $7 million for projects that will help bring cost-effective, advanced hydrogen and fuel cell technologies online faster.

487

The following national Sea Grant aquaculture extension and technology transfer projects were awarded in 2012 (final year of three-year projects from a 2010 competition)  

E-Print Network (OSTI)

The following national Sea Grant aquaculture extension and technology transfer projects were Oregon Sea Grant Aquaculture Extension and Technology Transfer $99,906 Puerto Rico Sea Grant Chaparro extension and technology transfer in Washington and the Pacific Northwest $100,000 Wisconsin Sea Grant

488

Technology Transfer: An Integrated `Culture-Friendly' I.J. Bate, A. Burns, T.O. Jackson, T.P. Kelly,  

E-Print Network (OSTI)

Technology Transfer: An Integrated `Culture-Friendly' Approach I.J. Bate, A. Burns, T.O. Jackson, T. This is in contrast to many other technology transfer initiatives which have failed because academics have not truly not been prepared to perform the technology transfer in a suitable incremental and consultative manner. 1

Kelly, Tim

489

Technology Transfer and Intellectual Property Services TechTIPS a n n u a l r e p o r t 2 0 0 2  

E-Print Network (OSTI)

Technology Transfer and Intellectual Property Services · TechTIPS a n n u a l r e p o r t 2 0 0 2 #12;University of California, San Diego Technology Transfer Advisory Committee Richard Attiyeh Vice Management and Planning The UCSD Technology Transfer Advisory Committee (TTAC) is responsible for general

Fainman, Yeshaiahu

490

[To be printed on the headed notepaper of the Administering Organisation or its Technology Transfer Group (if an independent organisation) or the Company  

E-Print Network (OSTI)

[To be printed on the headed notepaper of the Administering Organisation or its Technology Transfer of Signature:___________________________ [Signed by Head Technology Transfer Office (TTO) or Group on behalf of Administering Organisation or its Technology Transfer Group if independent or if the University does not have

Rambaut, Andrew

491

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Novel Real-Time Sub-Millimeter Imaging Device and Methods  

E-Print Network (OSTI)

Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu Novel Real || Office of Technology Transfer || 901.678.1712 || kpboggs@memphis.edu The image scanning methodology makes #12;Kevin P. Boggs || Office of Technology Transfer || 901.678.1712 || kpboggs

Dasgupta, Dipankar

492

Geothermal technology transfer for direct heat applications: Final report, 1983--1988  

SciTech Connect

This report describes a geothermal technology transfer program, performed by Oregon Institute of Technology's Geo-Heat Center, used to aid in the development of geothermal energy for direct heat applications. It provides a summary of 88 technical assistance projects performed in 10 states for space heating, district heating, green-houses, aquaculture, industrial processing, small scale binary electric power generation and heat pump applications. It describes an inventory compiled for over 100 direct heat projects that contains information on project site, resource and engineering data. An overview of information services is provided to users of the program which includes; advisory, referrals, literature distribution, geothermal technology library, quarterly Bulletin, training programs, presentations and tours, and reporting of activities for the USDOE Geothermal Progress Monitor.

Lienau, P.J.; Culver, G.

1988-01-01T23:59:59.000Z

493

FW Response to Notice of Inquire on Questions Concerning Technology Transfer Tractices at DOE Laboratories.txt - Notepad  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

esponse to Notice of Inquire on Questions Concerning Technology Transfer Tractices at DOE Laboratories. esponse to Notice of Inquire on Questions Concerning Technology Transfer Tractices at DOE Laboratories. From: Malozemoff, Alex [AMalozemoff@amsc.com] Sent: Tuesday, January 27, 2009 4:09 PM To: GC-62 Cc: Ballard, Thomas B.; McGahn, Daniel Subject: FW: Response to Notice of Inquire on Questions Concerning Technology Transfer Tractices at DOE Laboratories > Response to Fed Register 73, no. 229, Nov. 26, 2008 Notices > > DOE Questions Concerning Technology Transfer Practices at DOE > Laboratories > > Answer by > > Dr. Alexis P. Malozemoff > Executive V. P. and Chief Technical Officer > American Superconductor > 64 Jackson Rd., Devens MA 01434 USA > ph: 978-842-3331 > cell: 508-243-9693 > amalozemoff@amsc.com > > 1. American Superconductor (AMSC), a leader in alternative energy

494

Cost-effective allocation of public funding to promote the commercialization of renewable energy technology  

E-Print Network (OSTI)

The need for new Renewable Energy Technologies (RETs) is growing with the challenge of providing affordable electricity under increasing environmental and public health constraints while promoting energy security and ...

Culver, Lauren C. (Lauren Claire)

2009-01-01T23:59:59.000Z

495

Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report  

SciTech Connect

Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the projects Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

Grogan, Dylan C. P.

2013-08-15T23:59:59.000Z

496

Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, April 1--June 30, 1997  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 2Q97.

NONE

1997-12-31T23:59:59.000Z

497

Utility advanced turbine systems (ATS) technology readiness testing and pre-commercial demonstration. Quarterly report, January 1--March 31, 1997  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the US Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue. A schematic of the GE H machine is shown. This report summarizes work accomplished in 1Q97.

NONE

1997-12-31T23:59:59.000Z

498

Utility Advanced Turbine Systems (ATS) technology readiness testing and pre-commercialization demonstration. Quarterly report, October 1--December 31, 1996  

SciTech Connect

The overall objective of the Advanced Turbine System (ATS) Phase 3 Cooperative Agreement between GE and the U.S. Department of Energy (DOE) is the development of the GE 7H and 9H combined cycle power systems. The major effort will be expended on detail design. Validation of critical components and technologies will be performed including: hot gas path component testing, sub-scale compressor testing, steam purity test trials, and rotational heat transfer confirmation testing. Processes will be developed to support the manufacture of the first system, which will be sited and operated in Phase 4. Technology enhancements that are not required for the first machine design but will be critical for future ATS advances in performance, reliability, and costs will be initiated. Long-term tests of materials to confirm design life predictions will continue.

NONE

1997-06-01T23:59:59.000Z

499

DOE/EA-1449; Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash, King George County, Virginia (August 2002)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 ENVIRONMENTAL ASSESSMENT Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray Dryer Ash, King George County, Virginia United States Department of Energy National Energy Technology Laboratory August 2002 Commercial Demonstration of the Manufactured Aggregate Processing Technology Utilizing Spray-dryer Ash, King George County, Virginia ENVIRONMENTAL ASSESSMENT 2 National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The proposed action is for the U.S. Department of Energy (DOE) to provide cost- shared financial support to Universal Aggregates, LLC, for the design, construction, and operation of a lightweight aggregate manufacturing plant at the Mirant-Birchwood Power Plant Facility (Mirant-Birchwood Facility) in King George County, Virginia.

500

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. PTTC's Board made a strategic decision to relocate the Headquarters (HQ) office from Washington, DC to Houston, Texas. Driving force behind relocation was to better connect with independent producers, but cost savings could also be realized. Relocation was accomplished in late December 2000, with the HQ office being fully operational by January 2001. Early indications are that the HQ relocation is, in fact, enabling better networking with senior executives of independents in the Houston oil community. New Board leadership, elected in March 2001, will continue to effectively guide PTTC.

Unknown

2001-05-01T23:59:59.000Z